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ABSTRACT

SEAFLOOR CHARACTERIZATION OF THE HISTORIC AREA REMEDIATION SITE
USING ANGULAR RANGE ANALYSIS

by

Luis A. Soares Rosa 

University of New Hampshire, September, 2007

Angular Range Analysis (ARA) is a physics-based approach to acoustic remote 

seafloor characterization. In order to better understand the capabilities and limitations of 

this technique, ARA analyses were performed on multibeam sonar data collected at the 

Historic Area Remediation Site, an area with high spatial variability. The remotely 

derived results were compared to grain size information derived from grab samples and 

Sediment Profile Imaging. Uncertainties in the determination of mean grain size from 

ground truth were identified and when possible quantified. ARA proved to be an effective 

remote sensing tool at a regional scale in its main operational mode that has a spatial 

resolution limited to half-swath width of the sonar and to thirty pings. When the seafloor 

is heterogeneous within half-swath width of the sonar, textural segmentation of the 

backscatter mosaic allows the definition of “themes” out which ARA solutions can be 

calculated, improving the correlation with ground truth.
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CHAPTER 1

INTRODUCTION

The use and exploration of the seas rely heavily on the propagation of 

underwater sound. Light and radio waves, commonly used in remote sensing methods, 

propagate well in air but are scattered and rapidly attenuated when penetrating the water 

surface. Since direct measurements of seafloor properties are representative of only a 

single point, are expensive and time consuming, and sometimes even impossible to 

conduct, we depend on the acoustic remote characterization of the seafloor for a broad 

range of disciplines including marine geology, offshore engineering and geotechnics, 

benthic habitat mapping and mine warfare. In this thesis, a novel, physics-based 

approach to remote seafloor characterization, Angular Range Analysis, is applied to a 

well-studied area in order to better understand the capabilities and limitations of this 

technique. Because any acoustically inferred sediment property will need to be validated 

with direct measurements, an attempt is made to identify sources of uncertainty in 

common methods of ground truth.

1.1 Remote Seafloor Characterization

Inferring seafloor properties through the use of acoustic means started with 

qualitative studies of the echo character by marine geologists and geophysicists, 

generally using single beam echo-sounder’s paper records to make inferences about the 

nature of the seafloor. For that, the observed echo types were correlated with ground

1
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truth data (usually cores or grab samples) and this information was then extrapolated to 

the entire survey area (Damuth, 1975; 1980). The same type of approach was extended 

to analog sidescan sonar paper records, matching the observed acoustic texture with the 

correspondent seafloor type. This type of approach is strongly dependant on 

instrumental acquisition settings that often vary in and between surveys as well as on 

subjective human interpretation.

Since the 1950s attempts have been made to quantify the relationship between 

geoacoustic and physical properties of sediments (Urick, 1954; Hamilton et al., 1956). 

By the 1970s, a substantial database of relationships between geoacoustical, physical 

and geotechnical properties of seafloor sediment was developed (Hamilton, 1970; 1972; 

1974; 1976; 1978). Thousands of measurements gave rise to a series of regression 

equations, relating impedance, reflection coefficient and bottom loss with porosity and 

density; attenuation with mean grain size and porosity; mean grain size with porosity and 

density; and sound velocity with porosity, mean grain size and density.

Successful measurement of sediment geoacoustic properties from the acoustic 

return started with the use of a calibrated chirp sub-bottom profiler. Sediment 

classification models were developed based on the attenuation, impedance and volume 

scattering (Mayer and LeBlanc, 1983; Schock et al., 1989; Panda et al., 1994; LeBlanc 

et al., 1995).

A different type of approach examined the coherency of seafloor echoes as an 

indicator of seafloor character, and the statistical analysis of echo fluctuations from ping- 

to-ping was used as a remote sensing tool (Dunsiger et al., 1981; Stanton and Clay, 

1986). Coherence in the signal was related with seafloor roughness and bottom type. 

However, this method only allows a qualitative description in terms of bottom roughness.

By the 1980s, what had been long-used by fishermen in an empirical way was 

implemented as a seabed classification system: discrimination of seafloor type based on

2
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waveform characterization of the first and second echoes (Orlowsky, 1984). Building on 

that principle, commercial systems such as RoxAnn (Chivers et al., 1990; Murphy et al., 

1995) or QTC View (Collins et al., 1996) use the returned echo of a single beam echo- 

sounder to remotely classify the seafloor. RoxAnn uses the final portion of the first return 

as a measure of roughness and the second multiple of the acoustic signal as measure of 

hardness. These two parameters are plotted against each other and clusters are 

defined. QTC View extracts 166 parameters (full feature vectors) from the signal envelop 

and then combines these into three primary parameters called Q-values. These values, 

when plotted in a tri-dimensional space tend to group in clusters, each one 

corresponding to a different type of acoustic response of the seafloor. Both approaches 

only segment the seafloor into regions of similar response and need ground truth to 

assign seafloor types to the segmented areas.

With the advent of digital oblique incidence systems (sidescan sonars, multibeam 

echo-sounders) and the production of digital backscatter mosaics, classification systems 

based on textural analysis of the image were implemented commercially (QTC Sideview 

and Multiview, Triton Imaging SeaClass, GeoAcoustics GeoTexture, Arescon, GENIUS). 

Most of these rely on the use of grey level co-occurrence matrices to segment the image 

in regions with similar statistical properties (Pace and Dryer, 1979; Reed and Hussong, 

1989). More elaborate classification techniques combine multibeam bathymetry with co­

registered backscatter data in a hierarchically supervised classification scheme, to 

segment the seafloor into distinct facies (Dartnell and Gardner, 2004). Other approaches 

use the signal envelope instead of the image, analyzing the power spectra (Pace and 

Gao, 1988) or the probability density function of the echo amplitude (Stewart et al., 

1994).

All these methods require ground truth to identify the corresponding bottom type. 

However, since there is no unique relationship between acoustic signature and seafloor

3
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type, an empirical relationship must be established for each survey site. In order to 

produce a true classification system, the physics of the interaction of sound with the 

seafloor must be properly understood.

1.2 Interaction of Sound with the Seafloor

Most of the systems used to remotely classify the seafloor fall in the monostatic

case, in which the transducer that receives the returned echo is located in the same

place where the sound wave was generated. The quantification of the returned echo was

first addressed by Urick (1954, p. 233) in terms of target strength, or reverberation

strength, per unit area of the bottom:

It remains now to convert these measurements into some sort of 
scattering coefficient of the bottom. [...] Let a sound wave be incident on 
a small area dA of the bottom at a certain grazing angle 0. At a distance 
of 1 yard from dA back toward the source, let the intensity of 
backscattering be Is. Then we will define a coefficient, which may be 
called the “scattering strength” of the bottom at angle 0, to be the ratio of 
Is to the incident intensity, per unit area of dA. It is convenient to express 
scattering strength, referred to one square yard of bottom area, in decibel 
units. Thus, scattering strength is the ratio of two intensities and is related 
by the factor 2u to the backscattering cross section of a unit area.

In the same experiment, it was observed that backscattering strength is a

function of grazing angle and that this relationship changes with bottom type. In another

experiment, McKinney and Anderson (1964) recognized the dependence of

backscattering strength on the grazing angle, frequency and bottom type, as being of

“primary interest”. However, only when interferometric sidescan sonars and multibeam

echo-sounders became available was it possible to collect acoustic backscatter versus

angle of arrival in a systematic manner. At that moment, the potential of this information

for remote classification of seafloor types was recognized (de Moustier and Matsumoto,

1993).

4
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One of the components necessary for the use of the backscatter angular 

dependency as a remote characterization tool, is a high-frequency acoustic backscatter 

model. Acoustic models predict the acoustic response of the seafloor from its physical 

and geoacoustic properties. The list of properties can be extensive, due to the fact that 

sediments are complex assemblages of a variety of particles, pore fluid, organic matter 

and sometimes free gas. When an acoustic wave reaches the seafloor, part of the 

energy is scattered back to the transducer due to irregularities at the water/sediment 

interface and part is transmitted into the sediment and scattered by heterogeneities 

inside and between the first layers. For a given frequency the amount of scattered 

energy is mainly dependant on the seafloor roughness, the impedance contrast between 

the water and the sediment, and the volume heterogeneities that may exist within the 

sediment. All these processes must be taken into account in a comprehensive acoustic 

backscatter model. In order to estimate the type of seafloor and remotely characterize its 

properties from the angular response, an acoustic model has to be inverted. The Angular 

Range Analysis (ARA) (Fonseca and Mayer, 2007), included in the Geocoder software 

developed at the University of New Hampshire (Fonseca and Calder, 2005), implements 

this concept and represents the newest contribution in physics-based approaches for 

remote seafloor characterization.

1.3 Geocoder and Angular Range Analysis (ARA)

The first step in the remote characterization of the seafloor using ARA is to obtain 

accurate measurements of backscatter strength. Geocoder radiometrically corrects 

backscatter intensities registered by the sonar and geometrically corrects and positions 

each acoustic sample in a projected coordinate system, thus calculating the best 

estimate of the actual backscatter strength returned from the seafloor.

5
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After the angular response of the seafloor (the variation of backscatter with 

grazing angle) has been determined, it has to be linked to seafloor properties by an 

acoustic model. Two modified models are implemented in Geocoder’s ARA (Fonseca 

and Mayer, 2007): 1) a composite roughness model developed by Jackson et al. (1986) 

and 2) an effective density fluid model (Williams, 2001) derived from the Biot theory 

(Biot, 1956, 1962).

In the Jackson et al. (1986) model the sediment is idealized as an acoustically 

refractive and lossy fluid, and the total backscatter strength is modeled as the sum of 

two different processes: interface scattering and volume scattering. The acoustic 

response of the sediment is modeled as function of frequency and grazing angle. This 

model requires input parameters related to the impedance contrast (sound speed and 

density in the water and in the sediment), attenuation (loss parameter), roughness 

(spectral strength and the spectral exponent of bottom relief) and volume scattering 

(volume parameter).

The Biot theory describes the propagation of acoustic waves in a porous elastic 

matrix containing a viscous fluid. Models that consider the full Biot theory require 

parameters related to sediment grains, pore fluid and the sediment frame. Williams’ 

(2001) acoustic propagation model approximates a porous medium as a fluid with a bulk 

modulus and effective density derived from Biot theory. The implementation of this 

model in Geocoder’s ARA requires, in addition to the parameters used in the 

implementation of the Jackson’s model, the porosity, permeability and turtuosity of the 

sediment.

The inversion of one of the acoustic models implemented in Geocoder’s ARA, 

which is done by adjustment of the model to the observed variation of backscatter 

strength with grazing angle, with model parameters constrained by relations between

6
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physical and geoacoustical properties of the sediment, results in a physics-based 

prediction of seafloor properties.

1.4 Verification of Model Predictions and the Importance of Mean Grain Size

One possible benefit from the use of a remote sensing technique is to minimize 

or eliminate the need for ground truth. However, before a remote sensing technique is 

generally accepted, we have to make sure that the results accurately describe the real 

world within an uncertainty or resolution that satisfies the objectives of the required 

application.

The most accurate way of verifying model predictions is the direct measurement 

of sediment properties, but this poses several problems. The measurement of 

geoacoustic properties like sound speed and attenuation in the laboratory requires 

undisturbed samples, but the coring and the sampling process often result in compaction 

of the sediment and loss of water. Therefore, measured values may not reflect natural 

conditions. Alternatively, measurements can be made in situ using probes pushed into 

the sediment by divers, from submersibles or by remotely operated vehicles (Mayer et 

al., 2002), but these properties are frequency dependant and the direct measurement 

should ideally be done at the same frequency as the one considered in the model. 

Another problem arises from the temporal variability of seafloor properties and the 

impossibility of continuous measurements.

Some geoacoustic parameters are either very difficult or nearly impossible to 

measure (Jackson and Richardson, 2007). For these, the preferred means of obtaining 

them is through empirical regressions between geoacoustic and physical properties 

(Hamilton, 1972, 1974; Richardson and Briggs, 2004; Jackson and Richardson, 2007). 

But the measurement of physical properties is based mostly on core samples and the

7
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determination of properties such as bulk density and porosity, is subject to the same 

sampling disturbance described above. These errors can be minimized through 

techniques such as the collection of sediments by divers in slabs or in horizontal corers, 

or with large box corers (Jackson and Richardson, 2007). Measurement of seafloor 

roughness can be accomplished using digital stereo photogrammetry and volume 

heterogeneity can be quantified with X-ray computed tomography (Pouliquen and Lyons, 

2004). However, outside designed experiments, measures of seafloor properties seem 

difficult to obtain.

Because of the difficulties described above, one of the most commonly measured

properties is grain size, often expressed by mean grain size or sediment type (e.g.

gravelly muddy sand). Jackson and Richardson (2007, p. 193 and p. 195) comment on

the relation between mean grain size and seafloor roughness:

When seafloor roughness, as represented by RMS roughness, is plotted as a 
function of mean grain size, the result is a scattering of points across the 
range of sediment types. [...] Sediment mean grain size alone may never 
yield the types of predictive relationships for roughness required by high 
frequency acoustic models unless the effects and rates of hydrodynamic and 
biological process that create, modify and destroy roughness features are 
incorporated into predictive relationships.

And between mean grain size and geoacoustic and physical properties of the sediment

(Jackson and Richardson, 2007, p. 150-151):

The coefficient of determination, r 2, between index of impedance and mean 
grain size is much lower than the coefficient of determination between index 
of impedance and sediment bulk density or porosity. This lower coefficient of 
determination is reflected in the lack of a physical relationship between mean 
grain size and either sediment bulk density or porosity. [...] Using values of 
mean grain size as an index, especially in the silt-size range, may be very 
misleading because of major differences in sorting (standard deviation of the 
particle size distribution) or due to effects of compaction and packing. [...] 
Given the aforementioned issues, it is perhaps amazing that empirical 
regressions between grain size-related parameters and sediment density, 
porosity, sound speed, or impedance have any predictive value.

Nevertheless, sediment type or mean grain size are typically used indirectly as

empirical predictors of acoustic behavior, probably because they are the most common

8
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descriptors found in sediment databases and are often the only sediment physical 

descriptors available.

An acoustic model may be constrained by relations between physical and 

geoacoustical properties of the sediment determined in carefully designed experiments, 

but in a real-world application, when an acoustic measurement is made and the model 

inverted to remotely characterize the seafloor, there will seldom be any seafloor property 

data available to verify model results other than the mean grain size.

In this study, mean grain size as predicted by the ARA is compared with mean 

grain size obtained through common methods of ground truth and sediment analysis. Of 

particular concern is the use of mean grain size as the object of comparison. Mean grain 

size as determined by a remote sensing tool such as ARA is always subject to suspicion 

given the above mentioned apparent lack of physical relationship with other sediment 

properties used to model the acoustic response of the sediment. However, mean grain 

size as determined by common methods of ground truth and sediment analysis cannot 

be considered as an absolute value either. It is affected by uncertainties that are present 

from sampling to grain size analysis. But most importantly, we have to make sure that 

we are comparing acoustic and physical samples in the same place, and this is 

particularly true in areas of high horizontal and vertical heterogeneity.

Horizontal variability can be a limitation for ARA, which in its main operational 

mode has a spatial resolution limited to half-swath width of the sonar in the across-track 

direction, and to a certain number of pings (usually between 20 and 30) in the along- 

track direction. Horizontal variability can also be a limitation for ground truth. The spatial 

scale of sediment uniformity generally is not known and the size of the sediment sample 

and the number of samples may not reflect the local variability. Additionally, the sampler 

may not be precisely positioned.

9
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Vertical variability can led to errors in the comparison between ARA predictions 

and mean grain size determined by grab sampling. The penetration of a high-frequency 

acoustic wave is only in the order of a very few centimeters (Appendix A), and if the 

sediment is layered at a centimeter scale, the grab sampler may transect other types of 

sediment in the subsurface that are not being sampled acoustically.

This study was carried out on the Historic Area Remediation Site (HARS), off 

New Jersey, because of the large amount of data available and because of the high 

spatial variability (the result of anthropogenic actions).

1.5 Historic Area Remediation Site (HARS)

The area of study is located in the New York Bight, northwest of the head of the 

Hudson Shelf Valley, six nautical miles east of Sandy Hook, New Jersey, with an 

average depth of 25 m (Fig. 1.1). This area has been a place for disposal of assorted 

material (garbage, city refuse, cellar dirt and sediments derived from dredging during the 

maintenance, deepening and construction of new channels in New York Harbor) since 

the mid-1800s and because of that, very little of the original shelf geology is preserved. 

The United States Army Corps of Engineers (USACE) web site presents a brief history 

of the HARS (http://www.nan.usace.army.mil/business/prjlinks/dmmp/benefic/hars.htm).

10

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

http://www.nan.usace.army.mil/business/prjlinks/dmmp/benefic/hars.htm


.  '  '' 
V i's -V 'r ■
■'T'.r'y?MBMBj________
.... ■ <$.■**!

■■’ : :« '.iii.| ': ji 
, .;v ^  >,1

‘n j i ’ - K

na»sif!sa:s

Figure 1.1 -  Perspective view from southeast showing the HARS location. With a size of 
approximately nine by eight km the HARS is located in the Christiansen Basin, northwest of the 
Hudson Shelf Valley, six nautical miles east of Sandy Hook NJ. Vertical exaggeration: 20 x.

The HARS was established in 1997 through an agreement among the U.S. 

Environmental Protection Agency (EPA), the U.S. Department of the Army and the U.S. 

Department of Transportation, in an effort to reduce the elevated contamination and 

toxicity associated with some of the dredge materials in the area. The HARS comprises 

the former Mud Dump Site (MDS) and some surrounding dredged material disposal 

areas. It is divided into nine Priority Remediation Areas (PRAs) where remediation 

material is to be placed (Fig. 1.2). There is also a Buffer Zone surrounding the PRAs and 

a No Discharge Zone, which is an area outside the PRAs where no further disposal is 

permitted.
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Figure 1.2 - Historic Area Remediation Site 2006 bathymetry. The HARS comprises the former 
Mud Dump Site (MDS) and some surrounding dredged material disposal areas; it is divided into 
nine Priority Remediation Areas (PRAs) where remediation material is to be placed.
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When surveyed in September 2006, the central region of the HARS was 

dominated by an elevation produced by dumping, running approximately north-south 

over depths of 23 to 25 m to the west and 27 to 34 m to the east (Fig. 1.2). The 

topographic high in the north between PRAs 1 and 9, 15 m below sea level, is 

designated Castle Hill and corresponds to material dumped prior to the 1930’s. In the 

center of the region, another elevation at a depth of 15 m is the result of material 

dumped between the 1930's and 1975. To the south, where the shallowest point in the 

area occurs, at 10 m depth, mounds almost 10 m high were produced by recent disposal 

of dredged material (Butman et al., 1998, 2002).

North of PRA 4, there are several individual features 50 to 100 m long, about 40 

m wide and 1 to 2 m high, aligned northwest-southeast. Butman et al. (1998) 

hypothesize that these features are individual dumps from barges. To the northeast, 

there is a clay deposition area. Throughout the region to the northwestern corner of the 

HARS, there are several features with the same alignment. These may correspond to 

historic dumps because the orientation is the same as that taken by vessels when 

entering the New York Harbor (Butman et al., 1998; Schwab et al., 2000).

Two, approximately circular, smooth regions, lie in the south of the site. They 

correspond to the capping of dioxin mounds with more than 1 m of clean sand (SAIC, 

2005b), the 1993 Dioxin Project (to the west) and the 1997 Category II Project (to the 

east). Between 1997 and 1998 1.83x10® m3 of sand were used to cap 0.5x10® m3 of 

Category II sediments previously deposited (Butman et al., 2002). Sediments classified 

as Category II meet ocean dumping criteria but present a potential for bioaccumulation 

(EPA, 1996).

PRAs 1, 2, 3 and 4 present well-preserved individual mounds that formed from 

the placement of remediation material that has been ongoing since 1997. From 1997 to 

2000 4.3x10® m3 of remediation material were placed in this area. The general
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morphology reflects the placement procedure, which follows sequentially the cells of a 

grid in order to obtain a uniform coverage of 15 to 75 cm across the area of the grid.

The deepest area, in the southeastern part of the HARS, is aligned with the head 

of the Hudson Shelf Valley and corresponds to a channel 300 to 400 m wide and 2 to 4 

m deep. The channel is limited on the northeast by outcrops of southeastward-dipping 

coastal plain strata, probably of Cretaceous age (Butman et al., 1998) and on the 

southwest, by a smooth slope. The characteristic morphology of the channel gradually 

disappears to northwest. All this area is relatively smooth and probably corresponds to 

fine sediments winnowed from the northwest and transported eastward and downslope 

toward the head of the Hudson Shelf Valley.

The rock outcrops (Fig. 1.2) probably extend in the subsurface to PRA 6. This is 

an area with several topographic highs aligned northwest-southeast, which are 

approximately 1 m high. To the north of this region, throughout PRA 9, there are several 

circular depressions 30 to 50 m in diameter, up to 0.5 m deep, with a small high in the 

center, with the same alignment. These may correspond to dumps of rocky material 

(Butman et al., 1998) and/or to the disruption of the subsurface geology. The southwest 

corner of the HARS is characterized by long-wavelength bedforms.

The HARS contains a wide variety of sediment types, ranging from clay to gravel, 

in a relatively small area. This small-scale variability is particularly suited for a test of the 

spatial resolution of the ARA approach. Datasets acquired by Science Applications 

International Corporation (SAIC) in 2005 and 2006 were used for this study. Each 

dataset consists of a multibeam sonar survey conducted with a Reason 8101 MBES, 

Sediment Profiling Imaging (SPI), plan view images, and grab samples. All these data 

were acquired over a relatively short period of time, which minimizes the effect of 

temporal variability of the seafloor and, consequently, yields a better correlation between 

remote sensing and ground truth data.

14
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1.6 Objectives

The primary objective of this study is to determine the applicability of ARA to an 

area with high spatial variability such as the HARS in order to understand the capabilities 

and limitations of ARA. Since any acoustically inferred sediment property will need to be 

compared to direct measurements, an attempt was made to identify sources of 

uncertainty in common methods of ground truth.

Chapter 2 outlines the acoustic methods used to predict seafloor properties in 

terms of mean grain size. The ground truth methods used to verify ARA predictions are 

detailed in Chapter 3. In Chapter 4, results from grain size analysis and from acoustic 

remote sensing are presented, and a comparison is made between the two. A 

discussion of the degree of confidence in these results is also included in Chapter 4. 

Chapter 5 summarizes the conclusions and suggests new experiments and paths for 

improvement.

15
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CHAPTER 2

BACKSCATTER MOSAICS AND ANGULAR RANGE ANALYSIS (ARA)

2.1 Backscatter Mosaics Assembled in Geocoder

As discussed in Chapter 1, backscatter mosaics have been used to remotely 

classify the seafloor, usually through textural segmentation into several classes followed 

by ground truth to define attributes for each class. Until the mid 1990s only backscatter 

mosaics constructed from sidescan sonar data were available. However, the position 

and attitude of the sidescan sonar towfish usually is not known with precision. Also, 

backscatter intensities are recorded as a long time series for each side of the sidescan 

sonar and there is no information about the angle from where the sound is being 

received. This results in an ambiguity when two arrivals from different places reach the 

sonar at the same time. Multibeam sonars provide a time series of backscatter values for 

each beam in each ping, from which water depth measurements can be extracted. The 

knowledge of the precise position and attitude of the multibeam sonar allows the 

accurate determination of the position and the geometry of each beam over the seafloor. 

However, what is usually recorded by the sonar is not the true backscatter strength but 

the backscatter intensity as affected by system settings at the time of acquisition 

(Beaudoin et al., 2002).

Geocoder (Fonseca and Calder, 2005) assembles a time series for port and 

starboard sides from the backscatter intensity time series of each beam, accounts for 

transmitting power, receiver gains and time varying gains applied by the system,
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corrects for transmitting and receiving beam patterns, as well as attenuation and 

spherical spreading in the water column. It also accounts for the range to the transducer, 

seafloor slope, transmit and receive beamwidths and pulse length in order to calculate 

the area of ensonification. After these radiometric corrections are made, the backscatter 

strength is calculated per unit solid angle per unit area. A filter is also applied to remove 

speckle noise. Additionally, the geometric corrections account for refraction in the water 

column and movement and attitude of the transducer, after which each backscatter 

sample is mapped to a mosaic cell in a projection coordinate system. A mosaic obtained 

with this process shows the spatial distribution of the best estimates of backscatter 

strength, preserving its angular dependence, but as can be observed in Figure B.1 

(Appendix B) the mosaic is difficult to interpret.

The final step in the assemblage of a backscatter mosaic is the removal of the 

angular dependence of the backscatter. In order to apply the proper correction and 

normalize backscatter intensities across the swath, detailed information about 

geoacoustical and physical properties of the sediment is needed because the angular 

dependency is a property of the seafloor type. If this information could be obtained for 

each ping, along the entire swath and vertically into the sediment up to the depth of 

acoustic penetration, it would then be possible to build a precise Angular Varying Gain 

(AVG) table, different for each ping, and then obtain a truly normalized backscatter 

mosaic. Inasmuch as it is virtually impossible to obtain detailed information about the 

geophysical properties of the sediment concomitantly with the acoustic survey (and if 

that type of information was available, the acoustic survey would not be necessary), it is 

common to apply a generalized AVG filter to remove the effect of the backscatter 

angular dependence and normalize the acoustic response across the swath. Examples 

of the effect of using different AVG filters in the assemblage of backscatter mosaics are
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shown in Appendix B. For different AVG filters, the difference in backscatter values for 

the same portion of the seafloor can be greater than 10 dB in certain areas.

Figure 2.1 -  Right: backscatter strength for a portion of the line 06241 d27 with all corrections 
applied and without AVG to normalize the acoustic response across the swath, the red and green 
rectangles overlaying the backscatter mosaic correspond to the patch of the seafloor where ARA 
is performed. Left: average angular response for each of the rectangles depicted on the right 
panel, the green curve corresponds to the seafloor acoustic response on starboard, the red line to 
port side. The blue curve is the modeled acoustic response fitted to the observations on the 
starboard side, predicting a muddy sand seafloor. The angular resolution of the method does not 
allow correct predictions when the seafloor varies significantly within half-swath as on the port 
side, the angular response is a mixing between the characteristic curve of a fine sand/coarse silt 
in the near range and coarse sand/gravel for the outer beams.

2.2 Angular Range Analysis (ARA)

The backscatter angular response is an intrinsic characteristic of the seafloor and 

is used by the Angular Range Analysis implemented in Geocoder (Fonseca and Mayer, 

2007) for its characterization. The analysis is performed for each patch of the seafloor 

defined by the half-swath width in the across-track direction and by a stack of 

consecutive pings in the along-track direction, normally between 20 and 30 (stacking
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several pings is important to reduce speckle noise), and this determines the spatial 

resolution of the method (Fig. 2.1).

From the observed backscatter angular response, a set of ARA-parameters is 

extracted, containing the slope and intercept for different parts of the angular response 

curve, and the orthogonal distance (the distance of a point to the general trend in an 

intercept-slope plane). The variation of these parameters is strongly influenced by 

seafloor roughness, impedance and volume heterogeneities, respectively.

As described in section 1.3, two high-frequency acoustic propagation models are 

embedded in the software, modeling the angular response for a given frequency as a 

function of seafloor properties. Several combinations of seafloor properties may lead to 

the same angular response so the acoustic models implemented in the software are 

constrained by relations between seafloor properties determined by Hamilton (1972; 

1974; 1976; 1978).

The prediction of seafloor properties from the observed angular response is 

accomplished by model inversion, iteratively adjusting the model ARA-parameters to the 

ARA-parameters calculated from the observations, but not in a free way. The model 

ARA-parameters are constrained by the parameters of the forward model that are tied by 

Hamilton’s empirical relations.

Given accurate measurements of backscatter strength, the main obstacle for 

ARA is the nature of seafloor across the swath, which is assumed to be uniform. One 

possibility to overcome this limitation would be to segment areas in the backscatter 

mosaic with similar tones and textural patterns (Haralick, 1979) and then calculate 

average angular responses for the segmented areas. Fonseca and Calder (2007) point 

out that this sort of reasoning is difficult to justify since an assumption about the angular 

response of the sediment was already made when building the first mosaic and applying 

an AVG filter. In order to combine the spatial resolution of the backscatter mosaic with
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the angular resolution of the ARA, Fonseca and Calder (2007) clustered ARA 

parameters as a feature vector in a multidimensional space using an unsupervised 

clustering algorithm. Each cluster is expected to represent areas on the seafloor with 

similar properties and similar angular responses. This technique implies an a priori 

definition of the number of sediment types present in the area.

For highly complex areas like the HARS, it is difficult to define a priori how many 

sediment types are present. One possibility would be to take sediment samples on a 

dense and evenly spaced grid but that would destroy the purpose of a remote sensing 

approach. Another option, although subjected to a priori assumptions about the angular 

response, would be to use a backscatter mosaic to define the number of classes, but in 

the case of the HARS, the size of the surveyed area compared with the degree of spatial 

heterogeneity presents a scaling problem. The area is too big to differentiate classes 

and all transitional classes seem to exist. So, the best that can be done is to classify 

areas of high and low backscatter. Figure 2.2 depicts the backscatter histogram for the 

entire 2006 backscatter mosaic presented in Figure 2.4.

,400,000

1,200,000

1,000,000

600,000

400,000

200,000

Figure 2.2 -  Histogram of backscatter strength across the HARS using the average between the 
two more reliable values that fall within each 1 m cell, as calculated by Geocoder.

If, in a limited area, a marked contrast between different seafloor types can be 

observed, it may be assumed that the applied AVG did not mask that limit, but only 

harmonized the textural appearance of the deposits. Within each deposit, sediment 

heterogeneity may exist but that will not be resolved even with ground truth
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measurements. Therefore, average properties for the deposit must be assumed as much 

on the ground truth as on the remote sensing side. For those areas where different 

sediment types can be clearly identified, segmenting areas on the backscatter mosaic 

with similar tones and textural patterns may be a valid method to determine the average 

angular response for each deposit.

Figure 2.3 -  ARA in theme mode. In this example two themes were defined based on the 
observation of the backscatter mosaic, each one is expected to correspond to areas of the 
seafloor with similar geophysical properties. For each theme the average angular response is 
calculated (green lines). The ARA-model is then fitted to the angular response of each theme 
(blue lines) and seafloor properties are predicted. In this example theme 1 corresponds to gravel 
and theme 2 to medium sand.

The Angular Range Analysis for a specific area of the seafloor defined by the 

user is implemented in Geocoder’s ARA with the designation “theme mode” (Fig. 2.3). 

The first step in the ARA is the manual segmentation of the backscatter mosaic in areas 

with similar tonal and textural patterns, called “themes”. Each theme is expected to 

correspond to portions of the seafloor with similar geoacoustic and physical properties. 

The second step is the calculation of the average angular response for each theme. This 

calculation considers all the snippets that fall within each theme, independently of the
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line they belong to, and is not restricted to the half-swath width of the sonar and to a 

stack of pings as in the normal mode (Fig. 2.1). The final step, extraction of ARA- 

parameters, model inversion and prediction of seafloor properties, follows the same 

process as for the “normal mode”.

2.3 Multibeam Data Collection and Processing

Multibeam sonar data was acquired by SAIC onboard MA/ Atlantic Surveyor with 

a Reson 8101 multibeam system (240 kHz, 101 beams 1.5° x 1.5°) on August 26th to 31st 

2005 (SAIC, 2005b) and on August 29th to September 14th 2006. Data was processed by 

SAIC and archived in .gsf file format. Bathymetry post processing was done following a 

CARIS HIPS processing pipeline.

The backscatter time series for each beam in each ping (snippet) was imported 

into Geocoder directly from the processed .gsf files. Since digital numbers on the 8101 

Reson system do not represent the true backscatter strength, Geocoder software 

corrected for radiometric and geometric distortions and positioned each acoustic sample 

in a projection coordinate system (Fonseca and Calder, 2005). The result is the correct 

angular response of the seafloor. An AVG filter (option “Trend” in Geocoder) was 

applied to normalize the backscattering strength across the swath and the final 

backscatter mosaic was produced with 1 m cell resolution (Fig. 2.4 and Fig. 2.5). 

Backscatter strength, as normalized by Geocoder when assembling mosaics, is the 

average between 35° and 55° grazing angles (Fonseca, L. personal communication, 

2007). ARA was applied in its normal mode, averaging a stack of 30 pings along-track to 

calculate the angular response for an across-track range of half the swath width of the 

sonar. In this study the effective density fluid model (Williams, 2001) implemented in
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Geocoder’s ARA was used; model results in terms of mean grain size are presented in 

Chapter 4.
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Figure 2.4 -  Position of the grab samples and profile images acquired in 2005 over the 
backscatter mosaic assembled with Geocoder.
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Figure 2.5 -  Position of the grab samples and profile images acquired in 2006 over the 
backscatter mosaic assembled with Geocoder.
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CHAPTER 3

GROUND TRUTH

To evaluate the effectiveness of ARA, model results must be compared to 

ground truth data. Although the empirical relations among mean grain size and sediment 

physical and geoacoustic properties (Hamilton, 1972; 1974; Richardson and Briggs, 

2004; Jackson and Richardson, 2007), and backscattering strength, are subject to large 

errors (Jackson and Richardson, 2007), mean grain size and sediment type are the most 

common descriptors of seafloor properties.

Mean grain size is widely used as an environmental and geotechnical proxy, but 

values are often reported without reference to the method used for sample collection or 

analysis, as well as the associated uncertainty. This study tried to identify, and estimate 

when possible, the limitations of the methods most commonly used for sediment 

collection and analysis.

In addition to sediment sample data, Sediment Profile Imaging (SPI) and plan 

view images were collected in the HARS by SAIC to evaluate benthic recolonization 

status and the degree of benthic habitat disturbance at each station (SAIC, 2005a). 

Profile images of the undisturbed water/sediment interface and top centimeters of 

sediment allow comparison of the observed sediment type with grab sample results and 

an estimation of seafloor roughness and volume heterogeneity. The penetration of the 

SPI optical prism, which acts like a static load penetrometer, also provides a
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geotechnical parameter that can be used for comparison with mean grain size and 

acoustic measurements.

3.1 Position Uncertainty

SPI and grab sampling positions are affected by an uncertainty. In the 2006 

survey the position of each individual sample was referenced to the position of the GPS 

antenna. Considering the uncertainty of the differential GPS (±3 m), the distance from 

the antenna to the place where the SPI system was deployed (6.7 m) and to where the 

grab was deployed (3.6 m) and the maximum cable angle (10° for the SPI system and 

30° for the Petit Ponar grab sampler), total position uncertainty varies between ±15 m to 

±25 m for the grab and from ±12 m to ±15 m for the SPI system, depending on the 

depth. Figure 3.1 shows the position uncertainty for station 16.

Figure 3.1 - Station 16. In 2005, data is referenced to the nominal position of the station, depicted 
as a blue dot. The blue circle represents the estimated uncertainty and has a radius of 40 m. In 
2006 all the replicas for the nominal station are depicted as red dots, the yellow circle (12 m 
radius) corresponds to the estimated uncertainty for successful SPI samples and the green circle 
(15 m radius) corresponds to the estimated uncertainty for successful grab samples. The 2006 
backscatter mosaic with 1 m cell size is used as background to show the small scale variability of 
the area and why there is an uncertainty about the sedimentary deposit that is being sampled.
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Positions for the 2005 data followed a different approach, as all the replicas 

within each station were referenced to the position of the planned station (SAIC, 2005a). 

Therefore, the grain size and the penetration of the optical prism (SPI) can be 

considered as average properties within the radius of uncertainty for each station. 

Considering that the survey vessel was the same, maneuvered by the same people, and 

in similar weather conditions, one can assume the observed dispersion of replicas 

around each planned station in 2006 to be on the same order of magnitude of what 

occurred in 2005. The uncertainty associated with this practice of referring 

measurements to the planned station was estimated to be approximately 40 m (Fig. 3.1).

3.2 Grab Samples

3.2.1 Surface sediment sampling

Surface sediments were collected on September 1st and 2nd, 2005, with a 0.1 m2 

Van Veen grab sampler, onboard the R/V Beavertail, to determine the toxicity of surface 

sediments. The grab was deployed one or more times (usually no more than two) 

around the nominal position of the stations shown in Figure 2.3. If the sediment was 

acceptable (bucket more than half full and without evidence of washout or disturbance), 

the entire content was placed in a large mixing bowl and the sampling continued until 

enough sediment was collected (SAIC, 2005a).

The sampling strategy for 2006 was a compromise between revisiting primary 

stations from 2005, in order to observe the temporal evolution of benthic recolonization 

at a given station, and the need to obtain data in areas that were not previously sampled 

(Fig. 2.4). On August 21st and 22nd, 2006, onboard RA/ Beavertail, sediment samples 

were collected with a Petit Ponar grab sampler (Fig. 3.2) at the same time as SPI
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images were obtained. This grab sampler allowed for the collection of surface sediments 

to a depth that varied between the thickness of the first layer of grains in gravely bottoms 

up to approximately 10 cm in muddy sediment. The grab did not trip in some stations, 

even after three attempts (stations 15, 18, 27, 28, 29, 20063, A1, K0800, M2800, N2000 

and Q2400). When available, sediment that was stuck to the frame was collected and 

labeled with the station name (samples 27_C, A1_C, K0800_C and N2000_C). At other 

stations, the sampler closed without any sediment (stations A8 and A14) or collected 

only a single pebble or cobble (samples A6_B, A10_B and P3200_B).

Figure 3.2 - Petit Ponar grab sampler used to collect sediment samples in 2006.

3.2.2 Single sample versus composite sample

The two different approaches followed in 2005 and 2006 bring up the issue of the 

number of replicas needed to characterize the deposit at the sample locality. One 

approach considers that a given deposit has an internal spatial heterogeneity that cannot 

be resolved. In this case, the best sampling is a composite sample that reflects average 

characteristics. Krumbein and Pettijohn (1938) suggest that at least four discrete 

samples (replicas) should be combined into a single composite in order to reduce the 

ratio, of the error of the mean of a set of observations n (Em), over the error of a single
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observation ( E)  to 0.5, the point when the error starts to decrease more slowly as more 

samples are taken. The error of the mean of a set of observations n varies inversely

with the number of observations, Em = e / 4n .

In the other approach, position uncertainty is considered to be good enough to 

attribute the sample to a homogenous patch of the seafloor. Since the position of a 

sample is hardly repeatable, a second replica would sample a different patch of the 

seafloor and describe sediment characteristics in a different place.

Collier and Brown (2005) report a minimum error in the calculation of the mean 

grain size from four repeated grabs at the same station with position uncertainty ±15 m 

to vary from ±1.2 O to ±0.3 O in gravelly silt sediments of the Loch Linnhe on the west 

coast of Scotland. Although this example is valid only for a specific sediment type and 

spatial variability of the seafloor, this adds to the concern about sampling 

representativeness.

3.2.3 Grab sampler

The type and size of the grab sampler is another contributor to the uncertainty in 

a grain-size measurement. For instance, the size of the grab may not be large enough to 

collect a representative sample of the sediment population. Larger grains may not be 

sampled at all, and if that is the case, frequency distributions of grain size will be open 

on the coarser size, or coarser grains may be sampled in a way that does not reflect the 

true distribution of the population. As an example, a 20 mm single pebble represents 9% 

in weight of a 1 kg sample and sampling one more or one less pebble may shift 

significantly the mean grain size.
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Krumbein and Pettijohn (1938) present a table of practical sample weights, 

based on Wentworth’s (1926) work and suggest that 125 to 500 g should be collected in 

order to obtain a representative sample for mechanical analysis if the coarsest size is 

within the sand size (0.06 to 2 mm), 1 kg for granule size (2 to 4 mm) and from 2 to 16 

kg for pebble size (4 to 64 mm). Unfortunately, the efficiency of a grab is in the opposite 

direction, as the volume of sampled sediment decreases with larger grain sizes.

The type of grab used may allow washout of fine-grained material, as the Petit 

Ponar sometimes does. The grab may also produce a shock wave that can disturb the 

bottom and some less-dense material may be selectively undersampled, as has been 

noted for the Van Veen (Wigley, 1967). Biased results can be expected in both cases.

Finally, if the objective is to evaluate the validity of an acoustic measurement, 

one must consider that what is actually being calculated is the mean grain size for all the 

sediment layers that were sampled by the grab sampler and not the mean grain size for 

the top layer. In some situations, this is a very important issue, as the acoustic energy 

will not necessarily penetrate to the same extent, but will be restricted to the top layers.

3.2.4 Sediment analysis (grain-size and organic content)

In 2005, sediment grain-size analysis was done by SAIC using sieves for the 

sand fraction (US standard sieve seizes: 10, 20, 40, 60, 100 and 200) and a hydrometer 

for silt and clay fractions, but only the percentage of gravel, sand, silt and clay was 

reported. The moisture content of the sediment was also determined (SAIC, 2005a).

The 2006 sediment-sample analyses followed procedures based on the methods 

used at the UNH Coastal Geology Laboratory and at the Marine Geology Department of 

the Portuguese Hydrographic Institute.
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Laser diffraction was selected for particle-size analysis since it is relatively fast, 

more precise (Sperazza et al., 2004) and permits determination of finer grain sizes, and 

most importantly, because it allows the analysis of the entire sample with the same 

method. The available laser diffraction equipment was the Malvern Mastersizer 2000 

with a Hydro G dispersion unit from the Portuguese Hydrographic Institute. This 

equipment allows particle-size measurements from 0.02 to 2000 pm with an accuracy 

±1% on the Dv50, using the Malvern Quality Audit Standard, and an instrument-to-

instrument reproducibility better than 1% Relative Standard Deviation. Even though a 

maximum grain size of 2000 pm is specified, the stirrer pump of the dispersion unit only 

holds 1500 pm. After several tests it was found that the 500 pm sieve limits particles to a 

size that does not clog the pump, because elongated particles with dimensions larger 

than the square mesh will pass through the sieve. Because of this, every sample was 

wet sieved at 500 pm. For the coarser samples, this meant that the samples needed to 

be split at the upper limit of medium sand (500 pm) leaving the rest of the sample to be 

measured with sieves.

HARS samples have a wide range of grain sizes so a pre-evaluation was made 

to decide whether to split the sample at 500 pm or 62.5 pm. Photos were taken on all 

collected samples using a SLR 6MP digital camera with a Micro Nikkor 105 mm f/2.8 

lens at a fixed distance from the sediment surface (0.75:1 magnification). A 500 pm 

mesh was put in place of the sample surface as a reference. From the photos, 75% of 

the samples fall below the 500 pm size, and 80% of the samples have more than 90% of 

their weight within that limit (based on a visual estimation of the area). Based on that, the 

decision was to sieve at 500 pm in order to have most of the samples, or at least the 

most significant part of them, analyzed with only one method. The same procedure was 

applied to all the samples for consistency. Figure 3.3 illustrates the criteria used.
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Figure 3.3 - Portion of the photograph taken to sample 20028_A showing more than 90% of the 
area below 500 pm.

In addition to laser diffraction, grain-size analysis was also performed with 

classical sieve and pipette methods for comparison. The weight Lost On Ignition (LOI) 

was also determined as a rough estimation of the percentage of organic material present 

in the sediments.

Each sediment sample was thoroughly mixed and two to five aliquots were 

removed depending on the size of the sample and visual estimation of the grain size. 

The remaining material was stored. The following table summarizes the analysis 

performed on each aliquot; the detailed procedure is described in Appendix C.

Aliquot Procedure
1s' Standard grain size analyses procedure, wet sieved at 500 pm followed by 

sieving of the coarser fraction and laser diffraction for the finer fraction.
2na Measurement of the natural occurring particle size and the effect of 

organic content on particle agglomeration, wet sieved at 500 pm, finer 
fraction analyzed with laser diffraction following a different procedure, 
without particle dispersion and ultrasonication.

3ra Measurement of the effect of drying the sample, wet sieved at 500 pm, 
finer fraction analyzed with laser diffraction following the normal procedure 
but without drying the sample.

4in Comparison with the pipettes method, wet sieved at 62.5 pm, followed with 
sieving of the coarser fraction and pipette analysis of the finer fraction.

5tn Organic content estimation by weight loss on ignition.

Table 3.1 - Analysis performed on each aliquot of 2006 sediment samples.
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To compare grain-size data with acoustic data, all particles collected in the 

sample that act as scatterers were included, namely material of biogenic and 

anthropogenic origin (glass, brick pieces, etc).

3.2.5 Uncertainties in sediment analysis

In standard grain-size analysis, “size” is defined as the diameter of a sphere of 

the same volume as the particle - true nominal diameter (Wadell, 1932). Sieves, 

pipettes, laser diffraction and other grain-size analysis methods involve the division of 

the sediment sample into a number of bins, where particle-size limits are related by a 

ratio of 2 (Udden, 1914; Wentworth, 1922). This scale was later modified to a logarithmic 

scale in phi values: 0  = -log2cf, where d is the particle diameter in mm (Krumbein, 1934, 

1936). Therefore, grain-size distribution is constructed from the weight or volume 

percentage of each fraction. In this study, an interval of 0.5 0  was used for sieving and 1 

0  for pipettes. The resolution of the laser diffraction is higher, but was binned into 0.5 0  

groups to match the sieve interval.

Different analytical methods measure different properties that are all referred to 

as size. The pipette method measures the weight of the particles with a given settling 

velocity and relates it to particle radius by Stokes’ law. Particle radius refers to the 

“ radius of a sphere of the same specific gravity and of the same terminal uniform settling 

velocity as a given particle in the same sedimentation fluid” (Wadell, 1934, p. 281). 

Below 6 or 7 0 , the settling velocity is affected by particle shape, degree of 

disaggregation, electrical charges, etc. (Folk, 1980). Temperature affects the viscosity of 

the fluid but it is usually well controlled.

The sieve method measures the weight of the particles retained in a sieve and 

relates the weight to the diameter of a sphere with the same size as the mesh. However,
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elongated particles with larger volumes may pass through the sieve, so that grains are 

sorted according to the smallest cross sectional area that may or may not have the same 

volume as the reference sphere. Sieving time also influences the degree of sorting but 

that is a well-controlled factor. Sieve and pipette analysis can be quite time consuming 

and relatively imprecise with an error in excess of 40% (Sperazza et al., 2004).

Low-angle laser light-scattering systems (laser diffraction) measure the angular 

distribution and intensity of a laser diffracted by particles in suspension. A theoretical 

model based on the diffraction of particles with particular properties and grain-size 

distributions is then fitted to the actual measurements. Grain size is reported as volume 

percentage for each size bin. Sperazza et al. (2004) analyzed the size distribution of fine 

grained sediments (1 to 50 pm) and quantified method and instrument uncertainty 

associated with laser diffraction analysis of grain size as less than 6% (2a). The 

standard operating procedure of the Portuguese Hydrographic Institute is different from 

the one described by Sperazza et al. (2004) and is optimized for continental shelf 

sediments. Several factors contribute to the uncertainty in the measurement.

The amount of material required for analysis ranges from 0.1 g for clay-size 

samples to 1 to 2 g for sand-size samples. The way the aliquot is withdrawn from the 

sample material is determinant, as laser diffraction is a volume-based measurement 

technique, and therefore, sensitive to small changes in the amount of large material in 

the sample. The procedure the Portuguese Hydrographic Institute found to produce the 

most reproducible results is to remove the aliquot from a paste, which is easier to 

homogenize than a liquid or a solid. Sperazza et al. (2004) used three other methods: 1) 

drying a sample and removing an aliquot; 2) directly removing material from the original 

sediment sample with a spatula and; 3) extracting the aliquot with a pipette from a 

sample previously dispersed with sodium hexametaphosphate. Uncertainty among the 

different methods varied between 2.4% for D50 to 4% for D90. The direct method caused
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the highest uncertainty in the measurement, 5.9% for D50, and a little more than 10% for 

Dgo. Sperazza et al. (2004) obtained these values in clays; measurements of grain size 

in silts and sands will have higher uncertainty.

Wet dispersion in a solution of deionized water with sodium hexametaphosphate 

is commonly used to ensure particle dispersion and prevent particle agglomeration and 

flocculation. The dispersant has to be transparent to the laser beam and needs to have a 

different refractive index from the particles being measured. Dispersion increases with 

concentration, but beyond a certain point the solution becomes unstable causing 

flocculation. There is an optimum value for each type of dispersant and sediment (2 g/l is 

used at the UNH Coastal Geology Laboratory, 2.55 g/l is suggested by Folk (1980), 3 g/l 

is the value used at the Portuguese Hydrographic Institute, 4 g/l is used at the University 

of Rhode Island and Sperazza et al. (2004) suggest 5.5 g/l). The use of a dispersant 

may increase the formation of air bubbles during sample analysis and shift results 

(Duarte, J. personal communication, 2006).

Ultrasonication is used to disaggregate clay agglomerates. Sperazza et al. 

(2004) found an increase in clay dispersion up to 60 s. After 60 s, some samples 

showed a decrease in grain size interpreted as grain fracturing, whereas others showed 

an increase in grain size, interpreted as the flocculation of clays. Portuguese 

Hydrographic Institute standard operating procedure defines a disaggregation time of 

120 s but the average grain size of the samples is different than those of Sperazza et al. 

(2004).

Another variable is the amount of material to be analyzed. For the Malvern 

Mastersizer 2000, an obscuration level between 15 and 20% produces consistent results 

(Sperazza et al., 2004; Duarte, J. personal communication, 2006). The pump speed also 

influences results and an optimum value must be reached in order to keep the sample in 

suspension and minimize turbulence.
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The Malvern Mastersizer 2000 system uses the Mie solution to adjust a 

theoretical diffraction pattern to the measurements (Singer et al., 1988; Agrawal et al., 

1991; Loizeau et al., 1994). This model requires knowledge of the refraction and 

absorption indices for the particles being analyzed. However, natural occurring 

sediments contain diverse mineralogical compositions, with each mineral having a 

unique set of optical properties that can affect the outcome of the laser diffraction 

results. In this study, a value of 1.544 for particle refraction index (quartz), 1.330 for 

dispersant refraction index and 1.5 for particle absorption, were used. Sperazza et al. 

(2004) report variations in the outcome that ranged from unimodal to bimodal 

distributions depending on the absorption index used and refraction indices varying from 

1.43 to 3.22 for the minerals in the sediments analyzed.

Finally, when results for the entire sample are calculated, data from sieves 

(percent weight) and data from laser diffraction (percent volume) have to be joined. In 

this process all the grains are assumed to have the same density, which may add 

uncertainty to the results.

3.3 Sediment Profile Imaging (SPI) and Plan View Image

Sediment Profile Imaging (SPI) was developed as a benthic monitoring tool 

during the 1970s and the middle 1980s (Rhoads and Cande, 1971; Rhoads and 

Germano, 1982, 1986) and it has been used extensively for monitoring the impacts of 

open-water dredged material disposal (the Disposal Area Monitoring System/USACE 

web site presents an extensive list of references). A camera is mounted horizontally on 

top of a wedge-shaped prism with a Plexiglas faceplate at the front and a mirror placed 

at 45° to reflect the profile image at the faceplate to the camera. A strobe mounted inside 

the back of the wedge provides illumination and the chamber is filled with distilled water
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to provide a clear optical path. The assembly is mounted on a frame lowered to the 

seafloor by a winch at a rate of approximately 1 m/s (Fig. 3.4). Immediately prior to 

landing on the seafloor, a plan-view image is acquired. When the frame comes to rest on 

the seafloor, the winch wire goes slack and the camera prism descends into the 

sediment at a slow rate (approximately 6 cm/s) controlled by the dampening action of a 

hydraulic piston so as not to disturb the sediment-water interface. A trigger activates a 

13 s time delay on the shutter release to allow maximum penetration before acquiring 

the profile image.

The optical prism penetrates the sediment under a static driving force imparted 

by its weight, acting like a static load penetrometer. The weight of the camera prism is 

adjusted according with the expected sediment type in order to maximize penetration 

and maintain a record of the water/sediment interface.

Figure 3.4 -  SPI used by SAIC during 2005 and 2006 sample collection.
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At least two replicate SPI casts and one plan-view image were acquired for each 

station. Sediment profile images were acquired on August 29th, 30th and September 2nd 

and 3rd, 2005. In 2006 profile images were simultaneously acquired with grab samples. 

Images view an area of 20 x 13 cm (HxW) and were acquired with an 8-bit 6MP digital 

camera at a resolution of 2240X1448 pixels. Plan-view images are sometimes difficult to 

interpret due to turbidity and were only sparsely used in this study to confirm the 

consistency of profile images and grab samples.
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CHAPTER 4

GROUND TRUTH AND ACOUSTIC REMOTE SENSING RESULTS, 
COMPARISON AND DISCUSSION

4.1 Mean Grain Size

The number of variables that need to be controlled in each grain-size-analysis 

technique is particularly large, as discussed in section 3.2.5. Therefore, it is important to 

compare the final results and assess the discrepancies.

4.1.1 Calculation of mean grain size

Statistics using the method of moments, arithmetic, geometric and logarithmic, as 

well as using Folk and Ward (1957) graphical methods, were calculated for each sample 

using GRADISTAT software (Blott and Pye, 2001). Although moment measures are 

more accurate and more sensitive to environmental processes than are graphical 

measures (Friedman and Sanders, 1978), moment measures employ the entire sample 

population and are more affected by outliers in the tails of the distribution than the other 

measures. Therefore, moment measures should not be used unless the size distribution 

is fully known (McManus, 1988). Folk and Ward (1957) graphic measures appear to 

provide the most robust basis for routine comparisons of compositionally variable 

sediments (Jackson and Richardson, 2007) and are used in this study.
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The difference in this dataset, between the mean grain size determined 

logarithmically by the method of moments compared to that by the Folk and Ward (1957) 

graphical method is on average 0.15 O ± 0.16 O (1o). The sample that presents the 

highest difference (A11_C; 0.88 O) has the grain size distribution open on the coarsest 

fraction, which means that the grab sampler did not capture the full range of grain sizes.

A plot of grain size distribution by weight for all samples collected in 2006 is 

shown in Figure 4.1. Samples were analyzed with the standard operating procedure 

(SOP), using sieves up to 1 O and laser diffraction for finer sizes. Samples range from 

clay to gravel with the majority of the material in the medium and fine sand size classes.
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Figure 4.1 - HARS sediment samples collected in 2006: frequency distribution by weight of grain 
size in units (top) and sorting versus mean grain size in O units (bottom).
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There was no grain-size distribution for samples collected in 2005 and the only 

data available was in percentage of major fractions (gravel, sand and mud), as is the 

case for many databases constructed for benthic-habitat mapping studies. Data from 

2006 shows a good correlation between percentages of gravel plus sand and the mean 

grain size (Fig. 4.2), at least up to the point where no mud is present in the sediment and 

mean grain size continues to increase. The same relation is likely present in samples 

collected in 2005.

100

R2 = 0.95

Mean grain size (phi)

Figure 4.2 - Mean grain size versus percentage of gravel plus sand for sediment samples 
collected in 2006. There is a good correlation between the percentage of gravel plus sand and 
the mean grain size up to the point where no mud is present in the sample and the grain size 
continues to increase. R2 = 0.95 for samples with a percentage of gravel plus sand from 10% to 
90%.

4.1.2 Error introduced by drying the sample

During the normal SOP, samples were dried and concerns arose regarding 

possible agglomeration of clay particles. A comparison was made using only the portion 

of the sample that was analyzed with laser diffraction. In the standard procedure, the 

material left in the pan of the sieves stack was added to the fraction that was going to be 

analyzed with laser diffraction. It may be assumed that the material left in the pan would 

be evenly distributed through a wide range of finer sizes. However, to minimize errors, 

only those samples with material left in the pan that constituted less than 1% by weight
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of the fraction finer than 1 cp were considered. Figure 4.3 shows the effect of drying on 

the mean grain size. As expected, drying the sample slightly increases the mean grain 

size (lower O values) in finer sediments, with a difference of 0.2 O for sample 17_A (M z

= 6.3 <t>) and 0.4 O for sample 97007_C (M z = 7.5 O).

H  W ithout drying ■  S tandard procedure

200 6 1 _ A  L 2 4 0 0 .A  20028_A  L1200_A  A 12_B  14_C 17_A  97007_C

Sample

Figure 4.3 - Mean grain size for samples that were always kept wet (blue bars) and for those that 
followed the SOP (red bars). For finer sizes, drying the sample increases the mean grain size 
(lower <P value).

4.1.3 Error in the estimation of the mean particle size

In order to estimate the effect of particle desegregation caused by the SOP, an 

attempt was made to characterize the naturally occurring particle size using minimal 

processing of a subset of samples. Twenty three samples, ranging from sand to clay, 

were not digested with hydrogen peroxide, thus preserving organic content, and not 

washed and centrifuged to remove salts. Nevertheless, samples had to be wet sieved at 

500 pm in order to prevent clogging the pump of the laser diffraction system, and since 

deionized water was used, salts were partially washed, therefore promoting some grain 

dispersion. Sodium hexametaphosphate was not used to disperse the samples and 

ultrasound was not applied in the laser diffraction system. Twenty measurements were 

made at 20 s interval. Figure 4.4 shows the evolution of the grain-size distribution by
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volume for samples 14_C, 17_A and 97007_C caused by mechanical stirring. The 

agglomeration effect is more pronounced for smaller grain sizes with the extreme shown 

in sample 97007_C as a clear bimodal distribution.

14 C 17_A

Qrain (phi) Grain aiza (phi)

Figure 4.4 - Frequency distribution by volume of grain size in O units for samples 14_C, 17_A 
and 97007_C (from left to right). Each line corresponds to the distribution measured with 20 s 
interval. As time progressed the distribution moved to smaller sizes. Arrows point the evolution of 
the grain size with time.

Figure 4.5 compares the mean grain size calculated using the standard 

procedure with the mean grain size obtained using the first measurement of those 

samples that went to the laser diffraction without any treatment. Again, in order to 

minimize errors only those samples with material left in the pan that constituted less than 

1 % by weight of the fraction finer than 1 O were considered.

Directly to the laser diffraction ■  Standard procedure

Sample

Figure 4.5 - Mean grain size for samples that followed the SOP (red bars) and for those analyzed 
by laser diffraction without any treatment (blue bars). The difference in mean grain size increases 
as samples become finer (higher O value).
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Samples that represent the sediment closer to its natural occurrence have a 

larger mean grain size (lower 0  value) and this difference is accentuated in finer 

sediments. Particle agglomeration is also directly related to the organic content of the 

sample (Fig. 4.6).

% Dry weight LOI

Figure 4.6 - Difference between the mean grain size in <J> units of the samples that followed the 
SOP and those analyzed by laser diffraction without any treatment versus the organic content 
(percentage in weight of material lost on ignition). The mean particle size in the natural sediment 
is higher than the mean grain size determined by normal grain size analysis, and this difference is 
directly related with the organic content of the sample, with a coefficient of determination R2 = 
0.73.

4.1.4 Comparison between the SOP (sieve-laser diffraction) and the sieve-pipette 
method

A subset of samples was also analyzed with the conventional sieve-pipette 

method in order to compare results from a method that measures distributions by weight 

with one that measures distributions by volume.

Figure 4.7 shows mean grain size and sorting obtained with sieve-laser 

diffraction and sieve-pipette methods. Sieve-pipette consistently biases the mean grain 

size towards the finer fractions and results in poorer sorting of the finer samples. This 

may be due to the lack of resolution of the pipette method where the concentration of
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grains smaller than 10 0  is divided by bins 11 0  to 14 0 . Another explanation lies in the 

way grain size is measured; sizes between 1 0  and 4 0  were measured with sieves in 

the sieve-pipette method and sieves tend to retain coarser grains than those measured 

for the same class in laser diffraction.

The difference in mean grain size between sieve-pipette and sieve-laser 

diffraction is on average 0.35 O ± 0.14 0  (1a). In sample 17_A, this difference reaches 

2 0  but the pipette method is more prone to human error so this measurement was 

considered as a blunder.

m Pipettes ■  Laser diffraction

20061_A L2400_A 20028_A L1200_A A12_B 11_A 20041_A 14_C 17_A 97007_C

Sample

m Pipettes ■  Laser diffraction

20Q41_A 14_C20061_A L2400_A 2Q028_A L1200.A A12J 17_A 97007_C

Sample

Figure 4.7 - Mean grain size (top) and sorting (bottom) in 0  units for samples analyzed with 
sieve-laser diffraction (red bars) and sieve-pipette methods (blue bars). The sieve-pipette method 
systematically results in a smaller mean grain size.
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4.1.5 Estimated uncertainties in the determination of mean grain size

Instrumental uncertainties were evaluated only for the automated method of laser 

diffraction. For a population of 50 samples with three replicate measurements per 

sample, the overall uncertainty in the measurement is 0.024 O ± 0.026 <t> (1a). The 

maximum uncertainty found in the determination of mean grain size for a single sample, 

with three replicate measurements, is 0.082 O ± 0.054 O (1a).

Uncertainties in mean grain size due to the effect of drying the sample in the 

SOP increase as the grain size decreases (higher <t>). For medium or fine sands, the 

effect of drying the sample is almost negligible whereas for silt and clay sizes the 

difference can reach 0.2 O and 0.4 O, respectively.

Differences between sieve-laser diffraction (SOP) and sieve-pipette methods are 

on average 0.35 <t> ± 0.14 O (1a) towards smaller grain sizes (higher O) for sieves- 

pipettes.

The highest degree of uncertainty seems to arise from the basic premise of 

grain-size analysis. From a sedimentological perspective, the objective is to obtain the 

grain size of the clastic particles as they were deposited (Folk, 1980) in order to get 

information about the parental source, transport and depositional processes. 

Decomposing the sample to its elementary particles accomplishes this objective and 

sets a standard for data comparison. But this process may not adequately characterize 

the mean grain size as a descriptor for geoacoustic properties.

In spite of not being representative of the natural sediment, samples that 

received minimal preparation for analysis compared to those analyzed with the SOP, 

show a difference in the mean grain size of 0.2 O or less for medium and fine sands, 

approximately 0.3 <t> for very fine sands, 0.5 O for coarse and medium silts, and 

approximately 1.5 <J> for fine silts to clays. The natural sediments are expected to show
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higher differences because it was not possible to analyze the samples without disturbing 

the sediment.

Figure 4.8 summarizes results for samples 20061_A (medium sand), A12_B

(fine sand), 14_C (very coarse silt) and 17_A (medium silt).

•A12_B LDD (average)•20061_A LOO (average)

 20061_A w/out drying
— 20061_A pipettes

 A12_B w/out drying
— A12..B pipettes

Oraln site (phi) Grain s ite (phi)

17_A LDD (average)

14_C w/out drying 
—  14_C pipettes

Grain size (phi)Grain size (phi)

Figure 4.8 - Grain size versus percentage of weight for samples 20061_A, A12_B, 14_C and 
17_A. The distribution of grain sizes obtained with the SOP (sieve-laser diffraction split at 1 O) is 
shown for comparison with the sieve-pipette method (split at 4 <J>). Results considering only the 
portion analyzed with laser diffraction are shown for comparison with the effect of not drying the 
sample and of sending the sample directly to the laser diffraction without going through the 
standard preparation (average of 20 measurements).

4.1.6 Mean grain size versus penetration of the optical prism

In order to estimate if mean grain size can be used as a proxy for geotechnical 

properties of the seafloor, the penetration of the optical prism is compared with the mean 

grain size. Figure 4.9 relates the penetration of the optical prism with the percentage of 

gravel plus sand for data collected in 2005 and 2006. Although the penetration increases 

for finer sediments, there is no apparent correlation with the force exerted over the prism
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(number of weights). Calculated penetration is the average of all the replicas in each 

nominal station for 2005 data (SAIC, 2005a). For data collected in 2006, only those 

stations where the SPI image and the grab sample were obtained in the same replica 

were considered.

♦  2 Weights 
m 3 Weights
*  4 Weights

% Gravel*Sand % Gravel + Sand

♦  2 Weights
•  3 Weights 
a 4 Weights

4-
4  J

Figure 4.9 - Penetration of the optical prism versus percentage of gravel plus sand for each year. 
The weights in the camera were adjusted in order to obtain more penetration in harder bottoms. 
Although an apparent correlation can be observed for data collected in 2005 there is no 
differentiation by number of weights. Also, for data collected in 2005, the penetration of the optical 
prism is the average for all profile images within the same station and the percentage of gravel 
plus sand is calculated as the average of all the samples collected within the same station. For 
data collected in 2006 the same correlation is not observed, in this plot the penetration of the 
optical prism versus the percentage of gravel plus sand was calculated for each replica within the 
station.

If mean grain size is plotted against the penetration of the optical prism, instead 

of the percentage of gravel and sand (Fig. 4.10), a correlation is seen between the two, 

thus explaining why mean grain size is sometimes used as a proxy for geotechnical 

properties of the seafloor.
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Figure 4.10 -  Penetration of the optical prism versus mean grain size for samples collected in 
2006. Lines reflect the general trend for each number of weights.

4.2 Backscatter Strength

4.2.1 Backscatter strength versus mean grain size

The observed relationship between percentage of gravel plus sand and mean 

backscatter strength, calculated within the uncertainty area of each sediment sample, is 

depicted in Figure 4.11. A general trend is observed with backscatter strength increasing 

with the percentage of gravel plus sand in 2005 but the same trend is not observed for 

data collected in 2006. Sediment samples collected in 2005 are composite samples 

whereas each sample collected in 2006 corresponds to a single deployment of the grab 

sampler. The average backscatter strength is also calculated over different areas, the 

size of the uncertainty area of the sediment samples collected in 2005 is on average 4 

times the size of the uncertainty area of the sediment samples collected in 2006.
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Figure 4.11 - Percentage of gravel plus sand versus mean backscatter strength calculated within 
the uncertainty area of each sample for 2005 (left) and 2006 (right).

The relation for data collected in 2006 seems to improve when mean grain size 

rather than percentage of gravel plus sand is considered (Fig. 4.12, left), but though a 

general trend can be observed, the correlation is weak (R2 = 0.14). Several factors may 

contribute to the lack of a strong correlation: 1) uncertainty in sample position; 2) 

measurement of a grain size that does not correspond to the size of the particles in the 

natural sediment and; 3) inability of the grain size to represent the acoustic response of 

the seafloor. As will be discussed below, an attempt was made to consider all these 

factors with the results presented in Figure 4.12 right, showing an improvement in the 

correlation with backscatter strength, with a coefficient of determination R2 = 0.74.

  .

■i -3 -2 5 6 7
Mean grain «lz* (phi)

« Normal heterogeneity for the grain size 
@ More heterogeneous than normal 
a  Much more heterogeneous than normal

•2 -1 o 5 6 7 S 9
Mtan partial* aiz* (phi)

Figure 4.12 - Relation between mean grain size and mean backscatter strength (left) and 
between inferred mean particle size and mean backscatter strength for the deposit the sample 
was attributed (right). The correlation with backscatter strength improves with supervised 
positioning of the sample and estimation of the mean particle size. There is some differentiation 
by degree of sediment heterogeneity.

50

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



First, the uncertainty in sample position was considered. As an example, within 

the area of uncertainty of sample 26_B (Fig. 4.13), two distinct backscatter areas can be 

observed. In this case, based on the analysis of the entire deposit and on the 

comparison with other similar sediment samples obtained in contiguous areas of high 

backscatter, and with samples corresponding to finer sediments obtained in contiguous 

areas of low backscatter, the sample was attributed to the area of high backscattering 

strength. The average backscatter was recalculated considering only the area of high 

backscatter strength. In station 4, replica 4_A, the analysis of the backscatter revealed 

only one type of sediment within the uncertainty area of the sediment sample. The area 

that corresponds to replica P2800_B presents some heterogeneity but it wasn’t possible 

to clearly identify different sedimentary deposits, so the average backscatter within the 

whole area of uncertainty of the grab sample was considered.

Next, two samples that presented significant differences from the SPI image 

were removed (97007_C and K0800_C). The removed samples correspond only to red 

clay whereas the SPI images show mostly sand. Although several cases exist where 

there are differences between the sediment sample and what is observed in the SPI, 

these cases represent the extreme situation where only one component of the surface 

sediment was sampled.

The next step was taken to correct for the difference between measured mean 

grain size and the actual mean particle size, using the relation shown in Figure 4.5 and 

Figure 4.6 and assuming that the organic content is directly related with the degree of 

agglomeration of finer particles. The mean grain size was corrected assuming the 

relation between the mean particle size and the percentage of weight lost on ignition: 

mean particle size = mean grain size + (% dry weight LOI x 0.2). This relation mainly 

affects particles in the silt and clay range.
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BS 26_B
Max. -14.7 dB
Min. -26.4 dB
Mean -18.7 dB ± 2.3 dB (1a)

A4_A
-23.8 dB 
-29.4 dB 

-26.9 dB ± 0.8 dB (1a)

P2800_B
-12.1 dB 
-26.0 dB 

-18.8 dB ± 1.9 dB (1a)

Figure 4.13 - From top to bottom: backscatter strength in the uncertainty area of the grab sample, 
SPI images and photographs of the grab sample for stations 26_B, A4_A and P2800_B. Each 
pixel in the the backscatter mosaic corresponds to 1m. SPI images correspond to 20 x 13 cm 
(HxW) and grab sample photos to 2.2 x 3.3 cm (HxW).

Finally, two of the factors that contribute to the scattering of the acoustic wave 

were also considered; surface roughness and volume heterogeneity. In the HARS, the
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two main sources of heterogeneity are biological reworking and dumping of varied 

material, both of which equally affect scattering on the surface and volume scattering in 

the first few centimeters of sediment. Based on SPI images, the seafloor was classified 

as: 1) having normal heterogeneity for the sediment type; 2) as being more 

heterogeneous than expected or; 3) as having much more heterogeneity than expected. 

All the SPI image replicas for the same station that presented the same type of sediment 

as the grab sample were used in the decision process due to the “point sample” nature 

of the SPI compared with the spatial variability of the area. Figure 4.13 illustrates the 

criteria; stations 26 and A4 have normal roughness and volume heterogeneity and 

P2800 much more roughness and volume heterogeneity than expected for the type of 

sediment.

Obviously, the criteria used are subjective, but illustrate the factors that may 

contribute to the lack of correlation between mean grain size and backscatter strength, 

which is sometimes observed in areas with high spatial heterogeneity.

4.2.2 Comparison of backscatter strength for the same type of sediment

One way of evaluating the consistency of results is to compare backscatter 

strength for the same type of sediment. This comparison was made only for data 

collected in 2006 because detailed granulometric distributions are not available for 

sediment samples collected in 2005.

Samples 20028_A, 20064_A, L1200_A and L2400_A collected in 2006, are from 

different locations but consist of the same sediment facies; a moderately well sorted fine 

sand, symmetrical and mesokurtic (Fig. 4.14 and Fig. 4.15). Backscatter values 

calculated as the average within the area of uncertainty of each sample are: -26.7 dB ±

1.7 dB (1a), -24.9 dB ± 1.0 dB (1a), -25.9 dB ± 1.4 dB (1a) and -25.8 dB ± 1.0 dB (1a),
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respectively. All the mean values fall within ±1 dB, which reflects the effectiveness of 

Geocoder in applying the necessary corrections. A standard deviation between 1.0 and

1.7 dB for the backscatter strength in a circular area on average 40 m diameter, 

suggests even better results if a point sample could be considered.

Figure 4.14 - SPI images from samples 20028_A, 20064_A, L1200_A and L2400_A (left to right) 
obtained with a load of 4 weights. Photos correspond to 20 x 13 cm (HxW).

SKEWNESS.FW.phi KURTOSIS.FW.phiSORTING. FW_phi

0  2OO28.A 
■ 20064.A

□ L1200.A
□ L2400.A

Figure 4.15 - Mean, sorting, skewness and kurtosis determined by the Folk and Ward (1957) 
graphical method, in <J> units, for samples 20028_A, 20064_A, L1200_A and L2400.A (left). 
Percentage in weight of moisture and percentage of material LOI relative to the dry weight for the 
same samples (right).

4.2.3 Differences in backscatter strength between 2005 and 2006 and temporal 

evolution of the seafloor

Multibeam sonar data was acquired at the same frequency (240 kHz) and with 

the same system (Reason 8101) in 2005 and 2006, so it is possible to calculate changes
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in backscatter strength from year to year and estimate the consistency of results. 

Mosaics were assembled following the same procedure described in Chapter 3. The 

average difference in backscatter strength between the two years is -1.0 dB ± 2.8 dB 

(1o), this bias was corrected by leveling the average difference in backscatter strength to 

0 dB. Figure 4.16 depicts the difference in backscatter strength between 2006 and 2005.

Variations in backscatter strength seem to be collocated with variations in 

bathymetry (Fig. 4.17 and Fig. 4.18), corresponding to the deposition of new capping 

material in PRAs 1 and 2. Considering the relation between mean grain size and 

backscatter strength determined in section 4.2.2 it is possible to infer changes in 

sediment type relatively to the previous year. Recently deposited coarser material 

(positive difference in backscatter) in PRAs 1 and 2, seems to concentrate more than 

recently deposited finer material (negative difference in backscatter) that has spread 

over a larger area. Some scour depressions in PRA 1 and 3, which are probably caused 

by anchoring (Fig. 4.16), seem to be filled with new material. There seems to be a 

generalized transport of coarser material to the southeast across the HARS as 

evidenced by the distribution of positive values on both sides of the mounds in the center 

of the area. There is some noise concentrated around the sonar nadir, but that does not 

affect the observation of major variations in backscatter strength.
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Figure 4.16 - Difference in the 240 kHz backscatter strength between 2006 and 2005, positive 
values are depicted in pink and correspond to an increase in grain size. Negative values are 
depicted in blue and correspond to deposition of finer material. Scours are indicated by arrows.
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Figure 4.17 - Difference in bathymetry between 2006 and 2005, positive values are depicted in 
blue and are mainly concentrated in PRAs 1 and 2 where new material was deposited. Some 
erosion is also observed in the mounds that were already formed in 2005 (PRAs 1 and 2), 
corresponding to negative values depicted in brown.
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Figure 4.18 -  View from northwest over PRAs 1 and 2. The difference in backscattering strength 
between 2006 and 2005 is draped over the difference in bathymetry. Positive values are depicted 
in red and correspond to coarser sediments. Negative values are depicted in blue and correspond 
to deposition of finer material. Vertical exaggeration: 15x.

4.2.4 Backscatter strength versus penetration of the optical prism

Considering the results shown in Figure 4.10 (correlation between mean grain 

size and penetration of the optical prism), it would be expected that backscatter strength 

should present the same degree of correlation when compared with the penetration of 

the optical prism. The correlation observed in Figure 4.19 does not indicate backscatter 

as a good predictor of the geotechnical properties of the sediment. The lack of 

correlation might be explained by the uncertainty in sample position. In 2006 the optical 

and the sediment sample were taken 10 m apart, plus the deviation derived from cable 

angle. However, the mean backscatter was calculated as the mean within the 

uncertainty area of the sediment sample, with an average area of 1257 m2. An apparent 

correlation seems to exist in 2005 but the penetration of the optical prism was calculated
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as the average for all the replicas that fall within a radius of 40 m and the mean 

backscatter was calculated as the mean within an uncertainty area of 5027 m2. In both 

years, there is no differentiation by number of weights.

2006

•  0 Weights
* 1 Weight
♦ 2 Weights
•  3 Weights
*  4 Weights

8 10 12 14

3P I penetration (cm)

2006

« 2 Weights 
■ 3 Weight* 
x 4 Weights

8 10 12 

SPI penetration (em)

14 16 18

Figure 4.19 - Mean backscatter strength within the area of uncertainty of each sample versus 
penetration of the optical prism for 2005 (left) and 2006 (right). The value presented for the 
penetration of the optical prism in 2005 corresponds to the average of all replicas within a station.

4.3 Angular Range Analysis

4.3.1 ARA in normal mode

ARA was performed in normal mode resulting in one ARA solution for each 

resolution cell, defined by the half-swath width of the sonar in the across-track direction 

and a stack of 30 pings in the along track direction. Appendix D shows some examples 

of the angular response for different types of sediments and model fits to the angular 

responses. Thiessen polygons (a polygon defined by the perpendicular bisectors of the 

lines connecting points in a triangular irregular network, whose boundaries delimit the 

area that is closest to each point comparatively to all other neighboring points) were 

constructed around each ARA solution and the mean grain size as predicted by the
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model is depicted in Figure 4.20. The observed segmentation of the seafloor is very 

similar to the one that a geologist would have generated by visual interpretation of the 

backscatter mosaic, but with the great advantage that the characterization of the 

seafloor in terms of mean grain size is objective. It is derived from the measurement of a 

geoacoustic property and is not dependant on the human interpretation of a backscatter 

mosaic that can have a different outcome depending on which AVG was applied.

The 1993 dioxin, and the 1997 Category II capping projects are easily 

recognized, and capping material is predicted to be medium to fine sands. A deposit of 

fine sediment aligned with the axis of the Hudson Shelf Valley (Fig. 1.1) is also 

recognized, with a predicted mean grain size of coarse to medium silt. Another 

alignment of fine sediment exists to the west, and is more easily recognized than in the 

backscatter mosaic, in agreement with sediment transport to the head of the Hudson 

Canyon on the west flank of the topographic highs in the center of the HARS. The area 

corresponding to rock outcrops on the east side of the HARS is predicted to have 

M 2 = -1 <t>, the lower limit of the ARA model. Mounds of remediation material placed on 

PRAs 1, 2, 3 and 4 are predicted to have a mean grain size ranging from granules to fine 

sand. Preexistent sediment that is exposed on the sides of these mounds is classified as 

fine sand to coarse silt, which agrees with what is observed in the SPI images.

In spite of the good results at a regional scale, the limitations are evident when 

comparing ARA solutions with the backscatter mosaic at a local level. Figure 4.21 shows 

the predicted grain size at station A12 in PRA 9. A general trend can still be recognized, 

but HARS variability at a decameter scale can not be resolved by the spatial resolution 

of a method that employs the half-swath of the sonar (around 50 m for this region).
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Figure 4.20 - Predicted mean grain size from the Angular Range Analysis for data collected in 
2006. The area marked with a dark blue rectangle is zoomed in Figure 4.21.
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Figure 4.21 - Left: predicted mean grain size from the ARA for station A12 (2006). Polygons were 
constructed using ARA solutions represented by black dots (the color scheme is the same as the 
one used in Figure 4.20). The green circle represents the area of uncertainty of the grab sample 
and yellow circles the SPI uncertainty. Right: backscatter mosaic for the same area, the red 
rectangle corresponds to 150 x 200 m and marks the area where ARA was applied in “theme" 
mode.

4.3.2 Comparison of ARA results with mean grain size

Comparison of the mean grain size as predicted by the ARA with ground truth 

data is made considering the measured mean grain size and not the inferred mean 

particle size as in Figure 4.17. It is assumed that sediment samples used in the original 

measurements, that gave rise to the regression equations used in the ARA model, 

followed the normal preparation used in the majority of the grain-size analysis methods.

When the average of the ARA solutions inside the area of uncertainty of the grab 

sample is plotted against the measured mean grain size the result is a scatter of points 

(figure 4.22).
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Figure 4.22 - Predicted mean grain size from the Angular Range Analysis for 2006 data versus 
measured mean grain size from sediment grab samples for sizes finer than -1 O. Stations where 
the seafloor is homogeneous and without sediment layering in the first centimeters show a good 
correlation between ARA solutions and mean grain size determined by grab sampling and 
sediment analysis. Other points deviate from this trend, when the seafloor is heterogeneous, 
when the grab sample did not capture the full range of grain sizes or when the seafloor is 
homogeneous but the grab penetrated into a layered sediment.

The biggest difference is for station K0800 located in PRA 2 at the base of a 

mound of remediation material. ARA solutions that fall inside the area of uncertainty of 

the grab sample are relatively consistent (1.20, 2.26, 2.50 and 2.69 O) but far from the 

measured mean grain size of 8.2 O. Backscatter strength inside the area of uncertainty 

of the sediment sample varies between -16 dB and -27 dB but most of the region falls in 

areas of higher backscatter and although some heterogeneity exists it is not enough to 

explain this discrepancy. However, the sediment was recovered from the SPI frame in 

the absence of a successful grab sample and represents only the upper millimeters. SPI 

images are smeared by red clay that exists on the surface but it is possible to observe a
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few centimeters of remediation material (medium to fine sand on top of silts) that agrees 

well with ARA predictions.

The same correspondence of ARA prediction and grain size occurs at station 

97007 situated near the base of a mound in the red clay deposition area inside PRA 6. 

Even though collected with a grab sampler, the recovered red clay only corresponds to a 

surface layer less than 1 cm thick as observed in the SPI. It is difficult to evaluate the 

grain size of the subsurface material on the SPI due to smearing by red clay but it 

appears to be sand. Two ARA solutions that fall in this area are both sands (0.63 O and 

1.15 <t>). Considering an attenuation of only 0.2 dB/cm for the first layer of red clay at 45° 

grazing angle (Appendix A), it is likely that the contribution to scattering is mostly from 

the subsurface sand layer.

Grab samples 27_C, A1_C and N2000_C are coarse and medium silts recovered 

from the frame and are situated in relatively homogeneous areas. The recovered 

sediment agrees relatively well with what is observed in the SPI images, except for a thin 

surface layer of fine sand that is not represented in the sample from the SPI frame. This 

probably explains why ARA predictions are coarser by 1 to 2 O. These are examples of 

sampling procedures that failed to adequately characterize the sediment to the extent 

that is penetrated by the acoustic wave.
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Figure 4.23 - ARA mean grain size solutions (the color scheme is the same as for Figure 4.20) 
over the backscatter mosaic for the area of station 17 (2006). The area of uncertainty for each 
sample is indicated by yellow circles for SPI images and with a green circle for the grab sample. 
Sediment profile images are 20x13 cm (HxW) and the grab sample image corresponds to 2.2 x
3.3 cm (HxW).

The opposite effect seems to arise when the material is sampled to a depth 

beyond what is penetrated by the acoustic wave. Station 17 (Fig. 4.23) is situated in an 

area where backscatter variations are subtle (-21.7 dB ± 1.2 dB 1o) and different 

deposits cannot be clearly defined. ARA solutions fall in the medium sand size class but 

the determined mean grain size for the grab sample is in the fine silt size. SPI images 

reveal from 2 to 5 cm of sand over fine grained material. The grab sampler penetrated 

several centimeters into the bottom and the mean grain size is an average of more 

sediment than what is contributing to scattering in the direction of the transducer 

(approximately 2 cm in medium sands - Appendix A). Stations A9 and 11200 are similar

65

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



cases. They are in areas of relatively homogeneous backscatter and ARA predictions 

agree with what is observed in the first centimeters of the SPI.

Observations in stations 17, A9 and 11200 appear consistent with 2.3 dB/cm of 

attenuation for medium sand ensonified at 45° grazing angle, and with an expected 

acoustic penetration depth around 2 cm (Appendix A). They also seem consistent with 

the vertical structure of the sediment. The second layer appears to be an homogeneous 

very fine silt and the main contribution for scattering is at the wavelength scale, 

0.1 A -  10 A (Greaves and Stephen, 2000), that has its lower limit for 240 kHz at medium 

to coarse sand, close to the grain size of the top layer.

Other consequences of inadequate physical sampling may occur in coarse 

material when the size of the grab is not enough to capture the full range of grain sizes. 

Stations M1200, A2 and A3 are in relatively homogeneous areas and comparisons with 

SPI images suggest that the mean grain size is probably higher than what was captured 

by the grab sampler. ARA predictions are -1 0  but this is the lower limit of the model. 

Still, results are within 1 0  of the measured mean grain size. Another example is from 

station A16 where the grab sample spreads over the sand and silt size class with 

M z = 3.9 O but the SPI did not penetrate into the bottom and on the surface reveals 

2 cm pebbles. ARA results are 0.7 0 , a coarse sand. All areas where the measured 

mean grain size is smaller than -1 0  are adequately classified by the ARA model.

When the backscatter strength within the uncertainty area of the grab sample is 

relatively homogeneous and it is not possible to clearly identify different sedimentary 

deposits, and when profile images show homogeneity in the first 2 to 5 cm, ARA 

predictions are within ±0.4 0  of the measured value for mean grain size. This is 

consistent for fifteen samples in the very coarse to fine sand range. Three other samples
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present worse correlations, two medium sands with 0.5 and 0.9 O difference, and one 

coarse sand with 0.6 <P difference.

Station 20051 corresponds to a homogeneous area of the seafloor but there is 

some striping in the backscatter caused by survey lines run on different days. ARA 

results differ by 0.6 O from the measured value at this station.

In areas of relative horizontal and vertical homogeneity, ARA solutions correlate 

well with the mean grain size determined by grab sampling except in the cases where 

the grab sampler failed to take a representative sample of the sediment. When 

horizontal and vertical heterogeneities exist, there is no apparent correlation between 

the two determinations of mean grain size.

4.3.3 ARA in supervised segmentation mode (in areas of horizontal

heterogeneity)

Until now, only samples were considered that had been collected in places where 

the backscattering strength is relatively homogeneous over a patch of the seafloor 

approximately 50 m wide. In all these cases, the ARA model matched the observations, 

or the physical sample did not characterize adequately the sediment that is being 

ensonified.

The backscatter strength for 14 stations varies considerably within the 

uncertainty area of the grab sample and this brings up two different issues. First, the 

sample has to be attributed to the sedimentary deposit where it came from. This can be 

accomplished by supervised positioning of the sample, using information from 

contiguous areas. Second, the backscatter angular response uses half the swath width 

of the sonar which does not provide enough spatial resolution for areas like the one 

depicted in Figure 4.21. In order to overcome this limitation polygons of 200 by 150 m
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were defined around each station. Each polygon was manually segmented into smaller 

areas with similar textural characteristics (themes) assuming that each theme 

corresponds to areas on the seafloor with similar physical and geoacoustical properties.

In the normal ARA mode, the observation is the average angular response of a 

certain number of stacked pings in the along track direction (30 in this study), whereas in 

the ARA theme mode, the observation is the average of all the snippets that fall within 

each theme, even if they come from different acquisition lines. ARA was executed for 

each theme, which means that inside each rectangle there are as many observations as 

the number of themes and as many solutions as themes.

Taking station A12 (2006) as an example, the backscatter mosaic allows 

differentiating two major deposits (Fig. 4.24): one corresponding to areas of high 

backscatter (depicted in light blue) and the other to areas of low backscatter (depicted in 

dark pink). SPI replicas for the same station reveal high variation over a short range 

(Fig. 4.25), showing a gravelly bottom and a layered sediment with 4 cm of sand over 

silt. The grab sample with M z = 2.4 O was attributed to the deposit depicted in dark pink. 

Two themes were defined for ARA, each one corresponding to a sedimentary deposit. 

ARA solutions are -1 O (gravel) for the area in light blue and 1.61 <t> (medium sand) for 

the area in dark pink. Angular responses for each theme are depicted in Figure 4.26.
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Figure 4.24 - Manual segmentation of the area marked by the red rectangle in Figure 4.21 right, 
200 x 150 m. Although subtle variations can be observed in the backscatter mosaic only two 
different types of deposits could be clearly identified, transitional terms are probably included in 
each of the themes defined.

Figure 4.25 - 20 x 13 cm (HxW) SPI images and 2.2 x 3.3 cm (HxW) grab sample photo for 
station A12 (2006). The distance between the two red dots corresponding to SPI positions is 5 m 
and the uncertainty radius 15 m. The uncertainty radius for the grab sample is 24 m.
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 A12 - Gravel
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Figure 4.26 -  Angular response and model fit in “theme” mode for station A12 (2006). The blue 
line corresponds to the light blue area depicted in Figure 4.24, and the pink line to the area in 
dark pink.

Although the segmentation method considerably improves ARA results in areas 

where the normal mode does not have enough spatial resolution, when the medium is 

layered in the first few centimeters, ARA predictions and grab samples do not match. 

This is a similar case to the one already observed in section 4.3.2 for stations 17, A9 and 

11200.

4.3.4 Comparison of ARA results with the estimated mean grain size for the top 

layer (in areas of vertical heterogeneity)

If SPI observations are considered valid to a lateral extent of 10 to 20 m, it can 

be assumed that the same sediment was collected by the grab sampler, if no significant 

difference between the two is observed. In the majority of the cases, the uppermost layer 

of sediment corresponds to remediation material, usually sand, deposited over silt. The 

mean grain size varies to the extent the grab penetrated the sediment. If the sampler 

collected mostly the top layer of the sediment, then the mean grain size will be larger. If 

the sampler collected mostly the subsurface layer, then the mean grain size will be
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smaller. Therefore, the mean grain size is not a measure of sediment properties that will 

influence its acoustic behavior but only a measure of grab efficiency. Although there 

seems to be a general trend, if the penetration of the grab fluctuated as much as the SPI 

penetration for the same type of sediment (Fig. 4.14 and Fig. 4.15), mean grain size can 

hardly be used as a geotechnical indicator either.

ARA solutions seem to characterize well the few first centimeters of the seafloor 

for the frequency of interest (240 kHz). Considering that when layering is present, each 

layer is relatively homogeneous and corresponds to a different type of sediment, it is 

possible to infer the grain size of the top layer by looking at the grain-size frequency 

distribution. The grain size histogram usually has one mode for each type of sampled 

sediment (Fig. 4.27) and the agreement with ARA solutions is remarkable as seen in 

Figure 4.28.

20041

M*an grain *lz*(phl)

Figure 4.27 - Grain size frequency distribution and profile images for samples 20041_A (top) and 
I1200_A (bottom), from 2006. A first layer of remediation material, medium to fine sand, with a 
few centimeters, overlays a layer of medium to fine silt. The blue arrow represents the mean grain 
size for the sampled sediment and the red and green arrows the mode corresponding to each 
layer.
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Figure 4.28 - Predicted mean grain size from ARA for 2006 data versus measured mean grain 
size from sediment grab samples. Samples depicted by squares in Figure 4.22 that did not 
capture the full range of grain sizes were removed. ARA solutions for samples depicted by 
triangles in Figure 4.22, corresponding to high spatial variability, were obtained using 
segmentation and definition of themes. The mean grain size of the top layer was approximated by 
considering the mode corresponding to the top layer. Green arrows connect the mean grain size 
of a layered sediment to the mode of the top layer of the same sediment sample. The red line 
represents the linear regression after correcting for horizontal and vertical heterogeneities.

After correction for vertical heterogeneities as well, the correlation between ARA 

solutions and mean grain size is high (coefficient of determination R2 = 0.90). However, 

since points are mainly concentrated between 1 and 3 <t>, more data is needed to 

validate this correlation.

72

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



4.3.5 Estimation of the consistency of ARA results

When considering samples 20028_A, 20064_A, L1200_A and L2400_A collected 

in 2006 (Fig. 4.14 and Fig. 4.15) that were used to estimate the consistency in 

backscatter strength, it is observed that ARA predictions calculated as the average of 

the solutions that fall within the area of uncertainty of the sediment sample are 

(Table 4.1):

Sample ARA solutions (0) Mean grain size - grab sample (O)
20028 A 1.9 ±0.6  (1a) 2.2 ±0.6  (1a)
20064 A 2.5 ±0.0  (1a) 2.3 ±0.6  (1a)
L1200 A 2.1 ±0 .2  (1a) 2.3 ±0.6  (1a)
L2400 A 1.9 ± 1.4 (1a) 2.2 ±0 .6  (1a)

Table 4.1 -  ARA solutions calculated as the average within the area of uncertainty of the grab 
sample and correspondent mean grain size determined from sediment analysis.

For these four samples, mean ARA solutions are within a range of 0.6 O and only 

0.2 to 0.3 O apart from the correspondent value determined by grab sampling. These 

values suggest that the entire workflow, from data acquisition by SAIC with the Reson 

8101 multibeam system to ARA in Geocoder, yields consistent results within ±0.3 O for 

the same type of seafloor. Considering all the samples in Figure 4.28, after correcting for 

horizontal and vertical heterogeneities, the average difference between ARA solutions 

and mean grain size determined by grab sampling is ±0.4 <t> (1a).
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CHAPTER 5

CONCLUSIONS

Before confidence can be acquired for a remote sensing tool, to the point where 

the need for ground truth is minimized or eventually eliminated, a comparison has to be 

made between remote sensing results and ground truth data in different types of 

environments. The present study tried to estimate the applicability of the Angular Range 

Analysis implemented in Geocoder (Fonseca and Mayer, 2007) to an area of high spatial 

variability (the Historical Area Remediation Site -  HARS).

The parameter chosen as the object of comparison was mean grain size 

because it is the most commonly measured seafloor property, widely used to define 

dredging areas for beach nourishment, to predict sediment transport, seafloor 

geotechnical behavior, and to define benthic habitats. Although it may not yield the 

desirable predictive relationship with other physical and geoacoustic properties of the 

sediment, it can be easily measured with low cost. However, any measurement is 

affected by an uncertainty and, before assuming mean grain size as determined by 

common methods of ground truth and grain size analysis as an absolute value, we have 

to determine the sources of uncertainty in the measurement and when possible, quantify 

them.

The major source of uncertainty in the determination of mean grain size by grab 

sampling derives from the peculiarities of the HARS and sampling efficiency. In a natural 

environment on the continental shelf it is expected that the major sediment types have a 

horizontal continuity on the order of decameters to kilometers and a vertical continuity on
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the order of decimeters to meters. The anthropogenic actions at the HARS shaped the 

seafloor and variations are at a meter/decameter level horizontally and vertically at a 

centimeter level. The grab sampler was not precisely positioned and position uncertainty 

is on the order of decameters. Penetration of the grab sampler usually follows a trend 

with sediment type but has variations in the order of centimeters. This brings up two 

issues. Where is the sample from? And what is being sampled?

Uncertainties in sampling position on a small boat using DGPS were found to 

vary between ± 15 m to ± 25 m in the HARS, and in several cases the area of 

uncertainty falls between different deposits. In spite of not reflecting the true normalized 

average backscatter strength for each pixel due to the application of an AVG, the 

backscatter mosaic is suitable for the identification of different deposit types and even to 

recognize subtle variations. Using ground truth information from contiguous areas that 

are homogeneous within the uncertainty area of sediment samples it was possible, to a 

certain extent, to execute a supervised positioning of samples that fall between deposits.

Another type of uncertainty due to sediment sampling arises when the grab is not 

able to capture the full horizontal and/or vertical range of grain sizes. This particular type 

of uncertainty would be minimized with the use of larger and heavier grabs.

It was found that instrumental uncertainties associated with an automated 

method of grain size analysis, such as laser diffraction, appear to be negligible. Although 

there were not enough analyses to make statistically meaningful conclusions, it was 

observed that the procedure of drying the sample, in order to calculate its weight and 

split it between different analytical methods, increased the mean grain size by 0.01 to 

0.05 0  for sand, 0.1 0  for coarse silt, 0.2 0  for fine silt and 0.4 0  for very fine silt/clay 

sizes. Determination of mean grain size by sieve-laser diffraction and sieve-pipette 

methods was on average higher 0.35 0  ± 0.14 0  (1a) for the sieve-pipette method. 

Although it seems that uncertainties associated with the instruments, procedures and
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methods are relatively low, it must be considered that mean grain size determined by the 

Folk and Ward (1957) graphical method is much less affected than the full distribution 

curve.

The major uncertainty in the determination of the size of the particles in the 

sediment seems to be caused by the common analytical procedure of decomposing the 

sample into its elementary particles. The standard analytical procedure is reasonable 

from a sedimentary perspective but causes an underestimation of the mean particle size 

of the sediment of at least 1.5 <1> for fine silts to clays, 0.5 <t> for coarse to medium silts 

and 0.3 <t> for very fine sands.

How representative a grab sample is of the surficial facies a region is directly 

associated with the spatial variability of the seafloor under investigation. Although good 

results can be expected in many natural environments, this is not the case for the HARS. 

Comparison of results with remote seafloor characterization proved to be difficult, but 

possible only because of profile images and the full grain-size distributions, which 

suggests that unless the medium is relatively homogeneous, grab samples by 

themselves, and grain size expressed in terms of major fractions do not have much 

value in describing the surficial sediment.

Remote seafloor characterization in terms of mean grain size using Angular 

Range Analysis implemented in Geocoder (Fonseca and Mayer, 2007) showed good 

results at a regional scale and the limitations associated with the resolution of the 

method in normal mode (stack of pings x half-swath) do not affect the general regional 

trend. At a local level, however, and given the heterogeneity of the HARS, the lack of 

spatial resolution is evident. When there is an homogeneous patch of the seafloor where 

several ARA solutions fall, results are in agreement with the measured mean grain size 

provided the sediment is roughly homogeneous over the first centimeters of depth.
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When there is horizontal and/or vertical heterogeneity, the ARA’s solutions deviate 

considerably from the measured mean grain size.

When the sediment is vertically homogeneous over the first centimeters but 

varies horizontally within the half-swath width of the sonar, it was found that segmenting 

the backscatter mosaic to define regions of the seafloor with similar properties yields 

good results. The definition of different “themes” and calculation of the average angular 

response for each theme, gave results similar to the ones determined by grab sampling.

Vertical heterogeneity in the HARS (here considered as layering between 

sediment types with marked differences) consists of two main types; an upper layer of 

red clay (approximately 1 cm) overlying sand, and a few centimeters of sand (2 to 5 cm) 

overlying medium to fine silt. In both cases the angular response of the sediment is 

characteristic of sand. This suggests that, in the first case the sound penetrated in the 

clay and was mainly scattered in the sandy layer and that, in the second case, scattering 

occurred mostly in the sandy layer without significant penetration and scattering in the 

underneath silt. When the mean grain size for the sandy layer is inferred from the mode 

of the grain size distribution, results agree relatively well with the mean grain size 

predicted by the analysis of the sediment angular response.

In all these cases, 1) vertical and horizontal homogeneity; 2) horizontal 

heterogeneity with determination of the angular response in “theme mode”; 3) vertical 

heterogeneity with approximation of the mean grain size by the mode corresponding to 

the top sandy layer; ARA solutions are within a maximum range of ± 0.9 cp of the mean 

grain size determined by ground truth, with an average difference of ±0.4 <P (1o) and a 

coefficient of determination R2 = 0.90. However, these values also reflect the uncertainty 

in the determination of mean grain size by grab sampling and sediment analysis.

In order to better evaluate the consistency of ARA predictions and also of the 

backscatter mosaics assembled in Geocoder, acoustic remote sensing results were
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compared with four sediment samples taken in different places but corresponding to the 

same sediment. The areas that were sampled are horizontally and vertically 

homogeneous. ARA predictions for the mean grain size are within ±0.3 0  and the 

backscatter averaged over the area of uncertainty of the grab sample is within ±1 dB. 

Angular Range Analysis proved to be an effective remote sensing tool at regional scale 

in normal mode and at a local scale, when the seafloor is heterogeneous, in “theme” 

mode.

Mosaics assembled by Geocoder, which were corrected for geometric and 

radiometric distortions, allowed the observation of the temporal evolution of the seafloor. 

Changes in backscatter are collocated with variations in bathymetry, mainly 

corresponding to the deposition of new remediation material. Between two different 

years, the same workflow, from multibeam data acquisition to processing in Geocoder, 

showed a bias of 1 dB, and some noise in the order of ±10 dB concentrated near nadir 

that did not affect the interpretation.

Special care has to be taken when trying to validate remote sensing 

measurements, especially when a grab sample might be the only possible ground truth 

method; results should not be assumed a priori as being true. One possibility to 

overcome this limitation is to execute the acoustic survey first, build the backscatter 

mosaic in the field and choose homogeneous areas of the seafloor within the predicted 

radius of uncertainty of the grab sample. To ensure that samples represent vertically 

what is being sampled by the acoustic wave, one possibility is to estimate the degree of 

penetration of the acoustic wave, collect a relatively undisturbed sediment sample with a 

larger grab, like a Smith-Mclntyre, and remove a core from the center of the grab.

The idea that “The most reliable method to obtain information on the ocean 

sediment grain size is the gathering of bottom samples followed by a laboratory grain
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size analysis.” (van Walree and Ainslie, 2006, p. 2555) does not seem to be particularly 

valid in the case of the HARS and probably in other regions of high spatial variability.

Future Work

A definitive test for the Angular Range Analysis, or for any acoustic remote 

sensing tool, will probably never be completed unless all types of seafloor and all 

possible variations are covered. Further comparisons of results should focus on common 

oceanic environments with low spatial variability and/or on areas of high spatial 

variability but using box corers with acoustic positioning. It would also be interesting to 

see the effect of layering at different scales and frequencies in the angular response of 

the seafloor.

The application of the ARA in “theme” mode yielded good results for areas of 

high spatial heterogeneity but it is not feasible to manually segment regions of similar 

properties in large mosaics. An automated segmentation method usually requires a priori 

definition of the number of classes but for large areas or for areas with gradual 

variations, that is almost impossible. It might be possible to overcome this limitation by 

dividing the area of study into smaller regions, and using the backscatter mosaic and 

bathymetric data, define statistically different populations for each region and correlate 

populations from different regions to segment the seafloor into different “themes", each 

one corresponding to an area of the seafloor with similar properties.
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APPENDICES
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APPENDIX A 

PENETRATION OF THE SOUND INTO THE SEDIMENT

An estimation of how much the sound is attenuated in the first layer can be made 

by considering regression equations between mean grain size and k (dB m'1 kHz'1), a 

constant used to calculate the attenuation a  expressed in dB/m, defined by Hamilton 

(1972) as:

a  = k fn (A.1)

where /  is the frequency in kHz and n the exponent of the frequency.

0.8

0.7

0.6
0.5

0.4

0.3

0.2

0.1

0
7 90 1 2 3 4 5 6 8 10

Figure A.1 - Mean grain size versus k (adapted from Hamilton, 1972).

The path traveled by the sound inside the sediment can be estimated considering 

Snell’s law for a grazing angle 0,:

cos dx _ cos 02

C\ C 2

(A.2)
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where cx is the sound speed in the water (1500 m/s) and c2 the sound speed in the 

sediment (Fig. A.2),

Figure A.2 - Refraction of the ray that describes the incident sound wave with 45° grazing angle.

and the relation between sound speed in the sediment and mean grain size referenced 

by Hamilton and Bachman (1982):

11750 
£  1700

Figure A.3 - Mean grain size versus compressional sound speed in the sediment (adapted from 
Hamilton and Bachman, 1982).

The attenuation in dB per each cm of layer thickness, for 45° grazing angle and 

the 240 kHz frequency used in this study, considering « * 1 ,  becomes:

3.5

240 kHz 
45° grazing angle

Mean grain size (phi)

Figure A.4 - Mean grain size versus attenuation per each cm thickness of the first layer for a 
grazing angle of 45° and a frequency of 240 kHz.
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Given the attenuation of sound in the sediment, it is possible to roughly estimate 

the maximum penetration of the acoustic wave making some assumptions and 

considering the sonar equation for an active sonar (Urick, 1983):

The source level (SL) is specified as 210 dB re 1 pPa@1 m (manufacturer’s data). 

Calculation of the transmission loss (2TL) considers spherical spreading and absorption, 

for scattering on a rough bottom it is:

where R is the range to the target, considered here as 35.4 m at a depth of 25 m with 

45° grazing angle, and a the absorption coefficient with a value of 0.55 dB/m for 240kHz 

(Kinsler etal., 1999), using these values, 2TL = 101dB.

The noise level (NL) for 240 kHz is mainly due to the thermal noise effect (Urick, 

1983) and is calculated by:

NL = N 0+lOlog(Bw) (A.6)

N0 = 33 dB re 1 pPa/Hz1/2 (Urick, 1983), and the receiver bandwidth (Bw) can be 

approximated by Bw = 0.88/ r , where r  is the pulse length, equal to 75 ps in our case, 

so Bw = 11.7 kHz and NL = 73 dB.

Not having information about the detection threshold (DT) and the receive 

directivity index (Dl), it is possible to consider Dl -  DT as the “ increase in signal-to- 

background ratio produced by the entire receiving system” (Urick, 1983, p. 21), here 

assumed to be equal to 5 dB.

The seafloor is the target, and the acoustic backscaitering strength BS is (Lurton,

2002):

SL -  2TL + TS = NL -  D l  + DT (A.4)

2TL = 40 log R + 2aR (A. 5)

5S  = Ss +101og04) (A.7)
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where A is the area ensonified by a sound pulse with length t , with beam width (p, at a 

distance R and at a grazing angle 0, and with a speed in the water c:

A  =  <pR-
C T

(A. 8)
2 sin 0

and SB is the angular dependant acoustic backscattering strength that can be 

approximated considering the graph in Figure A.5, as -  21 dB for a medium sand. So 

10log(A) = -10 dB and BS = -31 dB.

240 kHz

Grazing angle (degrees)

Figure A.5 - SB versus grazing angle calculated using the implementation of Jackson et al. (1986) 
model in Geocoders’s ARA with default values of input parameters. Each colored line 
corresponds to a different mean grain size, expressed in O units.

Considering the sonar equation and the assumptions made, an estimate can be 

made on how much loss is allowed for bottom penetration (BL):

DT - Dl + NL = SL - 2TL - BL + BS (A.9)

which results in 10 dB for bottom loss in medium sands. This value corresponds to a 

penetration of approximately 2 cm at 45° grazing angle (considering an attenuation of 

2.3 dB/cm for medium sand at 240 kHz in Figure A.4, and two-way travel of sound in the 

sediment). Given all the assumptions made, it is expected that the calculations are 

subject to large errors but the order of magnitude of the results is consistent with the
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observations. Figure A.6 depicts results of the calculations for different types of 

sediments.
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Figure A.6 - Rough estimation of acoustic wave penetration into the sediment for different mean 
grain sizes at 45° grazing angle and 240 kHz. The penetration is estimated to vary between 1 and 
10 wavelengths depending on the type of sediment.
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APPENDIX B

BACKSCATTER MOSAICS APPLYING DIFFERENT AVGs

Several mosaics were assembled in order to compare the influence of applying 

an Angular Varying Gain to normalize the acoustic response across the swath. Three 

AVGs from Geocoder were selected for this comparison: “Trend” , “Flat” and 

“ Lambert” .

In the case of the “Trend” and “Flat" AVG corrections, the AVG for each ping is 

constructed from the average angular response calculated over 300 pings centered on 

the ping. In the “Flat” AVG correction, the reference level is the mean of the two 

average backscatter values calculated for each side of the sonar, between 35 and 55° 

grazing angles. In the “Trend” AVG correction, the reference level is the trend line 

between the average backscatter values (calculated between 35 and 55° grazing 

angles) of each side of the sonar. The “Lambert” AVG correction considers an angular 

variation of the backscatter following Lambert’s law (BS(0) = BS0 + 20log (cos0), where 

0 is the incident angle and BS0 the average backscatter between 35 and 55° grazing 

angles).

The choice of which AVG curve to apply is subjective. Figure B.1 depicts the 

backscatter mosaic without any AVG correction, the interpretation of this image is 

relatively difficult due to high backscatter near nadir (the result of coherent reflection), 

and a rapid drop in backscatter beyond the critical angle. Figures B.2, B.3 and B.5 depict 

the backscatter mosaic with the AVG “Trend” , “Flat” and “Lambert” corrections, 

respectively. The standard Lambertian correction is not effective in removing the effect

86

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



of the seafloor angular response. The AVG “Trend” and “Flat” corrections produce a 

backscatter mosaic with a smooth response across the sonar swath.
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Figure B.1 - 2006 backscatter mosaic assembled with Geocoder without any AVG. The angular 
response of the sediment makes interpretation of the backscatter mosaic relatively difficult.
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Figure B.2 - 2006 backscatter mosaic assembled with Geocoder with AVG Trend.
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Figure B.3 - 2006 backscatter mosaic assembled with Geocoder with AVG Flat.
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Figure B.4 - Difference between AVG Trend and AVG Flat for the 2006 backscatter mosaic. The 
difference can reach more than 10 dB.
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APPENDIX C

PROCEDURES FOR GRAIN SIZE ANALYSIS

C.1 Normal procedure for grain size analysis

C. 1.1 Removal of organic material

Each sediment sample was placed in a large beaker, covered with 10 ml of 30% 

hydrogen peroxide and stirred. Deionized water was added to remove any sample 

material from the beaker walls and to prevent foaming over the top of the beaker. The 

sample was left to digest for 2 to 5 days until the foaming stopped, then another 10 ml of 

hydrogen peroxide were added. The procedure continued for about two weeks until all 

the organic material was oxidized, or until a total 40 ml of hydrogen peroxide had been 

added and no significant bubbling was observed.

C. 1.2 Washing salts from the sample

Deionized water was used to transfer the sample from the beaker to centrifuge 

bottles; each bottle was filled with deionized water up to 80%, closed and thoroughly 

shaken. Centrifuging took place for 30 min and the clear supernatant water was 

decanted.

C.1.3 Wet sieving at 500 pm

A 500 pm sieve was placed over a funnel and a large pre-weighed beaker to 

collect the finer fraction passing through the sieve. The sample was transferred from
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the centrifuge bottle to the sieve with the aid of a squeeze bottle with deionized water. 

The sediment was rinsed with deionized water and stirred on the sieve with a “rubber 

policeman” until no small grains were observed on the sieve and the water passing 

through the sieve remained clear. Care was taken to limit the volume of deionized water 

plus finer sediment to the size of the beaker. The sieve was turned upside down over a 

glass bowl and rinsed with deionized water to collect any coarse sand. The excess water 

was decanted and the sediment rinsed into a small pre-weighted beaker. Both beakers, 

with sediment fractions larger and smaller than 500 pm were dried at 55 °C.

After all the water evaporated (usually after 3 days for the large beakers with the 

finer fraction), the beakers were left to cool to room temperature in a desiccator and 

reweighed. The total weight of the sample is the sum of the two fractions.

C.1.4 Dry sieving

The fraction coarser than 500 pm was disaggregated and dry sieved in 0.5 O 

intervals for 15 min on a sieve shaker. The content of each sieve was transferred to a 

pre-weighed aluminum dish and reweighed. The fraction left in the pan was also 

weighed and added to the sediment to be analyzed with laser diffraction.

C.1.5 Laser diffraction (Malvern Mastersizer 2000 with the dispersion unit Hydro G)

Dried samples smaller than 500 pm were transferred to plastic jars and a solution 

of 3 g/l sodium hexametaphosphate was added until the dried sample became a paste. 

Samples were thoroughly mixed until homogeneous and shipped to the Portuguese 

Hydrographic Institute for analysis. A small portion of this homogeneous paste was 

removed and put in the tank of the dispersion unit of the laser diffraction system until the 

obscuration level settled between 10 and 20 %. Ultrasound was applied to the sample 

for 120 s and stopped immediately prior to analysis. Three measurements were made,
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each with 12 s integration time. Results are reported as the average of the three 

measurements.

Configuration values used in the Malvern Mastersizer 2000 were 1.544 for 

particle refraction index (quartz), 1.330 for dispersant refraction index and 1.5 for particle 

absorption.

C.2 Measurement of the natural occurring particle size

In order to estimate the particle size as close as possible to the original sediment, 

samples underwent minimal processing. The sample was not digested with hydrogen 

peroxide and was not washed and centrifuged to remove salts, but was wet sieved at 

500 pm to prevent clogging the pump of the laser-diffraction system.

The fraction coarser than 500 pm was discarded. The fraction finer than 500 pm 

was collected in the beaker and left to rest for more than a week, then partially decanted, 

left to settle again for a few more days and the remaining supernatant liquid removed 

with a pipette.

Each sample was analyzed with the laser-diffraction system without adding any 

dispersant and without ultrasound. The sample was only stirred in order to keep grains in 

suspension.

Comparison with the samples that followed the normal SOP was made 

considering only the portion that was analyzed in the laser diffraction. There is one 

difference, for the samples that followed the normal SOP the sediment left in the pan 

when sieving was added to the portion analyzed with laser diffraction. It is assumed that 

the effect of adding dried sediment is worse than the errors introduced if the fraction left 

in the pan doesn’t follow the same distribution as the entire fraction to be analyzed with 

laser diffraction. In order to minimize errors the comparison was made only for those
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samples analyzed with the normal SOP with material left in the pan less than 1% by 

weight of the fraction finer than 1 <t>.

The samples considered for this experiment have on average 97 % of their 

weight distributed below the 1 O size class.

C.3 Measurement of the effect of drying the sample

Drying the sample is part of the standard procedure used at the Portuguese 

Hydrographic Institute in order to determine the weight of the two portions to be 

analyzed with sieving and laser diffraction. It is assumed that the sample analyzed with 

laser diffraction will be separated in its constituent particles when dispersing the sample 

with sodium hexametaphosphate, applying ultrasound and stirring. To evaluate the error 

introduced by this method, some samples were analyzed with the standard procedure 

but without drying for weight determination. The comparison was made only for the 

portion analyzed with laser diffraction with the same assumptions as in C.2.

C.4 Pipette analysis

A subset of samples was analyzed with pipettes to compare results obtained with 

two methods that measure different properties of the sediment. This technique used the 

following steps:

C.4.1 Removal of organic material

Each sediment sample was placed in a large beaker, covered with 10 ml of 30% 

hydrogen peroxide and stirred. Deionized water was added to remove any sample 

material from the beaker walls and to prevent foaming over the top of the beaker. The
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sample was left to digest for 2 to 5 days until the foaming stopped, then another 10 ml of 

hydrogen peroxide were added. The procedure continued for about two weeks until all 

the organic material was oxidized, or until a total 40 ml of hydrogen peroxide had been 

added and no significant bubbling was observed.

C.4.2 Washing salts from the sample

Deionized water was used to transfer the sample from the beaker to centrifuge 

bottles; each bottle was filled with deionized water up to 80%, closed and thoroughly 

shaken. Centrifuging took place for 30 min and the clear supernatant water was 

decanted.

C.4.3 Dispersing the sample

The sample was placed in a 1000 ml beaker and filled up to 66% with dispersant, 

a solution of 2.18 g/l sodium hexametaphosphate in deionized water, stirred until 

dispersed and left to sit for one day. After verification that flocculation did not occur, the 

sample was ready for wet sieving.

C.4.4 Wet sieving

After rinsing a 1000 ml graduated cylinder, the funnel, a 2mm sieve and a 62 pm 

sieve (rinsing the 62 pm sieve is also important to reduce surface tension on the sieve’s 

mesh), the dispersed sediment was poured over the 2 mmm sieve and rinsed with 

dispersant in the squeeze bottle and with the aid of a “rubber policeman”. The sediment 

that passed through the 2 mm sieve was removed and the gravel fraction was rinsed into 

a glass bowl using deionized water and then to a pre-weighted beaker. Rinsing 

continued in the 62 pm sieve until the dispersant passing through the sieve was clear. 

The sieve was removed and the sand fraction was transferred to a glass bowl and then
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to a pre-weighted beaker with deionized water. Both beakers were placed to dry at 

55 °C.

The volume of dispersant plus mud was limited to less than 1000 ml. The 

graduated cylinder was topped up to 1000 ml with dispersant.

C.4.5 Dry sieving

The gravel and sand fractions were weighted after they were completely dried 

and cooled to room temperature. The sand and gravel fraction were sieved together for 

15 min in 0.5 O intervals, the content of each sieve was placed on a pre-weighed 

aluminum dish and reweighed and the portion remaining in the pan was also weighed 

and added to the mud fraction to be analyzed with the pipettes.

C.4.6 Pipettes

Each sample in the graduated cylinder was thoroughly mixed during 15 min 

less than 0.5 hr from the start of the analysis and stirred with a rod for the last 2 min. The 

first aliquot was removed with a 20 ml pipette 20 cm below the surface, 20 s after stirring 

stopped, and expelled into a pre-weighted beaker. An additional 20 ml of deionized 

water was used to rinse out the remaining sediment and expelled into the same beaker. 

The beaker was placed to dry at 55° C in an oven for one day, cooled in a desiccator to 

room temperature and reweighed. The first withdraw is a representative sample of the 

entire sediment present in the graduated cylinder. Additional withdraws were taken at 

the times and depths presented in table B.1, each sequential withdrawal sample all the 

sediment at 1 O finer intervals.
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Time (h:mm:ss) Depth (cm) Fraction
0:00:20 20 <4 cp
0:01:56 10 <5 0
0:07:44 10 <6 0
0:31:00 10 <7 0
2:03:00 10 <8 0
8:01:00 10 <9 0

23:00:00 7 < 1 0 0

Table C.1 - Withdrawal times and depths used for 20° C water temperature.

Samples were dried, weighed and corrected for dispersant weight and related 

to the volume of the suspension from which the aliquot was drawn. The last aliquot 

represents sediment finer than 10 O and was evenly divided between 10 O and 14 O.

C.5 Loss On Ignition (LOI)

Ten to 20 g of sample were placed in a pre-weighted aluminum dish and 

weighed. The sample was dried in an oven at 55° C for 24 hr, removed and cooled in a 

desiccator to ambient temperature for one hour, then weighed again. The difference 

between the dry weight and the initial sample weight is a function of the percentage of 

moisture in the sample. The sample was heated in a muffle furnace during 4 hr at 

450 °C, removed and cooled in a desiccator to ambient temperature and reweighed. The 

weight difference corresponds to the loss on ignition, assumed to be organic matter.
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APPENDIX D

EXAMPLES OF ANGULAR RESPONSE

The variation of backscatter strength with grazing angle is an inherent property of 

the seafloor. Figure D.1 depicts the acoustic backscatter angular response for gravel 

and silt. Figure D.2 shows the angular response for medium sand in two different areas 

of the HARS. The sedimentary cover in one station is layered in the top few centimeters 

whereas in the other it is homogeneous up to the penetration depth of the optical prism.

A perfectly flat seafloor would behave as a partially reflecting acoustic mirror, 

reflecting sound at an angle equal to the angle of the incident sound, and no energy 

would return to the transducer except at normal incidence. However, at high frequencies, 

the seafloor has substantial irregularities at the scale of the acoustic wavelength and 

acoustic waves are scattered randomly. These irregularities include the roughness of the 

water-sediment interface, spatial variations in sediment physical properties and discrete 

inclusions such as shell pieces or bubbles (Jackson and Richardson, 2007).

Silts and clays usually have a smooth surface compared with the acoustic 

wavelength (A = 6 mm for 240 kHz) and backscatter near normal incidence is mainly 

dominated by coherent reflection. These sediments also have high porosity, and the 

acoustic impedance contrast between the sediment and the water is low. At oblique 

incidence, backscattering due to surface roughness may not be important due to the lack 

of impedance contrast and to the small surface roughness, the sound penetrates into the 

sediment more than in sands and gravels and scattering due to heterogeneities that 

exist within the sediment is expected to be stronger than scattering due to surface
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roughness. In a gravelly seafloor, the impedance contrast between the water and the 

sediment is high and the water-sediment interface is rough; therefore, backscatter is 

dominated by scattering due to surface roughness at all incident angles. Beyond the 

critical angle there is a sudden drop in backscatter since almost no energy is transmitted 

into the sediment. A part of the small amount of energy that is scattered back beyond the 

critical angle comes from the surface whereas the other part may be due to some 

penetration into the sediment and scattering by volume heterogeneities within the 

sediment. Energy may penetrate into the sediment beyond the critical angle due to 

downward scattering at the sediment surface and/or to the Biot slow wave, which does 

not have a critical angle (Pouliquen et al., 2000).
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Figure D.1 -  Examples of the angular response in the area of stations A2 (gravel) and N2000 
(silt) from 2006. SPI images correspond to 20 x 13 cm (HxW) and sediment sample photos to 2.2 
x 3.3 cm (HxW). The angular response, depicted in red, was obtained in normal mode (half-swath 
with x 30 pings) for one patch of the seafloor near each station. The blue line is the adjustment of 
the model to the observations.
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Figure D.2 -  Examples of the angular response in the area of stations A9 and 97004 (2006), 
corresponding to a medium sand seafloor. The grab sample in station A9 captured also the 
underneath silty layer. SPI images correspond to 20 x 13 cm (HxW) and sediment sample photos 
to 2.2 x 3.3 cm (HxW). The angular response, depicted in red, was obtained in normal mode 
(half-swath with x 30 pings) for one patch of the seafloor near each station. The blue line is the 
adjustment of the model to the observations.
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