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ABSTRACT

SOFTWARE TOOLS FOR COMPARING GENOMIC SEQUENCE

by

Morel Henley 

University of New Hampshire, September, 2007 

We describe three software tools related to research in comparative genomics, a 

growing research area that explores the variation within and between organisms. We 

developed a set of tools that explore sequence similarity and differences in genomes. 

Two of these tools are specifically aimed at examining DNA sequence data from two or 

more genomes:

• The Magenta’s OPUS tool compares genomic sequences to identify shared or 

unique segments between closely related species. This tool looks for functional 

similarities and differences in genomic data by classifying sequences into groups 

based on genomic categories: Orthologs, Paralogs, and Unique Sequence.

• The DSNP tool looks at the nucleotide level to find single nucleotide 

polymorphisms (SNPs) within an individual. This program is a collection of 

existing and custom built tools to discover and analyze SNPs within the Daphnia 

pulex genome.

• The third tool supports a user evaluation of two different visualization techniques 

for comparing nucleotide or protein sequences.

xiii
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CHAPTER 1

INTRODUCTION

Bio informatics and Computational Biology use various interdisciplinary skills 

including mathematics and computer science to analyze biological information. One of 

the main areas of research for these fields is genomic studies. A genome encodes the 

genetic information of a particular cell or organism (Hartwell 2004). A very fundamental 

part of a genome is its DNA nucleotide sequence, a linear strand expressing the pattern of 

bases, Adenine, Thymine, Guanine, and Cytosine, that codes for proteins and other 

information. Since DNA encodes a lot of what determines the phenotype and function of 

an organism, the study of its sequence can provide much insight. Genomic analysis is a 

fast growing field of study. The DNA sequence of organisms produces large amounts of 

data; with a growing number of genomes being sequenced, understanding what these 

genomes represent is an important research area in genomics.

Comparative genomics studies the similarities and differences among the 

genomes of closely related organisms and within a single organism. With a side-by-side 

comparison of multiple genomes, geneticists hope to determine the locations in genomes 

that cause functional variations. This thesis describes three different software tools that 

contribute to various aspects of comparative genomics exploration. Magenta’s OPUS 

compares genomes from closely related organisms to find DNA sequences that are either

1
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shared by the organisms or are unique in one organism. The DSNP tool detects single 

nucleotide polymorphisms (SNPs) in closely related genomes. We also describe an 

experiment that evaluates two different visualization techniques that are commonly used 

for comparing sequence data from two different genomes.

1.1 Background

Related nucleotide sequences can be grouped into various categories. Sequences 

that are shared due to common ancestry are classified as homologs. Homologs can be 

broken down into orthologs and paralogs based on the way they formed. Orthologs 

result from a speciation event; that is, a sequence corresponding to the two homologous 

sequences existed in an ancestor of both species (Hartwell 2004). Paralogs are the result 

of a sequence duplication event within a species (Hartwell 2004). Therefore, multiple 

matches of a sequence within a single genome are usually considered paralogous 

sequence.

Regions in genomes that are similar suggest a similar function. Likewise, 

differences or uniqueness of sequence may denote distinctive functions. The amount of 

variation can imply evolutionary relationships of the organisms, as well. Mutations can 

also aid in predicting evolutionary or phylogenic estimates of the species in comparison. 

A phytogeny is a representation of how a set of organisms have evolved with respect to 

the others. Diversity within an organism can also identify potential allelic or 

characteristic variations such as eye color or hair color.

1.2 Magenta’s OPUS. A Genomic Variation Detection Tool

We developed a method for identifying and analyzing the various types of 

locations in a genome. Magenta’s OPUS classifies different regions within and between

2
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genomes into three fundamental categories: orthologs, paralogs, and unique sequences. 

This provides a flexible, integrated, bioinformatics tool that compares both raw and 

annotated genome sequence to identify a wide range of genetic variation. Its flexibility is 

derived from a database of BLAST hits that can be reused for a wide range of queries.

We have developed simple algorithms to identify orthologs, paralogs, and unique 

sequences (OPUS) between multiple pairs of genomes. The utility of the OPUS toolkit is 

illustrated through a study of genomes from the Burkholderia cepacia complex. We hope 

that the data produced from this method will lead to interesting discoveries. This tool is 

discussed further in Chapter 2.

1.3 Evaluation Study of Data Visualizations for Genome Comparison

Visualizing the common sequence between species can be difficult. We focus on 

evaluating the effectiveness of current visualization methods for genomic comparisons. 

This heuristic evaluation looks at two accepted graphical methods for comparing 

nucleotide sequences. Scatter plots and parallel coordinate-like visuals have been used 

in genomics for identifying similarities in genetic code. Our evaluation focuses on 

determining the aspects of the two visualizations that are successful and those that need 

enhancements. Mauve (Darling, Mau et al. 2004) has a visualization tool that uses a 

technique resembling a parallel coordinate method for connecting orthologs. With a 

large volume of data, this visualization becomes cluttered and hard to view. We 

developed a scatter plot tool that uses concepts based on dot plots to display data 

consistent with that shown by Mauve. In our evaluation, we determined the advantages 

and disadvantages of each visualization. We have identified potential improvements for 

each, including applying an algorithm to help sort the data. We also wanted to introduce

3
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the dot plot as an optional view in the Mauve software. The dot plot would provide the 

user with different information and would enhance the tool. More about the 

modifications and additions are found in Chapter 3.

1.4 DSNP: Detection of Single Nucleotide Polymorphisms (SNPs) in the Daphnia 

pulex Genome

We have been working on detecting SNPs or Single Nucleotide Polymorphisms 

within a eukaryotic organism. SNPs are the allelic variations that cause different 

phenotypes or characteristics within a species. They are responsible for variations such 

as eye or hair color. In order to identify single nucleotide polymorphisms (SNPs) within 

the Daphnia pulex genome, we developed a pipeline of analyses that uses the 

comparative assembly of whole genome shotgun reads (sequences used for shotgun 

sequencing) against reference scaffolds (portions of the genome that have been 

assembled) to conservatively estimate sites of true polymorphism. Our initial analyses 

have focused on The Chosen One (TCO), the strain selected for the Daphnia Genome 

Project. This process is discussed in Chapter 4.

4
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CHAPTER 2

MAGENTA’S OPUS

2.1 Abstract

We describe a flexible, integrated, bioinformatics tool called Magenta’s OPUS 

that compares both raw and annotated genome sequence to identify a wide range of 

genetic variation. Its flexibility is derived from a database of BLAST hits that can be 

reused for a wide range of queries. We have developed simple algorithms to identify 

potential Orthologous, Paralogous, and Unique Sequences (OPUS) between pairs of 

genomes. Different techniques such as Reciprocal BLAST and a method we refer to as 

the Lerat (Lerat, Daubin et al. 2003) method were applied to find homologous sequences. 

We also describe subcategories for sequences including semi-paralogs (a term we use to 

describe matching sequences between genomes that have a one-to-many relationship), in- 

paralogs (duplications after speciation), and out-paralogs (duplications before 

speciation). We also describe post-processing analysis called OPUS Notes to parse and 

annotate the data further. OPUS Notes is an OPUS extension postprocessor that 

annotates identified genes and gene pairs with COG (Tatusov, Fedorova et al. 2003) 

functional categories and estimates of the per-base average frequencies of synonymous 

and non-synonymous nucleotide substitutions (Ks and Ka). The utility of the OPUS 

toolkit is illustrated through a study of genomes from the Burkholderia cepacia complex.

5
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2.2 Introduction

OPUS is a bioinformatics tool that compares both completely and partially 

sequenced genomes of closely related organisms to identify genomic variation. Its 

function is to sort homologous regions between pairs of genomes into regions that 

resemble Orthologs and Paralogs, as well as identifying non-homologous regions or 

Unique Sequences.

Our method for identifying and analyzing each of these types of genetic regions 

does not require that genes be defined or annotated a priori. This is often useful because 

the number of unfinished, incompletely annotated sequences outnumbers those that are 

closed and annotated (e.g., see http://genomesonline.org ). Thus, without prior 

knowledge, we can discover important sources of genetic and evolutionary novelty before 

the genome is fully assembled. Although being able to extract information without prior 

knowledge of the genes is beneficial, our method can work with predicted gene 

information as well for a more focused analysis. The OPUS Notes utility developed by 

Philip Hatcher uses the OPUS output and predicted gene data to extract additional 

information on sequence evolution. We present analysis derived from both raw sequence 

and from predicted gene files.

The OPUS tool kit builds upon a number of existing software packages. We use 

Magenta (Bancroft 2006) derived from Mauve (Darling, Mau et al. 2004) as a base point 

to start our analysis. Magenta uses BLAST (Altschul, Gish et al. 1990), the standard 

Basic Local Alignment Search Tool, to find sequence similarity among the genomes. It 

stores these results in a database that can be reused for a variety of queries on the data. 

The OPUS Notes utility aligns selected matches in our database using CLUSTALW

6
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(Thompson, Higgins et al. 1994), estimates the types and frequency of substitutions that 

differentiate sequences using portions of GenomeHistory (Conant and Wagner 2002), and 

accesses COG information (Tatusov, Fedorova et al. 2003) provided by the Integrated 

Microbial Genomes (IMG) website of the DOE Joint Genome Institute (JGI).

OPUS, like many methods, works to identify sets of similar sequences and 

explore various patterns within them. Sequence similarity is the central currency in the 

field of comparative genomics because highly similar sequences are likely derived from a 

common ancestor and may perform similar functions. Similarity due to shared descent is 

known as homology. Homologous sequences, in turn, can be subdivided into two major 

groups: orthologs, which differentiate following a splitting or speciation event of the host 

organism, and paralogs, which arise due to gene duplication events within a genome. 

Distinguishing homologs as either orthologs or paralogs can be a surprisingly challenging 

task because genes may simultaneously be both orthologs and paralogs depending on the 

scale of comparison. We have implemented algorithms for predicting categorizations of 

sequence similarity and difference.

Another major goal of comparing genomes is finding sequence unique or lost in a 

certain species (an absence of homology), which could imply a distinctive function or 

explain ecological novelty. Therefore, we designed our tool to try to identify regions 

from a given comparison between two genomes as potentially belonging to either of three 

major genomic categories: orthologs, paralogs, and unique sequences. We focus only on 

regions of close similarity and follow simple algorithms. The data produced from this 

analysis may shed light on the evolution of genes and genomes, and also provide 

inferences about the origin of functional novelty for each strain.

7
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2.3 Background

2.3.1 Study organisms

Bacteria of the genus Burkholderia are ideal study subjects for our system. 

Microbial genomes are generally small in size, ranging from 500Kb to 10Mb, but also 

have very little noncoding sequence. Even with the small genomes (compared to 

eukaryotes), the amount of data generated by each analysis is still quite large.

Burkholderia are one of the most variable and least understood groups of potential 

pathogens, which currently foils most surveillance and therapeutics. Formerly classified 

as pseudomonads, Burkholderia are both functionally diverse and broadly distributed. 

They typically grow in water and around plant roots, but have also been found growing 

on silicon wafers and in nasal spray (Mahenthiralingam, Urban et al. 2005). Most species 

are not pathogenic for healthy livestock or humans, but two Burkholderia cause lethal 

human disease and are potential biological weapons (http://www.bt.cdc.gov/Agent). 

Other strains have shown considerable promise for bioremediation, as plant probiotics, 

and as pesticides (Parke and Gurian-Sherman 2001).

One species complex of Burkholderia, known as the Burkholderia cepacia 

complex (Bcc) is especially worthy of analysis by Magenta/OPUS. The eleven species 

comprising the Bcc are virtually identical in certain core genes that are used to delineate 

species (the Bcc are >99% identical in their 16S ribosomal RNA coding sequence), which 

suggests a very recent split (Cooper pers. comm.). However, isolates within these species 

may differ greatly in their overall genome content, their pathogenic potential, and their 

functionality (Cooper pers. comm.). Notably, some Bcc members frequently cause lethal 

pulmonary infections in persons with cystic fibrosis (CF) and in other

8
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immunocompromised patients, while other close relatives are apparently benign. The 

mechanisms and forces that account for this rapid diversification are unclear (Cooper 

pers. comm.).

Burkholderia genomes are unusually large and variable for bacteria, composed of 

two to five circular chromosomes totaling five to nine megabases (Mahenthiralingam, 

Urban et al. 2005). More than forty complete genome sequences are now available 

within Burkholderia for our analyses, with representatives across a range of evolutionary 

scales. Thus, we can compare multiple genomes within the same species, genomes from 

among extremely closely related species, and between these clusters and more distant 

Burkholderiacae out-groups. For this analysis, we have chosen Ralstonia eutropha 

JMP134, which is an immediate relative of Burkholderia species, is well-studied, and has 

broad potential for bioremediation (Cooper pers. comm.). Our out-group genome 

provides a comparison for the types and magnitude of sequence similarity within and 

between the Burkholderia species.

Our goal is to identify, categorize and quantify the mutational processes that gave 

rise to variations among Bcc strains. We focus on four genomes from the same Bcc 

species, B. cenocepacia: B. cenocepacia AU1054, B. cenocepacia HI2424, B. 

cenocepacia J2315 and B. cenocepacia PC184 (Figure 1). AU1054 and HI2424 are 

isolates of the same strain type (PHDC) and therefore are most closely related. HI2424 

was isolated from the soil, while the other three were isolated from patients with CF. 

PC184 is the type isolate of the Midwest strain of B. cenocepacia. J2315 is the type 

isolate of the ET12 epidemic strain, which predominates in the UK and Canada. These 

major strain types (PHDC, ET12, and Midwest) account for a significant fraction of new

9
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human infections, but appear to differ in their associated prognoses and differ in their 

ability to infect laboratory host organisms (Mahenthiralingam, Urban et al. 2005; Cooper 

pers. comm.). The underlying genetic determinants of these differences are largely 

unknown.

— B.pseudomallei 1710a 

-  B.pseudomallei K96243

  B pseudomallei 1710b

[— B mallei GB8

B.mallei ATCC-23344

B.tfaailandensis E264

B.dolosa AU015S

- B multivorans ATCC-17610

—  B.vietuamiensts G4

B.ambifaria AMMD

—  B.cepacia383 R1S194 
I

B.cenocepacia MCO-3

Bordetella pertussis Tohama-I

R.solanaceaium GMI1000

B.xenovorans LB400 

B.phvtofirmans PsJN
1000

Figure 1: A Phylogenetic Tree of Burkholderia Species. This tree was produced using 
gene family presence/absence data (Hatcher, unpublished work). The data was generated 
by PARS and passed to TreeView to generate the tree. The blue blocks indicate the B. 
cenocepacia species we used in our study. The green box is the Ralstonia out-group 
genome chosen for comparison.
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2.3.1.1 Data

We acquired genome sequences from sequencing center websites including: JGI 

(http://img.jgi.doe.gov ), the Sanger Institute (http://www.sanger.ac.u k /), and the Broad 

Institute (http://www.broad.mit.edu/). Although our program uses both genomic 

sequence data and predicted gene information, the analyses presented here are mostly 

derived from predicted gene files.

2.3.1.2 Lateral Gene Transfer

One potential problem when working with bacterial genomes is that prokaryotes 

tend to exchange sequence information with other bacteria in their environment. The 

merging of genomic material into the new genome from this exchange is referred to as 

lateral gene transfer (LGT) or horizontal gene transfer (HGT) (Hartwell 2004; Lerat, 

Daubin et al. 2005). LGT incorporates an additional complication when evaluating 

bacteria because this phenomenon can be masked in many of the classification categories.

2.3.2 Genomic and Biological Background

2.3.2.1 Homology

Homology means evolutionary similarity, or similarity arising from common 

ancestry. However, homology should not be confused with sequence similarity. 

Sequence similarity can arise from different mutation processes in the genomes, making 

two sequences appear similar even though they developed from different ancestors. Also, 

small sequences can appear similar by random chance even though they are not actually 

homologous. These cases are few and therefore generally sequence similarity indicates 

homology with the exception of bacteria, who can also acquire common sequence from 

lateral gene transfer (LGT).
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Revealing homology is valuable in genomic research because it suggests areas of 

functional similarity and distinctiveness, as well as providing direct evidence for the 

evolutionary relationships of organisms. Usually, homology is associated with shared or 

similar function especially when referring to genes, although this is not always the case, 

either.

Homology is typically separated into two basic categories: orthology and 

paralogy. However, the boundaries between these categories are fuzzy, especially when 

referencing sequence comparisons alone where phylogenetic tree construction and other 

biological analyses are required. The complications arise because ancestors can have 

duplicate gene copies that descended through speciation events.

2.3.2.2 Ortho logs

Orthologs are similar sequences derived from speciation events. Similar 

sequences that are present only once in each genome under comparison are likely 

orthologs (we describe the other explanation, lateral gene transfer, above). Orthologs 

may also be similar to sequences in the same genome, but these are easily confused with 

paralogs. True orthologs can be used to help determine recent evolutionary relationships 

of organisms by evaluating mutations within these sequences. Orthologs also illustrate 

the operative genes that are common between the organisms. When trying to separate 

duplications in ancestors (orthologs) from duplication after speciation (paralogs), 

geneticists predict that the segments that have fewer deviations from each other is the 

most parsimonious evolutionary explanation of their mutations and therefore consider the 

segments true orthologs.

12
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2.3.2.3 Paralogs

Paralogs are homologous sequences whose similarity results from gene 

duplication events rather than speciation events. Similar sequences that are found in 

multiple locations in a genome are putative paralogs. For example, if segments 'b l1 and 

'b2' in genome B are similar, then we say segments ‘b l ’ and ‘b2’ are paralogous. If 

segment 'a' in genome A matches segments 'b l' and 'bT in genome B, then we say 

segments ‘b l ’ and ‘b2’ are paralogous to segment ‘a’ since we know that ‘b l ’ and ‘b2’ 

are both similar to ‘a’. This inequality in sequence copy number between genomes may 

either result from a duplication event in the target genome or from gene loss in the query 

genome. (Determining which of these scenarios occurred requires a secondary analysis 

with one or more allied, phylogenetically related genomes.) Either of these events 

provides useful inference into what functions the organisms have gained or lost over 

time.

Sonnhammer and Koonin have proposed nomenclature for different types of 

paralogs. In-paralogs are lineage-specific paralogous sequences resulting from 

duplication events since the last speciation event (Sonnhammer and Koonin 2002). Out- 

paralogs are paralogous sequences resulting from duplications that preceded the 

speciation event separating genomes (Figure 2). Both of these definitions require a 

model of the overall phylogeny of the genomes, which can be challenging with 

incompletely sequenced genomes or direct sequencing from the environment 

(metagenomics).
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I ' . --?■. I Ancestral gene

Duplication

ancestral

Speciation

Paralogs in an 
ancestral species

Figure 2: Koonin's (2001) pictorial representation of 
speciation and duplication events. In this image, the 
ancestral gene was duplicated before the speciation event, an 
example of an out-paralog (Koonin 2001).

We introduce a new term, semi-paralog, to refer to regions that are paralogous 

within one genome but that are orthologous to a single sequence in the other genome 

(Figure 3). Semi-paralogs could also be larger sets of homologous genes differing in 

their copy number between genomes. We hypothesize that these regions have been 

duplicated because they are functionally significant, implying an enhanced capacity in the 

genome bearing multiple copies. Further, since most duplicated sequence is eliminated 

over time (Lynch, O'Hely et al. 2001), persistence of a duplicate is exceptional and 

implies selective value.

A a

B b1

Figure 3: Example of a semi-paralog
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2.3.2.4 Unique Sequence

Regions that lack sequence similarity (homology) between species are unique 

sequence and are caused by a loss in one of the genomes, or, in the case of prokaryotes, 

lateral gene transfer (LGT). Unique sequence can also be a result of simply rapid 

evolution. We are interested in the frequency and types of unique sequences because 

those that are due to LGT can be used to illustrate the rate of LGT among bacterial 

species (Lerat, Daubin et al. 2005).

2.4 Related work

2.4.1 OPUS-like programs

There have been numerous tools developed to identify similarities and differences 

in genome sequence data, including the identification of unique sequences (Pontius J.U 

2003), homology (Schwartz, Zhang et al. 2000; Markowitz, Korzeniewski et al. 2006), 

orthologs (Remm, Storm et al. 2001; Bansal and Meyer 2002; Overbeek, Larsen et al. 

2003; TIGR 2005; Thomson, Howard et al. 2006), and paralogs (Overbeek, Larsen et al. 

2003; Haas, Delcher et al. 2004). Most of these have focused on comparing sequence 

data represented as protein data (i.e., genes)(Remm, Storm et al. 2001; Bansal and Meyer 

2002; Overbeek, Larsen et al. 2003; Pontius J.U 2003; Haas, Delcher et al. 2004; TIGR 

2005; Markowitz, Korzeniewski et al. 2006; Thomson, Howard et al. 2006).

Phylogenetic Profiler is typical of most of the homology detecting tools. It is part 

of the Integrated Microbial Genomes (IMG) toolkit provided by the DOE Joint Genome 

Institute and includes a large and powerful suite of tools for genome comparisons 

(Markowitz, Korzeniewski et al. 2006). Phylogenetic Profiler identifies predicted genes 

of a genome of interest that are homologous (or that lack homology) with other genomes.
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This operation is based on a database of pre-computed (uni-directional) similarities 

between the genes of the source and target organism(s). However, this method is limited 

by its focus on coding sequence since it excludes regions of non-coding sequence from 

the analysis. In addition, Phylogenetic Profiler does not differentiate its output list of 

homologs into orthologs and paralogs, and only identifies any additional paralog copies 

in the target genome, not the complete collection of paralogous sequences.

2.4.2 Alignment and Assembly Programs

There are two basic types of alignment programs: ‘local' alignment and ‘global’ 

alignment. BLAST is a very well known local alignment program (Altschul, Gish et al. 

1990). The local alignment programs like BLAST use an algorithm for matching 

sequences and then extending them. Local alignments are good at identifying 

orthologous and paralogous sequence and are unaffected by rearrangements between the 

genomes (Dewey and Pachter 2006). However, they have a tendency to identify artificial 

similarity since small pieces can appear similar. ‘Hierarchical’ alignments use the output 

of pairwise local alignments to build multiple genome alignments (Dewey and Pachter 

2006). These programs typically only identify orthologous alignments. Mauve (Darling, 

Mau et al. 2004) is an example of a common hierarchical program (see below). Many of 

these programs have visualizations to view the orthologous comparisons between 

genomes (Darling, Mau et al. 2004; Dubchak and Ryaboy 2006).

Global alignment programs are fast but less sensitive in identifying sequence 

similarity (Dewey and Pachter 2006). MUMmer is a common assembly program (Kurtz, 

Phillippy et al. 2004). Its algorithm uses suffix trees to find matches (Delcher, Kasif et 

al. 1999). This program is very fast but is less sensitive to the detection of matching
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sequence. MUMmer, up until version 3.0, only found matches with a single copy of 

exact matches (eliminating paralogs and identifying them as incorrect orthologs by 

arbitrarily choosing one of the positions to place the segment). Nucmer and Promer were 

then added for identifying multiple exact matches. The algorithm used by these programs 

is nearly equivalent to that used for the BLAST application (Kurtz, Phillippy et al. 2004).

2.5 Tools Used bv OPUS

2.5.1 BLAST

The OPUS toolkit and some other gene comparison tools use BLAST (Altschul, 

Gish et al. 1990) as the principal tool for determining sequence similarity. BLAST, basic 

local alignment search tool, compares either nucleotide or protein sequences with a 

defined reference database and returns sequences that match a threshold level of 

similarity. In this paper we focus exclusively on the blastn program, which compares 

nucleotide sequences, but we have also utilized tblastx, which compares nucleotide 

sequences translated in all six reading frames with all frames of the database. Since 

‘local’ alignments have the ability of identifying both orthologous and paralogous 

sequence, it provides a good building tool for our OPUS toolkit.

2.5.2 Mauve/Magenta/OPUS

Mauve (Darling, Mau et al. 2004) aligns multiple genome segments or complete 

genomes and generates a visualization of the alignment (Figure 4). It is tolerant of major 

genomic changes like rearrangements or inversions, and it highlights these events by 

connecting blocks of orthologous sequences shared by the genomes. These blocks may 

nevertheless include paralogs shared by the aligned genomes. Mauve identifies these 

matching sections of nucleotide sequence as Multiple Maximally Unique Matches (multi-
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MUMs). It then groups these multi-MUMs into closely related regions called Locally 

Collinear Blocks (LCBs) (Darling, Mau et al. 2004). These blocks are displayed on the 

screen with connecting lines to identify the shared sequence. We have modified and 

extended the Mauve software package by replacing the core method of sequence 

alignment based on multi-MUMs with BLAST (Bancroft 2006). This version of Mauve, 

referred to as Magenta, uses a reciprocal BLAST method to identify the homologs 

between genomes. Reciprocal BLAST means that we blast genome A as the query 

against genome B, the target, and genome B as the query against genome A, the target. 

Each comparison’s results are then stored in a database table. The database incorporation 

provides fast access and reuse of the results. Here we report extensions to Magenta that 

add additional options for identifying and extracting regions of interest, such as 

orthologs, paralogs, and unique sequences (OPUS).

|  lo o S o o o  2006000'1 3 0 0 6 0 0 0 ' 4006000 5 006000  6 006000  7006000
(H12424-4

T here  ir e  119 LCBs w ith  m inim um  w eigh t l& sxurK fioM ena. cepacia. dw > m osoinc_ l £ 4 1 7 0 5 ;  LCBJ6} length: 5 5 2 6 M J  LCBj6) w e ig h t 4 ? 4 i

Figure 4: Mauve Visualization

2.5.3 OPUS Notes

OPUS Notes is a Perl program written by Hatcher that processes gene pairs 

identified by the OPUS post-processing of the Magenta database (such as semi-paralogs). 

It utilizes data previously downloaded from the Integrated Microbial Genomes (IMG) 

website of the DOE Joint Genome Institute (JGI). In particular it accesses the COG
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(Tatusov, Fedorova et al. 2003) amino acid sequence and nucleotide sequence data for 

the genes of the genomes being studied. COG is an abbreviation for Clusters of 

Orthologous Groups (Tatusov, Fedorova et al. 2003), which are gene sets with similar 

function, also referred to as gene families with similar functions.

Each gene in a pair to be processed is identified by its genome name and its IMG 

gene object identifier. The script uses this information to find the COG for each gene in 

the pair and adds the COG identification information to the FAST A header for its amino 

acid sequence.

The script then computes Ka and Ks for each gene pair using the approach 

implemented by GenomeHistory (Conant and Wagner 2002). Ka and Ks are the estimated 

per-base average frequencies of non-synonymous (amino-acid altering) and synonymous 

(silent) nucleotide substitutions (Hartwell 2004). The ratio of synonymous and non- 

synonymous substitutions is used to estimate a rate of evolution in a sequence. First, 

ClustalW (Thompson, Higgins et al. 1994) is used to do a protein alignment. The protein 

alignment is then utilized by a tool distributed as part of GenomeHistory (algndna_new) 

to perform a nucleotide alignment. Finally, K a and K s are estimated by another tool 

distributed with GenomeHistory (like_pair_dist) that uses a maximum likelihood 

algorithm.

2.6 Our Approach

Our primary goal in this project was to categorize and evaluate similarities and 

differences in DNA sequence. We approach this problem by first trying to subdivide the 

sequences into the biological groups: homologs, orthologs, paralogs, and unique 

sequence. However, the lines between these groups are not always clear. Instead of pre-
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defining a specific rule for distinguishing orthologs from paralogs, OPUS identifies a set 

of classifications describing various relationships for homologous sequences (Figure 5). 

As a post-processing step, a researcher can select the sets that are appropriate for the task.

Another goal of our project was to be able to run our program on genome-wide 

sequences as well as partial and unannotated genomes. Since a large portion of genomes 

are in the process of being sequenced the ability to do some analysis before their 

completion is beneficial. Since noncoding regulatory regions may also contribute to 

function of a genome, looking at variations among these regions is beneficial, as well.

Genome BGenome A

Orthologs

Semi-
paralogsUnique A Unique B

Out-paralogs In-paralogs

Homology

Figure 5: Pictorial representation of our sequence separation categories. It identifies in a 
two way comparison the unique sequences of each genome, as well as the complication of 
sequence similarity groups (homology). We have identified in this diagram the orthologs 
and paralog separation in which there is not a clear separation. We also identify paralogs 
broken down into in-paralogs and out-paralogs (again with unclear separation). We also 
identify semi-paralogs which overlap various categories.

2.6.1 Overall Process

Our process for extracting information from the genomes has only a few basic 

steps. The first step includes taking two nucleotide whole genome sequences (or
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identified gene sequences) in FASTA format and blasting one against the other. For a 

given pair of sequences A and B, similarity is determined with a set of BLAST criterion 

for the pair of BLASTs. This generates a set of BLAST hits with A as the target, B as the 

subject and another set of BLAST hits where B is the target, and A as the subject. Both 

of these results are stored in a database. Second, a query to the database, with another set 

of minimum match criteria, is generated to gather the list of matching sequence that 

satisfies the criterion (homology extraction). The third step involves parsing these results 

into OPUS categories. Finally, we perform post-processing analysis to sort these results 

further to address various biological questions (Figure 6).

2.6.2 Orthologs

Orthologs are derived from speciation events. However, there is no way of telling 

if a speciation event occurred from sequence data. To be conservative, we only classify 

segments as orthologs if they have exactly one copy in the other genome. Post

processing analysis (e.g., other category parsing techniques such as Reciprocal Best 

BLAST (RBB) (Hirsh and Fraser 2001) and phylogenetic reconstruction) can be 

performed to identify other possible orthologs.

2.6.3 Paralogs

Paralogs arise from a duplication event. Again, it is hard to infer the true 

evolutionary history of these sequences. Since we are very conservative with our 

orthologs (single copy) detection, we initially are very lenient with our paralogs (multi

copy) list. Therefore, the multi-copy category is any sequence that hits multiple places in 

the other genome.
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Figure 6: OPUS categorization process

2.6.4 Unique Sequence

We identify unique sequence as sequence that are not found in the other organism

(no homology, a BLAST hit meeting the set criteria, was found). These are potentially a

source of functional novelty in the genomes. Because, in our analysis “uniqueness” is
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only in the context of pairwise comparisons (or in a series of pairwise comparisons), the 

sequence is usually found to match a different genome in GenBank.

2.7 Expanded Process

2.7.1 The database

The database addition to the Mauve program provides a good platform for 

subsequent analysis. The database is populated with the bi-directional BLAST results for 

all matching regions. A query to the database is formulated based on the type of 

homology the user specifies.

2.7.2 Homology Extraction

There are two types of homology generation we provide with the additions to 

Magenta. One of the methods generates match criteria based on reciprocal matches. The 

other method is based on a scheme described by Lerat et al. for identifying gene pairs 

(Lerat, Daubin et al. 2003). Each method constructs a set of homologous sequences 

based on the alignments generated by BLAST.

2.7.2.1 Reciprocal BLAST Method

Sometimes, the BLAST algorithm produces artificial sequence similarity such as 

small hits or long hits that have a lot of mismatches. In order to minimize this 

phenomenon, it is common practice to use reciprocal BLAST or reciprocally best BLAST 

(for ortholog detection) hits as a form of rejecting possible false hits. We also want to 

take advantage of the database storage and therefore, we formulate a reciprocal BLAST 

match query that locates the matches that hit reciprocally. That is, if genome A is blasted 

against genome B, the match must hit from A to B and B to A.
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Some have suggested that the best sequence hits may not in fact be the closest 

homologs and reporting all hits yields a better analysis (Koski and Golding 2001). 

Although, this seems to occur more frequently for distant genome comparisons, we still 

implemented the program with this concern in mind. Therefore, our method differs from 

the Reciprocal Best BLAST (RBB) technique (Hirsh and Fraser 2001) because these 

matches do not have to be the best hit in both directions, but rather must hit in both 

directions and pass a user specified similarity threshold. Later, we discuss a search 

method that uses a technique very close to reciprocal best BLAST to find long 

sententious blocks of homology in both genomes.

One complication in this method involves alignments that are of dissimilar 

sequence lengths or that are partially overlapping. We address this problem by extracting 

the intersecting hit regions from the database to produce a list of homo logs for each of the 

subsequent comparisons. This allows us to fmd regions of similarity even when there are 

length differences, which is sometimes overlooked in other reciprocal BLAST methods.

2.7.2.2 Lerat Method

Another method we use to fmd homologs is what we refer to as the Lerat method 

(Lerat, Daubin et al. 2003). This method initially was used to fmd gene families. Gene 

families are a collection of genes that have a similar function. However, this method 

seems to provide a good list of ho mo logs, as well.

The theory behind this method is instead of using the e-value or bit score alone as 

a similarity threshold, we use a self-hit ratio. A self hit is one in which a sequence is 

blasted against itself. A self-hit ratio is one in which the bit score from a comparative 

sequence is compared to the bit score of the self BLAST (equation below where ‘a’ is a
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sequence from genome A and ‘b’ is a sequence from genome B). A BLAST hit is

deemed good enough to be input into a homology list if the ratio is above a given limit.

B it score  (a -> b}
S e l f  Hi t  R atio  = -----------------------------------------   -

Bit score (a  - »  a)

Our implementation of this method is actually slightly different than that of the 

original method used in the paper. We again want to take advantage of the database. In 

the original method, a gene is blasted against itself and then blasted against the other gene 

set to fmd the bit score ratio. We, however, wanted to maintain the program’s ability to 

work with genome-wide comparisons as well as gene sequences intact. Therefore, we 

constructed a method that takes advantage of each of these requirements. Our 

implementation also starts by performing the initial genome comparisons. It extracts the 

(single direction) hits from the database and stores them in a new database table. For 

each of these matches, the program extracts the sequence from the query genome and 

does two secondary blasts to get its self hit and the hit against the other sequence. We 

have to blast the sequence back against the other genome because bit score is based on 

the query and subject sequence lengths. Both of these bit scores are stored with the entry 

for that hit. We are then able to extract from this table the entries that meet the Lerat bit 

score ratio cut-off specified by the user.

One artifact of this method is that some fairly small sequence matches will still 

pass the Lerat bit-score ratio. This makes for long run times (since there are a lot of 

small matches that have to run through two extra blasts). We implemented an alignment 

length cut off to address this. If the alignment hit of the initial BLAST is less than lOObp, 

we do not consider it a legitimate alignment and therefore do not run the two subsequent 

blasts.
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2.7.3 Sequence Categorization

In the next stage, we sort sequences from each genome into three groups: 

segments that do not have a reciprocal hit to them (unique sequence), segments that have 

one reciprocal hit to them (orthologs), and locations that have two or more reciprocal hits 

to them (paralogs).

2.7.3.1 Single and Multi-hit Separation

A list of single hits and multiple hits are generated in a single pass for each 

genome. From the list of homo logs of one organism, if the sequence has hits to multiple 

places in the other genome, it is said to have paralogous (multi-copy) sequence in the 

other genome. If the sequence only has one hit to the other genome, it is considered to be 

orthologous (single hit) sequence with the other genome. This step in our process is not 

reciprocal, that is, the sequences that are identified as single hits in the other genome can 

hit the initial genome more than once. This process is done for both genomes, generating 

two categories of sequences for each genome.

2 .1 3 2  Unique Sequence Separation

A list of unique sequences is generated with another pass through the homologs. 

This time we only look for regions outside the homolog set. That is, this pass keeps track 

of where the last homolog ended in the genomic sequence and the next one starts. If the 

distance between them is greater than a given size, the sequence is put into the unique 

group. Sometimes a sequence in one genome hits a sequence in the other genome with 

the required similarity, but there is not a strong enough reciprocal BLAST hit. We run a 

check on the list of unique sequences by blasting the sequence to the other genome
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sequence in the comparison and separate the ones with a single directional hit into a one

way hit bin.

2.7.3.3 Long Svntenic Blocks

In order to partition a step further, we implemented a method similar to the 

Reciprocal Best BLAST (RBB) Method (Hirsh and Fraser 2001), since it is very widely 

used and recognized. Again, we want to take advantage of the database storage 

implemented in Magenta. As such, we use the reciprocal BLAST hits query generated by 

the method described above to parse out similarity with a variation on the ‘best’ 

algorithm. Our algorithm finds long syntenic blocks of sequence that is similar between 

genomes. This is a nice algorithm to gain a sense for the conserved segments, or 

ancestral copies of sequence, between the genomes.

Our algorithm starts with the reciprocal BLAST homology list. Then, as it is 

parsing the data into single and multi-hit regions, it also determines whether the piece has 

a better match for that region elsewhere. Since bit score and e-value are based on the 

lengths of the hits, sometimes, if a smaller hit region is longer overall but has a smaller 

overlap region (in comparison to the alignment length of the current segment), this hit 

will have a better e-value or bit score than the original piece when, in actuality, the 

original piece should give the best hit region. The initial RBB algorithm only identifies a 

hit as a match if it is the “best” in both directions. However, we store all the hits in the 

database and in order to fmd the best hit, we would have to apply another blast which 

would defeat the purpose of storing the hits. Therefore, we set criteria for finding the 

“best” hits instead. An overlapping hit or smaller hit inside must cover at least 50% of 

the alignment sequence to be considered as a match. This allows smaller sequences to be
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placed in the multi-hit regions and larger regions to be assigned to this category. Also, if 

the difference between the hit and its next best is less than an epsilon value (user input), 

the two hits are classified as multiple hits. As a result, any hit that is less than 50% of a 

larger sequence or hits that have better hits (greater than the epsilon difference) are 

grouped as multi-hits. Data that does not have other hits that align well enough to more 

than half of the sequence are classified in the ‘best’ group. We noticed that these 

segments were sequences with the largest matches to regions, or long syntenic blocks of 

homology.

One caveat to this method however is that it finds long blocks of continuous 

sequences that can overlap other pieces of long blocks by enough nucleotides to be a 

significant number (larger than a typical gene size). Therefore, these blocks are not able 

to be classified as potential orthologs as they would have been with the reciprocal best 

BLAST method.

2.8 Post-analvsis

There are various post-processing analyses that can be applied to the data 

generated above. In particular, we perform annotation steps, semi-paralog identification, 

and in/out-paralogs classification.

2.8.1 Sequence annotation

One of our goals is to annotate segments of sequences that are not fully assembled 

and potentially identify genes that might have appeared in the organism as a result of 

lateral gene transfer. We decided to tackle this by determining the other types of 

sequences that might hit a particular sequence in one of our categories. Our algorithm 

takes the nucleotide sequence from the positions identified as one of the categories and
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BLASTs them against the non-redundant NCBI nucleotide database. The next steps 

format the results and then use the NCBI genome identifications to look up any gene’s 

annotations from the GenBank database within the aligned positions of the genomes and 

output the description to the BLAST hit list. Typically, we fmd many small hits are in 

this list. We give the option for the user to decide how to filter these results by length, 

percent identity, or maximum number of hits.

These results can help reveal the functions associated with sequence categories 

and what the functional variation is between the genomes. These results also identify 

sequences from other organisms with high similarity to the categorized regions. These 

organisms might represent possible donors that provided genes to the genome under 

study or identify potential gene function. For example, with our dataset, we tested and 

confirmed the hypothesis that some of the unique sequences were homologs of genes in 

other bacteria that live in the same environment as Burkholderia (Cooper pers. comm.).

2.8.2 Semi-paralogs

Semi-paralogs are regions that are multi-copy within one genome, but mono-copy 

to a single sequence in the other genome. Figure 3 shows an example of a semi-paralog; 

genome A has a segment ‘a’ that hits multiple places, ‘b l ’ and ‘b2’, in genome B, while 

'bl' and 'b2' both have reciprocal hits back to 'a'.

These can be generated by analyzing coding sequences (gene files) of two 

genomes with the process described above. We use the lists of mono-copy gene pairs and 

multi-copy gene pairs of each genome to identify the semi-paralogs. We compare the 

multiple copies of genome A with the single copies of genome B to obtain the semi- 

paralogs between genome A and B. We do the reverse to acquire the semi-paralogs
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between genome B and A. These semi-paralogs are then annotated with the COG 

information for determining function.

2.8.3 In-out paralogs

In-paralogs are paralogs that happened after the last speciation event while out- 

paralogs happen before the last speciation event. Figure 7 shows duplication for each of 

these processes. Figure 7a shows an out-paralog where genomes are duplicated in the 

first step and then duplicated while Figure 7b shows an out-paralog where the segment 

was duplicated in the second step. Set analysis can provide information about the extent 

of shared paralogy by comparing the set of in-paralogs to the set of out-paralogs. We can 

identify the set of paralogs for each genome by running the OPUS process on each 

genome against itself in order to obtain a list of paralogs within a genome. We can then 

match the paralogs in the multiple copy data extracted from running the pairwise OPUS 

process. This gives us an idea of how many copies are results of duplications within a 

genome and which are the duplications between closely related genomes.

In-paralogs are duplicates that are in one genome (A) but not in the other (B). 

Out-paralogs are duplicates that have the same number in both AxA and AxB 

comparisons (Figure 7). There are three basic rules we follow when identifying a gene as 

either of the two paralog categories:

duplication

i ~ j p i -------------
1 3  1 3  speciation speciation M M
li JM duplication

r ^ h  r ^ h  r

a. Out-paralog b. In-paralog

Figure 7: Illustration of in-paralogs and out-paralogs. Out-paralogs are duplications 
before a speciation event (left). In-paralogs happen after a speciation event (right).
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• Rule 1: when a gene is identified as paralogous in both comparisons (AxA 

and AxB) then the gene is placed in the “out” paralog category

• Rule 2: any gene in the AxA comparison not in AxB comparison is placed in 

the “in” paralog category

• Rule 3: any gene in the AxB comparison not in the AxA comparison is 

discarded.

The implementation of this method starts with paralog pair files (output files from 

OPUS) which are lists of paralogs displayed in pairs (of gene names) of alignments.

There are two paralog pair files: one for genome comparison AxA and one for AxB. We 

then compare the two sorted files that contain two columns of gene pairs (gl and g2, 

where 1 and 2 refer to column numbers). These files are sorted for faster searching 

which allows the program to incrementally stepping through each of the sorted gene pair 

files. There are three conditions:

• Case 1: When gl in AxA matches gl in AxB then gl goes into the “out”

paralog category. This is done with an equality test of the current g l in AxA

and gl in AxB (satisfies rule 1).

• Case 2: When gl in AxA does not match anything in AxB, then gl goes in

the “in” box. We determine that g l does not match anything in AxB by

comparing the current gl in both files. If g l in AxA is less than gl in AxB 

then this is considered a mismatch (satisfies rule 2). In this case, the next pair 

in AxA will also be compared against g l in AxB.

• Case 3: When gl in AxB does not hit anything in the AxA comparison, we 

discard this match; we assume that in a BxB vs. BxA comparison this match
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will be put into an “in” box for genome B (although this may not be the case 

because our method is not reciprocal). We determine that g l in AxB does not 

hit anything in AxA by comparing the current g l in both files. If gl in AxA is 

greater than gl in AxB, then g l in AxB is discarded (satisfies rule 3).

We describe a few examples of how this method works. If, for example, there are 

five duplicates in AxA and only three in AxB, three would be out-paralogs and two 

would be in-paralogs in A. However, if there is a case that there are two duplicates in 

AxA and three in AxB this would be reported only as two out-paralogs for A.

These gene numbers can then be annotated with fully annotated gene names to 

acquire the functions of each. These genes could also be annotated with COG functional 

groups using OPUS Notes.

2.9 Results

We report an overview of the type of output our tool can generate and briefly 

interpret some of the biological implications. A more detailed biological analysis of 

these comparisons will be published elsewhere.

2.9.1 Genome-wide Comparisons

We ran the raw, complete genome sequence for B. cenocepacia strains AU1054, 

HI2424, J2315, PC184, and Ralstonia eutropha (the out-group) through our methods. 

Table 1 shows a small portion of the output from a basic comparison between two closely 

related strains of B. cenocepacia, AU1054 and HI2424. It gives a basic overview of the 

amount of sequence (base pairs) in each of the categories as well as the number of 

regions or sequence groups in each category. It also provides an overview of the 

maximum, minimum, and average sequence sizes of regions in each group. Notice that a
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large number of base pairs of the sequence are hitting multiple places (two or more hits) 

in the other genome. Homology images of the Burkholderia cenocepacia comparisons 

can be seen in Figure 8. Each dot in the scatter plot represents a lOOObp match found by 

our reciprocal BLAST method. B. cenocepacia strains AU1054 and HI2424 are most 

closely related and there are longer blocks of continuous sequence in these two 

comparisons while the other comparisons are more broken.

Another display of our comparisons can be seen in Figure 9. This figure 

represents the amount of sequence in base pairs that is associated with one of our OPUS 

categories. Figure 9a demonstrates that the number of sequences unique to a genome 

increases greatly with phylogenetic distance. AU1054 and HI2424 are members of the 

same lineage of B. cenocepacia, PC 184 and J2315 are also more distant strains of B. 

cenocepacia, whereas Ralstonia eutropha JMP134 is a much more distant out-group 

(Figure 1). Collectively, all of the B. cenocepacia strains share roughly the same number 

and type of unique sequence relative to R. eutropha. This pool of genes can serve as 

candidates to understand the unique functionality of B. cenocepacia as compared to 

Ralstonia.

Total Sizes in bp Regions Average Size Max Min
B. cenocepacia AU1054

Unique Regions 3110 2 1555 2846 264
Only 1 hit in paired genome 52755 6 8792 22179 302

2 or more hits in paired genome 7069023 39 181257 1191585 1196
B. cenocepacia H12424

Unique Regions 362070 28 12931 83348 200
Only 1 hit in paired genome 44352 26 1705 22179 101

2 or more hits in paired genome 7241305 38 190560 1191594 131

Table 1: Overview of the output produced by OPUS with genome-wide comparisons. 
This is the comparison of B. cenocepacia AU1054 and B. cenocepacia HI2424.
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e.i

SEE

Figure 8: Scatter plot comparisons of homology in four B. cenocepacia genomes. The 
scatter plots are set up so that each axis is a genome sequence and the dots represent the 
BLAST hits for every lOOObp. Note PC 184 is not closed. The horizontal and vertical 
black lines represent chromosome and contig breaks (PC 184) in the sequence. The colors 
are used to depict the log of the e-value of the BLAST hit. The black dots are to 
distinguish ends of hits. Also notice large portions of PC 184 in the comparisons are in 
the opposite direction in the comparison which suggests that the genome sequences were 
simply reversed.
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Figure 9: Comparison of the amount of sequence in each sequence group. Each graph 
shows the pair-wise genome-wide comparison of the four selected Burkholderia genomes 
with the out-group Ralstonia genome, (a) Unique sequence represented in base pairs 
associated with the sequences identified for this group, (b) Single hit sequences (i.e. only 
one exact match) represented as a sum of the base pairs associated with this group. 
Specifically, total lengths of the regions that have a single hit to the other genome (i.e. in 
AU1054 the length of all the regions that hit HI2424 in only one place is 44352 bps.) (c) 
Multiple hit sequence (i.e. more than one match from the query genome to the target 
genome, suggesting paralogy) represented as a sum of the base pairs associated with this 
group. Specifically, total lengths of the regions that hit more than one place in the other 
genome (i.e. 7241305 bps hit from AU1054 to multiple places in HI2424).
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2.9.2 Gene comparisons

In the prior section, we began by comparing raw, unannotated sequences of each 

genome; here we focus on sequences within predicted genes within the genome (CDs, 

coding regions) in FASTA format.

The qualitative output of these queries is very similar to those reported in 

genome-wide comparisons (compare Tables 1 and 2), but the additional knowledge of 

annotated sequence can lead to greater insight by providing protein coding region 

information that could be associated with a known function and groups. Notice that there 

are more regions in each of the categories when comparing gene files to genome-wide 

comparisons. This is because the files are broken into genes instead of full sequence.

The regions in the gene file comparison generally refer to a single gene or part of a gene 

that is in a specific category. Also notice that the sequence lengths themselves (max, 

min, and average columns) are smaller in size. Figure 10 demonstrates the variation of 

regions within the gene comparisons. Essentially, this is a categorization of the number 

of genes in each of the OPUS categories; since generally each region hit is gene sized. 

However, this is not always the case because portions of the genes can be identified as 

well. It still gives the user an overview of the number of genes in each category.

Figure 10a and 10c report the classification of homologs into orthologs (single 

hits) or paralogs (multiple hits). These gene-level comparisons report a much larger 

number of orthologs than paralogs, which is the opposite of that reported in Table 1. This 

discrepancy is likely a product of the varied motifs found in the larger multi-gene 

segments used in Table 1, which trigger multiple hits and suggest paralogy, as opposed to 

the single-gene queries of Figure 10, which are more likely to hit only once (orthology).
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Another view of the categorized gene region distribution is shown in Figure 11 These 

graphs represent the same data presented in Figure 10: in this case there is a radial axis 

for each genome as a target and each polygon represents a genome as the subject. It 

shows, in another way, the close relationship of the B. cenocepacia genomes and the

distant relationship of Ralstonia.

Total Sizes in bp Regions Average Size Max Min
6. cenocepacia AU1054 genes

Unique Regions 34065 153 222 1493 100
Only 1 hit in paired genome 5396030 5780 933 13530 104

2 or more hits in paired genome 980486 749 1309 11469 113
B. cenocepacia HI2424 genes

Unique Regions 389177 539 722 4277 100
Only 1 hit in paired genome 5435626 5839 930 13530 101

2 or more hits in paired genome 950879 722 1317 12717 113

Table 2: Overview of the output produced by OPUS on predicted gene fdes. This is a 
comparison of B. cenocepacia AU1054 and B. cenocepacia HI2424 gene files.
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Figure 10: Comparison of the number of regions in each sequence group. Each graph 
shows the pair-wise gene comparisons of the four selected Burkholderia genomes and the 
out-group Ralstonia genome. Since this figure shows gene comparisons, generally a 
region refers to a gene. However, there can be regions that are only a partial segment in a 
gene, (a) Unique regions within the comparison, (b) Single hit regions in the 
comparisons, (c) Multiple hit regions in the comparison.
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Figure 11: Another view of the single and multiple hit gene regions in the five genome 
comparisons. Notice that Ralstonia has less single and multiple hit regions than the four 
B. cenocepacia genomes.
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2.9.3 Homology Methods

Table 3 compares the output of our two homology detection methods: reciprocal 

BLAST and Lerat. The reciprocal BLAST method makes sure a sequence matches from 

genome A to genome B and from B to A; the Lerat method uses a self-hit ratio to 

determine sequence similarity. The outputs are very similar using comparisons between 

B. cenocepacia strains AU1054 and HI2424, although the Lerat method identifies fewer 

multiple hit sequences within the genome comparisons and more single-hit sequences.

We suspect this is because the Lerat method throws out more sequences because they do 

not pass the self-hit ratio. Each of these methods can be used to generate results based on 

the type of information the researcher prefers. Perhaps it might be possible to gain better 

insight into the differences between the two methods by running them on known datasets. 

Table 3 shows an example of the variation of the outputs that might be of interest.

The researcher might also like to vary the Lerat ratio in order to increase unique 

sequence or single hit regions, or perhaps decrease multiple hit regions in the data.

Figure 12 demonstrates the effect of varying the Lerat ratio cutoff on the two way 

comparison between B. cenocepacia AU1054 and HI2424. In this comparison, as the 

cutoff value increases, both the unique sequence and single hit sequences increase while 

the number of multiple hit sequences decrease. We expect this to generally be the case 

because increasing the Lerat percent means that fewer matches will pass the criteria; the 

optimal percent cutoff should be determined for a particular comparison by varying the 

parameters based on the user’s goals as described in section 2.10.2.2.
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Lerat at 0.30 Reciprocal
B. cenocepacia AU1054 genes Total Sizes in bp

Unique Regions 34065 34065
Only 1 hit in paired genome 5469539 5396030

2 or more hits in paired genome 906977 980486
Regions

Unique Regions 153 153
Only 1 hit in paired genome 5840 5780

2 or more hits in paired genome 689 749
B. cenocepacia HI2424 genes Total Sizes in bp

Unique Regions 544 539
Only 1 hit in paired genome 5898 5839

2 or more hits in paired genome 660 722
Regions

Unique Regions 393504 389177
Only 1 hit in paired genome 5510527 5435626

2 or more hits in paired genome 872179 950879

Table 3: Comparison of Reciprocal BLAST and Lerat methods for finding homology 
within the genomes. This is a comparison of predicted genes in the genomes B. 
cenocepacia AU1054 and B. cenocepacia HI2424. The Lerat method was run with a 
self-hit ratio of 0.30. These comparisons are fairly close in comparison. Notice, 
however, that the Lerat method identifies more single hit regions than the reciprocal 
BLAST method. Also, it identifies less multiple hits in the neighboring genome.

2.9.4 Annotation

We have written scripts to provide additional functional descriptions of the 

sequence matches. For example, we re-blast unique sequences against the global 

GenBank database to determine their likely origin and function. We also can report the 

G+C content percentage of the nucleotide sequence, which is useful in detecting 

horizontal gene transfer as it is associated with low G+C regions. An example of this 

output can be viewed in Tables 4 and 5. These are only some excerpts from a group of 

the unique sequences identified in the comparisons between HI2424 and AU1054 and 

between AU1054 and J2315.

2.9.5 Semi-paralogs

We use the term semi-paralog to identify genes that are paralogous within one 

genome but orthologous to a single gene in the other genome. These are especially
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interesting because they identify gene gain or loss in a particular gene family (Figure 13). 

Once we identify sequences meeting this criterion, we use the methods described in 

OPUS Notes to associate gene annotation, COG type (which summarizes function), and 

Ka and Ks values (which denote strength of selection). Table 6 presents an example of 

this output that demonstrates elaboration of an interesting gene family by two newly 

diverged copies. Table 7 summarizes our semi-paralog analyses among our five focal 

genomes and illustrates how these genomes have become enriched for genes of different 

functional categories.

2.9.6 In-paralogs and Out-paralogs

Semi-paralogs are only a subset of the genes gained or lost due to enhanced 

function or selective pressures. More specifically, semi-paralogs are a subset of in- 

paralogs since semi-paralogs have a one-to-many relationship and in-paralogs have a 

many-to-many relationship. Our tool separates the in-paralogs and the semi-paralog 

cases. So, in-paralogs and out-paralogs are the more general identification of gene family 

size variation in evolution. Figure 14 describes the overall picture of the number of genes 

classified as in-paralogs and out-paralogs. Notice that J2315 is comprised of nearly all 

in-paralogs with respect to the other genomes and very few out-paralogs.

2.9.7 Long Svntenic Blocks

Finally, we present the results from our reciprocal best BLAST method which 

identifies long syntenic blocks of similar sequence between genomes. This is interesting 

because they are long blocks that identify similarity between organisms. The identified 

blocks can be viewed in our scatter plot visualization of blocks of continuity (Figure 15).
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Sequences producing significant alignments Match
Len % G+C Annotations

a. BurkHI2424-BurkAU1054_3793937_3809296_15360_N(:_008543 63.574211175
>gb|CP000459.1| Burkholderia cenocepacia HI2424 
chromosome 2 15360 63.57 beta-lactamase "aminotransferase, class V" "conserved hypothetical 

protein" "hypothetical protein" "MoeA
domain protein, domain I and II" "GCN5-reIated N-acetyltransferase" "transcriptional regulator, TetR family" "Glutathione S-transferase, N-terminal domain" 
"sodium/hydrogen exchanger" "acyl-CoA dehydrogenase domain protein" "YbaK/prolyl-tRNA synthetase associated region" "amino acid adenylation domain" 
"Thioesterase" "hypothetical protein" "chlorinating enzyme" "conserved hypothetical protein" "Extracellular ligand-binding receptor"

b. BurkHI2424-BurkAU1054_3845088_3848197_3110_NC_008543_67.90996784565917

>gb|CP000459.11 Burkholderia cenocepacia HI2424 
chromosome 2 3110 67.91

chaperonin GroEL "chaperonin CpnlO" "secretory lipase" "class II 
aldolase/adducin family protein" "binding-protein-dependent transport 
systems inner membrane component"

>gb|CP000152.11 Burkholderia sp. 383 chromosome 2 1781 67.88 Chaperonin Cpn60/GroEL

>gb|CP000152.11 Burkholderia sp. 383 chromosome 2 999 68.17 Sigma-54 specific transcriptional regulator, Fis family

>gb|CP000441.1| Burkholderia cepacia AMMD chromosome 2 438 59.36 chaperonin GroEL "chaperonin CpnlO"

c. BurkHI2424-BurkAU1054_3848468_3931815_83348_NC_008543,,69.16662667370542
>gb|CP000459.1| Burkholderia cenocepacia HI2424 
chromosome 2 83348 69.17

binding-protein-dependent transport systems inner membrane component 
"binding-protein-dependent

transport systems inner membrane component" "ABC nitrate/sulfonate/bicarbonate family transporter, periplasmic ligand binding protein" "ABC 
nitrate/sulfonate/bicarbonate family transporter, periplasmic ligand binding protein" "ABC nitrate/sulfonate/bicarbonate family transporter, periplasmic ligand 
binding protein" "Alkanesulfonate monooxygenase" "ABC nitrate/sulfonate/bicarbonate family transporter, periplasmic ligand binding protein" "TonB family 
protein" "Biopolymer transport protein ExbD/TolR" "Biopolymer transport protein ExbD/TolR" "major facilitator superfamily MFS_1" "major facilitator 
superfamily MFS_1" "TonB-dependent receptor" "Alcohol dehydrogenase, zinc-binding domain protein" "transcriptional regulator, LysR family" "major 
facilitator superfamily MFS_1" "short-chain dehydrogenase/reductase SDR" "sulfatase" "NLPA lipoprotein" "conserved hypothetical protein" "conserved 
hypothetical protein" "conserved hypothetical protein" "conserved hypothetical protein" "transcriptional regulator, LysR family" "protein of unknown function 
DUF1445" "major facilitator superfamily MFS_1" "5-oxoprolinase (ATP-hydrolyzing)" "hypothetical protein" "diguanylate cyclase/phosphodiesterase with 
/PACsensor(s)" "Enoyl-CoA hydratase/isomerase" "hypothetical protein" "conserved hypothetical protein"...

Table 4: Excerpt from the output of the annotation script comparison HI2424 and AU1054 genomes. This example shows how you 
can find potential functionality of regions by using the annotation pipeline, (a) Shows a segment identified as a beta-lactamase, which 
cleaves beta-lactam antibiotics, (b) An example of the GroEL gene, which encodes a molecular chaperone protein, (c) Shows a large 
unique segment in BurkHI2424 that must have a lot of different genes within it since it produces many annotations (these genes had to 
be cut off to fit on a page).
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BurkAU1054-BurkJ2315_971803_973008_1206_NC_008060_71.31011608623548

>gb|CP000458.1| Burkholderia cenocepacia HI2424 chromosome 1 1206 71.31012 diguanylate cyclase with GAF sensor

>gb|CP000378.1| Burkholderia cenocepacia AU 1054 chromosome 1 1206 71.31012 diguanylate cyclase with GAF sensor

>gb[CP000151.11 Burkholderia sp. 383 chromosome 1 1062 70.15066 hypothetical protein
>gb|CP000440.1| Burkholderia cepacia AMMD chromosome 1 237 70.04219 diguanylate cyclase (GGDEF domain)

Table 5: Excerpt from a unique segment in AU1054 that is not in J2315. This segment is annotated as a diguanylate cyclase which 
has functions in the regulatory system and plays a role in bio-film formation.
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Figure 12: Plot of the variation in the number of genes identified as unique, hitting only a 
single sequence, or hitting multiple sequences as a function of the Lerat Ratio Parameter. 
Comparison of B. cenocepacia HI2424 to B. cenocepacia AU1054.
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Figure 13: A representation of the amount of semi-paralogs in the five genome 
comparisons, (a) Shows the number of gene hits whose hit only hits back to it. In other 
words, the figure shows the one-to-many relationships by showing the number of many 
relationships, (b) Shows the number of multiple genes that are hit by only a single gene 
in the other genome. In other words, this graph shows the one-to-many relationships as 
well but with the number of groups described.

46

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



AU1054 gene AU1054
COG HI2424 gene HI2424

COG Ks Ka
0866 TonB-dependent 
siderophore receptor P 6742 TonB-dependent 

siderophore receptor P 3.901 0.4445

0866 TonB-dependent 
siderophore receptor P 3956 TonB-dependent 

siderophore receptor P 0.0189 0.0047

0866 TonB-dependent 
siderophore receptor P 3957 hypothetical protein S 0.1443 0.0616

Table 6: Excerpt from the annotated semi-paralog analysis using OPUS Notes. Here, 
gene 0866 from AU1054 is homologous to genes 6742, 3956, and 3957 from HI2424. 
Three genes are in COG function P (inorganic ion transport and metabolism), but 3957 
should also be reclassified from S (unknown) to P based on its high similarity. We may 
also predict that strain HI2424 could be functionally enhanced in iron uptake and 
metabolism based on two additional copies of siderophore receptors, since siderophores 
are iron chelating compounds.
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A-H A-P A-R H-A H-P H-R P-A P-H P-R R-A R-H R-P
Information 113 66 47 9 80 49 36 123 53 79 100 69

Cellular
processes 153 229 328 12 195 297 110 290 361 421 437 340

Metabolism 270 133 289 22 133 293 139 351 246 169 213 141
Poorly

characterized 179 401 10 13 60 13 39 176 12 19 62 20

Different 176 55 22 11 87 56 38 198 20 28 75 29

Table 7: Frequency of semi-paralogs in the query genome (listed second) for each major 
COG functional category (A: AU1054; H: HI2424; P: PC184; J: J2315; R: Ralstonia) 
using OPUS Notes. A  gene often is assigned multiple COGs. This analysis considers all 
such assignments and therefore the sum of the values in a column is greater than the 
number of semi-paralogs in that genome. The first four rows in the table report on gene 
pairs with the same major COG functional categories. The fifth row indicates the number 
of gene pairs where the two genes have different COG types. Note that HI2424 and 
Ralstonia are enriched for genes related to metabolism, even when compared with one 
another. Closer inspection of the genes within these categories suggests that, for 
example, PC 184, a clinical isolate, may have gained additional antibiotic resistance 
capacity by gene duplication.
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Figure 14: Separation of in-paralog genes and out-paralogs genes in each of the five pair
wise comparisons. In-paralogs are duplicate genes that arise after the lineages split. Out- 
paralogs are the multiple hits that duplicated prior to the lineage split. Notice that J2315 
is made up of almost all in-paralogs with respect to the other genomes.
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Figure 15: Figure demonstrating the long syntenic blocks found in our version of the 
reciprocal best BLAST method. Notice that it reduces the clutter compared to the upper 
left picture in Figure 8 and only finds the long matches where there is not a better hit 
elsewhere for that region.
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2.10 Discussion

Relating genomic phenomena to logical sequence comparisons has proven to be a 

challenging endeavor. We propose potential organizational groups for sequence 

similarities and differences. The data produced in the results provides an overview of the 

categories and types of results that can be produced by Magenta’s OPUS.

2.10.1 BLAST Anomalies and Optional Parameters

BLAST provides a good search tool for finding sequence similarity because it has 

the ability to identify our various types of sequence categories, is tolerant of sequence 

rearrangements, and is a well-recognized program in genomics research. However, 

BLAST as a search tool the way we use it, has inconsistencies that should be recognized 

when using this application.

2.10.1.1 Reciprocal BLASTs

First and foremost for our use, BLAST is not reciprocal by nature. There can be 

length differences in alignments based on which genome is the reference. We also 

suspect it depends on where the match happens to be when it starts the extension process. 

For example, if a match is strong for a long stretch of bases and then hits regions with 

poor matches or low sequence complexity, the algorithm will process past those 

occurrences to create a longer match. However, if the match is shorter before it hits these 

spots, it fails to extend the match and instead produces one or more small matches. This 

could produce incompatible, non-reciprocal matches. We addressed this issue by using 

an intersection matching scheme for our reciprocal BLAST method. However, the user 

should be aware that this inconsistency is still present when using the Lerat method and 

therefore should probably run Lerat in both directions as well (AxB, BxA).
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2.10.1.2 E-value vs. Bit Score

There are two different alignment measures that a match can have: e-value and bit 

score. It is not clear which one is a more accurate measure of similarity. Bit score is the 

normalized alignment score of the match (NCBI 2007). Bit score is calculated using an 

algorithm based on the alignment lengths and measures of similarity to determine its 

value:

c , _ 7.S - in K
In 2

where S is the alignment score and K and X are statistical values(NCBI 2007).

E-value, expect value(Bedell 2003), is the statistical value that the alignment 

would happen by chance and is calculated using the bit score taking into consideration 

the length of the reference (m) and query (n) sequences (NCBI 2007).

-S'
E = mn 2

However, the use of an e-value cutoff is not always what is desired. Bit scores 

produce more detailed measures of variation. However, bit score values have no 

determined range; so it is hard to determine an optimal bit score value or bit score 

minimum. Also, the BLAST program does not provide documentation on a parameter to 

set a bit score cutoff. It does, however, provide an option to input an e-value cutoff for 

the alignments. We also allow the user to use this option in our program. We use each of 

these values for different methods. The Lerat method was based on bit score ratios, so 

we continued that convention. For the reciprocal ‘best’ BLAST method, we use e-values 

but this decision could be easily changed to use bit scores instead.
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2.10.1.3 Complexity Filtering

One complication when using BLAST for our sequence similarity search involves 

hits that are artificially broken due to low complexity regions. We reduce this issue by 

using the soft mask fdter parameter in BLAST, which helps to extend matches across 

short regions of low similarity and reduces the number of broken hits. NCBI BLAST 

has three variations on this parameter: filtering on (-FT), filtering off (-FF), and soft mask 

fdtering (-F mD for blastn, -F mS for all others) (Bedell 2003). We prefer using the soft 

mask filtering for our data because it seemed to reduce the amount of broken segments, 

but this parameter can be set during run time.

2.10.1.4 BLAST program types

There are different types of blasts that can be run using different datasets. Our 

program can run blastn and tblastx runs. However, since tblastx does six frame 

translations, the runtime and database tables are quite large. The data we present here is 

all done using the blastn program but the user can decide to run different ones with the 

same blast switch (-p blastn, -p tblastx) (Bedell 2003).

2.10.1.5 Strands

The default for BLAST is to find similarity on both strands of the sequence. 

However, if coding regions are involved and the user is only interested in the predicted 

coding region strand (to better simulate protein BLASTs), then a single strand option is 

available (Bedell 2003). We used this flag to compare our methods to those using protein 

sequences. This option can be chosen by using the single strand switch (-S1) for the 

initial BLAST. Other strand specific commands (-S) can be input as initial BLAST 

options as well.
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2.10.2 Methods

Our methods require the use of certain threshold cutoffs. Unique sequences for 

our runs of the program were set to be 300bp, which is a typical small gene size for 

bacterial sequences. Also, an alignment length restriction was set to be lOObp in order to 

reduce the number of small and potentially artificial alignments. This cutoff also applies 

for overlapping alignments.

2.10.2.1 Reciprocal BLAST Method

In order to verify our method, we used the sequence files produced by our method 

and reblasted then back against our genomes. We expected to see that unique sequences 

would hit the genome that it came from but would not hit the other genome. However, 

our reciprocal BLAST algorithm exposed the artifact of one-way hits; which are probably 

due to the inconsistency in BLAST in which a segment is considered unique because 

there is not a reciprocal hit by our method but there is a hit from one of the genomes to 

the other. This could happen based on which genome is the reference and which is the 

query. One theory is that if smaller sections are the reference sequence while larger 

sequences make up the query genome then the query does not align well to the reference 

genome. These are because the larger sequences do not have a significant enough match 

to the smaller segments, whereas the opposite direction (small: large) produces a 

significant match. We can demonstrate this result by comparing a complete genome 

sequence with the subset of predicted gene sequences. We found a large number (over 

500) of one-way hits when running this comparison. When the gene file is the reference, 

it is hard for a large segment to hit the small gene-sized pieces. This causes a large 

number of one-way hits between these comparisons.
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2.10.2.2 Lerat Method

The Lerat method generates more single copies than the reciprocal BLAST 

method and identifies fewer multiple copy regions than the reciprocal BLAST method.

As a result, this method is more restrictive with its hit requirements for our test case. 

Therefore, it removes slightly more potentially ambiguous hits than the reciprocal 

BLAST method.

We had to set a base pair size requirement in order to decrease run-time, because 

even small hits would have to run through two subsequent BLASTs using this method. 

Therefore, we set a size restriction of lOObp for these runs of the data. With this limit, 

we reduced our run time from about a week to only a few hours.

We verified our Lerat comparison by comparing our output with those generated 

by another implementation of the method written by Philip Hatcher. The other 

implementation uses the original Lerat method which uses a full gene’s self hit bit score 

for the ratio. Also, it is implemented with protein sequence using the blastp command.

In order to compare results, our Lerat method was run with the single strand option in 

BLAST allowing us to better simulate the protein coding comparisons.

The two Lerat methods came up with similar results. Our Lerat method generates 

more unique sequences than that produced by the Hatcher method because our method 

identifies partial genes as being unique, which was expected. OPUS, executing the Lerat 

method, identified 153 unique regions in AU1054 that differed from HI2424. The 

Hatcher implementation found 57 unique regions. When compared, there were only a 

handful of unique regions that the Hatcher method found unique that we did not. One of 

the differences was that OPUS’s tool had smaller hits inside the gene that rejected it from
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being unique. We also noticed that frame shifts were another cause for incongruence. 

Here, we refer to frame shifts as nucleotide similarity existing but starting on a different 

base than the protein starting positions. However, since there were very few differences 

in our methods, we were satisfied that our methods were computing similar results.

The Lerat ratio percentage was varied for the AU1054 and HI2424 comparison as 

an example. The Lerat parameter can be adjusted to vary the level of similarity within 

the comparisons. For example, if the researcher is interested in looking for duplications 

in the genome, based on our graph (Figure 12) a low percentage value would be desired 

because it would produce more multiple hit regions in the genome that could be shifted 

though at a later point. However, if he/she is looking for orthology, single copy genes 

would be more desired, and a higher percentage should be set, to be more restrictive with 

sequence similarity.

2.10.2.3 Reciprocal Best BLAST Method

Our version of the reciprocal best BLAST method keeps overlapping sequences, 

which would not normally occur with the traditional RBB method. For this reason we 

output whether the sequences have an overlapping end. We also output the number of 

shorter matches that had hits to those sequences and were not considered better. This will 

hopefully provide the user with a general idea of the impact of this problem in their data.

2.10.3 Biological Inferences

We present a few interesting biological inferences. More analysis of the data 

produced by OPUS and the subsequent tools will be presented elsewhere.

Somewhat surprisingly, the vast majority of the sequence found in both B. 

cenocepacia AU1054 and HI2424 genomes hits multiple sequences in the other genome,
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suggesting perhaps an ancient complete-genome duplication event. Because they were 

derived from the same ancestor relatively recently, relatively little sequence can be 

considered unique, but HI2424 has an extra 290Kb of sequence. It is also notable that 

more sequence in AU1054 is strictly single copy to HI2424 than vice versa, which 

suggests that AU1054 has lost portions of multi-copy gene groups found in HI2424. It is 

interesting that one of these losses involves one fewer copy of the GroEL/GroES 

chaperonin operon in AU1054 than in the other Bcc genomes (Table 4). Collectively, 

these data suggest that adaptation to a pathogenic lifestyle may have been accompanied 

by gene loss for the clinical isolate AU1054.

Now, we turn to the potential biological implications of semi-paralogs, in- 

paralogs and out-paralogs. J2315 is made up of mostly in-paralogs (Figure 14) which 

suggests that its duplications typically happened after its split from the other lineages. 

This would suggest duplications of sequences in J2315. This might imply a need for 

replication of gene copies in J2315 for enhanced function. This trend is also replicated 

through the semi-paralogs but not quite as prominently (Figure 13). However, this 

variation will have to be verified in order to make any biological conclusions since J2315 

gene predictions were acquired from a different source that used a different method of 

gene identification than the other genomes, which could be one of the reasons for great 

distinction in the data.

2.11 Conclusions

We formulated a method and developed tools for separating and quantifying key 

similarities and differences among genomes. Our method uses BLAST and stores its 

results in a database. We can then parse the results into categories similar to the
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biological categories: orthologs (mono-copy), paralogs (multi-copy), and unique (no 

homology) sequences and perform numerous post-analyses on these sequences. This is a 

valuable tool for bioinformatics and genomics research with considerable potential for 

inferring sources of evolutionary and functional novelty among genomes.

We have demonstrated that our OPUS toolkit can be used to explore the 

differences between closely related genomes. We have used the quick access of the 

database to find various homology relationships. Notably, we have shown how our 

method can be used to identify potential function for regions of a genome that are 

unannotated. We have also used other scripts to find potential function variation 

displayed in DNA sequences. We have also categorized sequences by their relationship 

in a pair-wise comparison with another genome including mono-hits (orthologs), multi

hits (paralogs), unique sequence, semi-paralogs, in-paralogs, out-paralogs, and ‘best’ hits 

(long syntenic blocks).

2.12 Future Work

We have focused on examples of studying orthologs, paralogs, and unique 

sequences in genome comparisons, but numerous alternative questions are possible. We 

plan to study more complicated patterns of differential paralogy, such as gene families of 

different copy number. Second, we remain interested in understanding the phenomenon 

of one-way, nonreciprocal BLAST hits, which may result from conserved modules 

present within genes or may be a simple side-effect of the BLAST match criteria. Third, 

our program is also capable of quantifying similarities and differences in non-coding 

sequence, which may enable the study of variation in regulatory sequences among closely 

related genomes. Fourth, we are exploring the potential to conduct comparisons between
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multiple concatenated genomes, which can provide insight into more ancient 

evolutionary patterns and serve to separate in-paralogs from out-paralogs. We would 

also like to modify our reciprocal ‘best’ BLAST method to be a reciprocal ‘better’ 

method. This method would remove our overlapping block by keeping the longest 

sequences possible together and only breaking the blocks when another sequence has a 

better hit someplace else. Most importantly, Magenta’s OPUS is a flexible platform that 

can answer a wide range of evolutionary genomic questions using various types of input 

sequence.
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CHAPTER 3

EVALUATING TWO VISUALIZATION TECHNIQUES FOR 
GENOME COMPARISON*

Morel Henley, Mikkel Hagen, and R. Daniel Bergeron 
Department of Computer Science, University of New Hampshire 

Imhenlev@unh.edu. mhagen@unh.edu, rdb@unh.edu 1 
(Henley, Hagen et al. 2007)

3.1 Abstract

Genomic study is fairly novel. Typical research processes are not established yet. 

Many new discoveries are happening in this area all the time. Are current methods of 

visualizations effective? What works well? What could be improved? These are some 

of the questions we are interested in evaluating for two graphical tools used to compare 

nucleotide sequences. Scatter plots and parallel coordinate-like visuals have been used in 

genomics for identifying similarities in genetic code. Our preliminary evaluation focuses 

on determining the aspects of the two visualizations that are successful and those that 

need enhancements.

©  2007 IEEE. Reprinted, w ith permission, from  (2007 Information Visualization (IV) Conference 
Proceedings)
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3.2 Introduction

Genome analysis produces large amounts of data. It is hard to display this 

information in a way that is effective for understanding genomes. These visualization 

efforts are important for both fully sequenced genomes and partial sequences. 

Comparative genomics focuses on comparing two or more genomes. We are particularly 

interested in identifying and showing regions of similarity between two genomes. Two 

standard information visualization techniques have been used to display this information: 

scatter plots and parallel coordinate diagrams.

Dot plots, a form of scatter plot, have been used for comparing sequence variation 

since about 1981, which is early in genomic studies. It was introduced for genomic 

research when Maizel and Lenk used dot plots to visualize nucleotides (Maizel and Lenk 

1981). Dot plots have been used in programs such as “dotup”, “dotpath”, and 

“dotmatcher” from the EMBOSS package (Rice 2000) and Dotter, another open source 

dot plot program (Sonnhammer and Durbin 1995). More recently, Rasko has used color 

in scatter plots to represent significance of BLAST hits at a protein level (Rasko 2005).

Several genome visualization tools have adopted techniques similar to parallel 

coordinates (Inselberg 1990). Parallel coordinate techniques have been used to compare 

locations of various functional genes in multiple genomes (Michaels, Carr et al. 1998) 

and to depict related genome sequences as in the Mauve program (Darling, Mau et al.

2004).

Our goal in this research was to evaluate the effectiveness of the two types of 

visualizations are for comparing sequences. We describe a heuristic study (Nielsen 1994) 

to make this evaluation. Section 2 provides background information on the two
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visualizations, the genomics field, and the common visualizations for genome 

comparison. Section 3 discusses in more detail the specific images used in this study.

Our evaluation approaches are discussed in section 4. Section 5 summarizes our 

conclusions gathered from the survey. Section 6 identifies future research.

3.3 Background

In this section, we briefly introduced the scatter plot and parallel coordinate 

techniques, genomics, and two current visualizations used for comparing genomes.

3.3.1 Scatter Plot and Parallel Coordinates

Scatter plots have been used primarily in statistics and database visualization for 

comparing two data variates in a collection of records. Two orthogonal axes are used to 

represent the values of the two data variates; a dot or other glyph is drawn for each data 

record at the position represented by its values. The pattern of dots can provide insight 

into the relationship of the data values in a particular data set. One weakness of a scatter 

plot is that multiple records will get mapped to the same position if their values are the 

same. Multiple variates are typically shown as an array of bi-variate scatter plots called a 

scatter plot matrix (NIST/SEMATECH 2007).

Parallel coordinates have also been used for comparing multi-variate data for 

statistical and database analysis. Each variate is represented as a parallel axis and a data 

record is displayed by a line connecting data values on each neighboring axis. Due to the 

sheer volume of genes and nucleotide sequences, the parallel coordinate technique suffers 

from excessive visual clutter that hides information. The loss in the visibility is a result 

of the number of crossing connections. This is a classic limitation of all parallel
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Figure 16: Phylogenetic Tree. (Carrizo 2004) 

coordinate visualizations. Pillat et al. record a limitation of about 1000 links before their

parallel coordinate visualization becomes indecipherable (Pillat 2005).

Dwyer et al. suggest that both scatter plots and parallel coordinates become 

cumbersome when dealing with large datasets, even using colors (Dwyer 2006). Since 

we often deal with hundreds or even thousands of genes at a time, this weakness is a 

significant factor in the effectiveness of any visualization technique in this context.

3.3.2 Genomics

Genomics is the study of genomes, specifically their genes and gene function. 

Most genes are distinct segments of DNA that are transcribed to become proteins. At the 

heart of genomics is the sequence of nucleotides that make up genes and other non

coding sections. Nucleotide sequences are comprised of four bases: A (Adenine), T 

(Thymine), C (Cytosine), and G (Guanine). Recently, a number of sequencing projects 

have worked to assemble the entire nucleotide code of many species of plants, animals, 

bacteria, and other organisms. DNA sequences produce enormous amounts of data that 

could use effective visualization techniques in order to view and better understand the 

underlying information in a genome.

Understanding DNA is valuable to many areas of biological sciences. Obviously, 

it is very important to medicine, as a means of discovering diseases and potential cures. 

Additionally, the sequencing of DNA can be used to help explain the earth's evolutionary
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history. Commonalities can infer the ancestral relationship between two species as well 

as determining species divergence. A phylogenetic tree is a pictorial view of how species 

are related and predicts common ancestors (see Figure 16). Phylogenetic tree creation 

relies on understanding how closely related genomes are.

Recent efforts in comparative genomics have focused on comparing closely 

related species or strains of a genus for similarities and differences. Comparing genomes 

is not only used in deciding the evolution of organisms; it is also a means of resolving 

what parts of genomes affect functional behavior. Our goal is to show regions of two 

genomes that have high similarity measure. Related sequences can be grouped into 

various categories. Sequences that are shared due to common ancestry are classified as 

homologs. Homo logs can be broken down into orthologs and paralogs based on the way 

they formed. Orthologs are caused from a speciation event while duplication events 

cause paralogs (Hartwell 2004). Therefore, multiple matches of a sequence to a single 

genome are usually considered paralogous sequence.

There are various programs for acquiring sequence similarities. BLAST (Bedell 

2003), basic local alignment search tool, is a common tool used by biologists in genomic 

research. This tool takes genome sequences obtained from genome libraries and 

determines the similarity between the genomes based on nucleotide or protein matches 

between the two genomes. Data from the BLAST tool was used to draw the two 

visualizations used in this study.

3.3.3 Mauve Visualization

Mauve is a tool used to identify and show homologous sequence between 

genomes (Darling, Mau et al. 2004). Its visualization is similar to a parallel coordinate
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diagram. Mauve uses this technique to match the whole genome of nucleotide sequence 

between multiple genomes as blocks of correlates. We use a version of the Mauve 

software package modified here at the University of New Hampshire (UNH) (Bancroft 

2006). This version of Mauve uses BLAST to find homo logs between two genomes. It 

then removes the paralogs, leaving only orthologs, or regions that are only found once 

between the two genomes (excluding duplications across genomes). It identifies these 

matching sections of the nucleotide sequence as Multiple Maximally Unique Matches 

(multi-MUMs). It then groups these multi-MUMs into closely related regions called 

Locally Collinear Blocks (LCBs) (Darling, Mau et al. 2004). These blocks are displayed 

on the screen with connecting lines to identify the shared sequence. The visualization 

can be seen in Figure 19. The boxes are randomly color coded to help distinguish 

between different blocks. Mauve can progressively simplify the visualizations by 

creating higher levels of abstraction for regions of the genome, but each level of 

abstraction loses information.

3.3.4 Dot Plot Visualizations

The dot plot methodology is a classic visualization technique for comparing 

nucleotide sequences which was initially referred to as graphics matrix analysis (Maizel 

and Lenk 1981). Data groups are plotted on the x and y axes like a scatter plot. 

Researchers have identified different patterns a dot plot can produce including: no 

features, diagonals, broken diagonals, squares, diagonal texture, and square texture 

(Thomson, Howard et al. 2006).1

1  Dot plots have also been used to  com pare news stories, lines of source code, and DNAsequence (Church and Helfman, 1993).
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Figure 17: Illustration of Dot Plot Method. Notice the 
diagonal representing the sequence similarity. (Maizel and 
Lenk 1981)

For genome comparison, nucleotide sequences are essentially plotted on the 

horizontal and vertical axes. The graphic matrix marks each location in the matrix where 

the nucleotide bases are the same (Figure 17). Some common features that can be 

highlighted in genomics are homology and large areas of duplicated DNA (paralogy).

3.4 Visualizations

In this section we discuss the visualizations used for our study including a brief 

presentation of the images' attributes.

3.4.1 Dataset

We have identified three closely related strains of a Burkholderia bacterium to use 

in our study. Bacteria tend to have smaller denser genomes than more complex 

organisms. Even with the smaller genomes, the amount of data generated is still quite 

large, but manageable. Various strains of Burkholderia have very recently diverged but 

have very different functionality; some are extremely pathogenic while others are benign 

or even beneficial (Mahenthiralingam, Urban et al. 2005). Helping identify the 

homology of the strains in an effective manner will be very beneficial to the research of
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these organisms. Our goal was to evaluate the effectiveness of two visualization 

techniques to identify the homology in this data. We used three strains in the 

Burkholderia cenocepacia complex (Bcc) genomes, B. cenocepacia AU1054, B. 

cenocepacia HI2424, and B. cenocepacia J2315. Bcc AU1054 and Bcc H12424 are 

within the same clad and therefore are more closely related.

The genome data is represented as sets of strings of letters (A, C, G, and T). In a 

finished complete assembly, there is one sequence for each chromosome. Most 

assemblies are not finished, however; in this case, the sequences are called contigs and 

each represents a contiguous region of the genome. In both visualizations, the sequences 

are concatenated into a single string representing the entire genome. However, there is 

no expectation that neighboring contigs in the layout are in fact neighbors in the actual 

genome.

3.4.2 Visualization Methods

Our goal was to compare visualization techniques based on the scatter plot 

method and the parallel coordinate method as implemented in Mauve. In order to obtain 

a consistent comparison, we created a version of scatter plot with the same homologs 

identified by a nucleotide BLAST in the Mauve program. We then were able to run a 

small heuristic evaluation with members of the genomics community at UNH to compare 

the visualizations.

3.4.2.1 Scatter Plot Implementation

We implemented a scatter plot visualization similar to that of Rasko (Rasko

2005). Our scatter plot tool plots two genome sequences on each axis like the dot plot 

method. However, with an entire genome comparison, the plots can become cluttered
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when matching base by base. Therefore, instead of matching at the nucleotide or protein 

level, we reduced the clutter by only plotting the similar sequences selected by BLAST, 

based on a moderate similarity measure.

This visualization was developed using an open source software package called 

JFreeChart (Viklund 2005-2007). This package can create a variety of elaborate graphs 

and charts using the Java programming language. Producing a scatter plot graph of the 

data consisted of two steps. The first step converted the data obtained from the BLAST 

results into a simple x, y data file representing the locations of pairs of sequences that 

were identified as similar. The second step read this data file for the scatter plot graph 

provided by the JFreeChart package. Horizontal and vertical lines were added to the 

graph to show the division of chromosomes. Finally, the scale of the axes of the scatter 

plots was varied between 10, 100 and 1000 base pairs per dot. After observing the 

resulting scatter plots, we determined that the 10 base pair graph provided the right 

mixture of detail and clarity.

3.4.2.2 Scatter plot Features

The scatter plot images used in this study are shown in Figure 18. Notice that 

when a sequence is homologous and sequential it forms a straight diagonal line (Figure 

18A). The more differences in the genomes, the more jagged the fines appear and the 

more breaks in continuity (Figure 18B-C). A slope in the negative direction is a match of 

reverse sequence. The chromosome breaks are the horizontal and vertical darker lines on 

the graph. Paralogous sequence shows up as lines that overlap the same x or y region.
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Genomes Comparisons

G enom es C o m p ariso n s

G enom es C om parisons

Figure 18: Scatter Plot Visualizations. (A) AU1054 vs. 
HI2424 (B) AU1054 vs. J2315 (C) HI2424 vs. J2315
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3.4.23 Parallel Coordinate Features

The images used in this survey can be seen in Figure 19. The inverted sequences 

can be seen in the blocks below the line in the second genome. The large blocks show 

segmental changes in the genome well (Figure 19A), while small segments of similarity 

are more difficult to see (Figure 19B-C). In Figure 19C, the blocks on the right create 

many crossing lines that muddle the arrangement. The more blocks and rearrangements 

you have, the more cluttered the lines become. Color aids in separating the blocks that 

are next to each other.
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Figure 19: Mauve visualization of the three pair-wise comparisons of 
the Burkholderia Genomes. (A) Bcc AU1054 vs. Bcc HI2424. (B) Bcc 
AU1054 vs. Bcc J2315. (C) Bcc HI2424 vs. Bcc J2315.
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3.5 User Evaluation Study

In this section we describe the heuristic evaluation that we performed.

3.5.1 Participants

The methodology employed in this study amounted to a small survey of 

professionals in the field of bioinformatics. The seven subjects included computer 

scientists, biologists, geneticists, and biochemists. Each subject was supplied a two part 

survey and asked to fill it out to the best of their ability.

3.5.2 Survey

The first part of the survey involved a task requiring the subject to establish a 

phylogenetic tree (Figure 16) among three unknown genomes labeled A, B, and C to 

conceal their identity. The subject was given a brief introduction to the project and a 

basic description of how the different visualization techniques represented the genomes. 

The subject was then given three visualizations of the Burkholderia cenocepacia complex 

genomes: Bcc AU1054, Bcc HI2424, and Bcc J2315. These genomes belong to a family 

of closely related bacteria. The subject was asked to draw a phylogenetic tree based on 

the three scatter plots (Figure 18), identifying the more closely related species. Then 

he/she is provided with the parallel coordinate visualization from Mauve (Figure 19) of 

the same three genomes. After providing the subject with time to form the phylogenetic 

tree based on the parallel coordinate visualizations, the subject moves on to the second 

part of the survey.

The second part of the survey provided the subject a scatter plot and a parallel 

coordinate diagram of the two most closely related species, Bcc AU1054 and Bcc HI2424 

genomes, for a side-by-side comparison. The subjects were asked a series of generic
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questions including which graph is more effective at various tasks, the 

advantages/disadvantages of each, and the subject’s opinion of which is better overall.

3.6 Results

In this section we present the results from the study and provide preliminary 

analysis based on them.

3.6.1 Phvlogenv Prediction Test

For the task of constructing a phylogenetic tree for the three unidentified strains, 

the subjects were more successful at recognizing the more closely related genomes when 

using the parallel coordinate method. Only four of the seven subjects identified the 

correct phytogeny using the scatter plots as a reference, while six subjects were able to 

identify the correct phytogeny using the parallel coordinate technique, generally, in 

significantly less time. However, this may be a result of the order in which the graphs 

were presented. It could also be a result the very simple genomes and therefore favorable 

for the parallel coordinate diagrams.

3.6.2 Survey Results

The subjects were then asked to evaluate both visualizations. Each of the 

visualizations has its own advantages and disadvantages. Therefore, each subject was 

asked a series of questions to try and quantify them. Because of the small scale of the 

study, it is not possible to infer significantly valid conclusions. However, we have found 

the subjects’ observations interesting and report them as anecdotal results.

Six of the subjects said that the scatter plot was the visualization that was better 

overall. All the subjects stated that our version of a scatter plot was better at showing 

chromosome breaks and hits in the reverse direction than the parallel coordinate diagram.
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Four subjects identified a disadvantage of the scatter plot as the difficulty in noticing the 

small changes and small scale differences in the genomes. The remaining critiques were 

suggestions for improvements to the visualization, such as adding color and clearly 

showing the boundaries between contigs. The scatter plot advantages were that it is easy 

to obtain a big picture and it is clear and easy to understand once you know how to read 

them. Also, some other comments included, “seems like it has more information” 

available and “probably more powerful.”

All subjects indicated that the drawback of the parallel coordinate diagram was 

the confusion resulting from the crossing lines. One subject stated that there was “too 

much clutter in the center of the diagram.” Another subject noted that the diagram 

caused “too much stimulation with the colors, lines, breaks, etc.” There were some 

expressed advantages for the parallel coordinate diagrams. For example, it “shows long 

common sequences well.” One subject also indicated that it shows the “horizontal 

comparison” or side-by-side comparison well.

3.6.3 Observations Based on Anecdotal Comments

The scatter plot visualization method is the more traditional method used for 

genome comparisons, while the parallel coordinate method has appeared recently. To the 

amazement of many of the subjects, the scatter plot was the method they preferred, even 

though it is older and takes longer to learn how to read. Once you learn how to use it, it 

seems to show much more information, and has the capability of being more powerful 

and descriptive. The parallel coordinate method appears more intuitive at first. One 

subject stated that it “seems easier at first.” It shows position in the genomes more 

naturally. However, it appears to be more limited when showing detail.
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Small breaks appear less obvious using the scatter plot diagram and can be easily 

masked as a long hit in the visual. This was not a problem for parallel coordinates 

because matching sequences could be identified by their matching color. Color also 

helps to show long contiguous sequences and complex rearrangements. For these 

reasons, one subject indicated that the parallel coordinate diagram could be “superior to 

the scatter plot when the re-arrangements are complex.” These perceived advantages of 

the parallel coordinate visualization are all based primarily on its effective use of color, 

whereas our scatter plot implementation does not use color at all. These advantages 

would be significantly reduced or disappear with a relatively minor enhancement to the 

scatter plot visualization: we could assign a color to each dot based on the BLAST hit 

from which that dot was generated. With this change, it would be much easier to see 

breaks between hits, long contiguous sequences, and large rearrangements.

On the other hand, the parallel coordinate approach suffers fairly quickly from 

excessive clutter as the data size increases (Pillat 2005; Dwyer 2006). The number of 

crossing connecting lines grows rapidly as the evolutionary distance between genomes 

becomes larger. One subject stated that the problem with the parallel coordinate 

representation was that with a more complex comparison the “diagram becomes too busy 

to make sense of.”

Although, we initially thought that the directionality of the sequence hits would 

show more information in the scatter plot, this function can become an obstruction since 

it breaks up the similarities of the genomes. One person's comment suggested that the 

“directionality” of the lines “hinders the visualization of similarities.” Parallel coordinate 

diagrams have the advantage of keeping the hits next to each other for this purpose.
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The scatter plot has the advantage of showing paralogs better than parallel 

coordinate diagrams. Parallel coordinates becomes even more confusing when you add 

paralogs to the visualization. Many subjects asked about paralogs in the visualizations 

and liked being able to see them in the scatter plot.

Although overall the scatter plot was preferred, many of the subjects suggested 

that the visualization they would choose depends on what they were looking for. Most of 

them wanted the option of looking at both.

3.7 Future Work

The case study needs to be expanded to include more subjects. An increased 

subject size would help analyze the qualities of the two visualization techniques in a more 

general and significant way. Also, randomizing the order in which the phylogenies 

question is distributed would help the significance of the results.

The case study also needs to be run on more complex genome comparisons. The 

current study used fairly closely related, simple, single celled organisms. There are much 

more complex genomes in the animal kingdom that could provide different results when 

comparing the two visualization techniques.

We did not test the current interactive capabilities of these visualizations. 

Interactively, Mauve can show as far down as the nucleotide level. Also, clicking on a 

block aligns the connecting segments. Our scatter plot currently has a zoom feature, as 

well, but not down to the nucleotide level. This feature could be added to the scatter plot.

A suggestion was made to identify contig boundaries along with the chromosome 

boundaries. There were identifiable breaks in the scatter plot method that looked to be 

contig boundaries; it would be beneficial to be able to verify when these breaks are
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caused by contig boundaries. It could be especially helpful to have either automatic or 

user-assisted reordering of the contigs to be able to show more continuous similarity in 

the genomes. This reordering could also be beneficial for the parallel coordinate method 

by reducing the number of crossing lines.

Multiple genome comparisons could be very helpful in the visualizations. Mauve 

already can show multiple genomes laid out in parallel with connections between 

neighboring pairs. The scatter plot can only have two-by-two comparisons on a single 

graph, but could be extended using a scatter plot matrix approach (NCBI 2007; 

NIST/SEMATECH 2007).

Scatter plot has the potential of showing more information such as bolding to 

identify sections that are continuous hits or showing paralogs more easily. Color could 

also be used to distinguish breaks in hits. Colors could be added to the visualization to 

add more detail. For example, Colors could be mapped to the different bases in the 

nucleotide sequence: A (Adenine), T (Thymine), C (Cytosine), and G (Guanine).

3.8 Conclusion

This study compared the advantages and drawbacks of parallel coordinate and 

scatter plot methods for comparing similar sequences in different genomes. We 

performed a heuristic evaluation with three closely related genomes of the Burkholderia 

species. Subjects were asked a series of questions related to two different visualizations 

expressing the same data.

The scatter plot diagram was strongest at showing chromosome boundaries, 

reverse directions, and paralogs. The parallel coordinate diagram appears to be better at 

determining phylogenetic relationships and breaks in continuity but this could be an
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artifact of the nature of the study. Although, it appears that the scatter plot approach is 

probably more effective than parallel coordinates for visualizing two genomes, this may 

not hold when comparing three or more genomes simultaneously.
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CHAPTER 4

DSNP PROJECT: 
THE DAPHNIA PULEX SINGLE NUCLEOTIDE 

POLYMORPHISM (SNP) PROJECT

4.1 Abstract

In order to identify single nucleotide polymorphisms (SNPs) within the Daphnia 

pulex genome, we developed a pipeline of analyses that uses the comparative assembly of 

whole genome shotgun reads against reference scaffolds to conservatively estimate sites 

of true polymorphism within The Chosen One (TCO), the isolate of the Daphnia Genome 

Project. Here, we offer a first pass overview of the genome-wide level of polymorphism 

and identify a large number of variable sites in the ecological model organism, Daphnia 

pulex. We also provide some analysis of the SNPs detected by our pipeline. This paper 

focuses on the programs produced for our SNP detection pipeline. Further discussion and 

analysis of results can be found elsewhere.

4.2 Introduction

The DNA structure that encodes genomic data is composed of a sequence of 

complementary base pairing of four different nucleotides: Adenine, Thymine, Guanine, 

and Cytosine. Diploid organisms have two copies of each chromosome: a maternal and 

paternal copy. Alleles are gene variants on the chromosome that may code for a
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particular trait. In diploid organisms, the allele pairs from each chromosome make up the 

organisms genotype. This allows for homozygous (same alleles) and heterozygous 

(different alleles) sites in the genomic makeup. Variable sites in the DNA sequence at 

the nucleotide level of individuals within a population are called single nucleotide 

polymorphisms (SNPs). These base changes contribute to variation in individual 

characteristics within a population and species.

Since single nucleotide polymorphisms (SNPs) are a fundamental aspect of 

genetic variation within a population, they are indispensable tools for genetic research 

(Hartwell 2004). Variation associated with diseases, disorders, and traits of interest can 

be mapped using SNPs as markers, and can be used in gene discovery, positional cloning, 

and medical diagnosis (Hartwell 2004). Additionally, SNPs are important for population 

studies and evolutionary research, as SNP patterns (haplotypes) are the basis of tracking 

gene flow among populations (Hartwell 2004). In fact patterns of polymorphism across a 

genome can leave clues about evolutionary forces acting on the genome.

Daphnia pulex was chosen for whole genome sequencing based on its proven 

utility as an ecological model organism. The potential to decipher ecologically relevant 

genetic variation has been a selling point of the Daphnia model (Colboume, Singan et al. 

2005).

Here, we outline a series of programs and scripts used to detect SNPs in Daphnia 

pulex Gnome by generating conservative estimates of variable sites on a scaffold-by- 

scaffold basis. For genome projects, contigs or continuous sequences are formed and 

then assembled into scaffolds. Because the genomic DNA for the Daphnia Genome 

Project was prepared from a clonal population started from a single, low-heterozygosis
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individual (DGC 2007), this study is equivalent to an assay of heterozygosity within an 

individual Daphnia. However, heterozygous sites within a diploid individual represent 

segregating alleles of the larger population, and thus, with a first pass of SNP detection, 

we are able to describe some trends and patterns of genetic variation across the whole 

genome of the species Daphnia pulex.

4.3 Pipeline

We developed a pipeline for SNP detection in the Daphnia pulex genome (Figure 

20). The basic concept of the design was to align the shotgun sequencing reads to each of 

the scaffolds. Because each read could come from two alleles, the variation within the 

reads that aligned to any given locus should give us an accurate measure of variation 

across the genome. Finally, a set of strict criteria were applied in order to improve 

accurate SNP detection.

4.3.1 Poor Quality Trimming

Since error can occur when creating the shotgun sequencing reads the reads were 

trimmed for poor quality. Therefore, mostly high quality sequence is used in our 

analysis. Lucy (Chou and Holmes 2001) is a program that removes vector sequence and 

identifies poor quality sequences of the 5’ and 3’ ends. Another program was then used 

to trim these ends from the read sequences. We had to create a program to trim the 

quality scores of the reads as well, in order to use the quality scores for the subsequent 

alignment of raw reads to the reference scaffolds.

4.3.2 Alignment and Assembly

The AMOS Comparative Assembler (Pop, Phillippy et al. 2004) is a program that 

aligns the sequence reads to each of the reference genome scaffolds. The AMOS
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SNP Pipeline

Reference Reads

SNPs

Lucy Trim

Amos
(AMOScmp)

reduce to 
alignment

Apply SNP Criteria 
(coverageFilter)

Format reads to 
AMOS 

(tarchive2amos)

Text formatted alignment 
of reads to reference 
(SeqAlignGenerator)

Figure 20: SNP Pipeline

program can take the quality score files as input to improve the alignment quality. The 

AMOS process involves building the reads into contigs or contiguous sequences of 

overlapping reads. These contigs are then aligned to the reference sequence. We set a 

98% pairwise match requirement in order to assure high quality alignments and reduce 

paralogous misassembly. AMOScmp produces many files that are used in the following 

steps.

4.3.3 Reduce Alignment

Since we are only using a single scaffold as a reference for each assembly, some 

of the contigs formed by the reads do not align to the reference sequence. In order to 

attain an accurate placement of the reads, we needed a file with only the reads used in the
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final alignment. We used a custom program that reduces the assembled reads file (delta 

format) to those reads only in the contigs that aligned to the reference (a reduced delta 

file).

4.3.4 Site by site Formatting

The SeqAlignGenerator (Kulkami 2007) program takes the AMOS output file 

and produces a single file that formats the alignment information by scaffold reference 

positions. This file includes for each location in the reference: a reference position 

number, the reference base, and the list of nucleotides of the reads that align there.

4.3.5 Insertion Fix

Since the SeqAlignGenerator was creating for a project that was not interested in 

indels (insertions and deletions with respect to the reference), we had to incorporate an 

addition to the SeqAlignGenerator that includes information from reads that do not have 

a reference for that base but that spanned that location. In other words, we wanted to 

include the number of reads that were missing a base, with respect to the reference, at 

each insertion location. We therefore created a script to insert a f o r  every read that 

spanned a position but that did not have a nucleotide for that position.

4.3.6 SNP detection

We created a program (SNPfilter) that reduces the positions to ones that pass our 

SNP criteria. Our SNP criterion includes:

• At least two nucleotides of each base at a site

• Maximum and minimum coverage values

• Only two variable bases at a given position
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• Insertions with respect to the reference must have at least two bases for a 

given insertion site.

We require that there are at least two nucleotides of only two different bases in 

order for us to call the position a SNP. This helps us reduce the alignment and 

sequencing errors.

Our coverage cutoff set the maximum and minimum number of reads that aligned 

to a specific location. We give the user the option of keeping a maximum and minimum 

number of nucleotides that align to a given locus. These extreme values are based on an 

overall coverage analysis. The minimum coverage was used to reduce the number of 

positions that are not covered enough to give us a good SNP call. Because we required at 

least two bases of two different types for a SNP call, our minimum coverage was set at 4 

bases. Our maximum coverage was used to reduce paralogous misassembly. We chose 

our maximum cutoff by evaluating the range of values that will cover 99% of the 

positions (Poisson with average = 8.79X).

Our last criterion was that there could only be two alleles at a given position.

Since we are working with a diploid species and the genomic DNA was prepared from a 

single individual, only two alleles at a specific location is possible; the locations that 

contain more are likely sequencing errors or local paralogs. Therefore, we excluded any 

sites that had three different bases at the same site to further reduce the probability of 

base-call error, or paralogy, when identifying SNPs.
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4.4 SNP Analysis and Results

The Daphnia Genome Project produced 2.7 million reads with an average length 

of 1011 base pairs (bp) (774 after LUCY trimming). After reducing our dataset with our 

coverage cutoffs and variable types, we were left with over 89 million sites spanning 103 

scaffolds (Figure 21). After we applied our SNP criteria, we are left with a list of 

putative SNPs in the genome. We determined there were 207,197 putative SNPs giving 

us an average variation across the genome of 0.23% SNPs per analyzed site. The number 

of sites that were reduced along the pipeline can be seen in Figure 21. We developed 

various other scripts to analyze this data including: quantifying SNP types, variation

SNP Pipeline
Reference

103 Scaffolds 
113,923,482

Reads 
2,724,771 Reads

SNPs
207,197

Lucy Trim 
2,542,760

reduce to 
alignment

Amos
(AMOScmp)

Format reads to 
AMOS 

(tarchive2amos)

Apply SNP Criteria 
(coverageFilter)

89,972,009 
analysed sites

Text formatted alignment 
of reads to reference 
(SeqAlignGenerator) 

103,396,928

Figure 21: SNP Pipeline with 
numbers after each step
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across scaffolds, SNP variation in coding and non-coding regions, segmental SNPs, and 

segregation of simple sequence repeats.

4.4.1 SNP types

SNPs are comprised of various types based on the varying bases (Figure 22). 

Insertions and deletions make up one type of variation called indels. We identified 

90,592 indels or 43.7% of our SNP list. Another SNP type we detected was base 

changes: a/t, a/c, a/g, t/c, t/g, g/c. These can be grouped into transition (a/g, t/c) and 

transversions (a/t, a/c, t/g, g/c). Transitions make up 55,280 or 26.7% of SNPs. 

Transversions make up 61,325 or 29.6% of SNPs.

a. SNP Types in the N50 o f th e  b. SNP Types breakdown in the
Daphnia pulex G enom e ! N50 o f the Daphnia pulex G enom e

Indels
44%

Figure 22: Distribution of SNP types in the Daphnia pulex genome, (a) Distribution 
of Indels, Transitions (Ts), and Transversion (Tv), (b) The SNP types broken down 
into each of the various base changes.

4.4.2 Variation between locations

We were interested in looking at SNPs between two specified positions. We 

created a script to determine variation between lists of genomic regions such as coding 

regions, genetic markers, and variation over base pair window sizes.

We investigated the diversity of SNPs within and outside coding regions in the 

genome. Exons are regions that most likely code for proteins. Introns are the regions in
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the genome that are between exons in gene regions. Intergenic regions are regions that 

are between gene regions. We found that the exon regions in the genome have fewer 

SNPs than the average SNPs per genome. Exon regions have a SNP percent of 0.087% 

whereas the average over the entire genome is 0.2%. The amount of variation within and 

between coding regions can be viewed in Table 8.

% SNPs
Exon 0.087
Intron 0.125

Intergenic 0.122

Table 8: Percent SNPs in various coding regions: exons, introns, and intergenic regions.

We were also interested in whether SNPs were clustered throughout the genome. 

We scanned the genome at various window sizes to see if the genome had high or low 

SNP frequencies over several ranges. We sampled high, moderate and low SNP density 

regions using BLAST to assess if these regions were due to paralogous misassembly.

4.4.3 Removal of Homopolvmers and Microsatellites

Microsatellites are simple sequence repeats regions that are comprised of one, 

two, three, etc. base sequential repeats. Homopolymers are the sequential repeats of a 

single base. It has been stated that homopolymers and microsatellites have a higher level 

of mutations than other parts of the genome (Mahtani and Willard 1993). Consequently 

their heterozygosity level is expected to be high. We wanted to remove these regions 

from our analysis so we could obtain a better understanding of the variation levels of 

SNP in the genome. So we wrote scripts to remove sites between homopolymers and 

other microsatellites. The average size of a homopolymer or microsatellite was 

determined with an evaluation of the heterozygosity levels at differing lengths. This 

analysis can be read about in additional papers. After the removal of the homoploymer
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and microsatellites, the SNP analysis would give us the rates of variation outside these 

highly variable regions.

Single and Segmental Distributions

i Indels 
i '1930b

Figure 23: Single and segmental SNPs Distributions. This 
graph breaks down the amount of SNPs that are next to 
each other (segmental) and those that are only one location 
(single).

4.4.4 Sorting results into segmental and single variates

We also think segmental variations have a different rate than other regions in the 

genome. We, therefore, wrote a series of scripts to cluster sequential (2 or more) SNPs 

into single variation. We could then analyze the variation rates for each of the categories 

of SNPs (segmental and single). As well as giving us a better estimate of SNPs events 

(clustering segmental SNPs into a single event). We produced an output file that 

determined how many SNPs were in clusters of two, three, four, etc. as well. An 

overview of the distribution of single and segmental indels and bases can be seen in 

Figure 23.
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Figure 24: A breakdown of the excluded sites from our analysis 

4.5 Discussion

We assembled the trimmed sequence reads against the largest scaffolds containing 

50% of the sequence in the genome (N50). This included the first 103 scaffolds in our 

analysis. After applying all our requirements for excluding sites of paralogy and 

sequencing errors, we were reduced to less than a fourth of the sites (Figure 24). While 

exclusions were mostly due to undetermined sequence in the reference scaffolds (Ns), the 

effects of sequencing error and poor sequence quality were minimized with our initial 

trimming and rejecting of ambiguous sites. Therefore, the SNP calls reported here have a 

high probability of being true sites of variation.

We verified our analysis by checking some of our SNPs by blasting regions 

around SNPs to the scaffolds. We were able to identify these regions were the reference 

base by this method. We also checked some of the SNPs by using the AMOS 

visualization tool, bankViewer. We also checked a couple of the sites with PCR.

4.5.1 Criteria of Two bases

Since we required two bases of each SNP base then we are looking at an error rate 

for detected SNPs as one in 100 Mbp. For instance, a base with a quality score of 20 has
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a 1% probability of being an incorrect call. The probability of two independently 

sequenced, orthologous bases, each with a quality score of 20 having the same 

sequencing error is 0.0025%. If the average quality score in our data set was 20, we 

would expect over 600 incorrect SNP calls over the 24 million analyzed sites just based 

on sequencing error. However, after quality trimming, the average quality of base calls is 

much higher (-40), making the expectation of false SNP calls, based on sequencing error 

alone, less than 1 for our entire data set.

4.5.2 Paralogy filter

In order to reduce our paralogy positions in the genome, we set our maximum 

coverage for a specific position to be 16X. We were able to determine the average 

coverage of reads at each location. The average coverage using the LUCY-trimmed 

reads was 8.79 X. We were then able to determine the maximum coverage by using the 

Poisson distribution of the average coverage over the genome (Figure 25). Using this 

distribution, we determined the coverage value at which 99% of the genome would be 

covered at least once. This allowed us to arrive at a maximum coverage of 16X. Any 

coverage above this value would more likely be paralogous regions such as transposable 

elements and other misassemblies that could generate false SNP calls.
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Figure 25: Average sequence coverage for the largest 103 scaffolds. The arrow shows 
the coverage at which 99% of the distribution would be included and corresponds to 
xraax = 16. Regions with coverage above 16 were therefore excluded from SNP analysis.

4.6 Conclusion

Data from this analysis provides an initial pass at the putative SNPs in the 

Daphnia pulex genome. The pipeline was designed to be conservative in its designation 

of SNP calls. Future work will be done to analyze further the individual variations in the 

genome and the significance of them.

4.7 Future Work

We intend to do future analysis on this data and provide the reader with more data 

analysis. This can be viewed in a paper presented by Abraham Tucker.

SNPs between individuals would provide more interesting discoveries in SNP 

detection. Comparing The Chosen One with the IX covered Prince reads data set would 

provide us with an estimate of variation between strains.
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APPENDIX

OPUS DOCUMENTATION

Installation:

• Install Java's JDK on the computer
• Install mySQL on the computer.

• Follow the mysql instructions for installation including changing the root 
password (mysqladmin -u  root password ‘newrootpassword’)

• Set up a mysql username and password. Log into mysql as root (mysql -u  
root -p). Set up security measures and set up a new user replacing only 
username and password (keeping single quotes) with new usernames:

■ CREATE USER 'username'@ 'localhost' IDENTIFIED BY 
'password';

■ GRANT ALL ON *.* to ‘username’ @’localhost’;
• Install NCBI's blastall

• Set the user path to include the directory with blastall executable.
• Put Magenta’s OPUS jar file and lib directory in folder in which you would like to 

run the file.
• In order to run subsequent programs, Perl, csh, and tcsh must be installed on the 

computer, as well as these packages.
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Usage: Magenta OPUS

java -jar MagentaOPUS.jar
-U username (required arguments)
-P password (required arguments)
-D database (required arguments)
-f filel file2 (names of sources or filenames) (required arguments)
BLAST parameters (optional)
-lerat leratPercentage (optional)
-best epsilonDifference (optional)
-h (optional help)

Possible BLAST parameters:
-p blastType 
-e Evalue 
-F filter parameter 
-S strand

Detailed OPUS Usage Description:

Required Parameters:
The user must specify the username, password and database name that he/she 

wishes to connect to. This is the username and password for the mysql account. When a 
new database name is specified, the program will create the new database.

The filel and file2 name of sources or filenames to use in the comparison. The 
first time a filename is used as an argument the program adds information for this 
genome to the database using the filename (minus the extension) as the source name. 
Once the data is in the database, subsequent invocations will treat the - f  argument as a 
source (with or without the extension). These files should be in fasta format. If you use 
source names these names must already be in the database. In order to reuse files, the 
program should be run from the same directory and the same path and filename should be 
used. It is recommended that you rename your files if you want to use different BLAST 
parameters.

Possible BLAST parameters:
There are various different BLAST parameters that can be input (Bedell 2003). 

We have listed the ones that we have incorporated into our program. See blastall 
documentation for more detail.

-p blastType
The blast type parameter can be used to specify either blastn or tblastx. The default for 
this parameter is blastn for the OPUS program.

-e Evalue
The e-value will restrict the level of similarity in the BLAST hits. This value can be set 
as a minimum level of similarity. E-value is a number representing the probability that
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the match was chosen at random. Therefore, the lower the e-value input, the higher the 
chance that the sequence was not acquired by random chance. The blast default for this 
parameter is 1E1.

-F filterParameter
The fdter parameter can be set to help fdter complex sequences. This parameter will help 
extend matches. There are three possible fdter parameters: true (T), false (F), and 
masking parameters. True (default) turns filtering on. False turns filtering off. We often 
use the soft mask filter (mD -  blastn, mS - tblastx) which extends matches and is 
recommended instead of turning filtering off.

-S strand
The strand parameter determines how many strands the program will look at. There are 
three possible strand options: 1, 2, or 3. The 1 strand option will only look at the single 
top strand. The 2 strand option will look at the bottom strand (reverse complement 
strand) for similarity. The default is 3 which will search both strands.

Optional Parameters:

-lerat leratPercentage
The Lerat optional parameter, allows the user to use the Lerat method for identifying 
homology, instead of the reciprocal BLAST method. The Lerat method requires a 
minimum Lerat percentage cutoff for matches. If you use the Lerat optional parameter, 
the first fde (filel) in the -f command will be the query genome.

-best epsilonDifference
The best parameter allows the user to choose to separate the long syntenic blocks using 
our version of reciprocal best BLAST method. This will populate the best fields and 
reduce the multiple copy fields.

-h
This is the help command. Use this command to display the basic usage information. 

Examples:
java -jar MagentaOPUS.jar -U mhenley -P password -D Burk - f  

/home/mhenley/BurkGenomes/BurkAU1054.fsa 
/home/mhenley/BurkGenomes/BurkHI2424.fsa -e IE-10 -F mD

java -jar MagentaOPUS.jar -U mhenley -P password -D Burk -f 
/home/mhenley/BurkGenomes/BurkHI2424.fsa 
/home/mhenley/BurkGenomes/BurkAU1054.fsa -lerat 0.30 -F mD

java -jar MagentaOPUS.jar -U mhenley -P password -D Burk -f 
/home/mhenley/BurkGenomes/BurkAU1054.fsa
/home/mhenley/BurkGenomes/BurkHI2424.fsa -best IE-10 -e IE-10 -F mD
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Scripts

Annotation Package
The Annotation Package can be run with the script runRegionAnnotation.

Usage:
runRegionAnnotation <file> <path_nt_database>

Notes:
• file must have a .seq extension but the name must be entered without the 

extension.
• path_nt_database is the path to the directory holding the NT database on the 

computer. Download the NT database from NCBI to a directory on the computer.
• -h will give you usage help 

Required Programs:
blastFilter.pl, getAnnotations.pl programs in the AnnotationPackage folder.

Semi-paralog Package
The Semi-paralog Package can be run with the script runSemiParalogs.

Usage:
runSemiParalogs <pathToRequiredPrograms> <genomeNamel>

<genomeName2> <pathToFastasWithGenomeNamel and2>
Notes:

• Genome Names must be equal to those in the orthoPair and paraPair output file 
names.

• -h will give you usage help 
Required Programs:

semi-paralogFinder2.pl removeSingletons.pl, getFullGeneName.pl programs

In-out Paralog Package
The in-out paralog package will allow the user to differentiate different copy numbers 
(in-paralogs) of paralogs from similar copy number (out-paralogs).

Usage:
runlnOutParalogs <pathToRequiredPrograms>

<MagentaParaPairsGenomesAxA> <MagentaParaPairsGenomesAxB> 
<fastaFileA>

Notes:
• MagentaParaPairsGenomesAxA is a file that contains all the paraPair gene files 

from a single genome (A) against itself.
• MagentaParaPairsGenomesAxB is a file that contains all the paraPair gene files 

from a genome (A) to another genome (B).
• fastaFileA is the original genome (A) fasta file.

Required Programs:
in-out-paralogScript.pl, getFullGeneName.pl programs
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OPUS Header Scripts
Output header files for OPUS sequence files which contain individual sequence 
information.

Usage:
getHdrsOPUS <file>

Output:
file_ortho.hdr, file_para.hdr, file_uniqueSeq.hdr

Required Programs:
getSeqHdr (written by RDB)

100

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.


	University of New Hampshire
	University of New Hampshire Scholars' Repository
	Fall 2007

	Software tools for comparing genomic sequence
	Morel Henley
	Recommended Citation


	tmp.1520441287.pdf.Nq2KT

