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PREFACE

This document reports the levels of methyl chloride, methyl bromide, and 

methyl iodide that were produced by fungi in laboratory culture. Included are 

descriptions of the experimental procedures used to culture fungi, obtain pure 

isolates, and assay the fungi for methyl halide production. Table 1 lists the 

common terms used within this document.

Table 1: Common Terminology Used in this Document

Term Definition
halocarbon a chemical compound containing carbon and a halogen
halomethane a methane molecule (CH 4) minus a hydrogen atom plus a halogen atom

halogens
the chemical elements, fluorine (F), chlorine (Cl), bromine (Br), iodine (I), 
and astatine (At)

halide
a halogen anion; halogen atom with a negative charge (e.g. FI', C l ' , Br" 
or I")

C H 3 CI methyl chloride, also known as chloromethane
C H 3Br methyl bromide, also known as bromomethane

CH 3 I methyl iodide, also known as iodomethane
c h 3x X=CI, Br, or I

Gg 1 0 9  grams

Tg 1 0 12  grams

Pg 1 0 1§ grams
T, t tonne or metric ton = 1 0 0 0  kg
1 pptv 1 part per trillion by volume or 1 molecule gas/1 0 12 molecules air
1 ppt 1 picomol mol' 1 or 1 x 1 0 ' 12 mol' 1

flux the exchange of a gas between the soil or ocean and the atmosphere; 
calculated as the amount of gas /area /unit of time

sink a mechanism or reaction that removes a gas from the atmosphere; 
consumption of a gas

source
a mechanism or reaction that adds a gas to the atmosphere; production 
of a gas

budget an accounting of additions to and subtractions from the atmosphere for a 
gas
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ABSTRACT 

METHYL HALIDE PRODUCTION IN FUNGI

by

Gail D. Dailey 

University of New Hampshire, September, 2007

Methyl halide gases are a source of halogen radicals that can react with 

and destroy stratospheric ozone. The sources of methyl halide gases are both 

anthropogenic and biogenic, that is, they are human induced and they occur 

naturally. This research focused on the emission of methyl halides from fungi in 

the phylum Basidiomycota, which are one of the known biogenic sources.

Previous studies have measured methyl halide production and 

consumption in soils using field chambers. The objective of this study was to 

compare production from individual fungi in laboratory cultures to the field 

measured fluxes to examine whether fungi are a significant source of methyl 

halide emissions.

This study included fungi from four different ecosystems: an agricultural 

field, a temperate forest, a fresh water wetland, and coastal salt marshes in 

southern New Hampshire, USA. Fungal samples were collected from each site 

and cultured in the laboratory using tissue culture, wood bait, and direct soil

xii
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plating methods. Once pure isolates were obtained, the fungi were assayed for 

methyl halide production using cryotrapping-gas chromatography. Samples of 

headspace gas were extracted from flasks containing fungi grown in liquid 

media or soil substrate and measured on a gas chromatograph/electron capture 

detector (GC/ECD). By sampling individual fungi from different ecosystems 

and assaying them in media and soil substrate the halide ratio from fungi could 

be examined.

Two types of statistical analyses were used to determine the methyl 

halide fluxes: linear least squares fit of the methyl halide concentration vs. time, 

and a Bayesian model with Markov Chain Monte Carlo (MCMC) sampling. Both 

statistical methods calculated a slope of the flux for each flask. The fluxes were 

averaged by isolate, and then normalized to mass by dividing by fungal 

biomass. The Bayesian model provided a rigorous analysis of the data that 

could be compared to data derived from the traditional linear fit method in order 

to determine whether a linear regression fit causes an over-estimation of the 

production rate.

Methyl halide production was observed in fungi collected from all of the 

sites. Specifically, the highest levels of methyl halides were produced in all 

species of fungi isolated from salt marshes; the highest levels of methyl 

bromide were produced by basidiomycetes from all sites and zygomycete

xiii
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isolates from the freshwater fen; the non-basidiomycete fungi isolated from the 

freshwater fen and from the salt marshes produced the highest levels of methyl 

iodide.

Although the primary focus was methyl halide production in 

basidiomycetes, the results clearly show that the non-basidiomycete fungi are a 

potential source of methyl halide emissions that may represent a greater 

environmental significance than expected from basidiomycetes.

xiv
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CHAPTER 1

1.0 BACKGROUND ON ATMOSPHERIC METHYL HALIDES

The composition of the earth’s atmosphere contains a small percentage 

(0.04%) of trace gases that include organic halogen compounds (Schimel and 

Holland, 2003). Within this group of compounds are three methyl halides, methyl 

chloride (CH3CI), methyl bromide (CH3Br) and methyl iodide (CH3I), which are the 

focus of this study.

When chemical reactions involving methyl halides occur in the 

stratosphere, halogen radicals, chloride (Cl"), bromide (Br‘), or iodide (I') can be 

released. Here, they may react with and destroy ozone. The ozone layer in the 

stratosphere protects the earth from incoming radiation.

The sources of methyl halides to the atmosphere are both biogenic 

(natural processes) and anthropogenic (caused by human activities). While the 

anthropogenic sources of methyl halides can be controlled through regulations, 

such as the Montreal Protocol and the US Clean Air Act, a better understanding 

of the biogenic sources of methyl halides is required in order to accurately 

quantify the global atmospheric budget of these compounds and, therefore, the 

effect of anthropogenic emissions.

1
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1.1 Global Methyl Halide Budget

In order to calculate a budget for methyl halides on a global scale, we need 

to know the magnitude and distribution of the sources and sinks. To date, not all of 

the methyl halide sources and sinks have been identified. Estimates indicate that 

the global budget for methyl chloride and methyl bromide is out of balance 

because the known sinks are greater than known sources (Yvon-Lewis and Butler, 

1997; Reeves, 2003; Saltzman et al., 2004). The missing source (or sources) of 

methyl bromide has been estimated at 60-70 Gg yr' 1 [Gg=109 g] (Yvon-Lewis and 

Butler, 1997; Reeves, 2003), while “the combined emissions [of methyl chloride] 

from known sources account for about half of the modeled sink” (Keene, et al., 

1999).

According to the latest assessment panel of the U.N. Montreal Protocol on 

Substances that Deplete the Ozone Layer, the annual mean concentration for 

methyl chloride in the troposphere is about 550 pptv (pptv=parts per trillion by 

volume) (Clerbaux and Cunnold, 2006). The estimated global concentration for 

methyl bromide is about 10 pptv (Lobert et al., 1995; Yvon-Lewis and Butler, 1997; 

Reeves, 2003). The tropospheric levels of methyl iodide are the lowest of the 

three methyl halides and concentrations have been estimated at 0.2-5 pptv 

(Dimmer et al., 2001) and <0.005-5 pptv (Redeker et al., 2000).

2
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1.2 Historical Record

One approach that is often used to determine methyl halide levels is to 

examine the historical atmospheric record that exists inside polar firn and ice 

core air. Fim is defined as “the porous layer of compacted snow overlying an ice 

sheet” (Trudinger et al., 2004). Using the polar firn and ice core air data, 

researchers build models that can estimate past concentration levels and trends.

Halocarbons that were trapped inside polar firn air in Antarctica showed 

that the rate of increase in atmospheric methyl bromide grew from 0.01 pmol 

mol' 1 yr"1 to 0.05-0.06 (+/- 0.01) pmol mol' 1 yr' 1 from the early 1900’s to the 

1970’s and 1980’s (Butler et al., 1999). The methyl chloride concentrations 

“were significant in the deepest samples and increased gradually toward the 

surface” (Butler et al., 1999). In another study, ice core measurements of 

methyl bromide from West Antarctica were consistent with modeled estimates 

of the preindustrial atmospheric budget (Saltzman et al., 2004).

In a similar model analysis using Antarctic firn data, Reeves (2003) 

concluded after finding the same imbalance in the methyl bromide budget that 

calculations of the known sinks must be overestimated, the sources must be 

underestimated, or there is an unknown biogenic source. This uncertainty 

demonstrates that the natural cycling of these compounds is not well understood.

3
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1.3 Anthropogenic Sources of Methyl Halides

The historical record supports the view that methyl halide levels have 

increased as a result of human influence, particularly following industrialization. 

The anthropogenic (human activities) sources that cause methyl halide 

emissions include biomass burning, automobile engine exhaust, and fumigation 

for agriculture.

Biomass burning is considered one of the major anthropogenic sources of 

ozone-depleting gases. When forests are burned to clear land for agriculture and 

development or when plant material is burned for fuel, the combustion of organic 

matter releases carbon-based gases including methyl chloride and methyl 

bromide into the atmosphere (Levine, 2002). Because chlorine is a component 

of all biomass (Graedel and Keene, 1995) biomass burning is a major source of 

methyl chloride in the atmosphere (Lobert et al., 1999). Worldwide biomass 

burning releases significant amounts of methyl chloride (1100-1510 Gg yr'1) and 

methyl bromide (19-24 Gg yr'1); however, methyl iodide emissions from biomass 

burning (3.4-8.5 Gg yr'1) are not as large (Andreae et al., 1996). It should be 

noted that while the cause of most biomass burning is anthropogenic, it can also 

be the result of natural combustion from lightning.

Automobile exhaust is another combustion source of methyl halides.

Methyl bromide emissions caused by burning leaded gasoline have varied annual 

global estimates published by the World Meteorological Organization (WMO) of

4
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0.5-1.5 kT yr' 1 and 9-22 kT yr' 1 (Penkett et al., 1995), 1.5-3.0 kT CH3Br yr' 1 (Baker 

et al., 1998), and 0-10 Gg yr' 1 (Warwick et al., 2006). [Note: kT=Gg.]

For many years, methyl bromide was used as an agricultural and domestic 

fumigant to kill pests. As a result of the Montreal Protocol agreement and the US 

Clean Air Act, a reduction in the commercial use of methyl bromide was 

necessary and a phase-out was implemented as of January, 2005 (with critical 

use exceptions in the US). The global methyl chloride and methyl bromide 

budget estimates continue to be revised as more research becomes available. 

Levels must be monitored since regulations restricting anthropogenic emissions 

are now in effect.

1.4 Natural Sources

The natural sources of methyl halide emissions include abiotic reactions 

and production in biological organisms (biogenic sources). The following 

sections describe some of these natural sources.

1.4.1 Abiotic Production of Methyl Halides

There is evidence that methyl halides are produced abiotically, through 

natural geochemical processes. Examples of abiotic sources include weathering 

of rock (Gribble, 2003) and volcanic gas (Frische et al., 2006). Methyl iodide is 

formed in oceans by photochemical reactions with dissolved organic carbon (Bell

5
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et al., 2002). Seawater experiments conducted by Moore (2006) showed that 

variable amounts of methyl iodide and methyl bromide were produced by an 

unknown mechanism when seawater was stored in polyethylene containers. 

Similarly, methyl chloride, methyl bromide, and methyl iodide were produced 

when seawater was stored in polyvinyl fluoride containers and exposed to 

sunlight.

Keppler et al. (2000) found that methyl halides were produced during 

oxidation of organic matter in soils without the aid of microbes. Their study 

showed that methyl halide production depended on the organic matter content 

and the presence of halide ions and ferrihydrite (Fe+3) in the soil. Production 

increased when halide ions and amounts of ferrihydrite increased; whereas, 

when they were absent, methyl halides were not produced.

Abiotic processes that remove methyl halides (known as “sinks”) include 

reactions with hydroxyl (OH) radicals, which are considered a major sink for 

methyl chloride and methyl bromide (Graedel and Keene, 1995; Redeker et al., 

2000; Harper, 2000). Abiotic removal processes for methyl bromide and methyl 

iodide also include chemical reactions with chloride ion (Cl') in the ocean (Bell et 

al., 2002; Moore, 2006).

6
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1.4.2 Biogenic Sources of Methyl Halides

As the potential sources of ozone-destroying compounds were being 

identified in the 1980’s, the need to understand the mechanisms involved in 

methyl halide biosynthesis took on environmental significance.

Methyl chloride and methyl bromide production have been identified in 

Fomes cultures by Hutchinson (1971) and Cowan et al. (1973). In 1982, White 

investigated the biosynthesis of methyl chloride in a wood-decay fungus, 

Phellinus pomaceus (Pers.) Maire. (Phellinus pomaceus is also known by the 

synonym Fomes pomaceus.) Harper (1985) then reported methyl halide 

production in P. pomaceus grown in flask cultures that were supplemented with 

halides. Subsequent studies of fungal metabolism indicated that production of 

methyl chloride probably occurred in more species of fungi than Phellinus and 

also in higher plants (Harper et al., 1989; Watling and Harper, 1998). 

Researchers continued to investigate the production of methyl chloride in fungi, 

as well as other methyl halides and in other living organisms.

1.4.3 Methvlation

A methyl chloride transferase enzyme was identified as the biosynthetic 

mechanism involved in the biogenic production of methyl chloride (Wuosmaa

7
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and Hager, 1990). White (1982) suggested that S-adenosylmethionine (SAM) 

was the methyl donor in the biosynthesis of methyl chloride in fungal cultures. 

Several researchers agree that during the methylation process, S-adenosyl-L- 

methionine (SAM) serves as a methyl (CH3) donor and the chloride, bromide, or 

iodide anions are methylated (added to the methyl group) by a catalyst, methyl 

chloride transferase (MCT) (Attieh et al., 1995; Ni and Hager, 1998; Saxena et 

al., 1998).

However, in 2003, Hamilton et al. proposed that methyl chloride 

production in senescent and dead plant leaves is an abiotic, rather than an 

enzymatic process that involves plant pectin and heat. Under this scheme, 

chloride methylation occurs when pectin (a component of plant cell walls) 

serves as the methyl donor. They estimated a global annual production rate 

of 0.03-0.64 Tg CH3CI yr' 1 between latitudes 30°N and 30°S.

1.4.4 Genetic Mechanism

The genetic mechanism responsible for methyl halide production was 

recently discovered in Arabidopsis thaliana plants (Rhew et al., 2003). The gene, 

known as the “harmless to ozone layer” (HOL) gene, encodes the 

methyltransferase enzyme that catalyzes the methylation of halide ions in plants. 

The gene is believed to be common in vascular plants (Rhew et al., 2003).

Similar gene sequences have been found in Prochlorococcus phytoplankton and

8
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are being investigated since methyl iodide production in laboratory cultures of 

this species has been confirmed (Smythe-Wright et al., 2006).

1.4.5 Why Do Organisms Produce Methyl Halides?

The reason for biogenic methyl halide production is unclear. Methyl halide 

emissions may be a mechanism for plants to detoxify their system of halides; 

however, Manley (2002) found that the levels of chloride in salt marsh plant 

tissue remained high despite methyl chloride production. Likewise, Rhew et al. 

(2002) noted that based on the methyl halide fluxes they observed in California 

salt marshes, only small amounts of Cl' and Br' would be removed from the 

plants.

On the other hand, the production of methyl halides by plants may serve 

no function, and may simply be a metabolic by-product (Manley, 2002). 

Experiments in simulated rice paddies showed that rice plants volatilized less 

than 1% of chlorine or bromine as methyl chloride or methyl bromide, while over 

90% of iodide that was stored in the plant was volatilized as methyl iodide 

(Redeker et al., 2004). This suggested to the researchers that rice plants are 

able to maintain constant levels of chloride and bromide in their tissues.

Another reason for methyl halide production in plants may be to provide 

a chemical defense mechanism (Harper, 2000). Seaweeds (marine algae) 

may produce methyl halides as a form of natural pesticide to prevent predation

9
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(Gschwend et al., 1985; Attieh et al., 1.995; Gribble, 2003). There is more 

evidence to support the view that methyl halide production may be related to 

the decay of plant matter. Most plants contain halogens in different amounts; 

in fact, chlorine is required by plants for photosynthesis (Kabata-Pendias and 

Pendias, 1992), and it is found in high amounts. (See Table 1-1: Halogen 

Concentrations in Soils and Plants.)

Soil microorganisms and fungi are known to accumulate large amounts of 

iodine, and soil bacteria release iodine when breaking down organic matter 

(Kabata-Pendias and Pendias, 1992). Lee-Taylor and Holland (2000) proposed 

litter decomposition as a source of methyl bromide emissions. Using a model 

based on a range of bromine content in litter (0.065-16 mg Br- kg' 1 dry matter) 

and three litter fractions (woody, aboveground fine, and belowground), they 

calculated methyl bromide emissions in the range 2.5-37 kT CHsBr yr' 1 from 

decaying vegetation.

In addition, an examination of the chemical forms of chlorine by Myneni 

(2 0 0 2 ) showed that senescent and humified plant material (the mineralized form 

of organic matter) contained organo-CI compounds. Because the chlorine- 

containing organic molecules in humics are biologically stable and recalcitrant, it 

is possible that halogenation helps stabilize and store carbon (Myneni, 2002). As 

noted in Keppler et al. (2000), methyl chloride production during abiotic oxidation 

of organic matter depended on the presence of Fe-oxyhydroxides in the soil.

10
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If decaying vegetation is a source of methyl halides, then the microbes 

involved in decomposition are implicated. Lignin molecules, which provide 

structure and strength to plants, are an example of a recalcitrant plant material. 

Several white-rot fungi and some bacteria are able to degrade lignin (Palmer and 

Evans, 1983). Methyl halides have been found to serve as methyl donors in 

fungal metabolism (Harper et al., 1989) and methyl halide production is possibly 

part of the lignin degradation process (Harper et al., 1989; Redeker et al., 2004).

Studies have shown that microbial abundance, in particular fungal 

biomass, is greatest at the soil surface, probably due to the availability of 

resources (Fierer et al., 2003). Although the study did not examine methyl 

chloride specifically, Myneni (2002) found that “halogenation of organic 

molecules was pronounced” in soil samples collected from the surface, which 

suggested that “soil fauna and flora influence halogenation reactions” (Myneni 

2002). Yet, studies of methyl halide emissions in rice paddies found “no 

significant correlation between available organic matter and methyl chloride 

production” (Redeker et al., 2000).

1.4.6 Methyl Halides from Plants

The biogeochemistry of chlorine, bromine, and iodine is similar. Each of 

the halogens is soluble, easily transported by water and leached from soils; all 

three can be taken up by plants. Halophytes and marine plants, in particular, can
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accumulate large amounts of halogens in their plant tissue, especially the leaves. 

Table 1-1 lists the concentrations of halogens found in soils and plants.

Table 1-1: Halogen Concentrations in Soils and Plants. (Source: Kabata-Pendias & 
Pendias, 1992 unless otherwise noted); dw=dry weight; ppm=parts per million.

Halogen Soils (ppm dw) Plants (ppm dw)

Chlorine 35-20,000
200 -  10,000 mg Cl" kg"1 dw (Harper, 1985);
700 -  23,000 mg Cl" kg"1 dw (Hamilton et al., 2003); 
1,300 -  5,500 ppm dw potato tubers

Bromine 5 - 4 0
<40 ppm dw plants;
0.065 mg kg" dw temperate deciduous forest litter; 
2 - 3 6  ppm dw mushrooms

Iodine <0.1 -  10
0 . 4 - 1 6  pM in plant tissue (Harper, 2000); 
2.8 -  10.4 ppm dw US garden vegetables; 
5.2 -  9.5 ppm dw mushrooms

As indicated in Table 1-1, the chloride concentration in plants is highly 

variable. In their review of wood-rotting fungi, Watling and Harper (1998) noted 

that the mean chloride content in wood ranged from 8-2,535 mg Cl' kg"1 dw (dry 

weight) in temperate species and 9-5,100 mg Cl' kg' 1 dw for tropical wood 

species. Factors such as genetics, soil conditions, and climate contribute to this 

variability.

In 1995, Attieh et al. purified and characterized a methyltransferase 

enzyme in Brassica oleracea. These plants had been shown to produce high 

levels of methyl halides (Attieh et al., 1995; Saini et al., 1995). Subsequently, 

Gan et al. (1998) observed that plants from the Brassicaceae family (rapeseed, 

broccoli, cabbage, and wild mustard) emitted methyl bromide gas. Plant 

emission rates were linearly correlated to plant bromide content. The results

12

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



indicated that “the aboveground part of the plants” produced and released methyl 

bromide (Gan et al., 1998). Similarly, Rhew et al. (2002) proposed that the 

aboveground plant material was the likely source of emissions that were 

observed in California salt marshes.

On a larger scale, Moore et al. (2005) made tower measurements above 

the forest canopy (36 m) and at ground level in the Brazilian rainforest. Methyl 

chloride concentrations of 785 ppt at 36 meters high and 673 ppt at ground level 

suggested vegetation or a vegetation-related source.

Rhew et al. (2001) measured methyl chloride and methyl bromide 

emissions from three California shrubland sites. Their estimate of net global 

uptake from shrublands was <1 Gg (0.7 +/- 0.2) CHsBr yr'1and <20 Gg (15 +/- 6 ) 

CH3CI yr'1. The sites appeared to have competing consumption and production 

processes. Methyl chloride and methyl bromide emissions were associated with 

living and decayed plant biomass, but consumption occurred in soils and showed 

some relationship to soil moisture content (Rhew et al., 2001).

Methyl halide emissions from tropical plants were detected in the 

atmosphere inside a tropical rainforest glasshouse at the Tsukuba Botanical 

Gardens in Japan (Yokouchi et al., 2002). Flux chambers on the soil and Teflon 

bag enclosures on plants were used to measure methyl chloride. The 

researchers measured uptake by the soil in the range of 0 .2- 0.6  pg m '2 h‘1, and
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average emissions of 0.4 (jg CH3CI g dry lea f1 h' 1 from nine plants. They also 

made flux measurements at two forest sites and found 0.15-3.7 pg CH3CI g dry 

le a f1 h '1, which supported their glasshouse measurements. From this study, a 

global annual methyl chloride emission rate of 0.82 Tg yr' 1 from tropical forests 

was estimated.

The diurnal cycles observed in methyl halide emissions from saltmarsh 

environments (Rhew et al., 2002; Drewer et al., 2006) and peatlands (Dimmer et 

al., 2 0 0 1 ) have also indicated that plants may be a source for methyl halides. 

Methyl chloride and methyl iodide emissions were also measured in potted 

tropical ferns (Saito and Yokouchi, 2006). Surprisingly, the ferns showed diurnal 

cycles in methyl halide emissions but the cycles were different for two plants of 

the same genus. In addition, the diurnal variations in methyl chloride and methyl 

bromide were correlated with each other, suggesting a similar production 

mechanism (Saito and Yokouchi, 2006).

1.4.7 Methyl Halides from Oceans. Algae, and Phvtoplankton

The ocean is both a source and sink for methyl halides (Moore, 2006). 

Biogenic sources that have been found in the marine environment include 

Antarctic macroalgae (Laturnus et al., 1998), marine red algae Endocladia 

muricata (Wuosmaa and Hager, 1990), and plankton (Oram and Penkett, 1994; 

Scarratt and Moore, 1996; Smythe-Wright et al., 2006).
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Global emissions from the oceans are estimated at 460 Gg Cl yr"1 for 

methyl chloride (Khalil eta l., 1999) and 56 Gg ChhBryr"1 (Yvon-Lewis and 

Butler, 1997; Yvon-Lewis et al., 2002). Smythe-Wright et al. (2006) estimated 

global methyl iodide emissions of 4.3 x 109mol yr' 1 [4.3 Gg CH3I yr'1] from the 

North Atlantic Ocean at latitudes below 40° based on their measurements of 

methyl iodide production in the picoplankton species, Prochlorococcus.

Cohan et al. (2003) used a three-layer model to calculate a flux of 

methyl iodide in the Southern Ocean. Average mixing ratios in the marine 

boundary layer were adjusted for seasonal variability (0- 1.0 km above the 

ocean for spring and autumn; 0.9 km in summer, and 1.1 km in winter). The 

free troposphere layer was set at 1.1-10 km above the ocean. The resulting 

calculations showed a global annual oceanic flux of methyl iodide between the 

marine boundary layer and the free troposphere ranging from 1.9 x 10'6 g m '2 

d"1 (winter) to 5.2 x 10' 6 g m '2 d' 1 (summer). The researchers did not 

extrapolate a global atmospheric flux from these data due to seasonal and 

latitudinal variability and uncertain losses due to photolysis.

In another study, methyl chloride and methyl bromide production was 

measured in three phytoplankton species, Phaeodactylum tricomutum,

Phaeocystis sp., and Thalassiosira weissflogii (Scarratt and Moore, 1996). The 

production rates observed in their laboratory cultures are shown in Table 1-2.
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Table 1-2: Methyl Chloride and Methyl Bromide Production Rates in Marine Phytoplankton 
Grown in Laboratory Cultures. Rates have been normalized to biomass using average 
chlorophyll a or utilized nitrate (Scarratt & Moore, 1996).

Normalized Method mol CH3CI y'1 mol Ch^Br y"1

chlorophyll a -1.3 x 108 -  4 x 109 -1.3 x 107 -  5.5 x 108

Nitrogen 2.0 x 108 -  1.3 x 109 1.6 x 107 -  9.5 x 107

The processes in the ocean that remove methyl halides from the 

atmosphere (sinks) are abiotic chemical reactions (Moore, 2006) and 

consumption of methyl bromide by bacteria (King and Saltzman, 1997). For 

example, the marine bacterium, Leisingera methylohalidivorans, grows on methyl 

bromide and uses it for a carbon source (Schaefer et al., 2002).

1.4.8 Methyl Halides from Freshwater Wetlands

Environments with saturated soils have been identified as sources and 

sinks of methyl halides. Studies have measured methyl halide fluxes in 

peatlands (Dimmer et al., 2001), fens and bogs (Varner et al., 1999; White et al., 

2005), and rice paddies (Muramatsu and Yoshida 1995; Redeker et al., 2000; 

Redeker et al., 2004).

Methyl chloride and methyl bromide mixing ratios in two freshwater 

wetland sites in southern New Hampshire were measured by Varner et al.

(1999). From these measurements they estimated global fluxes of 48 Gg yr' 1 

for methyl chloride and 4.6 Gg yr"1 for methyl bromide. Additionally, a
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relationship between temperature (at a 10-cm depth in the peat) and methyl 

halide flux was observed. Previous studies at the same site identified a 

similar relationship between temperature/methane and DMS (dimethyl 

sulfide) flux, which was considered to be microbially mediated (Kiene and 

Hines, 1995; Varner et al., 1999).

The results of further flux chamber measurements and a vegetation 

removal experiment at this fen indicated that the methyl bromide flux is highly 

variable and appears to depend on environmental conditions, such as vegetation, 

microbial community composition, and peat moisture (White et al., 2005).

Based on measurements made in seven peatland sites in Co. Galway, 

Ireland, Dimmer et al. (2001) calculated global annual fluxes of 5.5, 0.9, and

1.4 Gg yr' 1 for methyl chloride, methyl bromide, and methyl iodide, 

respectively. The annual daytime methyl iodide flux (123 x 10"4 g m'2 yr'1) from 

their coastal marsh site was higher than the other halocarbons measured.

These researchers also observed that the fluxes occurred in a diurnal cycle 

and were greater during the growing season.

Rice paddies are another source of methyl halides (Muramatsu and 

Yoshida, 1995; Redeker et al., 2000) that has been investigated. Estimated 

global emissions of 2.4-4.9 Gg CH3CI yr'1, 0.5-0.9 Gg CH3Bryr"1, and 16-29 Gg 

CH3I yr' 1 from rice paddies were made by Lee-Taylor and Redeker (2005).
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1.4.9 Methyl Halides from Salt Marshes

Methyl chloride and methyl bromide emissions in two southern California 

salt marshes have been estimated at 170 Gg CH3CI and 14 Gg CH3Br yr' 1 (Rhew 

et al., 2000). Studies showed that methyl chloride and methyl bromide emissions 

had strong seasonal and spatial variability. In addition, temperature, sunlight, 

vegetation types were also important factors (Rhew et al., 2002). In another study 

of California salt marshes, Manley et al., (2006) estimated a methyl iodide rate of

1.2 x 104 g CH3I yr' 1 from salt marsh emissions.

The methyl halide production in salt marshes may explain the higher 

emissions reported in coastal waters. The ocean has been considered a net sink 

for methyl bromide because of undersaturation in the open ocean and 

supersaturation in coastal waters (Sasmundsdottir and Matrai, 1998; Sturrock et 

al., 2003). Similarly, concentrations of methyl iodide were higher in coastal waters 

in the North Atlantic than those in the deeper ocean (Ballschmiter, 2003).

The seasonal and diurnal cycles observed in methyl halide emissions 

from salt marshes suggests that plants (or plant-mediated processes) are the 

source in these environments (Rhew et al., 2002; Drewer et al., 2006).

Drewer et al. (2006) measured methyl bromide fluxes in a salt marsh in 

Scotland using static chambers and calculated global methyl bromide 

emissions of 0.5-3 Gg yr'1. They found that net emissions of methyl bromide
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had high spatial and diurnal variability; emissions were strongly associated 

with sunlight and vegetation. There was no correlation with emissions and 

water table and only slight positive correlation with temperature.

It has been demonstrated that the salt marsh plant known as smooth 

cordgrass (Spartina alterniflora Loisel.) oxidizes hydrogen sulfide gas (H2S) to 

less toxic sulfur species (Lee et al., 1999; Rhew et al., 2002). Spartina 

alterniflora is a facultative halophyte; it can tolerate conditions of high salinity and 

flooding. Spartina plants have adapted to the salt marsh environment by 

developing aerenchyma, spongy tissue in the plant stems (Seago et al., 2005). 

The aerenchyma allows chemical gases, such as methane, oxygen, and carbon 

dioxide to pass between the leaves and the roots (Teal and Kanwisher, 1965) 

and be transported from the soil to the atmosphere (Le Mer and Roger, 2001). 

Thus, methyl halide emissions in the salt marsh may be transported from the 

sediments by way of the plant aerenchyma (Rhew et al., 2002).

The halocarbon emissions from Irish peatland sites also showed a diurnal 

cycle and indicated distinct differences in production between plant types. Not 

only did emissions vary among the methyl halides but also between the plant 

species. In contrast to the salt marsh plants, higher emissions of methyl chloride 

in peatlands came from plants without lacunae (air spaces that are formed in 

plants with aerenchyma tissue) rather than plants with lacunae (Dimmer et al.,

2001).
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Although methane fluxes showed strong correlations with temperature and 

water table level in a temperate fen (Treat et al., 2006) and a relationship 

between temperature and methyl halide flux was also observed, there are 

conflicting reports of correlations between methane flux and methyl halide flux. 

Rhew (2002) found no correlation between methyl halide emissions and methane 

emissions in California salt marshes, yet reported a positive correlation between 

methyl chloride and methyl bromide fluxes and methane emissions in a northern 

Alaskan coastal tundra (Rhew et al., 2007) where these gases were consumed.

Methane had no effect on the uptake of methyl bromide in soil incubation 

experiments by Hines et al. (1998). Likewise, Redeker et al. (2000) found 

differences between the methane emission profile and methyl halide emissions, 

which suggest that methane and methyl halides are products of different 

biological processes.

In a recent study by Manley et al. (2007), methyl halide emissions were 

measured in greenhouse-grown mangrove plants. Mangroves are halophytes 

that grow in tropical coastal areas. From the results of this study, global 

emissions of 12 Gg CH3CI yr'1, 1.3 Gg CH3Br yr'1 and 11 Gg CH3I yr'1 from 

mangroves were calculated.
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1.4.10 Methyl Halides from Bacteria and Soil

Research has shown that soils are a sink for methyl bromide (Shorter et 

al., 1995; Serpa et al., 1998; Varner et al., 1999; Varner, 2000) and methyl 

chloride (Moore et al., 2005). Based on incubation experiments of soils from 

various locations, a global methyl bromide sink estimate of 42 ± 3 Gg yr'1 was 

made by Shorter et al. (1995). A study of methyl chloride fluxes from the 

rainforest in Brazil indicated that the forest floor acted as a sink for methyl 

chloride. Using static flux chambers, Moore et al. (2005) measured average 

CH3CI uptake in the range of 18-161 pmol m'2min'1).

The mechanism of methyl bromide consumption in soils has been 

attributed to bacteria (Oremland et al., 1994; Hines et al., 1998; Varner et al., 

1999; Goodwin et al., 2001). Varner (2000) observed that uptake of methyl 

bromide was greatest in the 0-5 cm soil layer, and activity was affected by 

temperature and moisture. In addition, after sterilizing the soils with antibiotics 

and autoclaving, methyl bromide uptake was inhibited (Hines et al., 1998).

Researchers have identified several strains of bacteria that use methyl 

chloride (Coulter et al., 1999) or methyl bromide (Miller et al., 1997; Connell 

Hancock, et al., 1998) as a sole carbon source. Goodwin et al. (2001) 

observed methyl bromide consumption at tropospheric levels by 

methylotrophic and methanotrophic bacteria in culture. Harper et al. (2000) 

found a strain of soil bacteria that converts methyl bromide to methyl chloride
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in a process called transhalogenation, which may represent another significant 

methyl bromide sink.

In 2003, Varner et al. reported net production of methyl bromide in 

temperate forest soils and indicated that fungi may be the responsible source. 

Measurements were made in College Woods, Durham, NH using field 

enclosures, and soil samples were collected and incubated in the laboratory.

The methyl bromide flux measurements made by these investigators ranged 

from -3 .0  to +4.0 pg CHsBr m'2 d‘1 (Varner, 2000; Varner et al., 2003).

The net flux measurements of methyl halides are a result of competing 

production and consumption processes by different mechanisms and organisms 

within the soil or sediment ecosystem (Rhew et al., 2001; Varner et al, 2003; 

White et al., 2005). Field studies using chamber measurements have shown 

high spatial and temporal variability in methyl halide emission rates. The 

emission rates were associated with various environmental conditions including 

light level (Dimmer et al., 2001), vegetation cover (White et al., 2005; Rhew et al.,

2002) and plant species (Saini et al., 1995; Rhew, 2000), temperature (Varner et 

al., 1999), season (Rhew, 2000; Varner et al., 1999), and ground water level 

(White et al., 2005).
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1.4.11 Methyl Halides from Fungi

Fungi have been investigated as a source for methyl halide emissions 

(Harper, 1985; Watling and Harper, 1998; Harper, 2000). Lee-Taylor and 

Holland (2000) calculated a rate of 0.5-5.2 Gg yr'1 (1.7 Gg yr'1 geometric mean) 

as the potential methyl bromide flux from the decay of aboveground woody litter 

by fungi. Watling and Harper (1998) estimated global methyl chloride emissions 

of 160 Gg yr'1 by fungi in all forest types.

Table 1-3 lists the estimates of global methyl halide emissions from fungi 

that have been calculated by several authors.

Table 1-3: Global Methyl Halide Emissions from Fungi. A global emission estimate from 
ectomycorrhizal fungi was not calculated by Redeker et al. due to the variability of CH3CI, 
CH3Br, and CH3I conversion in species tested.

Source Methyl Chloride Methyl Bromide Methyl Iodide Reference

Temperate forests.
(excluding
Australia)

38.7 Gg CH3CI yr'1 - -
Watling &
Harper
(1998)

All forest types 162.7 GgCH3C ly r'1 - -

Terrestrial wood- 
decay fungi 100 Gg Cl yr'1 - - Khalil et al. 

(1999)

Above-ground 
woody litter 
decomposition by 
wood-rot fungi

- 0.5-5.2 Gg CH3Br 
yr'1

-

Lee-Taylor 
& Holland 
(2000)

Ectomycorrhizal
fungi

0.003-65 pg CH3CI 
g'1 dw fungi day'1

0.001-3 pg CH3Br 
g'1 dw fungi day'1

0.02-12 pg CH3I 
g'1 dw fungi day'1

Redeker et 
al. (2004)

Moore et al. (2005) measured a methyl chloride concentration of 843 ppt 

(1.5 times ambient levels) directly near a polypore growing on a tree in Brazil. The
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majority of fungi species investigated for production of methyl haiides have been 

polypores. However, over 1200 known polypore species remain untested for 

methyl halide emissions (Lee-Taylor and Holland, 2000).

1.5 Overview of Fungi

Fungi comprise a separate biological kingdom because of their unique 

characteristics. Although some fungi may look like plants, they do not carry out 

photosynthesis. They are heterotrophs; that is, they cannot produce their own 

food but obtain it from an external source. Fungi perform a critical role as 

decomposers in the environment, functioning wherever there is an opportunity 

and under a variety of conditions. These opportunists exist in nearly every habitat 

on earth, including many harsh environments. Their presence can be detrimental, 

causing human and plant diseases, or they can be beneficial, producing 

important drugs like penicillin and cyclosporine (Hodge and Palmer, 2006).

The most readily recognized fungi are the basidiomycetes; these are the 

typical capped mushrooms that are associated with the forest. The remaining 

fungal phyla contain species that are more inconspicuous and difficult to see 

without microscopic magnification. Although these fungi do not form large fruiting 

structures, they  a re  very  com m on in nature.

There are thousands of known species of fungi; in fact, many fungi remain 

unidentified (Hawksworth, 2001; Frey, 2002), and the current estimate of 1.5
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million species continues to be discussed. Gams (2007) estimated “3,300 

currently known species of soil fungi”. Researchers can now use molecular 

techniques to assess species diversity and classify fungi. O’Brien et al., (2005) 

estimated global species richness of soil fungi in the range of 3.5 to 5.1 million 

after extracting DNA from soil and litter samples in a temperate forest.

Terrestrial ecosystems can contain a large amount of fungal biomass. For 

example, in a northern hardwood forest in New Hampshire, Taylor et al. (1999) 

calculated active fungal biomass in the range of 41-795 mg m'2 forest floor 

organic matter. Clearly, the prevalence of fungi, the potential number of species, 

and the amount of fungal biomass has a significant impact on the earth’s 

environment.

1.5.1 Fungi in Salt Marshes

Many species of fungi inhabit salt marshes. However, the larger, more 

visible fruiting bodies that are typical of basidiomycetes are uncommon in salt 

marsh environments. For example, the marine basidiomycete Nia spp., which 

have been isolated from submerged horsehair baits (Rossello et al., 1993) and 

the salt marsh plant Spartina maritima (Curtis) Fernald (Barata et al., 1997), have 

fruiting bodies under 5 mm in diameter. The Puccinia species, also found on salt 

marsh plants, Spartina alterniflora, (Gessner and Kohlmeyer, 1976) is a rust 

fungus. Its fruiting bodies are smaller than 2.5 mm. The most common types of 

fungi associated with decomposing salt marsh grasses, such as Spartina spp.,
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are ascomycetes (Gessner and Kohlmeyer, 1976; Castro and Freitas, 2000;

Newell et al., 2000).

Because the dead leaves of Spartina are not abscised but remain 

attached to the plant, fungal production occurs on the standing decaying plant 

(Newell et al., 2000). Castro and Freitas (2000) studied leaf decomposition of 

Spartina maritima, and found that fungal activity was greater before leaf fall.

They suggested that bacteria take over the decay process once the leaves fall to 

the ground. However, this may not be the case, according to Newell (2003). 

Instead, a shift in fungal community structure may be taking place on the 

sediment (Newell, 2003). Or, there may be an ecological interaction between the 

bacterial and fungal decomposers of Spartina (Buchan et al., 2003).

1.5.2 Mycorrhizal Associations in Marine Fungi

The success of plants living in harsh environments may be due to 

mycorrhizal associations, which are plant-fungi symbioses that can provide the 

plant with nutrients. Thus, it is not unusual that similar plant-fungi interactions are 

found in salt marshes. Mason (1928) first described the presence of mycorrhizal 

fungi in the roots of salt marsh plants. The mycorrhizae may enhance oxygen 

uptake and reduce salt stress in the plants (Hyde et al., 1998). Arbuscular 

mycorrhizae form associations with plants located in the higher zones of the marsh 

where species, such as Spartina patens and Distichlis spicata occur (Burke et al.,
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2003). Muhsin and Booth (1986) documented the presence of several species of 

fungi on inland salt marsh halophytes (salt tolerant plants) in Manitoba, Canada. 

The association that mycorrhizal fungi form with salt marsh plants suggests that 

the fungus has developed a tolerance to flooding. However, salinity has been 

shown to have a negative affect on the growth of mycorrhizae and its ability to 

infect halophytes, such the sea aster plant, Aster tripolium L. (Carvalho et al.,

2003).

1.6 Investigation of Fungi as Potential Source of Methyl Halides

Since 1994, research on the cycling of methyl chloride and methyl 

bromide has been conducted in upland soils, temperate forests, agricultural 

fields, wetlands, and coastal salt marshes located in southeastern New 

Hampshire (see previously published works by Shorter et al., 1995; Hines et 

al., 1998; Varner et al., 1999a; Varner et al., 1999b; Varner 2000; Varner et 

al., 2003; and White et al., 2005). These studies have provided more insight 

into the controlling processes in these environments, and have led to the 

present investigation of fungi as a potential source of methyl halide emissions.

In this investigation, fungi were collected from fruiting bodies, plant and 

root tissue, and soils from various locations in southeastern New Hampshire.

The fungi from these sources were cultured in the laboratory and assayed for 

methyl halide production in an effort to answer the following questions:
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1. Do fungi isolated from these sites produce methyl halides?

Fungi were cultured in media and the methyl chloride, methyl bromide, 

and methyl iodide emission rates were determined.

2. Are the rates significant enough to be responsible for observed 

fluxes in these and other environments?

Methyl halide production rates by fungi in the laboratory soil incubations 

were compared to field measured fluxes.

3. Do the halide ratios observed in culture reflect those observed in 

field measurements?

Emission rates were quantified to identify a signature ratio. This ratio was 

also compared to the halide ion content in soils from the field sites.

4. Does the linear least squares fit model yield an overestimation of 

fungal emissions?

Two types of data analyses were used to determine whether the linear 

regression fit method, which is traditionally used to measure methyl halide 

production, can potentially over-estimate production rates.

28

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



The following chapters in this document describe the research procedures 

that were used and the results of the investigation. An analysis and discussion of 

the data are also provided.
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CHAPTER 2

2.0 COLLECTION OF FUNGI AND LABORATORY PROCEDURES

This chapter describes the procedures that were used to collect and 

culture fungal samples, obtain pure isolates in laboratory culture, and assay the 

fungi for methyl halide production using gas chromatography.

2.1 Overview

The goal of this study was to expand the current knowledge of methyl 

halide emissions from basidiomycete fungi. To accomplish this goal, several 

fungi samples that were putatively identified as basidiomycetes were collected in 

the field and isolated in laboratory culture. The individual fungal cultures were 

grown in flasks and the headspace gas was analyzed to measure levels of 

methyl halides. These emission measurements were then compared to rates of 

other fungi that have been reported in the literature.

2.2 Fungi Samples

Fungi samples were collected during the spring, summer and fall months 

between June 2004 and October 2005.
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The samples were collected from the following different sources:

• fruiting bodies (mushrooms)

• wood baits

• soils 

plant tissue

The samples were returned to the laboratory and refrigerated. Generally, 

the fungi were cultured within two days of receiving them from the field; beyond 

that time, the samples deteriorated too rapidly and could not be used.

The procedures that were used to culture each sample type are described 

in Section 2.4 Fungal Isolation Protocol. The entire sample inventory is listed in 

Appendix A.

2.3 Experimental Sites

The experimental sites from which samples were obtained included four 

different ecosystem types:

• agricultural fields

• a fresh water fen 

salt marshes

• a temperate forest
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2.3.1 Agricultural Fields

Soils and fruiting body samples were collected from two fields at Kingman 

Farm, (43° 10' 08"N, 70° 56' 05"W), an agricultural research farm maintained by 

the University of New Hampshire near the Durham, NH campus. The soils are 

drained glacial till spodosols. Methyl bromide flux measurements were made at 

this site in 1994 and 1999 by Varner (Varner et al., 1999; Varner 2000). Field 

measurements showed both consumption and production of methyl bromide in 

the soil, with a net uptake of 0.0007 mg m'2 d '1 of methyl bromide consumed by 

the cornfield soil (Varner, 2000).

Kingman Farm 1 (Site KF11. Site KF1 is a fallow field, that was last used 

in 2003 to grow cucurbits; it contained some weeds predominantly, clover 

(Trifolium spp.) and chickweed (Cerastium sp.). Several “LBM” (Little Brown 

Mushrooms, possibly Mycena spp.) small, light brown gilied mushrooms were 

observed at different times at this location and two samples were collected, 

cultured, and assayed for methyl halide production. During the 2006 season, 

the field was planted with cucurbits.

Kingman Farm 2 (Site KF21. Site KF2 is a cultivated cornfield that has 

been used to grow corn every year; an application of dairy manure was applied in 

the spring. Soil samples were collected for soil incubations in August 2005, 

November 2005, February 2006, and September 2006. Soil was collected and
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aggregated in the field from rows and between post-harvested corn stalks that 

had been chopped but remained enrooted.

2.3.2 Freshwater Fen

Sallie’s Fen is a nutrient poor fen located in Barrington, New Hampshire 

(43° 12.5'N, 71° 03.5'W). The 1.9 x 104 m2 wetland is dominated by Sphagnum 

spp., Carex spp., and ericacious plants (Varner, 2000). Ongoing monitoring at 

this research site has provided a wealth of meteorological and trace gas 

exchange data (Crill et al., 1994; Frolking and Crill, 1994; Melloh and Crill, 1996; 

Carroll and Crill, 1997; Bubier et al., 2002; Bubier et al., 2003; Treat et al., 2007), 

including methyl bromide and methyl chloride cycling (Varner et al., 1999;

Varner, 2000; White et al., 2005).

Fruiting bodies that were growing directly on the Sphagnum plants, as well 

as in the sediment underneath marsh shrubs were collected at this site. Fungi 

were also isolated from wood baits buried at this site.

2.3.3 Salt Marshes

Plant samples were collected from the following four salt marsh locations 

along the southern New Hampshire and Maine coastline:
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• Odiorne Point, Rye, New Hampshire

• Chappy’s Landing, Stratham, New Hampshire 

Brave Boat Harbor, Kittery, Maine

• Mill Pond, York Harbor, Maine

The salt marsh sites at Odiorne Point, Brave Boat Harbor and Mill Pond 

were in tidal river marshes located within one mile of the Atlantic Ocean. The 

Chappy’s Landing site is an inland tidal marsh along the Squamscott River, 

approximately 10 miles from the open ocean. All sites are dominated by salt 

marsh grass, Spartina spp. plants.

2.3.4 Temperate Forest

The College Woods site is a 28-hectare mixed deciduous-conifer 

temperate forest. Soils are drained upland inceptisols (Varner et al., 1999; 

Varner, 2000). Methyl bromide fluxes were measured at this site in 1994 and 

1999 by Varner (2000).

Fruiting body samples were collected from various locations within College 

Woods (43° 08'N, 71° 57' W) in Durham, New Hampshire. Fungi were also 

isolated from wood baits buried at this site.
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2.4 Fungal Isolation Protocol

Different procedures were used to isolate fungi from field samples in order 

to successfully obtain a variety of basidiomycete species. When available, small 

segments of fungal tissue from fruiting bodies were used; otherwise, direct 

plating of soil, plant tissue, or a piece of wood substrate was used. The isolation 

of fungi for assaying was performed using standard microbiological methods with 

aseptic technique (Parkinson, 1994). Sterile growth medium was prepared in 

sterile petri dishes in advance, covered, and refrigerated until needed (Bills and 

Foster, 2004). (See Section 2.14 at the end of this chapter for the media 

recipes.)

2.4.1 Fruiting Body Tissue Culture

Small segments (<1 cm) of fruiting body were cut from the sample and 

soaked in a sterilizing solution (20% household bleach, 20% ethanol, 60% 

distilled H2O) to remove any surface contaminants (R. Blanchard, unpublished 

data, 2004). The segments of tissue were then blotted dry and placed on 

MYBDA selective growth medium. The MYBDA medium contains fungicides and 

antibiotics (benomyl, chlortetracycline-HCI, streptomycin sulfate, and penicillin 

G); MYBDA was developed to isolate basidiomycete species and to inhibit the 

growth of bacteria, as well as “weedy" fungi species (Thompson, 1998).
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The covered petri dishes were set aside in an incubation room (24°C) for 

several days. When growth characteristics could be visually differentiated a 

small piece of mycelium and attached media was removed and placed on a new 

plate of media to grow separately. This procedure was repeated as many times 

as needed until a single fungal isolate was obtained. In most cases, mycelia 

covered a full plate (8 cm diameter) in one to three weeks. After a single isolate 

was well established on the plate, it was prepared for storage in cryovials. (See 

Section 2.6.)

2.4.2 Direct Soil Culture

Soil cultures were prepared by sprinkling a small amount (approximately 

0.05 g) of soil collected from the field directly onto prepared selective growth 

medium. The soil was not rinsed with sterilizing solution. Soil cultures were 

incubated and re-plated following the procedure in Section 2.4.1, until a pure 

isolate was obtained.

2.4.3 Plant Tissue Culture

The plant tissue was cultured to obtain fungi that inhabit salt marshes. 

Segments of salt marsh grass, Spartina tall- and short-form species, were 

collected from different salt marshes along the southern New Hampshire and 

Maine coastline. Upon return to the laboratory, the sediment was rinsed from the 

roots using cool tap water followed by a mild soap solution (0.1 g dish soap L'1
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water) and a final rinse with dH20. Small segments of root were cut from the 

plant and surface sterilized, as described in Section 2.4.1. The green plant 

leaves and dead culms (hollow plant stems) were surface sterilized then plated 

onto MYBDA medium. The upper parts of the plant were not rinsed in water or 

soap solution.

2.4.4 Wood Bait Culture

To obtain fungi located below the soil surface, wood baits were prepared 

and buried in 2 x 2 m field plots. The plots were set up in duplicate at College 

Woods, Sallie’s Fen, and Chappy’s Landing. Due to time constraints, wood baits 

were not planted in the agricultural fields at Kingman Farm. Two plots containing 

ten baits each of pine (n=20), maple (n=20), and oak (n=20) were used.

Small pieces of wood were pre-cut to roughly 3 cm x 2.5 cm x 2.5 cm 

chunks. A nylon string approximately 12 inches long was tied around each bait, 

and a plastic identification label was attached to the opposite end of the string. 

Figure 2-1 shows an example of a wood bait.

Figure 2-1: Wood Bait
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The bait, string, and label were wrapped in aluminum foil and autoclaved 

for 20 minutes at 123°C before burying at the field sites. The sterilized bait was 

unwrapped in the field and buried approximately 10 cm deep using a sterile 

trowel or metal spatula. The string was unwound as the soil/peat was back filled 

so the identification label remained on the ground surface. To prevent 

contamination, the trowel was cleaned with sterilizing solution and wiped with 

sterile paper towel between burying each bait.

The wood baits were left in the ground for 6-12 months and then 

retrieved. Upon return to the laboratory, a small sliver of wood and any attached 

soil or roots were removed from the bait using a sterile scalpel and placed on a 

plate of sterile MYBDA medium. Wood bait cultures were incubated and re­

plated until a pure isolate was obtained.

2.5 Species Identification

Microscope slides were prepared using a small piece of fungal hyphae 

that was stained with Phloxine and Cotton Blue stains. Spores were viewed 

under 40x magnification for identification of ascomycetes and zygomycetes; the 

presence of clamp connections (microscopic reproductive structures unique to 

many species of basidiomycetes) was used to confirm basidiomycete samples 

(Thorn et al., 1996). Identification was made using Barnett and Barry (1998) and 

Wang and Zabel (1990).
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2.6 Storing Fungal Isolates

Once a fungal isolate was obtained in culture and was well established on 

the growth medium, it was prepared for long-term storage. A small piece of 

mycelium was removed from the medium and re-plated onto sterile CMEA 

medium, which provides a mild, nutrient-rich substrate. After growing on the 

plate for approximately two weeks, cultures were stored in sterile water in 

cryogenic vials (1.2 ml Nalgene or 1.5 ml Nunc CryoTube), as described by 

Burdsall and Dorworth (1994). Figure 2-2 is an example of a plated fungal 

isolate and a cryovial that has been prepared for storage.

Figure 2-2: Sample Plate and Cryovial

2.7 Fungal Incubation Assays

To prepare a fungal isolate for methyl halide assays, a 6-mm plug was 

removed from the stored cryovial, placed on a new plate of sterile growth MYA 

medium (see 2.14 for media recipes) and set aside at room temperature to grow
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for approximately 1-3 weeks. The length of time required for the fungi to cover 

the plate (8 mm diameter) was monitored and recorded so that the same amount 

of time could be allotted to that isolate when it was grown in flask cultures.

Two types of substrate were used for the incubation assays: liquid media 

or soil (or both). The substrate chosen was based on the original location from 

which the fungal sample was collected and whether the fungus was a ground- 

inhabiting species.

2.7.1 Preparing Liquid Media Incubations

Standard growth medium from malt and yeast extract was prepared for 

liquid media incubations. Agar was omitted so that the media would remain 

liquid and allow later filtering of fungal biomass. The liquid media was 

supplemented with halide ions using potassium chloride (KCI) and pre-made 

potassium bromide (KBr) and potassium iodide (Kl) solutions. (See Section 2.14 

for the media recipes.)

A 100-ml portion of medium was poured into individual 250-ml Erlenmeyer 

flasks. The flask was sealed with a cotton plug and silicone stoppers were 

autoclaved separately. (In some instances, stoppers were set loosely onto the 

flasks, wrapped in foil, and autoclaved together).
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To prevent photolytic production of methyl iodide, the flasks were entirely 

covered in aluminum foil. The flasks were labeled and autoclaved for 20 minutes 

at 123°C. After the flasks were removed from the autoclave and cooled to room 

temperature, three flasks were inoculated with fungi. A 6-mm plug of fungal mat 

was punched out of the MYA medium and dropped into each flask. Three 

replicate flasks without fungi provided the controls. The flasks were re-sealed 

with a sterile silicone stopper. The inoculations were performed under low light 

conditions inside a laminar flow hood using aseptic technique. The flasks 

remained wrapped with aluminum foil for the entire incubation and assay period.

2.7.2 Preparing Soil Incubations

The soil incubation assays were prepared to measure methyl halide 

emissions from soil-inhabiting fungi. Soil incubation assays contained soil that 

was collected from College Woods and Kingman Farm. The soils were 

inoculated with fungi that had been originally collected and isolated from the 

same location.

Soil weights were pre-measured to determine flask headspace volume.

A College Woods soil sample of 35 grams and a Kingman Farm soil sample of 

60 grams filled the flask to approximately 100 ml. The weights differed between 

sites due to the differing soil texture.

41

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Because the soil surface contains the greatest microbial abundance 

(Fierer et ai., 2003), soils were collected from the surface layer (~ 0 -10  cm) at 

both sites. To maintain consistency between samples, the soils were collected 

randomly from the site and aggregated in the field.

Two sets of soil incubations were prepared. In the first set, the soils were 

not sieved. However, any twigs, whole leaves, and stones greater than 1 cm 

were removed by hand upon return to the laboratory.. Fine roots, small stones, 

and some coarse debris were left in the sample in order to retain as much of the 

field characteristics as possible. This set of soil was immediately autoclaved at 

123°C for 20 minutes and stored in closed plastic bins. Later, when the flasks 

were prepared for assaying, the soil was consecutively autoclaved two more 

times to ensure destruction of any bacteria or fungi. To test whether autoclaving 

destroyed pre-existing microorganisms, the dried soil from a soil incubation 

(CWM62-B) was plated onto growth medium after assaying the sample for 

methyl halides. Fungal hyphae containing clamp connections re-emerged on the 

plates of the soil samples while no growth was observed after one week in plates 

containing the soil controls (soil incubations that were not inoculated with fungi 

after autoclaving).

The second set of soil incubations was used for comparison to the 

autoclaved soils. In these incubations, approximately 50 grams of soil was 

placed directly into sterilized 250-ml flasks and immediately capped with sterile
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silicone stoppers in the field. The amount of soil added to each flask in the field 

was approximated because the empty flasks were covered with aluminum foil 

and autoclaved before field collection.

The second set of soil incubations was inoculated with fungi the same day 

it was collected from the field; it was not sieved, hand picked, or autoclaved. 

Three replicates were prepared for each fungal sample. Three flasks containing 

soil were each inoculated with a single 6 -mm plug of fungi from the MYA 

medium, and three replicates without fungi provided the controls. One milliliter of 

sterile dh^O was added to each flask to moisten the soil; no halide solutions were 

added. The flask was gently shaken for approximately three seconds and a 

sterile silicone stopper was used to seal each flask.

After incubating the flask cultures for 1-3 weeks at room temperature, 

flasks were set up on the Zero Air Flushing, system to assay for methyl halide 

emissions.

To prevent photolytic production of methyl iodide, the soil incubations 

were prepared under low light conditions and flasks were covered with aluminum 

foil for the entire collection, incubation, and assaying period.
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2.8 Zero Air Flushing System

The zero air flushing system is constructed from a series of 10 brass 

T-joint fittings installed approximately 2.25 inches apart along a 24-inch 

length of copper pipe. Each T-joint fitting is controlled by a toggle valve at 

the top and has approximately 12 inches of plastic tubing attached at the 

bottom. The opposite end of the plastic tubing is fitted with a stopcock valve 

onto which a hypodermic needle is attached. A carbon filter (Hydrocarbon 

Trap, Alltech Assoc., Inc.,) containing approximately 115.6 g activated 

carbon (cocoanut charcoal, Fisher Scientific) was installed inline between the 

output valve from the ultra high-purity (UHP) zero air cylinder (2400 psi) and 

the input end of the zero air flushing system pipe. The filter was added to 

trap any methyl halide gas contained in the zero air gas cylinder. The end of 

the zero air flushing system pipe is capped. The entire system is mounted 

on the wall approximately 17 inches above the laboratory bench top.

Following the incubation period for the fungal samples, the flasks were set 

up on the zero air flushing system. Two sterile 20 gauge, VA inch hypodermic 

needles were inserted in the stopper of each flask. One needle was connected 

to the plastic tube supplying air from the zero air flushing system, and the other 

needle served as a vent from the flask.

At the beginning of each run, the flask headspace was flushed with ultra 

high-purity (UHP) zero air (19.5%-23.5% oxygen, nitrogen balance; total
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hydrocarbons <1.0 ppm), which was obtained from a commercial gas distributor. 

The UHP zero air was set at a pressure of 20 psi and flushed the flasks for 

approximately one hour. After one hour had elapsed, the air was shut off, the 

flasks were disconnected, and the hypodermic needles removed from the 

stoppers. This sealed the flasks.

The gas chromatography/electron capture detector (GC/ECD) 

cryotrapping system was started by first initializing the HP ChemStation (B.02.04) 

software application. At this time, the GC/ECD cryotrapping system cleared the 

sample loop by heating to 180° C. (The system is described in more detail in 

Section 2.9 GC/ECD Cryotrapping System.)

Meanwhile, a 60-ml glass syringe was “cleaned” by withdrawing and 

expelling a full syringe of UHP zero air four consecutive times. Then, to maintain 

pressure within the flask, a 10-ml sample of zero air was injected into the flask 

through the stopper. The headspace was mixed by withdrawing and injecting the 

air back into the flask using the syringe without removing the needle. This was 

repeated four times. A final 10-ml headspace sample was extracted from the 

flask and the syringe locked to prevent loss or contamination of the sample.

After three minutes from when the system was initialized had elapsed, the 10-ml 

sample was injected into the GC/ECD cryotrapping system injection port. After 

approximately 23 minutes, the three methyl halide gases in the sample were 

detected at predicted response times and the levels displayed in a
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chromatogram. A series of gas samples were extracted from each flask over a 

period of 0-120 hours and run on the GC/ECD cryotrapping system. The glass 

syringe was cleaned with UHP zero air between every injection sample to 

prevent contamination.

2.9 GC/ECD Cryotrapping System

The GC/ECD cryotrapping system used in this study is based on the 

design by Kerwin et al. (1996) that was developed for detecting low-level mixing 

ratios of methyl bromide. The system is also described in detail in Varner (2000). 

The gas chromatograph (Shimadzu GC-8A) uses non-reactive, ultra high-purity 

nitrogen (N2) as the carrier gas flowing at a rate of 5ml/min to sweep the sample 

into the electron capture detector.

In the electron capture detector, the radioactive source, 63Ni, emits beta 

particles that create a high electrical signal. When the gas sample moves into 

the detector, the halogens in the gas absorb electrons from the radioactive 

source and reduce the electrical signal. The reduction in current is directly 

proportional to the mass of the constituent halogen. The reduced signal is then 

converted to a positive signal and is displayed in a chromatogram. The peak 

height of the signal in the chromatogram is compared to the peak height and 

response time of the signal in a standard gas that contains known concentrations 

of the halogen. Aliquots of a standard cylinder containing mixing ratios of 131
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ppbv CH3CI, 120 ppbv CH3I and 126 ppbv CH3Br (uncertainty is +/-5%) were also 

run (Cylinder #CC169180, Apel/Reimer, Miami, Florida).

The methyl chloride, methyl bromide or methyl iodide constituents in the 

gas sample can be separated by their adsorption-desorption properties. As the 

gas sample moves into the cryotrapping system (Cry-O-Trap Model 951, 

Scientific Instruments, Inc.), rapid cooling (-78°C) and subsequent rapid heating 

(180"C) converts the sample between its gas and solid phases. A 15 m x 0.53 

mm (ID) GSQ capillary column (J&W Scientific, Folsom, CA) that is located 

inside the GC/ECD system is packed with a material that selects for the target 

adsorption/desorption properties of the specific constituents. These properties 

help to identify the constituent gas.

2.10 Standard Curve

Methyl halide concentrations in the sample assays were determined by 

comparing the peak heights of the sample to a standard curve. Increasing 

aliquots (0.5 ml, 1.0 ml, and 2.0 ml) of a standard gas containing known 

concentrations (± 5% uncertainty) of methyl chloride (124 ppb), methyl iodide (99 

ppb) and methyl bromide (124 ppb) were run with each sample in order to create 

the standard curve.
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2.11 Adjustments to the Assaying Procedure

In 2005, a new standard was obtained that included known amounts of the 

three methyl halides: methyl chloride, methyl bromide, and methyl iodide. Prior 

to 2005, the samples were only tested for methyl bromide. Also, soil incubation 

assays were started in 2005. The assays performed in 2003 and 2004 measured 

only methyl bromide emissions from cultures in liquid media.

2.12 Estimating Methyl Halide Flux from 
Incubations

Two types of statistical analyses were used to determine the methyl halide 

fluxes from the fungal samples. One method plotted a linear regression using 

“least squares fit” of the methyl halide concentrations over time. The second 

method used a Bayesian model with Markov Chain Monte Carlo (MCMC) 

sampling. Both methods calculate a slope (the methyl halide concentration vs. 

time) for each flask.

The flux was then normalized to mass by dividing by the fungal biomass, 

as follows (CH3X where X=CI, Br, or I):

ng CH3X /hr * flask headspace volume/sample volume * 1/g dry wt fungi (or g dry soil)

The first method (the linear regression least squares method) is typically 

used in studies such as this one to report fluxes from biogenic sources. A
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limitation of this method is that by not accounting for the uncertainty in the 

standard, a slightly positive or over-estimated flux can be generated.

The statistical Bayesian model provided a more rigorous analysis of the 

data by estimating a level of uncertainty and applying that error estimate to the 

sample observations. In this study, the model could only be applied to a small 

set of data due to inadequate sample size.

2.12.1 Statistical Model

The statistical model was created for this study by Dr. Andrew Cooper of 

the UNH Department of Natural Resources using the WinBUGS (Bayesian 

inference Using Gibbs Sampling for Windows) software program. The WinBUGS 

software was developed at the Medical Research Council (MRC) Biostatistics 

Unit, at the University of Cambridge, UK.

The model accounts for a known ± 5% uncertainty in the standard that is 

reported by the gas manufacturer, and calculates the level of uncertainty in the 

standard curve. The estimated uncertainty was then incorporated into the 

estimated methyl halide concentration in the headspace of each sample flask. A 

slope of concentration over time was calculated for each flask. By averaging the 

slopes of all flasks for all sampling days by fungal isolate, a resulting mean flux 

could be reported (ng CH3X /time). An adjustment for sample volume was made
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by dividing the volume of the flask headspace by the volume of the sample. The 

flux was normalized to mass (1/grams fungi in soil [or media]) then, adjusted for 

the control (sample flux -  control flux).

2.12.2 Estimating Fungal Biomass

To estimate the emissions from fungi in media assays, the flux rate was 

divided by the dry weight fungal biomass, except for five samples run in 

September, 2003 (isolate # CWM5, CWM8 , and CWM23) where wet weight was 

used.

The amount of fungal biomass in the soil incubation assays was not 

measured. The results of Loss on Ignition analysis show 14% mean organic 

matter in the temperate forest soils collected from College Woods, and 5% mean 

organic matter in the agricultural soils from Kingman Farm.

Biomass in Liguid Media. After assaying media samples, fungal growth 

was rinsed and strained from the medium through 24-cm fluted paper filters using 

a funnel and evacuation flask. The fungal biomass and filter were then placed in 

plastic trays and dried at approximately 60°C in a drying oven for several days. 

The control samples were also filtered and dried. After drying, the fungal 

biomass dry weight was calculated as the difference between the control average 

and the fungal sample average.
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Biomass in Soil Incubations. The amount of fungi in soils is highly 

variable and is affected by many factors, such as soil type, vegetation, moisture, 

and season. Several methods can be used to assess the amount of fungi in soils 

(for example, phospholipid fatty acid analysis, chloroform fumigation-extraction, 

direct count microscopy, selective inhibition and substrate-induced-respiration, 

and DNA analysis). An assessment of fungal biomass using one or more of 

these methods was beyond the scope of this project. Therefore, emissions from 

soil incubations were normalized to the amount of soil (grams) in the flask.

2.13 Soil Properties

Soil properties were analyzed using two additional tests: substrate- 

induced respiration analysis was conducted to measure the amount of CO2 

respired by "microbes in the soils, and organic carbon content was measured by 

using loss-on-ignition analysis. It is important to note that inhibitors, such as 

antibiotics and fungicides, were not added to the soil during the analysis; 

therefore, any observed respiration cannot be attributed exclusively to fungi.

2.13.1 Substrate-Induced Respiration (SIR) Analysis

Before soils were removed from the flasks, substrate-induced respiration 

analysis was conducted to measure CO2-C  respired by organisms in the soil. 

First, a baseline measurement was obtained by extracting a 60-ml headspace 

sample from the flask. The syringe stopcock was locked and the sample was set
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aside for CO2 analysis on a GC/TCD (Shimadzu GC-8A gas chromatograph) or 

U840 (LI-COR, Inc.). Within one hour, each flask received 1 ml of glucose 

solution (4 g glucose L' 1 water). The flask was immediately re-capped, gently 

shaken for approximately three seconds, and set aside at room temperature to 

incubate. Flasks were opened and the glucose solution was added inside a 

laminar flow hood to prevent contamination. After four hours had elapsed, 

another 60-ml headspace sample was extracted from the flask and set aside for 

CO2 analysis.

Respiration was determined from CO2 in the flask headspace samples 

taken before and after the addition of the glucose substrate. The rate of 

respiration was calculated from CO2 concentrations in parts per million by volume 

(ppmv), using the following equation:

(C02 concentration before incubation -  C 02 concentration after incubation) = pg C 02-C g'1 
dry weight soil hr'1

2.13.2 Loss-on-lqnition (LOO Analysis

The Loss-On-lgnition (LOI) method was used to analyze organic carbon 

content in the soil samples. First, the soil was rinsed from the flask, put in a 

small plastic tray, and dried in an oven at approximately 60°C for several days.

Then, a 7-g sample of the oven-dried soil was measured into an aluminum 

tray and placed in a muffle furnace at approximately 475°C for 24 hours. The
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ashed soils were removed from the furnace and re-weighed. The soil organic 

carbon content was calculated from the difference between the soil weight before 

and after combustion, using the following equation:

LOI (g kg'1) = [(oven-dried soil wt -  soil wt after combustion)/oven-dried soil wt] x 1000

Organic matter in soil will contain varying amounts of fungi, and the loss 

after combustion does not equate to fungal biomass in the sample.

2.13.3 Ion Chromatography Analysis

Ion chromatography analysis was performed to assess the background 

levels of halogens, Cl", Br', and I', in the soil samples. Five replicates each of 

College Woods soil and Kingman Farm soil were analyzed. Controls of water 

were also analyzed. For comparison, the sterile water used for culturing fungi 

and a sample of deionized water from the ion chromatography laboratory was 

tested.

One series of soil samples were control soils that had not been autoclaved 

before assaying for methyl halides. These soils were collected from College 

Woods (uCW1-5) and Kingman Farm (uKF1-5) on 3-February-2006, placed 

directly in sterilized flasks, capped with sterile stoppers, and covered in aluminum 

foil in the field. The soils were not inoculated with fungi.
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Upon return to the laboratory, the soils were immediately set up on the 

zero air flushing system. Samples were assayed for methyl halides between 

4-February-2006 and 21-February-2006. Substrate induced respiration tests 

were conducted on 6-March-2006. Soils were dried 28-March-2006, and 

prepared for ion chromatography on 13-April-2006.

A second series of soil samples were control soils from College Woods 

(CW1-5) and Kingman Farm (KF1-5) that were autoclaved before assaying for 

methyl halides. The soils were collected in November, 2005 and autoclaved 

once that day. The soils were autoclaved an additional two times, consecutively, 

on 30-January-2006 before assaying for methyl halides. Soils were assayed for 

methyl halides from 31-January-2006 to 9-February-2006. Substrate induced 

respiration tests were conducted on 10-Feb-2006. Soils were dried 28-Feb- 

2006, and prepared for ion chromatography on 9-March-2006.

To prepare the soils for ion chromatography analysis, 10 grams of soil 

were mixed with 50 ml distilled water in a beaker and placed on a platform 

stirrer (speed setting 8 ) for one hour. Then, a 10-ml sample of the soil/water 

mixture was drawn through a filter (Pall 0.45 pm 10N chromatography acrodisc) 

using a 60-ml plastic syringe. The filtered water sample was injected into two, 

sterile 5-ml plastic vials and capped. The syringe was thoroughly rinsed with 

diH20 between samples, and a new filter was used for each sample. Vials were
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completely covered to prevent photolytic reaction and were refrigerated until 

analyzed. Samples were analyzed by another laboratory within two weeks.

Major cations were analyzed using a Dionex CS12, 50 pi sample loop with 

CSRS suppression and 20 pM MSA element; major anions were analyzed using 

a Dionex AS11, 50 pi sample loop with ASRS suppression and 6 pM NaOH 

element. Iodide was analyzed using a Dionex AS16, 500 pi sample loop with 

ASRS suppression and 35 mM NaOH element. Five mixed-species standards 

were run prior to sample analysis, and three of five standards were rerun after 

analysis. Refer to Appendix B for the ion chromatography data.
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2.14 Media Recipes

Table 2-1 lists the media recipes that were used for culturing the fungi.

Table 2-1: Growth Media Recipes. Bacto™ malt extract (0.07% chloride), Bacto™ yeast 
extract (0.38% chloride), and Bacto™ agar (0.021% chloride) were used.

MYA

5 g malt extract

1 g yeast extract

10 g agar

Media Incubations (Flasks)

r

15 g malt extract

3 g yeast extract

15 ml of 20 mM L'1KBr solution

15 ml of 2.0 mM L' Kl solution

2.25 g KCI

1500 ml dH20

MYBDA

5 g malt extract 

1 g yeast extract 

10 g agar

5 ml of 60 mg/L chlortetracycline-HCI 
solution
5 ml of 30 mg/L streptomycin sulfate 
solution

5 ml of 30 mg/L penicillin G solution 

1 ml of 2 mg/L benomyl solution 

483 ml dH20

CMEA

7.5 g malt extract 

10 g agar 

500 ml dH20
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CHAPTER 3

3.0 RESULTS

Fungal production of methyl halides was observed at varying rates from 

all field sites: the upland forest, freshwater wetland, salt marsh and agricultural 

field. The results of sample culturing methods, soil sterilization, and flux 

estimation methods are also described.

3.1 Sampling Results

A total of 195 samples were collected during the growing seasons 

between June, 2003 and October, 2005. Out of the 195 samples, 550 cultures 

were prepared and stored in cryoviais. A summary of the fungi collected for this 

study is shown in Table 3-1. A complete inventory of the fungi is provided in 

Appendix A.

Forty isolates were putatively identified as basidiomycetes by microscopic 

identification of clamp connections (Thorn et at., 1996). However, more isolates 

may be basidiomycetes since they could not be ruled out by the absence of 

clamp connections. Clamps are only formed during a particular life cycle phase 

of the fungus, and not all basidiomycetes produce clamps in culture.
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Table 3-1: Summary of Samples Collected

Sample Source

Mushrooms

CollectedLocation Cultured Isolated

Bartlett Forest
College Woods 311
(Other) Mushroom
UNH Campus Lawn
Sallies Fen
Salt Marsh
Kingman Farm

133Mushroom Total 410

Plants College Woods
Sallies Fen
Chappys Landing
Odiorne Point
Mill Pond
Brave Boat Harbor
Kingman Farm
Plants Total

Roots College Woods
Chappys Landing
Roots Total

Wood Baits & Soil Kingman Farm
College Woods
Sallies Fen
Chappys Landing
Wood & Soil Total
Total: 195 550

Basidiomycetes Isolated by Site

Temperate Forest
UNH Campus Lawn
Salt Marsh
Kingman Farm
Sallies Fen
Total:

Although the primary focus was to measure methyl halide production in 

basidiomycete fungi, some non-basidiomycetes represented in the phyla, 

ascomycota and zygomycota were also assayed.
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3.2 Flux Estimation Methods

As described in the methods section, fluxes were estimated two ways: 

by using a linear least-squares regression of the change in headspace 

concentration over time, and using a more complex Bayesian approach, which 

takes into account the uncertainty in the standard gas concentration.

Figure 3-1 is an example of the two fits of the data for the BBH2 fungus 

(an unidentified basidiomycete from a salt marsh) that was sampled from 9/11/06 

to 9/13/06. When the linear least square approach was used, the predicted 

concentrations of the samples were higher and the slope of the regression fit for 

the flux was steeper than the Bayesian approach. The flux estimated by using 

the linear least squares fit was 0.51 ± 0.29 ng g ' 1 d '1. When the Bayesian 

method was applied, the model returned a flux of 0.0026 ± 0.29 ng g ‘ 1 d '1, which 

is approximately 0.5% of the flux estimate using the traditional linear least 

squares fit method.
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0.48 0.48
BBH2 1 
BBH2 2 
BBH2 3
Mean regression fit 
Bayesian Fit

- -  0.470.47 --

0.46 - - - -  0.46

0.45 - -  0.45

0.44 -- - -  0.44

0.43 --

0.42 0.42
0.0 0.5 2.0 2.5

Time, days

Figure 3-1: Comparison of Fluxes Using Both Estimation Methods. The linear least 
squares regression of headspace samples from BBH2 triplicate flasks (solid black 
line) and the Bayesian estimate (dashed line) for the slope of the best fit.

Fluxes were calculated for all fungal species first by using the traditional 

linear least squares fit of the standards, then using a linear least squares fit of the 

headspace concentration over time. The Bayesian model approach was applied 

to a subset of the data that fit the criteria. The results from the BBH2 incubations 

are representative of those that were observed in a comparison of the two 

methods for several other species (Table 3-2). In every case except for CH3I 

fluxes from Russala CWM62B, the fluxes calculated using the Bayesian 

approach (shaded rows) were lower than those calculated with the least-squares 

fit. The decrease in flux ranged from 30 to 95% of the flux.
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Table 3-2: Comparison of Linear Fit vs. Bayesian Model Calculations

Genus Isolate# Run Date CH3CI CH3Br CH3I

Mean sd Mean sd Mean sd
Unidentified basidiomycete BBH2
(9/06) Not available 82.23 30.8 0.51 0.29
(9/06) model Not available -1.6 0.81 0.0026 0.34

LBM KM118
(6/06) Media Not available -8.67 8.8 54.0 56.2
(6/06) Media Model Not available -0.07 0.72 5.65 3.21
(6/06) Soil, Autoclaved Not available 0.17 0.03 -2.20 0.44
(6/06) Soil, Autoclaved Model Not available 0.01 0.02 -0.14 0.04

(9/06) Soil, Not Autoclaved 2.53 2.46 -4.97 -.005
0.002

7
(9/06) Soil, Not Autoclaved Model -0.52 0.11 -0.34 0.16 0.001 0.12

Cantharellus CWM148
(5/06) Media Not available 5.06 1.68 Not available
(5/06) Media Model Not available -0.01 0.21 Not available
(5/06) Soil, Autoclaved Not available 3.79 7.35 Not available
(5/06) Soil, Autoclaved Model Not available 0.02 0.01 Not available

Russula CWM62B
(5/06) Media Not available 1.01 1.88 -4.64 4.22
(5/06) Media Model Not available -0.01 0.14 0.08 0.11
(5/06) Soil. Autoclaved Not available -0.34 0.06 0.009 1.49
(5/06) Soil, Autoclaved Model Not available -0.01 0.02 0.02 0.05

Clavaria CWM35
(5/06) Soil, Autoclaved 0.14 0.13 -0.31 0.16 Not available
(5/06) Soil, Autoclaved Model 0.002 0.03 -0.10 0.05 Not available

3.3 Sampling Method Results

As described in the methods chapter, when the fungal or plant tissue 

sample was cultured, it was surface sterilized to remove any contaminants and 

eliminate species that can out-compete basidiomycetes in culture. However, the 

results show that surface sterilizing the tissue had no effect on the successful 

isolation of basidiomycetes. Plating the tissue directly onto the growth medium
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produced the highest number of basidiomycete isolates (26 of 76). Additionally, 

the length of time the tissue was soaked in sterilizing solution had no effect on 

the successful isolation of basidiomycetes. Soaking the tissue for 1.0 minute 

produced the next highest number of isolates (21 of 76); whereas, soaking for 0.5 

minutes produced the same number of isolates as 2.0 minutes (12 of 76).

One of the methods used to collect fungi samples involved setting out 

wood baits at field sites. No basidiomycetes were isolated from the baits. Only 

non-basidiomycetes were isolated from baits that were retrieved from field sites. 

At the Chappy’s Landing site, the baits were lost after being buried in the salt 

marsh for two years. This was probably due to the tides and ice buildup on the 

shore in winter. However, some wood samples were collected from a decayed 

boardwalk that was originally installed at Chappy’s Landing in the late 1980’s. 

Similarly, several wood baits could not be located in the freshwater fen site at 

Sallie’s Fen due to overgrown vegetation.

3.3.1 Fluxes from Autoclaved Versus Non-autoclaved Soils

By incubating the upland forest and agricultural fungi samples in both 

sterilized and non-sterilized soils, the effects of methyl halide production by fungi 

growing in their substrate of origin could be observed. However, the background 

levels of methyl halide production from soils not inoculated with fungi first needed 

to be identified. In addition, because there was some concern that autoclaving
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soils may cause abiotic production of methyl halides, any methyl halides 

produced abiotically needed to be determined.

A comparison of autoclaved and non-autoclaved soils from Kingman 

Farm (Figure 3-2) and College Woods (Figure 3-3) shows that methyl chloride 

and methyl bromide consumption occurs in soils that have not been autoclaved; 

whereas, production of methyl iodide occurs in both non-autoclaved and 

autoclaved soils. Note that these soils were not inoculated with fungi.

IDO
in
O)o
>.
(0TJ
O
tn

S'
■o

Xn
Xu
a tc

Kingman Farm 
Control Soils - No Fungi Added
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Figure 3-2: Control Soils, Kingman Farm. Methyl chloride and methyl bromide 
consumption occurs in non-autociaved soils; methyl iodide production occurs in both 
autoclaved and non-autoclaved soils. Consumption of methyl halides did not occur in 
autoclaved soils.
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Figure 3-3: Control Soils, College Woods. Similarly, consumption of methyl chloride 
and methyl bromide occurs in non-autoclaved soils; production of methyl iodide occurs 
in both autoclaved and non-autoclaved soils. Consumption of methyl halides did not 
occur in autoclaved soils.

Consumption of methyl halides did not occur in the autoclaved soils. The 

results show that autoclaving destroyed the biotic mechanism that consumes 

methyl halides.

In addition, a soil sample (n=2) was plated onto growth medium after the 

soil had been autoclaved (three times consecutively at 123°C) to ensure that 

microorganisms were destroyed. After one week, no growth was observed in the 

sterilized soil sample.
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When the production of methyl halides by fungi is studied in laboratory 

culture, it is difficult to eliminate any soil microbes that may influence background 

methyl halide levels without also creating methyl halides from abiotic processes. 

However, the results indicate that autoclaving caused only a slight increase in 

methyl halides. This is consistent with Keppler et al. (2000) who found “a similar 

methyl halide distribution” between heat-dried (105°C) and freeze-dried soils, 

which had been treated to kill biological material, and their untreated soils.

Although methyl iodide production occurs in both autoclaved and non- 

autoclaved soils, it is greatly reduced after autoclaving. The difference in the 

response of methyl chloride and methyl bromide to autoclaving compared to the 

methyl iodide response indicates a separate mechanism for the production and 

consumption of these gases. The reduced rates of methyl halide production after 

autoclaving supports the theory of a biogenic source of methyl halides in soils 

based on the higher amount of organic matter in the College Woods soils. To 

summarize, it appears that consumption of methyl halides by bacteria and 

production of methyl halides by fungi are competing processes that occur in the 

soil at these sites.

3.4 Fluxes from Fungi

The remaining sections of this chapter describe the methyl halide fluxes 

from fungi in soil and media incubations. If the rates were calculated using both 

the traditional linear fit and the Bayesian model they are both listed. In some 

cases, a rate could not be calculated due to insufficient data. These are marked
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“not available.” When the emission rate was below the detection level of the 

instrument, “bd” is indicated. Note that assays performed in 2003 measured only 

methyl bromide.

3.4.1 Freshwater Fen Fungi

Methyl chloride, methyl bromide, and methyl iodide production was 

observed in fungi from the freshwater fen (Table 3-3). Three Zygomycetes were 

isolated; two were isolated from Galerina fruiting bodies (SFM129, SFM130), and 

the other was isolated from a maple wood bait (SF162M12040). Four fungi 

identified as basidiomycetes (SFM44, SFM46B, SFM53, SFM54) were also 

isolated from the fen. All assays were in media incubations.

Table 3-3: Freshwater Fen Fungi Rates (ng CH3X g dry wt fungi'1 d'1; bd=beiow limit of 
detection)

Genus Isolate# (Run date) CH3CI CH3Br CH3I

Mean sd Mean sd Mean sd
Wood bait SF162M1204
(7/05) 76 24.2 70.5
(7/06) 0.82 1.34 19.8 12.2 2.24 2.96

Galerina SFM129 (7/05) 85.4 25 3.98 6.15 16.9 13.9
Galerina SFM130 (7/05) bd 269.75 223.02
Hygrophorus SFM44

(11/03) 1.64 0.02
(7/06) 0.43 0.40 137.58 78.3 1.83 0.87

Hygrophorus SFM46B 0 (11/03) 0.2 0.13
Hygrophorus SFM46B 1.5 (11/03) 1.98 0.35
Marasmius SFM53 (7/06) Not available 2.80 2.1 Not available
Alnicola SFM54 1.5 (11/03) 0.32 0.07
Alnicola SFM54 0 (12/03) 3.15 0.98

SFM54 0 (7/06) 0.55 0.05 4.39 3.7 44.4 51.6
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The rates varied between and within genera; methyl bromide emissions 

from samples at this site included the highest levels measured in this study.

3.4.2 Salt Marsh Fungi

Methyl halide production was observed in all the fungi collected from the 

salt marsh sites (Table 3-4). One basidiomycete (BBH2) and four ascomycetes 

(OD2 a, OD2 b, BBH1, CLR) were assayed in media incubations.

Table 3-4: Salt Marsh Fungi Rates (ng CH3X g dry wt fungi'1 d'1; bd=beiow limit of 
detection)

Genus Isolate# (Run date) CH3CI CH3Br CH3I |

Mean sd Mean sd Mean sd
Unidentified basidiomycete BBH2
(7/05) 108.01 439.40 89.54
(9/06) bd 82.23 30.8 0.51 0.29
(9/06) model bd -1.6 0.81 0.0026 0.34

Alternaria OD2 b (9/06) 103 3.7 out of range
Fusarium OD2 a (7/05) 187.91 176 142.28 85.8 98.66 90
Fusarium BBHI (7/05) 33.05 1.7 31.71 6.31 76.12 12
Fusarium CLR 3 a

(7/05) 387.26 516 20.01 22.4 915.65 291
(7/06) 25.71 24.7 97.38 107 out of range

The basidiomycete isolate (BBH2) was obtained from a piece of dead 

Spartina plant tissue collected from the Brave Boat Harbor salt marsh. This 

was the only basidiomycete that was isolated that had not been cultured from 

an identifiable basidiocarp. The isolate was incubated in media cultures and 

assayed in July 2005 and September 2006. This isolate produced the highest 

levels of methyl bromide of all the basidiomycetes tested.
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Three isolates from salt marsh sites were putatively identified as Fusarium 

spp. based on microscopic spore characteristics. The Fusarium genus includes 

many species that are commonly found in soils and plants. One Fusarium 

isolate (CLR) was obtained from root tissue of a Spartina plant collected from the 

Chappy’s Landing salt marsh site. The second isolate (OD2 a) was obtained 

from the above-ground tissue of a Spartina plant collected from the Odiorne Point 

salt marsh. The third Fusarium isolate (BBH1) was also obtained from a piece of 

above-ground plant tissue of Spartina collected from the Brave Boat Harbor salt 

marsh site.

The Fusarium isolates produced high levels of methyl halides in media 

culture. In particular, the isolates produced the highest levels of methyl iodide; in 

some cases, methyl iodide levels exceeded the detection iimit of the instrument.

Finally, another ascomycete isolate was obtained from the above-ground 

tissue of a Spartina plant from the Odiorne Point salt marsh site. This isolate 

(OD2 b) was identified in the genus Alternaria, which is another common fungus 

found on plants.

3.4.3 Agricultural Field Fungi

Methyl chloride, methyl bromide, and methyl iodide production was 

observed in fungi collected from the agricultural site at Kingman Farm (Table 

3-5). Two basidiomycete isolates (KM118 and KM119) were obtained from what 

appeared to be the same species of unidentified “Little Brown Mushroom” fruiting
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bodies collected from a fallow field. Assays were performed on fungi growing in 

liquid media and soil incubations.

Table 3-5: Fluxes from Agricultural Field Fungi (ng CH3X g dry wt fungi'1 d'1; bd=below 
limit of detection)

Isolate# (Run date) c h 3ci CH3Br c h 3i

Mean sd Mean sd Mean sd
LBM KM118

(7/05) Media 10.9 69.7 4640
(6/06) Media Not available -8.67 8.8 54.0 56.2
(6/06) Media Model Not available -0.07 0.72 5.65 3,21
(6/06) Soil, autoclaved Not available 0.17 0.03 -2.20 0.44
(6/06) Soil, autoclaved Model Not available 0.01 0.02 -0.14 0.04
(9/06) Media Not available bd Not available
(9/06) Media Model Not available Not available Not available
(9/06) Soil, not autoclaved 2.53 2.46 -4.97 3.1 bd
(9/06) Soil, not autoclaved Model -0.52 0.11 -0.34 0.16 0.001 0.12

LBM KM119
(7/05) Media 48.8 3.76 417
(9/06) Media 57.4 78 76.4 49 18.6 65
(10/06) Soil, not autoclaved 0.78 0.11 -0.76 1.8 bd

3.4.4 Upland Forest Fungi

Methyl halide production was observed in basidiomycetes collected from 

the upland forest site at College Woods (Table 3-6). Assays were performed on 

fungal isolates growing in media and in soil incubations.

Table 3-6: Fluxes from Temperate Forest Fungi (ng CH3X g dry wt soil'1 d'1; bd=below limit 
of detection)

Genus Isolate# Run Date c h 3ci CH3Br c h 3i

Mean sd Mean sd Mean sd
Crepidotus CWM3 (11/03) Media 9.04 0.07
Trametes CWM4

(10/03) Media 0.073 0.04
(11/05) Soil 0.0004 0.005 0.007

Tyromyces CWM8
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1
Genus Isolate# Run Date CH3CI CH3Br CH3I

Mean sd Mean sd Mean sd

(9/03) Media 2.06
(7/06) Media 3.60 0.31 30.68 100 22.8

Tyromyces CWM23 (9/03) Media 0.033 0.01
Russula CWM29

(11/03) Media 1.8 0.20
(11/05) Soil bd 0.0004 0.0002

No ID CWM30
(11/03) Media 0.627 0.50
(11/05) Soil bd 0.0002 0.002

No ID CWM34 1.0 (10/03) Media 1.76 0.83
Clavaria CWM35

(12/03) Media 8.14 0.12
(5/06) Media -0.26 0.37 0.40 0.28 -0.57 1.39
(5/06) Soil, Autoclaved 0.14 0.13 -0.31 0.16 -0.55 1.89
(5/06) Soil, Autoclaved Model 0.002 0.03 -0.10 0.05 Not available

No ID CWM40 (11/03) Media 0.82 0.75
Russula CWM62B

(12/03) Media
(5/06) Media Not available 1.01 1.88 -4.64 4.22
(5/06) Media Model Not available -0.01 0.14 0.08 0.11
(5/06) Soil, Autoclaved Not available -0.34 0.06 0.009 1.49
(5/06) Soil, Autoclaved Model Not available -0.01 0.02 0.02 0.05

Stereum CWM98 (11/05) Soil bd bd 0.0002
Gymnopilus CWM140 (11/05) Soil 0.00001 0.00001 0.0001
Trametes CWM142

(9/06) Media Not available -82.14 43.3 1.16 0.37
Cantharellus CWM148
(5/06) Media Not available 5.06 1.68 11.9 5.84
(5/06) Media Model Not available -0.01 0.21 na
(5/06) Soil, Autoclaved Not available 3.79 7.35 0.26 0.66
(5/06) Soil, Autoclaved Model Not available 0.02 0.01 na

Russula CWM159 (11/05) Soil bd bd 0.0002

In addition to the basidiomycetes isolated from College Woods, an 

ascomycete was isolated from the tissue of a cup fungus putatively identified as 

Peziza badioconfusa. Four isolates were obtained from this individual sample 

(CWM5). Media incubations were assayed in 2003 for methyl bromide

70

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



production only; soil incubations were assayed in 2005. The emissions from this

fungus are shown in Table 3-7.

Table 3-7: Methyl Halides from Pez/za (media=ng CH3X g wet wt fungi"1 d"1; soil=ng CH3X g 
dry wt soil"1 d"1; bd=below limit of detection)

I c h 3ci CH3Br c h 3i I

Mean sd Mean sd Mean sd |

I Media (9/03) 0.09 + 0 .0 2 - 1.23 ±0.17
Soil (11/05) bd 2.23E-05 3.15E-08

3.4.5 Mvcorrhizal Fungi

Some of the samples that were assayed are fungi that are known to form 

mycorrhizae (Table 3-8). The highest fluxes observed in this group were from 

the unidentified LBM samples collected at the agricultural site.

Table 3-8: Fluxes from Mycorrhizal Fungi (media=ng CH3X g dry wt fungi"1 d"1; soiling 
CH3X g dry wt soil"1 d"1; bd=below limit of detection)

Genus Isolate# Run Date c h 3ci CH3Br c h 3i

Mean sd Mean sd Mean sd
Russula CWM29
(10/03) Media 1.8 0.20
(11/05) Soil bd 0.0001 0.0002
Russula CWM62B

(12/03) Media 19.80
(5/06) Media Not available 1.01 1.88 -4.64 4.22
(5/06) Media Model Not available -0.01 0.14 0.08 0.11
(5/06) Soil, Autoclaved Not available -0.34 0.06 0.009 1.49
(5/06) Soil, Autoclaved Model Not available -0.01 0.02 0.02 0.05

Russula CWM159 (11/05) Soil bd bd 0.0002
Gymnopilus CWM140 (11/05) Soil bd bd 0.0001
Cantharellus CWM148
(5/06) Media Not available 5.06 1.68 11.9 5.84
(5/06) Media Model Not available -0.01 0.21 Not available
(5/06) Soil, Autoclaved Not available 3.79 7.35 0.26 0.66
(5/06) Soil, Autoclaved Model Not available 0.02 0.01 Not available

Marasmius SFM53 (7/06) Media 0.14 0.15 0.6 2.08 Not available
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Genus Isolate# Run Date CH3CI CH3Br CH3I
Mean sd Mean sd Mean sd

Alnicola SFM54 1.5 (11/03) 0.32 0.07
Alnicola SFM54 0 (12/03) 3.15 0.98

0(7/06) 0.55 0.05 4.39 3.7 44.4 51.6
LBM KM118

(7/05) Media 10.9 69.7 4640
(6/06) Media Not available -8.67 8.8 54.0 56.2
(6/06) Media Model Not available -0.07 0.72 5.65 3.21
(6/06) Soil, Autoclaved Not available 0.17 0.03 -2.20 0.44
(6/06) Soil, Autoclaved Model Not available 0.01 0.02 -0.14 0.04
(9/06) Media Not available bd Not available
(9/06) Media Model Not available Not available Not available
(9/06) Soil, Not Autoclaved 2.53 2.46 -4.97 bd
(9/06) Soil, Not Autoclaved Model -0.52 0.11 -0.34 0.16 0.001 0.12

LBM KM119
(7/05) Media 48.8 3.76 417
(9/06) Media 57.4 78.0 76.4 49.1 18.6 65
(10/06) Soil, Not Autoclaved 0.78 0.11 -0.76 1.8 bd
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CHAPTER 4

4.0 DISCUSSION

This study resulted in the isolation of fungi from four ecosystems. Fungi 

have been previously identified as net producers of methyl bromide (Harper,

1985; Watling and Harper, 1998; Harper, 2000), indicating that they are a 

potential mechanism for production in these environments. The fungi that were 

isolated in this study produced methyl halides at rates similar to those observed 

for fungi cultured from other ecosystems (Redeker et al., 2004). The implications 

of flux estimation methods and extrapolations to real fluxes from emission 

measurements are discussed in this chapter.

4.1 Effect of Flux Estimation Methods

The Bayesian approach that was used to estimate a flux from the data 

resulted in lower fluxes. This was because the error of the standard was used to 

estimate concentration. In flux measurement studies, the error in the standard 

concentration is generally ignored either because it is small when compared to 

measured concentrations (for example, 0.05% for methane and <1% for C 02) or 

because there is not an easy way to propagate this error to the flux estimate.

This has implications for previously published work of methyl halide fluxes and 

the magnitude of their extrapolations. For example, the model results for the
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fluxes of all three methyl halides from ectomycorrhizal fungi tested in this study 

(Table 4-4) are significantly lower than those previously published by Redeker et 

al. (2004). In their work, the authors do not propagate the 3, 3% and 10% 

precision of their gas chromatography method for analysis of methyl chloride, 

methyl bromide and methyl iodide, respectively (Redeker et al., 2004). The 

analysis performed in this study implies that the fluxes estimated using the linear 

least squares method are likely an overestimation of the emission from these 

fungi by 30% to 95%.

In other studies, field measured fluxes of methyl halides have been 

calculated using similar methods. Dimmer et al. (2001) report fluxes of methyl 

halides from peatlands. The precision of their instrumentation is reported as 

varying between 0.3% and 4%. Depending on where the analyses occurred 

within this precision range, the fluxes could be significantly overestimated. Rhew 

et al. (2000, 2001, 2007) have made extensive flux measurements ranging from 

scrubland and coastal salt marsh ecosystems in California to Alaskan tundra 

ecosystems. In every case, the precision of the instrumentation is reported as 

3% for methyl chloride and methyl bromide and 12% for methyl iodide. Previous 

work by Varner et al. (1999, 2003) report methyl bromide fluxes with an analytical 

error of 2% to 3%, which is unaccounted for in their flux estimates of methyl 

bromide from temperate soils and wetlands.

A second source of error that is often ignored in flux measurements is 

related to the number of samples drawn from the fungal headspace. In this
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study, a minimum of three samples was used to calculate a flux. Redeker et al. 

(2004) reported that oniy two samples were drawn (0 and 4 hr) for emission 

estimates. There is no discussion of the error associated with fitting a linear 

regression to two points. Similarly, two sampling points were used to estimate 

methyl halide fluxes in field sampling by Rhew et al. (2000, 2001, 2007). Thus, 

the fluxes reported by both researchers are suspect.

When calculating fluxes, ignoring the error in variables associated with 

estimating the concentration of samples has serious implications. These flux 

measurements are often used to determine a global flux of methyl halides for an 

ecosystem or organism. The global flux is then used by atmospheric chemists 

and modelers to interpret atmospheric concentrations of these trace gases and, 

in turn, determine the distribution of the sinks and sources.

4.2 Emissions from Fungi in Four Ecosystems

To identify whether production from fungi represents a significant source 

of methyl halides at the ecosystems studied, the rates from fungi in soil 

incubations were extrapolated to surface area and compared to field-measured 

fluxes from these and other field sites.

Table 4-1 compares methyl halide emissions from fungi at different sites in 

this study to fluxes that were measured using enclosure methods in the field in 

other studies.
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Table 4-1: Comparison of Fluxes from Fungi in Soil to Chamber Fluxes

Methyl Halide 
(ng CH3X m'2 d'1) Study

CH3CI CH3Br CH3I

-0.18-2.41 
0 -  0.08

-49 .47- 18.70 
-0.21 -  2.41

-3 .02-13.88
-0 .33-0 .18

This study: 
Temperate forest 

Media 
Soil

0 -1 8 .7 8
-0 .16-0 .99

-2.97- 25.05 
-1 .65-0 .07

1.98-1516 
-0.66- 0

Agricultural fields 
Media 
Soil

7200 4560 6000
Coastal wetland, Cape Grim, 
Tasmania;
Cox et al. (2004)

-31303.8 -768.52 - N. Alaskan coastal tundra 
(drained); Rhew et al. (2007)

-706.86 104.43 - Flooded tundra; Rhew et al. 
(2007)

- - 567.76
Average depended on time of 
year and hydrologic regime; 
Rhewet al. (2007)

60000 5000 55000
S. California coastal salt 
marshes; Spartina plants; 
Manley et al. (2006)

14520.55 2465.75 3835.62
Irish peatlands; median 
daytime annual flux; Dimmer 
et al. (2001)

92602.74 4657.53 5205.48 Conifer forest; Dimmer et al. 
(2001)

18082.19 2739.73 3835.62 Wetlands; Dimmer et al. 
(2001)

- 664.98 - Temperate peatland; mean 
flux 1999 ; White etal. (2005)

- 379.76 - Mean flux 2000; White et al. 
(2005)

- -4000 -  3300 - Temperate forest soils; 
Varner et al. (2003)

The emissions observed in this study are consistent with Dimmer et al.

(2001) who reported a “very high CH3I flux” from a freshwater coastal marsh in 

Ireland. Comparisons can also be made with studies of methyl halide emissions 

from salt marshes in southern California. For example, Manley et al. (2006)
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found that plants, including Spartina spp., in the mid and upper marsh produced 

41 % of the observed methyl iodide emissions, while 59% was from unvegetated 

areas of coastal California salt marshes. The methyl halide emissions were 

correlated to seasonality, biomass, and flowering. There were apparent 

differences in methyl halide emissions between plant species. The plant roots, 

associated microbes, or mycorrhizae were identified as possible sources of the 

strong methyl iodide emissions from soils/muds at the California salt marshes.

Using flux chambers in various southern California shrubland sites, Rhew 

et al. (2001) measured net production of methyl chloride and methyl bromide. 

Emissions were very high during the dry season from plants adapted to dry 

conditions. Overall, they found that methyl chloride and methyl bromide 

production and consumption were competing processes in shrublands. This 

contrasted with the strong production of methyl chloride and methyl bromide that 

was observed in southern California salt marshes in an earlier study. They 

believe that vegetation, rather than soils and mudflats, were the primary source 

of methyl chloride and methyl bromide emissions in the salt marshes, but they 

did not rule out the possibility that methyl chloride emissions may be caused by 

either fungi or abiotic processes associated with plant decomposition (Rhew et 

al., 2002). Likewise, Varner et al. (2003) concluded from combined field and 

laboratory measurements that an abiotic mechanism or fungi may be responsible 

for net production of methyl bromide from temperate forest soils.
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Both negative and positive fluxes were observed from fungi growing in the 

soil incubations. The fluxes suggest that consumption, as well as production of 

methyl halides occurs in the upland and agricultural soils. These results are 

consistent with similar reports of methyl bromide production and consumption in 

temperate forest soils (Varner et al. 2003), temperate peatlands (White et al. 

2005), and shrublands (Rhew et al., 2001).

As Table 4-1 shows, fluxes from fungi in agricultural soil were consistent 

with observations by Varner (2000), who suggested that fungi from agricultural 

fields could be responsible for observed fluxes (1 -  200 ng m'2 d'1). However, 

the fluxes from forest soil fungi are not significant when compared to efflux 

measurements by Varner et al. (2003) and Varner (2000).

4.3 How Much of Methyl Halide Production is Due to Fungi?

To identify whether the methyl halide production that was observed in field 

measurements can be attributed to fungi, the molar ratio of emissions from fungi 

can be compared with field emissions (Table 4-2). The mean methyl bromide 

and methyl iodide production rates (nmol CH3X g fungi'1 day"1) were normalized 

to the methyl chloride rate.

Table 4-2: Methyl Halide Ratios of Production Rates by Fungi in Media Incubations (nmol 
CH3X g fungi'1 day"1)

Methyl Halide Ratio 
CH3C I: CH3Br : CH3I Ecosystem Type

1 : 3 : 1 Temperate forest |
1 : 0.5 : 12 Agricultural fields |
1 : 0.6 : 0.7 Freshwater fen |
1 : 0.5 : 0.6 Salt marshes |
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When the ratios of production rates by fungi in culture in this study are 

compared to other studies, they reflect a similar “signature” for methyl halide 

emissions observed in salt marsh (Cox et al., 2004; Manley et al., 2006) and Irish 

peatland (Dimmer et al., 2001) ecosystems (Table 4-3).

Table 4-3: Methyl Halide Ratios in Field Emissions (n.a.= not available, not measured)

Ratios Site/Organism Ion Measurement Reference

1 : 4 : 19 P. pomaceous Equimolar Fungal incubation 
(basidiomycete)

Harper et al., 
1985

1 : 0.005 : 0.03 
1 : 0.035 : 0.0006 
1 : 30 : 2,553

1. immacuia 
L. laccata

0.20 mM 
0.20 mM 
20 mM

Fungal incubations 
(ectomycorrhizae)

Redeker et al., 
2004

1 : 0.05 : n.a. Temperate
wetland n.a. Clear chamber flux Varner et al., 

1999

1 : 0.021 : 0.006 Tundra n.a. Dark chamber flux Rhew et al., 
2007

1:0.13-0.20:0.0-0.6 Salt marsh plants 
and controls

(plants) Clear chamber flux Manley etal., 
2006

1 : 0.20 : n.a. Salt marsh n.a. Dark chamber flux Rhew et al., 
2000

•1 : 0.10 : n.a. Boreal soils n.a. Incubations Rhew et al., 
2003

1 : 0.17 : 0.26 
1 : 0.05 : 0.06

Irish peatland 
Conifer forest n.a. Dark chamber flux Dimmer et al., 

(2001)

1 : 0.26 : 0.26 
1 : 0.006 : 0.001 
1 : 0.02 : 0.003

Coastal salt- 
marsh
Eucalyptus forest 
Soil leaf litter

n.a. Chamber flux (type 
not described)

Cox et al., 2004

The results show that methyl halide ratios from fungi were not equal to 

those observed in the field (Rhew et al., 2007; Cox et al., 2004; and Dimmer et 

al., 2001), but fungi are likely to be part of the source. Methyl halide ratios 

observed in the field were likely a net flux, which is the result of combined 

consumption and production mechanisms. This would cause the ratio to be 

lower, as reflected in the results 1:0.2:<0.3 vs. 1:0.6:0.5 (from fungi).
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4.4 Mvcorrhizal Fungi

The methyl halide emissions from mycorrhizal species of fungi tested in 

the present study are compared in Table 4-4 to emissions from ectomycorrhizal 

fungi grown in culture, as reported by Redeker et al. (2004).

Table 4-4: Comparison to Emissions from Ectomycorrhizal Fungi in Culture

Methyl Halide Ranges 
(media=ng CH3X g dw fungi'1 d'1; 

soiling CH3X g dw soil' d'1)
Study

CH3CI CH3Br c h 3i
This study; mycorrhizal species of 
fungi; media incubations=0.02, 20, 
& 2 mM halide concentrations for 
Cl', Br', and I', respectively.

0
0

0 -1 8 .8
-0 .16-0 .99

-0.01- 12.07 
-0.21 -2.41

-2.97 -  25.05 
-1 .65-0 .07

-3.02 -  7.24 
0 -0 .1 6

1.98-1516 
-0 .6 6 - 0

Temperate Forest 
Media 
Soil

Agricultural Fields 
Media 
Soil

1.9-130,000 21 -  320,000 9 0 -  18,000

Ectomycorrhizae; range of 
emissions from fungal isolates in 
media cultures supplemented with 
20 mM halide concentration; 
Redeker et al. (2004)

Although the methyl halide emissions from the present study are lower 

than the emissions in the Redeker et al. study, they are within the range 

observed. It is important to note that Redeker et al. (2004) found significant 

variation in emissions between the nine ectomycorrhizal isolates they measured. 

Furthermore, the species of fungi tested in the two studies are not the same.
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4.5 Unexpected Production in Non-basdiomvcetes

The high levels of methyl halides produced by non-basidiomycete fungi 

were not expected. The non-basidiomycetes isolated from the freshwater fen 

and salt marshes produced the highest levels of methyl iodide. In particular, the 

isolates identified as Fusarium spp. produced the highest levels of methyl iodide 

in media culture, in some cases exceeding the detection level of the instrument.

The results show that ascomycetes and zygomycetes are a potential 

source of methyl halide emissions that may represent a greater environmental 

significance than expected from basidiomycetes.

4.6 Summary

The goal in this study was to eliminate environmental factors, such as 

temperature, moisture, and light that can influence field measurements of methyl 

halide emissions. Competing biogenic sources of methyl halides were removed 

by isolating and assaying a single species of fungi in sterile laboratory cultures.

Targeting a single organism within an ecosystem, isolating it from the 

environment, measuring its production or consumption, and quantifying its 

biomass can be difficult, especially when dealing with microorganisms. Many 

factors influence fungal biomass in the soil, such as moisture, temperature, soil 

structure and resource availability (Sulzman and Frey, 1999). These factors can 

all contribute to the high variability in methyl halide fluxes that were observed.
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CHAPTER 5

5.0 RECOMMENDATIONS FOR FUTURE STUDIES

While the data presented here are highly variable, clearly, the non- 

basidiomycete fungi are a potential source of methyl halide emissions, and 

further investigation is indicated.

More soil incubation assays of ascomycetes, such as Fusarium spp. and 

Alternaria spp. fungi, which are common in soil and on plants, should be 

performed in order to better establish the net methyl halide fluxes from these 

fungi. Ironically, they are easy to isolate and culture, grow quickly in the 

laboratory, and are more easily identified by their microscopic characteristics 

than basidiomycetes.

In a recent survey of fungal biodiversity, many more species of heat- and 

salt-tolerant fungi have been identified (Gams, 2007); many more species that 

can adapt to stressful environments, such as the ascomycetes, have yet to be 

identified (Zak and Wildman, (2004).

The Fusarium spp. and Alternaria spp. are common fungi that occur on 

grasses. The presence of these and other unidentified species of fungi on plants 

and in soils of salt marshes are likely. Their potential for methyl halide emissions
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may represent a greater environmental significance than expected from 

basidiomycetes.

It is also recommended that fungi be isolated and cultured from tissue 

samples taken from plants inside static chambers after field measurements to 

identify whether fungi on the plants are responsible for the methyl halide 

emissions.

Further, to reduce the compounding effects of error factors, the sample 

size of isolates should be increased, more assays per isolate should be 

performed, and the daily assays of standard aliquots should be increased.

Finally, when estimating a flux, consideration should be given to the type 

of curve-fitting technique that is used if the error of the standard concentration is 

high.
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APPENDIX A

A.O FUNGI INVENTORY

Table A-1: Inventory of All Fungi Cultured and Stored in Cryovials. CW=College Woods; Sall=SF, Sallies Fen; Chap=Chappys 
Landing; KF=Kingman Farm; Bar=Bartlett Forest; Hvd=Harvard Forest; ME=Maine; cl=clamps identified.

Site Type Isolate Name Putative ID Collected: Cryovial:

Bar Mush B1 0 mybda Clavaria inequalis 8/21/2003 9/8/2003
Bar Mush B1 .5 mybda mybda or Clauvinopsis fusiformis 8/21/2003 9/16/2003
Bar Mush B1 2.0 mybda2 8/21/2003 9/16/2003
Bar Mush B2 Amanita sp 8/21/2003 lost
Bar Mush B3 0 mybda 1 Amanita caesarea 8/21/2003 9/8/2003
Bar Mush B3 .5 mybda 8/21/2003 9/8/2003
Bar Mush B4 1.5 mybda Ramaria 8/21/2003 9/16/2003
Bar Mush B4 2.0 mybda 8/21/2003 10/7/2003
Bar Mush B5 .5 mybda2 Kuehneromyces mutabilis 8/21/2003 9/16/2003
Bar Mush B5 1.5 MYBDA or Collybia veluptipes 8/21/2003 9/16/2003
Bar Mush B5 2.0 MYBDA 8/21/2003 9/8/2003
Bar Mush B6 Russula 8/21/2003 tossed
Bar Mush B7 Amanita 8/21/2003 tossed
Bar Mush B8 1.5 mybda Boletus 8/21/2003 9/16/2003
Bar Mush B9 .5 mybda Boletus pulverulentus 8/21/2003 9/16/2003
Bar Mush B9 2.0 mybda2 cmea MYBDA 8/21/2003 12/3/2003
Bar Mush B10.5  mybda Boletus pulverulentus 8/21/2003 10/7/2003

CW Mush CWM1 MEA D mybda Xeromphalina tenuipes 5/20/2003 7/31/2003
CW Mush CWM1 mybda A orX. campanella 5/20/2003 7/11/2003
CW Mush CWM1 mybda A 5/20/2003 7/1/2003
CW Mush CWM2 mybda A Cerena unicolor 5/20/2003 7/1/2003
CW Mush CWM2 mybda A 5/20/2003 7/17/2003
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Site Type Isolate Name Putative ID Collected: Cryovial:
CW Mush CWM2 mybda B 5/20/2003 7/1/2003
CW Mush CWM2 mybda B 5/20/2003 7/17/2003
CW Mush CWM2 mybda C 5/20/2003 7/1/2003
CW Mush CWM2 mybda C 5/20/2003 7/17/2003
CW Mush CWM2 mybda C mybda 5/20/2003 8/26/2003
CW Mush CWM3 mybda B Crepidotus 5/20/2003 7/1/2003
CW Mush CWM3 mybda B 5/20/2003 7/17/2003
CW Mush CWM3 mybda A mybda 5/20/2003 7/17/2003
CW Mush CWM3 mybda C mybda cl 5/20/2003 7/14/2003
CW Mush CWM3 mybda C mybda CMEA 5/20/2003 3/28/2006
CW Mush CWM4 .5 mybda2 cl 5/20/2003 10/7/2003
CW Mush CWM4 .5 mybda2 5/20/2003 7/31/2003
CW Mush CWM4 1.5 mybda 5/20/2003 7/11/2003
CW Mush CWM4 2.0 mybda 5/20/2003 7/23/2003
CW Mush CWM5 .5 mybda cl Peiza badioconfusa 5/20/2003 7/11/2003
CW Mush CWM5 1.0 mybda 5/20/2003 7/11/2003
CW Mush CWM5 2.0 mybda 5/20/2003 7/11/2003
CW Mush CWM5 1.5 mybda 5/20/2003 7/11/2003
CW Mush CWM5 mybda A1 5/20/2003 7/1/2003
CW Mush CWM5 mybda A1 5/20/2003 7/14/2003
CW Mush CWM5 mybda A2 5/20/2003 7/1/2003
CW Mush CWM5 mybda A2 5/20/2003 7/14/2003
CW Mush CWM5 mybda A 5/20/2003 7/1/2003
CW Mush CWM5 mybda A cl 5/20/2003 7/17/2003
CW Mush CWM5 mybda B cl 5/20/2003 7/14/003
CW Mush CWM5 mybda B 5/20/2003 7/1/2003
CW Mush CWM5 mybda C cl 5/20/2003 7/14/2003
CW Mush CWM5 mybda C 5/20/2003 10/12/2005
CW Mush CWM5 mybda C 5/20/2003 10/7/2003
CW Mush CWM5 mybda C1 5/20/2003 7/1/2003
CW Mush CWM5 mybda C1 5/20/2003 7/14/2003
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Site Type Isolate Name Putative ID Collected: Cryovial:

CW Mush CWM5 mybda C2 5/20/2003 7/1/2003
CW Mush CWM5 mybda C2 5/20/2003 7/14/2003
CW Mush CWM5 mybda D 5/20/2003 7/1/2003
CW Mush CWM5 mybda D 5/20/2003 7/14/2003
CW Mush CWM5 mybda E 5/20/2003 7/14/2003
CW Mush CWM5 mybda E 5/20/2003 7/1/2003
CW Mush CWM6 .5 mybda Polyporus alveolaris 5/20/2003 7/11/2003
CW Mush CWM6 1.0 mybda 5/20/2003 7/11/2003
CW Mush CWM6 2.0 mybda 5/20/2003 7/11/2003
CW Mush CWM6 mybda A 5/20/2003 7/1/2003
CW Mush CWM6 mybda A 5/20/2003 7/14/2003
CW Mush CWM6 mybda A mybda 5/20/2003 9/8/2003
CW Mush CWM6 mybda B 5/20/2003 7/1/2003
CW Mush CWM6 mybda B 5/20/2003 7/11/2003
CW Mush CWM6 mybda E 5/20/2003 7/14/2003
CW Mush CWM6 mybda E 5/20/2003 7/1/2003
CW Mush CWM6 mybda E MYA 5/20/2003 8/20/2003
CW Mush CWM7 .5 mybda Phebia radiata 5/20/2003 7/22/2003
CW Mush CWM7 1.0 mybda 5/20/2003 7/23/2003
CW Mush CWM7 1.5 mybda 5/20/2003 7/22/2003
CW Mush CWM7 2.0 mybda 5/20/2003 7/31/2003
CW Mush CWM7 mybda DC mybda 5/20/2003 7/31/2003
CW Mush CWM7 mybda E 5/20/2003 7/11/2003
CW Mush CWM7 mybda E 5/20/2003 7/1/2003
CW Mush CWM8 0 mybda cl 5/20/2003 7/11/2003
CW Mush CWM8 1.5 mybda 5/20/2003 7/11/2003
CW Mush CWM8 2.0 mybda 5/20/2003 7/11/2003
CW Mush CWM8 mybda A cl 5/20/2003 7/1/2003
CW Mush CWM8 mybda A 5/20/2003 7/14/2003
CW Mush CWM8 mybda B cl 5/20/2003 7/14/2003
CW Mush CWM8 mybda B 5/20/2003 7/1/2003
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Site Type Isolate Name Putative ID Collected: Cryovial:
CW Mush CWM8 mybda C cl 5/20/2003 7/14/2003
CW Mush CWM8 mybda C 5/20/2003 7/1/2003
CW Mush CWM9 Polyporus squamosus 5/20/2003 tossed
CW Mush CWM10 mybda D X. tenuipes same as CWM1 5/20/2003 7/1/2003
CW Mush CWM10 mybda D 5/20/2003 7/11/2003
CW Mush CWM11 mea A 5/20/2003 7/14/2003
CW Mush CWM11 mea A 5/20/2003 7/1/2003
CW Mush CWM11 mea D 5/20/2003 7/14/2003
CW Mush CWM11 mea D 5/20/2003 7/1/2003
CW Mush CWM11 mea E 5/20/2003 7/14/2003
CW Mush CWM11 mea E 5/20/2003 7/1/2003
CW Mush CWM11 mea E mybda 5/20/2003 9/8/2003
CW Mush CWM11 0 mybda2 5/20/2003 7/31/2003
CW Mush CWM11 .5 mybda 5/20/2003 7/23/2003
CW Mush CWM11 1.5 mybda 5/20/2003 7/22/2003
CW Mush CWM11 1.5 mybda A mybda2 MYA 5/20/2003 8/5/2003
CW Mush CWM12 0 mybda 5/20/2003 7/22/2003
CW Mush CWM12 mybda C 5/20/2003 7/1/2003
CW Mush CWM12 mybda C 5/20/2003 7/17/2003

13 and 14 not used

CW Mush CWM15 0 mybda Ceratiomyxa fruticulosa 5/20/2003 7/1/2003
CW Mush CWM15 0 mybda v flexuosa 5/20/2003 7/11/2003
CW Mush CWM15 .5 mybda 5/20/2003 7/1/2003
CW Mush CWM15 .5 mybda 5/20/2003 7/14/2003
CW Mush CWM15 1.0 mybda 5/20/2003 7/1/2003
CW Mush CWM15 1.0 mybda 5/20/2003 7/11/2003
CW Mush CWM15 1.5 mybda 5/20/2003 7/1/2003
CW Mush CWM15 1.5 mybda 5/20/2003 7/11/2003
CW Mush CWM15 2.0 mybda 5/20/2003 7/1/2003
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Site Type Isolate Name Putative ID Collected: Cryovial:
CW Mush CWM15 2.0 mybda 5/20/2003 7/11/2003

16 and 17 not used
7/23/2003

CW Mush CWM18 0 mybda Mycena haematopus 5/20/2003
CW Mush CWM19 5/20/2003 tossed

20 not used

CW Mush CWM21 .5 A mybda2 cl Crepidotus herbarum 5/20/2003 8/20/2003
CW Mush CWM21 .5 B mybda2 cl 5/20/2003 8/20/2003
CW Mush CWM21 .5 mybda cl 5/20/2003 8/20/2003
CW Mush CWM21 2.0 mybda 5/20/2003 8/20/2003
CW Mush CWM21 2.0 A mybda2 cl 5/20/2003 8/20/2003
CW Mush CWM21 2.0 B mybda2 cl 5/20/2003 8/20/2003
CW Mush CWM22 .5 mybda 7/3/2003 7/31/2003
CW Mush CWM23 1.0 mybda 7/3/2003 7/22/2003
CW Mush CWM23 1.0 mybda2 cl 7/3/2003 7/23/2003
CW Mush CWM24 7/3/2003 tossed
CW Mush CWM25 0 mybda 7/3/2003 . 8/5/2003
CW Mush CWM25 .5 mybda 7/3/2003 8/20/2003
CW Mush CWM25 1.0 A mybda MYA 7/3/2003 10/7/2003
CW Mush CWM25 2.0 mybda MYA 7/3/2003 10/7/2003
CW Mush CWM26 .5 mybda A MYA CMEA 7/3/2003 9/8/2003
CW Mush CWM26 1.5 mybda A MYA 7/3/2003 7/31/2003
CW Mush CWM26 1.5 mybda B MYA mybda 7/3/2003 9/8/2003
CW Mush CWM26 1.5 mybda B MYA 7/3/2003 7/31/2003
CW Mush CWM27 7/3/2003 tossed
CW Mush CWM28 2.0 mybda2 7/3/2003 7/31/2003
CW Mush CWM29 0 mybda 7/3/2003 7/22/2003
CW Mush CWM29 1.0 mybda cl 7/3/2003 7/17/2003
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CW Mush CWM29 2.0 mybda 7/3/2003 7/22/2003
CW Mush CWM30 0 mybda 7/3/2003 7/23/2003
CW Mush CWM30 .5 mybda2 A 7/3/2003 7/31/2003
CW Mush CWM30 .5 mybda2 B 7/3/2003 7/31/2003
CW Mush CWM30 1.0 mybda mybda 1 cl 7/3/2003 8/5/2003
CW Mush CWM30 1.0 mybda mybda 2 cl 7/3/2003 8/5/2003
CW Mush CWM30 1.5 mybda cl 7/3/2003 7/17/2003
CW Mush CWM31 1.0 A mybda 7/3/2003 7/23/2003
CW Mush CWM31 1.0 A mybda mybda 1 cl 7/3/2003 8/26/2003
CW Mush CWM31 1.0 A mybda mybda 2 cl 7/3/2003 8/26/2003
CW Mush CWM31 1.0 mybda 7/3/2003 7/22/2003
CW Mush CWM31 0.5 mybda 7/3/2003 7/22/2003
CW Mush CWM32 0 mybda2 cl 7/3/2003 8/5/2003
CW Mush CWM32 .5 mybda2 cl 7/3/2003 8/5/2003
CW Mush CWM32 2.0 A mybda2 cl 7/3/2003 8/5/2003
CW Mush CWM33 7/3/2003 tossed
CW Mush CWM34 0 mybda cl 7/3/2003 7/22/2003
CW Mush CWM34 0 mybda2 7/3/2003 7/23/2003
CW Mush CWM34 .5 mybda A mybda cl 7/3/2003 7/31/2003
CW Mush CWM34 1.0 mybda 7/3/2003 7/22/2003
CW Mush CWM34 1.0 mybda A cl 7/3/2003 7/22/2003
CW Mush CWM34 1.0 mybda 7/3/2003 10/12/2005
CW Mush CWM34 1.0 A mybda 7/3/2003 7/22/2003
CW Mush CWM34 1.0 mybda A mybda 7/3/2003 7/23/2003
CW Mush CWM34 1.0 mybda B mybda 7/3/2003 7/31/2003
CW Mush CWM34 2.0 mybda 7/3/2003 7/22/2003
CW Mush CWM35 0 mybda cl 7/3/2003 7/23/2003
CW Mush CWM35 .5 mybda cl 7/3/2003 7/17/2003
CW Mush CWM35 1.0 mybda A mybda cl 7/3/2003 8/5/2003
CW Mush CWM35 1.0 mybda B mybda cl 7/3/2003 8/5/2003
CW Mush CWM35 1.0 mybda A mybda CMEA 7/3/2003 3/28/2006
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Site Type Isolate Name Putative ID Collected: Cryovial:
CW Mush CWM36 0 mybda cl 7/3/2003 7/31/2003
CW Mush CWM36 1.0 mybda cl 7/3/2003 7/17/2003
CW Mush CWM36 1.0 A mybda cl 7/3/2003 7/23/2003
CW Mush CWM36 1.0 mybda MYA 7/3/2003 12/19/2003
CW Mush CWM37 2.0 mybda A mybda cl 7/3/2003 7/31/2003
CW Mush CWM38 0 mybda 7/3/2003 7/31/2003
CW Mush CWM38 .5 mybda mybda 1 7/3/2003 8/20/2003
CW Mush CWM38 .5 mybda mybda 2 7/3/2003 8/20/2003
CW Mush CWM38 2.0 mybda 7/3/2003 8/5/2003
CW Mush CWM39 0 mybda 7/3/2003 7/31/2003
CW Mush CWM39 1.0 mybda 7/3/2003 7/31/2003
CW Mush CWM39 2.0 mybda 7/3/2003 7/31/2003
CW Mush CWM40 1.5 mybda B mybda 7/3/2003 7/31/2003
CW Mush CWM40 1.5 mybda A MYA 7/3/2003 7/31/2003
CW Mush CWM40 2.0 mybda A mybda cl 7/3/2003 7/31/2003
CW Mush CWM40 2.0 mybda B mybda cl 7/3/2003 7/31/2003

CWM41 - CWM54 not used

CW Mush CWM55 Paxillus panuoides 10/2/2003 12/19/2003
CW Mush CWM56 0 mybda Spongipellis pachydon 10/2/2003 12/19/2003
CW Mush CWM56 1.0 mybda MYA 10/2/2003 11/17/2003
CW Mush CWM57 0 mybda2 cl Boletinellus merulioides 10/2/2003 10/30/2003
CW Mush CWM57 .5 mybda cl assoc, w/maple roots 10/2/2003 10/30/2003
CW Mush CWM58 .5 mybda2 Lycoperdon perlatum 10/2/2003 10/30/2003
CW Mush CWM59 .5 mybda mybda mybda 1 Mycena 10/2/2003 11/17/2003
CW Mush CWM59 .5 mybda mybda 2 10/2/2003 10/30/2003
CW Mush CWM59 1.0 mybda MYA 10/2/2003 11/17/2003
CW Mush CWM59 1.5 mybda2 10/2/2003 7/2/2004
CW Mush CWM60 0 mybda MYA 10/2/2003 11/17/2003
CW Mush CWM60 0.5 mybda MYA 10/2/2003 11/17/2003
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CW Mush CWM60 1.0 mybda MYA Coriolellus albidus 10/2/2003 11/17/2003
CW Mush CWM60 1.5 mybda2 10/2/2003 11/17/2003
CW Mush CWM61 10/2/2003 tossed
CW Mush CWM62 1.5 mybda cl Grifola frondosa 10/2/2003 10/30/2003
CW Mush CWM62 2.0 mybda2 at base o f hemlock tree 10/2/2003 12/19/2003
CW Mush CWM62-B 1.0 mybda2 cl 10/2/2003 11/17/2003
CW Mush CWM62-B 1.5 mybda cl 10/2/2003 10/30/2003
CW Mush CWM63 .5 mybda 10/2/2003 10/30/2003
CW Mush CWM63 1.5 mybda A mybda 10/2/2003 11/17/2003
CW Mush CWM64 0 mybda Amanita muscaria 10/2/2003 12/19/2003
CW Mush CWM65 0 mybda A mybda cl 10/2/2003 11/17/2003
CW Mush CWM65 0 mybda B mybda cl 10/2/2003 11/17/2003
CW Mush CWM65 .5 mybda MYA 10/2/2003 11/17/2003
CW Mush CWM65 2.0 mybda2 A mybda 10/2/2003 11/17/2003
CW Mush CWM66 2.0 mybda2 Xeromphalina campanella 5/19/2004 6/10/2004
CW Mush CWM66 2.0 mybda 5/19/2004 6/10/2004
CW Mush CWM67 0 mybda cl Laetiporus sulphureus 5/19/2004 7/2/2004
CW Mush CWM67 2.0 mybda2 cl 5/19/2004 6/9/2004
CW Mush CWM68 0 mybda A mybda 5/19/2004 6/10/2004
CW Mush CWM68 0 mybda B mybda cl 5/19/2004 6/9/2004
CW Mush CWM68 1.0 mybda A mybda 5/19/2004 6/10/2004
CW Mush CWM68 2.0 mybda A mybda 5/19/2004 6/9/2004
CW Mush CWM68 2.0 mybda B mybda 5/19/2004 6/9/2004
CW Mush CWM69 2.0 mybda cl Ganoderma tsugae 5/19/2004 7/2/2004
CW Mush CWM70 1.0 mybda2 Trametes versicolor 5/19/2004 6/10/2004
CW Mush CWM70 2.0 mybda 5/19/2004 6/10/2004
CW Mush CWM71 0 mybda2 Mycena alkalina 5/19/2004 6/9/2004
CW Mush CWM71 1.0 mybda 5/19/2004 6/9/2004
CW Mush CWM71 2.0 mybda 5/19/2004 6/9/2004
CW Mush CWM75 tossed; bacteria 5/25/2004 tossed
CW Mush |CWM76 tossed; bacteria Stereum 5/25/2004 tossed
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CW Mush CWM77 tossed;bacteria Favolus 5/25/2004 tossed
CW Mush CWM78 tossed; bacteria Favolus 5/25/2004 tossed
CW Mush CWM79 tossed; bacteria white polypore 5/25/2004 tossed
CW Mush CWM80 tossed; bacteria jelly 5/25/2004 tossed
CW Mush CWM83 0 mybda LBM 6/8/2004 8/4/2004
CW Mush CWM83 1.0 mybda A mybda 6/8/2004 8/4/2004
CW Mush CWM83 1.0 mybda B mybda 6/8/2004 8/4/2004
CW Mush CWM84 1.5 mybda2 6/8/2004 8/4/2004
CW Mush CWM84 2.0 mybda2 6/8/2004 8/4/2004
CW Mush CWM85 1.5 mybda2 6/8/2004 8/4/2004
CW Mush CWM85 0 mybda3 6/8/2004 8/13/2004
CW Mush CWM85 1.0 mybda3 6/8/2004 8/13/2004
CW Mush CWM87 1.0 mybda CMEA mya 6/8/2004 6/6/2005
CW Mush CWM89 0 mybda b mybda 2004 7/6/2005
CW Mush CWM89 0 mybda a mybda 2004 7/6/2005
CW Mush CWM90 1.0 mybda2 PDA 2004 6/2/2005
CW Mush CWM91 1.0 mybda2 2004 2/10/2005
CW Mush CWM92 1.0 mybda2 mya 2004 6/2/2005
CW Mush CWM93 1.0 mybda PDA 2004 6/2/2005
CW Mush CWM94 0 mybda a mybda 2004 6/6/2005
CW Mush CWM96 0 mybda2 2004 6/30/2005
CW Mush CWM97 1.0 mybda C mybda PDA 2004 6/2/2005
CW Mush CWM98 2.0 II B mybda 2004 6/2/2005
CW Mush CWM98 2.0 II A mybda 2004 6/2/2005
CW Mush CWM98 0 mybda a mybda cl 2004 1/3/2005
CW Mush CWM98 0 mybda2 CMEA mybda PDA 2004 6/2/2005
CW Mush CWM98 0 mybda a mybda CMEA mybda cl 2004 2/10/2005
CW Mush CWM98 1.0 II A mybda 2004 6/2/2005
CW Mush CWM99 1.0 mybda 2004 2/10/2005
CW Mush CWM100 0 mybda 2004 1/3/2005
CW Mush CWM100 0 mybda 2004 3/7/2005
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CW Mush CWM100 1.0 mybda Czp MEA 2004 6/22/2005
CW Mush CWM100 0 mybda2 2004 2/10/2005
CW Mush CWM100H 0 mybda B mybda 2004 7/15/2005
c w Mush CWM101 2.0 mybda2 9/1/2004 2/10/2005
CW Mush CWM101 1.0 mybda2 C mybda 9/1/2004 7/15/2005
c w Mush CWM101 1.0 mybda2 b mybda 9/1/2004 6/6/2005
c w Mush CWM101 1.0 mybda2 a mybda2 MEA 9/1/2004 6/2/2005
c w Mush CWM101 1.0 mybda2 mybda2 MEA 9/1/2004 6/22/2005
c w Mush CWM101 0 mybda2 9/1/2004 7/6/2005
c w Mush CWM102 1.0 mybda2 PDA MYA 9/1/2004 6/22/2005
c w Mush CWM103 1.0 mybda2 9/1/2004 7/15/2005
c w Mush CWM104 2.0 mybda2 a mybda 9/1/2004 7/6/2005
c w Mush CWM104 1.0 mybda2 Al mybda 9/1/2004 6/6/2005
c w Mush CWM105 2.0 (mybda A)2 mybda 9/1/2004 7/6/2005
c w Mush CWM105 2.0 mybda B mybda 9/1/2004 2/10/2005
c w Mush CWM106 0 mybda2 A mybda 9/1/2004 6/30/2005
c w Mush CWM1070 mybda3 9/1/2004 6/6/2005
c w Mush CWM107 2.0 mybda2 b mybda 9/1/2004 6/2/2005
c w Mush CWM107 1.0 mybda2 a mybda A mybda 9/1/2004 6/2/2005
c w Mush CWM107 1.0 mybda2 a mybda B mybda 9/1/2004 7/15/2005
c w Mush CWM108 1.0 mybda2 9/1/2004 3/7/2005
c w Mush CWM1090 mybda2 9/1/2004 7/15/2005
c w Mush CWM110 1.0 mybda2 a mybda 9/1/2004 6/6/2005
c w Mush CWM110 2.0 mybda2 9/1/2004 2/10/2005
c w Mush CWM110 2.0 mybda 9/1/2004 3/7/2005
c w Mush CWM111 1.0 mybda2 a mybda 9/1/2004 6/6/2005
c w Mush CWM111 1.0 mybda2 b mybda PDA 9/1/2004 6/2/2005
c w Mush CWM112 2.0 mybda B mybda2 9/1/2004 6/2/2005
c w Mush CWM112 2.0 mybda A mybda 9/1/2004 2/10/2005
c w Mush CWM113 1.0 mybda2 MYA 9/1/2004 6/6/2005
c w Mush CWM113 .5 (mybda A)3 MEA 9/1/2004 6/22/2005
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CW Mush CWM115 0 mybda2 b mybda A mybda 9/17/2004 6/22/2005
CW Mush CWM115 0 mybda2 b mybda B mybda 9/17/2004 7/15/2005
c w Mush CWM115 2.0 mybda 9/17/2004 2/10/2005
c w Mush CWM131 Clitocybe candicans? 10/6/2005 lost
c w Mush CWM132 1.0 mybda A mybda Suillus pictus 10/6/2005 10/20/2005
c w Mush CWM132 0 mybda cmea 10/6/2005 3/28/2006
c w Mush CWM134 1.0 mybda2 yellow/grn/tan cap, wht stalk 10/6/2005 10/20/2005
c w Mush CWM135 0 mybda A mybda CMEA Marasmius rotula on dead twig 10/6/2005 3/28/2006
c w Mush CWM135 0 mybda B mybda CMEA 10/6/2005 3/28/2006
c w Mush CWM137 1.0 mybda A mybda Cortinarius iodes? 10/6/2005 10/20/2005
c w Mush CWM138 0 mybda A mybda 10/6/2005 3/28/2006
c w Mush CWM139 1.0 mybda? Cantharellus or Hygrophorus? 10/6/2005 3/21/2006
c w Mush CWM140 0 mybda E mybda Gymnopilus? 10/6/2005 3/21/2006
c w Mush CWM140 0 (mybda A)2 mybda cl 10/6/2005 4/6/2006
c w Mush CWM140 0 mybda B mybda CMEA 10/6/2005 3/23/2006
c w Mush CWM141 1.0 B mybda2 Armillariella 10/6/2005 3/23/2006
c w Mush CWM142 0 mybda B mybda A mybda cl Trametes? 10/6/2005 4/6/2006
c w Mush CWM142 0 MYBDA A mybda CMEA 10/6/2005 3/23/2006
c w Mush CWM143 0 mybda C mybda Collybia tuberosa? 10/6/2005 10/20/2005
c w Mush CWM143 1.0 B mybda B mybda2 10/6/2005 4/6/2006
c w Mush CWM144 0 mybda A mybda sm gilled;dk olive cap,gray stk 10/6/2005 10/20/2005
c w Mush CWM144 0 mybda B mybda CMEA 10/6/2005 10/20/2005
c w Mush CWM144 1.0 mybda 10/6/2005 3/21/2006
c w Mush CWM145 0 mybda B mybda Trametes? 10/6/2005 3/23/2006
c w Mush CWM145 0 mybda D mybda A mybda cl 10/6/2005 4/6/2006
c w Mush CWM148 0 A mybda2 A mybda cl chantrelle type 10/6/2005 4/6/2006
c w Mush CWM151 0 mybda B mybda2 A mybda CMEA Boletus 10/6/2005 3/23/2006
c w Mush CWM152 1.0 mybda A mybda CMEA Marasmius? 10/6/2005 10/20/2005
c w Mush CWM159 1.0 mybda A mybda CMEA2 cl Russula? 10/6/2005 3/28/2006
c w Mush CWM159 1.0 mybda D mybda 10/6/2005 3/21/2006
c w Mush CWM160 1.0 Amyba2 tan cap; buff stalk; attached 10/6/2005 3/21/2006
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CW Mush CWM161 0 mybda D mybda Russula ? 10/6/2005 3/21/2006
CW Mush CWM161 0 mybda A B mybda CMEA 10/6/2005 3/23/2006
c w Mush CWM161 0 mybda C A mybda2 10/6/2005 3/28/2006
c w Mush CWM166 0 A mybda2 small tan gilled 10/6/2005 3/21/2006
c w Mush CWM166 0 B mybda A mybda2 cl 10/6/2005 4/6/2006
c w Mush CWM185 1.0 A MEA mybda 10/6/2005 3/21/2006
CW2 Mush CW2M 187 1.0 A MEA mybda 10/6/2005 3/23/2006
CW2 Mush CW2M 187 1.0 B MEA mybda CMEA 10/6/2005 3/23/2006
CW Root CWM57 A .5 mybda 1 10/20/2003
CW Root CWM57 B .5 mybda CMEA 2 11/17/2003
CW Root CWM63 A .5 mybda 10/30/2003
c w Root CWM63 C .5 mybda 10/30/2003
c w Root CWM63 D .5 mybda 10/30/2003

CW1 Bait 2 P 1204 1.0 mybda2 8/15/2005
CW1 Bait 2 P 1204 2.0 mybda2 CMEA 10/12/2005
CW1 Bait 3 P 305 wood 1.0 mybda B mybda 10/18/2005
CW1 Bait 4 P 505 soil MEA A mybda2 CMEA 3/28/2006
CW1 Bait 23 M 305 soil mybda MEA A mybda2 3/23/2006
CW1 Bait 23 M 305 soil mybda3 10/20/2005
CW1 Bait 24 M 505 soil mybda B MEA2 10/20/2005
CW1 Bait 24 M 505 wood 1.0 mybda2 10/18/2005
CW1 Bait 62 Q 1204 2.0 root mybda2 8/15/2005
CW1 Bait 62 Q 1204 2.0 wood mybda2 8/15/2005
CW1 Bait 63 Q 305 wood 1.0 mybda2 A mybda 10/20/2005
CW1 Bait 63 Q 305 wood 1.0 mybda2 B mybda3 3/23/2006
CW1 Bait 64 Q 505 soil mybda C MEA 10/20/2005
CW1 Bait 72 Q 1204 0 mybda2 B mybda2 10/18/2005
CW1 Bait 72 Q 1204 0 mybda2 A mybda 10/18/2005
CW1 Bait 124 M 505 soil mybda C MEA mybda 3/28/2006
CW2 Bait 12 P 1204 0 mybda2 8/15/2005
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Port Mush PSM41 7/31/2003 tossed

Hvd Mush HFM42 7/31/2003 tossed
Hvd Mush HFM43 7/31/2003 tossed

ME Mush M1 8/18/2003 tossed
ME Mush M2 0 mybda A 8/18/2003 9/8/2003
ME Mush M2 0 mybda B 8/18/2003 9/8/2003
ME Mush M2 2.0 mybda 8/18/2003 9/8/2003
ME Mush M3 0 mybda 8/18/2003 9/8/2003

Sail Mush SFM44 .5 mybda2 7/31/2003 9/8/2003
Sail Mush SFM44 1.0 mybda A mybda 1 cl 7/31/2003 8/26/2003
Sail Mush SFM44 1.0 mybda A mybda 2 cl 7/31/2003 8/26/2003
Sail Mush SFM44 1.0 mybda B mybda 1 7/31/2003 8/28/2003
Sail Mush SFM44 1.0 mybda B mybda 2 7/31/2003 8/28/2003
Sail Mush SFM45 1.0 mybda 7/31/2003 8/26/2003
Sail Mush SFM45 1.5 mybda2 7/31/2003 8/26/2003
Sail Mush SFM45 2.0 mybda 7/31/2003 8/26/2003
Sail Mush SFM45 2.0 mybda MYA 7/31/2003 8/26/2003
Sail Mush SFM46 0 mybda2 Hygrophorus 9/11/2003 10/30/2003
Sail Mush SFM46 .5 mybda cl 9/11/2003 10/7/2003
Sail Mush SFM46 2.0 mybda cl 9/11/2003 10/21/2003
Sail Mush SFM46-B 0 mybda2 cl 9/11/2003 10/7/2003
Sail Mush SFM46-B 1.0 mybda 1 9/11/2003 10/30/2003
Sail Mush SFM46-B 1.5 mybda cl 9/11/2003 10/7/2003
Sail Mush SFM46-B 1.5 mybda2 cl 9/11/2003 10/7/2003
Sail Mush SFM46-B 2.0 mybda2 9/11/2003 11/17/2003
Sail Mush SFM47 Hygrophorus 9/11/2003 tossed
Sail Mush SFM48 .5 mybda2 9/11/2003 11/17/2003
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Sail Mush SFM48 1.0 mybda2 9/11/2003 10/30/2003
Sail Mush SFM48 1.0 mybda 2 mybda 9/11/2003 10/30/2003
Sail Mush SFM48 2.0 mybda 9/11/2003 10/7/2003
Sail Mush SFM49 .5 mybda cl 9/11/2003 11/17/2003
Sail Mush SFM49 1.0 mybda 9/11/2003 10/7/2003
Sail Mush SFM50 1.0 mybda MYA cl Collybia pollustrus 9/11/2003 10/19/2003
Sail Mush SFM51 Collybia 9/11/2003 tossed

52 not used 9/11/2003

Sail Mush SFM53 1.0 mybda B mybda cl tiny white under Alder 9/11/2003 11/17/2003
Sail Mush SFM53 2.0 mybda cl 9/11/2003 11/17/2003
Sail Mush SFM54 0 mybda2 cl sm brown under Alder 9/11/2003 10/7/2003
Sail Mush SFM54 1.5 mybda2 cl 9/11/2003 10/7/2003
Sail Mush SFM86 2.0mybda MYA C mybda CMEA2 7/21/2004 1/13/2005
Sail Mush SFM86 2.0 mybda MYA A MYBDA CMEA 7/21/2004 3/7/2005
Sail Mush SFM86 2.0 mybda MYA B MYBDA CMEA MYBDA 7/21/2004 7/6/2005
Sail Mush SFM86 1.0 mybda MYA B mybda CMEA2 B mybda2 7/21/2004 6/6/2005
Sail Mush SFM116 2.0 MYBDA3 A MEA 10/19/2004 6/6/2005
Sail Mush SFM116 2.0 MYBDA3 B MEA 10/19/2004 6/6/2005
Sail Mush SFM116 0.5 hyphae mybda 10/19/2004 6/2/2005
Sail Mush SFM116 1.0 a mybda 10/19/2004 6/2/2005
Sail Mush SFM126 0 A mybda2 6/28/2005 8/15/2005
Sail Mush SFM126 0 B mybda2 6/28/2005 8/15/2005
Sail Mush SFM127 1.0 mybda2 A mybda 6/28/2005 10/18/2005
Sail Mush SFM127 0 B mybda2 A mybda 6/28/2005 10/18/2005
Sail Mush SFM127 0 B mybda2 C mybda 6/28/2005 8/15/2005
Sail Mush SFM127 0 A mybda B 6/28/2005 7/15/2005
Sail Mush SFM127 1.0 mybda2 CMEA 6/28/2005 10/12/2005
Sail Mush SFM128 1.0 mybda4 A mybda 6/28/2005 10/18/2005
Sail Mush SFM128 1.0 mybda4 B mybda 6/28/2005 10/18/2005
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Site Type Isolate Name Putative ID Collected: Cryovial:
Sail Mush SFM129 1.0 mybda3 6/28/2005 10/18/2005
S9II Mush SFM129 0 A mybda3 B mybda 6/28/2005 8/15/2005
Sail Mush SFM129 0 A mybda3 A mybda 6/28/2005 10/18/2005
Sail Mush SFM130 0 A mybda2 A mybda 6/28/2005 10/18/2005
Sail Mush SFM130 0 A mybda2 B mybda 6/28/2005 10/18/2005
Sail Mush SFM130 0 B mybda2 6/28/2005 8/15/2005
Sail Mush SFM130 1.0 A mybda2 6/28/2005 8/15/2005
Sail Mush SFM130 1.0 B (mybda A)3 mybda 6/28/2005 10/18/2005
Sail Mush SFM130 1.0 B mybda B mybda C mybda 6/28/2005 10/18/2005
Sail Mush SFM130 1.0 B mybda A mybda B mybda 6/28/2005 10/18/2005
Sail Mush SFM130 1.0 B (mybda A)2 mybda B mybda 6/28/2005 10/18/2005
Sail Mush SFM130 1.0 B (mybda B)2 mybda A mybda 6/28/2005 10/12/2005
Sail Mush SFM130 1.0 B (mybda B)2 mybda MEA mybda3 6/28/2005 3/21/2006

Sail Plant SFM126 1.0 moss mybda B mybda2 A MYBDA 6/28/2005 10/18/2005
Sail Plant SFM127 1.0 moss mybda2 6/28/2005 7/15/2005
Sail Plant SFM127 0 moss mybda2 6/28/2005 7/15/2005
Sail Plant SFM127 1.0 moss mybda2 6/28/2005 7/15/2005
Sail Plant SFM128 1.0 moss mybda 6/28/2005 7/15/2005
Sail Plant SFM128 1.0 moss mybda2 6/28/2005 7/15/2005
Sail Plant SFM129 1.0 moss mybda2 A mybda 6/28/2005 8/15/2005
Sail Plant SFM129 1.0 moss mybda2 C mybda 6/28/2005 8/15/2005
Sail Plant SFM129 0 moss mybda2 6/28/2005 7/15/2005
Sail Plant SFM129 1.0 moss mybda2 B mybda 6/28/2005 8/15/2005
Sail Plant SFM130 0 moss mybda2 6/28/2005 7/15/2005
Sail Plant SFM130 1.0 moss mybda2 6/28/2005 7/15/2005
Sail Bait SF 43 P 305 0 mybda CMEA mybda 6/28/2005 8/15/2005
Sail Bait SF 43 P 305 1.0 mybda2 6/28/2005 8/15/2005
Sail Bait SF 44 P 505 0 mybda 6/28/2005 7/15/2005
Sail Bait SF 53 P 305 0 mybda CMEA mybda 6/28/2005 8/15/2005
Sail Bait SF 53 P 305 1.0 mybda4 B mybda 6/28/2005 10/18/2005
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Site Type Isolate Name Putative ID Collected: Cryovial:
Sail Bait SF 54 P 505 0 MYBDA2 A MYBDA 6/28/2005 10/18/2005
Sail Bait SF 54 P 505 1.0 MYBDA2 B MYBDA2 6/28/2005 10/18/2005
Sail Bait SF 54 P 505 0 MYBDA2 B MYBDA2 6/28/2005 10/18/2005
Sail Bait SF 102 Q 1204 1.0 mybda 6/28/2005 7/15/2005
Sail Bait SF 102 Q 1204 0 mybda 6/28/2005 7/15/2005
Sail Bait SF 103 Q 305 1.0 mybda3 6/28/2005 10/18/2005
Sail Bait SF 103 Q 305 0 mybda CMEA mybda 6/28/2005 8/15/2005
Sail Bait SF 112 Q 1204 0 mybda 6/28/2005 7/15/2005
Sail Bait SF 113 Q 305 0 mybda 6/28/2005 7/15/2005
Sail Bait SF 113 Q 305 1.0 mybda2 6/28/2005 10/18/2005
Sail Bait SF 152 P 1204 1.0 mybda2 6/28/2005 8/15/2005
Sail Bait SF 152 P 1204 0 mybda 6/28/2005 7/15/2005
Sail Bait SF 152 M 1204 1.0 mybda2 6/28/2005 10/18/2005
Sail Bait SF 152 M 1204 0 mybda 6/28/2005 7/15/2005
Sail Bait SF 153 M 305 0 mybda 6/28/2005 7/15/2005
Sail Bait SF 153 M 1.0 MYBDA2 CMEA 6/28/2005 10/20/2005
Sail Bait SF 154 M 505 0 mybda CMEA mybda 6/28/2005 8/15/2005
Sail Bait SF 154 M 505 1.0 mybda 6/28/2005 7/15/2005
Sail Bait SF 162 M 1204 1.0 mybda 6/28/2005 7/15/2005
Sail Bait SF 162 M 1204 0 mybda 6/28/2005 7/15/2005
Sail Bait SF 163 M 305 0 mybda CMEA mybda 6/28/2005 8/15/2005
Sail Bait SF 163 M 305 1.0 mybda CMEA mybda 6/28/2005 10/12/2005
Sail Bait SF 164 M 505 0 mybda B MYBDA4 6/28/2005 10/18/2005
Sail Bait SF 164 M 505 1.0 mybda2 A MYBDA 6/28/2005 10/18/2005
Sail Bait SF 164 M 505 1.0 mybda2 B MYBDA 6/28/2005 10/18/2005

Sail Plant Alderl D mybda 9/11/2003 10/21/2003
Sail Plant Alderl A mybda CMEA 9/11/2003 11/17/2003
Sail Plant Alderl E mybda mybda 9/11/2003 12/19/2003
Sail Plant Alder2 B mybda 9/11/2003 10/21/2003
Sail Plant Cranberry 46 A mybda a mybda 9/11/2003 10/21/2003
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Site Type Isolate Name Putative ID Collected: Cryovial:
Sail Plant Cranberry 46 A mybda b mybda 9/11/2003 10/21/2003
Sail Plant Cranberry 46 B mybda 9/11/2003 10/21/2003
Sail Plant Cranberry 46 C mybda2 9/11/2003 10/21/2003
Sail Plant Cranberry 46 C mybda 9/11/2003 10/21/2003
Sail Plant Carex 46 C mybda 9/11/2003 10/21/2003
Sail Plant Carex 46 B mybda 9/11/2003 11/17/2003
Sail Plant Carex 46 C mybda2 9/11/2003 10/21/2003
Sail ■ Plant Leatherleaf 46 A mybda 9/11/2003 10/21/2003
Sail Plant Leatherleaf 46 B mybda 9/11/2003 10/21/2003
Sail Plant Leatherleaf 46 C mybda 9/11/2003 10/21/2003
Sail Plant Sphagnum 46 B mybda 9/11/2003 10/21/2003

KF Mush KM118 0 mybda cl 6/2/2005 7/6/2005
KF Mush KM118 1.0 mybda cl 6/2/2005 7/6/2005
KF Mush KM119 0 mybda cl 6/2/2005 7/6/2005
KF Mush KM123 0 mybda2 6/2/2005 7/6/2005
KF Mush KM123 1.0 MEA B mybda2 6/2/2005 8/15/2005

KF Soil KS119 0 A mybda B mybda2 6/2/2005 6/30/2005
KF Soil KS119 0 A mybda B mybda6 6/2/2005 7/6/2005
KF Soil KS119 0 A mybda C mybda2 6/2/2005 8/15/2005
KF Soil KS124 0 B mybda B mybda 1 mybda 6/2/2005 7/15/2005
KF Soil KS125 0 A mybda A mybda3 6/2/2005 6/22/2005
KF Soil KS125 0 A mybda A mybdal mybda2 A mybda2 6/2/2005 10/18/2005

Kit Mush KITM66 0 a mybda 3/5/2004 3/30/2004
Kit Mush KITM66 0 b mybda 3/5/2004 3/30/2004
Kit Mush KITM66 .5 mybda 3/5/2004 3/30/2004
Kit Mush KITM66 1.0 mybda 3/5/2004 3/30/2004
Kit Mush KITM66 1.5 mybda 3/5/2004 3/30/2004
Kit Mush KITM66 2.0 mybda 3/5/2004 3/30/2004
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BBH Plant BBH1 2.0 mybda2 b mybda CMEA 8/2/2004 2/10/2005
BBH Plant BBH1 2.0 mybda2 a mybda 8/2/2004 3/7/2005
BBH Plant BBH1 0 mybda2 a mybda CMEA2 mybda 8/2/2004 3/7/2005
BBH Plant BBH1 1.0 mybda2 a mybda 8/2/2004 3/17/2005
BBH Plant BBH1 1.0 mybda2 b mybda4 8/2/2004 6/22/2005
BBH Plant BBH 1 1.0 mybda2 c mybda 8/2/2004 7/6/2005
BBH Plant BBH1 0 mybda2 b mybda CMEA mybda 8/2/2004 7/15/2005
BBH Plant BBH2 0 dead mybda2 8/2/2004 1/13/2005
BBH Plan t BBH2 0 green mybda2 II mybda MEA 8/2/2004 6/22/2005
BBH Plant BBH2 2.0 dead mybda2 (CMEA mybda)2 PDA 8/2/2004 6/6/2005
BBH Plant BBH2 0 green mybda2 I mybda 8/2/2004 7/15/2005
BBH Plant BBH2 2.0 dead mybda2 (CMEA mybda)2 8/2/2004 6/2/2005
BBH Plant BBH2 2.0 dead mybda2 (CMEA mybda)2 CMEA cl 8/2/2004 8/15/2005
Chap Root CLR4 a mybda2 4/27/2004 5/14/2005
Chap Root CLR3 a mybda 4 mybda MEA 4/27/2004 5/28/2004
Chap Root CLR3 b MYA mybda 4/27/2004 5/14/2004
Chap Root CLR4 a MYA 1 mybda 4/27/2004 5/14/2004
Chap Root CLR3 a mybda 2 mybda 4/27/2004 5/28/2004

Chap Soil CLS 11 MEA b mybda 4/27/2004 5/28/2004
Chap Soil CLS 11 MEA c mybda MEA 4/27/2004 5/28/2004
Chap Soil CLS 12 MEA mybda 4 MEA 4/27/2004 5/28/2004
Chap Soil CLS 12 MEA mybda 1 MEA 4/27/2004 5/28/2004
Chap Soil CLS 12 MEA mybda3 MEA 4/27/2004 5/28/2004
Chap Soil CLS 14 MEA c mybda 1 mybda 4/27/2004 5/28/2004
Chap Soil CLS 14 MEA b mybda 2 MEA 4/27/2004 5/28/2004
Chap Soil CLS 14 MEA a mybda 4/27/2004 5/14/2004
Chap Soil CLS 14 MEA b mybda 1 MEA 4/27/2004 5/28/2004
Chap Soil CLS 14 MEA c mybda 1 MEA 4/27/2004 5/28/2004
Chap Soil CLS 14 MEA C mybda 2 MEA 4/27/2004 6/10/2004
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Chap Soil CLS 15 MEA mybda 1 MEA 4/27/2004 5/28/2004
Chap Soil CLS 15 MEA mybda 2 MEA 4/27/2004 5/28/2004
Chap Soil CLS 21 MEA a mybda MEA 4/27/2004 5/28/2004
Chap Soil CLS 21 MEA b mybda MEA 4/27/2004 5/28/2004
Chap Soil CLS 21 MEA a mybda MEA CMEA mybda 4/27/2004 6/9/2004
Chap Soil CLS 23 MEA b mybda 4/27/2004 5/14/2004
Chap Soil CLS 23 MEA c mybda CMEA mybda 4/27/2004 6/10/2004
Chap Soil CLS 23 MEA C mybda 4/27/2004 5/28/2004
Chap Soil CLS 24 MEA C mybda 4/27/2004 5/28/2004
Chap Soil CLS 24 MEA D mybda CMEA mybda 4/27/2004 6/10/2004
Chap Soil CLS 24 MEA D mybda 4/27/2004 5/28/2004
Chap Soil CLS 25 MEA b mybda MEA 4/27/2004 5/28/2004
Chap Soil CLS 25 MEA c mybda 4/27/2004 5/28/2004
Chap Soil CLS 36 MEA b mybda MEA 4/27/2004 5/28/2004
Chap Soil CLS 36 MEA c mybda 4/27/2004 5/14/2004
Chap Soil CLS 36 MEA d mybda 4/27/2004 5/14/2004
Chap Soil CLS 45 MEA mybda MEA 4/27/2004 5/28/2004

Chap Wood 1 A mybda4 A mybda2 2/10/2005 10/12/2005
Chap Wood 1 B mybda4 A mybda2 2/10/2005 10/12/2005
Chap Wood 1 B mybda4 B MEA 2/10/2005 10/12/2005
Chap Wood 1 C mybda2 2/10/2005 7/15/2005
Chap Wood 1 C mybda Czp 2/10/2005 6/2/2005
Chap Wood 1 D mybda Czp mybda2 2/10/2005 10/18/2005
Chap Wood 2 a mybda3 A mybda A mybda2 2/10/2005 10/18/2005
Chap Wood 2 a mybda3 A mybda B mybda 2/10/2005 10/18/2005
Chap Wood 2 a mybda3 B mybda 2/10/2005 10/18/2005
Chap Wood 2 d mybda3 A mybda2 2/10/2005 10/18/2005
Chap Wood 2 d mybda3 B mybda 2/10/2005 10/18/2005
Chap Wood 3 b 1 mybda MYA 2/10/2005 6/6/2005
Chap Wood 3 b 2 mybda2 2/10/2005 7/6/2005
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Chap Wood 3 b 3 mybda2 2/10/2005 7/6/2005
Chap Wood 3 a 2 mybda Czp mybda A mybda 2/10/2005 10/18/2005
Chap Wood 3 a 2 mybda Czp mybda B mybda 2/10/2005 10/18/2005
Chap Wood 3 a 1 mybda Czp mybda MEA 2/10/2005 10/12/2005
Chap Wood 3 mybda3 A mybda MEA 2/10/2005 10/12/2005
Chap Wood 3 mybda3 B mybda MEA 2/10/2005 10/12/2005
Chap Wood 3 mybda3 C mybda A MEA 2/10/2005 3/21/2006

OD Plant OD1 0 dead culm & leaf mybda MYA CMEA2 8/2/2004 1/13/2005
OD Plant OD1 1.0 dead culm & leaf mybda2 CMEA2 8/2/2004 1/13/2005
OD Plant OD2 2.0 mybda3 CMEA 8/2/2004 3/17/2005
OD Plant OD2 0 mybda2 b mybda CMEA 8/2/2004 2/10/2005
OD Plant OD2 2.0 mybda3 b mybda 8/2/2004 6/2/2005
OD Plant OD2 2.0 mybda3 a mybda b mybda2 8/2/2004 6/22/2005
OD Plant OD2 2.0 mybda3 b mybda CMEA MEA 8/2/2004 6/22/2005
OD Plant OD2 1.0 mybda2 a mybda CMEA2 mybda MEA 8/2/2004 6/22/2005
OD Plant OD2 2.0 mybda3 a mybda2 MEA 8/2/2004 1/13/2005
OD Plant OD2 0 mybda2 a mybda CMEA 8/2/2004 1/13/2005

MP Plant MP1 0 mybda2 C mybda CMEA2 8/2/2004 1/13/2005
MP Plant MP1 1.0 mybda2 CMEA 8/2/2004 6/2/2005
MP Plant MP2 0 mybda3 b mybda 8/2/2004 3/17/2005
MP Plant MP2 1.0 mybda MYA mybda 8/2/2004 3/7/2005
MP Plant MP2 0 mybda3 b mybda 8/2/2004 7/15/2005
MP Plant MP2 0 mybda3 a mybda 2 mybda 8/2/2004 7/6/2005

UNH Mush UNHM1 1.0 mybda2 cl Russula 9/30/2003 10/30/2003
UNH Mush UNHM72 dead; not cultured 5/24/2004 tossed
UNH Mush UNHM73 dead; not cultured Favolus alveolar is 5/25/2004 tossed
UNH Mush UNHM74 dead; not cultured 5/26/2004 tossed
UNH Mush UNHM81 1.0 mybda2 cl tiny gilled in lawn 5/27/2004 7/2/2004
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UNH Mush UNHM81 1.5 mybda cl 5/27/2004 7/2/2004
UNH Mush UNHM81 2.0 mybda cl 5/27/2004 7/2/2004
UNH Mush UNHM82 1.5 mybda2 B 5/27/2004 7/14/2004
UNH Mush UNHM82 1.0 mybda 5/27/2004 7/2/2004
UNH Mush UNHM82 1.5 mybda2 A mybda 5/27/2004 7/14/2004
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APPENDIX B

B.O ION CHROMATOGRAPHY RESULTS

This appendix contains the ion chromatography anaiysis results for soils used 

in methyl halide assays. The soils were assayed as controls; they were not 

inoculated with fungi. The sterile water used for culturing fungi was also analyzed 

with water samples from the ion chromatography laboratory for comparison.

Soil samples were not tested for manganese; however, traces indicated the 

presence of manganese, similar to the magnesium levels.

Table B-1 contains the data for control soils that were not autoclaved before 

assaying for methyl halides. The soils were collected from College Woods and 

Kingman Farm on 3-February-2006, placed directly in sterilized flasks, capped with 

sterile stoppers, and covered in aluminum foil in the field.

Upon return to the laboratory, the soils were immediately set up on the zero air 

flushing system. Samples were assayed for methyl halides between 4-February-2006 

and 21-February-2006. Substrate induced respiration tests were conducted on 6- 

March-2006.

B-1
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Soils were dried 28-March-2006, prepared for ion chromatography on 13-April-

2006, and analyzed on 18-April-2006.

Table B-1: Cation and Anion Contents for Soils Not Autoclaved. CW=College Woods; 
KF=Kingman Farm; u=untreated soils (soils were not autoclaved); all measurements are in 
nanomoles/liter.

Sample

cw 1a

Na

2.73E+04

NH4

1.40E+05

K Mg Ca Cl N03 S04 Oxalate |

1.06E+05 5.00E+04 3.45E+04 4.68E+04 1.50E+03 5.47E+04 2.75E+04

CW 1b 2.83E+04 1.37E+05 1.09E+05 5.46E+04 3.49E+04 4.82E+04 1.18E+03 5.64E+04 2.55E+04

CW  2a 5.31 E+04 1.29E+05 9.40E+04 5.52E+04 3.65E+04 6.14E+04 1.35E+03 6.97E+04 5.17E+04

CW  2b 5.41 E+04 1.26E+05 9.60E+04 5.98E+04 3.70E+04 6.31 E+04 6.83E+02 7.34E+04 5.14E+04

CW  3a 2.43E+04 8.01 E+04 6.59E+04 4.11 E+04 1.23E+04 2.76E+04 1.33E+03 3.41 E+04 2.05E+04

CW  3b 2.81E+04 9.51 E+04 7.77E+04 5.14E+04 1.50E+04 3.20E+04 1.56E+03 3.85E+04 2.18E+04

CW  3.1b 2.82E+04 9.33E+04 7.80E+04 5.21 E+04 1.51 E+04 3.18E+04 1.56E+03 3.85E+04 1.08E+04

CW  4a 2.22E+04 9.67E+04 8.17E+04 7.72E+04 1.30E+05 1.32E+04 2.19E+03 3.68E+04 6.07E+03

CW  4b 2.33E+04 1.00E+05 8.47E+04 8.21 E+04 1.28E+05 1.34E+04 2.23E+03 3.72E+04 5.51E+03

CW  5a 6.74E+04 7.29E+05 2.15E+05 8.44E+04 3.76E+04 1.14E+05 8.56E+03 1.60E+05 1.32E+05

CW  5b 6.93E+04 6.62E+05 2.16E+05 9.05E+04 3.86E+04 1.09E+05 8.70E+03 1.62E+05 1.24E+05

Average: 3.87E+04 2.17E+05 1.11E+05 6.35E+04 4.72E+04 5.09E+04 2.80E+03 6.92E+04 4.34E+04
KF 1b 7.59E+03 5.80E+03 3.31 E+04 7.42 E+04 1.42E+05 3.53E+03 2.22E+05 9.95E+03 8.09E+02

KF 1a 7.42E+03 5.50E+03 3.26E+04 7.76E+04 1.50E+05 3.50E+03 2.28E+05 9.94E+03 4.69E+02

KF 2b 6.23E+03 7.89E+03 1.33E+04 5.35E+04 7.61 E+04 3.22E+03 4.48E+04 1.86E+04 6.47E+02

KF 2a 6.05E+03 7.70E+03 1.29E+04 5.55E+04 7.99E+04 3.23E+03 4.55E+04 1.86E+04 3.26E+02

KF 3b 5.83E+03 1.08E+04 2.00E+04 4.49E+04 7.63E+04 2.72E+03 1.11E+04 1.47E+04 1.11E+03

KF 3a 5.82E+03 1.04E+04 1.90E+04 4.60E+04 7.96E+04 2.71E+03 1.14E+04 1.44E+04 6.13E+02

KF 4b 6.41E+03 3.56E+04 3.16E+04 3.38E+04 6.16E+04 3.83E+03 1.47E+03 1.50E+04 1.90E+03

KF 4a 6.56E+03 3.60E+04 3.10E+04 3.46E+04 6.39E+04 3.90E+03 1.31E+03 1.41 E+04 1.02E+03

KF 4.1a 6.26E+03 3.30E+04 3.06E+04 3.48E+04 6.37E+04 3.76E+03 1.29E+03 1.40E+04 1.27E+03

KF 5b 4.06E+04 9.11 E+04 7.57E+04 3.51 E+04 2.29E+04 2.35E+04 1.13E+03 1.63E+04 3.04E+04

KF 5a 3.98E+04 8.99E+04 7.35E+04 3.53E+04 2.37E+04 2.20E+04 7.16E+02 1.53E+04 2.49E+04

Average: 1.26E+04 3.03E+04 3.39E+04 4.78E+04 7.63E+04 6.91 E+03 5.16E+04 1.46E+04 5.77E+03

Table B-2 contains the cation and anion data for autoclaved soils that were 

assayed for methyl halides from 31-Jan-2006 to 9-Feb-2006. The soils were 

collected in November, 2005 and autoclaved once on the same day as collected.

B-2
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The soils were autoclaved again, three consecutive times on 30-January- 

2006, before assaying for methyl halides. Soils were assayed from 31-January- 

2006 to 9-February-2006. Substrate induced respiration tests were conducted on 

10-Feb-2006. Soils were dried 28-Feb-2006, prepared for ion chromatography on 

9-March-2006, and analyzed 24-March-2006.

Table B-2: Ion Chromatography for Autoclaved Soils. CW=College Woods; KF=Kingman 
Farm; u=untreated soils (soils were not autoclaved); all measurements are in 
nanomoles/liter.

Sample Na NH4 K Mg Ca Cl N03 S04 Oxalate

CW 1a 1.07E+05 7.16E+05 1 76E+05 1.87E+05 2.58E+05 2.04E+05 1.27E+04 2.53E+05 8.79E+05

CW 2a 1.03E+05 8.07E+05 1.97E+05 2.00E+05 2.77E+05 2.59E+05 1.30E+04 2.39E+05 9.03E+05

CW 3a 1.21E+05 7.13E+05 1.79E+05 1.85E+05 2.53E+05 2.25E+05 1.26E+04 2.42E+05 8.85E+05

CW 4a 1.19E+05 7.50E+05 1.90E+05 2.13E+05 2.81 E+05 2.51 E+05 1.30E+04 2.69E+05 9.79E+05

CW 5a 1.09E+05 7.62E+05 1.90E+05 1.97E+05 2.56E+05 2.36E+05 1.34E+04 2.53E+05 9.06E+05

CW 1b 1.09E+05 7.31 E+05 1.80E+05 1.98E+05 2.63E+05 1.98E+05 1.23E+04 2.43E+05 8.61E+05

CW 2b 1.05E+05 8.22E+05 2.00E+05 2.10E+05 2.83E+05 2.48E+05 1.24E+04 2.29E+05 8.87E+05

CW 3b 1.23E+05 7.28E+05 1.81E+05 1.93E+05 2.56E+05 2.17E+05 1.17E+04 2.31E+05 8.58E+05

CW 4b 1.21E+05 7.52E+05 1.92E+05 2.21E+05 2.85E+05 2.42E+05 1.22E+04 2.62E+05 9.55E+05

CW 5b 1.09E+05 7.53E+05 1.88E+05 2.02E+05 2.59E+05 2.27E+05 1.27E+04 2.39E+05 8.81E+05

Average: 1.13E+05 7.53E+05 1.87E+05 2.01 E+05 2.67E+05 2.31 E+05 1.26E+04 2.46E+05 8.99E+05
KF 1a 3.02E+04 5.82E+04 3.08E+04 1.49E+05 2.62E+05 2.88E+04 2.26E+04 7.36E+04 2.25E+04

KF 2a 4.09E+04 7.43E+04 3.62E+04 1.86E+05 3.25E+05 4.68E+04 3.60E+04 8.98E+04 2.65E+04

KF 2a. 1 _ - _ . - 4.80E+04 3.70E+04 9.33E+04 2.90E+04

KF 3a 3.48E+04 7.19E+04 3.56E+04 1.79E+05 3.11 E+05 3.61E+04 2.87E+04 8.58E+04 2.47E+04

KF 4a 4.37E+04 6.86E+04 3.95E+04 1.57E+05 2.61 E+05 4.00E+04 3.20E+04 7.91 E+04 2.17E+04

KF 5a 3.45E+04 7.00E+04 4.06E+04 1.44E+05 2.36E+05 3.49E+04 2.95E+04 7.25E+04 2.01E+04

KF 1b 3.04E+04 6.34E+04 3.17E+04 1.55E+05 2.66E+05 2.77E+04 2.19E+04 7.11 E+04 2.01E+04

KF 2b 4.14E+04 7.66E+04 3.67E+04 1.93E+05 3.30E+05 4.41 E+04 3.38E+04 8.49E+04 2.86E+04

KF 2b .1 3.48E+04 6.61 E+04 3.15E+04 1.62E+05 2.72E+05 - . . _

KF 3b 3.10E+04 6.65E+04 3.24E+04 1.61 E+05 2.71 E+05 3.35E+04 2.65E+04 7.94E+04 2.37E+04

KF 4b 4.38E+04 7.14E+04 3.97E+04 1.63E+05 2.64E+05 3.87E+04 3.10E+04 7.58E+04 2.18E+04

KF 5b 3.47E+04 7.16E+04 4.08E+04 1.49E+05 2.40E+05 3.34E+04 2.76E+04 6.91 E+04 1.56E+04

Average: 3.64E+04 6.90E+04 3.60E+04 1.63E+05 2.76E+05 3.75E+04 2.97E+04 7.95E+04 2.31 E+04
diH20
unfiltered 2.64E+03 2.02E+03 1.53E+03 5.98E+02 1.97E+03 4.31 E+03 3.70E+02 2.87E+02 6.66E+01
diH20
filtered 1.61E+03 1.71E+03 8.74E+02 4.49E+02 1.25E+03 1.32E+03 2.44E+02 2.05E+02

dH2Q sterile 1.42E+04 4.14E+03 1.62E+03 2.44E+02 1.60E+03 1.73E+03 4.96E+02 3.74E+02 -
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Table B-3 contains the ion chromatography analysis for iodide contained in

the autoclaved and non-autoclaved soils.

Table B-3: Iodide Analysis of Soils. CW=College Woods; KF=Kingman Farm; u=untreated 
soils (soils were not autoclaved); all measurements are in nanomoles/liter; nd=not detected

Sample iodide Sample Iodide

CW 1a 130.91 KF 1a 433.34
CW 2a 276.70 KF 2a 540.65
CW 3a 148.51 KF 3a 534.07
CW 3b 176.90 KF 3 667.29
CW 4a 125.00 KF 4a 734.92
CW 5a 227.81 KF 5a 515.87
CW 5b 92.90 KF 5 593.99

Average: 168.39 Average: 574.30
uCW 1a 9.60 uKF 1 nd
uCW 1b 51.60 uKF 2 22.62
uCW 2a 9.50 uKF 3 9.69
uCW 2b 30.16 uKF 4 13.03
uCW 3a 38.50 uKF 5 193.70
uCW 3b 24.51 Average: 59.76
uCW 4a 124.30 unfiltered diFhO nd
uCW 4b 38.77 Filtered dihbO nd
uCW 5a 24.78 sterile dh^O nd
uCW 5b nd

Average: 39.08
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