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FORWORD

« Quand nous avons soif, il nous semble que nouspourrions boire tout un ocean : c'est la 
foi. Et quand nous nous mettons a boire, nous buvons un verre ou deux : c'est la 
science. »

Anton Tchekhov
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ABSTRACT

NANOPARTICLE MEDIATED ORAL DELIVERY OF INSULIN

by

Etienne Cabane 

University of New Hampshire, September, 2007 

The oral delivery of therapeutic compounds, from small molecules to 

proteins is one of the most desirable routes of administration. Its advantages 

reside in low cost, patient compliance and ease of use. The major challenge 

associated to such a delivery route is the transport through the gastrointestinal 

tract (GIT). In the case of complex and fragile molecules such as proteins, this 

particular step is the source of multiple challenges. Among the approaches 

developed to protect the therapeutic compound, the use of polymeric carriers is 

the most promising. We developed biocompatible and biodegradable 

polymersomes formed by the self assembly of amphiphilic copolymers in water. 

The copolymers we used are a combination of the following homopolymers: 

poly(ethylene glycol), poly(lactic acid), poly(caprolactone) and poly(glutamic 

acid). The PEG-PLA or PLA blocks were prepared by ring opening bulk 

polymerization (ROP) using an organic catalyst, and an alcohol as initiator. The 

poly(glutamic acid) was prepared aside by ROP of the benzyl glutamate N- 

CarboxyAnhydride (NCA), followed by the deprotection of the benzyl group. The 

final copolymer was obtained by coupling a PEG-PLA (or PLA) to a PGIuOH. 

Another synthesis route was explored. It consists in the preparation of a macro

xii
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amine, namely PEG-PLA-(NH2)X, used to ring open the benzyl glutamate NCA. 

The PEG-PLA-PGIuBn is then deprotected. The polymer chains obtained by one 

of these two synthesis routes self assemble in basic water into well defined 

vesicles with diameter ranging from 70 to 160 nm. They can be loaded with 

insulin and orally delivered. The vesicles are progressively degraded along the 

GIT before transport through intestine wall and insulin is released. A full 

characterization of the polymers and a study of the morphology of self 

assemblies constitute the bulk of this work.

xiii
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INTRODUCTION

The objective of our study is to design a polymeric carrier capable of 

protecting a protein such as insulin from the action of enzymes in the 

gastrointestinal tract, therefore facilitating its oral delivery in the human body. We 

focused our work on the synthesis of amphiphilic block copolymers with the 

ability to self-assemble in aqueous media, encapsulating or adsorbing the 

protein, and releasing it in the blood stream after crossing the GIT.

We investigated several architectures and compositions of amphiphilic 

block copolymers and studied their potential to form vesicles, and potentially 

micelles, in water. The hydrophobic block (B) of the polymer is constituted by a 

polyester (PLA or PCL), the hydrophilic blocks being poly(ethylene glycol) (or 

PEG) (A) in the case of the triblock and poly(glutamic acid) or PGIuO'Na* (C). 

The copolymers we are proposing to use, PLA-PGIu, PEG-PLA-PGIu and PEG- 

PCL-PGIu are entirely biocompatible and biodegradable.

Figures 1 and 2 provide a simplistic view of the self assemblies with 

respect to the copolymer used. The BC diblocks in water behave like lipids and 

form the bilayer membrane of the vesicles.

1

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



PLA-

Bilayer organization

PLA

Vesicle with
Bilayer
membrane

Figure 1: Self assembly of amphiphilic diblock PLA-PGIuONa into vesicles.

The asymmetric ABC triblock is assembling into a monolayer membrane 

due to its two hydrophilic blocks.

PEG-PLA-

Self assembly into membrane

Vesicle with 
self
assembled
monolayer
membrane

PL

PE

Figure 2: Self assembly of triblock copolymer PEG-PLA-PGIuONa into vesicles.
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Aside from being amphiphilic, allowing self assembly in water, the blocks 

have particular properties involved in different steps of the delivery process.

The polymer carriers obtained are loaded with insulin. The protein is 

associated with the vesicles in three different ways. Initially designed to 

encapsulate insulin in their inside volume, we believe that the vesicles are 

actually multifunctional. Most likely the major part is loaded by the association of 

the protein to the external charged PGIu layer. A second load corresponds to the 

fraction of insulin actually encapsulated, and the third load is due to entrapment 

of insulin in the membrane itself.

According to the hypothesis of three different loadings, the release of 

insulin in the Gl tract is most probably the result of several mechanisms: 

dissociation of adsorbed insulin from the PGIu layer, release of the insulin 

trapped in membrane, and release of insulin encapsulated. This delivery is only 

possible upon degradation of the polymer carriers.

We believe that our system is not degrading immediately in the stomach, 

but slowly in the small intestine. The poly(amino acid) block gets digested by 

enzymes. The PGIu collapse is revealing the hydrophobic B block and therefore 

the vesicles eventually precipitate and are adsorbed by the hydrophobic 

environment of the intestine mucus. Transport through intestine membrane by 

endocytotic uptake follows: vesicles are invaginated in epithelial cells, where the 

PLA is hydrolyzed in acidic environment. Finally, insulin is released in the 

bloodstream.

3
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In Chapter I, we debate the principal challenges encountered in the oral 

delivery of vulnerable compounds such as therapeutic proteins. The chapter is 

also dedicated to the overview of existing polymersomes systems for the oral 

delivery of proteins. In the second chapter we report the detailed synthesis and 

characterization of the various polymers involved in the formation of self 

assemblies. The third chapter is devoted to the self-assembly of the copolymers 

and their organization into different morphologies, and the insulin loading of the 

nanoobjects. The last section is dedicated to experimental work, where we report 

synthesis recipes and polymer formulation with insulin.

4
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CHAPTER I

REVIEW

1.1. Challenges in Oral Delivery of Proteins and Peptides

It is generally admitted that the difficulty for the oral administration of 

biomacromolecules is due to their high molecular weight, their hydrophilicity, and 

their susceptibility to enzymatic inactivation, the latest being the major issue.1,2 

The Gl tract primary function is to digest and adsorb nutrients and exclude 

unwanted materials such as toxins.

Gaiibiaddet

Common 
bile due ;'

Transverse colon- 
Av.enriing colnru. 

Descending colon.

Redon

anu:

Figure 3: Digestive or gastrointestinal tract.3
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In that respect, various challenges associated with oral drug delivery are 

directly related to the degradation of the protein/drug during transport through 

GIT and pathway to bloodstream.

Digested nutrients (nutritive proteins for instance) reach the surface of the 

intestine, the epithelium. This mucosa is constituted of epithelial cells, the 

membranes of which are covered by microvilli.

Lumen Microvilli

Hepatic 
portal vein

To Liver

Muscle
layers'

- Lumen
Capillary 

bed ^

Epithelium

Lacteal

Intestine

Figure 4: scheme of the small intestine wall.4

Once a nutrient reaches this hydrophobic area, it is transported through 

the epithelium by one of the following mechanism:

• Paracellular transport

• T ranscellular transport

• Endocytotic uptake

6
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A simplistic representation of these phenomenons is given in Figure 5:

Apical
membrane

Basolateral
membrane

INTERNAL / BLOOD STREAM

Figure 5: Absorption pathways of drugs across intestinal epithelium.

In addition to the diffusion and adsorption barrier (physical barriers) of the 

epithelial cells composing the surface of the small intestine, and the degradation 

in acidic pH of the stomach (physicochemical barrier), the enzymatic barrier is 

considered to be the major factor affecting the bioavailability of proteins after oral 

delivery. This barrier involves the degradation of peptide bonds by peptidases or 

proteases, as well as chemical modifications. Enzymes are found in almost every 

tissue in the human body. The Gl tract produces a large amount of enzymes 

which are specific to different regions.

7
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Table 1: Enzymes secreted in the Gl tract and their function (adapted from reference [5])

Enzyme Location Function
Aspartic proteases (pepsin) Stomach Responsible for fragmentation of large 

proteins into smaller polypeptides
Pancreatic proteases (chymotrypsin, 
trypsin, elastase, carboxypeptidase A)

Small intestine Catalyse degradation of polypeptides at 
specific amino residues

Proteases (aminopeptidase A and N, 
diaminopeptidase I, endopeptidase 
24.11)

Brush border and cytosol of 
the enterocytes

Brush border proteases are mainly involved 
in hydrolysis of tri- and tetrapeptidases. 
Cytosolic proteases preferentially digest 
dipeptides.

If degradation in the intestinal lumen cannot be suppressed, the problem 

can be minimized to some extent by protection against enzymes. Several 

attempts to overcome this barrier include the design of enzyme inhibitors, 

chemical modifications of the therapeutic macromolecules, use of 

absorption/permeation enhancers, mucoadhesive polymers, polymersomes, and 

drug delivery systems targeting colon were enzymatic activity is lower.1 A quick 

discussion of the pros and cons of these techniques is provided in the next 

paragraph.

8
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1. 2. Existing Oral Delivery Methods for Proteins

1. 2.1. Chemical modification of the protein

Chemical modifications can be made in order to inhibit enzyme attack on 

proteins. These modifications include two approaches: prodrugs and permanent 

modifications.5

In the first technique, the prodrug is a molecule converting to the active 

protein/drug after in situ activation. Typically a “promoiety” is attached to the 

active molecule with a loose linkage, easily cleaved in the body. This promoiety 

can enhance protection against enzymes or transfer through membranes for 

instance.

The second technique involves the covalent (i. e. permanent) attachment 

of a molecule on the protein. A wide range of molecules can be covalently 

attached, from small molecules (glycosilation as an example) to polymers 

(pegylation for instance). The added molecule can have several actions:

• Increasing stability of the protein,

• blocking access to degradation sites,

• enhancing transport,

• targeting for selective cells.

Glycosilation consists in the addition of carbohydrates in order to increase 

protein stability.2 For instance, glycosilated recombinant human granulocyte- 

macrophage colony-stimulating factor (GM-CSF) shows an increased half-life 

time in plasma compared to GM-CSF.6

9
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Lipidization is another chemical modification that can increase the 

lipophylicity (i. e. hydrophobicity) of a given protein, helping both stability and 

transport through cellular membranes. For instance, caproic acid modified insulin 

was found to be more hydrophobic, and its uptake by gut mucus was increased.7

The most used polymer for chemical modification of proteins is 

poly(ethylene glycol) (PEG), by a process called pegylation. Several other 

polymers and oligomers are used, such as poly(sialic acid) and poly(hydroxyalkyl 

acrylate)s.2 Polymers are found to mask parts of the proteins they are conjugated 

to and their hydrophilic nature is helping “hiding” the proteins from enzymatic 

attacks.

In all cases, the main concern with chemical modification of proteins is to 

keep biological activity of the therapeutic molecule. Also, the obtained conjugate 

is a new compound, and its properties in terms of toxicity for instance, need to be 

screened through the long preclinical studies used for pharmaceuticals.

1. 2. 2. Complex with enzyme inhibitors

Researchers have been investigating the use of protease inhibitors with 

the aim to slow the degradation rate of a given protein in the Gl tract, enhancing 

its bioavailability. In the case of insulin, trypsin and a-chymotrypsin being the 

most important intestinal enzymes, the use of inhibitors such as aprotinin, 

pancreatic inhibitor or soybean trypsin inhibitor were found to affect the intestinal 

adsorption and degradation of insulin.1,5' 8 However, there are major drawbacks 

associated with this method. The activity of the inhibitors generally lasts much

10
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longer than the desired effect, and leads to several side effects, including 

systemic intoxications and disturbance in nutritive proteins digestion.1,8

Efforts are being done in this area, in order to have the inhibitor activity 

coinciding more accurately with the release of the protein.

1. 2. 3. Permeation/adsorption enhancers

The idea behind permeation and adsorption enhancers is to improve 

transcellular and paracellular transport of proteins through the intestine wall. 

Transcellular transport is improved by fluidization of the cell’s lipid membrane, 

and paracellular transport is increased by the loosening of the tight junctions 

between epithelial cells.

Paracellular permeation enhancers include chelators of Ca2+. The 

depletion in Ca2+ disrupts cell organization and helps loosening the tight 

junctions. Interestingly enough, several mucoadhesive polymers (such as 

polyanions) were found to chelate Ca2+ and therefore can be used as absorption 

promoters.1,5

Transcellular permeation enhancers are usually surfactants, lipids and bile 

salts. They help solubilizing phospholipids, compromising the integrity of cell 

membranes.8

These permeation enhancers are limited in use, since they are modifying 

the membrane functionality, allowing all sorts of macromolecules, i. e. also the 

toxic ones, to be absorbed.1

11
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1.2.4.  Multifunctional bioadhesive Polymers

Bioadhesive polymers were initially designed to promote absorption of 

proteins by a prolonged contact between protein formulation and mucosa. 

Several polymers have been tested in the last few years, such as polyacrylates, 

polycarbophil (polyacrylic acid crosslinked with divinyl glycol),9,10 chitosan based 

polymers,11 as well as heparin based polymers.12 These systems were proven 

efficient in increasing pharmacological efficacy, and they showed another 

promising capability in shielding enzymatic attacks. This latter functionality was 

further explored and a significant correlation between protease inhibition and 

polyanions was demonstrated. The most accepted explanation is the binding of 

metal cations by the polyanion, which deactivates metalloproteases present in 

the lumen, such as carboxypeptidase A.

Pharmaceutical companies are working on these promising multifunctional 

polymers, which are generally used in the form of gastrointestinal patches.6

1. 2. 5. Liposomes and Niosomes

In the last decades, liposomes were proven useful as drug carriers for 

peptides and proteins. They can encapsulate both hydrophobic and hydrophilic 

molecules, they are entirely biocompatible and provide good protection against 

enzymatic attacks along with poor immune recognition.

Liposomes are made of concentric lipid bilayers. The most studied 

phospholipid used in liposomes is phosphatidylcholine (or lecithin). Cholesterol 

and phosphatidylethanoleamine are used with lecithin in order to tune the fluidity

12

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



of the bilayer.5 The major drawbacks of liposomes are their poor chemical and 

physical stability and rapid clearance form the blood.

Currently, research focuses on coated liposomes. The idea is to improve 

the bioavailability of the drug by prolonging its contact with the mucosal surface 

of small intestine. This is achieved by coating the liposomes with a 

mucoadhesive polymer, such as chitosan.5, 13 Therapeutic efficiency was 

demonstrated by Wu et al. using insulin delivered to mice.14

Similarly, niosomes or nonionic surfactant vesicles can be used as drug 

carriers. Niosomes are vesicles resulting from the self assembly of nonionic 

surfactant molecules, such as polyglyceryl alkyl ethers or fatty acid esters. 

Varshosaz et al. reported their good stability and protection from enzymatic 

attacks when encapsulating insulin.15

1. 2. 6. Colon targeted delivery

Colon targeted delivery has gain interest recently, due to the less hostile 

environment than stomach and small intestine. The enzymes are less numerous 

and less active in this region, and the retention time is higher. Technologies used 

to target colon involve pH dependent polymers and biodegradable swellable 

polymers. Common issues encountered with colon targeted delivery include 

protection during transport in the upper Gl tract and poor solubility in the colon, 

where less fluid is available.13
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1.2.7.  Nanoparticles/polymersomes

Nanoparticles/polymersomes are polymeric particles with size ranging 

from 100 to 1000 nm. They are widely used for the delivery of therapeutic 

proteins because they have a low toxicity, they can protect proteins from 

enzymatic attacks and they are adsorbed by endocytotic pathway. The active 

protein can be encapsulated, dissolved, entrapped or adsorbed in the system. 

The polymer can be natural or synthetic, biodegradable or inert, hydrophobic or 

hydrophilic.

It is well accepted that nanoparticles having a small size (100 nm) show 

significantly higher uptake due to the limits imposed by endocytosis.1 Literature 

also shows evidence that the efficiency of these systems is strongly dependent 

on the total charge of the objects, as well as the hydrophilicity.

A more detailed bibliography on polymersomes is given in paragraph 1. 4.
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1. 3. Insulin as a model

In our study, we used insulin as a model of therapeutic proteins. The need 

for an oral formulation of insulin is evident, since diabetes is affecting more than 

180 millions of patients all over the word. According to the World Health 

Organization, this number is expected to double in the next 25 years.16

Though we use insulin as model, we think that if our polymersomes are 

proven efficient with insulin, they will have the potential to carry other therapeutic 

proteins and peptides.

Insulin has some advantages over other proteins. It is relatively cheap and 

is very well documented. If causes of diabetes are not fully understood yet, the 

production and the enzymatic degradation of insulin are known.

Like other proteins, insulin is degraded by enzymes upon digestion. The 

first protease encountered in the Gl tract is pepsin, a zymogene activated in the 

stomach. Pepsin degrades large polypeptides such as proteins into smaller units, 

preferentially cleaving hydrophobic and aromatic residues, such as Phe and Tyr. 

As an example, the bonds in the B chain of insulin are cleaved as follows:17 

Phe1±Val, Gln4±His, Glu13±Ala, Ala14̂ Leu, Leu15±Tyr, Tyr16*Leu, Gly*3±Phe, 

Phe24±Phe and Phe25±Tyr.
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Figure 6: Computer-generated image of insulin hexamers highlighting the threefold 
symmetry, the zinc ions holding it together, and the histidine residues involved in zinc 
binding.1

Peptides that went through the stomach are eventually degraded by other 

peptidases. For instance, two enzymes that degrade insulin in the small intestine 

lumen are pancreatic enzymes, trypsin and a-chymotrypsin.8 Insulin is not 

subject to enzymatic degradation by brush-border enzymes.
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1. 4. State of the art in vesicles

Amphiphilic species are composed of at least two parts. One or more 

hydrophilic part, and a hydrophobic part. In a selective solvent, such as water, 

the hydrophobic parts tend to associate together in order to minimize interaction 

with water molecules, when the hydrophilic parts tend to expand and be 

hydrated. It is well known that block copolymers can be designed to show 

amphiphilic properties. According to the nature of the blocks and the conditions 

(temperature, ionic strength, etc...), amphiphilic block copolymers can lead to 

several morphologies, such as lamellar structure (LAM), micelles, bicontinuous 

structures, nanotubes or vesicles.

FOC

ir - iK e le

\

: yl z\ i i c i  nmrelle

t

i

*
KEX

wesic le

F'S urt^Le I f y i im

grroi i  \JaSSf

P surface

IXUU FLAM

Figure 7: an overview of supramolecular self assemblies of the block copolymer 
poly(isoprene-co-styrene).19
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Polymersomes are vesicles made from amphiphilic copolymers. Polymer 

chains can self assembled into spherical shells similar to liposomes. Due to 

much larger molecular weights, polymersomes have thicker membranes and 

different in vivo behaviors.20

A wide range of synthetic and semi-synthetic copolymers is available, as 

well as a multitude of MW combinations. These are important choices to make 

and impart tunable properties to these carriers system.

Copolymers used to form polymersomes are very similar to lipids since 

they are amphiphiles. The hydrophilic blocks are delimiting two interfaces, the 

inner and outer faces of a bilayer membrane.

According to the literature there are three major parameters that can 

influence different characteristics of a self assembly, namely stability, 

morphology and size:

• the interaction energy e between monomers and the bulk solution is 

related to stability

• the ratio (in mass) of the hydrophilic block over the total mass of the 

polymer chain called f, dictates morphology

• the total molecular weight of the chain MW scales with the 

membrane thickness of the assembly

In a review on polymersomes, Disher et al.20' 21 state that, in order to 

obtain vesicles, f  should be around 35%. Under 25%, the chains are expected to 

form inverted structures, and molecules with f  > 45% are expected to yield
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micelles (Figure 8 a). In this hypothesis the arrangement of polymer chains is 

driven by the curvature imposed by the size of the hydrophilic block.

More generally, the curvature of the vesicles is a result of the segregation 

of the hydrophilic polymer in aqueous environment. Eisenberg et al.22 proposed 

that vesicles are stabilized due to intrinsic polydispersity of the copolymer chains: 

long chains segregate on the outside while small chains are oriented toward the 

inside.

In our case, added to the polydispersity effect, another constraint might 

influence the morphology of the assembly. The external hydrophilic block is a 

polyanion with a potential “branched” structure. It is more likely to require a lot of 

space to arrange on the outside. When considering the assembly of ABC 

triblocks, there are no general rules on the object formed by self assembly.

The molecular weight of the chains dictates the thickness of the 

membrane. When liposomes have membrane thickness around 3-5 nm, 

polymersomes have membrane ranging from 8  to 2 0  nm, according to the size of 

the blocks (Figure 8 b).
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a / dictates aggregate morphology

25- 40 %  40- 50% > 50%

b MW  dictates aggregate dimension

d~ MW0.55

Lipid

Discher DE, Ahmed F. 2006.

Annu. Rev. Biomed. Eng. 8:323—41

Figure 8: a) Schematic of block copolymer morphologies, b) Schematic of membrane 
thickness scaling with MW.20

The third parameter concerns the stability of the aggregates in aqueous 

media. Stability of vesicle can be measured by critical micelle concentration 

(CMC). The CMC is given by the following equation:

Ccmc ~ exp(~nsh i k BT) (1)
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where ksT is the thermal energy, n is the number of repeat units and eh is the 

monomer’s effective interaction energy. Aggregates such as vesicles are only 

formed when concentration is above the CMC. Using this equation, amphiphiles 

concentration should range form micromolar to picomolar (i. e. stability is 

obtained at high dilution).

Several groups have reported the fabrication of polymersomes using 

many polymer systems. Vesicles have been prepared from amphiphilic diblocks, 

such as PS-PEO and PS-PAA studied by Eisenberg and coworkers,23 PEO-PEE 

and PEO-PBD by Discher et al.24 There are numerous reports of polymersomes 

based on PEO, including PEO-PLA (or PEG-PLA) , 25’ 26 PEO-PCL,25 ’ 27’ 28 and 

poly(fumaric acid/sebacic acid)-PEG.29

Another approach to diblock copolymer based vesicles involves peptide 

based copolymers. Diblocks including one or two different amino acids such as 

PEG-poly(glycolic acid-valine) , 30 PLA-poly(aspartic acid) , 31 PBD-PGIu.32, 33 

Jeong et al. reported encapsulation of Nifedipine in PGIuBn-b-PEG 

nanoparticles.34 Poly(Glc-Lys)-b-PLA and poly(Glc-Asp)-b-PLA have been 

reported by Ouchi and coworkers,3 5 ,36 and though self assembly was not studied, 

it seemed possible to obtain vesicles.

A few studies reported the formation of vesicles with triblock copolymers. 

Symmetric ABA triblocks have been investigated, for instance Floudas et al. 

studied the self assembly of PBLG-PEG-PBLG, 37 vesicular structures where 

reported using PMOXA-PDMS-PMOXA,38 and a commercial triblock PEO-
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poly(propylene oxide)-PEO sold by BASF as Pluronic ®. We found only two 

examples of asymmetric ABC triblocks forming vesicles so far, PMOXA-PDMS- 

PEO synthesized by Meier’s group,39 and PDMAI-PS-PMA reported by Bieringer 

et al..40
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CHAPTER II

SYNTHESIS

2.1. Synthesis of B block and AB Diblock

The first step in the formation of the triblock is the synthesis of the diblock 

copolymer, mPEG-PLA or mPEG-PCL, or a PLA alone. mPEG-PLA/PCL and 

PLA can be synthesized by ring opening polymerization of the corresponding 

lactones. The advantage of ring opening polymerization over other techniques is 

the livingness of the polymerization allowing good control of molecular weight 

and low polydispersity.

ROP of lactones are typically initiated with alcohols. In our work, we used 

methoxy poly(ethylene glycol). The use of poly(ethylene glycol) would form a 

triblock copolymer PEG-b-PLA-b-PEG for instance. Other alcohols can be used 

to obtain simple PLA or PCL blocks. Several catalysts system can be used for 

these reactions, metal based catalysts being the most widely used systems, such 

as Stannous Octanoate, SnOct2.

2.1.1.  Evolution of the work inherited from Collette’s thesis

The work presented in this thesis is the continuation of F. Collette’s master 

thesis, reference 41. Several modifications have been performed on the initial 

synthesis scheme proposed in her work, as well as the final formulation itself
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(this part of the work is described later). Particularly, we were interested in 

modifications of the process. If we were to sell our product, the need for a safe 

and affordable preparation would be highly desirable. Therefore, the idea behind 

these changes was to simplify the whole synthesis process by eliminating the 

use of dangerous compounds as well as compounds needing special handling, 

elimination of solvents when possible, and eventually shortening of reaction 

times.

2.1.2.  Common catalysts for ROP of Polvdactic acid)

Poly(lactic acid) is a polyester obtained by ROP of lactide. Lactide is a 

cyclic dimmer of lactic acid.

L-Lactide D,L-LactideD-Lactide

Figure 9: Lactides.

Most frequently, ROP is initiated with metal based catalysts. Typically, an 

alcohol is used as initiator and the metal is the catalyst. Any covalent metal
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alkoxide with free p or d orbital is susceptible to react as a coordination initiator. 

The first step is the complexation of the monomer on the carbonyl oxygen of the 

lactide. It is followed by the insertion of the monomer into the metal-oxygen bond. 

According to Kricheldorf et al. various metal alkoxides, including aluminum 

isopropoxide, tributyltin methoxide, titanium or zinc n-butoxide, were able to ring 

open lactide.42 Among these systems Dubois et al. reported that Zn(OR) 2 and 

AI(OR) 3 were the ones that limited severely intra- and intermolecular 

transesterification.43 These metal alkoxides yield lactic acid homopolymer or 

copolymers with controlled MW and low polydispersity (i. e. very few 

transesterification events).

According to the dimmer used to obtain PLA, it is possible to get different 

levels of crystallinity. Typically, L-Lactide and D-Lactide yield isotactic polymers 

whereas D,L-lactide yields mostly atactic structure. For the purpose of our work 

we are not interested in a crystalline polymer. The self-assembly of polymer 

chains would be disturbed by a high amount of crystallinity.

The first modifications were done on the PLA (mPEG(PLA) or 

mPEG(PCL)) synthesis. Using Et2Zn as catalyst for the ROP of lactones imposes 

manipulations under dry nitrogen atmosphere, and eventually the use of a dry 

box. This step is quite prohibitive in terms of scaling up. In a first attempt to 

replace diethyl Zinc, several tests were done in bulk polymerization with 

Sn(Oct)2.
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Sn(0 ct)2 lead to mitigated results. First, Sn(Oct) 2 can be cautiously used 

under a hood, outside dry box. Second, we eliminated the need for a solvent. 

However the reaction times are extremely long even at very high temperature 

(160°C). Full conversion is reached after more than 24h at 160°C, leading to a 

large amount of termination and transfer reactions. Since we were not satisfied 

with this technique, we looked for another catalyst.

2.1.3.  Organic catalyst for the ROP of lactones 

2. 1. 3. 1. Literature

In our search of an alternative to traditional organometallic approaches for 

ROP of lactones, we looked for organocatalytic polymerizations. Nederberg et 

al.44 first reported the ROP of lactide using organocatalysts. Their work was 

based on the use of strong bases commonly used as transesterification catalysts. 

4-dimethylaminopyridine (DMAP) was found to be very efficient in 

transesterification reactions. It can be used in bulk or solution polymerization to 

ring open lactones. A plausible scheme was proposed by Nederberg etal.:
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Lactide

DMAP

* N *

+  ROH

Figure 10: ROP of lactide using DMAP as a catalyst, adapted from [44].

DMAP activates the lactide, giving birth to a DMAP-lactide complex, which 

react with a nucleophile, such as an alcohol. The polymerization proceeds when 

the hydroxyl-terminated oligomer acts as a nucleophile and opens additional 

lactide. The polymers obtained had very low polydispersity, and had predictable 

molecular weights, both characteristics of living polymerizations. According to 

their work, in bulk conditions, times as low as 5 minutes were necessary to
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achieve conversion and obtain the targeted MW at high reaction temperatures 

(135°C). A variety of alcohol can be used as the nucleophiles. According to the 

alcohol used it is possible to work in solvent polymerization (typically 

dichloromethane) with longer reaction times.

Since then, a few authors have reported the use of DMAP in several ROP 

of lactones. Feng et al. reported the synthesis of Chitosan-gra/?-poly(e- 

caprolactone) with DMAP,45 Trimaille et al. reported the polymerization of a 

variety of monoalkyl-substituted lactides using DMAP too 46
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2.1.3.  2. PLA and PEG-PLA synthesis using DMAP 

Poly(lactic acid)

The PLA polymerization using DMAP as an activator was investigated 

using different alcohols as initiators, a variety of monomer to initiator ratios, as 

well as reaction conditions. Lactide is obtained by the cyclic dimerization of lactic 

acid. It can be contaminated by lactic acid and non-cyclic dimers of lactic acid. 

Lactide was recrystallized from hot toluene and washed with the same cold 

solvent prior to use in polymerization. The bulk polymerization of lactide at 135°C 

was followed by 1H NMR and GPC (Gel Permeation Chromatography). A glass 

pipette was dip in the bulk, the embedded tip was broken and the polymer was 

dissolved in CDCI3 , filtrated to remove the glass and immediately analyzed by 1H 

NMR. The remaining fraction of the polymer was dried from CDCI3 and dissolved 

in THF to be analyzed by GPC.
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Figure 11: 1H NMR spectrum of decanol initiated PLA in CDCI3.

In 1H NMR, the conversion was evaluated by the ratio between the 

integrals of polymer and lactide. The signal of the methine proton C-H differs 

between the dimer and its polymerized form, shifted in the polymer (see figure 

12). After 40 minutes, high conversion is reached and the reaction is quenched 

by instant freezing in liquid nitrogen.
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w

Figure 12: 1H NMR of the methine proton during lactide polymerization from 0 to 40 
minutes (in CDCI3).

From the 1H NMR spectra, it is possible to obtain the MW of the PLA, 

either by conversion or by taking an alcohol initiator of known structure as a
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reference for the calculation. In the case of the PLA polymerization the alcohol 

signal is weak, and calculations where preferentially done with conversion. As an 

example, the calculation from spectrum of figure 11 is given here. The 

conversion is obtained by the ratio between the polymerized and the 

unpolymerized lactide: 100/(100+4.69) = 0.955. The initial target being 140 units, 

we can say we have 0.955*140 = 133.7 => 134 units in our PLA.

As we shown on figure 10 the polymerization mechanism involves several 

steps: the activation of the lactide dimer with DMAP leading to the formation of 

the DMAP-lactate, followed by the ROP of lactide dimers. Depending on which 

step is rate determining, the polymerization is either zero or first order toward 

monomer, or a more complicated law, with an order for the initiator (which is here 

considered to have a constant concentration).
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Figure 13: Conversion as a function of time for polymerization of lactide; (+)bulk 
polymerization initiated by DMAP at 135°C; (■) solvent polymerization initiated by Zn(Et)2 
at 60°C (data from F. Collette’s thesis, ref. 41).
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From this plot, it is obvious that the DMAP polymerization is not a zero 

order law, as Collette reported when using Zn(Et) 2 as a catalyst. Apparently, 

higher conversions are reached more rapidly using DMAP. If a lot of literature is 

available on the polymerization kinetics using common catalysts (such as 

Sn(Oct)2), there are very few studies on the kinetics of DMAP polymerization. We 

expect this polymerization to be first order in monomer. The kinetic law is given 

by the following equation:

R = _ d [ M ] = k M̂ y  (2)
dt

R is the rate of polymerization, t is the time, [M] is the monomer concentration, k 

is the kinetic constant and n is the order toward monomer.

(2 ) can be rewritten as:

,3)[M]n (3)

Equation (3) can be integrated, and according to the value of n, we obtain

the following equations, respectively for n = 1 and n = 2 :

In
^ [ M ] '

v M o y
- k t  (4)

kt (5)JM ] [M ]0 j

In order to verify a first order law, consistent with the polymerization 

reaction, we plotted ln([M]/[M0]) and (1/[M]-1/[M0]) as a function o ft in Figure 14:
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Figure 14: Kinetics of bulk PLA polymerization: first and second order approximations.

The initial concentration of monomer in bulk was simply calculated as the 

ratio between density and MW of the monomer. According to Figure 14, only the 

first order equation yields a linear relation versus time, indicating that n= 1  is a 

good fit to our data. The second order law is not linear, therefore we can 

reasonably confirm a first order kinetics toward monomer.

Surprisingly, while we expected a dramatic slow down of the slope (in 

Figure 13) due to the fact that the polymerization becomes controlled by 

diffusion, i.e. the equilibrium toward polymer is not favored, we did not observe it. 

This effect should be dramatically increased in a bulk polymerization, while the 

viscosity is changing with time.

We measured the ability of the reaction to produce blocks with well 

defined MW and low polydispersity. These characteristics are consistent with a 

living polymerization profile. One activated monomer is initiated by one alcohol,
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leading to one single chain. Chains MW grows linearly with conversion and 

ideally have the same length. GPC and 1H NMR were used to follow the 

livingness of the polymerization. 1H NMR was used to specifically follow 

conversion, by resonance shift of the methine proton as demonstrated 

previously.

Lactide

PLA
£  40

23 25 27 29 31 33 35 37 39

•  EC 158 Omin 

-E C  158 2min 

-E C  158 5min 

EC 158 10min 

-E C  158 15min 

-E C  158 25min

t(min)

Figure 15: GPC of bulk PLA polymerization with DMAP.

We used the following set up for GPC analysis: a low molecular weight 

column, THF as the solvent, and temperature control at 35°C and pump rate = 

1ml/min. Typically our polymer has no exploitable signal in UV, and we used an 

Rl detector. The first peaks correspond to the distribution of high molecular 

weights, i. e. our polymer. GPC traces on figure 15 show the MW of the PLA 

fractions taken during polymerization at different times. The retention times of the 

peaks clearly show that MW is growing with time. On the same curve, we can 

see the intensity of the lactide peak dramatically decreasing with time. Though
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this lactide peak could have been used for conversion calculations, we preferred 

considering the conversion values obtained from the 1H NMR study. Using these 

conversion data, a plot of MW vs. conversion was drawn.
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Figure 16. Polydispersity index and number average molecular weight as a function of 
conversion. Bulk polymerization of lactide using DMAP and Decanol as initiator.

Note that the number average molecular weight Mn of PLA is purely 

indicative: it is not an absolute MW since calculations are based on the GPC 

calibration made with poly(styrene) standards.

From this plot we can see that the molecular weight of PLA is growing 

linearly with conversion, indicating that the polymerization is living and can be 

controlled. The polydispersity index (PDI) is reasonably low for such a
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polymerization. However, the value of 1.4 could be explained by side reactions 

occurring at the high polymerization temperature. Transfer and termination 

reactions as well as cross esterifications are the most plausible mechanism 

leading to polydispersity.

The initiators used were chosen for their high boiling point. The reaction in 

bulk taking place at 135°C requires fully melted initiator, monomer and catalyst.

Table 2: Listing of synthesized PEG-PLAs.

ID Catalyst Initiator T t M/I fcatalystl mol/L MW PLA PDI Quencher

PEG-PLA

EC29* Zn(Et)2 (1 equiv) PEG2000 (2 equiv) 60 1 h 139 0.0036 8900 1.24
HCI (in 

dioxane)

EC31* Zn(Et)2 (1 equiv) PEG2000 (2 equiv) 60 1 h 139 0.0036 9800 1.34
HCI (in 

dioxane)

EC34* Zn(Et)2 (1 equiv) PEG2000 (2 equiv) 60 1 h 139 0.0031 6800 1.33
HCI (in 

dioxane)

EC43* Zn(Et)2 (1 equiv) PEG2000 (2 equiv) 60 1 h 139 0.0031 4200 1.19
HCI (in 

dioxane)

EC44* Zn(Et)2 (1 equiv) PEG2000 (2 equiv) 60 1 h 139 0.0036 9900 1.57
HCI (in 

dioxane)

EC60* Zn(Et)2 (1 equiv) PEG2000 (2 equiv) 60 1 h 139 0.0042 9100 1.25
HCI (in 

dioxane)

EC61* Zn{Et)2 (1 equiv) PEG750 (2 equiv) 60 1 h 139 0.0032 NC NC
HCI (in 

dioxane)

EC62* Zn(Et)2 (1 equiv) PEG5000 (2 equiv) 60 1 h 138 n/a NC NC
HCI (in 

dioxane)

EC92
Sn(Oct)2 (1 

equiv) PEG2000 (84 equiv) 140 19 h 238 n/a 26000 1.55 MeOH
EC92

ter
Sn(Oct)2 (1 

equiv) PEG2000 (84 equiv) 140 19 h 238 n/a 26000 1.53 Cyclohexane

EC99
Sn(Oct)2 (1 

equiv) PEG2000 (100 equiv) 160 5 h 100 n/a 6600 1.55 Cyclohexane

EC100 DMAP (1 equiv) PEG2000 (1 equiv) 65 1 h 278 n/a NC NC Cyclohexane

EC101
Sn{Oct)2 (1 

equiv) PEG2000 (100 equiv) 160 7 h 140 n/a 8600 1.55 Cyclohexane

EC102
Sn(Oct)2 (1 

equiv) PEG2000 (100 equiv) 130 10 h 140 n/a 8800 1.39 liquid Nitroqen

EC106 DMAP (2 equiv) PEG2000 (2 equiv) 135 2 h 140 n/a 9400 1.42 liquid Nitroqen

EC109 DMAP (2 equiv) PEG2000 (1 equiv) 135 2 h 280 n/a 18600 1.39 liquid Nitroqen

EC111 DMAP (2 equiv) PEG2000 (1 equiv) 135 2 h 140 n/a 9400 1.5 liquid Nitroqen

EC112 DMAP (2 equiv) PEG2000 (1 equiv) 135 20 min 140 n/a 7500 1.3 liquid Nitroqen

EC133 DMAP (2 equiv) PEG2000 (1 equiv) 135 20 min 140 n/a 6200 1.34 liquid Nitroqen

EC134 DMAP (1 equiv) PEG2000 (1 equiv) 135 20 min 140 n/a 3000 NC liquid Nitroqen

EC135 DMAP (2 equiv) PEG2000 (1 equiv) 135 40 min 140 n/a 8100 1.41 liquid Nitroqen

EC179 DMAP (2 equiv) PEG2000 (1 equiv) 135 40 min 110 n/a 6500 1.24 liquid Nitroqen

* Polymerization in toluene.

37

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Table 3: Listing of synthesized PLAs.

ID Catalyst Initiator T t M/I [catalyst] mol/L MW PLA PDI Quencher

PLA

EC103* DMAP (4 equiv) Decanol (1 equiv) 60 20 h 140 0.08 NC NC Cyclohexane

EC105 DMAP (2 equiv) Decanol (1 equiv) 135 75 min 140 n/a 9600 1.34 liquid Nitroqen

EC142 DMAP (2 equiv) Decanol (1 equiv) 135 20 min 20 n/a 1100 1.5 liquid Nitroqen

EC143 DMAP (2 equiv) Decanol (1 equiv) 135 20 min 25 n/a 1700 1.51 liquid Nitroqen

EC148 DMAP (2 equiv) 1-Pyrenemethanol 135 20 min 140 n/a 8100 NC liquid Nitroqen

EC157 DMAP (2 equiv) Decanol (1 equiv) 135 20 min 140 n/a 9100 1.66 liquid Nitroqen

EC158 DMAP (2 equiv) Decanol (1 equiv) 135 40 min 140 n/a 9900 1.36 liquid Nitrogen

* Polymerization in toluene.

From the work of Collette,47 we know that crystallinity of the PLA is a 

parameter we need to avoid, since it is detrimental to the formation of vesicles. 

Therefore, we used racemic lactide yielding an amorphous PLA in all our 

polymerizations. DSC was used to show the amorphous state of our polymers. 

As an example, a DSC trace for a PLA is shown in Figure 17.

1 7 I'C

0 50

Temperature (eC)
150 200

Universal V 4 3A TA Instruments

Figure 17: DSC spectrum of a PLA block.
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The Tg of our polymer is measured to be around 20°C, and no 

crystallization peak is observed. The low Tg found for this particular sample is 

most probably due to residual solvent.

Methoxy Poly(ethylene glycol-co-lactic acid)

The diblock mPEG-PLA was obtained using the same process, with a 

methoxyPEG OH-terminated instead of a simple alcohol. The use of PEG is no 

different from another alcohol in theory. However, we observed that the 

polymerization using PEG as initiator required extra time to reach high 

conversion. One explanation is due to the high viscosity of the reaction bulk at 

135°C when using PEG, a low molecular weight macromolecular alcohol, versus 

the viscosity of the media when using a simple alcohol molecule such as 

decanol.

The molecular weight distribution was studied by GPC, and the MW value 

was calculated from 1H NMR. A typical NMR of PEG-PLA is given below (figure 

18).
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Figure 18: 1H NMR of mPEG-PLA in CDCI3.

The calculation is particularly easy when the initiator has a strong 1H NMR 

signal such as PEG 2000. As an example, the calculation is done on the 

spectrum represented above.

Since the initiator is PEG 2000 (corresponding to 45 repeat units), we 

know that the CH2 signal represents 45*4 = 180 H. If we attribute an integral of 

180 to this signal, then the signal of the H of the PLA, counting for one H per 

repeat unit, directly gives us the MW of the PLA. In this case, the integral is 

121.30; therefore we can consider our diblock to be a PEG45PLA-121. Note that the 

signal of the methyl of the PLA chain can also be used for the calculation: the
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integral of 384.59 counts for 3 H, and the number of repeat unit is given by 

384.59/3 = 128.19, or 128, which is reasonably close to the value found with the 

methine proton.

2. 1.4. mPEG-PCL

One of the tunable properties of our system is the degradability of the 

hydrophobic block. The purpose of exploring different diblocks was to have a 

variety of degradation time scales for the final system. As we have seen before, 

poly(e-caprolactone) and poly(lactic acid-co-glycolic acid) have very different 

properties: PCL is more resistant to hydrolysis while PGLA is degrading faster.

25 

20

15

O 
o>
3  10
C lO 
>0) 
cr

5 

0 
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Figure 19: DSC spectrum of polycaprolactone.
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PCL resistance to degradation is in part due to the high crystallinity of the 

polymer, excluding low molecular weight molecules from these domains. The 

DSC trace of PCL (figure 19) shows a crystallization peak around 50°C.

Poly( e-caprolactone) is a polyester which can be obtained by ring-opening 

polymerization of its monomer, e-caprolactone.

Figure 20: e-caprolactone.

The ROP allows a controlled/living polymerization. Such a polymerization 

is desirable in order to avoid any termination or transfer reactions during the 

polymerization, leading to well controlled molecular weight and architecture for 

the final polymer.

A variety of catalysts have been described. Activated monomer cationic 

polymerization of e-caprolactone has been reported using HCI Et20  as an 

activator.48, 49 Homopolymers (PLA, PCL) as well as copolymers mPEG-PCL 

were obtained, all with few chain transfer and good control of molecular weight. 

The use of cheap chemicals in this polymerization procedure is interesting, 

however, it requires up to 24 hours for e-caprolactone to reach high conversions.

42

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



E-caprolactone polymerization can be initiated by metal alkoxides. 

Monomethoxy-PEG becomes a macromolecular initiator in the presence of the 

catalyst, and generates a copolymer diblock PEG-PCL. Deng etal.50 reported the 

polymerization of PCL blocks by ROP using diethyl zinc as a catalyst. The 

polymerization was done at 130°C for 20 hours.

Ahmed et al.25 reported the synthesis of mPEG-PCL diblocks by ROP 

using tin ethylhexanoate. In this method, reagents are dissolved in toluene, and 

the reaction is held at 100°C for 2 hours. Choi et al.51 reported the polymerization 

to be complete after 24 hours at 140°C in toluene.

Storey et al.52 used the same catalyst in bulk polymerization to produce 

poly(e-caprolactone). The reaction scheme is given in figure 21:
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Figure 21. ROP of e-caprolactone with tin ethyl hexanoate: A) formation of stannous 
alkoxide initiator, B) coordination/insertion of monomer, C) chain extension.52

Other groups42,53 investigated the polymerization of e-caprolactone with 

aluminum based catalysts, the simplest ones being aluminum isopropoxide and 

triethyl aluminum. Aluminum complexes such as aluminum amine 

bis(phenolate)s,54 or aluminum thiolates55 could be used.
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Figure 22: Aluminum isopropoxide and triethyl aluminum.

The following mechanism for ROP of e-caprolactone with aluminum 

isopropoxide was proposed by Dubois et al.53

RO,

RO,RO Al— y-OR O'

(OR)aAI + c-CL

RO,
/ h2 y //

,Ai o - V - c  - h C

5\
n e-CL

RO

RO OR

RO,

,AI O

RO

Figure 23: ROP of e-caprolactone using an aluminum alkoxide.53
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Aluminum alkoxides have been found to be very efficient for the severe 

limitation of inter and intramolecular side reactions. Those polymerizations are 

typically done at room temperature. E-Caprolactone polymerization can be 

initiated by alcohols such as PEG terminated by hydroxyl groups. With two -OH 

termination, a triblock PEG-b-PCL-b-PEG would be obtained. Using a mPEG, a 

diblock PEG-b-PCL is generated.

A few experiments were done on the polymerization of e-caprolactone 

using metal catalysts. The most efficient catalyst was found to be triethyl 

aluminum (AI(Et)3).

Table 4: Listing of PEG-PCL.

ID Catalyst initiator T t M/I Tcatalyst] mol/L MW PLA PDI Quencher

EC20 Zn(Et)2 (1 equiv) PEG2000 (2 equiv) 60 1 h 44 0.017 4000 NC HCI 35%

EC24 AI(Et)3 (1 equiv) PEG2000 (3 equiv) 60 1 h 29 0.016 3300 NC HCI 35%

EC26 AI(Et)3 (1 equiv) PEG2000 (3 equiv) 0 1 h 29 0.01 3300 NC HCI 35%

EC28 AI(Et)3 (1 equiv) PEG2000 (2 equiv) RT 75 min 44 0.016 5000 NC HCI 35%

EC30 AI(Et)3 (1 equiv) PEG2000 (2 equiv) RT 2 h 44 0.01 7100 1.21 MeOH

EC32
AI(OiPr)3 (1 

equiv) PEG2000 (3 equiv) RT 1 h 29 0.006 NC NC MeOH

EC36 AI(Et)3 (1 equiv) PEG2000 (2 equiv) RT 90 min 44 0.01 5000 1.26 MeOH

EC57 AI(Et)3 (1 equiv) PEG2000 (2 equiv) RT 1 h 22 0.016 2850 1.26 MeOH

All polymerizations in toluene.

No polymerization was observed using AI(OiPr)3. According to 1H NMR, 

Zn(Et)2 was found to polymerize e-caprolactone and yield very low MW block 

copolymers. The preparation of A-B diblock copolymers by stepwise addition 

successfully proceeds only if the active species remain at the chain end of the 

growing block. If the active species are transferred to the monomer, ideally we 

obtain a blend of A and B homopolymers. In the case of Zn(Et)2 polymerization, 

the active species were most likely transferred from the PEG chain to the e-
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caprolactone monomers. In the case of triethyl aluminum, we succeeded into 

synthesizing diblocks PEG-PCL with low PDI and controlled MW.

10
 EC57
 PEG2000

26 27 28 29 30 31 32 3323 24 25

Figure 24: GPC traces of PEG 2000 and PEG-PCL copolymer.

From the GPC experiment we can see that the PEG chains have been 

extended with poly(caprolactone). The 1H NMR confirmed this polymerization. 

Upon successful coupling of PEG to PCL, the signal of the CH2 from a PEG unit 

attached to a caprolactone unit slightly shifted toward the high fields region. This 

is due to the contribution of the close 0=C-0 of the PEG/PCL junction versus the 

C-0 in regular PEG. On the 1H NMR spectrum given below, this signal is the 

triplet labeled c at 4.2 ppm. The presence of this peak is a proof that we did 

obtain a diblock and not two homopolymers.
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Figure 25: 1H NMR of PEG-PCL in CDCI3.

Using the integrals of peaks b and e, which are counting for 2H each, we 

found a molecular weight of 2850 g/mol or 25 repeat units for the spectrum 

represented above.
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2. 2. PGIuOH synthesis

2. 2. 1. PGIuBn synthesis

Controlled living anionic polymerization of N-Carboxyanhydrides (NCAs) 

allows the preparation of peptide block copolymers with a well defined 

architecture and composition. Poly(glutamic acid) is a polypeptide constituted 

with a single amino acid repeat unit, glutamic acid.

HN

Figure 26: N-CarboxyAnhydride (NCA).

It is prepared by ring opening polymerization of the NCA of glutamic acid 

potentially initiated with four classes of compounds: protic nucleophiles, aprotic 

nucleophiles, aprotic bases and organometallics. Among the protic nucleophiles, 

the most widely used compounds for NCA polymerization, we could use water, 

amines and alcohols.

We describe here the mechanism using a primary amine. Primary amines 

react with the C5 carbon atom, leading to a compound with a new primary amine 

function that can promote a nucleophilic attack on another NCA molecule and so 

on.
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Figure 27: Ring Opening Polymerization initiated by primary amines.

The termination of the polymerization occurs when all the monomer is 

reacted, leading to NH2 functionalized polymer chains. However, Hanby 56 was 

the first to report another termination mode. It is possible that the terminal 

primary amine function reacts with the carbonyl of the benzyl group protecting 

the acid. In this case, a five membered imide cycle is formed, called pyroglutamic 

group. This termination is ending the polymerization of a growing chain and is 

obviously detrimental to the control of MW and low polydispersity.
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Figure 28: Termination by formation of pyroglutamic groups.

The synthesis of poly(benzyl glutamate) was done by ROP of the 

corresponding protected NCA. NCA of benzyl glutamate was purchased from 

Isochem (France) and used without further purification. The polymerization is well 

described by Collette.57 It is polymerized in NMP at 40°C using an amine as 

initiator and no catalyst. The evolution of C02 is the major driving force and little 

side reactions are encountered. Collette used FT-IR and HPLC to follow the 

polymerization of PGIuBn and we used her results and data. Polymerization 

times were inconsistent (from 3 hours to 48 hours) and we worked on refining the 

ideal polymerization conditions. In this study, we had issues with yields often 

found to be over 100%. Wee found out that the washes using water at different 

pHs were ineffective regarding non polymerized NCA. After several solubility 

tests, we decided to wash the polymer with a mixture of solvents,
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THF/lsopropanol (2:1 volume ratio). This mixture elaborated considering polarity 

affinities helped selective solubilization of NCA.

2. 2. 2. Deprotection

A kinetic study was done in 1H-NMR to follow the deprotection of the 

PGIuBn. PGIuBn was dissolved in TFA, and MSA and Anisole were added at 

10°C. A sample was taken every 15 minutes, precipitated in a small volume of 

ether and washed with ether, then dissolved in d-TFA and analyzed. The 

mechanism of the reaction is given below:

Figure 29: Benzyl deprotection mechanism using Methane Sulfonic Acid.58

MSA protonates the carbonyl of the protected acid, then anisole is used as 

an ion scavenger trapping the leaving O-benzyl group. The NMR of PGIuBn is 

shown on Figure 30:

MeSOjH
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Figure 30: 1H NMR spectrum in of PGIuBn in d-TFA.

The disappearance of the aromatic signal was monitored. The 1H NMR 

spectra are given below.
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Figure 31: Kinetics of deprotection of PGIuBn followed by 1H NMR.

The percentage of deprotected PGIu is simply calculated from the ratio 

between the integral of the aromatics and the integral corresponding to the 2H b 

and b’ of the PGIu (see Figure 30). Table 5 summarizes the calculations:
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Table 5: Calculation of deprotection.

t (min) Assigned Integral 
For b + b’ + c Integral of Bn % deprotection Integral of 

COOH
0 4 5 0 0
15 4 1.5 70 0.8
30 4 0.75 85 1
45 4 0.25 95 0.95
60 4 0.12 97.6 0.31
75 4 0.04 99.2 0.17

From this study we observe that the deprotection is fast and almost 

complete at 45 min of reaction, when about 95% of the benzyl group is cleaved. 

Another interesting change can be observed on the spectrums of Figure 31: the 

appearance of a peak at 3.5 ppm, corresponding to the COOH. This peak was 

expected to be seen and its intensity should grow, scaling with the 

disappearance of the benzyl signal. But what we observe is completely different. 

The COOH is growing until 45 minutes of reaction, and then starts to fade away 

before disappearing. One explanation is that the COOH are reacting together to 

form anhydrides, the reaction being catalyzed by the acidic environment.

One of the effects of such a reaction would result in a crosslinking of the 

PGIuOH chains. Two chains could be linked together by an anhydride formed by 

two COOH. This would yield high MW PGIuOH chains.

The hypothesis was indirectly verified by another analysis. MW analysis 

by HPLC-MALS was done on PGIuOH deprotected for 75 minutes. The 

advantage of using Multi Angle Light Scattering rather than GPC in this case is 

that MALS is giving us the absolute MW of the polymer, so we can actually 

compare the experimental MW to the targeted one. The targeted molecular
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weight for PGIuOH was 12900 g/mol, and a HPLC-MALS experiment on kinetics 

ran by Zakaria Boukhal gave the following report:

Molar Mass vs. Volume
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Figure 32: HPLC-MALS kinetic study on PGIuBn deprotection.

The PGIuOH was dissolved at 1% in basic water and injected in HPLC- 

MALS. According to the plot of MW versus volume fraction, about 80% of the 

polymer is found to have MW between 5000 to 20000 g/mol, and a significant 

fraction (20%) has a MW higher than 20000 g/mol. This fraction is most likely the 

result of crosslinking between chains trough the formation of anhydride bonds. 

From this point we decided to stop the deprotection reaction at 45 minutes, in 

order to avoid such side reactions for all our deprotections. A new HPLC-MALS 

experiment gave us the following plot (Figure 33). This time, no fraction of high
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MW was seen, proving that stopping the reaction at 45 minutes was effectively 

avoiding crosslinking.

Molar Mass vs. Volume
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Figure 33: HPLC-MALS plot of a PGIuOH deprotected for 45 minutes.

57

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



2. 3. Coupling

In order to obtain our amphiphilic copolymer, PLA (or else) and PGIuOH 

need to be coupled together. The coupling is achieved between the hydroxyl 

terminated PLA and one carboxylic acid of PGIu. Several coupling agents can be 

used to couple these two functions. Usually, the carboxylic acid is activated first 

by the coupling agent then, the activated species is reacted with the alcohol to 

form an ester linkage. Dicyclohexylcarbodiimide (DCC) and carbodiimidazole 

(CDI) are among the most widely used coupling agents in coupling reactions 

between amino group and carboxylic acid.

CDI

DCC

Figure 34: Coupling agents.

DCC is potentially a very toxic compound not suitable for pharmaceutical 

applications. The acute toxicity of CDI is significantly smaller and therefore, we 

investigated this compound to replace DCC. The work on coupling conditions 

and parameters is reported elsewhere by Roset.59
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Figure 35: CDI coupling: reaction of N, N’-carbodiimidazole with carboxylic acid to form 
imidazolide followed by transacylation reaction of imidazolide to form esters.60

Coupling with CDI starts with an activation reaction. CDI can activate 

several compounds such as amines for the formation of amide linkage, 

carboxylic acids or alcohols. When alcohols and carboxylic acids are present, the 

later are activated first.60 Then the activated -COOH reacts with a nucleophile 

such as an alcohol, and an ester linkage is obtained between the carboxylic acid 

and the alcohol.

Coupling was done between the OH terminated PLA or PEG-PLA and a 

COOH of a poly(glutamic acid) chain. PGIuOH was first dissolved in NMP and
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activated by the coupling agent CDI, then the macroalcohol is added, and the 

compounds are left reacting for an hour at 10°C; then the solution is precipitated 

in 5 volumes of water containing 1.1 equivalents of NaOH in order to have the 

carboxylic acids of the PGIu in their deprotonated form, PGIuO'Na+. The polymer 

is washed several times with basic water with the goal of removing non-coupled 

chains of PGIuOH.

Table 6: List of diblock and triblocks synthesized.

Triblocks PEG-PLA-Pglu

ID MW PEG (g/mol) MW PLA (g/mol) MW Pglu (g/mol)
EC11 2000 6850 12900
EC12 2000 6850 12900
EC15 2000 6850 12900
EC46 2000 10000 12900
EC47 2000 4000 12900
EC51 2000 6850 12900
EC88 2000 10000 12900
EC98 2000 28000 12900

EC120 2000 7500 12900
EC150 2000 7300 12900
EC183 2000 4500 9000
EC186 2000 7300 12300

Triblocks PEG-PCL-Pglu

ID MW PEG MW PCL MW Pglu (g/mol)
EC35 2000 6400 12900
EC42 2000 6300 12900
EC54 2000 6300 12900
EC58 2000 4700 12900

Diblocks PLA-Pglu

ID MW PLA MW Pglu (g/mol)
EC126 10800 12900
EC149 8000 12900
EC151 1400 12900
EC160 9900 9300

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



The efficiency of coupling can be monitored by 1H NMR by a calculation 

based on the known MW of the diblock PEG-PLA. A typical 1H NMR spectrum of 

the triblock copolymer is given in figure 36.
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Figure 3 6 :1H NMR spectrum of PEG-PLA-PGIu in d-TFA.

There are two major drawbacks when using such a method for coupling of 

diblock with PGIuOH. The first problem is due to low coupling yields, usually

between 50 to 75%. The coupling yields could be improved by either a longer
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reaction time or heating. However, this would lead to undesired side reactions in 

the mixture, such as the formation of amide bonds and possibly anhydrides.

Amides can be prepared by reacting a carboxylic acid with CDI to form 

imidazolides, followed by addition of an amine at room temperature (primary and 

secondary amines).61

)N C  R +R ------- C — OH NH

+  HNR’R" R ---------C— NR'R" +,N C- NH

Figure 37: Synthesis of amides using imidazolide.61

Such a reaction could produce intra and inter molecular amide bonds, 

changing the PGIu structure.

Staab60 mentioned that anhydrides of carboxylic acids can be obtained at 

room temperature by reaction of an imidazolide with a carboxylic acid if the 

equilibrium is pulled toward anhydride formation. This is likely happening if the 

formation of an irreversible complex with imidazole is formed.

Figure 38: Formation of anhydrides of carboxylic acids.
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In our synthesis, it is possible to have traces of trifluoroacetic acid (TFA) 

from the precedent step, the deprotection of the poly(benzyl glutamate). The 

carboxylic acid from TFA can form a complex with imidazole, allowing the 

formation of some anhydrides by stabilization of the imidazole product.

Figure 39: Stabilization of imidazole with trifluoroacetic acid.

Figure 40 is a non-exhaustive list where different structures obtained with 

such reactions are represented.

Figure 40: Possible structures of PGIuOH resulting from side reactions. A: coupling of a 
backbone tertiary amine with a COOH; B: back-bitting coupling of a terminal NH2 with a 
COOH; C: Intermolecular coupling between terminal amine and COOH; D: intermolecular 
anhydride formation between two COOH.
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The second drawback associated with this method, is the lack of control 

over the architecture of the polymer. The stoechiometry of the coupling is 

calculated in such a way that, statistically, only one PLA is coupled per PGIuOH 

chain. However it is likely that we can have two or even more PLA chains per 

PGIuOH.

Figure 41: Example of structures displaying 2 PLA chains (in blue) for one PGIuOH chain.

In addition, the coupling of a PLA chain on the carboxylic acids of PGIuOH 

may happen in very different places. There is no preferential site for the 

attachment of the hydroxyl terminated function. It can be on the last unit of a 

PGIu chain, as well as in the center. This uncertainty leads to very different 

structures, potentially from linear copolymers to branched ones.
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Figure 42: linear and branched structures of the copolymer using CDI coupling according 
to site of coupling.

In conclusion we believe that our copolymers might have a large variety of 

structures, obtained in a non-controlled manner, and yielding a mixture of 

different species. This structure disparity between the chains might be a potential 

obstacle to the formation of regular assemblies. This topic will be discussed later 

in Chapter III.
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2. 4. Second synthetic pathway: macro amine as initiator of NCA opening

Another pathway for the synthesis of the copolymer was explored. The 

idea was to modify the PLA and use it as a macroamine for the ring-opening of 

the NCA monomer. Though this process requires one more step compared to the 

traditional coupling method described in the precedent paragraph, it would 

potentially allow a better control on polymer architecture and offers multiple 

synthetic modifications.

It is desirable to have a good control on the polymer architecture and 

molecular weight. It is one of the keys to obtain well defined self assemblies. The 

coupling method does not allow control of poly(glutamic acid) branching.

Several groups reported the ROP of NCA with macroamines. Gotsche 

synthesized a series of PLA-block-polyaminoacids with PLA-NH2 macroinitiators 

prepared in two different ways: the first macroinitiator was obtained by ROP of 

lactide in presence of the in situ initiator formed by Zn and N-Boc-aminopropanol, 

followed by deprotection of the amine. The second PLA-NH2 was prepared by 

endcaping PLA-OH with N-Boc-AA followed by deprotection of the amine.62 

Other polymeric initiators were reported, such as a mono amine terminated PEG 

as the initiator to obtain poly(benzyl glutamate-co-ethylene glycol).34

We used lysine(Fmoc)2 to functionalize the PLA. When the deprotection of 

Fmoc is complete, we obtain a macrodiamine, PLA(NH2)2. This primary diamine 

will be used to ring open the NCA under classical conditions described before. 

There is no reason to believe that the two amines on the poly(lactic acid) present 

a significant difference in their ability to initiate the NCA opening.
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Figure 43: NCA polymerization with macroamine.

Therefore this macromamine is thought to initiate the growth of two PGIu 

branches of equal molecular weight, leading to a polymer with a controlled 

structure. By adjusting the ratio of monomer to PLA(NH2)2 , it is possible to tune 

the length of the PGIu branches as needed.
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After NCA polymerization is complete, the benzyl group is removed using 

a method described precedently to obtain the final polymer.

2. 4. 1. Activation of COOH from Fmoc-Lvs(Fmoc)-OH

As we saw before, the coupling between a carboxylic acid and an alcohol 

is realized by activation of the COOH prior to reaction with OH. Here the 

activation of the protected lysine was done using CDI as the activator. The PLA- 

OH terminated reacted for 1 hour with CDI in chloroform. Lysine is added to the 

mixture in order to start the coupling.

2. 4. 2. Coupling PLA-OH with activated Fmoc-Lvs(Fmoc)-OH

The first step in this synthesis is the coupling of PLA-OH terminated 

with a protected amine. Since we were interested in the synthesis of a branched 

architecture, we looked for a diamine having an available carboxylic group to be 

coupled with PLA. We chose lysine as the diamine. Lysine is commercially 

available with two Fmoc groups protecting the amines, and the COOH 

unprotected, as Fmoc-Lys(Fmoc)-OH.
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Figure 44:Coupling of poiy(lactic acid) with Fmoc-Lys(Fmoc)-OH using CDI as coupling 
agent.

The coupling reaction was described previously. No specific 

characterization of this step was performed.

In fact, the most efficient proof of the functionalization of the PEG-PLA 

was the successful synthesis of PEG-PLA-PGIuBn by ROP of NCA (see 2. 4. 4.).

2. 4. 3. Fmoc deprotection

After coupling, the Fmoc protecting groups are removed by a 

classical deprotection method,63 using piperidine as a weak base to knock off the 

Fluorenyl group, producing CO2 as a byproduct.
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Figure 45: Scheme for Fmoc cleavage.

The Fmoc protected lysine was chosen for the easy removal of the 

protective group. Traditionally a mild base such as piperidine is used to knock off
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the Fmoc. Piperidine is used at 30 % in DCM or chloroform, for a few minutes. 

Excellent yields are obtained but recovery of the deprotected PLA provided us 

with some challenge. Obviously it is necessary to remove the piperidine since it 

could interfere with the macroamine and preferentially open the NCA in the next 

step. One of the issues is that piperidine seems to help solubilizing the polymer 

in several solvents traditionally used for precipitation of PLA. Therefore, the solid 

cannot be filtered. Piperidine is not removed easily, by any mean 

(rotovapored...).

In order to overcome this problem, we looked at other possibilities for the 

deprotection of Fmoc. Another widely used technique is the TriFluoroAcetic acid 

(TFA) acidolysis, with an ion scavenger. We chose not to use this method in 

order to avoid using TFA. The second possibility that we preferred was to look for 

a somewhat stronger base than piperidine that we could use in smaller amount 

(vs. 30% v/v). Among several candidates we came up with the use of a tertiary 

amine: 1,8-Diazabicyclo[5.4.0]undec-7-ene, or more commonly DBU.

Figure 46: 1, 8-Diazabicyclo[5. 4. 0]undec-7ene.

This amine was used at 1 % in CHCI3. The reason we chose DBU is that it 

is a tertiary amine. These compounds can still compete in the ring opening of
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NCA but they are much less reactive toward NCA than piperidine, and obviously 

than the macroamine we intend to use.

2. 4. 4. NCA polymerization with PLA-NH?

A few examples of NCA polymerization with macroamines have been 

reported. Modified PLA-NH2 macroamines were reported to polymerize NCA 

under mild conditions (room temperature during 48h). As an example Gotsche et. 

al.62 obtained PLA homopolymers functionalized with NH2 using both a modified 

Zinc alcoholate catalyst and the coupling/deprotection approach used in this 

work.

So far, we tried to polymerize NCA with our macroamine in different 

solvents with varying reaction times.

Table 7: NCA polymerizations with macroamine initiator PEG-PLA(NH2)2 -

ID Initiator T t solvent M/I [initiator] mol/L Quencher

EC 156 PEG-PLA(NH2)2 RT 3 h DCM 100 9.056E-07 MeOH

EC178 PEG-PLA(NH2)2 RT 48 h Chloroform 100 0.00000101 Ether

EC181 PEG-PLA(NH2)2 RT 3 h NMP 100 0.0000032 MeOH

The polymerization was followed by 1H NMR and GPC. The reaction in 

NMP at room temperature during 3 hours, i. e. the condition we are using to ring 

open NCA with a conventional primary amine, did not yield any polymer as 

shown on GPC traces. The second 3 hours reaction in DCM did not work either.

72

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



60

PEG-PLA-(NH2)2
50

40  EC181

 EC156
 EC178

EC135

20

10

0
22 24 30 32 36 3820 26 28 34

t (min)

Figure 47: GPC traces of PEG-PLA-(NH2 ) 2  macroamine initiator (EC177) and PEG-PLA- 
PGIuBn copolymers.

According to the GPC traces, the polymerization in chloroform held for 48h 

at room temperature (EC178) did work and yielded a polymer with a broad 

polydispersity of 1.9. Using 1H NMR, we calculated that the chains grown on the 

PEG-PLA macrodiamine were a bit shorter than the targeted molecular weight, in 

the order of 59 units versus 100.
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Figure 48: d-TFA 1H NMR of PEG-PLA-PGIuBn initiated by PEG-PLA(NH2 ) 2  macroamine.

This estimation is based on the integral of either e+e’ or f, counting for 2H 

respectively, and the peak of the methine of PLA, b. It is possible that the washes 

from the precedent step were not efficient enough, leaving some DBU in solution. 

As we saw before, DBU is a tertiary amine. Even though those amines are not 

the preferential compounds employed for the opening of NCAs, they have been 

found to be potential catalysts. The amine abstracts the proton on the nitrogen 

atom, creating a very reactive anion. The anion can attack the carbon atom of the 

cyclic carbonyl ring opening the NCA.
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Figure 49: Initiation of NCA polymerization with tertiary amine.64

If DBU is present in solution it can eventually compete with the 

macroamine. The formation of the reactive ion was found to be extremely slow, 

but it is likely to happen in the timescale of the reaction. This side reaction could 

explain the very low molecular weight polymer fraction that we can observe on 

the figure 43, corresponding to the bumps around 36 minutes of elution.

The yield off the reaction was also found to be quite low (<50%). We think 

it could be the result of a significant fraction of the poly(lactic acid) that was not 

functionalized in the previous step, and therefore it was not able to ring open the 

NCA.

Both this later observation and the occurrence of two distinct amine 

initiators (namely the macroamine and DBU) in the same batch yielding two 

types of PGIu could explain the wide distribution characterized by a PDI of 1.9.
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There are many candidates that could be used as the multifunctional link 

between PLA and PGIu. We used lysine for its interesting diamine functionality, 

and its commercial availability in the Fmoc-protected form. Again there are many 

different protection/deprotection chemistries that we could explore. Moreover, 

this technique would open numerous possibilities in terms of architecture control.

76

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



CHAPTER III

SELF-ASSEMBLY OF THE COPOLYMERS AND INSULIN LOADING

3.1. Purification and storage

3.1.1. Formation of the vesicles

As we saw, our amphiphilic copolymer is designed to self assemble in 

water. The first self assembly is obtained after synthesis by a precipitation in 

water with one equivalent of NaOH per COOH of the PGIu chains, in order to 

obtain the ionized form of the carboxylic acid, COO'.

In order to encapsulate insulin, the polymer solution is mixed with an 

insulin solution at pH 9, and sonicated for 3 minutes (amplitude 100%, 2 seconds 

on 2 seconds off). We use ultrasound energy as a mean of disrupting the 

polymeric membranes. Once the membrane is broken and the ultrasound 

stopped, the polymer chains reassemble, this time allowing the insulin to be 

trapped inside the vesicles or inside the membrane.

Obviously, a significant part of the energy we provide with ultrasound in 

order to disrupt the self assembly is actually heating the solution. In the higher 

range, we are limited by the denaturation of the insulin, and in the lower range, 

by the freezing of water. According to a temperature study described hereafter, 

we chose to work at 35°C.
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This formulation is later referred as “In&Out” since insulin is potentially 

present inside and out of the vesicles. It is contrasted to another formulation 

where the insulin is simply mixed with the polymer solution without sonication: 

this formulation was called “Out”. If needed, the solutions can be cleaned by 

ultrafiltration in order to remove free insulin.

3. 1. 2. Purification

The vesicles suspension was ultrafiltered on regenerated cellulose 

membranes (molecular weight cut off 30kD and 100kD). This operation has two 

major goals: elimination of solvent, reactants (such as coupling agent) and 

uncoupled species (solvated PGluO'), and concentration of the final vesicles.

As we explained before, the reaction mixture in NMP is precipitated in 5 

volumes of water. At this point the vesicles are in water containing 20% of NMP. 

The presence of such an amount of solvent most likely influences the assembly 

of polymer chains and this explains why we need to eliminate it.

Five volumes of Dl water at pH 9 (10'5 M in NaOH) are used to accomplish 

the ultrafiltration cleaning. A tangential filtration apparatus is used (Millipore 

cartridges, regenerated cellulose, 30 kDa). Several systems have been used 

prior to this one. Frontal filtration was abandoned since the membranes were 

rapidly plugged under the applied pressure. A small scale tangential filtration 

system was also tested.
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Figure 50: Ultrafiltration of the vesicles.

It was later replaced by a large scale cartridge allowing shorter operation 

times. The instrument set up is described in figure 50. The disadvantage of the 

system is due to the important volume of the cartridge. This retained volume 

containing vesicles must be cleaned out of the cartridge. Since it cannot be 

pushed out with air (it would dry the polymer inside), the polymer must be 

removed by running water through the cartridge. Therefore, part of the product 

has to be recovered as a very dilute solution due to the volume used for of the 

cleaning of the cartridge.
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3.1.3. Storage

The storage of the nanovesicles is of great importance. One way to control 

the integrity of our self assemblies is to check if objects can reform after any kind 

of storage, leading to vesicles with the same diameter, and with colloidal stability 

that we have directly after the first assembly. The diameters were measured by 

DLS.

The drug delivery system is designed to biodegrade in vivo. Especially the 

polyester part is susceptible to hydrolysis in slightly acidic media. In order to 

avoid hydrolysis, either water could be removed by freeze-drying, or alternatively 

the formulations could be kept at temperatures well below 0°C.

Drying the vesicles was first investigated. We used a freeze drying 

apparatus to remove water from the clean vesicles suspension. This technique 

has a great advantage in terms of storage (dry powder) and handling. However 

the dry vesicles must be redispersed in solution after liophylization. We observed 

some issues when redispersing the polymer in aqueous media since we were 

unable to break aggregates and obtain reasonable colloidal stability, even after 

strong sonication. We believe that aside from reversible interactions between the 

particles resulting from concentration and some melting, we have formation of 

anhydrides of carboxylic acid as a result of total dehydration, leading to 

irreversible aggregates linked by covalent bonds.
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Figure 51: Stability of polymer redispersed in water after liophylization.

To prevent aggregations, we investigated the possibility of cold storage at 

-80°C in water. This technique is more demanding in terms of storage. Several 

cryoprotective agents (polyalcohols and sugars for instance) can be used to 

stabilize nanoparticles. Saez et al. reported a freeze-thaw study on PCL and 

PGLA nanoparticles evaluating the impact of these compounds on the 

nanoparticles size. They found that the use of a cryoprotective agent was 

important to keep the integrity of their system.65 They observed the formation of 

irreversible aggregates in the absence of additives.

The goal of a cryoprotective agent is to induce a non-regular packing of 

the molecules, leading to an increased interstitial space. The density is lower 

than the packing induced by ice crystals and therefore it provides better 

protection to nanoparticles. Aggregation and pressure exerted by growing ice 

crystals is less likely to happen and damage the particles.
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Since our particles are slightly different, we performed our own freeze- 

thawing study. A cycle of freeze-thawing at -80°C was repeated 5 times on the 

same sample of PLA137PGIU72 at 0.51% solid. Thawing was done at 35°C for 

about 2 hours. Sonication was performed with a Branson sonifier with settings of 

2 seconds on 2 seconds off, 100% amplitude, for 5 minutes.

250 --------

■  Freeze-thaw

■  Freeze-thaw + sonication

0 1 2 3 4 5

# of freezing at -80C

Figure 52: Freeze-thaw study on EC160, PLA137 PGIu7 2 .

Figure 52 shows two interesting results. We can see that the first self 

assembly, i. e. prior to freezing and sonication, has a significantly smaller 

average diameter than frozen samples. The second observation shows us a 

trend from the 2nd to the 4th freezing. The diameter seems to rise regularly, an 

indication of change in the assembly morphology. At this point, one important 

thing needs to be noticed. From the first sample (no freezing) to the sample 

number 4, the pH dropped from 9.3 to 7.7. As we said before, this can be an 

indication of degradation of the PLA, since it produces lactic acid. But it can also
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affect the protonation of the PGIu. Before the 5th freezing the pH was adjusted to 

9 again, and the diameter was found to be smaller. The behavior of the vesicles 

toward external stimuli is detailed in the next part.

As we said, these observations are to be interpreted carefully. On average 

the variations of size from sample #1 to #5 are not particularly significant. 

Therefore we think our vesicles are not irreversibly affected upon freezing and 

thawing. The drop in pH is not likely due to freezing, but is more likely due to the 

slow degradation of PLA during several thawing. There is no mechanical damage 

due to freezing, since our vesicles are easily reconstituted.
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3. 2. Characterization of the self assemblies

3. 2. 1. Morphology and size characterization of crude vesicles

In the next pages, we briefly describe the panel of techniques used for the 

characterization of the objects formed by self assembly, and the results for each 

technique are discussed. A compilation of experimental observations and theory 

is proposed in paragraph 3. 3.

3. 2. 1. 1. Dynamic Light Scattering (DLS)

Dynamic Light Scattering was the primary technique used to determine 

the size of our nanoobjects. We used a Nanotrac 250 probe system (Microtrac 

Inc., PA).

The theory behind this experiment is based on two different assumptions: 

first the objects must be small enough to undergo Brownian motion in a resting 

fluid. The motion of such particles can be related to their sizes and this more 

easily if they can be considered as spherical and of large size compared to 

molecular level.

Technically speaking, monochromatic light is emitted through the 

suspension, and it is eventually scattered back with a difference in intensity, due 

interference between moving neighbor particles. The time dependence of these 

intensity fluctuations can yield the diffusion coefficient of the particles from which, 

via the Stokes Einstein equation, the hydrodynamic radius or diameter of the 

particles can be calculated. The Stockes-Einstein equation:
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Rh = kT/(6TTr|D) (6)

where Rh is the hydrodynamic radius, T the temperature, k is the effective 

interaction parameter, D is the diffusion coefficient and q is the viscosity.

The simplicity of DLS probe allows the live modification of many 

parameters during measurements. Some parameters give critical information 

about the self assembly, such as the response toward ionic strength, pH, 

temperature and solvent content. A typical size distribution obtained for a PLA- 

PGIuOH assembly is provided below:
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Figure 53: Diameter of vesicles from the self assembly of PLA-PGIu diblock in water.

Influence of pH

We measured the diameter of vesicles at different pHs. To the initial 

polymer solution in basic water (10'5 M NaOH), we slowly added dilute HCI to 

lower the pH. We found that the mean diameter of the objects was dependent on 

pH. Larger objects are obtained at acidic pH compared to basic pH.
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Figure 54: Diameter of diblock and triblock self assembly as a function of pH.
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Figure 54 illustrates the evolution of size versus pH. For both diblock and 

triblock copolymers, there is a very clear threshold at pH 3.5, where vesicles 

loose colloidal stability. After this pH value, one should be careful about 

interpretation of the DLS values since the suspension is not stable anymore.

Ionic strength

The ionic strength was increased using NaCI crystals dissolved in the 

solution. Though the effect was less obvious than it is for pH, the ionic strength 

seems to induce a slightly comparable response. We observed on a sample that 

the diameter of vesicles decreased with salt concentration, until the assembly 

was disrupted at very high salt content, i. e. 1.85 mol/L.
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Figure 55: Influence of ionic strength on triblock vesicles diameter at constant pH (7.4).

The Csait concentration values indicated in Figure 55 only refer to the NaCI 

concentration. It is possible that the salt content is slightly higher due to small 

amounts of NaOH.

Temperature

We performed a size measurement on the vesicles in water at different 

temperatures using DLS. The temperature window for the instrument ranged 

from 10 to 82°C. We observed an interesting trend: there is a significant change 

of slope in the curve around 25°C for the triblock size, whereas no obvious trend 

can be identified for the diblock in the temperature range of the experiment.
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Figure 56: diameter of vesicles as a function of temperature.

The temperature at which the change of slope is observed can be related 

to another specific temperature: the Tg of the diblock PEG-PLA. According to the 

Fox equation, and assuming that our diblock is not phase separated in the 

assembly, the calculated Tg of the diblock used in this experiment (PEG45PLA112) 

is around 33°C (using a PLA Tg of 57°C, and a PEG Tg of -40°C). This 

observation leads us to think that the triblock copolymer assembly is kinetically 

trapped in a specific configuration, and it needs to be heated in order to find its 

equilibrium shape.
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Solvent content

In this experiment, NMP was slowly added to the polymer solution up to 

65% NMP. At 65 % NMP in water (volume ratio), the solution was clear and DLS 

could not measure any size, indicating that the polymer chains were in solution 

and not assembled.
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Figure 57: Evolution of vesicles diameter with increasing solvent concentration.

The increase in diameter is more surprising. The polymer chains are 

perfectly soluble in NMP, and there is no reason they would go into aqueous 

solution. This means that the interfacial tension decreases with the addition of 

NMP to the water suspension. Therefore, the vesicles could have a lower 

diameter without an energy penalty and we observe the contrary.

Diblock vs. triblock

On average, we found that using DLS at room temperature, the self 

assemblies of diblock PLA-PGIu are spherical nanoobjects with a diameter

89

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



around 200 nm, whereas the self assemblies of triblock copolymer have 

diameters around 80 nm. These discrepancies clearly indicate a difference in 

morphology.

Table 8: Size of self assemblies.

ID Polymer Size (nm)
EC46 PEG45PLA123PGIU100 80

EC120 PEG45PLA104PGIU100 95
EC150 PEG45PLA112PGIU100 1 0 0

EC186 PEG45PLA112PGIU95 70
EC126 PLAi5oPGIu-ioo 2 0 0

EC151 PLA19PGIU100 2 2 0

EC160 PLA137PGIU72 170

From this table, one can also notice that the sizes change might be 

consistent with the PGIu MW. The formulations with slightly smaller PGIu lengths 

have lower diameters.
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3. 2. 1. 2. AFM

AFM studies were realized by Jun-Fu Liu on the diblock PLA-PGIuOH at 

different pH. A precedent study by Collette was done on triblock vesicles in the 

wet state.41 The sample preparation was quite difficult and the results mitigated. 

We developed a technique in the dry state focusing on the persistence of the 

vesicles shape through the whole process. A drop of polymer solution was 

deposited on a muscovite mica sheet (V-1 quality) seating on liquid nitrogen to 

obtain instant freezing, and then was lyophilized. The measurements were done 

on taping mode.

Figure 58: AFM 3D imaging of PEG-PLA-PGIu self-assembled vesicles at pH 10.

According to the pH of the initial solution, the average diameter of the 

particles is hugely different. It is found to be around at 0.5 //m at pH 3 and 90 nm
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at pH 10 (complete reports are given in appendices). In all cases, we noticed that 

the height of the vesicles is around 10 nm. Most likely, it is due to vesicles 

flattening. When the water is removed by freeze-drying, nothing prevents the 

vesicles from collapsing, and therefore, the objects analyzed in AFM are 

comparable to flat pancakes or discs rather than hollow spheres.

3. 2. 1. 3. Small Angle X-Ray Scattering (SAXS)

The SAXS experiments were done at the University of Pennsylvania by 

Amelie Roset. Using this technique, a membrane thickness of about 12 nm was 

found. A further detailed report is provided in [66].

3 .2.1. 4. Field Flow Fractionation (FFF)

Field Flow Fractionation is a separation technique with the ability to 

separate molecules, particles or cells with a wide range of molecular weight. The 

method is at the crossing of chromatography, electrophoresis and centrifuge. A 

solvent running through a well defined channel geometry is submitted to an 

external perpendicular field or gradient (hydraulic, thermal, electrical...). 

Differential flow occurs, separating components into several laminar flows. 

According to its response toward the external gradient, an object travels in a 

specific flow, i. e. a specific velocity.
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Figure 59: Field-flow fractionation channel showing laminar flow profile and field 
perpendicular to flow.67

From the FFF coupled with MALS detector, we can have two pieces of 

information: size and absolute MW of the objects. The experiment and data were 

processed by John Champagne at Wyatt Technology Corporation (Milford, MA).
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Figure 60: Root Mean Square radius (RMS radius) as a function of the molar mass.

The conformation plot obtained does not give a distribution of size (which 

has to be determined by DLS for instance), but it gives the molecular weight of 

self assemblies as a function of the particle size. This is a precious piece of 

information that can allow us to determine the number of chains involved in one 

vesicle also called aggregation number. The copolymer used for this study, 

EC126 is a diblock of PLA-PGIu with a total molecular weight of 23700 g/mol. 

Therefore, if we take 200nm as the size (consistent with DLS measurements) we 

can assume that we have (1.5*108)/23700 = 6329 chains constituting the bilayer 

membrane of one vesicle. One example of aggregation number calculation was
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reported by Shen, for a PS310-PAA52 copolymer forming 100nm diameter 

vesicles.68 According to his findings these vesicles were constituted of about 

5000 chains. Although the two systems are not really comparable in nature, it is 

consistent with our results being in an acceptable range.

Using the data provided in Figure 60, a plot of thickness d versus radius 

was plotted according to equation (5):

d = Rx- R 2=Rx- (7)
\ 4 p n

where m is the mass of the vesicle, p is the density of the polymer and R1 is the 

radius of the vesicle.
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Figure 61: Thickness of membrane as a function of vesicle mass (number of chains).

This plot gives a thickness of about 15nm for our vesicles. The increase of 

thickness with radius is surprising as this could mean that the structure of the 

membrane, i. e. the organization of the chains constituting the membrane, is 

affected by the size of the vesicle. However, the effect is very weak. Interestingly,
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the height given by AFM, corresponding to two dry bilayers is very consistent 

with the measure of thickness obtained by either SAXS or indirectly by FFF.

3. 2. 1. 5. Scanning Electron Microscopic (SEM)

A few attempts were made with Scanning Electron Microscopy to image 

the vesicles. One of the major issues we encountered was to keep the integrity of 

the vesicles in the dry state. The sample preparation was made with this aim. A 

drop of the polymer solution was deposited on a stub covered by a glass sheet 

held at negative temperature in order to obtain instant freezing. The frozen water 

was removed by sublimation in high vacuum. The sample was then coated with 

carbon.

Figure 62: SEM picture of triblock copolymer PEG45PLA112PGIuOH1oo-

A few results were obtained, showing aggregated large objects, with a 

diameter around 1 //m. Most likely, the vesicles coagulated while drying. This
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technique was found to be very difficult to perform and its results are only a poor 

repeat of the AFM study.

3. 2. 1. 6. Cryogenic Transmission Electron Microscopy (Cryo TEM)

Some Cryo-TEM experiments were run in order to confirm the presence of 

vesicles. Cryo TEM could also give us information on size distribution and 

thickness of the polymer shell. The reason cryo technology was used is to avoid 

collapse of our self-assemblies in the dry state under high vacuum.

We took several pictures, some of them showing nanoobjects. Spherical 

objects with diameters around 100 nm are shown on Figure 63.

Figure 63: Cryo-TEM picture of nanoobjects formed by self-assembly of linear 
P EG 45PLA47P G Iu 10o.
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However, it is difficult to conclude. The technique is very difficult to 

perform (due to sample melting), costly, and had to be performed at Yale 

University. Therefore, we did not explore much further this direction.

3. 2. 2. Evaluation of the loaded system

One important parameter for the evaluation of our system is the 

percentage of insulin encapsulated or associated with the vesicles. In order to 

evaluate this amount of retained insulin a simple experiment was designed. A 

typical encapsulation process was used (as described in III. 1. 1. 1.). Then the 

free insulin (i. e. not associated and not encapsulated) was removed by 

ultrafiltration (Frontal ultrafiltration on Biomax regenerated cellulose, MWCO 

100kD). The amount of free insulin, in the filtrate was determined by HPLC, 

monitoring the insulin UV peak at 280 nm. We used a Zorbax C8 column with a 

solvent gradient water/TFA and Acetonitrile/TFA, at 1ml/min and 30°C. A typical 

chromatogram obtained for insulin is given below:

; . ■____M , j  v. i l
# 2 4 I  I  "" r  ■ • «

Figure 64: Chromatogram of insulin.
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Knowing the amount of free insulin, a simple subtraction gave us the 

amount of insulin retained by our system. The filtration technique was later 

improved to reduce the experimental time. The solution of loaded insulin was 

placed in Centricon centrifuge tubes equipped with a 100kD MWCO regenerated 

cellulose filter, and a retentate bottom part. The tubes are centrifuged for 30 

minutes at 3220 RCF. Since insulin is too small to sediment when centrifuged, an 

equilibrium is reached between the concentration of free insulin in the retentate 

and the filtrate.

Vesicle 

A Insulin £
► Centrifugation

A A
Retentate

Filtrate

Figure 65: Separation of free insulin from loaded vesicles.

This filtered part is analyzed in HPLC. From the insulin concentration in 

the filtrate, the total free insulin and the ratio of insulin retained by the particles is 

easily deducted. As an example, the data shown on Figure 66 were obtained:
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Insulin 0.25%, polymer 0.5% Insulin 0.25%, polymer 2.0% Insulin 0.5%, polymer 0.5%

Figure 66: Typical data for the evaluation of encapsulation efficiency.

BOut 
S In & out

On this graph we can see the percentage of insulin retained by the system 

as a function of different parameters, such as insulin and polymer concentration. 

The detailed report of these loading studies is given and discussed further.

100

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

449999999999999999939999999^

23234823535353485348535348534848482323232353

5555D5255H55555555



3. 3. Discussion

3. 3.1. Understanding the self assembly

3. 3.1.1. Bending of flat bilavers -  the Helmotz surface free energy

In this paragraph we report a compilation of our calculations on the 

theoretical model describing the bending of a bilayer composed by amphiphiles 

into a vesicular shape. The model does not describe the formation of the bilayer 

itself, an organization driven by the ability of the hydrophobic blocks to segregate 

away from the hydrophilic solvent (water). As we saw before, such an assembly 

is only possible if the ratio between the hydrophilic and the hydrophobic fractions 

is asymmetric.

Figure 67: Bending of a flat bilayer into a spherical shape.

The cost of creating a curved bilayer was first described by Helfrich using 

the Helmotz surface free energy.69 Helfrich, who was trying to understand the

Flat bilayer

Surface area

Cost is:

F=Fb+Fs+P

Bilayer
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particular biconcave disk shape of red blood cells, proposed the following 

equation (the Helfrich equation):

f  = f b +f s + p  (8)

where F is called the Helmotz surface free energy, FB is the bending free energy, 

Fs is the interfacial free energy, and P is the osmotic pressure. P and Fs take in 

account the constraints of constant area and volume when the morphology is 

given by FB. The above equation can be written as follows, for any kind of 

morphology:

In this equation adapted from [70] the bending energy is given by:

Here kc is known as the bending modulus (or bending rigidity), Ri and R2 

are the two principal radius of curvature, R0 is the spontaneous radius of 

curvature, and k is the Gaussian modulus.

The spontaneous curvature (defined as 1/R0) describes the tendency of 

the flat bilayer to bend either towards or away from the water phase. It is positive 

in the later case. The natural or spontaneous curvature arises from the 

competition between packing areas of the hydrophilic and hydrophobic blocks.

—  +  +
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kc is of the order of KBT, the thermal energy, and represents the energy 

cost of deviating from the spontaneous curvature, k is the energy associated 

with the deformation of the bilayer membrane. According to Goetz and 

Lipowsky,71 it is directly related to kc and to the thickness d of the membrane by 

the following relation:

where /? is a coefficient taking in account the fluidity of the membrane (/? is taken 

as 1/48 for fluid bilayers, 1/12 for rigid bilayers). However, k was also shown to 

be dependent on chemical properties.72

For a sphere, we have Ri = R2 = R. Equation (10) integrated over the 

whole sphere yields the following solution:70

with np the number of particles.

The second term in equation (8) is the interfacial energy. Its expression is 

given below:

here y is the interfacial tension between the hydrophobic polymer (PLA) and 

water, R is the radius of the vesicle, d is the thickness of the membrane, and np is 

the number of particles. np is obtained with the following equation:

kc = k * d 2* p (11)

Fr = 47rR nn 2k
D  p  C + 4 nkn

Fs = 4;r/«p[/?2 + (i? -r/)2)] (13)
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SC*VT
nF =  4

P tt(r3 - ( R - d f )
(14)

where SC is the solid content, p is the density of the polymer and V j the total 

volume.

From equation (13) and (14), we can reformulate Fs as:

Fs =
y*  SC*VT R2 + ( R - d f )

R3 - ( R - d f
(15)

We used the model assuming our vesicles were spherical, and assuming 

no osmotically induced tension, i. e. P = 0. We end up with the developed form of 

equation (8):

F  =n.
f  1 R

2

( y*  SC*VT8 7zk l ------------- + 4 Tjkc
P

R2 + ( R - d f )  
R3 - ( R - d f

(16)

Using this equation we plotted the Helmotz surface free energy as a 

function of the radius. Theoretically, the preferential size for our vesicles can be 

found by minimizing equation (16) with respect to R, i. e. corresponding to a 

minimum in the curve. Note that the calculation is based on the number of 

vesicles in a 1 ml sample with a 2% solid content.
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Figure 68: The Helmotz surface free energy for bending a flat bilayer into a spherical 
membrane.

The constants used in this calculation are listed in table 9. d and R are the 

variables, k is not in the table since it is calculated with equation (11).

Table 9: Constants for the Helmotz free energy calculation.

Constant Formula Value Units
kc ~12*KbT 6.17983E-20 Joules

Ro ~R 6.00E-08 m
Y n/a 0.052 N/m
P n/a 1000 Kg/m*
VT n/a 2.00E-06 m
SC n/a 0.02 n/a

According to DLS size measurements, the triblock assemblies have 

diameters around 80nm and diblock assemblies have average diameters around 

160nm. Both values seem to be reasonably close to the model prediction. 

However, if this model gives a value for radius around 60nm for the most stable
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vesicle, one should be careful not to take it as face value. In order to obtain the 

final plot representing equation (16), we made several assumptions, and we 

approximated some of the constants. Most of the values were adapted from the 

work of Jung et. al.73 who are studying surfactant assemblies.

In order to have a better comprehension of the influence of key 

parameters, we derived equation (16) with respect to R, and we solved the 

equation dF/dR = 0. The solution of this equation, Rc, is the critical radius 

adopted by the curved bilayer to minimize its energy. In the following plots, we 

can appreciate the influence of the spontaneous curvature 1/Ro, the thickness d, 

the interfacial tension y, and the bending modulus kc, on the preferred size Rc.
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Figure 69: Favored critical radius as a function of membrane thickness.

In Figure 69, it is interesting to note that the thickness has a very weak 

influence on the equilibrium size. This result is in good agreement with the 

experimental data obtained by FFF-MALS (see Figure 61). Therefore both theory

106

d (nm)

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



and experiment show that the size of a vesicle is independent of the membrane’s 

thickness. For this plot, we used the values of R0, kc and y reported in Table 9.

6 2  .   —    — —  --------------------------------
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Figure 70: Preferred radius Rc as a function of the interfacial tension between water and 
the hydrophobic block. kc and R0 from Table 9, d = 10nm.

Figure 70 shows that the preferred size of the vesicle is also very weekly 

dependant on the interfacial tension. This result is not really surprising, since the 

interfacial tension is related to the surface area: the surface area change upon 

formation of a curved bilayer corresponds to the diminution of the inner surface, 

and is very small. The interfacial energy minimization is mostly involved in the 

formation of the bilayer, whereas this model describes the bending of a flat 

bilayer.
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Figure 71: Influence of the bending modulus on the preferred size of vesicles. R0 and y 
from Table 9, d = 10nm.

According to Figure 71, the critical radius is significantly decreasing with 

the bending modulus decreasing. We know that kc is homogeneous to an energy 

(kc-KsT). This plot suggests that it requires more energy to form a smaller 

vesicle. This is understandable since a smaller vesicle as a higher curvature, and 

therefore needs more bending when starting from a flat bilayer.

120     - - -  ----- - - -       - -    :

0 0.02 0.04 0.06 0.08 0.1 0.12

1/R0 (nm-1)

Figure 72: Preferred vesicle’s size as a function of spontaneous curvature, y and kc from 
Table 9, and d = 10nm.
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On Figure 72, we observe a very significant influence of the spontaneous 

curvature. As we said before, the spontaneous curvature describes the natural 

trend of a “flat” bilayer to bend slightly. When the spontaneous curvature is 

important, i. e. Ro is small and 1/R0 is large, the preferred size is very small. 

When the spontaneous curvature is small, the preferred size is large. The 

spontaneous curvature is a result of a mismatch between the two leaflets of the 

bilayer. Such a mismatch is induced by small differences between polymer 

chains, most likely due to polydispersity of the chains. Moreover, we believe that 

our polymer architecture is not well controlled. The different architecture might 

also induce part of the spontaneous curvature.

3. 3. 1. 2. Considerations of key characteristics

Due to the high molecular weight and the polydispersity of polymer chains 

as well as their functionalities, polymeric self assemblies are not as simple as 

lipids self assemblies.

Thickness of the membrane

As we mentioned earlier, the thickness is an important parameter in the 

formation of curved bilayers. So far we did not describe what is influencing d. 

According to the literature,21,72,74 there is a commonly accepted empiric power- 

law relating d to the molecular weight of the hydrophobic polymer: d ~ ( M W f . 

The exponent is thought to be dependent on the interfacial tension and the
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entropy of the chains. As an indication, for an ideal random coil configuration, £ = 

0.5. It is unity for a fully stretched chain, and £ = 2/3 when the configuration is 

balanced between interfacial tension and entropy.

Using a thickness of 12nm that we found according to SAXS, and a 

molecular weight of 10000 g/mol we can roughly estimate £ at 0.3 for our system. 

This value indicates that our chains are packed and entangled in the core of the 

membrane.

Membrane organization

The partitioning of polymer blocks in polymeric membranes is not well 

understood. Many conformations are possible, and these combinations are even 

complicated with the type of copolymer used. For instance, Disher and Eisenberg 

21 make the hypothesis that, unlike lipid assemblies forming a bilayer with a well 

defined midplane, AB type copolymers tend to form interdigitated structures due 

to chain entanglement and intrinsic polydispersity.
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Interdigitated
■

Figure 73: Well defined versus interdigitated organization, a) a phosphatidylcholine lipid; 
b) a diblock copolymer of poly(acrylic acid-polystyrene) (PAA-PS); c) PS-poly(isocyano-L- 
alanine-L-alanine); and d) poly(ethyleneoxide-polybutadiene) (PEO-PBD).2

According to Meier and coworkers,72 triblocks can form two types of 

assemblies: the chains can either adopt a looped confirmation, or stretch across 

the width of the membrane (figure 74).
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M onolayer stretched B ilaver looped

Figure 74: two possible configurations of triblock membranes.

In their work, they also mention that ABA symmetric triblocks are more 

prone to have looped configuration while ABC asymmetric triblocks tend to adopt 

the stretched configuration. Though our system is an asymmetric triblock and 

according to the results for the estimation of it seems that our polymer could 

adopt the looped confirmation were chains are entangled as opposed to the 

stretched model. With the goal to support this hypothesis, we did a DSC 

measurement on the wet triblock copolymer (0 to 75°C, ramp was 3°C/min is 

modulated mode, 1°C every 60sec.). The purpose of this experiment was to 

observe the glass transition of the PEG and PLA blocks in the copolymer.
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Figure 75: DSC trace of PEG-PLA-PGIu in water.

As we can see on the DSC trace, there is one transition around 22 °C, 

which does not correspond to a pure PLA block, and potentially a very small 

transition at -48°C which could be the PEG.

This means that PEG and PLA are probably not well separated in the self 

assembly, and it confirms that they could be entangled. On this topic, Bermudez 

and co workers 74 suggest that in a PEG-PBD bilayer structure in water, a 

fraction of the PEG is collapsing toward its interface with PBD, shielding the 

hydrophobic polymer from water. Due to this phenomenon, they observe a 

decrease in membrane thickness and therefore a lower value for £ (around 0.5 

when they expected 2/3). It is possible that we have a similar phenomenon in our 

PEG-PLA domain that would explain such a low £ value.
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Segregation and flip-flop phenomenon

Several authors 22,75 are proposing that polymer chains having different 

length due to their polydispersity, rearrange in order to segregate chains in 

regions of a membrane. Although the mechanism is not well understood yet, it is 

most likely that the low Mw chains are oriented toward the inside leaflet of a 

bilayer. This mechanism is due to the ability of shorter chains to move into high 

curvature areas and allow for relaxing of the strain due to steric hindrance and 

electrostatic repulsions in the case of charged polymers.72 If the phenomenon 

helps stabilization of curvature, it can be limited by the thickness of the 

hydrophobic layer.

In our system, two arguments are in favor of such a mechanism. The PGIu 

is a charged polymer, therefore there are electrostatic repulsions, and its Y 

shape or structure is also a factor of large steric hindrance. In the case of the 

diblock, the curvature of the bilayer is most likely influenced by the segregation of 

the low MW PGIu chains on the inside, in order to minimize strain.

In the case of the triblock, knowing that a PGluO' chain is much larger 

than a PEG2000 chain (MW is about 5 times bigger), and that PGluO' is charged, it 

obviously requires more space to self assemble than PEG does. Therefore, 

curvature of the membrane forming vesicles is influenced by the lower MW PEG 

chains segregating in the inner part of the vesicle, and large charged PGluO' 

pointing on the outside. Though it is tempting to describe the triblock assembly 

as PGIu on the outside, PLA in the midplane and PEG in the inside, it is not
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excluded that some PGIu with low MW (due to polydispersity) would be on the 

inside too.

Figure 76: Self assembly of diblock and triblock copolymers, curvature is influenced by 
space filling.

As a conclusion, we think that the diblock copolymer is forming a bilayer, 

with PGIu on the outside and in the inside and the hydrophobic mid-plane formed 

by the PLA. Theoretically, the triblock was designed to form a monolayer due to 

its asymmetrical design, with PGIu on the outside, PLA as the hydrophobic “core” 

and PEG in the inside. However, we have several arguments ruling against this 

conformation since PLA does not seem to be stretched, and there is no phase 

separation between PEG and PLA.

On the other hand, we observe a very significant difference in size 

between the PEG-PLA-PGIu assemblies versus the PLA-PGIu ones. According 

to this result, and as sketched in figure 76, it could be explained as follows: the 

size of the vesicle is directly related to the amount of curvature. If the curvature of

Self assembly of diblock PLA-PGIu into bilayer

Low MW 
PGLu

structure

PLA

Self assembly of triblock PEG-PLA-PGIu monolayer 
structure
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the membrane is less important in the PLA-PGIu assembly (larger vesicles) than 

in the PEG-PLA-PGIu, it means that the chains might be in the stretched 

configuration, where PEG is inside, taking less space than the PGIu.

Response to environment

From the set of experiments described previously, we can draw a first 

straightforward conclusion: our system does form nanoobjects responsive to 

different external stimuli (pH, temperature...). The formation of such objects is 

not a random phenomenon.

Both DLS and AFM results show that the average size of the nanovesicles 

is strongly dependent on the pH of the solution. It is well known that 

poly(glutamic acid) can adopt different conformations through an a-helix to 

random coil transition. According to literature [76], this transition occurs below pH 

4, and corresponds to the protonation of the acids.

pH < 4 pH > 6

bent a-helix extended unfolded ensemble

Figure 77: Representation of the helix to extended equilibrium structures of PGIu under 
acid or base titration.76
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In its helix shape, the poly(glutamic acid) folds in order to exclude water 

and therefore the space occupied by the PGIu chains shrinks. On the other hand, 

the extended chain conformation found at more basic pH imposed by 

electrostatic repulsions is characterized by a higher hydrodynamic radius.

A titration study of the carboxylic acids from the PGIuOH by NaOH was 

made by Zakaria Boukhal, in order to measure its pKa. According to his work, at 

acidic pH, the PGIuOH is in its protonated form, and the pKa is 4.5 which is in 

agreement with other values found in literature for the helix to coil transition.76 

Since it forms the external layer of the vesicle, aggregation is more likely to 

happen by hydrogen bonding between COOH groups of distinct particles. The 

average size of a cluster constituted by several vesicles has obviously a higher 

diameter than a single vesicle.

H O O C

,C O O H

H OOC
C O O H

H O O C . 'C O O H

C O O H

H O O C '

H O O C

C O O H

C O O H

H O O C '
C O O H

Figure 78: Hydrogen bonds between COOH at acidic pH. Formation of aggregates, and 
colloidal instability.
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At basic pH, when most of the COOH are deprotonated, the electrostatic 

repulsion between negative charges on the freely extended PGIu chains help 

stabilization, lowering aggregation and the average diameter of vesicles is 

smaller. The same behavior was observed for self-assemblies of diblock 

copolymer poly(aspartic acid-co lactic acid), where the pKa of poly(aspartic acid) 

segments was measured to be around 7.31

- o o c

n - r r r  \  c o o '

C O O

Figure 79: Electrostatic repulsion between vesicles in basic water.

Obviously, aggregation is not helping the encapsulation of insulin, since 

less material is available to reform vesicles. Therefore, all our products are 

formulated in water at pH 9, preventing aggregation. The phenomenon was 

found to be reversible, without the help of sonication, which we can see as a 

proof that our system forms well defined self assemblies.
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This behavior toward pH environment change was also observed with the 

ionic strength. The more salt, i. e. ions, present in the solution, the smaller the 

diameter (see Figure 55).

Meier and coworkers observed a similar behavior with vesicle having a 

poly(acrylic acid) ionizable external layer.77 One explanation for this behavior is 

that, with decreasing salt concentration (i. e. lower ionic strength), the 

electrostatic shielding between vesicles also decreases, allowing more swelling 

of the vesicles, and therefore a higher hydrodynamic radius is observed.

3. 3. 2. Protein solubilization

The word “solubilization” is here used to emphasize the multiple ways 

insulin can be loaded in our system. We make the hypothesis that one part is 

encapsulated inside the hollow vesicles during the self assembly, a secondary 

load is due to adsorption of the insulin on the external ionized PGIuONa layer. 

The later can be explained by the obvious electrostatic affinity between an 

ionized protein and an ionized polypeptide. The third load is due to insulin 

trapped in the bilayer membrane of the vesicle during the self assembly process.
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Insulin

Insulin loading:

-  Encapsulated

-  Adsorbed

►

Trapped in membrane

Figure 80: Insulin loading in vesicles.

Concerning the third hypothesis, it is obviously tempting to relate the 

trapping of insulin in polymeric membrane to transmembrane proteins found in 

cell membranes. So far, very few studies have been done on this topic. It is worth 

citing the work of Meier and co-workers, who managed to incorporate membrane 

proteins such as /?-lactamase in their PMOXA-PDMS-PMOXA triblock and 

observed that the protein was fully functional.78 Recently Pata et al. worked on 

the modeling of the integration of proteins into synthetic polymer membranes.79 

What they found supports the idea that even non-transmembrane proteins can 

be incorporated in polymeric membranes, as long as they have both hydrophilic 

and hydrophobic regions on their surface. In this case, they can sit at the 

interface between two regions.
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Figure 81: A schematic of bilayer perturbation by nonincorporated transmembrane 
proteins.79

According to their work, the perturbation of the membrane assembly is 

due both to thickness mismatch between protein and membrane, and surface 

tension between hydrophobic and hydrophilic regions. Interestingly, the authors 

propose that polydispersity of the polymer chains can actually favor the 

incorporation of proteins in the membrane, by a local segregation: shorter chains 

arrange closely to the protein, matching its dimensions.

The results discussed in this part provide a study of the efficiency of 

insulin loading in the polymeric vesicles, while adjusting a number of parameters. 

We were interested in measuring the effect of insulin concentration, polymer 

concentration, and pH.

In a first experiment, formulation In&Out was tested. Figure 82 shows the 

percentage of insulin retained (the ratio retained insulin/total insulin) by the 

vesicles as a function of the cleaning buffer volumes used for filtration. After 5
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volumes, the amount of free insulin present in the filtrate was almost negligible, 

meaning that most of the free insulin was removed from the retentate.

Insulin loading for different insulin comcentration 
[ins]=1.01 mg/ml 
[ins]=2.02 mg/ml

0.8

o
§
2

0.6

0.4

0.2

3 4 60 1 2 5

- [polym]=2.87mg/ml
- [polym]=25.10mg/ml 
[polym]=2.5mg/ml 
[polym]=26.54mg/ml

v/vo

Figure 82: Insulin loading of triblock vesicles for different polymer concentration and 
insulin concentration.

The first observation we can see from this chart is that if we increase the 

polymer concentration, then the available material for insulin loading is increased 

too, and more insulin is associated in our system. What is more intriguing is to 

observe that the encapsulation efficiency increases with insulin concentration. 

The encapsulation efficiency is defined as the ratio between loaded and initial 

insulin. This proves that we do not have an equilibrium between free and loaded 

insulin. If we had an equilibrium the ratio between free and associated insulin 

should be constant at constant polymer concentration and this with no effect of 

insulin concentration.
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In a second study using the improved technique described in paragraph 3.

2. 3., those results were confirmed, and other pieces of information were found.
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Figure 83: Insulin loading of triblock PEG45 PLA112PGIu9 5 at pH 9.

□  Out 
H In & out

Again, we observe on Figure 83 an important increase, by a factor of 1.5, 

in loading efficiency when the insulin concentration is doubled. However, the 

most striking result is that the Out formulation is almost as efficient to retain 

insulin than the In&Out formulation. From this figure, even if we clearly see that 

the “In&Out” formulation is slightly more efficient than the “Out” formulation, due 

to the encapsulation and trapping of insulin in the membrane, we can already 

make the assumption that the major part of the load is not due to encapsulation.

This figure also confirms the findings of the first study concerning the 

polymer concentration: the loading is twice as efficient when the polymer content
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is multiplied by 4. This trend was observed for the triblock copolymer and was 

confirmed for diblock copolymers (see Figure 84).

120
H 0.51% polymer 
■ 4% polymer

Insulin out Insulin in&out

Figure 84: Diblock PLA137PGIu72 copolymer at different concentration loaded with insulin 
(pH 9).

A third study gave us some information on the loading efficiency of diblock 

versus triblock copolymers. The experiment was done at pH 9, with 0.25% of 

insulin and 0.5% of polymer in both cases. Interestingly, we found that more 

insulin is retained by the triblock self assembly.
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■ Triblock In&Out n  Triblock Out ■  Diblock In&Out H Diblock Out

123 - -  --------

3 7 9
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Figure 85: Insulin loading, triblock vs. diblock and pH study.

This result is actually easily explained. From the previous experiment, we 

found out that insulin was essentially associated with the vesicles according to a 

mechanism different than encapsulation. If we assume that this mechanism is 

related to the affinity between insulin and charged PGIu, then it means that the 

more PGIu is available, the more insulin is associated with it. Since triblock 

vesicles are twice as smaller as diblock vesicles, they offer more surface area, i. 

e. potentially more insulin can be associated with PGIu.

In the same study, we designed an experiment to explore the pH influence 

on loading. Different materials were used, all polymers at 0.5% solid and insulin 

at 0.25%. The first observation to make is that the encapsulation values at pH 3 

are most likely erroneous. From the pH stability studies we know that the 

colloidal stability of our objects is lost under pH 3.5. In this case, the fraction of 

polymer involved in the formation of large micron size aggregates is quite large,
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and most likely the filter was quickly plugged upon centrifugation and did not let 

any molecules, save water molecules go through. Additionally, insulin is not 

solubilized at such a low pH value.

Another argument that could explain the high value of insulin retained in 

this particular experiment is that we used 30kD MWCO filters instead of 100kD 

MWCO. This is a problem when considering that the hexameric form of insulin, 6 

insulin molecules coordinated around a Zinc atom, has a molecular weight of 6 

insulins, i. e. 6*5808 = 34848 g.mol"1.

In order to have a better understanding of the repartition between 

encapsulation, association and entrapment of insulin, a theoretical calculation 

was done, determining the amount of insulin that can effectively end up in the 

internal volume of the vesicles. The encapsulated insulin is obtained as follows: 

Amount of insulin encapsulated = (Total internal volume) x [Insulin], The total 

internal volume is given by Vi = np x 4/7(Ri3-(R rd)3) where np is the number of 

particles (given by equation (14)), and Ri is the radius of the sphere and d is the 

thickness.

These calculations were done on a spherical model, with a monolithic 

layer of density 1.4 (combination between PLA and polyaminoacid densities). 

The insulin concentration is set at 0.25 % w/w, and the vesicle diameter, the 

thickness of the membrane and the polymer concentration (or solid content SC) 

are variables. The results show that, according to the choice of parameters, the 

insulin loading varies from 1 to more than 35 %.
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Figure 86: Theoretical encapsulation of insulin as a function of: a) vesicle diameter and 
membrane thickness (calculations made for [polym] = 1%), and b) vesicle diameter and 
polymer concentration (calculations made with a 15 nm membrane thickness).

127

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



According to our experimental observations, the best parameters to use in 

the model is to consider that we have vesicles of diameter between 100 and 200 

nm, and a membrane thickness ranging somewhere between 10 and 20 nm. 

With these values, it is clear from the plots, that only a very small fraction of the 

insulin, in no case higher than 5%, is encapsulated.

Since we have a lot more retention of insulin than 5% (minima around 

20%) the only acceptable hypothesis is that some of the initial insulin is retained, 

but not by encapsulation (and the hypothesis of experimental error such as 

insulin retention by filtration membrane is weak since we performed a control 

experiment before). It confirms that a significant amount of insulin associated 

with the PGIuO'Na+ external part of the polymersomes, and some may also be 

“solubilized” in the membrane, like transmembrane proteins are. The assumption 

of insulin associated with ionized PGIu is quite straight forward. The 

transmembrane like insertion is an hypothesis. As we said, very little is known on 

this topic, and proving this issue would require the design of a nice experiment, 

involving labelization of the protein and confocal microscopy, or CryoTEM.

If, as we are stating, insulin gets associated with the PGIu, we can have 

an indirect proof that some polymer chains are arranged in such a way that part 

of the PGIu is on the inside. In this particular case we should have a very 

significant difference of loading efficiency between the two formulations In&Out 

and Out. The PGIu sitting on the inside of the membrane is exposed to insulin 

upon sonication, it can then “bind” more of the protein before reforming the self 

assembly.
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As we saw, there is a small difference in loading efficiency that is not due 

to the insulin encapsulated in the internal volume of the vesicle. A quick 

calculation using the results shown on figure 83 and the theoretical calculations 

above gives interesting confirmation of this hypothesis. Both the model and the 

experiment are based on a 1 ml solution with an insulin concentration of 0.25% 

and a polymer concentration of 0.5%. For the theoretical calculations, we used a 

membrane thickness of 15nm and a vesicle diameter of 100nm consistent with 

our findings on the triblock assemblies. In the following table we compared the 

difference in the amount of insulin associated with our system in the two 

formulations: Out and In&Out.

Table 10: Amounts of insulin associated with the vesicles: experiment vs. theory.

Formulation Insulin
retained in %

Insulin 
retained in 
mg

Amount of 
insulin inside 
(mg)

Experiment OUT 33.51 0.83775 0*
IN&OUT 38.11 0.95275 0.115

Theory IN 0.5 0.0125 0.0125
* by design

As we can see, the difference is quite large in the experiment when the 

theory says it should be much less significant. From this calculation, we conclude 

that the In&Out formulation is retaining more insulin according to two 

phenomenons: encapsulation in the internal volume of the vesicles, and another 

part is associated with the PGIu chains pointing toward the inside of the vesicle. 

From the calculations, we can say that there is a factor of almost 10 between the 

two.
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In this paragraph, we showed that we load about 75 % of the initial insulin 

in our systems, whether we use diblock assemblies or triblock assemblies. We 

believe that the major part of the loading (about 80%) is due to electrostatic 

interactions between the insulin and the charged PGIu. The insulin may sit on the 

outside or deeper in the PGIu hairy layer. A second load, representing about 10% 

of the total loaded insulin, is most likely due to the entrapment of insulin inside 

the polymeric membrane, at the interface between hydrophilic PGIu and 

hydrophobic PLA. The third load corresponds to insulin effectively encapsulated 

in the available volume inside vesicles. This load counts for 0.5 to 2% according 

to the size of the vesicles. The missing insulin is retained in the filter during the 

centrifugatipn.

Assuming the important loading due to interactions between insulin and 

PGIu, we hypothesized that the loading efficiency of the In&Out should be 

superior to the Out formulation. Upon opening of the vesicles, the inner PGIu 

could theoretically pick up a lot of insulin. Not only should we observe a large 

difference in efficiency between the two formulations, but we should also reach a 

higher total efficiency. We do not observe this in the experiments, and we tried to 

understand why the insulin is not more present in the inside.

Using some simple calculations, we found an explanation to this issue. An 

example of the calculation is given below, for a triblock assembly assuming a 

stretched configuration for the chains. A schematic of the vesicle is given below, 

in Figure 87:
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Figure 87: Schematic of triblock and diblock vesicles showing scaled membrane thickness 
and diameters.

According to our size measurements, the PGIu is in an extended chain 

configuration at pH above 6. In this case, and using 100 repeat units (common 

PGIu chains used in self assembly), we can have a rough estimation of the size 

of the external PGIu layer. We assume that we have a Y shaped triblock, 

meaning that only 50 units of the PGIu are actually counted in the thickness 

calculation. Using a monomer length of 5 A or 0.5nm, dpGiu = 0.5*50 = 25 nm. We 

know that the PLA layer is about 12 nm thick. Note that the calculation of the 

PLA120 radius of gyration gives Rg = 0.5*V I20 = 5.5nm. This gives a PLA layer of 

11nm (2 Rg). Finally, assuming a random coil configuration for the PEG45 block in 

the inside, we have dpEG = 0.5*Vt5 ~ 3.5 nm. The total thickness of the 

membrane is therefore given by d = dpGiu+dpLA+dPEG = 25 + 12 + 2*3.5 = 44nm.
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Knowing that the average diameter for our triblock assemblies is 80nm, this 

means that our system looks more like a micelle, and there is no space in the 

inside for insulin.

This calculation applied on a diblock assembly indicates that the thickness 

of the membrane in the hydrated form is about 60nm. Since we have an average 

diameter of 180nm for our diblock vesicles, there is more space available inside 

the diblock assemblies. A schematic representation is given in figure 87.

3. 3. 3. Some considerations on the behavior of the polymer in the GIT

We prepared a formulation in basic water, where the external layer of our 

vesicles is mostly PGIuO'Na+. We made the hypothesis that, if the PGIu can be 

formulated as PGIuONa, it could probably “bind” other ions, such as ions found in 

the body. Zakaria Boukhal made an experiment to confirm this hypothesis. A 

triblock copolymer was mixed with a solution of known concentration of Ca2+. 

This concentration was recorded with a Ca2+ electrode and plotted (Figure 88).
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Figure 88: Evolution of Ca2+ concentration upon addition of triblock copolymer.

From this plot it is clear that the concentration is dropping scaling with the 

polymer concentration, proving that two COO‘ from the PGIu may actually form a 

complex with a Ca atom. According to these preliminary results, we could say 

that this polyanion might have an inhibitory effect on some of the 

metalloproteases present in the Gl tract. Several publications, as early as 1962, 

report the inhibitory effect of polyanions on proteins and enzymes. Many natural 

and synthetic systems can be used. As an example, Heparin is a natural highly 

sulfonated polysaccharide found in the human body with a molecular weight 

ranging from 6 to 40 kDa. It is one of the most negatively charged 

biomolecules.80
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Figure 89: Structure of Heparin.81

Heparin is commonly injected and used as an anticoagulant. It is a co­

factor of antithrombin, the protease responsible for thrombin and factor IX 

inhibition. Heparin complexes with antithrombin due to its electronegativity and 

changes the conformation of antithrombin, speeding the inhibition.12

PGIuONa is thought to compete with proteases through the binding of 

cations, especially Zn2+ and Ca2+. This competition is likely to lower the global 

proteases activity, when a significant amount of the enzymes are deprived from 

cations that are essential to their activity/organization. As an example 

Carboxypeptidase A is a metalloenzyme using Zn2+ in its active site.

Figure 90: molecular model of the unbound carboxypeptidase A enzyme.82

134

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Eventually, the PGIu is saturated with cations (two COO' for one cation) 

and the enzymes are no longer deprived from cations. The saturation of the PGIu 

by cations has another effect, the diminution of its hydrophilicity. Another 

hypothesis is to view the PGluO' as a polymer having potential mucoadhesive 

properties.

135

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



CONCLUSIONS

In this work, we report the synthesis and purification of fully biodegradable 

and biocompatible amphiphilic copolymers with both synthetic and semi-synthetic 

blocks. PEG-PLA-PGIu, PEG-PCL-PGIu and PLA-PGIu were synthesized in 

three steps: first PLA (or PCL) synthesis, then PGIu synthesis and finally 

coupling between those two entities. Lactide was polymerized in bulk using an 

organic catalyst, DMAP, and an alcohol as initiator. The polymerization times are 

extremely short, and the polymerization was living, allowing full control of MW 

with relatively low PDI. PCL was obtained from the ROP of its monomer in 

toluene, using AI(Et)3 as a catalyst. Again, the polymerization is controlled. 

PGIuBn was synthesized by ROP of the benzylglutamate NCA in NMP. The 

PGIuOH was obtained after cleavage of the Bn group. The NCA polymerization is 

living. We refined the conditions of the deprotection step due to side reactions we 

encountered. The coupling between the OH terminated PLA and a COOH of 

PGIu was optimized to reach high yields and diminish side reactions. We also 

performed preliminary work on a new synthetic pathway in order to avoid this last 

coupling by modifying the end group of PLA from an OH to a NH2. This new 

polymer is then used as the amine for ROP of NCA. The preliminary experiments 

were encouraging, and it should be further explored. It has the potential to allow 

many different polymer architectures.
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These polymer amphiphiles did assemble in water to form nanoobjects 

identified as vesicles, using a variety of analytic techniques. Since size is a major 

characteristic of those self assemblies, DLS proved to be extremely useful for the 

characterization of the vesicles. AFM, SAXS, FFF-MALS, were also powerful 

techniques. They all gave us a piece of the puzzle, respectively size and shape, 

thickness of the membrane, number of chains in one assembly.

Using these results and with the help of simple models, we found out that 

according to the copolymers used, we could form different types of membranes, 

leading to different sizes of vesicles. Diblocks tend to form well defined bilayers 

with diameters around 160nm, when triblocks are most likely forming membranes 

with a mix of stretched chains and entangled chains, with vesicle diameters 

around 70nm. In both cases, the external layer consists of PGIu.

Since those nanovesicles are made of biocompatible and biodegradable 

components they are potential candidates for drug carriage. Insulin was 

successfully loaded in those vesicles with high efficiency. The system was 

initially designed to be used in oral administration due to its gastrointestinal 

resistant properties, i. e. the polymer was supposed to protect the encapsulated 

protein against enzymes. Our research lead us to think that the loading of the 

protein is actually the result of several mechanisms. Most of the loading seems to 

be due to associated insulin with the charged external PGIu. This means that the 

protein is poorly protected in these systems. A second load (about 10% of the 

total) seems to be due to insulin trapped in the membrane or on the inside of the
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membrane. Finally, the volume available for effective encapsulation is so small 

that this loading counts for less than one percent.

Recommendations

We have several options to improve the bioavailability of the insulin 

without rethinking the whole concept. We could either propose a larger inside 

volume to encapsulate more insulin, i. e. make larger nanovesicles, or we need 

to protect the system polymer/protein through the first region of the GIT, the 

stomach, typically with an enteric coating such as Eudragit. This has already 

been done, using Eudragit S100 for the delivery of insulin.83 The third possibility 

would be to find a way to optimize the fraction of insulin entrapped in the 

membrane, jt would be interesting to study the maximum amount of protein that 

can be solubilized in the membrane with a minimum perturbations. In that regard, 

the effect of membrane thickness and MW of the chains is probably of great 

importance.

In order to choose the best research direction, we need to do more work 

on the interactions between insulin and poly(glutamic acid), using Isothermal 

Titration Calorimetry (ITC), and understand the location of the insulin inside the 

membrane. This could probably be observed by confocal microscopy with insulin 

labeling. Several parameters of our system are tunable. For instance it would be 

of great interest to explore the influence of the PGIuOH MW on the morphology. 

We already now it is increasing the hydrodynamic radius, but we do not know 

what its effect on loading efficiency is.
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Also, in the case that we are interested by the membrane thickness 

approach, the synthesis of a symmetric triblock PGIu-PLA-PGIu could probably 

give us some certitude about the organization of the chains in the membrane. 

Another idea would be to synthesize a poly(amino acid) using glutamic acid as 

the first monomer and a hydrophobic amino acid such as isoleucine for the 

second block. With such a polymer it is possible that the interactions between 

protein and polymer would increase, allowing for more solubilization.
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LIST OF ABREVIATIONS

CDI: carbodiimidazole 

DCC: Dicyclohexylcarbodiimide 

DCM: Dichloromethane 

DMAP: 4-Dimethylaminopyridine 

GIT: gastrointestinal tract 

mPEG: poly(ethylene glycol)

MSA: Methane sulfonic acid 

NCA: N-carboxyanhydride 

NMP: N-MethylPyrolidone 

PAA: poly(acrylic acid)

PBD: polybutadiene 

PCL: poly(e-caprolactone)

PDMAI: Poly(5-(N,N-dimethylamino)isoprene) 

PDMS: poly(dimethylsilane)

PEE: poly(ether ester)

PEG: poly(ethylene glycol)

PEO: poly(ethylene oxide)

PGIu: poly(glutamic acid)

PGIuBn: poly(benzyl glutamate)

PLA: poly(lactic acid)

PMOXA: poly(2 methyloxazoline)

PS: poly(styrene)

ROP: ring opening polymerization
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EXPERIMENTAL SECTION

Synthesis of PEG-PLA

The lactide was polymerized by ROP using alcohols as initiator, and 

DMAP as a catalyst. A typical preparation of PEG45-PLA140 diblock is described 

below.

The lactide (25.09 g, 0.1742 mol) and PEG (6.33 g, 0.00316 mol) were 

mixed in a in a three-necked RBF equipped with gas purging adaptors and a 

magnetic stir bar. Once the monomer and initiator are placed in the RBF, it is 

purged 3 times with vacuum and filled with argon, while heating to 135°C. After 

everything is melted, DMAP (0.7703 g, 0.0063 mol) is added through the third 

neck to the reaction media. The reaction is held for 35 minutes under argon 

atmosphere and agitation at 135°C to reach high conversion. When 

polymerization is complete, the flask is placed in liquid nitrogen and rapidly 

cooled to stop the reaction. The solid polymer is then dissolved in 250 ml of THF 

under agitation, and precipitated in a beaker containing 1L of cold ether. The 

sticky solid is recovered and dried under vacuum at 60°C for 12 hours. Yield 

90%. Note that the PLA homopolymer is obtained with the same reaction using a 

small alcohol instead of mPEG.

Table 11: Synthesis of PEG-PLA.

T°C t(min)
m PEG

(g) n PEG (mol) m lactide (g)
n lactide 

(mol) m DMAP (g)
n DMAP 

(mol)

135 40 6.46 0.00323 25.09 0.1742 0.77 0.00630
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Synthesis of PGIuBn

PGIuBn is obtained by ROP of benzyl-glutamate NCA. NCA was 

purchased from Isochem (France). The NCA (101 g, 0.384 mol) is dissolved at 

room temperature in 700 ml of N-MethylPyrolidone ([NCA] = 0.143 g/ml) using a 

1000 ml RBF, and ring opened by a primary amine, benzylamine ( 421 j j \ ,  

0.00384 mol). After 3 hours of reaction at 40°C, the reaction mixture is poured in 

a beaker of 5 volumes (3.5 L) of neutral Dl water under agitation. The precipitate 

is washed over a coarse fritted glass with 2.5 volumes of basic water at pH 10, 

2.5 volumes of acidic water at pH 3, 2.5 volumes of neutral water, then a mixture 

of THF and isopropanol (2:1 v/v) and finally ether. The polymer is dried under 

vacuum for 12 hours. Yields are about 80%.

Table 12: NCA polymerization.

T t (min)
m NCA

(g)
n NCA 
(mol)

m
benzylamine

(g)
n benzylamine 

(mol) VNMP(ml)
40 180 101 0.38403042 0.412 0.00383256 700

Deprotection of PGIuBn

The PGIuBn (29.99 g, 0.1369 mol) is placed in a RBF and dissolved in 

300 ml of TriFluoroAcetic acid at room temperature. It is cooled down to 10°C 

using a cooling water exchanger. Then MSA (300 ml, 4.655 mol) and anisole 

(74.22 ml, 0.6847 mol) are slowly added to the polymer solution. After 45 minutes 

of reaction at 10°C, the polymer is precipitated in 5 volumes of ether (3 L), filtered 

over a coarse fritted glass and thoroughly washed with 5 volumes of ether. The 

polymer is dried under vacuum for 12 hours at room temperature. The yield of 

this reaction is 95%.
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Table 13: PGIuBn deprotection.

T t (min)
m PGIuBn

(g)
n PGIuBn 

(mol) V MSA (ml) VTFA(ml) V anisole (ml)
10 45 29.99 0.13694064 300 300 74.7

Coupling

The triblock is obtained by coupling diblock PEG-PLA with PGIu. 

CarboDilmidazole CDI is used as an activator for COOH groups of PGIu, then 

the activated carboxylic acids react with the OH-terminated PEG-PLA. PGIuOH 

(15.55 g, 0.001268 mol) is dissolved in 195 ml of NMP and then cooled down to 

10°C using a water exchanger. A solution of CDI (0.2057 g, 0.001268 mol) in 

NMP (5 ml) is added to the PGIuOH reaction and left to react for 15 minutes. 

After 15 minutes, a solution of PEG-PLA (5.116 g, 0.00063 mol) in NMP (50 ml) 

is added to the PGIuOH/CDI solution. The reaction runs for 1 hour at 10°C. The 

polymer is recovered by precipitation in 5 volumes (1.25 L) of basic water 

containing 1.1 equivalents of NaOH (5.3 g, 0.1325 mol) per COOH, and the 

suspension is ultra filtered with another 5 volumes of basic water (at 10'5 M) to 

get rid of NMP, CDI, and unreacted PGIuOH. Coupling yields range from 50 to 75 

%.

Table 14: Coupling reaction.

T
t

(min)
m PEG- 
PLA (g)

n PEG- 
PLA (mol)

m
PGIuOH

(g)
n PGIuOH 

(mol)
m CDI

(g)
n CDI 
(mol)

V
NMP
(ml)

10 60 5.19 0.0005157 15.55 0.00126887 0.2079 0.0012821 250

Typical encapsulation experiment

0.025 g of dry human recombinant insulin (Biocon, provided by Bentley 

pharmaceuticals) are added to 10 ml of a polymer solution at 2% in Dl water, pH
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9. The pH is adjusted to 9 if needed with NaOH. According to the formulation 

needed, the solution is sonicated for 5 minutes using a sonication tip, at 100% 

amplitude, set on a period of 2 secondes ON, 2 seconds OFF. The temperature 

recorded with a thermocouple is maintained below 37°C with an ice bath. For the 

Out formulation, no sonication is needed.
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APPENDIX A: ADMINISTRATION ROUTES

In drug delivery, the route of administration of a drug/protein defines the 
path by witch a drug/protein is brought to contact with the human body. The 
transportat of the drug from the site of entry to the targeted part of the body 
where its action is needed is far from being trivial. The pharmacokinetics of a 
particular drug (its uptake process, distribution and elimination) are hugely 
influenced by the route of administration. The FDA84,85 broadly classifies routes 
of administration into:
• Topical: local effect, substance is applied directly where its action is 

desired,
• Enteral: desired effect is systemic (non-local), substance is given via the 

digestive tract,
• Parenteral: desired effect is systemic, substance is given by other routes 

than the digestive tract.
Sometimes it might be advantageous to use the body’s own transport 

mechanism, but not all drugs and proteins can be delivered this way. For 
instance, a wide range of proteins are used in therapies, mainly as parenteral 
drugs (i. e. route of administration is done by injection, infusion or implantation). 
In most cases, the controlled delivery of the active principle is highly desirable. 
The goals of such a technology are diverse:
• Increase the duration of the effect of the drug by maintaining its 

concentration over the minimal effective concentration,
• Diminishing the toxicity of the product by reducing the amplitude of the 

concentration peak.
Provided by such a motivation, the search for drug delivery technologies 

throughout the last decades has significantly increased.
1400

1200

600 -

1970 1980 1990

Year
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Figure 91: Number of publications on controlled drug delivery published since 1970.86

Nowadays, controlled drug delivery of drugs can be done in many different 
ways, involving a variety of technologies targeting various parts of the body. 
Among these technologies, the use of synthetic polymers as drug carriers is
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developing fast. The polymer carrier is combined with the drug, the predominant 
techniques being:
• Drug covalently attached to the polymer,
• Association of the drug with the polymer (adsorption or encapsulation).

The first technique is quite complicated, since it requires a full study of
toxicity on the modified drug. In both approaches, the polymeric carriers must be 
biocompatible, eliminated, able to protect the load from enzymes, able to carry 
and deliver a significant amount of the drug to the target.

The biocompatible polymers used can be either biodegradable or inert and 
easily eliminated/excreted by the human body. Today the research in this area is
focusing on biodegradable systems, trying to take advantage of some of the 
natural reactions and byproducts occurring while degrading.

These systems, usually small particles, are administered by subcutaneous 
injections or oral uptake.

The commercial interest in oral drug/protein delivery systems is real, since 
the most desirable administration form is by oral dosage: it allies ease of 
administration, patient compliance and low cost compared to other techniques 
such as transdermal delivery, pulmonary delivery, parenteral and mucosal 
delivery.

If oral delivery of drug and proteins is obviously the most convenient way 
of drug administration, it is unexpected to see that among the advances made 
over the last decades, few of them were made in this particular area. One of the 
reasons is the result of the limitations imposed by the transportation of the 
protein through the gastrointestinal tract (GIT).
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APPENDIX B: BIODEGRADABLE POLYMERS

A plastic is considered as biodegradable if it can be broken down by living 
organisms.87 Since our vesicles are designed to be drug carriers in the human 
body, not only they need to be biodegradable, but they must be biocompatible. 
The definition of biocompatibility is the quality of not having toxic or injurious 
effects on biological systems, such as the human body.88

Our polymeric vesicles must be biodegradable and biocompatible: both 
the initial polymer chains and their degradation products must be biocompatible. 
There is a diversity of products available as medical plastics or biomaterials. 
They have different characteristics, such as mechanical properties or 
degradation time. Table 15 gives some characteristics of common biodegradable 
polymers.89 Note that the degradation times reported are those of polymer 
chunks.
Table B15: Properties of common biodegradable polymers.

Polymer Melting 
I Point (°C)

Glass- 
T ransition 
Temp (°C)

I Modulus 
(Gpa)a

Degradation
Time

(months)6

PGA 225—230 35—40 7.0 6 to 12

LPLA | 173—178 60—65 2.7 >24

DLPLA Amorphous 55—60 1.9 12 to 16

PCL ; 58—63 (—65)—
(-6 0 )

0,4 >24

PDO N/A (—10)— 0 1.5 6 to 12

PGA-
TMC

N/A N/A 2.4 6 to 12

85/15
DLPLG

Amorphous 50—55 I 2.0 5 to 6

75/25
DLPLG

! Amorphous 50—55 2.0
i

4 to 5

65/35
DLPLG

Amorphous 45—50 I 2.0 3 to 4

50/50
DLPLG

; Amorphous 45—50 I 2.0 1 to 2

! A Tensile or flexural modulus.

b Time to complete mass loss. Rate also depends on part 
geometry.
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Poly(ethylene glycol), poly(lactic acid), poly( glycolic acid), poly(lactic acid- 
co-glycolic acid) and poly(e-caprolactone) are common biomaterials. Low 
molecular weight PEGs (smaller than 10000 g/mol) are easily excreted by

90urine
Biodegradation of the polyester polymers in vivo proceeds in two phases. 

First, water penetrates the bulk polymer and causes non-enzymatic random 
hydrolytic ester cleavage.91 Then eventually, the resulting water soluble 
fragments are metabolized and broken down into smaller molecules.89 In the end, 
PLA is degraded in lactic acid in acidic pH water. PCL is predominantly degraded 
in 6-hydroxycaproic acid (6-HPA)92 PLA, PGA and PCL have different rates of 
degradation. Poly(D,L-LA) degrades faster.

Several factors accelerate the degradation of polyesters. The more 
hydrophilic the backbone is, and the less crystalline the polymer is, the higher the 
degradation rate. Due to high crystallinity polycaprolactone and degrades slowly 
compared to PLA. The crystallinity reduces the accessibility of small molecules to 
ester linkages in PCL.91 In poly(D, L-lactide), the random distribution of isomeric 
forms prevents any long range organization and is yielding an amorphous 
polymer. Though glycolic acid yields a highly crystalline polymer, it degrades 
faster than PLA and PCL because PGA is the simplest polyester, with the most 
hydrophilic backbone. It is widely used as a co-monomer to tune the 
degradability of polyesters: since the lactic acid monomer disrupts the crystallinity 
of PGA,89 their copolymers degrade even faster than the homopolymers.

Poly(glutamic acid) is a polypeptide. As a polyaminoacid, the peptide 
bonds of its backbone are degraded by proteases in the gastrointestinal tract 
yielding glutamic acid. These polymers are safe as long as their backbone 
contains a maximum of two different amino acids. Otherwise they can be 
assimilated as a protein by the immune system.
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APPENDIX C: SYNTHESIS PATHWAY USING MACROAMINE

Lactide

Poly(lactic acid) 
PLA

NH2

PLA-PGIuOBn

Poly(lactic acid-b-glutamic acid) 
PLA-PGIuOH
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APPENDICE D: AFM IMAGING - TRIBLOCK AT PH 10

File Name G70221- hy008 copyliff 
Head Mode NC-AFM 
Source Topography 
Data Width 256 (pxl>
Data Height 256 (p«l) 
x  Scan Size 5 (urn)
Y Scan Size 5 !um)
Scan Rate 1 (Hz)

Set Point -1.88 (pm)
Data Cain -143.95E-6 (pm/step)
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Line Min(nm) Max(nm) Mid(nm) Mean(nm) Rpv(nm) Rq(nm) Ra(nm) Rz(nm) Rsk(pm) Rku(pm) 

■  Red 1.152 9.213 5.192 2.421 8.061 1.595 1.224 4.457 -258.489 827.082

APPENDICE E: AFM IMAGING -  TRIBLOCK AT PH 10
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File Name 070221-.. hy016 copy.tiff 
Head Mode NC-AFM
Source Topography

Data Width 256 (p*l)
Data Height 256 (pul)
■ Scan Size 1 (um)
Y Scan Size 1 <ym)
Scan Rate 1 (Hz)
Set Point -0.8 (pm)
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Line Min(nm) Maxfnm) Mid(nm) Mean(nm) Rpv(nm) Rq(nm) Ra(nm) Rz(nm) Rsk(pm) Rku(pm) 

■  Red 3.599 21.017 12.308 8.139 17.418 3.400 2.493 7.128 -253.730 789.792
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APPENDICE F: AFM IMAGING - TRIBLOCK AT PH 3

File Name 070222-. hy014 copy.tiff
Head Mode NC-AFM
Source Topography
Data Width 256 (p*l)
Data Height 256 (p>D
x  Scan Size 5 (pm)
Y Scar Size 5 (pmi
Scan Rate 1 (Hz)
Set Point -0.95 <gmr
Data Gain -24.242E-6 (pm/step)

r t e t n l n  '

Line Min(nm) Max(nm) Mid(nm) Mean(nm) Rpv(nm) Rq(nm) Ra(nm) Rz(nm) Rsk(pm) Rku(pm) 

•  Red 1.481 243.332 122.407 43.124 241.851 66.371 49.656 157.809 -44.965 126.115
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