
University of New Hampshire
University of New Hampshire Scholars' Repository

Master's Theses and Capstones Student Scholarship

Fall 2007

A prototype system for human-computer
interaction logging, post-processing, and data
visualization for the Project54 system
Edward Bourbeau
University of New Hampshire, Durham

Follow this and additional works at: https://scholars.unh.edu/thesis

This Thesis is brought to you for free and open access by the Student Scholarship at University of New Hampshire Scholars' Repository. It has been
accepted for inclusion in Master's Theses and Capstones by an authorized administrator of University of New Hampshire Scholars' Repository. For
more information, please contact nicole.hentz@unh.edu.

Recommended Citation
Bourbeau, Edward, "A prototype system for human-computer interaction logging, post-processing, and data visualization for the
Project54 system" (2007). Master's Theses and Capstones. 290.
https://scholars.unh.edu/thesis/290

https://scholars.unh.edu?utm_source=scholars.unh.edu%2Fthesis%2F290&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholars.unh.edu/thesis?utm_source=scholars.unh.edu%2Fthesis%2F290&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholars.unh.edu/student?utm_source=scholars.unh.edu%2Fthesis%2F290&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholars.unh.edu/thesis?utm_source=scholars.unh.edu%2Fthesis%2F290&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholars.unh.edu/thesis/290?utm_source=scholars.unh.edu%2Fthesis%2F290&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:nicole.hentz@unh.edu

A PROTOTYPE SYSTEM FOR HUMAN-COMPUTER INTERACTION
LOGGING, POST-PROCESSING, AND DATA VISUALIZATION FOR THE

PROJECT54 SYSTEM

BY

EDWARD BOURBEAU

BS, University of New Hampshire, 2005

THESIS

Submitted to the University of New Hampshire

In Partial Fulfillment of

the Requirements for the Degree of

Master of Science

in

Electrical Engineering

September, 2007

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

UMI Number: 1447877

INFORMATION TO USERS

The quality of this reproduction is dependent upon the quality of the copy
submitted. Broken or indistinct print, colored or poor quality illustrations and
photographs, print bleed-through, substandard margins, and improper
alignment can adversely affect reproduction.

In the unlikely event that the author did not send a complete manuscript
and there are missing pages, these will be noted. Also, if unauthorized
copyright material had to be removed, a note will indicate the deletion.

®

UMI
UMI Microform 1447877

Copyright 2007 by ProQuest Information and Learning Company.

All rights reserved. This microform edition is protected against

unauthorized copying under Title 17, United States Code.

ProQuest Information and Learning Company
300 North Zeeb Road

P.O. Box 1346
Ann Arbor, Ml 48106-1346

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

This thesis has been examined and approved.

Thesis Director, Andrew L. Kun
Associate Professor of Electrical
Engineering

A/fe/RjT

W. Thomas Miller, III
Professor of Electrical Engineering

William Lenharth
Research Associate Professor of
Electrical Engineering

7 /'T o /co

Date

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

ACKNOWLEDGMENTS

First of all, I thank my thesis advisor, Dr. Andrew L. Kun for his guidance,

insights, patience, and encouragement throughout the course of my research.

I also thank Dr. W. Thomas Miller, III and Dr. William Lenharth for serving

on my thesis committee. I thank Dr. Miller for helping me find solutions to many

troubling issues throughout the course of my research.

I thank Jacob LeBlanc, Nathan Purmort, and Eric Ramsey for helping me

by testing the Interaction Logger within the Project54 test vehicles. I also thank

them for helping me get the Interaction Logger deployed into police cruisers.

I thank the members of the Project54 design team for helping me

throughout the entirety of my research. You all kept it fun.

Last, but by no means least, I thank the police officers who so generously

volunteered to provide me with the information I needed to conduct my research.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

TABLE OF CONTENTS

ACKNOWLEDGMENTS..iii

TABLE OF CONTENTS... iv

LIST OF TABLES... vi

LIST OF FIGURES...vii

ABSTRACT... xi

CHAPTER PAGE

1. INTRODUCTION... 1

1.1 Problems.. 2

1.2 Goals...4

1.3 Approach.. ,.........5

1.4 Thesis Organization...8

2. BACKGROUND... 11

2.1 Introduction.. 11

2.2 Data Collection... 12

2.3 Data Analysis... 14

2.4 Data-Derived Context Development.. 17

3. INTERACTION LOGGER ARCHITECTURE 21

3.1 Introduction...21

iv

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

3.2 P54 Text Messaging System Overview..22

3.3 P54Gui Adaptations.. 25

3.4 Interaction Logger... 38

4. SOFTWARE TESTING AND DEPLOYMENT................................. 53

4.1 Introduction..53

4.2 Lab Car Testing.. 54

4.3 Driving Simulator Testing..58

4.4 Project54 Test Vehicle Testing.. 60

4.5 Police Cruiser Deployment..61

5. DATA ANALYSIS AND VISUALIZATION..63

5.1 Introduction..63

5.2 Data Post-Processing Development..64

5.3 Data Visualizations... 75

6. CONCLUSION... 110

6.1 Research Conclusions.. 110

6.2 Future W ork...112

REFERENCES.. 116

APPENDICES... 119

APPENDIX A QUESTIONNAIRE..120

APPENDIX B INSTITUTIONAL REVIEW BOARD APPROVAL..................... 124

APPENDIX C DATA VISUALIZATION CREATION GUIDE.............................125

v

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

LIST OF TABLES

Table 3.1 Descriptions for the additions made to the P54Gui button control class

 .. 28

Table 3.2 Descriptions for the additions made to the P54Gui text field control

class..32

Table 3.3 Summary of interfaces and methods added for GUI interaction event

logging...36

Table 3.4 STATUS messages not logged by the Interaction Logger application 48

Table 4.1 Test file command reference................... 56

Table 4.2 Example of one script used to test interaction logging on the driving

simulator..59

Table 5.1 Summary of collected data statistics from two deployed police cruisers

.. 64

Table 5.2 Summary of logged message structures that contain usage information

...................................... 74

Table 5.3 Summary of recoded data statistics from two deployed police cruisers

.. 75

vi

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

LIST OF FIGURES

Figure 1.1 Typical Project54 system in-vehicle installation.....................................2

Figure 1.2 High-level block diagram of Project54 interaction logging/analysis

implementation... 8

Figure 3.1 The Application Manager handles inter-application messaging

between all the existing Project54 applications and the Interaction Logger 22

Figure 3.2 P54Gui button usage logging algorithm.. 29

Figure 3.3 P54Gui text field usage logging algorithm.. 33

Figure 3.4 Windows Registry settings relating to the P54Gui usage logging

functionality...34

Figure 3.5 COM objects that facilitate communication between the P54Gui

component and the Interaction Logger... 36

Figure 3.6 Interaction Logger program start routine.. 42

Figure 3.7 Interaction Logger registry parameters... 43

Figure 3.8 List of applications from which the Interaction Logger requests

feedback..43

Figure 3.9 Interaction Logger message handling algorithm..................................45

Figure 3.10 User interaction logging process..51

Figure 3.11 Interaction Logger program shutdown procedure..............................52

Figure 4.1 Project54 lab c a r.. 54

Figure 4.2 Sample GUI test file.. 56

vii

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Figure 4.3 Sample SUI test file ... 57

Figure 4.4 Project54 driving simulator..60

Figure 5.1 Data Analysis Recoding Procedure..66

Figure 5.2 Hardware Usage Identification Algorithm.. 70

Figure 5.3 A histogram of interface usage while the police were driving.............79

Figure 5.4 A histogram of interface usage while the police were stopped.......... 79

Figure 5.5 A histogram of interactions while the police were driving................... 80

Figure 5.6 A histogram of interactions while the police were stopped.................80

Figure 5.7 A histogram of in-vehicle interface usage while driving..................... 81

Figure 5.8 A histogram of in-vehicle interface usage while parked..................... 81

Figure 5.9 A histogram of in-vehicle interface preferences for controlling the light

bar, while driving..83

Figure 5.10 A histogram of in-vehicle interface preferences for controlling the

light bar, while stopped.. 83

Figure 5.11 A histogram of in-vehicle interface preferences for controlling the

radar, while driving.............................. '..84

Figure 5.12 A histogram of in-vehicle interface preferences for controlling the

radar, while stopped...84

Figure 5.13 A histogram of in-vehicle interface preferences for controlling the

radio, while driving..85

Figure 5.14 A histogram of in-vehicle interface preferences for controlling the

radio, while stopped...85

viii

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Figure 5.15 A histogram of in-vehicle interface preferences for performing

records checks, while driving... 86

Figure 5.16 A histogram of in-vehicle interface preferences for performing

records checks, while stopped..86

Figure 5.17 Histograms of in-vehicle interface preferences for controlling various

strobes functions, while driving..88

Figure 5.18 Histograms of in-vehicle interface preferences for controlling various

non-strobes light bar functions, while driving...89

Figure 5.19 Histograms of in-vehicle interface preferences for controlling various

strobes functions, while stopped.. 90

Figure 5.20 Histograms of in-vehicle interface preferences for controlling various

non-strobes light bar functions, while stopped..91

Figure 5.21 Histograms of in-vehicle interface preferences for controlling various

radio functions, while driving...93

Figure 5.22 Histograms of in-vehicle interface preferences for controlling various

radio functions, while stopped............................ 94

Figure 5.23 Use of color to contrast preference for Project54 vs. original controls,

while moving... 98

Figure 5.24 Use of color to contrast preference for Project54 vs. original controls,

while stopped...98

Figure 5.25 Use of color and location to indicate interface preferences, while

moving...102

ix

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Figure 5.26 Use of color and location to indicate interface preferences, while

stopped..102

Figure 5.27 Use of screen shot and color overlays to indicate button preferences

.. 105

Figure 5.28 Use of screen shot and color overlays to indicate speech command

preferences..105

Figure 5.29 Use of 3-D imaging to represent tasks by interface preference, while

moving...108

Figure 5.30 Use of 3-D imaging to represent tasks by interface preference, while

stopped... i.......... 109

x

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

ABSTRACT

A PROTOTYPE SYSTEM FOR HUMAN-COMPUTER INTERACTION
LOGGING, POST-PROCESSING, AND DATA VISUALIZATION FOR THE

PROJECT54 SYSTEM

by

Edward Bourbeau

University of New Hampshire, September, 2007

Police officers and other emergency responders have been using the

Project54 system in their vehicles for many years. Over this time it is likely that

certain trends have developed regarding how they use the system to make their

daily tasks easier and safer. This thesis examines the use of human-computer

interaction logging, post-processing and data visualization techniques to quantify

and graphically present how police officers utilize the Project54 system.

Specifically, data was retrieved from two deployed police cruisers that identified

their use of Project54’s speech user interface (SUI) and graphical user interface

(GUI), as well as the vehicles’ original hardware controllers. That information was

then analyzed and five different sets of data visualizations were generated based

on the analysis results. The visualizations were reviewed by eight members of

the Project54 design team, whose feedback indicated that the visualizations were

successful at relaying conclusive results from the quantitative analysis.

xi

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 1

INTRODUCTION

Modern police cruisers are outfitted with a wide array of equipment used

to allow police officers to perform their duties. However, there are two sides to

such a proliferation of in-vehicle electronic devices. While the additional

hardware increases the functional capabilities of police cruisers beyond a level

that has ever previously been possible, such advanced systems create a whole

new set of distractions for police officers.

To aid officers in controlling their myriad in-vehicle equipment, the

Project54 laboratory at the University of New Hampshire, in conjunction with the

New Hampshire Department of Safety, developed the Project54 system as a

solution for the in-vehicle device integration [1]. In terms of its high-level

operational components, the Project54 system provides police officers with the

option of using either a touch-screen graphical user interface or a push-to-talk

button-driven speech user interface (SUI) on top of the original hardware controls

already present in police cruisers. Figure 1.1 shows a typical Project54 system

installation, with attention drawn to the methods of device control available to

police officers. These methods of control include the steering-wheel-mounted

push-to-talk button that enables the directional microphone to accept speech

commands, the console-mounted keyboard and touch-screen monitor that

1

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

provide a graphical user interface (GUI), and the original in-vehicle hardware

controllers. The original controllers are also console-mounted and (from top to

bottom) control the lights, radio, and radar equipment. With Project54, system

integration is seamless to the officers and control is as simple as the touch of a

button or the utterance of a speech command.

Directional
Microphone

Touch-
Screen

Figure 1.1 Typical Project54 system in-vehicle installation

1.1 Problems

One of the major factors contributing to the success of the Project54

software-based package is that it was designed with police officers in mind. To

make sure the product suited their needs, officers were involved throughout

2

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

various phases of development (e.g. planning and testing). Qualitative feedback

(interviews, questionnaires, etc.) and quantitative feedback (data collection) from

the officers was used throughout the design process. These insights have been

an invaluable source for designers to draw upon in order to develop a product the

officers would find intuitive to understand and natural to use. There is perhaps no

better example of collaboration between the Project54 design team and police

officers than the extensive work put into providing officers with device control via

speech recognition. Since control via speech commands posed the advantage of

not requiring an officer’s hands to leave the steering wheel or eyes to leave the

road in order to control devices, it was imperative that the speech recognition

was as accurate as possible so that police officers would feel confident enough

to use it as their primary means of device control. The data collected from police

officers enabled designers to determine the most effective way to implement

practical speech recognition.

To date, the speech recognition development process has generated

results with which both developers and police officers alike can be satisfied.

However, as is often the case with research and development projects, the use

of police input to inform design may open the door to more possibilities for future

versions of Project54 software. Since the information gathered from police

officers had largely been related to the SUI, system developers knew (more or

less) how police used the SUI but beyond that there was not much information

available. In other words the problem was that, aside from collected speech data,

there was not enough available information that provided insights into the nature

3

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

of a police officer’s use of the Project54 system. There was also no quantitative

measure of whether or not police tended to prefer using Project54 over the more

traditional device controllers.

1.2 Goals

The goals of this research were two-fold. The first goal was to develop the

data analysis tools necessary for providing Project54 software developers and

law enforcement officials with comprehensive information regarding police

officers’ Project54 system usage tendencies. Specifically, the system usage of

interest was the number of interface interactions executed by the police officers,

not the number of tasks they executed. The significance of this subtle difference

is that tasks may be composed of multiple interactions and indicate a user’s

preference for a particular interface. On the other hand, interactions are

important because the more interactions officers have to execute to perform their

duties the more their driving performance suffers because their attention is

moved from operating their vehicles to interacting with their equipment [2].

Finally, the analysis tools needed to be automated so that any analyses would be

capable of being performed with little more than a mouse-click.

The second goal was to investigate the effectiveness of different analyses

at conveying conclusive results to both the system designers and the law

enforcement officials. The data analysis was meant to provide insight as to

whether police officers tended to prefer using Project54 over traditional device

controls. Beyond this, the data analysis would investigate if the control interface

4

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

an officer uses had any correlation to certain contexts. For this thesis, the scope

of these contexts was limited to determining if the control interface selection was

dependent on the task performed, dependent on the active Project54 window, or

dependent on whether or not the police cruiser is stopped.

1.3 Approach

In this research we proposed to provide the interaction-data analyses

through the development of software that monitored and logged SUI, GUI, and

hardware controller activities within police cruisers. Figure 1.2 shows the high-

level block diagram used to pictorially describe the proposed logging and

analysis processes and how they build upon the Project54 architecture. The

upper portion of the figure contains those parts of this thesis project that were

developed by others, during earlier work. Of significance there is that pre-existing

applications are sending each other messages via the Project54 Application

Manager. The portion of Figure 1.2 that lies below the horizontal dashed-line

represents the proposed contributions of this project. The P54Gui block is shown

overlapping into both the top and bottom portions of the diagram because, while

the P54Gui component existed before this project, we proposed to update it to

accommodate GUI event logging. We proposed to add an interface to the

P54Gui component to provide the Interaction Logger access to records of

specific GUI usage data. We also proposed to develop a usage log analyzer that

would use the text files created by the Interaction Logger to develop the different

visualizations alluded to in Figure 1.2. With the exception of the log analysis and

5

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

visualizations (discussed in Chapter 5), the rest of the information presented in

Figure 1.2 will be discussed in Chapter 3.

The research sequence was subdivided into three steps. It is important to

keep in mind that these steps merely represented a logical grouping of tasks and

not the actual order in which the tasks were undertaken. The first proposed step

was to build the architecture for the in-vehicle data collection. This task had been

simplified by building the logging capability on top of the pre-existing inter­

application text messaging system [3]. The Interaction Logger was able to

receive feedback messages from those applications with which it was registered.

However, additional support had to be developed within the Project54 GUI

software to capture specifics regarding button-press and key-stroke activities.

The second proposed step of this project was to develop a comprehensive

testing phase. The data gathering software was tested extensively within a

laboratory setting in order to ensure proper functionality. Once the testing

satisfactorily concluded that the logging software was functioning properly, the

application was deployed into actual police cruisers from the New Hampshire

Department of Safety. The field testing took place for twenty-eight days, at which

point the in-vehicle logging automatically ceased. The length of time was preset

as an adjustable Windows Registry value (default value of twenty-eight). This

was done at the officers’ request. At the conclusion of the field testing period the

data was retrieved from the vehicles for analysis.

The third proposed step was to create post-processing software capable

of automatically parsing the raw data collected from police cruisers into different

6

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

information tables. The different tables were used as the basis from which data

visualizations were developed. These visualizations used multiple data

dimensions as well as colors and even image overlays whenever applicable, in

order to depict the results of the in-vehicle usage logging both for developers to

base future applications on and for law enforcement officials to monitor how

effectively they are able to carry out their duties, using Project54.

7

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Inter-application
Maecaninn

licationplication

Application

Application.Application

L P54Gui _ _ _ _ _ _ _ _ _ _ _ _ _Pre^exist
T P54Gui Y Thesi

GUI
Messaging
Interface

Interaction
Logger

Pre^existinc ̂Work
Thesis Project

Step 1
(Chapter 3)

Log Analyzer

I

Step 3
(Chapter 5)

L
Analysis Analysis Analysis

Visualization Visualization Visualization

Figure 1.2 High-level block diagram of Project54 interaction logging/analysis
implementation

1.4 Thesis Organization

This thesis is organized into six chapters and two appendices. The first

chapter describes the motivating factors behind this research, including the

8

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

problem addressed, the desired goals, and the approach used to develop the

project.

Chapter two provides a brief background of existing work in the fields of

data logging and log file analysis. Context-sensitive computing is also discussed

as such background information will be useful when trying to provide context

awareness to future versions of Project54 applications.

Chapter three details the development of the interaction logging software.

Not only does this include a discussion about the logging-software design and

implementation, but also the changes made to the Projec54 architecture to better

facilitate detailed logging. Technical information such as registry settings and

some of the more important functions used within the application are also

outlined.

Chapter four contains the methods and results for the testing procedures

used for the Lab Car, the driving simulator, and field-testing. Police cruiser

deployment details are also provided.

Chapter five explains the data analysis undertaken for this project,

including the development of the various data visualizations used to form

conclusions. The post-processing includes scanning through all the original data

and parsing out different portions of it in order to focus on the individual portions

to form conclusions. These visualizations are the results from which conclusions

will be drawn.

9

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter six summarizes and draws conclusions from the work done

during the course of this thesis. Suggestions for future work with data logging

and analysis are also provided.

Two appendices were included at the end of this thesis. The first appendix

contains a copy of the questionnaire form administered to the police officers who

volunteered for this research. The information from this questionnaire is intended

to provide some context for interpreting the quantitative results received from the

officers’ vehicles. The second appendix contains a copy of the Institutional

Review Board (IRB) approval letter that gives permission to use human test

subjects for this thesis research.

10

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 2

BACKGROUND

2.1 Introduction

Recording system usage characteristics is an important and useful tool in

human-computer interaction (HCI) studies. Data logging is a robust, easily

implemented approach to automatically gathering and subsequently analyzing

information that may remain transparent to the system user [4, 5]. Hilbert and

Redmiles discuss how data logging may also provide the sort of objective user-

feedback information which questionnaires, interviews or other similar feedback

evaluations cannot [4], Such feedback could indicate how successfully a system

gets utilized, which has major implications for future designs. The major

challenges involved in evaluating HCI events are creating an efficient data

collection approach and implementing informative data analysis. A balance

needs to be struck between too much information and too little. Collecting too

much information could slow system response down - a very unsatisfactory

result for emergency responders. On the other hand, too little information could

make performing an accurate analysis of user interactions impossible.

Post-processing usage information should also be as robust as the data

collection process, while also being automated in order to reduce the burden

placed on humans of analyzing voluminous data. Analysis results would be the

11

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

most useful if they were effectively able to boil down the potentially immense

amount of gathered information into clearly comprehendible HCI event

representations. Research into ubiquitous computing has displayed promise for

the use of HCI events beyond only demonstrating the nature of a user’s

interactions with a system. HCI data represents context information which can be

used to guide the computer in interactions with humans.

2.2 Data Collection

Given that contemporary computers possess vast processing power,

one’s first instinct may be to use brute force in gathering the information while

making data analysis the priority. However, even with the ability to post-process

voluminous files quickly, it is still important that the data collection process gets

planned intelligently so that log file sizes may be kept under control [4, 6]. In the

case of retrieving data from vehicles on the road, Hilbert and Redmiles relate

several motivating factors for efficiently acquiring logged information, such as the

following [4]:

• In-vehicle computers may have severely downgraded performance and

storage capabilities compared to, for instance, common home

computers.

• Logging every possible human-computer interaction for a given

program may generate otherwise-avoidable lags in that program’s

execution.

12

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

• Desirable usage information may become buried by less interesting

information.

• It is likely that, due to limited access to the vehicles, large log files

would eventually take up so much memory that overall system

performance would degrade to unacceptable levels.

While logging too much data may lead to the loss of information-resolution, not

logging enough data could be just as likely to generate its own problems which

would also adversely affect information integrity. Such problems resulting from

insufficient data collection include the sacrifice of valuable information at the

expense of reduced processing time; also logs could be so sparse as to make

robust data analyses virtually impossible [4],

Badre and Santos recognized that the most effective method for

monitoring HCI events was to use an automated approach [7], Their solution, the

Computer-Human Interaction Monitoring Engine (CHIME) was a knowledge-

based design that was capable of automatically distinguishing relevant HCI

events. The system employed “smart” logging because it was created with a set

of guidelines as to how the HCI events of interest could be identified.

In order to equip a design with the knowledge of what interactions are

important, as CHIME did, filtering should be implemented within the data logging

architecture. Information filtering may better streamline the collection process by

ignoring information that is not of importance to a particular research endeavor.

13

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Filtering would speed up the logging process, reduce the size of the log files,

and, as a result, improve the performance of the subsequent data analysis.

2.3 Data Analysis

Using text files as a means to understanding the nature of particular

human-computer interactions is as much an art form as it is a science. Hilbert

and Redmiles discuss how, even if some level of discrimination in the data

logging is employed, it may be difficult to separate the information of interest from

the background [4]. This is especially true in cases involving very large amounts

of collected data. Harrison et. al. developed a research tool for the express

purpose of handling large amounts of data from different sources (i.e. video,

audio, log records, etc.) [8]. The tool, Timelines, could capture and annotate data

from HCI events. Timelines was also capable of associating that information with

video and/or audio records of system usage (recorded in parallel with the data

capture) in order to develop a complete picture of the user’s interactions with a

particular system. Once the data was annotated, it was displayed for subsequent

qualitative and quantitative analyses. As its name suggests, Timelines is

particularly well-suited for providing temporal data analysis. The analyses

generated by the tool are, by nature, sequentially ordered blocks of information

relating how a user was interacting with the system at any given time.

Usage data analyses are not only helpful for indicating how people tend to

interact with a given system but also they can provide accurate records of the

change in people’s interactions with that system over time. Guzdial et. al.

14

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

performed a study of students in a class room setting and monitored their

proficiency with a particular program over time [9]. The researchers were

interested in learning if, as the students became more comfortable with the

program, their use of that program would evolve in some fashion. By analyzing

the students’ interactions over time, the researchers were able to show that as

the students’ knowledge of program features increased, they were increasingly

likely to use the program more efficiently.

Also of major concern is how best to display the data in a coherent and

insightful manner, once the useful information has been extracted from the log

files. To address this concern, researchers have developed different data

visualization techniques to make various analysis abstractions palatable. For

example, Guzdial, et. al. describe several different visualization techniques such

as: scalar, one-dimensional, and two-dimensional analyses [10]. Scalar analyses

generate a quantitative representation of the data. In other words, this approach

would allow large volumes of records to be boiled down to categorized numbers.

One-dimensional analyses result in chronological listings of events, while two-

dimensional analyses are better suited for demonstrating how one set of data

may be related to another data set. These data visualization techniques may be

especially useful when put to the task of system usage analyses. According to

Guzdial, usage data provides an image of which system functionality is taken

advantage of by end-users [11]. Eick et. al. add that visualizations are also

indispensable at making undesirable system usage traits (such as faults) clearly

detectable at a glance [12]. It is often far more desirable to look at a picture of

15

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

user interactions than it is to read through lines of text files to determine usage

trends.

To add another level of expression, color may be added to enhance a

visualization’s ability to clearly present different data. Healey’s research explored

the important role colors play in identifying different features within visualizations

[13]. The work has shown that the three most distinct colors for subjects to

identify among different color groupings were red, green, and blue. However, the

color palette may be expanded effectively as long as the selected colors are

spaced evenly throughout the color spectrum.

While improving visualizations creatively it is important to make sure the

images are flexible enough to apply to different data sets. Humphrey’s research

was focused not only on developing creative data visualizations but also making

sure those visualizations were reusable [14]. Visualizations are, simply put,

graphical representations of information which are meant to enhance an

observer’s ability to comprehend that information. It makes perfect sense that

visualizations employ creative, so-called non-formal elements (titles, labels,

backgrounds, etc.). This non-formal information enhances the presentation of the

formal information (the collected data). In order to make visualizations reusable,

a balance needs to be struck with regards to how much non-formal information is

included. For example, too many non-formal elements may lead to static

visualizations not pliable enough to handle myriad data sets.

16

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

2.4 Data-Derived Context Development

Besides painting a picture of human-computer interaction tendencies,

information gathered from log files may also provide the basis for context-aware

system development. In this sense, context could be explained as the reference

or set of circumstances present during an HCI event. However, since this context

information may be of a personal nature, it should be treated securely. Jiang and

Landay drew attention to the issue of maintaining privacy in the face of the ever-

evolving pervasive computing frontier [15]. Giuli, et. al. echoed the need for

secure pervasive computing designs, specifically within the confines of motor

vehicles [16]. Keeping private information secure must always be a priority when

designing context-sensitive systems, in any environment.

Providing privacy is only one of the many challenges in creating

successful context-aware applications. Implementation issues are a major

concern and involve an intimate knowledge of the environment in which any

context-sensitive system will be used. For instance, Lum and Lau developed their

system for use in a mobile environment [17], while Voida, et. al. performed their

research in an office setting [18]. Both projects were based around developing

optimal time-saving strategies for information sharing over networks. However, in

the mobile environment design, handheld computer limitations (cellular network

bandwidth, reduced computational power, etc.) called for a solution that could

use a software-based decision engine that could accurately interpret user

preferences to manage computationally intensive content. In the office setting,

researchers did not have to pay as much attention to data bandwidth and other

17

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

handheld computer limitations. Instead the focus was on using the appropriate

compliment of sensors to derive an accurate account of how workers manage

their tasks. This information then had to be implemented within a system that

was flexible enough to meet all the workers’ requirements.

Several research projects illustrate the viability of data logging within

context-sensitive computing. Since context-sensitive information was being

generated for real-time applications, that data was readily available to be saved

for future analyses and design iterations. The first such project, Smart Classroom

Reconfigurable Context-Sensitive Middleware (RCSM) was done by Yau, et. al.

[19]. The work addressed the lack of ubiquitous computing in a learning

environment. The aim of this research was to develop a way for students and

their teachers to spontaneously interact in a technology-intensive classroom. The

approach was to modify personal digital assistants (PDAs) with sensors and

other hardware in order to develop so-called “context-sensitive ad hoc

communication” capable of determining the context of the interactions between

different, independent groups of students and a teacher. The project used

several measures from which context was derived, including the location of the

PDAs, and lighting levels. The system was also capable of storing information

which was then used to generate other files for classroom use, though not in

real-time.

The ContextPhone project, developed by Raento, et. al., focused on the

disparity between common smart phone operating system capabilities and the

support for desirable phone features [20]. The designers planned, among other

18

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

goals, to make their smart phone able to provide context as an informational tool

and support existing phone applications. The context derived by this smart phone

was based on sensor information including location and user interactions. This

data was then logged, and used to drive further software design iterations. This

process was especially beneficial in the early stages of development.

Ranganathan, et. al. created ConChat to address the lack of

expressiveness in interpersonal electronic communications [21]. They planned to

use context cues as means to enhance a chat program so that it would more

closely mimic an actual face-to-face conversation. The program was able to

automatically track and relay environmental characteristics between the users as

well as allow the users to supply their own contextual information, such as mood

and whether or how busy they are. Users were allowed to select the contexts

they wished to send or receive which added another level of personalization to

the program. Conversations and context cues could also be stored and analyzed

for future development.

These examples echo Loke’s argument that providing context sensitivity to

systems should improve their usability [22]. Benefits to adding context-sensitive

functionality include more efficient user interface designs and improved human-

computer interactions. However, there was also the understanding that context-

aware systems would be more successful if they were designed with humans in

mind. In order to meet the users’ needs not only was real-time context

information supplied to the system but also it was stored and used to drive further

design implementations. Rehman, et. al. believe that this logged context data

19

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

would be the most useful if it is used to improve the communication experience

between humans and machines, as opposed to being used as a system control

input alone [23].

20

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 3

INTERACTION LOGGER ARCHITECTURE

3.1 Introduction

As stated in the thesis introduction, the first proposed step of this project

was to enable real-time user-interaction logging within police cruisers. The

selected approach to accomplish this task was to design an application that

would receive and record feedback messages from the other Project54

applications, when those applications were called upon by the user to perform a

control operation (e.g. change a radio channel). Aside from this software used to

direct the HCI event logging, other Project54 system alterations had to be put in

place. Additions were made to the GUI component that would allow button

presses and text field entries to be logged. A COM interface was also added in

order to transmit those button and text field HCI event messages from the GUI

component to the HCI event logger. The following section provides background

for the Project54 messaging architecture [3] and its role in user interaction

logging. Other sections within this chapter describe the details involved in the

logging architecture development, including the alterations to the Project54 GUI

component, linking the GUI to the HCI event logger, and the logger software

design itself. The end result of this phase was to have an application capable of

interfacing with the Application Manager messaging system as well as with a

21

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

newly-developed P54Gui messaging system, as shown in Figure 3.1. The figure

shows the inter-application communication lines that make interaction logging

possible.

Inter-application
Maeeaninn

pplicationpplication

pplication

Application
1

Application

P54Gui

Interaction
LoggerGUI

Messaging
Interface

Pre^existi nt̂ Work_
Thesis Project

Figure 3.1 The Application Manager handles inter-application messaging between all the
existing Project54 applications and the Interaction Logger

3.2 P54 Text Messaging System Overview

At its most basic level, Project54 may be described as a package

comprised of several independent software control modules linked together by

one central application. An example of one of the software control modules is the

program written to provide speech and graphical user interfaces for a police

22

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

cruiser’s light bar. The central application is the Project54 Application Manager.

As the connection point for the various software control modules, one of the main

functions of the Application Manager is to facilitate communication between the

various applications via the Application Manager’s message coordinator. This

inter-application communication is performed via text messaging. For the

purposes of this thesis, the messages of interest are those related to the so-

called status of every Project54 application, or what any application is doing at

any given time.

Since the Application Manager is responsible for redirecting all inter­

application messages from the source application to their proper destination, it is

important to keep the message traffic to the Application Manager at a minimum.

More message traffic means more processing time and greater potential for

system lags. For this reason, applications only transmit status messages when

that information is requested in advance by another application.

The request for status updates consists of the requesting application

sending out a communication packet of the following format:

Message(source, destination, message id tag, message text)

The source and destination fields correspond to the names of the source

application and destination applications, respectively. The message id tag and

message text fields are used by the destination application during the process of

handling received messages. The destination may apply a specific message id

23

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

tag to certain source feedback messages that will only have meaning within the

destination program. The message text contains the source module’s status

information. This status information sent between software control modules is

characterized by the keyword, “STATUS”, as the first word within the message

text field of an inter-application communication packet. For example, if the Patrol

Screen application wished to know the status of the radar application it would

register for feedback from the radar application with the message text

“FEEDBACK ON”, using the previously described message format. The radar

application would then add the Patrol Screen application to its queue of programs

that are registered for status updates. Whenever the radar has a status change a

message will be sent to all the applications registered for feedback, such as

“STATUS FRONT ANTENNA” (in this case informing the Patrol Screen that the

front antenna is on). However, if no application is registered for feedback

messages, no messages will be sent to the Application Manager for

disbursement.

This inter-application communication system functions well at what it was

designed to do - provide updates from one program to another on a need-to-

know basis. The usefulness of such messaging information can be expanded

upon because applications may not only register for feedback messages from

specific applications, but also may register as a sniffer and view all message

traffic passing through the Application Manager. Among the benefits of using the

message sniffer functionality are that it is automatically ensured that all available

inter-application messages will be received by the Logger. Also, more information

24

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

will be available beyond the standard feedback messages alone, such as the

active Project54 window during any given speech or hardware user interactions.

Unfortunately there is no “STATUS GUI” message that would indicate the

use of the in-vehicle touch-screen to control a device. This particular lack of

status updates is because the Project54 GUI component software is not set up to

provide feedback messages to the Application Manager, like other Project54

applications do. However, it is possible to add feedback functionality to the

P54Gui component which, once sent to the Interaction Logger, would allow the

application to monitor and record all of the interfaces an officer may use to

control the various in-vehicle devices.

3.3 P54Gui Adaptations

The P54Gui is the software component that provides Project54 with its

GUI functionality. The GUI attributes directly related to this project were the

touch-screen buttons and the text fields (primarily used during records checks).

In order to provide the Interaction Logger with information related to GUI usage,

software changes had to be made to the Button Control class, the Text Field

Control class, as well as to the Window Control class. These three classes

contained within the P54Gui component are responsible for painting and

refreshing the GUI screens with buttons, and text fields, as well as providing the

functionality for those buttons and text fields. The aim of the software changes

was to provide functionality that would record GUI usage characteristics and

pass that collected data to the Interaction Logger.

25

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

The particular characteristics of interest relating to button-press user

interactions included the following:

• the name of the active window during the button-press activity,

• whether a button was pressed down or released,

• at what time the button-press activity took place,

• the name of the button used.

To record the name of the active window during a button state change, the name

of the active window had to be passed from the Window Control class to the

Button Control class, since the Window Control class was the only location in

which the active window name was available. The function loadWindowLabel

was added to the Window Control class in order to make the window label name

available to any other P54Gui class. In other words, the Button Control class

made a call to the Window Control class’s new loadWindowLabel function in

order to gain access to the active Project54 window during a button-usage event.

The Button Control class stored the results of this function call in the

m WindowLabel array. Functionality for identifying button state changes (pushed

down or released) already existed within the P54Gui component’s Button Control

class. Once a button’s state changed, a call to the new Button Control class

function logButtonPress was made. This function is responsible for creating a

date and time stamp corresponding to when the usage event takes place. The

26

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

date and time stamps were created using the time.h standard library and the

resulting information was stored in the szTimestamp array. The name of the

button used during an interaction was already available within the Button Control

class. This information was therefore accessible by the logButtonPress function.

The logButtonPress function was able to combine the time of a button interaction,

the name of that button, and the name of the active window during that

interaction into one message, which was stored in g_szGuiMessage. This

message was then passed to the Interaction Logger. The process for this

message transmission is described later in this section. Table 3.1 summarizes

the list of additions to the Button Control class that were used to implement

button-press logging and a brief description of what each item was responsible

for doing. The second item in the table refers to a Registry setting which will be

discussed later in this section. The flow chart shown in Figure 3.2 represents the

algorithm used by the logButtonPress function to create the log file entries for the

GUI button usage events. This approach waits for a button state to change,

captures the specified interaction information, and sends that data to the

Interaction Logger.

27

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

—
Time.h

m_LogButtonPresse£
B W

ControlWindow *
Parent

m_WindowLabel

loadWindowLabel(m_
WindowLabel)

b_LogData

logButtonPress

g_szGuiMessage

szTimestamp

This standard library was used to generate date
and time information for the button usage

messages in the mm/dd/yyyy hh:mm:ss format.
The P54Gui component sets this Boolean value to

true only when the P54Gui Registry setting that
gives permission for GUI event logging is enabled.

This class pointer provides the button control
class with access to the loadWindowl_abel()

function, contained within the window control
class.

This string stores the name of the active window
at the time a particular GUI button press occurs.
This function is called within the Button Control
class to retrieve the name of the active window

from the Window Control class, when a GUI
button press occurs.

The P54Gui component sets this global Boolean
value to true only when the Interaction Logger is

ready to receive GUI interaction event messages.
This function places the timestamp, active window
name, button name, and button activity associated

with a particular GUI button event into the
g_szGuiMessage array, and sends the information

to the Interaction Logger.
This global character array stores the button-
usage message to be sent to the Interaction

Logger. This message contains the timestamp,
active window, button name, and button state for

each button-press activity.
This character array is located within the

logButtonPress function and stores the date and
time at which a button event occurs.

Table 3.1 Descriptions for the additions made to the P54Gui button control class

28

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

The characteristics of interest with regard to text field user interactions

included:

• the active window in which the text field was located,

• the keystrokes entered into the active text field,

• the time at which the text field was used,

• the x and y coordinates of the active text field.

To record the name of the active window during a text field user event, the name

of the active window had to be passed from the Window Control class to the Text

Field Control class, since the Window Control class was the only location in

which the active window name was available. The function loadWindowLabel

was added to the Window Control class in order to make the window label name

available to any other P54Gui class. In other words, the Text Field Control class

made a call to the Window Control class’s new loadWindowLabel function in

order to gain access to the active Project54 window during a text field usage

event. The Text Field Control class stored the results of this function call in the

m_WindowLabel array. Functionality for identifying keystrokes within text fields

already existed within the P54Gui component’s Text Field Control class. Once a

key stroke was detected, a call to the new Text Field Control class function

log Keystrokes was made. This function is responsible for creating a date and

time stamp corresponding to when the usage event takes place. The date and

time stamps were created using the time.h standard library and the resulting

30

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

information was stored in the szTimestamp array. The special coordinates for

the text field used during an interaction were already available within the Text

Field Control class. This information was therefore accessible by the

logKeyStrokes function. The logKeyStrokes function was able to combine the

time of a text field interaction, the coordinates of that text field, and the name of

the active window during that interaction into one message, which was stored in

g_szGuiMessage. This message was then passed to the Interaction Logger. The

process for this message transmission is described later in this section. Table 3.2

summarizes the list of additions to the Text Field Control class that were used to

implement text field key stroke logging and a brief description of what each item

was responsible for doing. The second and third items in the table refer to

Registry settings which will be discussed later in this section. The flow chart

shown in Figure 3.3 represents the algorithm used by the logKeyStrokes function

to create the log file entries for the GUI text field usage events. This approach

waits for a key stroke to be entered into a text field, captures the specified

interaction information, and sends that data to the Interaction Logger.

31

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Additions

Time.h

Description
This standard library was used to generate date and
time information for the button usage messages in

the mm/dd/yyyy hh:mm:ss format.
The P54Gui component sets this Boolean value to

true only when the P54Gui Registry setting that
gives permission to log GUI keystrokes is enabled.
Otherwise, the characters are logged as asterisks.
Keystrokes entered into the Password text field are

always logged as asterisks, no matter what the
state of m__ShowKeyStrokes is.

The P54'Gui component sets this Boolean value to
true only when the P54Gui Registry setting that

gives permission for GUI event logging is enabled.
This class pointer provides the button control class

with access to the loadWindowLabelQ function,
contained within the window control class.

This string stores the name of the active window at
the time a particular GUI button press occurs.

This function is called within the Button Control
class to retrieve the name of the active window from
the Window Control class, when a GUI button press

The P54Gui component sets this global Boolean
value to true only when the Interaction Logger is
ready to receive GUI interaction event messages.
This function places the timestamp, active window

name, text field coordinates, and key entered
associated with a particular GUI text field usage

event into the g_szGuiMessage array, and sends
the information to the Interaction Logger.

This global character array stores the button-usage
message to be sent to the Interaction Logger. This
message contains the timestamp, active window,

button name, and button state for each button-press
activity.

Table 3.2 Descriptions for the additions made to the P54Gui text field control class

m_ShowKeyStrokes

mJLogKeyPresses

ControlWindow *
Parent

m WindowLabel

loadWindowLabel(m
_WindowLabel)

b_LogData

logKeyStrokes

g_szGuiMessage

32

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

esis
ork:

trohus
lity

Now
ey. Stroke

b. LogDnta

;i Create Timestamp and
Store it in

Buffet

Store Active Window
Name in

Buffer

Yes s S Are
Key Strokes

visible?
«S

Store Actual
Stroke in

i

Store Astensk
Key Stroke

essage
mmm

Send Log Message to
Logger

Figure 3.3 P54Gui text field usage logging algorithm

33

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

As was mentioned previously, Windows Registry settings have been

added to the P54Gui Registry folder to provide more flexibility as to when and

how GUI interactions would be logged. The two Windows Registry keys were

LogButtons and ShowKeyStrokes. Setting LogButtons to “Enabled” would allow

GUI usage events to be logged. LogButtons is a bit of a misnomer as it not only

governs when button-press events may be logged, but also when key stroke

usage may be logged. The ShowKeyStrokes value is used to determine whether

or not the key strokes entered into text fields will be shown as asterisks when

they are logged. For instance, if a user types “hello” into a text field with

ShowKeyStrokes disabled, the fact that characters were typed into the text field

will be logged but, instead of displaying “hello”, the log will contain the string,

“*****”. However, if ShowKeyStrokes is enabled, “hello” will be recorded as the

string, “hello” in the log file. The Windows Registry information is presented in

context in Figure 3.4. The figure shows the location within the Windows Registry

of the P54Gui user interaction log values and their settings. The two values could

either be set to “Enabled” or “Disabled”.

£ R e g is ti y E d ito r S is p f?
- ' |-----

- - .
■ 1 - W & -Ma l - . l i 4 g » a r

File Edit View Favorites Help

c-; C l P54Gui
C j Debug

■ C l Scanner
•• C l Windows

Hi P i PacketCluster

b : Name Type Data

[^ (D e fa u lt) | REG SZ (value not set)
1*!*) LogButtons
lj®) ShowKeyStrokes

REG_SZ
REG_5Z

Enabled
Enabled

i< < i . . >

My Computer\HKEY_LOCAL_MACHINE\SOFTWARE\Catlab\Project54\P54Gui\Debug

Figure 3.4 Windows Registry settings relating to the P54Gui usage logging functionality

34

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

While a solution was implemented that allowed the P54Gui component to

track specific GUI usage events (button presses and keystroke entries), there

was still no means of transferring that information from the P54Gui component to

the Interaction Logger. The solution developed for this issue was to create two

Component Object Model (COM) objects [24] that would facilitate data

transmission from the P54Gui to the Interaction Logger: a logging object for the

P54Gui and a GUI message handler object for the Interaction Logger. Figure 3.5

shows the added COM objects, including their interfaces and methods. The pre­

existing P54Gui interfaces were not changed, but one was added -

IGuiLoggerControl. The IGuiLoggerControl interface contained the two methods,

startLogging and stopLogging. As their names suggest these two methods may

be called by another application (in this case the Interaction Logger) to signal

when GUI logging should begin and end. The Interaction Logger’s message

handler object receives the GUI messages once they are sent from the GUI. This

process is carried out by the object’s getData method, via the IDataLogger

interface. Table 3.3 provides a brief summary of the interfaces and methods

developed for this research.

35

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

P54GUI Component

Object 7

Object n
w*

Logging Object

IDataLogger!
Interfaceo

Interaction Logger
Application

GUI Message
i Handler Object

IGuiLoggerControl
Interface

o
Thesis
Work

Pre-existing
Work

COM Interface

Figure 3.5 COM objects that facilitate communication between the P54Gui component and
the Interaction Logger

Interface

IGuiLoggerControl

Interface Methods

startLogging()
stopLogging()

IDataLogger getData(m essage)

Description
This P54Gui interface alerts the GUI

component when another
application requests GUI usage

event information. The Interaction
Logger accesses these methods by

calling startLogging and
stopLogging.

This Interaction Logger interface has
one method - getData. The Logger

will receive feedback messages
from any application that calls the

getData function.
Table 3.3 Summary of interfaces and methods added for GUI interaction event logging

36

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

The sequence of events is that the Interaction Logger must inform the

P54Gui component that GUI interactions are desired, by calling the P54Gui

component’s startLogging interface method. When this method is called the

P54Gui will set the global Boolean value b_LogData to true and create text

messages containing GUI activities, as they occur. Once a GUI event takes place

the P54Gui component sends the information about that interaction to the

Interaction Logger via the IDataLogger’s getData interface method. Before the

Logger shuts down it calls the P54Gui’s stopLogging method to signal that no

further GUI activity messages are needed. It is not until this point that b LogData

is reset to false.

The P54Gui called the getData method when either one of two events

transpired - the state of any GUI button changed or a keystroke was entered into

a GUI text field. In order to prevent either the button control class or the text field

control class from calling getData while that method was busy, synchronization

was used to give sole access to the first event (button press or keystroke) to call

this function. That event had priority until the data could be safely sent to the

Logger. On the Interaction Logger end of the process, the getData method

receives the GUI event messages. This getData method waits for its message

buffer to fill up (occurs when a GUI log message is sent) and then makes a call to

the logMessage function (discussed in the next section) to log the GUI usage

event. Back on the P54Gui side, once the message has been transmitted to the

Logger, the message buffer is flushed in preparation for another GUI interaction

to occur.

37

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

3.4 Interaction Logger

The brief background on Project54 inter-application text messaging as

well as the explanation for the P54Gui adaptations necessary for GUI event

logging provided the groundwork for the initial phase of this thesis work - logging

user interaction events. As has been mentioned previously, the Interaction

Logger was designed to monitor and record the SUI, GUI, and hardware usage

events that could occur within a police cruiser. This section will describe the

Logger software design approach as well as many of the details regarding its

implementation.

Before any programming could be started it was important to have a plan

put in place for what the Interaction Logger was going to accomplish. As was

mentioned in Chapter 1, there needed to be a tool capable of recording all the

events going on within a police cruiser, not just speech. With such a tool,

designers and law enforcement officials alike would have access to information

directly related to what aspects of Project54 user interfaces officers tend to prefer

and in what situations the Project54 interfaces may be used. To ensure that

accurate results were being generated, the interaction event recording had to be

invisible to the officers. Certainly their consent to participate in an HCI study was

required but once the software was installed on a car’s computer it needed to

function in the background, not interfering with the officer’s daily workload. This

requirement meant that the Logger could not have a GUI of its own. Once

installed, the Logger had to operate automatically, without any external

commands issued to it. Furthermore, the software had to be streamlined enough

38

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

to avoid creating noticeable system lags. Any performance degradation would

very likely become a nuisance to officers using the system, to the point that it

might cause the officer to alter his or her system usage behavior. In general, any

factors that would cause an officer to use the Project54 system in an

uncharacteristic fashion could generate misleading event logs and should be

avoided.

With these considerations in mind, implementation of the Interaction

Logger could begin. Two of the first issues addressed dealt with how best to

initialize and eventually shut down the application. Normally, these two program

aspects would be considered benign and no formal discussion would be

necessary. However, in order to maintain an accurate log of user event activity, a

list of the other programs running on Project54 needed to exist. The programs on

that list needed to shut down before the Interaction Logger to avoid missing any

events that might occur after the application had stopped logging.

The Logger’s startup routine, depicted in the high-level block diagram

shown in Figure 3.6, includes elements that make use of the Project54

messaging system as well as certain Windows Registry settings. The

“BROADCAST STARTUP” message shown in the first block of the figure is a

startup command sent from the Application Manager to all the Project54

applications running within a given vehicle installation. Each program, the

Interaction Logger included, must then initialize its startup routine and report that

it is loaded and ready to run, by sending the message “STARTUP” back to the

Application Manager.

39

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Once the application is issued the initialization command, it then verifies

whether or not it should log user interaction events. This process is done in two

steps. First, the program makes sure permission to log information has not

expired. Second, the program ensures that logging permission has been

enabled. Both processes are done by checking the appropriate values within the

Windows Registry, shown in Figure 3.7. The Registry value LogDuration is the

length of time (in days) after the installation date. This LogDuration value

provides a clear time frame for data collection to occur. Since the value is

adjustable, data collection may be done in a flexible manner, on a vehicle-by-

vehicle basis. The default value for LogDuration is 28 days. Once the time span

allowed by LogDuration has elapsed, the Logger will automatically set LogData

to disabled. The LogData Registry value indicates whether or not permission has

been granted to proceed with logging interactions. The value should be set to

either “Enabled” or “Disabled”, depending on whether or not event logging is

allowed. For all intents and purposes the order of the two verification steps is

irrelevant; once logging permission is denied for either reason the application

merely runs in the background without logging any information at all.

The remaining three blocks shown in Figure 3.6 involve processes that will

only be executed when the application is set up for logging. As was mentioned

earlier, in the section regarding inter-application communication, by registering as

an application message sniffer the Logger is capable of monitoring all the

communications occurring between other applications. Tracking the message

traffic is used both to determine the active Project54 window and generate a

40

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

count of the number of other applications also loaded onto Project54. The latter

feature is noted in the following block and plays a key role in the shutdown

routine (discussed shortly). The other action listed within the next block is the

creation of a version list text file. This file contains the version of each Project54

application, as shown within the Component Versions folder of the Windows

Registry. Since not all police departments have the same Project54 system

setup, knowledge of each application’s version list would allow data analysis to

be better-tailored to individual fleets’ installations. The last major step included

within the block diagram is the Logger’s registration for feedback messages from

other Project54 applications. Figure 3.8 shows the list of applications within the

Windows Registry from which the Interaction Logger could request feedback

information.

41

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Start Up but Do Not
Log Any Data

Receive “BROADCAST STARTUP”
Message from Application Manager

i
Verify Logging Permission Has Not

Expired

i
No Permission

Expired?

Yes

Verify Logging Permission Has Been
Enabled

No Permission
Granted?

^ Yes

Register as a Project54 Message Sniffer

I
Send “STARTUP” Message to

Application Manager

i
Start Threads for Version List File and

for Generating Application Count

I
Register for Direct Feedback from Other

Project54 Applications

Figure 3.6 Interaction Logger program start routine

42

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

~’X3LJDB®
File Edit View Favorites Help

| ® -fiB Components
F Cl Datalogger

: d Messaging
■ Parameters

© d EFJohnson
ffi d Externall v

f<] i............ ; i ~ (>J

Name Type | Data

|©(Default) j
© Insta llDate
© LogData
5®] LogDuration
©LogPath

REG_SZ
REG_5Z
REG_SZ
REG_SZ
REG_SZ

(value not set)
03-06-2007
Enabled
28
c:\Project54\Logs\System Usage Logs\

My Computer\HKEY_LOCAL_MACHINE\SOFTWARE\Catlab\Project54\DataLogger\Parameters

Figure 3.7 Interaction Logger registry parameters

Registry Editor Ml□DDolB
File Edit View Favorites Help

T C 3 Components
= C] Datalogger

t 3 Messaging
L J Parameters

± D EFJohnson
35 Cl Externall
ST Cl External
d:' n External
± C l External
<+ Q External5
dB d GenesisI
£ d GenesisII
$ d GoldenEagle
5 d GPS
5 d GpsService

v

Name Type Data

© [(Default) i REG SZ (value not set)
©Appmanager REG SZ mainscreen
© gps REG SZ gps
© L ig h ts REG_5Z lights
© Log ge r REG_5Z logger
©PScreen REG SZ pscreen

©PushTalk REG SZ pushtalk
© R a d a r REG SZ radar
© R ad io REG SZ radio
© R ecords REG SZ records
© s e lf REG SZ datalogger
© S e tu p REG SZ setup
©Speechio REG SZ speechio
© V ideo REG_5Z video

My Computer\HKEY_LOCAL_MACHINE\SOFTWARE\Catlab\Project54\DataLogger\Messaging

Figure 3.8 List of applications from which the Interaction Logger requests feedback

43

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Though registering for feedback may seem redundant since the Logger is

already capable of sniffing message traffic, registering for feedback messages

from applications has a distinct advantage over sniffing for this particular

application. Due to the ability to create an application-specific ID for received

messages (as discussed in the Project54 inter-application messaging section)

the Logger only needs to pay attention to status messages that bear the proper

ID. However, if the sniffer functionality was not taken advantage of, it would be

far less convenient to determine the active window corresponding to user

interaction and more difficult to ensure that the Logger was the last application to

shut down. If, on the other hand, the software only took advantage of the sniffer

functionality, it would be conceivable that important status information would not

get logged due to the lack of any feedback clients for a given application to send

messages to.

Once messages are received by the Interaction Logger they are handled

according to the algorithm shown in Figure 3.9. When registering for feedback,

the Logger provides the other programs with the unique message ID tag

“DIRECTFEEDBACK” during a feedback request. The ID tag of each incoming

message is checked when received by the application. If the message does not

contain the tag “DIRECTFEEDBACK”, it is a message picked up by the message

sniffer. Since the system has already started up, the only sniffed messages of

interest are the “SHOW WINDOW” messages sent every time the active window

is changed. If the message does not contain the DIRECTFEEDBACK ID tag and

it is not a SHOW WINDOW message, then it is ignored (i.e. not recorded).

44

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Receive Message from
Application Manager

No YesDIRECT­
FEEDBACK
Message?

Yes No No STATUS
Message?

YesSHOW
WINDOW
Message?

Ignore Message

Store
Active Window Name

Filter
STATUS Message

No Desirable
Message?

No VELOCITY
Message?

Log Message with current
Active Window Name

and Vehicle Speed

Store Vehicle Velocity

Figure 3.9 Interaction Logger message handling algorithm

45

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Though the messages that do contain the DIRECTFEEDBACK tag are

sent to the Interaction Logger specifically, it is still not guaranteed that those

messages should be recorded. If the received message is not a status message

(as described in the messaging section) it will be ignored. If, on the other hand, a

status message is sent directly to the Interaction Logger that message must be

screened before it can be logged. The screening process involves comparing the

incoming status messages to the list of status messages shown in Table 3.4. If

the received message matches any of those messages shown in the table, the

message is ignored. The listing shown in Table 3.4 was comprised through a

heuristic filtering process. During testing, it was determined that certain

messages did not provide significant contributions to the information collection

endeavor, but they did get transmitted frequently. Therefore, those less-important

messages were filtered out to save storage space and preserve the clarity of the

user interaction event information. The listed radar messages were ignored

because they represented the results of an officer’s actions (e.g. Turning on an

antenna array results in knowing another car’s “Target Speed”). The listed

records and record queries message were ignored to prevent private information

from being logged during this research project. The listed lights messages were

ignored because they only report whether or not the light bar control head is

active. This information is obvious during tasks performed using the light bar.

Finally, the listed radio messages were ignored because they deal with

monitoring radio traffic, not necessarily an officer’s use of the radio itself. Special

mention needs to be made regarding the “STATUS CHANNEL” entry within the

46

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Table 3.4 listing. Messages that contain information regarding STATUS

CHANNEL VOL (i.e. radio channel volume) are not filtered out, while all other

STATUS CHANNEL data is ignored.

The use of the message filtering process was reduced with the help of

selective feedback registration. If an application was created using the feedback

handler found in the FEEDBACK.CPP file, specific feedback messages could be

retrieved from that application without receiving all possible feedback data. For

example, since the STATUS SPEECHIN message is the only information from

the Speechio application that relates a user interaction, a feedback request such

as:

Message(self,speechio,L”DIRECTFEEDBACK”,L”FEEDBACK SPEECHIN ON”)

could be sent to the Speechio application. Any other status messages Speechio

might be able to send to the Interaction Logger would automatically be filtered

out, without being transmitted to the Logger in the first place. Since not all

applications have been built with the FEEDBACK.CPP file, this pre-filtering

cannot completely remove the need for the Interaction Logger’s own filtering

functionality.

If a message does not get filtered out, it is checked for one more useful piece of

information, whether or not it contains vehicle velocity data. If the message

contains velocity information that data is stored and amended to all of the logged

interaction information. If a message is not filtered out but does not contain

47

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

vehicle velocity information, that message treated as an interaction and logged

with whatever vehicle speed has already been saved. Since the in-vehicle GPS

units update the vehicle speed every few seconds, the speed that gets logged

along with the user interaction is an accurate one.

li Project54 Application Ignored Messages
STATUS PATROL SPEED
STATUS TARGET SPEED

STATUS LOCK SPEED
STATUS ALERT
STATUS QUERY

STATUS PING
STATUS NEWQUERY
STATUS ENDQUERY

STATUS QUERYINPROGESS
STATUS ADD

STATUS QUERY
STATUS RECEIVEDRECORD

STATUS LIGHTS CONTROL HEAD
STATUS CONTROLHEAD

STATUS BUSY
STATUS CHANNEL*

Table 3.4 STATUS messages not logged by the Interaction Logger application

Once the status messages have been identified as direct feedback

information and screened to weed out less-important data, they are ready to be

recorded. The process, shown in Figure 3.10, indicates both the logging startup

procedure and how all subsequent interaction information is recorded. The first

time data is to be recorded (and each time a new day starts), the application

must open a file stream to which that information will be written. The file stream is

left open for the duration of the application’s execution. The file stream will also

48

Radar

Records

Record Queries

Lights

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

close if the days change during logging, in which case the previous day’s file

stream will close and the new day’s file stream will open. To keep the data logs’

nomenclature simple, the name of a file is the same as the date on which that file

was created. In other words, if a file was created on May 4, 2007, the name of

that file would be 05-04-2007.

This file naming scheme makes it necessary to check the date in order to

determine when a new log file has to be created. The check is performed each

time a new message is ready to be recorded. By checking each message’s date,

it can be assured that no gray area would exist in which messages get logged in

the wrong date’s text file. If data recording occurs for more than one day without

the computer restarting, the Logger will still be able to automatically detect a

change in the date, close the previous date’s log file, create a text file for the new

date, open that new file, and write the buffered interaction message to the new

date’s file, with no detectable real-time delay.

With the properly-dated file stream ready to receive interaction data, the

application waits for incoming messages to record. The logging process

determines, based on the information available, whether the message pertains to

a GUI interaction or a text message interaction. The differentiation between GUI

messages and P54text messages is important because the messages have

different formats. This decision process is based on whether or not the Logger

has the following information: the source application’s name, the active window

name, and the vehicle’s velocity. When this information is absent, the application

deems the message present to be GUI interaction data. In the case of receiving

49

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

GUI interaction data, the vehicle velocity is appended to the original GUI

message. If no GPS information is available, the velocity data appended to the

corresponding usage logs is the string, “N/A”, to avoid knowingly recording a

false speed. The text message data actually arrives at the message logger in

pieces that must be put together before being written to the file stream. The

pieces are the timestamp, an index (based on the number of milliseconds that

have elapsed since system startup), the source application’s name, the active

window’s name, the status message itself, and finally the vehicle velocity. Once

the information is packaged in that format, it is recorded in a text file for later

analysis.

The Interaction Logger’s shutdown routine is slightly more involved than

most other Project54 applications’ shutdown processes. This is because, to

ensure that no interactions are missed during system shutdown, the Interaction

Logger must verify that it is the last application to terminate. Figure 3.11 shows a

high-level block diagram for the Logger’s shutdown implementation. Once the

Application Manager transmits the “BROADCAST SHUTDOWN” command to all

the Project54 applications, the Interaction Logger checks its count of the number

of currently-running applications. This count was created during startup by

sniffing the number of “STARTUP” messages sent to the Application Manager.

Similarly, during shutdown the Interaction Logger sniffs the number of

“SHUTDOWN” messages each application sends to the Application Manager

once they are ready to terminate. Each time a “SHUTDOWN” message is sniffed,

the count of active applications is decremented by one. Once the count indicates

50

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

that the Interaction Logger is the only application yet to shut down, the program

will close the data log text file stream and terminate.

Only Executed
First Time
Through

, OR During
' Date Changes

. ‘

Executed \
Each Time |
Through I

Open Output File Stream for Writing I
Messages to Log File N-^ _,_J

Update Log File Name and
Current Log Date

^ :___

Yes
Has Current Date

Changed?

Close
> Current

File Stream

INo

Receive Source Application Name,
Active Window Name,

STATUS Message Text,
and Vehicle Velocity

Check Source Application Name,
Active Window Name, and Vehicle

Velocity Field Values

i
No Source App, Active

Window, Velocity
Fields Empty?

Yes

P54Messanger Event: Write
Timestamp, Indexer, Source

Application Name, Active Window,
Name, Message Text, and Velocity

to Log File Stream

GUI Event: Write Message Text,
and Velocity to Log File Stream

Figure 3.10 User interaction logging process

51

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Receive “BROADCAST SHUTDOWN
Message from Application Manager

1
Wait for All Other Project54 Applications

to Shut Down

A .
N° Applications

.... Shut Down?

^ Yes

Close Interaction Log File

Send “SHUTDOWN” Message to
Application Manager

Figure 3.11 Interaction Logger program shutdown procedure

52

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 4

SOFTWARE TESTING AND DEPLOYMENT

4.1 Introduction

The second proposed step of the user interaction logging tool

development was to perform testing to verify that Project54 HCI event

information could be accurately gathered from police cruisers. As part of the

initial development, the application was tested on a desktop computer where any

noticeable bugs were removed from the program. More intensive testing was

performed by loading the software into a laboratory car mock-up, a driving

simulator, and two test vehicles. The tests were conducted in three phases -

simulated HCI event recording under simulated driving conditions using the

laboratory car (Lab Car), actual HCI event recording under simulated driving

conditions using the driving simulator, and actual HCI event recording under

actual driving conditions using two Project54 test cars. Once the tests proved the

software was stable and functioning properly, it was deployed in two state police

cruisers for actual user interaction data collection. All participants of any data

collecting procedures had a signed consent form on record, prior to the collection

of their data.

53

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

4.2 Lab Car Testing

Once the interaction logging software was realized, the program was then

tested in the Lab Car. The Lab Car, shown in Figure 4.1, is, practically speaking,

the front seat of a police cruiser. The Project54 system within the Lab Car is

equipped with an IDB network and assorted hardware devices, such as a radio,

lights, siren, GPS, and radar. The IDB network connects the devices to a

console-mounted embedded PC. This testing setup, with its hardware

components and software settings, adequately represents the system currently

installed within a typical New Hampshire state police cruiser.

Figure 4.1 Project54 lab car

54

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

To keep the installation process simple, a batch file was created that could

automatically load the Interaction Logger, the updated P54Gui software, and the

necessary Windows Registry settings onto a Project54 system setup. The folder

that contained the installation batch file also contained the Interaction Logger, as

well as P54Gui and Records applications that had been updated to

accommodate the Logger. Also included in the folder were the text files that

contain data to be loaded into the Windows Registry and the Project54

Application Selection program.

With the application loaded onto the Lab Car automated tests were

conducted on button press user interactions and speech command user

interactions separately. Samples of the files used to conduct these tests are

shown in Figure 4.2 (the GUI file) and Figure 4.3 (the SUI file). In order to make

sense of the information provided in these figures, Table 4.1 has been included

as a key. The GUI test file example indicates that the test started within the

Project54 Patrol Screen. Certain buttons (indicated by their column and row

coordinates) had simulated presses occur once every ten seconds. The SUI test

file sample also indicates that the test was conducted with the Patrol Screen as

the active window. In this case, a simulated speech command (the text between

the quotations) was issued once every ten seconds. These testing procedures

were made possible by executing the test file commands within a pre-existing

Project54 automated interface testing application [25].

55

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

[percentage] ■
Braces delimit a block of test commands.

Execute this line or block of commands based on

<milliseconds>
Once a command has been given, the test will wait
the indicated number of milliseconds before moving

to the next line.
(column row) ^u^(?n coordinates are given to the test file in

“SIMSPEECH
COMMAND”

The commands within quotations are interpreted as
simulated speech but are treated by the system as

standard speech commands.
Table 4.1 Test file command reference

II Patrol Screen GUI Test
[100] {
(6,2) <10000>
(7.2) <10000>
(8.2) <10000>
(6.3) <10000>
(7.3) <10000>
(8.3) <10000>
(6.4) <10000>
(7.4) <10000>
(8.4) <10000>
}

Figure 4.2 Sample GUI test file

56

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

II Patrol Screen SUI Test
[100] {
“FRONT ANTENNA” <10000>
“FRONT ANTENNA OFF” <10000>
“REAR ANTENNA” <10000>
“REAR ANTENNA OFF” <10000>
“STROBES” <10000>
“STROBES OFF” <10000>
“AIR HORN” <10000>

Figure 4.3 Sample SUI test file

Since the Lab Car tests were automated, it was possible to perform

constant testing for long periods of time. In this case testing was done on the

button press interaction events and speech command interaction events

separately over the course of one entire weekend each, spanning from Friday

evening to Monday morning (approximately sixty six hours a piece). After those

tests were complete, another round of testing was done in which both GUI and

SUI commands were issued in ten second intervals. This round of testing went

on for two weeks (approximately three hundred hours).

A program was written to verify that the recorded data matched the

automated SUI and GUI commands. The process involved first manually looking

at the recorded data to verify that the first iteration of commands matched the

testing script. Once that step was completed the first iteration of recorded data

was used as the benchmark to which all other iterations of recorded data were

compared. After more than 1.4 million lines of recorded data (covering more than

fourteen thousand iterations of automated SUI and GUI commands) were

57

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

checked, no anomalous log entries were discovered. Test results concluded that

the logging software was able to accurately keep track of Project54 user

interactions without generating systems crashes.

4.3 Driving Simulator Testing

After the Lab Car tests were completed and positive results were

generated, the program was then tested in the Project54 driving simulator. The

driving simulator, shown in Figure 4.4, is, similarly to the Lab Car, the front seat

of an automobile, but with the addition of a bank of computers and a projector

array capable of displaying virtual driving scenarios under various conditions.

Also like the Lab Car, the driving simulator is outfitted with Project54 software.

However, the driving simulator does not make use of various hardware devices,

such as lights; instead the simulator emulates most device functionality within

software (as is the case with the radar, for example). However, unlike the Lab

Car, the driving simulator is able to simulate vehicle speed. For testing purposes,

the simulator sent vehicle speed messages via IP messaging to the Project54

radar application which were interpreted as radar “patrol speed” data. Those

radar patrol speed messages were then sent from the radar application to the

Interaction Logger, to be appended to the end of every recorded user interaction

message. Since there is no autonomous driving capability within the driving

simulator, testing had to be performed manually.

The test procedure itself consisted of performing scripted tasks both in

simulated driving and parked conditions. Table 4.2 contains an example of the

58

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

script used to carry out the simulator testing. The tasks listed in the table were

performed both under simulated driving conditions and under simulated parking

conditions. In both cases the tasks were also performed using both the SUI and

the GUI. The individual tests lasted for approximately fifteen minutes apiece and

were performed a total of ten times by five different members of the Project54

team. The result of the tests, verified using the same procedure in which the Lab

Car logs were inspected, indicated that the Interaction Logger could accurately

record user interactions as well as the appropriate driving condition (moving or

stopped).

Order of Tasks Performed

Turn Front Antenna ON
Turn Lock ON
Turn Lights & Siren ON
Turn Lights & Siren OFF
Turn Lock OFF
Turns Rear Strobes OFF
Turn Rear Antenna ON
Turn Rear Antenna OFF

Table 4.2 Example of one script used to test interaction logging on the driving simulator

59

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Figure 4.4 Project54 driving simulator

4.4 Proiect54 Test Vehicle Testing

The third set of test conditions was realized during road tests, using the

Project54 show car and Chevrolet Impala to collect interaction data. The show

car and Impala are both Project54-equipped vehicles, identical in every respect

to a New Hampshire State Police cruiser. The cars are outfitted with the same

hardware (GPS, radar, radio, lights, siren, etc.) that may be found within a state

police cruiser as well as the same Project54 software configuration. The biggest

advantage to using the show car and Impala for testing was that they were able

60

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

to recreate actual in-vehicle device usage more accurately than either the Lab

Car or the driving simulator.

The Show Car and Impala testing both consisted of four experienced,

authorized Project54 employees driving while using the SUI, GUI, or hardware

controls to operate the in-vehicle equipment. The operators’ system usage was

unscripted and only served to ensure the interaction logging application was

stable. The testing went on for approximately ten hours with none of the test

subjects detected system lags or any other system performance issues during

any of the tests conducted.

4.5 Police Cruiser Deployment

Once all the test results were collected and reviewed it was evident that

the interaction logging software was stable and could accurately record in-vehicle

user interactions involving both Project54 interfaces (SUI and GUI) and the

standard device control heads. The last step as far as the information gathering

process was concerned was to implement interaction logging within actual police

cruisers. Two New Hampshire state police officers volunteered to be test

subjects for this user interaction evaluation. The Logger software was loaded in

the two police cruisers, using the batch-file installer, and recorded usage data

whenever the cruiser’s embedded computer was turned on and running

Project54. The data logging went on for twenty-eight days, at which point the

data was collected from the cruisers.

61

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Since the officers were not actually testing any software in this case, they

were asked to refrain from using either the Project54 interfaces or the standard

device controls in a manner that would be different from the way in which these

controls are normally used. It was very important to make sure that the usage

information that was recorded represented normal, day-to-day activities even if

that meant the Project54 system never got turned on. Also as part of this

evaluation, the officers were asked to fill out a questionnaire (See Appendix A).

Among other things, this questionnaire gave the officers the opportunity to state

how they felt they utilized the Project54 system during the course of their shifts.

The results from this questionnaire were compared to the data collected directly

from the police cruisers as part of this preliminary evaluation.

62

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 5

DATA ANALYSIS AND VISUALIZATION

5.1 Introduction

After twenty eight days, the interaction logs were retrieved from the police

cruisers that were used in cooperation with this research. Table 5.1 provides a

summary of the amount of data gathered from the two participating police

officers. All told, there was approximately five megabytes of information available

from both police cruisers that needed to be analyzed. To this end, a program was

created to post-process the data by way of parsing information from the original

log files and placing it into new files. The new files were then used to generate

data visualizations, meant to illustrate system usage trends. This chapter details

the design of both the information post-processing application and the data

visualization program. Visualization examples are also included to demonstrate

the usefulness of the quantitative analysis.

63

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Totals Days of
Data

Total Files of
Data

Total Amount of
Data

Mean Daily
Log File Size

Total Number of
Messages
Mean Daily

Message Count

Officer #1 Officer #2 Combined Averaged

23 days 19 days 42 days 21 days

23 files 19 files 42 files 21 files

3.6 MB 1.8 MB 5.4 MB 2.7 MB

157 kB 95 kB 129 kB 126 kB

28,611 14,456 43,067 21,533

1243 760 1025 1,001

Table 5.1 Summary of collected data statistics from two deployed police cruisers

5.2 Data Post-Processing Development

The data analysis program provides an automated solution for determining

a police officer’s Project54 usage characteristics. The software functions by

applying two main data analysis techniques - data selection and recoding - to

the raw data input stream [5], Data selection is a process by which the user

interaction events of interest are separated from “noise” data (irrelevant data).

Since a large amount.of undesirable information was never logged in the first

place, the selection process was minimal in that it only applied to ignoring certain

status messages. For example, if a speech command was issued to turn strobes

on, the corresponding event log sequence would contain both “STATUS

SPEECHIN STROBES” and “STATUS STROBES”. In this case the SPEECHIN

message contains the user interaction while the second message represents

system feedback, not an action taken by the officer. To avoid double-counting

this event, the “STATUS STROBES” message is ignored. Similarly, when a

64

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

button press is used to turn strobes on, the button-press message is logged and

the accompanying “STATUS STROBES” message is ignored.

Data recoding involves producing a new event log based on the results of

the selection process. Once data selection identifies information as being

important, that information is reorganized into a new text file. This step is

especially useful considering not all of the raw data log events follow the same

format. For instance, button press log entries do not contain the same data fields

as the speech or hardware entries. This is because the status message format,

discussed in Chapter 3, is not supported by the GUI application. Recoding the

raw data makes such format discrepancies irrelevant because once events are

recoded all the information is presented in the same fashion for analysis. A

graphical representation for the data recoding procedure is shown in Figure 5.1.

The uppermost portion of the figure contains snippets from two different log entry

lines (separated by a dashed line), taken from one of the officers’ records. For

the sake of fitting the figure better, the log entries have been edited. The boxes

around the different data fields within the “Parsed Raw Data from Officer #1”

block are color-coded to match corresponding fields within the “Data Analysis

Software: Recode Fields” block. Even though it has not been used in the

example illustrated by this figure, the box containing the Active Window field in

the second log message has been included to better illustrate the difference in

log entry formats.

65

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Officer #1

G U I : 04/26/2007 16:00:18 39954301 Project54 (Licensed to NH State Police):
Patrol Information Screen Rear Floods Button Released Velocity (mph): 0

HW: 04/26/2007 16:05:35 40270946 Source A p p : radio Active Window: pscreen
Message: STATUS CHANNEL VOL 7 Velocity (mph): 79

Officer #1

Patrol Information Screen

Velocity (mph): 0

16:05:35 Source App: radio Active Window: pscreen

Velocity (mph): 7 9Message: STATUS CHANNEL VOL 7

Data Analysis Software: Recode Fields

Officer ID

interface

Time Stamp

Task

Active Device

Vehicle Speed

Recoded Data

Officerl 16:00:18 Lights gui "Rear Floods Button Released" mph: 0
Officerl 16:05:35 Radio hw "STATUS CHANNEL VOL 7" mph:79

Figure 5.1 Data Analysis Recoding Procedure

66

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Once events had been identified as user interactions (the selection

process mentioned earlier), those data were parsed into the appropriate recoding

fields (also color-coded in the figure). For example the time stamp, shown in the

brown box of each log entry, can be thought of as being placed into the recoding

field’s time stamp bin (also shown as a brown box), then dumped into the

recoded data stream, unchanged. However, the items which refer to the

particular task an officer carries out (shown in the blue boxes) possess

information regarding both the task performed itself, and the interface used to

perform that task (i.e. SUI, GUI, or hardware). The interface is evident based on

the format of the message in that “STATUS SPEECHIN” messages must involve

the SUI, “STATUS ...” messages must involve the hardware, and any other

messages must involve the GUI. Therefore, any items contained in the raw

data’s blue boxes may be thought of as placed into both blue recoding fields’ bins

and then dumped into the “Recoded Data” file. When completed, each line of the

recoded data file would hold the same fields of information: the officer whose

data is being analyzed, a date stamp, a time stamp, the device/application used

for the interaction, the interface used for the interaction, the specific interaction

itself, and the vehicle’s speed during the interaction.

Also note that the contents of the blue box in the first raw-data event,

“Rear Floods Button Released”, have a different font color than the other data.

The color change is intended to signify the third piece of information that may be

gleaned from the message - namely that “Rear Floods” has to do with the lights

application. While the GUI-related log messages do not contain their own field to

67

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

specify the device used during a particular task, knowledge of each device’s

features/components is enough to identify which device is being used. “Rear

Floods” messages belong to lights, “Front Antenna” messages belong to radar,

“Log On” messages belong to records, etc. The same knowledge could have

been applied to those log messages within the “Source App” message field (the

red box) but it was easier to simply use the “Source App“ information when it was

readily available.

With some exceptions, the recoding procedure shown in Figure 5.1 was all

that was required to decipher interactions directly involving the Project54 system,

that is - the SUI and the GUI. However, developing a method for determining

hardware interactions had to take other factors into consideration. For one, timing

played a role in determining hardware usage. If log entries occurred too rapidly, it

was evident that a human did not perform them. Specifically, for status messages

to have been considered as candidates for hardware interactions, they had to

have occurred at least one tenth of one second after the previous known user

interaction. Though one tenth of one second may seem low for a threshold

setting, viewing the log data indicated that this time was both too fast for human

responses and too slow for computer feedback responses.

Timing cues alone were not enough to judge hardware usage.

Determining hardware interactions also involved monitoring each device’s

operational status (i.e. “ON” or “OFF” in most cases), and updating that device’s

status whenever a known interaction took place. In other words, if a speech

command was issued to turn the rear floods on, there would be an

68

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

accompanying status message that indicated the rear floods were on. While this

status message would not indicate a hardware interaction took place, the

recoding application would still have to update the rear flood’s status from “OFF”

to “ON”. If, however, a status change was observed in the front antenna without

an accompanying SUI or GUI event, it would indicate that a hardware interaction

had taken place.

The principle behind identifying hardware usage is shown in Figure 5.2.

The figure begins with reading lines from the data logs, two at a time. If the

“Current Line” (the first of the two lines read) contains either a GUI or a SUI event

message, the data on the line is recoded. Failing either of these two options, the

message is checked to see if a status change has occurred, with the application

updating the device’s status when needed. If the message happens to be at least

a tenth of a second after the previous known interaction, while simultaneously not

occurring within the same millisecond as the next line’s event, it is likely that the

current line’s event represents a hardware interaction. The lack of certainty

comes from some caveats regarding the in-vehicle devices (the bottom-most

block in the figure). These device exceptions had to be handled individually to

ensure the accuracy of the hardware interaction accounting. In order to test the

procedure, representative selections of the logs were individually analyzed by the

algorithm and compared to manual observations to ensure the algorithm

matched human perception of events.

69

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Read Lines from
Raw Data Stream

Current Line of
Raw-Data Log

i YesRecode Line as a
Valid Interaction

SUI/GUI
used?

No

Device
Status

Changed?

No Ignore Current Line -
Move to Next Line

Yes

Update Corresponding
Device Status

NoPass Timing
Criteria?

Yes

Yes . Pass
Hardware
Caveats?

No

Figure 5.2 Hardware Usage Identification Algorithm

In particular, there were two pieces of in-vehicle equipment that generated

event logs which were inconsistent with the algorithm shown in Figure 5.2 - the

70

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

light bar and the radar. The list of possible user interaction message structures,

shown in Table 5.2, was determined by manually looking through the officers’ log

files for data irregularities, in a similar fashion to Nathan Purmort’s radio traffic

analysis [26].

The first four types of logged message blocks were handled easily by the

algorithm in Figure 5.2. Accounting for more than five thousand of the almost

seven thousand total logged interactions (76% of the total interactions), the first

four types were by far the most common. The remaining types of logged

message blocks presented some conflict. Type 5 shows the case of speech

command messages getting logged in a counter-intuitive order. There were

perhaps twenty or so instances of such speech command logging present in the

data available for this research that would not have been detected because the

algorithm did not account for receiving a feedback message before the speech

command that generated it. The solution for this project was to manually go

through a copy of the raw data files and flip the order of logged events whenever

it was clear that the speech command was out of logical order with its resulting

device feedback message. In the future, however, an automated solution to this

problem should be employed.

Types 6 through 9 are examples of light bar message groupings that are

too complicated for the basic interface identification algorithm to handle. Types 6

and 7 provide GUI and SUI examples (respectively) for the use of light bar

strobes toggles. Both officers used a Whelen™ light bar and control head which

employed a three-way switch that toggled the state of the strobes, between front

71

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

strobes, rear strobes, and all strobes. The nature of this switch was such that

only one strobes state could be active at a given time. In other words, if Front

Strobes was active, Rear Strobes and All Strobes had to be off. The GUI buttons

and SUI mimicked this behavior in such a way that issuing a Front Strobes “ON”

command while another strobes state was active would automatically release

either of the other two strobes GUI buttons (if either were already active), turn off

the other strobes state, then activate the Front Strobes. In order to handle this

data series properly, the strobes states were still updated, according to the

process of Figure 5.2, but the three messages comprised only one GUI/SUI

interaction, as opposed to, say, a GUI/SUI interaction and a hardware interaction

(since, at first look it would appear as though there was an unaccounted-for

hardware command).

Types 8 and 9 indicate examples for the use of the Project54 Lights and

Siren functionality. There are situations in which police officers commonly turn on

their Front and Rear Strobes, their Wig Wags, and their Wail Siren. To speed this

process along Project54 developers added the Lights and Siren command to the

GUI and SUI. Since the functionality of activating those three Lights and Siren

functions only exists within Project54, it is possible to already have, for example,

the Wig Wags on when the Lights and Siren button is pushed down. This does

not affect the state of the Wig Wags but a log of the Wig Wags state is still

recorded when Lights and Siren is pressed. The recoding program had to

individually keep track of each of the states for the three Lights and Siren

72

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

constituents and update them as needed. The program did not count the state

change of any of the three devices as an interaction.

Types 10 and 12 represent examples for the use of the second piece of

equipment in question, the radar. The radar used in both police cruisers is the

Stalker radar, which comes with a remote control to perform hardware

interactions. Type 10 demonstrates the act of activating the Front Antenna while

the Rear Antenna is off. The main issue is the presence of the extra hardware

feedback messages, “STATUS FRONT ANTENNA SELECTED” and the second

occurrence of “STATUS FRONT ANTENNA”. The solution to this was to ignore

all “STATUS X ANTENNA SELECTED” messages as they did not provide any

information that was not readily available simply by observing the status of both

antenna arrays themselves. In this case, the recoding program ignored the

second antenna status message.

Type 11 represents those SUI/GUI commands issued to an antenna array

when the other antenna array was already active. This type of message group

was handled in the same fashion as the Type 6 strobes grouping, with the

program ignoring the extra antenna status message.

Type 12 shows an example of an antenna array hardware control. In this

case, one of the antenna arrays is already on when the remote control is used to

turn the other antenna array on. Since the program has already ignored the

“STATUS X ANTENNA SELECTED”, the only thing left for the program to do is

to make sure that only the array getting activated is recorded as a hardware

interaction, while the status of both arrays is updated.

73

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Type 1

Logged Message
XXX Button Pressed Down
STATUS XXX

or
XXX Button Released
STATUS XXX OFF
STATUS SPEECHIN XXX

STATUS SPEECHIN XXX OFF
STATUS XXX OFF
STATUS XXX

or
STATUS XXX OFF

Type 2■IH
Type 3

Type 4 Keystroke Entered: X

Type 5

Type 6

Type 7

Type 8

Type 9

Type
10

Type
11

STATUS XXX
STATUS SPEECHIN XXX

or
STATUS XXX OFF
STATUS SPEECHIN XXX OFF
Front Strobes Button Pressed Down
STATUS REAR STROBES OFF
STATUS FRONT STROBES
STATUS SPEECHIN FRONT STROBES
STATUS STROBES OFF
STATUS FRONT STROBES
Lights it Siren Button Pressed Down
STATUS LIGHTS AND SIREN
STATUS STROBES
STATUS WIG WAGS
STATUS WAIL
STATUS SPEECHIN LIGHTS AND SIREN
STATUS LIGHTS AND SIREN
STATUS STROBES
STATUS WIG WAGS
STATUS WAIL
Front Antenna Button Pressed Down
STATUS FRONT ANTENNA
STATUS FRONT ANTENNA SELECTED
STATUS FRONT ANTENNA
STATUS SPEECHIN REAR ANTENNA
STATUS FRONT ANTENNA OFF
STATUS REAR ANTENNA
STATUS REAR ANTENNA SELECTED
STATUS REAR ANTENNA
STATUS REAR ANTENNA SELECTED
STATUS FRONT ANTENNA OFF
STATUS REAR ANTENNA

A single GUI Interaction

A single SUI Interactic

A single Hardware
Interaction

A single GUI Interaction

A single SUI Interaction
(Type 2 - Order Flipped)

A single GUI Interaction
(Only seen when one of other
2 Strobes States was active)
A single SUI Interaction
(Only seen when one of other
2 Strobes States was active)

A single GUI Interaction
(Same Pattern for turning

Lights & Siren “OFF")

A single SUI Interaction
(Same Pattern for turning

Lights & Siren “OFF”)

A Single GUI Interaction
(Same Pattern for “OFF”)

A Single SUI Interaction

A single HardwareTuna STATUS FRONT ANTENNA OFF . ..
stat us re ar a n t e n n a Interaction

12 (Only seen when the other
antenna was active)

Table 5.2 Summary of logged message structures that contain usage information

74

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

5.3 Data Visualizations

Once the raw data file recoding process was complete, the result was a

series of concise data files with comparable information, one for each day of raw

data logging for each officer plus an extra file for each officer that contained the

total of all their days of interaction logging. In other words, the extra file was a

concatenation of each individual officers’ usage activity over the entire length of

their participation in this research. That means that for this research there were a

total of forty four recoded data files created. To give some sense of the amount

of information used during this research, the statistics of these files is shown in

Table 5.3.

Officer #1 Officer #2 Combined

23 days 19 days 42 days

23 files + 1 19 files + 1 44 files

380 kB 135 kB 515 kB

17 kB 7 kB 12 kB

4938 1793 6731

214 160

Total Days of
Recoded Data
Total Files of
Recoded Data

Total Amount of
Recoded Data

Mean Daily
Recoded File Size
Total Number of

Interactions
Mean Daily

Interaction Count
Table 5.3 Summary of recoded data statistics from two deployed police cruisers

75

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

The next step in the post processing was to develop a MATLab-based

visualization tool that could present the data graphically in order to accentuate

the manner in which the Project54 system was used to carry out various user

interactions. The different visualizations created by this tool are separated into

so-called cells, a feature available in MATLab release R2006a. Using cells, the

user can generate visualizations one at a time, which is faster than waiting for all

the visualization figures to be produced. Also, the cells contain customization

options such as creating visualizations that focus on what interactions take place

while a police officer is driving.

The focus was not only on making sure data visualizations could be

created automatically using this tool, but also to investigate which data

visualizations were preferable. To that end, samples of the visualizations

contained in the remainder of this chapter were shown to eight different research

assistants within the Project54 design team, ranging in experience from several

months to over three years. Not only did their feedback (which will be discussed

during the introduction of each different set of visualizations) provide insight into

which graphical representations were preferred, but also their input lead to

several beneficial changes in the visualizations themselves. All of the

visualization examples shown in this chapter are divided into two sections:

information recorded while the police cruisers were moving and information

recorded while the police cruisers were stopped. This information was received

via GPS velocity data during the logging process. However, the police cruisers

were not always within GPS signal reception areas so the counts of interactions

76

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

and interface usage may not, in some cases, accurately reflect the total amount

of activity going on within the vehicles. That being said, all identifiable user

interactions were recorded during the logging process, regardless of whether or

not the vehicle speed was available. The Logger noted the lack of vehicle speed

data whenever such cases were present.

The first visualizations covered are the histograms. The histograms were

included as an example of a visualization engineers were likely to feel

comfortable dealing with, due to the likelihood of having come across them many

times in the past. It came as no surprise that the engineers who viewed these

visualizations found that, while the histograms tended to be the most “boring” of

the visualizations, these presentations also required the least amount of

explanation or time to understand. The main drawback to the histograms is that

they can become hard to read, as is the case in Figure 5.3 through Figure 5.6.

These four figures show interface usage while driving and while stopped (Figure

5.3 and Figure 5.4, respectively) as well as general device usage (lights, radar,

radio, and records) while driving and while stopped (Figure 5.5 and Figure 5.6,

respectively) from the two police officer participants. The data was averaged

together over the course of all the days of their participation. That usage

information is then presented as if it all transpired over the course of one day

(one twenty-four hour period). While the information only covers a very small

sample set, certain trends do tend to emerge. Among these trends are that the

time corresponding to the evening commute tends to see a rise in activity, the

GUI is the most frequently used interface while the vehicle is stopped, and the

77

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

officers tend to spend their time running records checks when they are stopped

more than any other in-vehicle activity.

The spikes shown in Figure 5.3 and Figure 5.5 are not anomalies. The

spike at “Hour 1” (in both figures) is a result of one of the officers running records

checks that made heavy use of the “Scroll Up” and “Scroll Down” GUI buttons

during one of his shifts. The spike at “Hour 24” (in both figures) indicates that that

same officer was turning his front antenna on and off repeatedly during the same

shift that produced the “Hour 1” spike. This procedure is called “Hold Mode” and

is done to avoid tipping-off drivers who may have radar detectors. The spikes

shown in Figure 5.4 and Figure 5.6 are not anomalies either. All the GUI spikes

(in both figures) are a result of one of the officers entering information into text

fields during records checks over several shifts. The records checks also

involved use of the “Scroll Up” and “Scroll Down” GUI buttons.

78

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

First 2 Officers: Averages of interfaces Used by Hour, While Driving (All Days)
120

100
£
0o£O

CM

Eo
w
0
o>ro0
< 60

c3OO
0o>
S 403
0O
'fc
0

— 20

Hour of the Day (24-Hour Period)

|SU I
I GUI
I Hardware

Figure 5.3 A histogram of interface usage while the police were driving

First 2 Officers: Averages of Interfaces Used by H our, While Stopped (All Days)
180

160

g 140

£ 120

80

60

40

20

Hour of the Day (24-Hour Period)

^■sui
EH] gui

Hardware

Figure 5.4 A histogram of interface usage while the police were stopped

79

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

First 2 Officers: Averages of Tasks Performed by H our, While Driving (All Days)
120

100

co<DO£O
CM

Eg
CO<DO)CO

Hour of the Day (24-Hour Period)

I Lights
9 Radar
1 Radio
I Records

Figure 5.5 A histogram of interactions while the police were driving

First 2 Officers: Averages of Tasks Performed by H our, While Stopped (All Days)
180

i I H Lights
| E M Radar
: 1 f I Radio
1 ; Records160

£ 140

™ 120

® 100

80

40

ilk
Hour of the Day (24-Hour Period)

Figure 5.6 A histogram of interactions while the police were stopped

80

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

The interface usage plots shown in Figure 5.7 and Figure 5.8 represent

the average usage (averaged by officer) of lights, radar, radio, and records for

both participants over the course of all days in which data was collected. The rest

of the histograms presented in this thesis act as subsets of these two figures.

First 2 Officers: Average Interface Usage for All Tasks , While Driving (All Days)

1800-

1600-

§ 1400-O
<5
^ 1200-
©
CD

Interface Percentages

Figure 5.7 A histogram of in-vehicle interface usage while driving

First 2 Officers: Average Interface Usage for All Tasks , While Stopped (All Days)

£ 2500

§>2000

-o 1 0 0 0

SUI (8%) GUI (74%)
Interface Percentages

HW (19%)

Figure 5.8 A histogram of in-vehicle interface usage while parked

81

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

The next set of histograms (Figure 5.9 through Figure 5.16) demonstrates

the ability of the analysis program to generate results capable of examining any

link between the device to be controlled and the interface used to control that

device. The plots show the interface usage by task (lights, radar, radio, and

records). Each task has been further divided into two subsets indicating the

difference in interface usage while the officers were driving or stopped when

performing their tasks. For example, there are two figures that show the average

of the two officers’ interface preferences for controlling lights - one figure show

preferences while driving and the other show preferences while stopped. One of

the interesting results of the light bar control plots, in particular, is that they tend

to go against what the police officers stated on their questionnaires. More

specifically, the officers said they preferred to use the original hardware controls

more than Project54 to operate the lights. In general, the SUI tended to be the

least popular method for controlling devices, while the GUI tended to be the most

popular, regardless of whether or not the officer was driving at the time. The

exception appears to be with the radio. By and large the radio control head was

used to execute radio functions, however nearly all of the radio operations

involved changing the volume, which will be shown later.

82

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

First 2 Officers: Average Interface Usage for Lights, While Driving (All Days)
150 r---------------------i--- .--1-----------------

Interface Percentages

Figure 5.9 A histogram of in-vehicle interface preferences for controlling the light bar,
while driving

First 2 Officers: Average Interface Usage for Lights, While Stopped (All Days)

120 -

- ^ 100 -
©

e
o

Interface Percentages

Figure 5.10 A histogram of in-vehicle interface preferences for controlling the light bar,
while stopped

83

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

First 2 Officers: Average Interface Usage for Radar, While Driving (All Days)

° 150 -

Interface Percentages

Figure 5.11 A histogram of in-vehicle interface preferences for controlling the radar, while
driving

First 2 Officers: Average Interface Usage for Radar, While Stopped (AH Days)

90" ' ' r

80-

8 7 0 '

Interface Percentages

Figure 5.12 A histogram of in-vehicle interface preferences for controlling the radar, while
stopped

84

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

First 2 Officers: Average Interface Usage for Radio, While Driving (All Days)

2 5 0 -

Interface Percentages

Figure 5.13 A histogram of in-vehicle interface preferences for controlling the radio, while
driving

First 2 Officers: Average Interface Usage for Radio, While Stopped (All Days)

SUI (2%) GUI (1%) HW (97%)
Interface Percentages

Figure 5.14 A histogram of in-vehicle interface preferences for controlling the radio, while
stopped

85

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

First 2 Officers: Average Interface Usage for Records, While Driving (All Days)

interface Percentages

Figure 5.15 A histogram of in-vehicle interface preferences for performing records checks,
while driving

First 2 Officers: Average Interface Usage for Records, While Stopped (AJI Days)

Interface Percentages

Figure 5.16 A histogram of in-vehicle interface preferences for performing records checks,
while stopped

86

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Due to what appeared to be a discrepancy between how the officers

stated they preferred to operate their light bar assemblies and what the recorded

data indicated they preferred, the next set of histograms takes a closer look at

the lights usage (Figure 5.17 through Figure 5.20). The only apparent link

between interface usage and whether or not the officer was driving is that the

officer tended to rely more on the hardware controls and less on the SUI, when

stopped as opposed to driving. The GUI was used consistently both while driving

and while stopped. The results from the officers’ questionnaire responses

indicated that they use the original hardware controls to turn light bar functions

on and Project54 interfaces to turn off light bar functions. However, the available

usage information from these two officers conflicted with their questionnaire

responses.

87

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

First 2 Officers: Average Interface Usage for Turning Front Strobes ON, While Driving (All Days) First 2 Officers: Average Interface Usage for Turning Front Strobes OFF, While Driving (All Days)

SUI (0%) GUI (25%) HW (75%) SUI (0%) GUI (33%) HW (67%)
Interface Percentages

a)
First 2 Officers: Average Interface Usage for Turning Rear Strobes ON, While Driving (AH Days) First 2 Officers: Average Interface Usage for Turning Rear Strobes OFF, While Driving (All Days)

Interface Percentages

b)

SUI (30%) GUI (57%) HW (13%) SUI (16%) GUI (68%)
Interface Percentages

HW (16%)
Interface Percentages

c) d)
First 2 Officers: Average Interface Usage for Turning Strobes ON, While Driving (All Days) First 2 Officers: Average Interface Usage for Turning Strobes OFF, While Driving (Alt Days)

SUI (33%) GUI (41%) SUI (20%) GUI (67%)
Interface PercentagesInterface Percentages

e) f)

Figure 5.17 Histograms of in-vehicle interface preferences for controlling various strobes
functions, while driving

88

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

First 2 Officers: Average Interface Usage far Turning Rear Floods ON, White Driving (All Days) First 2 Officers: Average Interface Usage for Turning Rear Floods OFF, White Driving (AD Days)
25 r

SUI (36%) GUI (64%)
Interface Percentages

SUI (24%) GUI (76%) HW (0%)
Interface Percentages

a) b)
First 2 Officers: Average Interface Usage for Turning Wig Wags ON, While Driving (Alt Days) First 2 Officers: Average Interface Usage for Turning Wig Wags OFF, While Driving (Aff Days)

2 .5 r

GUI (40%) HW (0%)
Interface Percentages

GUI (60%) HW (20%)
Interface Percentages

c) d)
First 2 Officers: Average Interface Usage for Turning WaH ON, While Driving (All Days) First 2 Officers: Average Interface Usage for Turning Wail OFF. White Driving (AD Days)

| 1

SUI (56%) GUI (0%)
Interface Percentages

GUI (11%)
Interface Percentages

e) f)
Figure 5.18 Histograms of in-vehicle interface preferences for controlling various non­

strobes light bar functions, while driving

89

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

F irst 2 Officers: Average Interface Usage for Turning Front Strobes ON. W hite Stopped (AB D ays) F irst 2 Officers: Average Interface Usage for Turning F ront S trobes OFF, W hile Stopped (A ll Days)

GUI (25%)
Interface Percentages

SUI(0%) GUI (25%) HW (75%)
Interface Percentages

a) b)
First 2 Officers: Average Interface Usage for Turning Rear Strobes ON. While Stopped (AM Days) First 2 Officers: Average Interface Usage for Turning Rear Strobes OFF, WhHe Stopped (All Days)

GUt (63%)
Interface Percentages

SUI (22%) GUI (50%) HW (28%)
Interface Percentages

c) d)
First 2 Officers: Average interface Usage for Turning Strobes ON, While Stopped (All Days) First 2 Officers: Average Interface Usage for Turning Strobes OFF, While Stopped (All Days)

GUI (50%)
Interface Percentages

O 10

GUI (32%)
Interface Percentages

e) f)
Figure 5.19 Histograms of in-vehicle interface preferences for controlling various strobes

functions, while stopped

90

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

First 2 Officers: Average Interface Usage for Turning Rear Floods ON. While Stopped (All Days)
15 .------------------- .--------------------------------=-------1---------------------------------------.-------------

F irst 2 Officers: Average Interlace U sage for Turning Rear F loods O FF. W hile Stopped (AN D ays)

GUI (77%) HW (10%)
Interface Percentages

GUI (71%)
Interface Percentages

HW (6%)

a) b)
First 2 Officers: Average Interface Usage for Turning Wig Wags ON, While Stopped (All Days) First 2 Officers: Average Interface Usage for Turning Wig Wags OFF, While Stopped (AH Days)

0.9

"S' na
.y
o 0.7
Q.
3 0.6
e

< 0.5

« 04

o

* ■
F
Z 0.2

0.1

0
GUI (50%)

Interface Percentages
GUI (67%)

Interface Percentages

c) d)
First 2 Officers: Average Interface Usage for Turning Wail ON, While Stopped (All Days) First 2 Officers: Average Inlerfece Usage for Turning Wail OFF, While Stopped (AH Days)

GUI (100%)
Interface Percentages

0.9

9 0.8
£
o 0.7
§.

0.6
s

< 0.5
09
09 0.4
3

0.3

1
z 0.2

0.1

0
GUI (100%)

Interface Percentages
HW (0%)

e) f)
Figure 5.20 Histograms of in-vehicle interface preferences for controlling various non­

strobes light bar functions, while stopped

91

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

As stated earlier in this chapter, the radio appeared to be the only device

that the officers tended to prefer controlling with the original hardware control

head (See Figure 5.21 and Figure 5.22). Further investigation revealed that, far

and away, the radio control head was used to change the radio volume. The

other radio functions tended to be controlled via SUI just as much as via the

hardware control head while the vehicles were moving. It appeared as though the

officers’ interface preferences were task-driven. In other words, they prefer to

use a particular interface to perform a particular task, regardless of whether or

not they are driving at the time.

92

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

First 2 Officers: Average Interface Usage for Rado Volume Control, While Driving (AH Days) First 2 Officers: Average Interface Usage for Radio Scan Control, White Driving (AH Days)

S. 150

I

GUI (0%)
foterfece Percentages

a)
First 2 Officers: Average Interface Usage for Radio Troop Changes, While Driving (All Days)

5 3 "5
I 2

GUI (0%)
Interface Percentages

c)
First 2 Officers: Average Interface Usage for Radio Channel Changes, White Driving (All Days)

£ 0.4

GUI (0%)
Interface Percentages

SUI (50%) GUI (50%)
Interface Percentages

HW (0%)

b)
First 2 Officers: Average Interface Usage for Radio Zone Changes, While Driving (AH Days)

£ 2 £

GUI (0%)
Interface

d)

e)
Figure 5.21 Histograms of in-vehicle interface preferences for controlling various radio

functions, while driving

93

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

First 2 Officers: Average Interface Usage for Radio Volume Control, While Stopped (All Days)

250

g* 150

First 2 Officers: Average Interface Usage for Radio Scan Control, W hile Stopped (AB D ays)

3 100

GUt(0%)
Interface Percentages

HW (100%)

a)
First 2 Officers: Average Interface Usage for Radio Troop Changes, While Slopped (All Days)

SUI (100%) GUI (0%)
Interface Percentages

HW (0%)

c)
First 2 Officers: Average Interface Usage for Radio Channel Changes, While Stopped (All Days)

GUI (0%)
Interface Percentages

HW (57%)

SLR (63%) GUI (38%)
Interface Percentages

HW (0%)

b)
First 2 Officers: Average Interface Usage for Radio Zone Changes, While Slopped (AH Days)

4.5
I 4

« 25 ®3 2
'o
£ 1.5
E
2 1

sm (18%) GUI (0%)
Interface Percentages

d)

e)
Figure 5.22 Histograms of in-vehicle interface preferences for controlling various radio

functions, while stopped

94

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

More than the histograms, the remaining data visualizations truly utilize

different techniques, including coloring, location, and object size, in order to

convey the analysis results. With the exception of the 3D plots (the last

visualizations described), the remaining visualizations were geared more towards

law enforcement officials and other non-technical observers. This is not to say

they do not convey the same level of information, however. To the contrary, the

remaining visualizations were generated using the same information as the

histograms, merely expressed in a different fashion.

The next set of visualizations (Figure 5.23 and Figure 5.24) was ranked

fourth out of the five different visualizations, by the Project54 research assistants

who reviewed the images. This was mostly due to two factors. First, the original

image contained an extra “button” placed between the “Project54” button and the

“Hardware” button, which only served to confuse observers as to its meaning.

The second complaint was that these two images present the same information

as the next set of images (Figure 5.25 and Figure 5.26), but with less information

resolution regarding what Project54 interfaces were preferred. Still, Figure 5.23

and Figure 5.24 are useful in that they may immediately answer the questions,

“Do police officers tend to prefer Project54 interface controls over the original

hardware controls?” This is because the data that generates these visualizations

takes into account the usage preferences for all tasks done by both officers, and

for all days on which data was collected. The more the officers used Project54 to

perform tasks, the more the colored police officer silhouette in the figure would

turn green. This color indicator also had an arrow that pointed to the region of the

95

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

color meter that corresponded to the officers’ level of Project54 usage vs.

hardware control usage. The result appears to be that for the two participating

officers, Project54 was the preferred method for device control, based on

available usage records.

In Figure 5.23 and Figure 5.24, the officer’s silhouette changed color

based on the average of interface usage for both participants. In other words the

averages for SUI, GUI, and hardware usage were calculated in the MATLab

visualization program. With those numbers on hand, the program was then able

to treat the SUI, GUI, and hardware values as weights that affected how much

red, green, and blue coloring was added to the silhouette. In order to actually add

the color the x-y coordinates for a rectangle large enough to just fit the officer’s

silhouette were used in the program to define the region to which color was to be

added. The original silhouette color was red with a black outline. The only other

color present in the defined rectangle was white. The program ignored pixels

within the defined rectangle that were either white or black and augmented the

rest according to:

p ix e l(x ,y ,n) = 255 - [255 x (S U I + G U I)] + (255 x hardw are)

p ixe l(x , y , 3) = 0

The value pixel refers to the image pixel whose color is to be augmented. The

values x and y were the coordinates within the defined rectangle at which color

was to be added. The value n was either 1 or 2, and represented the red or

green layer of the original image, respectively. In order to avoid blue colors within

96

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

the image, n = 3 was set to zero (black). The value SUI is the count of times the

SUI was used, averaged over both participants. The value GUI is the count of

times the GUI was used, averaged over both participants. The value hardware is

the count of times hardware was used, averaged over both participants. MATLab

defines the maximum amount of color to be 255, so (255,255,255) is the red-

green-blue (RGB) representation for white. For example, to add green color to

the figure (n =2), the equations starts from an assumed full-green color value

(255) and subtracts off an amount of green that has been weighted by the sum of

SUI and GUI interactions. Then the program adds back an amount of green,

weighted by the total number of hardware interactions.

The other addition to the original image, the arrow, was created by using

MATLab’s arrow annotation. The arrow was only free to vary about the y-axis,

where it was bounded from a minimum value of 0.25 to a maximum value of 0.8.

The values for these bounds were derived based on the notion that the total y-

axis range of the image went from 0 to 1. Within the y-axis bounds, the arrow

was free to move up or down based on:

, 1 hardware S U I + G U I
a rrow head - — - --------------- +-----------------

2 2 2

The value arrow head refers to the location on the image of the head of the

pointer arrow. The value SUI is the count of times the SUI was used, averaged

over both participants. The value GUI is the count of times the GUI was used,

averaged over both participants. The value hardware is the count of times

97

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

hardware was used, averaged over both participants. In words, the arrow head

started at the middle of the image (0.5) and moved up based on the amount of

Project54 (SUI and GUI) usage and down based on the amount of hardware

usage. Dividing both usage numbers by two was done to reduce the affect of the

usage values on the arrow head’s overall displacement from the middle of the

image.

First 2 Officers: Preference fo r Project54 vs. Hardware (Averaged per Officer), White Driving (All Days)

Figure 5.23 Use of color to contrast preference for Project54 vs. original controls, while
moving

First 2 Officers: Preference for Project54 vs. Hardware (Averaged per Officer), While Stopped (Al Days)

Figure 5.24 Use of color to contrast preference for Project54 vs. original controls, while
stopped

98

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Like Figure 5.23 and Figure 5.24, the images shown in Figure 5.25 and

Figure 5.26 use color to represent interface preferences. Unlike the former two

images, the latter two break down Project54 interfaces into SUI and GUI

components. For this reason more than any other, those who reviewed the

visualizations found this set of images to be the second-best. The image is

straight-forward to understand - the police officer silhouette in the upper right-

hand corner changes color depending on the relative popularities of the three

interfaces. The black dot located within the color triangle will gravitate towards

the most popular interface as well. The results of this analysis indicate that the

two police officers tended to prefer the GUI over the other two interfaces,

especially while stopped. SUI usage actually increased while the officers were

driving, which is the ideal scenario.

The technique used to change the officer’s silhouette color in Figure 5.25

and Figure 5.26 was very similar to the technique described for adding color to

Figure 5.23 and Figure 5.24. The only change came in the equations used to

alter the color, which were:

p ix e l(x ,y , l) = 255 + (255 x S U I) - (255 x G U I) - (255 x hardware)

p ix e l(x ,y ,2) = 255 - (255 x S U I) - (255 x G U I) + (255 x hardw are)

p ix e l(x ,y ,3) - 255 - (255 x S U I) + (255 x G U I) - (255 x hardware)

The value pixel refers to the image pixel whose color is to be augmented. The

values x and y were the coordinates within the defined rectangle at which color

was to be added. The value 1, 2, or 3 represents the red, green, or blue layer of

the original image, respectively. The value SUI is the percentage of times the SUI

99

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

was used, averaged over both participants. The value GUI is the percentage of

times the GUI was used, averaged over both participants. The value hardware is

the percentage of times hardware was used, averaged over both participants.

Since the SUI button on the original image is red, SUI has a positive red color

shift and negative green and blue color shifts. GUI and hardware usage obey the

same trend, according to the set of equations.

The addition of the black dot within the original image was created by

using MATLab’s ellipse annotation. The image length is normalized so that the

point (0, 0) represents the lower left-hand corner of the entire image and the

point (1 ,1) represents the upper right-hand corner of the image. The starting

location of the dot is the center of the image, (0.5, 0.5). The dot is free to move

within a defined triangular region that is located within the color-gradient triangle,

with bounds at the three vertices, (0.33, 0.3), (0.49, 0.67), and (0.65, 0.3). These

values correspond to locations within the original image, as defined by

normalized x- and y-axes. Within the bounded “inner” defined triangle, the dot

was free to move around according to:

, _ _ hardware G U I
x coord — 0.5 +

y coo rd - 0.5 +

4.5 4.5
S U I G U I hardware

4.5 4.5 4.5

The value xjcoord refers to the dot’s x-coordinate. The value y_coord refers to

the dot’s y-coordinate. The value 0.5 in each of the equations refers to the

starting point for the x- and y-coordinates. The value SUI is the percentage of

100

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

times the SUI was used, averaged over both participants. The value GUI is the

percentage of times the GUI was used, averaged over both participants. The

value hardware is the percentage of times hardware was used, averaged over

both participants. In words, the dot’s x-coordinate shifts to the right (positive x-

direction) based on hardware usage and to the left based on GUI usage,

according to their x-axis locations within the colored triangle. Similarly, the y-

coordinate shifts up (positive y-direction), based on SUI usage and down, based

on both GUI and hardware usage.

For example, if an officer used the SUI for 50% of the total interactions

performed, the GUI for 30% of the total interactions, and hardware for the

remaining 20% of the total interactions, the dot would be located at the

coordinates (0.47, 0.5), according to:

, n c 0.2 0.3
x coord = 0.5 H----------------

4.5 4.5
, 0.5 0.3 0.2

y coord — 0.5 H------------------------
4.5 4.5 4.5

For the scenario in which an officer used each interface for a third of the total

interactions, the dot would be located at the coordinates (0.5, 0.43). The dot does

not remain at the starting location due to the equations governing its movement.

However, the importance of the dot’s movement is that it gives an intuitive

interpretation for how the police officers perform interactions.

101

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

First 2 Officers: Interface Preferences (Averaged per Officer), While Driving (All Days)

Figure 5.25 Use of color and location to indicate interface preferences, while moving

First 2 Officers: Interface Preferences (Averaged per Officer), While Stopped (All Days)

Figure 5.26 Use of color and location to indicate interface preferences, while stopped

102

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

The fourth set of visualizations, shown in Figure 5.27 and Figure 5.28

were the overwhelming favorite of those Project54 employees who viewed the

five different data presentation styles. The two images show the results of a

button-press analysis and a speech command analysis (respectively) performed

while the active window was the Patrol Screen. The background of the image is

an actual screen shot from the Project54 Patrol Screen that matches the Patrol

Screen from the two officers’ police cruisers. To show the frequency with which

buttons were pressed or speech commands were issued, the visualization

program gave the columns of buttons different intensities of color - blue for

button presses and red for speech commands. The amount of color was

determined within the visualization program by normalizing the number of count

of button presses (or speech commands) for each button. Once the program

normalized the values they were scaled up by a factor of 85 in order to allow 85

different color “chunks” to be defined for button-coloring purposes. Remember

that the maximum amount of color is 255; dividing the maximum amount by 85

means that each color “chunk” is capable of changing the image’s button color by

3 color units. Before the program applied colors to the buttons, it first set all the

buttons to white. This was done mainly to aid observers in detecting unused

buttons but it also simplified the coloring algorithm, which was:

bu tton {i,ri) — bu tton {i,r i) — # C olorChunks(k)

103

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

The value button refers to a particular button on the Project54 GUI window; both

button references deal with the same window button. The values for / ranged

from 1 to 18 and corresponded to the number of buttons on the Project54

window. The values for n, used again to represent the RGB image layers, were 1

to 3. The values for k represent red and green for the GUI case (green and blue

for the SUI case). The value #ColorChunks refers to the number of discrete color

“chunks” used to color the buttons, as described earlier in this paragraph. In the

GUI usage case, the more a button was pressed the more red and green were

subtracted, leaving only blue. Similarly, in the SUI usage case, the more a

speech command was used the more green and blue color was subtracted,

leaving only red. The color bar next to each screen shot relates the amount of

blue or red color to a percentage of button presses or speech commands,

respectively. For example, approximately 18% of the total button presses were

used to operate the Rear Floods, while the Patrol Screen was the active window.

The images indicate a preference for using Project54 commands to control the

strobes functions as well as the antenna arrays. There does not appear to be a

bias towards one interface over the other in the button coloring, but that bias

becomes clearer by noticing that button presses were performed 793 times, as

opposed to speech commands, which were only performed 253 times within the

same time frame.

104

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Officer #1: Patrol Screen Button Usage (All Days)
Color Bar Indicates Percentage of Total Button Presses (Total Presses = 793)

Emer­
gency
Signals

Radio
:ontrolsRadar

Lights
4 Siren

Front
Strobes

Figure 5.27 Use of screen shot and color overlays to indicate button preferences

Officer #1: Patrol Screen Speech Command Usage (All Days)
Color Bar Indicates Percentage of Total Commands (Total Commands = 253)

Emer­
gency Records
Signals

Main
Screen

Radio
'ControlsRadar

Rear
Antenna

Lights
& Siren

Take
downs

Front Rear
Strobes Strobes

Figure 5.28 Use of screen shot and color overlays to indicate speech command
preferences

105

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

The final two data visualizations to discuss, the 3D plots shown in Figure

5.29 and Figure 5.30 were overwhelmingly the least favorite data representation

style shown to the review group. The major problem was being able to read the

results of the representation, as it can be very challenging to represent three-

dimensional data on a two-dimensional medium, such as paper. To make

matters more interesting, this visualization actually contains four dimensions. The

data shown in the figures is, again, averaged over the number of officers (in this

case, 2). The percentage of each device usage that was performed by the SUI is

plotted on the x-axis. The percentage of hardware used is plotted on the y-axis.

The percentage of the GUI used is plotted on the z-axis. Therefore, the radar

was controlled approximately 12% of the time with the SUI, 58% of the time with

the radar remote control, and 30% of the time with the GUI. If the plot only

contained these relative percentages there would be no way of knowing, overall,

how much each device was used. It is for this reason that the fourth dimension,

the sizes of the cubes themselves, is useful. The larger the cube appears, the

more that corresponding device (or application) is used, relative to the other

available devices. For example, in both images Records is the largest box, which

means it is the most-often used. The legend has been added to further reduce

ambiguity in reading the plots. The legend is sorted in a top-down fashion, based

on the percentage of GUI used for each device. The Records application uses

the GUI the most so it is listed first on the legend. The radio uses the GUI the

least so it is listed last in the legend. Finally, dotted lines and projections are

used as another measure to help make reading the visualizations easier. The

106

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

red-colored lines may be traced down to the x-y plane where the hardware and

SUI percentages may be read. The other two dotted lines may be traced to their

respective coordinate planes in a similar fashion where projections have been

placed by the program to aid reading the 3-D plot. The two plots indicate

interface preferences while the officers are driving and while they are stopped. It

is evident both that running records checks was the most-performed task while

the cruiser was stopped and that the officers used speech more for controlling

lights than for anything else while driving.

This last set of figures is an excellent example of creating visualizations

with enough flexibility to display different data sets without the need for altering

program code. Initially the program was designed to allow the x-axis to change

length depending on how much the SUI was used. While this effectively zoomed

in on the 3D cubes, it created the issue of needing to adjust the x- and y-label

locations every time the SUI usage percentage changed. Though the updated

visualizations do not zoom in on the cubes, they are suited to handle any set of

interface usages.

107

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

First 2 Officers: Controller Usage, Based on Task (Averaged per Officer), While Driving (All Days)

[Records
I Lights
[Radar
[Radio

100

£Z<3>
>

LU
<D
Q .
tn
c:
o
u
CD

4 0 -o

cQ)
O
0)a
<DO)
CO

60

1C0100

Figure 5.29 Use of 3-D imaging to represent tasks by interface preference, while moving

108

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

First 2 Officers: Controller Usage, Based on Task (Averaged per Officer), While Stopped (All Days)

■Records

8 Lights
]R a da r

I Radio

100

oF

CD
O .
toc
o€
CO

&
cz

3O
o
CDO)COc
CDO
CD

CL0>Ch2
CD><

C e r,te g e o f i - f o r r] 50 ^

ons p e r£ verlf
100100

Figure 5.30 Use of 3-D imaging to represent tasks by interface preference, while stopped

109

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 6

CONCLUSION

6.1 Research Conclusions

The first goal of this research project was to provide Project54 software

developers and law enforcement officials with tools capable of conducting a

comprehensive quantitative study into how police officers tend to use the

Project54 system to operate the devices within their vehicles. This was

accomplished by developing an application that could record all the user

interactions within police cruisers and save that information in text files. The

logging application employed knowledge of what messages constituted user

interactions of interest, as suggested by Hilbert [4], Green [6], and Badre [7].

Those text files were then used as inputs to an analysis application that was

designed to recode the raw data into comparable information fields. Finally, a

visualization application was developed to display the results of the data

analysis.

The second goal was to investigate the effectiveness of different analyses

at conveying conclusive results to both the system designers and the law

enforcement officials. This was accomplished by developing five different data

presentations, a standard histogram plot, a 3D data plot, a screen shot with

colored-button overlays, and two images that made use of coloring a cartoon

110

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

police officer’s silhouette in order to indicate interface preferences. The technique

for using Project54 screenshots [5] with color intensifiers [10] exemplified the

positive results that could be achieved by merging two distinct, accepted

visualization methods in order to make use of the strengths from both. The 3D

plot, the cartoon police officer images, and the screen shot with button overlays

all made use of colors (especially red, green, and blue) in order to enhance each

visualization’s ability to convey conclusive data results, as explained by Healey

[13]. The visualizations (especially the three-dimensional visualizations) were

also created with flexibility in mind in order to maximize their reusability, which

was suggested in Humphrey’s work [14]. All the visualizations shown in this work

were flexible enough to portray different data sets without making any alterations

to the visualizations themselves. In other words, if different usage data from

different officers was supplied to these visualizations, the results would be very

similar to those shown in this thesis without having to make any changes to the

program that generates the images. The five different visualizations were shown

to eight research assistants within the Project54 design team to get their

impressions. Once their feedback was received, the visualizations were altered

to more clearly present the analysis results.

The research also involved a multi-tiered testing process that made use of

the Lab Car, the driving simulator, road vehicle testing, and finally deployment

into two police cruisers. The test results demonstrated that the data collection

application was stable, did not induce any device operation delays, and

accurately logged usage information as it was designed to do. The results of the

111

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

vehicle deployment not only provided insights into how the participants were

utilizing the device controls available to them, but also the data was useful for

making improvements to the recoding algorithm. This was the case because the

participants used the interfaces available to them in ways that were unaccounted

for in previous test scenarios. The improvements to the data recoding algorithm

ensured that future use of this same analysis program would generate valid

results with minimal code refinements.

As a result of this thesis, Project54 developers were able to collect usage

information from any Project54-equipped vehicles in service and use that

information to extract interface usage patterns over the entire data pool.

6.2 Future Work

The current version of the Interaction Logger relies on GPS data for its

vehicle speed information. This is undesirable for several reasons. First, the

vehicles are not always within GPS range and so their speed is not always

known. Second, many police cruisers do not posses GPS units and it may be the

case that an officer’s GPS unit could break during data collection. In either case

the result would be that vehicle speed would not be known. Third, the GPS unit

takes time to receive updates. During this span of time it is possible that the

recorded vehicle speed would no longer adequately match the actual vehicle

speed. In order to improve the likelihood of marking data records with accurate

vehicle speeds, the next release of the Logger should make use of the OBDII

application. This application receives vehicle speed updates directly from the

112

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

cruiser’s vehicle speed sensor so there is no chance of being out of range.

Further, if the vehicle speed is the only feedback received from the OBDII

application, the speed will refresh several times a second instead of once every

several seconds so the recorded vehicle speeds would be far more accurate.

The Interaction Logger would also be improved if all the Speech

input/output application’s feedback messages were recorded. It could be

especially beneficial to monitor commands that give insight into timing issues,

such as how long it takes when a records query is initiated before the records are

made available. Knowledge of potential timing issues associated with speech

usage would also prove useful for applications that utilize real-time speech

interactions, such as the Project54 GPS-based mapping software, currently in

development.

Another worthwhile change that could be made to the Interaction Logger

would be to eliminate its sniffer functionality. Currently the application only makes

use of sniffed messages in order to determine the active window during

Project54 user interactions. It may be beneficial to retrieve the active window

information contained within the P54Gui component or to identify the active

window based on the currently active speech grammar file. With the Interaction

Logger’s sniffer functionality replaced, there would still be knowledge of the

active window but the messages received and handled by the logging application

would effectively be cut in half.

Formal end-to-end testing of the data analysis software should be

conducted to verify that the analyses employed in this research will be valid for

113

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

new data sets. A Project54 system test script should be created with a known

number of user interactions. That script should then be given to several different

test subjects to perform. The test results should first be compared against the

original script to verify that all activities were performed properly. Next, the

number of interactions reported by the analysis software should be compared to

the number of interactions within the script. The successful test will yield

matching results after both comparison steps.

The addition of Active Window information should be included in all data

analyses. Currently only the screenshot analysis makes use of the active window

but, by providing knowledge of the Active Window to all analyses, further

judgments may be made as to its relevance in how users interact with Project54.

Adapting the analysis software to recode Active Window information will not be

difficult because that information is already available within the recorded

interaction text files.

To reduce the likelihood of interface usage scenarios that have been

unaccounted for to this point in the recoding application’s lifetime, it may

beneficial to enhance the recoding algorithm. One way to accomplish this would

be to read information from the raw data logs three lines at a time, instead of just

two. Using this approach, the algorithm will have knowledge of previous data

entries as well as future data entries. This will not only accurately catch user

interactions that were logged out of logical order but also it could provide a

cleaner approach to handling the message blocks that deal with strobes- and

antenna-switching functionality.

114

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Another improvement to the data analysis application would be to add

data abstraction [5]. Data abstraction would allow groups of interactions to be

combined to form a logical user tasks. For example, an officer may have to use

several GUI button presses to change the radio volume to the desired level or

use several keystrokes to generate a license plate check. Grouping the

interactions into tasks (“Radio Volume Change” and “License Plate Check” for

instance) would shift the focus from studying sources of driver distraction

(multiple GUI interactions to accomplish certain jobs) to studying which interfaces

the officers prefer to utilize to perform tasks.

115

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

REFERENCES

[1] A. L. Kun, W. T. Miller, III, W. H. Lenharth, "Project54: Introducing
Advanced Technologies in the Police Cruiser," IEEE Spring VTC2002,
Birmingham, AL, May 6-9, 2002

[2] Z. Medenica, A. L. Kun, “Comparing the Influence of Two User Interfaces
for Mobile Radios on Driving Performance”, Driving Assessment 2007,
Stevenson, WA, July 9 - 1 2 , 2007

[3] A. Pelhe, “One-to-One Communication Between Objects in the Project54
System Software,” University of New Hampshire, Master’s Thesis,
September, 2003

[4] D. M. Hilbert, D. F. Redmiles, “Large-Scale Data Collection of Usage Data
to Inform Design,” Proceedings of INTERACT ’01, Tokyo, Japan,
July 9 - 1 3 , 2001, pp. 569 - 576

[5] D.M. Hilbert, D.F. Redmiles, “Extracting Usability Information from User
Interface Events,” ACM Computing Surveys, Vol. 32, No. 4,
December 2000, pp. 384-421

[6] P. Green, “Human Factors and New Driver Interface: Lessons Learned
from a Major Research Project,” 5th ITS-America, Washington, DC,
March 15-17, 1995

[7] A. N. Badre, P. J. Santos, “A Knowledge-Based System for Capturing
Human-Computer Interaction Events: CHIME,” Georgia Institute of
Technology Technical Report GITGVU-91, 1991

[8] B. L. Harrison, R. Owen, R. M. Baecker, “Timelines: An Interactive System
for the Collection and Visualization of Temporal Data,” Proceedings of
Graphical Interface ’94, Banff, Alberta, Canada, May 1 8 -2 0 , 1994,
pp. 141-148

[9] M. Guzdial, C. Walton, M. Konemann, E. Soloway, “Characterizing
Process Change Using Log File Data,” Georgia Institute of Technology
GVU Center Technical Report No. 93, 1993, pp. 93 - 44

116

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

[10] M. Guzdial, P. Santos, A. Badre, S. Hudson, and M. Grey, “Analyzing and
Visualizing Log Files: A Computational Science of Usablity,” Presented at
HCI Consortium Workshop, February 2 - 6 , 1994

[11] M. Guzdial, “Deriving Software Usage Patterns from Log Files,” GVU
Technical Report; GIT-GVU-93-41, Georgia Institute of Technology, 1993

[12] S. G. Eick, M. C. Nelson, J. D. Schmidt, “Graphical Analysis of Computer
Log Files,” Communications of the ACM, 37(12), December 1994,
pp. 5 0 - 5 6

[13] C. G. Healey, “Choosing Effective Colours for Data Visualization,”
Proceedings from the Seventh IEEE Visualization 1996 (VIS ’96), 1996,
pp. 263 - 270

[14] M. C. Humphrey, “Creating Reusable Visualizations with the Relational
Visualization Notation,” Proceeding from IEEE Visualization 2000, Salt
Lake City, UT, October 8 - 1 3 , 2000, pp. 53 - 60

[15] X. Jiang, J. A. Landay, “Modeling Privacy Control in Context-Aware
Systems,” IEEE Pervasive Computing, Vol. 1, No. 3, 2002, pp. 59-63

[16] T. Giuli, D. Watson, K. V. Prasad, “The Last Inch at 70 Miles Per Hour,”
IEEE Pervasive Computing, Vol. 5, No. 4, 2006, pp. 20-27

[17] W. Y. Lum, F. C.M. Lau, “A Context-Aware Decision Engine for Content
Adaptation,” IEEE Pervasive Computing, Vol. 1, No. 3, 2002, pp 41-49

[18] S. Voida, E. D. Mynatt, B. MacIntyre, G. M. Corso, “Integrating Virtual and
Physical Context (p Support Knowledge Workers,” IEEE Pervasive
Computing, Vol. 1, No. 3, 2002, pp 73-79

[19] S. S. Yau, F. Karim, Y. Wang, B. Wang, S. K.S. Gupta, “Reconfigurable
Context-Sensitive Middleware for Pervasive Computing,” IEEE Pervasive
Computing, Vol. 1, No. 3, 2002, pp 33-40

[20] M. Raento, A. Oulasvirta, R. Petit, H. Toivonen, “ContextPhone: A
Prototyping Platform for Context-Aware Mobile Applications,” IEEE
Pervasive Computing, Vol. 4, No. 2, 2005, pp. 51-59

[21] A. Ranganathan, R. H. Campbell, A. Ravi, A. Mahajan, “ConChat: A
Context Aware Chat Program,” IEEE Pervasive Computing, Vol. 1, No! 3,
2002, pp. 51-57

[22] S. Loke, “Context-Aware Artifacts: Two Development Approaches,” IEEE
Pervasive Computing, Vol. 5, No. 2, 2006, pp. 48-53

117

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

[23] K. Rehman, F. Stajano, G. Coulouris, “An Architecture for Interactive
Context-Aware Applications,” IEEE Pervasive Computing, Vol. 6, No. 1,
2007, pp. 73-80

[24] D. Rogerson, “Inside COM,” Microsoft Press, Redmond, WA, 1997

[25] R. L. Lynch, “The SpeechBot,” Technical Report ECE.P54.2003.17,
Electrical and Computer Engineering Department, University of New
Hampshire, July 11, 2003

[26] N. Purmort, “Measuring New Hampshire State Police Radio Usage,”
Technical Report ECE.P54.2005.4, Electrical and Computer Engineering
Department, University of New Hampshire, June 2, 2005

118

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

APPENDICES

119

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

APPENDIX A

QUESTIONNAIRE

The following questionnaire was administered to both participants in this

research. Responses were indicated only to those questions which did not

contain information of a personal nature. Both participants were between the

ages of forty five and sixty, each with over ten years of service as a police officer.

Both officers also had at least five years of experience using the Project54

system.

Subject ID :__________________Date:____________ Time:

1. Gender

Female Male

2. Age:

3. Are you left-handed or right-handed?

Left-handed Right-handed

4. How long have you been a police officer?

Exactly Approximately

5. How long has Project54 been installed in your car?

Exactly ________ Approximately ___

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

6. How often do you use the Project54 voice commands?

a) several times an hour b) several times a day X X
c) a few times a week d) never

7. How often do you use the Project54 graphical user interface (the touch­
screen)?

a) several times an hour b) several times a day X
c) a few times a week X d) never

8. How often do you use the original device controls (e.g. the lights switch)?

a) several times an hour X b) several times a day
c) a few times a week X d) never

9. Indicate the devices you prefer to control with speech commands.

Project54 window navigation Lights X Radar X X
Radio X Records X X Video

What (if any) reason do you have for preferring this type of controls for
these devices?

10. Indicate the devices you prefer to control with the touch-screen.

Project54 window navigation Lights Radar__
Radio Records___ Video

What (if any) reason do you have for preferring this type of controls for
these devices?

121

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

11. Indicate the devices you prefer to control with the original device controls.

Lights Radar Radio Video___

What (if any) reason do you have for preferring this type of controls for
these devices?

12. In what area or areas do you patrol regularly?

13. What does a typical shift for you consist of?

14. Do you have a routine that involves the use of the Project54 system?

15. Are there any upcoming events within the next month that will cause you
to break any routines?

Please indicate your level of agreement with the following statements.

16. I am comfortable with using the Project54 system.

Strongly disagree Disagree___
Neither agree nor disagree Agree Strongly agree X X

122

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

17. I like using the Project54 system.

Strongly disagree
Neither agree nor disagree

Disagree
Agree Stronglv agree X X

18. I think the Project54 system is reliable.

Strongly disagree
Neither agree nor disagree

Disagree
Agree X Strongly agree X

19. I prefer using Project54 over the original device controls.

Strongly disagree
Neither agree nor disagree

Disagree
Agree Stronglv agree X X

20. I am satisfied with the accuracy of the speech recognition in my vehicle.

Strongly disagree
Neither agree nor disagree

Disagree
Agree X Stronglv agree X

21. Using speech commands improves my productivity.

Strongly disagree
Neither agree nor disagree

Disagree
Agree X X Stronglv agree

22. Using speech commands makes operating my vehicle safer.

Strongly disagree
Neither agree nor disagree

Disagree
Agree Stronglv agree X X

23. The touch-screen buttons I like to use are located in the best place on the
screen for me to use them.

Strongly disagree Disagree___
Neither agree nor disagree Agree X Strongly agree X

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

APPENDIX B

INSTITUTIONAL REVIEW BOARD APPROVAL

University of New Hampshire

Research Conduct and Compliance Services, Office of Sponsored Research
Service Building, 51 College Road, Durham, NH 03824-3585

Fax: 603-862-3564

28-Feb-2007

Kun, Andrew
Electrical & Computer Eng Dept
Kingsbury Hall
Durham, NH 03824

IRB # : 2980
Study; Speech Sample Collection for Speech Recognition Engine Comparison and Development
Approval E xpiration Date: 24-Jun-2007
M odifica tion Approval Date: 28-Feb-2007
M od ifica tion: Addition o f recording partJdpants' interactions with multiple user Interfaces and

The Institutional Review Board for the Protection o f Human Subjects In Research (IRB) has
reviewed and approved your modification to this study, as indicated above. Further changes in
your study must be submitted to the IRB for review and approval prior to implementation.

Approval fo r th is protocol exp ires on the data indicated above. At the end of the approval
period you will be asked to submit a report with regard to the involvement o f human subjects in
this study. I f your study is still active, you may request an extension of IRB approval.

Researchers who conduct studies involving human subjects have responsibilities as outlined in tire
document. Responsibilities o f D irectors o f Research Studies Involving Human Subjects. This
document is available at http://www.unh.edu/osr/cwnpliance/irb.html or foorn me.

I f you have questions or concerns about your study or this approval, please feel free to contact me
at 603-862-2003 or Julie.simpson@unh.edu. Please refer to the IRB # above In all correspondence
related to this study. The IRB wishes you success with your research.

questionnaires

fuiie F. Simpson

For the IRB,

Manager

c g File

124

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

http://www.unh.edu/osr/cwnpliance/irb.html
mailto:Julie.simpson@unh.edu

APPENDIX C

DATA VISUALIZATION CREATION GUIDE

Once interaction records are retrieved from police cruisers they are already

prepared for the full set of data analyses presented in this thesis. In order to use

these analysis tools, the recorded interaction information must be saved in the

following path:

C:\Project54\Logs\System Usage Logs\Officer ID Folder\

The name of the Officer ID Folder is a five-character folder name of the

designer’s choosing. The two folders created for this project used the two

officers’ badge numbers to name their respective folders. The folder name has to

be five characters to make MATLab matrix string comparisons possible.

Before recoding interaction files for the first time, the P54 System Usage

Analyzer program source code has to be altered. This one-time change involves

going to the commented section at the start of the source code and adding:

public string m OfficerSource = @"C:\Project54\Loqs\System Usaqe Loqs\
Officer ID Folder\";

public string m OfficerRecode = @"C:\Project54\Logs\System Usage Logs\
Officer ID Folder\" ;

125

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Again, the Officer ID Folder is named according to the designer’s choosing. The

rest of the both entries are formatted to following C# programming rules for

creating a string that holds a path location name.

To generate visualizations for the data the MATLab visualization m-file

has to be opened and the five-character Officer ID has to be added to each cell

from which data visualizations are required.

The steps described for the analysis and visualization of interactions only

need to be performed one time for each new officer that provides data. The

various source file locations in which the changes are to be made (the MATLab

code has several) are located at the beginning of the code (or MATLab cell) and

are all marked with comments. Also, the additional lines of code will exactly

match the lines that already exist for the two officers who have already

participated in this research; all that will change is the five-character Officer ID.

126

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

	University of New Hampshire
	University of New Hampshire Scholars' Repository
	Fall 2007

	A prototype system for human-computer interaction logging, post-processing, and data visualization for the Project54 system
	Edward Bourbeau
	Recommended Citation

	tmp.1520441287.pdf.9EBvA

