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ABSTRACT

CONSEQUENCES OF FINE-SCALE HETEROGENEITY FOR PREDICTIONS OF THE 

CARBON CYCLE USING LIDAR DATA AND A HEIGHT-STRUCTURED

ECOSYSTEM MODEL 

by

R. Quinn Thomas 

University of New Hampshire, September, 2007

To more accurately predict carbon stocks and fluxes in forests, it is 

important to measure fine-scale heterogeneity in ecosystem structure 

across the landscape, and incorporate the underlying mechanisms 

responsible for the observed heterogeneity in ecosystem models. This 

study used large-footprint lidar and a height-structured ecosystem model 

to estimate carbon stocks and fluxes at Hubbard Brook Experimental 

Forest (HBEF). At HBEF elevation gradients yield a decline in aboveground 

carbon stock, due to changes in net growth rates and disturbance at 

higher elevations. Lidar and a height structured ecosystem model can 

accurately quantified aboveground carbon stocks. Estimates of 

aboveground carbon fluxes depended on the availability of lidar data, 

the representation of fine-scale heterogeneity in climate and soil inputs, 

and the simulation of spatial variation in disturbance. Predictions of forest

vi
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structure depended strongly on simulating the mechanisms that drive 

heterogeneity in forest structure across the landscape.
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CHAPTER I

INTRODUCTION

For predictions of carbon flux in forest ecosystems to be accurate it 

is important to measure the heterogeneity in ecosystem structure across 

the landscape and to incorporate the mechanisms responsible for this 

observed heterogeneity in ecosystem models (Donoghue 2002). If spatial 

data on heterogeneity in forest ecosystem structure is lacking, it is only 

practical to assert that the actual structure is contained in bounds 

delimited by the structure of a young secondary forest and the structure 

of a mature forest. For carbon research, these bounds can represent a 

large range of carbon stocks and fluxes, as carbon stocks increase and 

carbon fluxes decrease substantially through forest succession (Shugart 

1984).

Constraint of landscape estimates of carbon stocks and fluxes can 

be provided through direct measurement of ecosystem structure. Many 

techniques, including national forest inventories and remote sensing, are 

used to directly measure forest structure. Direct measurement of 

individual tree size in national inventories is a highly accurate way to

1
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quantify aboveground carbon stocks and flux (Gillespie 1999, Goodale et 

al. 2002), but inventory data is limited in some regions and standardization 

of field protocols is a challenge. To overcome this limitation, the remote 

sensing community is measuring ecosystem structure and aboveground 

carbon stocks without the geographic constraints of inventory data using 

optical (Dong et al. 2003), radar (Kasischke et al. 1997), and laser sensors 

(Lefsky et al. 2002b).

Exciting progress has been made mapping ecosystem structure with 

high accuracy, especially canopy height and aboveground carbon 

stocks, using lidar remote sensing (Dubayah and Drake 2000, Lefsky et al. 

2002b). At spatial resolutions that range from sub-meter to kilometers, 

lidar (light detection and ranging) measures vegetation structure by 

actively emitting pulses of laser energy toward the earth surface using 

airborne or space-based instruments. The distance from the sensor to 

structural elements on the surface (i.e., tree canopies or the ground 

surface) is measured using the time required for light from the object to 

return to the lidar sensor. Canopy height is calculated by comparing 

earlier returns to ground returns. Small-footprint lidar (< 1 m resolution) can 

accurately represent very fine-scale heterogeneity in the height and 

biomass of individual trees (Popescu et al. 2003, Clark et al. 2004, 

Patenaude et al. 2004, van Aardt et al. 2006), but the high data density

2
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can limit the spatial scale of research. Large footprint lidar technology 

(25-250m footprints), namely the airborne Laser Vegetation Imaging 

Sensor (LVIS: Blair et al. 1999) and space-borne ICESat (Zwally et al. 2002) 

instruments, measures canopy height across regional and global scales 

(Peterson 2000, Drake et al. 2002, Lefsky et al. 2002a, Anderson et al. 2006). 

Large-footprint lidar canopy height measurements are shown to correlate 

well with forest aboveground carbon stocks across many different forest 

types (Drake et al. 2002, Lefsky et al. 2002a, Anderson et al. 2006), and to 

improve predictions of carbon fluxes by serving as initial conditions for 

ecosystem models (Hurtt et al. 2004). Lidar technology will likely continue 

as an important component of forthcoming carbon research, as 

demonstrated by the prominent position of the technology in the 

‘decadal survey’ for earth observing satellites by the U.S. National 

Academies (Space Studies Board 2007).

Beyond measurements of ecosystem structure, estimates of carbon 

flux also require an understanding of the underlying mechanisms that 

explain the heterogeneity in ecosystem structure. Figure 1 illustrates an 

intuitive example where a stand is shorter (stand A) than the stands that 

surround it (Figure la). A suite of potential mechanisms could explain why 

stand A is shorter than the surrounding stands. The short stand could be a

3
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stand A

stand A
i 1oo oo w

stand A

Figure 1. A schematic that illustrates how different mechanisms
explaining similar heterogeneity in forest structure can yield 
different predictions of change (a) Heterogeneous forest structure with a 
stand (stand A) that has a shorter statue than surrounding stands at time f. 
(b) Forest structure at time f+1 when a recent disturbance is responsible for 
the short statue in stand A at time f. (c) Forest structure at time f+1 when 
locally harsh environmental conditions that constrain net growth rates are 
responsible for the short statue of stand A at time f. Examples of forest 
structure (y-axis) include canopy height and aboveground carbon stocks.

function of locally harsh environmental conditions that constrain growth 

and thus little change in structure is expected between time t and t + 1 

(Figure lb). In contrast, a disturbance event may have reset the height of 

the stand more recently than the surrounding stands and the structure is 

expected to grow quickly (Figure lc). As this example demonstrates, the 

mechanisms that govern the heterogeneity in ecosystem structure can 

have important implications for on forest structure dynamics and the 

associated carbon flux

4
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A variety of modeling techniques are utilized to simulate the 

mechanisms that govern heterogeneity in ecosystem structure and 

aboveground carbon stocks. Two dominant classes of models that 

simulate forest ecosystem structure dynamics are gap models and more 

aggregated ecosystem models. Gap models explicitly represent many 

aspects of forest structure, particularly canopy height, and have 

traditionally focused on modeling the heterogeneous nature of 

disturbance recovery along with the corresponding heterogeneity in light 

environments (Botkin et al. 1972, Shugart and West 1977, Shugart 1984, 

Pacala et al. 1993, Pacala et al. 1996). More aggregated ecosystem 

models, such as the TEM (Raich et al. 1991, Melillo et al. 1993) and IBIS 

(Foley et al. 1996) models, focus on physiologically-driven carbon 

dynamics at large spatial scales. As a link between gap and more 

aggregated ecosystem models, physiologically-driven forest gaps models 

integrate the community dynamics in forest gaps models with the 

physiological-based carbon dynamics found in more aggregated models 

to simulate the contribution of individual tree growth and mortality to the 

carbon cycle. Key examples of physiologically-driven forest gap models 

include the Hybrid (Friend et al. 1997) and the Ecosystem Demography 

model (ED: Hurtt et al. 1998, Moorcroft et al. 2001)

5
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There is a growing body of studies that use remote sensing as inputs 

to ecosystem process models, including reviews on the subject (Lucas and 

Curran 1999, Turner et al. 2004). Remote sensing data can be used to 

estimate model variables or to reparameterize models following data 

assimilation, but commonly remote sensing inputs serve as initial conditions 

for the model simulations (Lucas and Curran 1999). For example, Hurtt et 

al. (2004) used lidar canopy height data to initialize the height-structured 

ED model and estimate aboveground carbon stocks to within 1.2% of the 

field estimate at the La Selva Biological Station, Costa Rica. Lidar data 

were also shown to provide substantial constraints on model estimates of 

carbon fluxes from 0.0 -  0.4 to 0.04 -  0.08 kg C-m^-yr1. In this system 

dominant variation in carbon stocks and fluxes was suggested to be due 

to disturbance. In contrast, a study by Ranson et al. (2001) used remote 

sensing to initialize a forest gap model in a northern forest ecosystem 

where growth rates depended on variations in soil characteristics. The 

authors used spatial maps of soil type and radar measurements of forest 

structure (Ranson et al. 1997) to initialize soil characteristic-specific model 

simulations. In the study, predictions of carbon fluxes depended strongly 

on both the ability to initialize the model with radar carbon stocks 

measurements and to resolve the mechanism through which soil type 

influences forest development.

6

Reproduced with permission o f the copyright owner. Further reproduction prohibited w ithout permission.



Forest structure and carbon flux in the most complex environments 

depend on variation in historical disturbance, future disturbance, and 

both soil and climate constraints on growth rates across the landscape. 

Regions with high topographical variation are notable examples of 

ecosystems where the influence of disturbance, climate, and soil 

characteristics interact to yield heterogeneity in forest structure and fluxes 

that depend strongly on elevation (Whittaker and Niering 1975, Singh et 

al. 1994, Gerhardt and Foster 2002, Joshi et al. 2003). Hubbard Brook 

Experimental Forest (HBEF; Figure 2), New Hampshire (USA) is an example 

of an ecosystem with topographically dependent variation in forest 

growth and disturbance rates that contribute strongly to heterogeneity in 

aboveground carbon stocks (Figure 3), canopy height (Figure 4), and

Figure 2. (a) The location of Hubbard Brook Experimental Forest (HBEF) in 
New Hampshire, USA. (b) A map of ground elevation at HBEF measured 
by the Laser Vegetation Imaging Sensor (LVIS).

7
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forest structure in general (Bormann et al. 1970). In particular, mean 

aboveground carbon stocks decline by 44% (Figure 3) and canopy height 

declines by 39% (Figure 4) between 300 and 900m elevation (Fahey et al. 

2005, Schilz 2006). This decline in aboveground carbon stocks can be 

explained using direct and indirect environmental influences, with the 

partitioning between gradients in forest growth and disturbance serving a 

fundamental distinction between influences. Schilz (2006), using 

measurements of plot age, partitioned the mechanisms responsible for 

the pattern of aboveground carbon stocks at HBEF, with 60% of the total 

decline due to decreased net growth rates (growth minus non-plot age 

resetting mortality) and 40% due to increased disturbance (plot age 

resetting mortality) at higher elevations. The 60% decrease in net growth 

rates is likely due to colder temperatures, shorter growing seasons, and 

decreased soil depth at higher elevations (Bormann et al. 1970, Schilz 

2006). The increase in disturbance at higher elevation likely includes 

gradients in regularly occurring disturbance (i.e., wind throw of indvidual 

trees, Bormann et al. 1970), semi-regular disturbance (i.e., ice storm and 

hurricanes, Rhoads et al. 2002), and non-reoccurring disturbance (i.e., 

logging, Peart et al. 1992) with elevation, although studies have not 

partitioned the 40% increase in disturbance between these different 

disturbance regimes.

8
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Figure 3. Aboveground carbon stocks for 371 field plots as a function of 
elevation at Hubbard Brook Experimental Forest (Fahey et al. 2005)
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Figure 4. Lidar measured canopy height (1 hectare resolution) as a 
function of elevation at the Hubbard Brook Experimental Forest.
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In this study, we investigated the use of lidar data and the ED model 

as an effective tool for estimating carbon stocks and fluxes in an 

environment where variation in climate, soil characteristics, and 

disturbance influences the spatial patterns in forest structure. We use HBEF 

as a case study for three primary reasons: one, to extend of results in Hurtt 

et al. (2004) to a temperate system; two, the mechanisms that determine 

patterns of carbon stocks and fluxes include heterogeneity in both net 

growth rates and disturbance recovery; and, three, the extensive field 

studies at HBEF provide important data to understand the underlying 

explanatory mechanisms and validate estimates. We then assess the 

sensitivity of carbon stocks and flux estimates to three key components: 

the availability of lidar data for initial conditions, the availability of 

elevation resolved climate and soil inputs, and assumptions about how 

disturbance scales with elevation.

Reproduced with permission o f the copyright owner. Further reproduction prohibited w ithout permission.
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CHAPTER II

METHODS AND RESULTS 

Study Area. Data, and Model

Hubbard Brook Experimental Forest (HBEF) (44.56N, 71.45W) is 

located in the White Mountains of New Hampshire (USA) and is a well- 

studied 3076 hectare domain within a northern hardwood and spruce-fir- 

birch transition forest ecosystem (Figure 2a). HBEF is a bowl-shaped basin 

with elevations that range from 222 to 1015m (Figure 2b). While HBEF is 

most recognized for watershed level research (Whittaker et al. 1979, Likens 

and Bormann 1995), extensive basin-wide forest structure data, including 

diameter at breast height (DBH), canopy height (height of the three tallest 

trees), and carbon stocks, are available from 371 500-m2 basin wide 

permanent plots measured between 1995 and 1997 (Schwarz et al. 2003).

The HBEF has a history of land-use and natural disturbance that has 

shaped the present day ecosystem structure and function. Natural 

disturbance includes regularly occurring wind-throw(Bormann and Likens 

1979), a hurricane in 1938(Merrens and Peart 1992, Peart et al. 1992), and

11
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an ice-storm in 1998 (Rhoads et al. 2002). Land-use includes valley-wide 

logging in the early 1900’s that paralleled the distribution of red spruce 

(Peart et al. 1992) and approached clear cutting is some areas.

Additional salvage logging occurred following the 1938 hurricane (Peart 

et al. 1992). Recently, whole watershed have been experimentally 

harvested, with tree removal ranging from strip cutting to a total harvest 

followed by three years of vegetation suppression.

In June 1999, ecosystem structure data was collected over the 

Northeastern United States, including HBEF, using NASA’s Laser Vegetation 

Imaging Sensor (LVIS). The mission was flown at an altitude of ~8km with a 

nominal footprint size of 25 m diameter. Footprints were spaced every ~9 

m across track, for a total swath width of 1 km, and were spaced ~27m 

along track, for approximately contiguous coverage. The return 

waveform was digitized at 60 cm vertical increments allowing a detailed 

description of canopy vertical structure. For the purposes of this study, the 

first return (canopy height) and the ground return (ground elevation) for 

each 25 m footprint were aggregated to 1 ha resolution.

Ecosystem dynamics were simulated using the Ecosystem 

Demography model (Hurtt et al. 1998, Moorcroft et al. 2001), a height- 

structured mechanistic forest-gap type ecosystem model driven by sub-

12
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models that govern forest processes (i.e., growth, reproduction, dispersal, 

respiration, mortality, etc). The ED model statistically scales up forest 

dynamics, allowing scales ranging from local sites to the globe to be 

computationally practical. The general nature of the model has been 

applied in many different ecosystems, including the Amazon (Moorcroft et 

al. 2001), the coterminous United States (Hurtt et al. 2002, Albani et al. 

2006), and Costa Rica (Hurtt et al. 2004).

The ED model used in this study underwent minor refinements for 

application to the northern hardwood ecosystem at HBEF. First, two 

northern hardwood plant functional types were parameterized in the 

model using two allometries described in Whittaker et al. (1974) and 

Siccama et al. (1994): a hardwood allometry, represented by using the 

American beech (Fagus grandifolia Ehrh) allometry, and a red spruce 

(P/'cea rubens Sarg.) allometry. The similarity in allometry between the 

three dominant hardwood species at HBEF allowed a single species to 

represent the two other species (Whittaker et al. 1974). Secondly, the 

temporal resolution was increased from a monthly time-step to a weekly 

time-step to allow sub-monthly gradients in growing season length. Thirdly, 

the temperature threshold marking spring leaf out and fall leaf drop, as 

described in Hurtt et al. (2002), was decreased from 10°C to 8.5°C so that 

the predicted total growing season days matched the relationship

13
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Figure 5. Number of days during 1999 with complete leaf coverage as a 
function of elevation. Field estimates were collected through routine 
observations of a sample of individual trees (Bailey 2001). Model 
estimates are from the phenology sub-model in the Ecosystem 
Demography Model using the updated leaf on, leaf off threshold of 8.5°C. 
The model estimates using the original 10°C threshold used in Hurtt et al. 
(2002) are shown for reference.

between phenology and elevation in field data collected in 1999 at the 

HBEF (Bailey 2001, Schilz 2006) across the elevation gradient at HBEF 

(Figure 5). Finally, the regular disturbance rate parameter was set to 0.70% 

per year across all elevations. All other sub-models described in Moorcroft 

et al. (2001) and Hurtt et al. (2002) were not altered.

14
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The ED model predicts ecosystem dynamics using only climate and 

soil data as inputs, both of which were collected at HBEF and scaled with 

elevation to cover all elevations. Specifically, hourly temperature, 

photosynthetically active radiation (PAR), and relative humidity were 

collected between 1982 and 1999 at the HBEF headquarters weather 

station located at an elevation of 250m and organized in a weekly 

climatology. Temperature was scaled to decrease with elevation using 

the adiabatic lapse rate (6.5° per km) and precipitation was scaled to 

increase with elevation using the linear equations described in Ollinger et 

al. (1995). PAR and relative humidity were assumed to be constant over 

all elevations, consistent with Richardson et al. (2004). Soil texture inputs 

were equivalent to the inputs described in Hurtt et al. (2002) and soil 

depth inputs linearly scale from 467mm at 300m elevation to 233mm at 

900m elevation, as described in Schliz (2006). The elevation dependent 

climate and soil characteristics inputs were aggregated into seven 100m 

resolution elevation bands ranging from 200 to 1000m elevation.

Estimating Carbon Stocks and Fluxes

The climate data was used as input into the ED model and forest 

development over 500 years was simulated using the inputs specific to 

each elevation band. Model output from each elevation specific

15
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simulation was organized into a look-up table that used canopy height to 

index the corresponding aboveground carbon stocks and flux output. 

The height-based organization of forest structure aided initialization using 

lidar canopy height measurements.

Before using lidar data to initialize the canopy height in the ED 

model and estimate carbon stocks and fluxes, we compared the 

relationship between canopy height and carbon stocks in the model to 

the same relationship in the field. The carbon stocks increased nearly 

linearly across the range of heights measured in 371 field plots between 

1995 and 1997 (Figure 6). The model relationship also increased linearly 

with no significant difference from the slope and intercept of the field 

data (model estimate contained in the field 95% confidence intervals; 

Figure 6). Furthermore, the ED-based relationship between canopy height 

and carbon stocks was constant across all elevations. The close 

agreement between the carbon-height relationship in the field and in the 

model serves as a partial validation of the model representation of forest 

structure. We did not observe an early asymptote in the height versus 

carbon relationship at 29m that was demonstrated using the same model 

at La Selva Biological Station in Costa Rica -  likely due to differing 

allometric relationships (Hurtt et al 2004).

16
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Building on the close correspondence between field and ED-based 

estimates, we next initialized the canopy height in the ED model and 

estimated aboveground carbon stocks using the 1 ha map of canopy 

height and elevation, and compared the domain wide and elevation 

patterns of carbon stocks to field measurements (Figure 7). Aboveground 

carbon stocks for each hectare across the HBEF domain was estimated by

-O - MODELCM

• FIELD

V . . V .  • f

o  10

150 5 10 20 25 30 35

HEIGHT (M)

Figure 6. Aboveground carbon stocks as a function of canopy height, 
predicted by the Ecosystem Demography model (white diamonds) and 
measured in the field (gray circles with a dotted line showing the linear 
best fit; Schwarz unpublished data).

17
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Lidar Canopy Height
Elevation specific canopy height 

vs. carbon stock curve

Model derived 
carbon stocks and fluxes

HEIGHT

HEIGHT

Lidar Ground Elevation

Figure 7. Schematic of the methodology used to estimate carbon stocks 
using the Ecosystem Demography model, lidar canopy height, and iidar 
ground elevation measurements. The ground elevation measurements 
were used to reference the corresponding elevation-specific canopy 
height versus aboveground carbon stocks look-up table. Carbon stocks 
were estimating using iidar canopy height to index the height/carbon 
stock relationship. A similar methodology was used to estimate carbon 
fluxes.

first using the elevation map to reference the corresponding elevation 

specific look-up table that relates simulated carbon stocks to canopy 

height. Then, the lidar canopy height for the same hectare was used to 

index to the corresponding carbon stocks.

There was close correspondence between domain wide mean and 

elevation pattern in field and lidar initialized aboveground carbon stocks.

18
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Specifically the domain wide mean initialized carbon stocks (10.77 ±0.12 

kg C • rrr2) were within 5.4% of the field data (10.17 ± 0.35 kg C • nrv2). There 

was also close agreement between the field and lidar initialized elevation 

patterns in carbon stocks. The lidar initialized carbon stocks showed a 45% 

decline from 300 to 900m elevation, a result similar to the 44% decline 

measured in the field. Figure 8 shows a spatial distribution of 

aboveground carbon stocks. Both elevation and recent land-use 

patterns (i.e. experimental tree harvest) are clearly visible in Figure 8.

3,800 Meters

Figure 8. A map of estimated aboveground carbon stocks at Hubbard 
Brook Experiment Forest. Lidar canopy height and ground elevation data 
was used to initialize the Ecosystem Demography model. Tree harvest has 
occurring since the 1950s in the outlined watersheds.

19

Reproduced with permission o f the copyright owner. Further reproduction prohibited w ithout permission.



3,800 Meters

Figure 9 A map of estimated aboveground carbon fluxes at Hubbard 
Brook Experiment Forest. Lidar canopy height and ground elevation data 
was used to initialize the Ecosystem Demography model. Tree harvest has 
occurring since the 1950s in the outlined watersheds.

We used lidar canopy height and elevation data and the ED model 

to produce spatial maps of aboveground carbon flux. The carbon fluxes 

were determined using the same elevation specific canopy height index 

technique used to estimate carbon stocks. Estimates of carbon flux 

represent an average annual flux that corresponded to the average 

climatic conditions between 1981 and 1999. Figure 9 shows a spatial map 

of carbon fluxes. Relatively high carbon fluxes are present in the outlined
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experimental watersheds, but overall the carbon flux across the domain 

was near zero. The estimated mean carbon flux across HBEF was 0.023 ± 

0.001 kgC  m-2y-'.

Sensitivity to Major Factors

Next, we tested the sensitivity of the results described above to key 

inputs and assumptions: the availability of 1-ha resolution lidar data, the 

availability of elevation resolved climate and soil input, and the 

assumption that the regular disturbance rate does not increase with 

elevation.

To illustrate the importance of lidar data, we estimated the range of 

uncertainty created when lidar or other high-resolution, spatially 

continuous, measurements of forest structure or succession were 

unavailable. This exercise was prudent given the need for regional to 

global predictions of carbon dynamics combined with the limited 

availability and non-random distribution of airborne LVIS data and field 

data (i.e. LTER sites). Specifically, we used two scenarios to bracket the 

range of uncertainty in estimated carbon stocks and fluxes when lidar was 

unavailable. First, we assumed that the entire HBEF domain was early in
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Figure 10. Estimates of domain wide mean aboveground carbon stocks 
(bars) and fluxes (line). Lidar based estimates used canopy height data 
for initialization. The Young and Mature estimates used assumptions that 
the entire domain is early or late in succession, respectively, and brackets 
the uncertainty when iidar is unavailable. Simulation included elevation 
patterns in environmental and homogeneous regular disturbance across 
all elevations. All error bars are ± 95% C.l.

succession (10 years old) and quickly aggregated carbon into living 

biomass. Second, we assumed the domain was entirely mature forest 

and near carbon balance, similar to the potential vegetation assumptions 

used as initial conditions in other modeling studies (see Melillo et al. 1993, 

Potter et al. 1998). In the absence of lidar data, estimated carbon stocks 

ranged from 0.62 kg C • rrr2 to 14.24 kg C • rrr2 and carbon fluxes ranged
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from 0.0 kg C • rrr2 to 0.19 kg C • rrr2 (Figure 10).

Next, we asked how the estimates of carbon stocks and fluxes 

changed when elevation resolved climate and soil input were not 

available. Our ability to resolve the elevation pattern in temperature, 

precipitation and soil depth inputs rested on the availability of an 

elevation map and empirical studies establishing the relationship between 

elevation and the inputs. Beyond the well-studied landscapes like HBEF, 

an understanding of how climate or soil varies across the landscape may 

be limited, despite considerable variation in forest structure. Furthermore, 

especially in large scale studies, climatic inputs and soil characteristics are 

often assumed to be homogeneous, even at scales larger than HBEF. 

How detrimental would such assumptions of homogeneity across an 

environment as heterogeneous at HBEF be to estimates of the carbon 

cycle? To test the sensitivity, we estimated the carbon stocks and fluxes 

using simulations where temperature, precipitation, and soil depth were 

assumed constant across all elevations. Lidar canopy height data were 

used to initialize each hectare by indexing the height-carbon relationship 

assuming all elevations were equivalent to that of the 300m elevation 

band.

Aboveground carbon stocks estimates varied little whether elevation
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dependent input were used or not; however, aboveground carbon flux 

estimate varied considerably (Figures 11 and 12). Aboveground carbon 

stock estimates without elevation dependent climatic and soil inputs 

(10.92 ± 0.11 kg C • nrr2) were within 1.4% of the estimates
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Figure 11. Estimates of domain wide mean above carbon stocks from the 
sensitivity analysis. Ail estimates use the ED-lidar look-up table method to 
initialize canopy height and estimate carbon stocks. Climate inputs, soil 
inputs, and reoccurring disturbance were constant across all elevation in 
the “homogenous env.” simulation. Climate and soil inputs vary with 
elevation in the “non-reoccuring dist.” and “reoccurring dist.” simulations. 
Reoccurring disturbance increases with elevation in the “reoccurring dist.” 
simulation. The 95% confidence interval (Cl) for the domain wide mean 
field-measured stocks is shown as dotted lines. All error bars are ± 95% 
C.l. around the mean.
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with elevation dependent inputs and within 7.9% of the field estimate 

(Figure 11). The aboveground carbon stocks declined by 43% from 300 to 

900m; a result similar to the decline estimated in the simulation with 

elevation gradients in inputs (45%) and in measured in the field data 

(44%). The estimates of aboveground carbon flux were 40% higher 

without elevation dependent inputs (Figure 12)

0.035

B  HOMOGENEOUS ENV.

□ NON-REOCCURING DIST.

■ REOCCURING DIST.

Figure 12. Estimates of domain wide mean above carbon flux from the 
sensitivity analysis. All estimates use the ED-lidar look-up table method to 
initialize canopy height and estimate carbon fluxes. Climate inputs, soil 
inputs, and reoccurring disturbance were constant across ail elevation in 
the “homogenous env.” simulation. Climate and soil inputs vary with 
elevation in the “non-reoccuring dist.” and “reoccurring dist.” simulations. 
Reoccurring disturbance increases with elevation in the “reoccurring dist.” 
simulation. All error bars are ± 95% C.l. around the mean.
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Finally, we asked how carbon stocks and flux estimates depend on 

assumptions about how disturbance scales with elevation. Our prior 

estimates of carbon stocks and fluxes assumed that the disturbance rate 

was a constant 0.70% per year across all elevations. In this assumption, a 

disturbance gradient with elevation was present but it was entirely due to 

historical land-use that is intrinsic to the lidar initialization. We tested the 

sensitivity of model estimates of carbon stocks and fluxes to assumptions 

about the disturbance regime by repeating the model simulation using 

the assumption that regular disturbance increases with elevation. This 

assumption required that the currently observed 44% decline in 

aboveground carbon stocks from 300 to 900m elevation to be a steady 

state property of the ecosystem. Consequently, the combination of 

decreased growth rates and increased regular (and recurring) 

disturbance with elevation, explained the observed 44% decline. This 

assumption precluded any gradients in land-use disturbance. We 

parameterized the regular disturbance rate to increase linearly with 

elevation by first determining the decline in aboveground carbon socks 

that was predicted at steady state due only to decreased net growth 

rates. We then used the gradient in net growth rate to solve for the 

additional gradient from annual disturbance that was needed to yield, at 

steady-state, the observed 44% (Figure 3) decline in aboveground carbon
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stocks from 300 to 900m. The annual disturbance rate was assumed to 

increase linearly with elevation using the following equation with a 

baseline value of 0.70% individuals per time step at 300m elevation:

Disturbance rate = 0.0007 + (x -  b) * (8 * 10'6) (1)

where x is the elevation and b is the baseline elevation (300m). The 

elevation specific canopy height look-up table approach (Figure 7) was 

used to estimate the carbon stocks and flux using lidar data.

Lidar initialized aboveground carbon stocks were not overly 

sensitive to assumptions about the disturbance regime while 

aboveground carbon fluxes at higher elevations were much lower when 

regular disturbance increased with elevation (Figures 11 and 12). Lidar 

initialized domain wide mean carbon stocks (ranged from 10.20 to 10.77 

kgC • nrr2) and the pattern with elevation (ranged from 45-47% decline) 

were relatively insensitive to assumptions about how disturbance increases 

with elevation. Carbon fluxes were very sensitive to assumptions about 

the disturbance, as the carbon flux estimates were 43% less in the case 

with increasing regular disturbance (Figure 12). The carbon flux estimates 

that bounded contained by the two disturbance regimes (all historical 

versus all regularly occurring) ranged from 0.013 to 0.023 kg C • nrr2 -y-1.
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Figure 13. Elevation patterns in aboveground carbon stocks that are 
expected at steady state for the different sensitivity analysis simulations. 
The field data collected between 1995 and 1997 is shown for reference 
(Fahey et al. 2005).

The inclusion of environmental gradients and details on disturbance 

affected not only the aboveground carbon stocks and fluxes, but the 

implied elevation gradient of aboveground carbon stocks at steady state. 

Initialization with lidar data yield -44% decline in aboveground carbon 

stocks from 300 to 900m, regardless of the elevation patterns in inputs or 

disturbance regimes; however, after simulations are allowed to continue 

to steady state following initialization, the cases differed substantially. The
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44% decline was maintained at steady state when the climate and soil 

inputs and the disturbance rate vary with elevation. The 44% decline was 

reduced to a 24% decline when regular disturbance was held constant 

and climate and soil inputs were allowed to vary with elevation. Finally 

and trivially, carbon stocks were constant across all elevations at steady 

state when all inputs and the disturbance rate were constant across all 

elevations.
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CHAPTER III

DISCUSSION

Terrestrial ecosystems are heterogeneous due to a combination of factors 

including edaphic patterns, climate variation, and disturbance events. 

Here the combination of the height-structured ED model and lidar data 

was used to constrain estimates of carbon stocks and fluxes in an 

ecosystem where both environmental constraints on growth and 

disturbance rates vary across the landscape. Without the availability of 

lidar measurements of ecosystem structure, the range of model carbon 

stocks and flux estimates was large. Initialization using canopy height 

measurements was able to substantially reduce the range of carbon 

stocks and fluxes estimates. Further constraint on carbon flux estimates 

was provided by simulating the mechanisms that are responsible for 

heterogeneity in ecosystem structure. In particular, simulating the 

elevation dependent heterogeneity in growth and disturbance allowed 

the delineation of short high elevation stands constrained by harsh 

environmental conditions (low carbon fluxes) from recently disturbed short 

areas (high carbon fluxes) in the low elevations. Carbon flux estimates 

depended strongly on simulating the underlying elevation dependent
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mechanisms that explain heterogeneity in ecosystem structure across 

HBEF.

Data on mean canopy height from an airborne large footprint 

lidar sensor were used to initialize the mean canopy height and all 

associated underlying information on the composition, size, and density of 

individual plants in a height structured ecosystem model. Resulting model 

estimates of carbon stocks were then compared to field data on domain 

wide average carbon stocks, and elevation patterns of carbon stocks. 

Estimates of carbons stocks from data on mean canopy height thus 

served as partial validation of the ED model in which estimates of mean 

canopy height and carbon stocks are the result of the dynamics of an 

individual-based physiologically-driven gap processes. Empirically 

derived allometric relationships are important in ED, but they only describe 

the relation between height and carbon stocks for individual trees, not the 

canopy as a whole.

Beyond the constraint provided by measurements of ecosystem 

structure provided by lidar data, carbon flux estimates depended strongly 

on simulating the underlying mechanisms responsible for the 

heterogeneity. One of the important underlying mechanisms that explain 

heterogeneity in ecosystem structure at HBEF is elevation pattern in
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growth rates. Estimates of carbon flux were nearly double when the 

elevation pattern in growths was not simulated using elevation 

dependent climate and soil depth inputs. Lidar measurements of ground 

elevation and empirical relationships between the inputs and elevation 

were central to resolving the elevation patterns. Fine-scale heterogeneity 

in climate and soil inputs allowed more precise estimation of successional 

stage by separating climate induced from disturbance induced structural 

heterogeneity. The constraint provided by elevation resolved climate and 

soil data will likely be even more important in younger landscapes with 

more variability in growth rates, than the relatively mature landscape at 

HBEF.

Another important underlying mechanism at HBEF is variation in 

disturbance frequency across the landscape. Carbon flux estimates were 

nearly as dependent on assumptions on how disturbance increases with 

elevation as they were dependent on the resolution of fine-scale 

heterogeneity in climate and soil inputs. Carbon flux was 38% lower using 

lidar to initialize the simulation with a positive relationship between regular 

disturbance and elevation than initializing the simulation with regular 

disturbance constant across all elevations. Despite the sensitivity, 

quantifying the partition in elevation dependent disturbance between 

regular and non-reoccurring disturbance at HBEF is unclear. Published
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accounts of logging (a non-reoccurring disturbance) at HBEF suggest that 

logging was concentrated at higher elevations (Peart et al. 1992), while 

research demonstrates that wind-throw (Bormann et al. 1970) and ice- 

storms are more common in exposed environments at higher elevations 

(600-750m, Rhoads et al. 2002). Furthermore, studies have shown that 

interactions exist between land-use and wind-throw as stands with more 

recent logging history had fewer impacts from the 1938 hurricane than 

less recently logged stands at HBEF (Peart et al., 1992). Estimates serve as 

bounds for the actual disturbance regime because it is likely that the 

actual disturbance gradient also includes semi-regular disturbances that 

occur less often than yearly but will occur in the future (i.e. not a non- 

reoccurring disturbance). Improved predictions of carbon flux depend on 

the development of disturbance models that simulate the reoccurrence 

of disturbance as a function of environmental variation and human 

activities.

Understanding the impact of disturbance patterns on carbon flux is 

even more complex than correctly partitioning regular and irregular 

disturbance. First, the role of sub-lethal disturbance is unclear. Sub-lethal 

disturbance, or the loss of leaves and branches from storm events or 

neighboring tree fall, is likely to parallel the increases in wind speed and 

storm exposure that are associated with higher elevations . This type of
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disturbance would materialize as decreased net growth rates rather than 

as increased disturbance rates, as leaf area available for photosynthesis 

would be reduced and photosynthate would be reallocated to repairing 

damage instead of added to new growth. Second, a spatial examination 

of carbon fluxes (Figure 10) revealed that the estimates for carbon flux are 

relatively large on the high elevation ridge tops and rocky outcrops, even 

when climate inputs, soil inputs, and regular disturbance vary with 

elevation. It is likely that the actual carbon flux at these high elevation 

locations is substantially lower, as the model does not specifically 

represent the unique disturbance regimes and soil characteristics at the 

highest elevations in HBEF (Bormann et al. 1970).

Validation of carbon flux estimates from terrestrial ecosystem 

models across large spatial scales is difficult without spatially intense 

remeasurement of ecosystem structure. In the absence of data from 

repeat forest census or lidar collection, direct validation of carbon flux 

estimates across the entire domain at HBEF is a challenge. However, our 

domain wide and elevation patterns are broadly consistent with values 

reported in other studies. Our near zero estimate for domain wide carbon 

flux compares well to reports that little aboveground biomass is 

aggregating at HBEF (Battles, personal communication) and the total 

carbon flux is near zero (Fahey et al. 2005). Additionally, the simulated
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decline in carbon stocks with elevation due only to growth rates 

decreasing with elevation (24% from 300 to 900m) compares well with the 

corresponding decline (also 24%) measured using aboveground carbon 

stocks and plot age (Schilz 2006; although the study does not present 

uncertainty bounds around the estimates derived from highly variable 

data). The comparison of the growth decline predictions suggests that 

the elevation patterns in climate and soil inputs provide good constraint 

on patterns of carbon flux at HBEF.

Even with accurate initialization of forest structure, long term 

predictions of ecosystem dynamics require the fine-scale heterogeneity in 

climate and soil inputs and understanding how disturbance varies across 

the landscape. In all simulations, the lidar initialized carbon stocks decline 

equally from 300 to 900m; however, without heterogeneity in climate and 

soil inputs and disturbance rates, the current decline in carbon stocks from 

300 to 900m is predicted to level out over time. In contrast, the decline is 

predicted to stay constant when climate, soil, and disturbance vary with 

elevation. This study shows that, in order to obtain accurate estimates of 

carbon stocks and fluxes simultaneously, data on ecosystem structure 

must be combined with models that accurately resolve the underlying 

mechanisms responsible for heterogeneity in ecosystem structure.
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CHAPTER IV

CONCLUSIONS

The integration of height-structured ecosystem models and lidar 

canopy height measurements is a promising combination for improving 

carbon predictions in many different forest ecosystem types, especially 

when supplementary data (i.e. elevation maps or soil type maps) are 

available to aid in simulating the fine-scale variation in environmental 

conditions and disturbance that influences the structure. Predictions of 

carbon dynamics benefit from initialization to measured heterogeneity in 

ecosystem structure, fine-scale heterogeneity in climate and soil inputs, 

and the simulation of patterns in disturbance across the landscape. 

Improved carbon flux predictions depend on better understanding how 

growth rates and disturbance vary across the landscape and improving 

the accuracy and spatial coverage of ecosystem structure 

measurements. Increased spatial coverage from space-borne lidar 

missions, such as ICESAT and the proposed ICESAT II and DESDynl 

(Deformation, Ecosystem Structure, and Dynamics of Ice) missions (Space 

Studies Board 2007), will prove to be a valuable asset for predictive 

terrestrial carbon research across the globe. The scientific community
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and policy makers will benefit from improved constraint on predictions of 

the terrestrial carbon cycle provided by measuring ecosystem structure 

and simulating the mechanisms responsible for heterogeneity in these 

measurements.
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