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ABSTRACT

A PROTOTYPE SYSTEM FOR HUMAN-COMPUTER INTERACTION 
LOGGING, POST-PROCESSING, AND DATA VISUALIZATION FOR THE

PROJECT54 SYSTEM

by

Edward Bourbeau 

University of New Hampshire, September, 2007

Police officers and other emergency responders have been using the 

Project54 system in their vehicles for many years. Over this time it is likely that 

certain trends have developed regarding how they use the system to make their 

daily tasks easier and safer. This thesis examines the use of human-computer 

interaction logging, post-processing and data visualization techniques to quantify 

and graphically present how police officers utilize the Project54 system. 

Specifically, data was retrieved from two deployed police cruisers that identified 

their use of Project54’s speech user interface (SUI) and graphical user interface 

(GUI), as well as the vehicles’ original hardware controllers. That information was 

then analyzed and five different sets of data visualizations were generated based 

on the analysis results. The visualizations were reviewed by eight members of 

the Project54 design team, whose feedback indicated that the visualizations were 

successful at relaying conclusive results from the quantitative analysis.

xi
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CHAPTER 1

INTRODUCTION

Modern police cruisers are outfitted with a wide array of equipment used 

to allow police officers to perform their duties. However, there are two sides to 

such a proliferation of in-vehicle electronic devices. While the additional 

hardware increases the functional capabilities of police cruisers beyond a level 

that has ever previously been possible, such advanced systems create a whole 

new set of distractions for police officers.

To aid officers in controlling their myriad in-vehicle equipment, the 

Project54 laboratory at the University of New Hampshire, in conjunction with the 

New Hampshire Department of Safety, developed the Project54 system as a 

solution for the in-vehicle device integration [1]. In terms of its high-level 

operational components, the Project54 system provides police officers with the 

option of using either a touch-screen graphical user interface or a push-to-talk 

button-driven speech user interface (SUI) on top of the original hardware controls 

already present in police cruisers. Figure 1.1 shows a typical Project54 system 

installation, with attention drawn to the methods of device control available to 

police officers. These methods of control include the steering-wheel-mounted 

push-to-talk button that enables the directional microphone to accept speech 

commands, the console-mounted keyboard and touch-screen monitor that

1
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provide a graphical user interface (GUI), and the original in-vehicle hardware 

controllers. The original controllers are also console-mounted and (from top to 

bottom) control the lights, radio, and radar equipment. With Project54, system 

integration is seamless to the officers and control is as simple as the touch of a 

button or the utterance of a speech command.

Directional
Microphone

Touch-
Screen

Figure 1.1 Typical Project54 system in-vehicle installation

1.1 Problems

One of the major factors contributing to the success of the Project54 

software-based package is that it was designed with police officers in mind. To 

make sure the product suited their needs, officers were involved throughout

2
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various phases of development (e.g. planning and testing). Qualitative feedback 

(interviews, questionnaires, etc.) and quantitative feedback (data collection) from 

the officers was used throughout the design process. These insights have been 

an invaluable source for designers to draw upon in order to develop a product the 

officers would find intuitive to understand and natural to use. There is perhaps no 

better example of collaboration between the Project54 design team and police 

officers than the extensive work put into providing officers with device control via 

speech recognition. Since control via speech commands posed the advantage of 

not requiring an officer’s hands to leave the steering wheel or eyes to leave the 

road in order to control devices, it was imperative that the speech recognition 

was as accurate as possible so that police officers would feel confident enough 

to use it as their primary means of device control. The data collected from police 

officers enabled designers to determine the most effective way to implement 

practical speech recognition.

To date, the speech recognition development process has generated 

results with which both developers and police officers alike can be satisfied. 

However, as is often the case with research and development projects, the use 

of police input to inform design may open the door to more possibilities for future 

versions of Project54 software. Since the information gathered from police 

officers had largely been related to the SUI, system developers knew (more or 

less) how police used the SUI but beyond that there was not much information 

available. In other words the problem was that, aside from collected speech data, 

there was not enough available information that provided insights into the nature

3
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of a police officer’s use of the Project54 system. There was also no quantitative 

measure of whether or not police tended to prefer using Project54 over the more 

traditional device controllers.

1.2 Goals

The goals of this research were two-fold. The first goal was to develop the 

data analysis tools necessary for providing Project54 software developers and 

law enforcement officials with comprehensive information regarding police 

officers’ Project54 system usage tendencies. Specifically, the system usage of 

interest was the number of interface interactions executed by the police officers, 

not the number of tasks they executed. The significance of this subtle difference 

is that tasks may be composed of multiple interactions and indicate a user’s 

preference for a particular interface. On the other hand, interactions are 

important because the more interactions officers have to execute to perform their 

duties the more their driving performance suffers because their attention is 

moved from operating their vehicles to interacting with their equipment [2]. 

Finally, the analysis tools needed to be automated so that any analyses would be 

capable of being performed with little more than a mouse-click.

The second goal was to investigate the effectiveness of different analyses 

at conveying conclusive results to both the system designers and the law 

enforcement officials. The data analysis was meant to provide insight as to 

whether police officers tended to prefer using Project54 over traditional device 

controls. Beyond this, the data analysis would investigate if the control interface

4
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an officer uses had any correlation to certain contexts. For this thesis, the scope 

of these contexts was limited to determining if the control interface selection was 

dependent on the task performed, dependent on the active Project54 window, or 

dependent on whether or not the police cruiser is stopped.

1.3 Approach

In this research we proposed to provide the interaction-data analyses 

through the development of software that monitored and logged SUI, GUI, and 

hardware controller activities within police cruisers. Figure 1.2 shows the high- 

level block diagram used to pictorially describe the proposed logging and 

analysis processes and how they build upon the Project54 architecture. The 

upper portion of the figure contains those parts of this thesis project that were 

developed by others, during earlier work. Of significance there is that pre-existing 

applications are sending each other messages via the Project54 Application 

Manager. The portion of Figure 1.2 that lies below the horizontal dashed-line 

represents the proposed contributions of this project. The P54Gui block is shown 

overlapping into both the top and bottom portions of the diagram because, while 

the P54Gui component existed before this project, we proposed to update it to 

accommodate GUI event logging. We proposed to add an interface to the 

P54Gui component to provide the Interaction Logger access to records of 

specific GUI usage data. We also proposed to develop a usage log analyzer that 

would use the text files created by the Interaction Logger to develop the different 

visualizations alluded to in Figure 1.2. With the exception of the log analysis and

5
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visualizations (discussed in Chapter 5), the rest of the information presented in 

Figure 1.2 will be discussed in Chapter 3.

The research sequence was subdivided into three steps. It is important to 

keep in mind that these steps merely represented a logical grouping of tasks and 

not the actual order in which the tasks were undertaken. The first proposed step 

was to build the architecture for the in-vehicle data collection. This task had been 

simplified by building the logging capability on top of the pre-existing inter­

application text messaging system [3]. The Interaction Logger was able to 

receive feedback messages from those applications with which it was registered. 

However, additional support had to be developed within the Project54 GUI 

software to capture specifics regarding button-press and key-stroke activities.

The second proposed step of this project was to develop a comprehensive 

testing phase. The data gathering software was tested extensively within a 

laboratory setting in order to ensure proper functionality. Once the testing 

satisfactorily concluded that the logging software was functioning properly, the 

application was deployed into actual police cruisers from the New Hampshire 

Department of Safety. The field testing took place for twenty-eight days, at which 

point the in-vehicle logging automatically ceased. The length of time was preset 

as an adjustable Windows Registry value (default value of twenty-eight). This 

was done at the officers’ request. At the conclusion of the field testing period the 

data was retrieved from the vehicles for analysis.

The third proposed step was to create post-processing software capable 

of automatically parsing the raw data collected from police cruisers into different

6
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information tables. The different tables were used as the basis from which data 

visualizations were developed. These visualizations used multiple data 

dimensions as well as colors and even image overlays whenever applicable, in 

order to depict the results of the in-vehicle usage logging both for developers to 

base future applications on and for law enforcement officials to monitor how 

effectively they are able to carry out their duties, using Project54.

7
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L
Analysis Analysis Analysis

Visualization Visualization Visualization

Figure 1.2 High-level block diagram of Project54 interaction logging/analysis
implementation

1.4 Thesis Organization

This thesis is organized into six chapters and two appendices. The first 

chapter describes the motivating factors behind this research, including the

8
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problem addressed, the desired goals, and the approach used to develop the 

project.

Chapter two provides a brief background of existing work in the fields of 

data logging and log file analysis. Context-sensitive computing is also discussed 

as such background information will be useful when trying to provide context 

awareness to future versions of Project54 applications.

Chapter three details the development of the interaction logging software. 

Not only does this include a discussion about the logging-software design and 

implementation, but also the changes made to the Projec54 architecture to better 

facilitate detailed logging. Technical information such as registry settings and 

some of the more important functions used within the application are also 

outlined.

Chapter four contains the methods and results for the testing procedures 

used for the Lab Car, the driving simulator, and field-testing. Police cruiser 

deployment details are also provided.

Chapter five explains the data analysis undertaken for this project, 

including the development of the various data visualizations used to form 

conclusions. The post-processing includes scanning through all the original data 

and parsing out different portions of it in order to focus on the individual portions 

to form conclusions. These visualizations are the results from which conclusions 

will be drawn.

9
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Chapter six summarizes and draws conclusions from the work done 

during the course of this thesis. Suggestions for future work with data logging 

and analysis are also provided.

Two appendices were included at the end of this thesis. The first appendix 

contains a copy of the questionnaire form administered to the police officers who 

volunteered for this research. The information from this questionnaire is intended 

to provide some context for interpreting the quantitative results received from the 

officers’ vehicles. The second appendix contains a copy of the Institutional 

Review Board (IRB) approval letter that gives permission to use human test 

subjects for this thesis research.

10
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CHAPTER 2

BACKGROUND

2.1 Introduction

Recording system usage characteristics is an important and useful tool in 

human-computer interaction (HCI) studies. Data logging is a robust, easily 

implemented approach to automatically gathering and subsequently analyzing 

information that may remain transparent to the system user [4, 5]. Hilbert and 

Redmiles discuss how data logging may also provide the sort of objective user- 

feedback information which questionnaires, interviews or other similar feedback 

evaluations cannot [4], Such feedback could indicate how successfully a system 

gets utilized, which has major implications for future designs. The major 

challenges involved in evaluating HCI events are creating an efficient data 

collection approach and implementing informative data analysis. A balance 

needs to be struck between too much information and too little. Collecting too 

much information could slow system response down -  a very unsatisfactory 

result for emergency responders. On the other hand, too little information could 

make performing an accurate analysis of user interactions impossible.

Post-processing usage information should also be as robust as the data 

collection process, while also being automated in order to reduce the burden 

placed on humans of analyzing voluminous data. Analysis results would be the

11
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most useful if they were effectively able to boil down the potentially immense 

amount of gathered information into clearly comprehendible HCI event 

representations. Research into ubiquitous computing has displayed promise for 

the use of HCI events beyond only demonstrating the nature of a user’s 

interactions with a system. HCI data represents context information which can be 

used to guide the computer in interactions with humans.

2.2 Data Collection

Given that contemporary computers possess vast processing power, 

one’s first instinct may be to use brute force in gathering the information while 

making data analysis the priority. However, even with the ability to post-process 

voluminous files quickly, it is still important that the data collection process gets 

planned intelligently so that log file sizes may be kept under control [4, 6]. In the 

case of retrieving data from vehicles on the road, Hilbert and Redmiles relate 

several motivating factors for efficiently acquiring logged information, such as the 

following [4]:

• In-vehicle computers may have severely downgraded performance and 

storage capabilities compared to, for instance, common home 

computers.

• Logging every possible human-computer interaction for a given 

program may generate otherwise-avoidable lags in that program’s 

execution.

12
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• Desirable usage information may become buried by less interesting 

information.

• It is likely that, due to limited access to the vehicles, large log files 

would eventually take up so much memory that overall system 

performance would degrade to unacceptable levels.

While logging too much data may lead to the loss of information-resolution, not 

logging enough data could be just as likely to generate its own problems which 

would also adversely affect information integrity. Such problems resulting from 

insufficient data collection include the sacrifice of valuable information at the 

expense of reduced processing time; also logs could be so sparse as to make 

robust data analyses virtually impossible [4],

Badre and Santos recognized that the most effective method for 

monitoring HCI events was to use an automated approach [7], Their solution, the 

Computer-Human Interaction Monitoring Engine (CHIME) was a knowledge- 

based design that was capable of automatically distinguishing relevant HCI 

events. The system employed “smart” logging because it was created with a set 

of guidelines as to how the HCI events of interest could be identified.

In order to equip a design with the knowledge of what interactions are 

important, as CHIME did, filtering should be implemented within the data logging 

architecture. Information filtering may better streamline the collection process by 

ignoring information that is not of importance to a particular research endeavor.

13
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Filtering would speed up the logging process, reduce the size of the log files, 

and, as a result, improve the performance of the subsequent data analysis.

2.3 Data Analysis

Using text files as a means to understanding the nature of particular 

human-computer interactions is as much an art form as it is a science. Hilbert 

and Redmiles discuss how, even if some level of discrimination in the data 

logging is employed, it may be difficult to separate the information of interest from 

the background [4]. This is especially true in cases involving very large amounts 

of collected data. Harrison et. al. developed a research tool for the express 

purpose of handling large amounts of data from different sources (i.e. video, 

audio, log records, etc.) [8]. The tool, Timelines, could capture and annotate data 

from HCI events. Timelines was also capable of associating that information with 

video and/or audio records of system usage (recorded in parallel with the data 

capture) in order to develop a complete picture of the user’s interactions with a 

particular system. Once the data was annotated, it was displayed for subsequent 

qualitative and quantitative analyses. As its name suggests, Timelines is 

particularly well-suited for providing temporal data analysis. The analyses 

generated by the tool are, by nature, sequentially ordered blocks of information 

relating how a user was interacting with the system at any given time.

Usage data analyses are not only helpful for indicating how people tend to 

interact with a given system but also they can provide accurate records of the 

change in people’s interactions with that system over time. Guzdial et. al.

14
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performed a study of students in a class room setting and monitored their 

proficiency with a particular program over time [9]. The researchers were 

interested in learning if, as the students became more comfortable with the 

program, their use of that program would evolve in some fashion. By analyzing 

the students’ interactions over time, the researchers were able to show that as 

the students’ knowledge of program features increased, they were increasingly 

likely to use the program more efficiently.

Also of major concern is how best to display the data in a coherent and 

insightful manner, once the useful information has been extracted from the log 

files. To address this concern, researchers have developed different data 

visualization techniques to make various analysis abstractions palatable. For 

example, Guzdial, et. al. describe several different visualization techniques such 

as: scalar, one-dimensional, and two-dimensional analyses [10]. Scalar analyses 

generate a quantitative representation of the data. In other words, this approach 

would allow large volumes of records to be boiled down to categorized numbers. 

One-dimensional analyses result in chronological listings of events, while two- 

dimensional analyses are better suited for demonstrating how one set of data 

may be related to another data set. These data visualization techniques may be 

especially useful when put to the task of system usage analyses. According to 

Guzdial, usage data provides an image of which system functionality is taken 

advantage of by end-users [11]. Eick et. al. add that visualizations are also 

indispensable at making undesirable system usage traits (such as faults) clearly 

detectable at a glance [12]. It is often far more desirable to look at a picture of

15
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user interactions than it is to read through lines of text files to determine usage 

trends.

To add another level of expression, color may be added to enhance a 

visualization’s ability to clearly present different data. Healey’s research explored 

the important role colors play in identifying different features within visualizations 

[13]. The work has shown that the three most distinct colors for subjects to 

identify among different color groupings were red, green, and blue. However, the 

color palette may be expanded effectively as long as the selected colors are 

spaced evenly throughout the color spectrum.

While improving visualizations creatively it is important to make sure the 

images are flexible enough to apply to different data sets. Humphrey’s research 

was focused not only on developing creative data visualizations but also making 

sure those visualizations were reusable [14]. Visualizations are, simply put, 

graphical representations of information which are meant to enhance an 

observer’s ability to comprehend that information. It makes perfect sense that 

visualizations employ creative, so-called non-formal elements (titles, labels, 

backgrounds, etc.). This non-formal information enhances the presentation of the 

formal information (the collected data). In order to make visualizations reusable, 

a balance needs to be struck with regards to how much non-formal information is 

included. For example, too many non-formal elements may lead to static 

visualizations not pliable enough to handle myriad data sets.
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2.4 Data-Derived Context Development

Besides painting a picture of human-computer interaction tendencies, 

information gathered from log files may also provide the basis for context-aware 

system development. In this sense, context could be explained as the reference 

or set of circumstances present during an HCI event. However, since this context 

information may be of a personal nature, it should be treated securely. Jiang and 

Landay drew attention to the issue of maintaining privacy in the face of the ever- 

evolving pervasive computing frontier [15]. Giuli, et. al. echoed the need for 

secure pervasive computing designs, specifically within the confines of motor 

vehicles [16]. Keeping private information secure must always be a priority when 

designing context-sensitive systems, in any environment.

Providing privacy is only one of the many challenges in creating 

successful context-aware applications. Implementation issues are a major 

concern and involve an intimate knowledge of the environment in which any 

context-sensitive system will be used. For instance, Lum and Lau developed their 

system for use in a mobile environment [17], while Voida, et. al. performed their 

research in an office setting [18]. Both projects were based around developing 

optimal time-saving strategies for information sharing over networks. However, in 

the mobile environment design, handheld computer limitations (cellular network 

bandwidth, reduced computational power, etc.) called for a solution that could 

use a software-based decision engine that could accurately interpret user 

preferences to manage computationally intensive content. In the office setting, 

researchers did not have to pay as much attention to data bandwidth and other
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handheld computer limitations. Instead the focus was on using the appropriate 

compliment of sensors to derive an accurate account of how workers manage 

their tasks. This information then had to be implemented within a system that 

was flexible enough to meet all the workers’ requirements.

Several research projects illustrate the viability of data logging within 

context-sensitive computing. Since context-sensitive information was being 

generated for real-time applications, that data was readily available to be saved 

for future analyses and design iterations. The first such project, Smart Classroom 

Reconfigurable Context-Sensitive Middleware (RCSM) was done by Yau, et. al. 

[19]. The work addressed the lack of ubiquitous computing in a learning 

environment. The aim of this research was to develop a way for students and 

their teachers to spontaneously interact in a technology-intensive classroom. The 

approach was to modify personal digital assistants (PDAs) with sensors and 

other hardware in order to develop so-called “context-sensitive ad hoc 

communication” capable of determining the context of the interactions between 

different, independent groups of students and a teacher. The project used 

several measures from which context was derived, including the location of the 

PDAs, and lighting levels. The system was also capable of storing information 

which was then used to generate other files for classroom use, though not in 

real-time.

The ContextPhone project, developed by Raento, et. al., focused on the 

disparity between common smart phone operating system capabilities and the 

support for desirable phone features [20]. The designers planned, among other
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goals, to make their smart phone able to provide context as an informational tool 

and support existing phone applications. The context derived by this smart phone 

was based on sensor information including location and user interactions. This 

data was then logged, and used to drive further software design iterations. This 

process was especially beneficial in the early stages of development.

Ranganathan, et. al. created ConChat to address the lack of 

expressiveness in interpersonal electronic communications [21]. They planned to 

use context cues as means to enhance a chat program so that it would more 

closely mimic an actual face-to-face conversation. The program was able to 

automatically track and relay environmental characteristics between the users as 

well as allow the users to supply their own contextual information, such as mood 

and whether or how busy they are. Users were allowed to select the contexts 

they wished to send or receive which added another level of personalization to 

the program. Conversations and context cues could also be stored and analyzed 

for future development.

These examples echo Loke’s argument that providing context sensitivity to 

systems should improve their usability [22]. Benefits to adding context-sensitive 

functionality include more efficient user interface designs and improved human- 

computer interactions. However, there was also the understanding that context- 

aware systems would be more successful if they were designed with humans in 

mind. In order to meet the users’ needs not only was real-time context 

information supplied to the system but also it was stored and used to drive further 

design implementations. Rehman, et. al. believe that this logged context data
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would be the most useful if it is used to improve the communication experience 

between humans and machines, as opposed to being used as a system control 

input alone [23].

20

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



CHAPTER 3

INTERACTION LOGGER ARCHITECTURE

3.1 Introduction

As stated in the thesis introduction, the first proposed step of this project 

was to enable real-time user-interaction logging within police cruisers. The 

selected approach to accomplish this task was to design an application that 

would receive and record feedback messages from the other Project54 

applications, when those applications were called upon by the user to perform a 

control operation (e.g. change a radio channel). Aside from this software used to 

direct the HCI event logging, other Project54 system alterations had to be put in 

place. Additions were made to the GUI component that would allow button 

presses and text field entries to be logged. A COM interface was also added in 

order to transmit those button and text field HCI event messages from the GUI 

component to the HCI event logger. The following section provides background 

for the Project54 messaging architecture [3] and its role in user interaction 

logging. Other sections within this chapter describe the details involved in the 

logging architecture development, including the alterations to the Project54 GUI 

component, linking the GUI to the HCI event logger, and the logger software 

design itself. The end result of this phase was to have an application capable of 

interfacing with the Application Manager messaging system as well as with a
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newly-developed P54Gui messaging system, as shown in Figure 3.1. The figure 

shows the inter-application communication lines that make interaction logging 

possible.

Inter-application
Maeeaninn

pplicationpplication

pplication

Application 
1

Application

P54Gui

Interaction
LoggerGUI

Messaging
Interface

Pre^existi nt̂  Work_ 
Thesis Project

Figure 3.1 The Application Manager handles inter-application messaging between all the 
existing Project54 applications and the Interaction Logger

3.2 P54 Text Messaging System Overview

At its most basic level, Project54 may be described as a package 

comprised of several independent software control modules linked together by 

one central application. An example of one of the software control modules is the 

program written to provide speech and graphical user interfaces for a police
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cruiser’s light bar. The central application is the Project54 Application Manager. 

As the connection point for the various software control modules, one of the main 

functions of the Application Manager is to facilitate communication between the 

various applications via the Application Manager’s message coordinator. This 

inter-application communication is performed via text messaging. For the 

purposes of this thesis, the messages of interest are those related to the so- 

called status of every Project54 application, or what any application is doing at 

any given time.

Since the Application Manager is responsible for redirecting all inter­

application messages from the source application to their proper destination, it is 

important to keep the message traffic to the Application Manager at a minimum. 

More message traffic means more processing time and greater potential for 

system lags. For this reason, applications only transmit status messages when 

that information is requested in advance by another application.

The request for status updates consists of the requesting application 

sending out a communication packet of the following format:

Message(source, destination, message id tag, message text)

The source and destination fields correspond to the names of the source 

application and destination applications, respectively. The message id tag and 

message text fields are used by the destination application during the process of 

handling received messages. The destination may apply a specific message id

23

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



tag to certain source feedback messages that will only have meaning within the 

destination program. The message text contains the source module’s status 

information. This status information sent between software control modules is 

characterized by the keyword, “STATUS”, as the first word within the message 

text field of an inter-application communication packet. For example, if the Patrol 

Screen application wished to know the status of the radar application it would 

register for feedback from the radar application with the message text 

“FEEDBACK ON”, using the previously described message format. The radar 

application would then add the Patrol Screen application to its queue of programs 

that are registered for status updates. Whenever the radar has a status change a 

message will be sent to all the applications registered for feedback, such as 

“STATUS FRONT ANTENNA” (in this case informing the Patrol Screen that the 

front antenna is on). However, if no application is registered for feedback 

messages, no messages will be sent to the Application Manager for 

disbursement.

This inter-application communication system functions well at what it was 

designed to do -  provide updates from one program to another on a need-to- 

know basis. The usefulness of such messaging information can be expanded 

upon because applications may not only register for feedback messages from 

specific applications, but also may register as a sniffer and view all message 

traffic passing through the Application Manager. Among the benefits of using the 

message sniffer functionality are that it is automatically ensured that all available 

inter-application messages will be received by the Logger. Also, more information
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will be available beyond the standard feedback messages alone, such as the 

active Project54 window during any given speech or hardware user interactions.

Unfortunately there is no “STATUS GUI” message that would indicate the 

use of the in-vehicle touch-screen to control a device. This particular lack of 

status updates is because the Project54 GUI component software is not set up to 

provide feedback messages to the Application Manager, like other Project54 

applications do. However, it is possible to add feedback functionality to the 

P54Gui component which, once sent to the Interaction Logger, would allow the 

application to monitor and record all of the interfaces an officer may use to 

control the various in-vehicle devices.

3.3 P54Gui Adaptations

The P54Gui is the software component that provides Project54 with its 

GUI functionality. The GUI attributes directly related to this project were the 

touch-screen buttons and the text fields (primarily used during records checks). 

In order to provide the Interaction Logger with information related to GUI usage, 

software changes had to be made to the Button Control class, the Text Field 

Control class, as well as to the Window Control class. These three classes 

contained within the P54Gui component are responsible for painting and 

refreshing the GUI screens with buttons, and text fields, as well as providing the 

functionality for those buttons and text fields. The aim of the software changes 

was to provide functionality that would record GUI usage characteristics and 

pass that collected data to the Interaction Logger.
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The particular characteristics of interest relating to button-press user 

interactions included the following:

• the name of the active window during the button-press activity,

• whether a button was pressed down or released,

• at what time the button-press activity took place,

• the name of the button used.

To record the name of the active window during a button state change, the name 

of the active window had to be passed from the Window Control class to the 

Button Control class, since the Window Control class was the only location in 

which the active window name was available. The function loadWindowLabel 

was added to the Window Control class in order to make the window label name 

available to any other P54Gui class. In other words, the Button Control class 

made a call to the Window Control class’s new loadWindowLabel function in 

order to gain access to the active Project54 window during a button-usage event. 

The Button Control class stored the results of this function call in the 

m WindowLabel array. Functionality for identifying button state changes (pushed 

down or released) already existed within the P54Gui component’s Button Control 

class. Once a button’s state changed, a call to the new Button Control class

function logButtonPress was made. This function is responsible for creating a

date and time stamp corresponding to when the usage event takes place. The
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date and time stamps were created using the time.h standard library and the 

resulting information was stored in the szTimestamp array. The name of the 

button used during an interaction was already available within the Button Control 

class. This information was therefore accessible by the logButtonPress function. 

The logButtonPress function was able to combine the time of a button interaction, 

the name of that button, and the name of the active window during that 

interaction into one message, which was stored in g_szGuiMessage. This 

message was then passed to the Interaction Logger. The process for this 

message transmission is described later in this section. Table 3.1 summarizes 

the list of additions to the Button Control class that were used to implement 

button-press logging and a brief description of what each item was responsible 

for doing. The second item in the table refers to a Registry setting which will be 

discussed later in this section. The flow chart shown in Figure 3.2 represents the 

algorithm used by the logButtonPress function to create the log file entries for the 

GUI button usage events. This approach waits for a button state to change, 

captures the specified interaction information, and sends that data to the 

Interaction Logger.
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—
Time.h

m_LogButtonPresse£
B W

ControlWindow * 
Parent

m_WindowLabel

loadWindowLabel(m_
WindowLabel)

b_LogData

logButtonPress

g_szGuiMessage

szTimestamp

This standard library was used to generate date 
and time information for the button usage 

messages in the mm/dd/yyyy hh:mm:ss format. 
The P54Gui component sets this Boolean value to 

true only when the P54Gui Registry setting that 
gives permission for GUI event logging is enabled. 

This class pointer provides the button control 
class with access to the loadWindowl_abel() 

function, contained within the window control 
class.

This string stores the name of the active window 
at the time a particular GUI button press occurs. 
This function is called within the Button Control 
class to retrieve the name of the active window 

from the Window Control class, when a GUI 
button press occurs.

The P54Gui component sets this global Boolean 
value to true only when the Interaction Logger is 

ready to receive GUI interaction event messages. 
This function places the timestamp, active window 
name, button name, and button activity associated 

with a particular GUI button event into the 
g_szGuiMessage array, and sends the information 

to the Interaction Logger.
This global character array stores the button- 
usage message to be sent to the Interaction 

Logger. This message contains the timestamp, 
active window, button name, and button state for 

each button-press activity.
This character array is located within the 

logButtonPress function and stores the date and 
time at which a button event occurs.

Table 3.1 Descriptions for the additions made to the P54Gui button control class
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The characteristics of interest with regard to text field user interactions 

included:

• the active window in which the text field was located,

• the keystrokes entered into the active text field,

• the time at which the text field was used,

• the x and y coordinates of the active text field.

To record the name of the active window during a text field user event, the name 

of the active window had to be passed from the Window Control class to the Text 

Field Control class, since the Window Control class was the only location in 

which the active window name was available. The function loadWindowLabel 

was added to the Window Control class in order to make the window label name 

available to any other P54Gui class. In other words, the Text Field Control class 

made a call to the Window Control class’s new loadWindowLabel function in 

order to gain access to the active Project54 window during a text field usage 

event. The Text Field Control class stored the results of this function call in the 

m_WindowLabel array. Functionality for identifying keystrokes within text fields 

already existed within the P54Gui component’s Text Field Control class. Once a 

key stroke was detected, a call to the new Text Field Control class function 

log Keystrokes was made. This function is responsible for creating a date and 

time stamp corresponding to when the usage event takes place. The date and 

time stamps were created using the time.h standard library and the resulting
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information was stored in the szTimestamp array. The special coordinates for 

the text field used during an interaction were already available within the Text 

Field Control class. This information was therefore accessible by the 

logKeyStrokes function. The logKeyStrokes function was able to combine the 

time of a text field interaction, the coordinates of that text field, and the name of 

the active window during that interaction into one message, which was stored in 

g_szGuiMessage. This message was then passed to the Interaction Logger. The 

process for this message transmission is described later in this section. Table 3.2 

summarizes the list of additions to the Text Field Control class that were used to 

implement text field key stroke logging and a brief description of what each item 

was responsible for doing. The second and third items in the table refer to 

Registry settings which will be discussed later in this section. The flow chart 

shown in Figure 3.3 represents the algorithm used by the logKeyStrokes function 

to create the log file entries for the GUI text field usage events. This approach 

waits for a key stroke to be entered into a text field, captures the specified 

interaction information, and sends that data to the Interaction Logger.
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Additions

Time.h

Description
This standard library was used to generate date and 
time information for the button usage messages in 

the mm/dd/yyyy hh:mm:ss format.
The P54Gui component sets this Boolean value to 

true only when the P54Gui Registry setting that 
gives permission to log GUI keystrokes is enabled. 
Otherwise, the characters are logged as asterisks. 
Keystrokes entered into the Password text field are 

always logged as asterisks, no matter what the 
state of m__ShowKeyStrokes is.

The P54'Gui component sets this Boolean value to 
true only when the P54Gui Registry setting that 

gives permission for GUI event logging is enabled. 
This class pointer provides the button control class 

with access to the loadWindowLabelQ function, 
contained within the window control class.

This string stores the name of the active window at 
the time a particular GUI button press occurs. 

This function is called within the Button Control 
class to retrieve the name of the active window from 
the Window Control class, when a GUI button press

The P54Gui component sets this global Boolean 
value to true only when the Interaction Logger is 
ready to receive GUI interaction event messages. 
This function places the timestamp, active window 

name, text field coordinates, and key entered 
associated with a particular GUI text field usage 

event into the g_szGuiMessage array, and sends 
the information to the Interaction Logger.

This global character array stores the button-usage 
message to be sent to the Interaction Logger. This 
message contains the timestamp, active window, 

button name, and button state for each button-press
activity.

Table 3.2 Descriptions for the additions made to the P54Gui text field control class

m_ShowKeyStrokes

mJLogKeyPresses

ControlWindow * 
Parent

m WindowLabel

loadWindowLabel(m
_WindowLabel)

b_LogData

logKeyStrokes

g_szGuiMessage

32

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



esis 
ork: 

trohus 
lity

Now 
ey. Stroke

b. LogDnta

;i Create Timestamp and 
Store it in

Buffet

Store Active Window
Name in

Buffer

Yes s S  Are
Key Strokes 

visible?
«S

Store Actual 
Stroke in

i

Store Astensk 
Key Stroke 

essage
mmm

Send Log Message to 
Logger

Figure 3.3 P54Gui text field usage logging algorithm
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As was mentioned previously, Windows Registry settings have been 

added to the P54Gui Registry folder to provide more flexibility as to when and 

how GUI interactions would be logged. The two Windows Registry keys were 

LogButtons and ShowKeyStrokes. Setting LogButtons to “Enabled” would allow 

GUI usage events to be logged. LogButtons is a bit of a misnomer as it not only 

governs when button-press events may be logged, but also when key stroke 

usage may be logged. The ShowKeyStrokes value is used to determine whether 

or not the key strokes entered into text fields will be shown as asterisks when 

they are logged. For instance, if a user types “hello” into a text field with 

ShowKeyStrokes disabled, the fact that characters were typed into the text field 

will be logged but, instead of displaying “hello”, the log will contain the string, 

“*****”. However, if ShowKeyStrokes is enabled, “hello” will be recorded as the 

string, “hello” in the log file. The Windows Registry information is presented in 

context in Figure 3.4. The figure shows the location within the Windows Registry 

of the P54Gui user interaction log values and their settings. The two values could 

either be set to “Enabled” or “Disabled”.

£  R e g is ti y  E d ito r  S is p f?
-  ' |-----

-  -  .
■ 1 - W & -Ma l - . l i 4 g » a r

File Edit View Favorites Help
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■ C l  Scanner 
•• C l  Windows 

Hi P i  PacketCluster

b : Name Type Data

[^ (D e fa u lt) | REG SZ (value not set)
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lj®) ShowKeyStrokes

REG_SZ
REG_5Z
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My Computer\HKEY_LOCAL_MACHINE\SOFTWARE\Catlab\Project54\P54Gui\Debug

Figure 3.4 Windows Registry settings relating to the P54Gui usage logging functionality
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While a solution was implemented that allowed the P54Gui component to 

track specific GUI usage events (button presses and keystroke entries), there 

was still no means of transferring that information from the P54Gui component to 

the Interaction Logger. The solution developed for this issue was to create two 

Component Object Model (COM) objects [24] that would facilitate data 

transmission from the P54Gui to the Interaction Logger: a logging object for the 

P54Gui and a GUI message handler object for the Interaction Logger. Figure 3.5 

shows the added COM objects, including their interfaces and methods. The pre­

existing P54Gui interfaces were not changed, but one was added -  

IGuiLoggerControl. The IGuiLoggerControl interface contained the two methods, 

startLogging and stopLogging. As their names suggest these two methods may 

be called by another application (in this case the Interaction Logger) to signal 

when GUI logging should begin and end. The Interaction Logger’s message 

handler object receives the GUI messages once they are sent from the GUI. This 

process is carried out by the object’s getData method, via the IDataLogger 

interface. Table 3.3 provides a brief summary of the interfaces and methods 

developed for this research.
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Figure 3.5 COM objects that facilitate communication between the P54Gui component and
the Interaction Logger

Interface

IGuiLoggerControl

Interface Methods

startLogging()
stopLogging()

IDataLogger getData( m essage)

Description
This P54Gui interface alerts the GUI 

component when another 
application requests GUI usage 

event information. The Interaction 
Logger accesses these methods by 

calling startLogging and 
stopLogging.

This Interaction Logger interface has 
one method -  getData. The Logger 

will receive feedback messages 
from any application that calls the 

getData function.
Table 3.3 Summary of interfaces and methods added for GUI interaction event logging
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The sequence of events is that the Interaction Logger must inform the 

P54Gui component that GUI interactions are desired, by calling the P54Gui 

component’s startLogging interface method. When this method is called the 

P54Gui will set the global Boolean value b_LogData to true and create text 

messages containing GUI activities, as they occur. Once a GUI event takes place 

the P54Gui component sends the information about that interaction to the 

Interaction Logger via the IDataLogger’s getData interface method. Before the 

Logger shuts down it calls the P54Gui’s stopLogging method to signal that no 

further GUI activity messages are needed. It is not until this point that b LogData 

is reset to false.

The P54Gui called the getData method when either one of two events 

transpired -  the state of any GUI button changed or a keystroke was entered into 

a GUI text field. In order to prevent either the button control class or the text field 

control class from calling getData while that method was busy, synchronization 

was used to give sole access to the first event (button press or keystroke) to call 

this function. That event had priority until the data could be safely sent to the 

Logger. On the Interaction Logger end of the process, the getData method 

receives the GUI event messages. This getData method waits for its message 

buffer to fill up (occurs when a GUI log message is sent) and then makes a call to 

the logMessage function (discussed in the next section) to log the GUI usage 

event. Back on the P54Gui side, once the message has been transmitted to the 

Logger, the message buffer is flushed in preparation for another GUI interaction 

to occur.
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3.4 Interaction Logger

The brief background on Project54 inter-application text messaging as 

well as the explanation for the P54Gui adaptations necessary for GUI event 

logging provided the groundwork for the initial phase of this thesis work -  logging 

user interaction events. As has been mentioned previously, the Interaction 

Logger was designed to monitor and record the SUI, GUI, and hardware usage 

events that could occur within a police cruiser. This section will describe the 

Logger software design approach as well as many of the details regarding its 

implementation.

Before any programming could be started it was important to have a plan 

put in place for what the Interaction Logger was going to accomplish. As was 

mentioned in Chapter 1, there needed to be a tool capable of recording all the 

events going on within a police cruiser, not just speech. With such a tool, 

designers and law enforcement officials alike would have access to information 

directly related to what aspects of Project54 user interfaces officers tend to prefer 

and in what situations the Project54 interfaces may be used. To ensure that 

accurate results were being generated, the interaction event recording had to be 

invisible to the officers. Certainly their consent to participate in an HCI study was 

required but once the software was installed on a car’s computer it needed to 

function in the background, not interfering with the officer’s daily workload. This 

requirement meant that the Logger could not have a GUI of its own. Once 

installed, the Logger had to operate automatically, without any external 

commands issued to it. Furthermore, the software had to be streamlined enough
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to avoid creating noticeable system lags. Any performance degradation would 

very likely become a nuisance to officers using the system, to the point that it 

might cause the officer to alter his or her system usage behavior. In general, any 

factors that would cause an officer to use the Project54 system in an 

uncharacteristic fashion could generate misleading event logs and should be 

avoided.

With these considerations in mind, implementation of the Interaction 

Logger could begin. Two of the first issues addressed dealt with how best to 

initialize and eventually shut down the application. Normally, these two program 

aspects would be considered benign and no formal discussion would be 

necessary. However, in order to maintain an accurate log of user event activity, a 

list of the other programs running on Project54 needed to exist. The programs on 

that list needed to shut down before the Interaction Logger to avoid missing any 

events that might occur after the application had stopped logging.

The Logger’s startup routine, depicted in the high-level block diagram 

shown in Figure 3.6, includes elements that make use of the Project54 

messaging system as well as certain Windows Registry settings. The 

“BROADCAST STARTUP” message shown in the first block of the figure is a 

startup command sent from the Application Manager to all the Project54 

applications running within a given vehicle installation. Each program, the 

Interaction Logger included, must then initialize its startup routine and report that 

it is loaded and ready to run, by sending the message “STARTUP” back to the 

Application Manager.
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Once the application is issued the initialization command, it then verifies 

whether or not it should log user interaction events. This process is done in two 

steps. First, the program makes sure permission to log information has not 

expired. Second, the program ensures that logging permission has been 

enabled. Both processes are done by checking the appropriate values within the 

Windows Registry, shown in Figure 3.7. The Registry value LogDuration is the 

length of time (in days) after the installation date. This LogDuration value 

provides a clear time frame for data collection to occur. Since the value is 

adjustable, data collection may be done in a flexible manner, on a vehicle-by- 

vehicle basis. The default value for LogDuration is 28 days. Once the time span 

allowed by LogDuration has elapsed, the Logger will automatically set LogData 

to disabled. The LogData Registry value indicates whether or not permission has 

been granted to proceed with logging interactions. The value should be set to 

either “Enabled” or “Disabled”, depending on whether or not event logging is 

allowed. For all intents and purposes the order of the two verification steps is 

irrelevant; once logging permission is denied for either reason the application 

merely runs in the background without logging any information at all.

The remaining three blocks shown in Figure 3.6 involve processes that will 

only be executed when the application is set up for logging. As was mentioned 

earlier, in the section regarding inter-application communication, by registering as 

an application message sniffer the Logger is capable of monitoring all the 

communications occurring between other applications. Tracking the message 

traffic is used both to determine the active Project54 window and generate a
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count of the number of other applications also loaded onto Project54. The latter 

feature is noted in the following block and plays a key role in the shutdown 

routine (discussed shortly). The other action listed within the next block is the 

creation of a version list text file. This file contains the version of each Project54 

application, as shown within the Component Versions folder of the Windows 

Registry. Since not all police departments have the same Project54 system 

setup, knowledge of each application’s version list would allow data analysis to 

be better-tailored to individual fleets’ installations. The last major step included 

within the block diagram is the Logger’s registration for feedback messages from 

other Project54 applications. Figure 3.8 shows the list of applications within the 

Windows Registry from which the Interaction Logger could request feedback 

information.
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Figure 3.6 Interaction Logger program start routine
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Figure 3.7 Interaction Logger registry parameters
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Figure 3.8 List of applications from which the Interaction Logger requests feedback
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Though registering for feedback may seem redundant since the Logger is 

already capable of sniffing message traffic, registering for feedback messages 

from applications has a distinct advantage over sniffing for this particular 

application. Due to the ability to create an application-specific ID for received 

messages (as discussed in the Project54 inter-application messaging section) 

the Logger only needs to pay attention to status messages that bear the proper 

ID. However, if the sniffer functionality was not taken advantage of, it would be 

far less convenient to determine the active window corresponding to user 

interaction and more difficult to ensure that the Logger was the last application to 

shut down. If, on the other hand, the software only took advantage of the sniffer 

functionality, it would be conceivable that important status information would not 

get logged due to the lack of any feedback clients for a given application to send 

messages to.

Once messages are received by the Interaction Logger they are handled 

according to the algorithm shown in Figure 3.9. When registering for feedback, 

the Logger provides the other programs with the unique message ID tag 

“DIRECTFEEDBACK” during a feedback request. The ID tag of each incoming 

message is checked when received by the application. If the message does not 

contain the tag “DIRECTFEEDBACK”, it is a message picked up by the message 

sniffer. Since the system has already started up, the only sniffed messages of 

interest are the “SHOW WINDOW” messages sent every time the active window 

is changed. If the message does not contain the DIRECTFEEDBACK ID tag and 

it is not a SHOW WINDOW message, then it is ignored (i.e. not recorded).
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Figure 3.9 Interaction Logger message handling algorithm
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Though the messages that do contain the DIRECTFEEDBACK tag are 

sent to the Interaction Logger specifically, it is still not guaranteed that those 

messages should be recorded. If the received message is not a status message 

(as described in the messaging section) it will be ignored. If, on the other hand, a 

status message is sent directly to the Interaction Logger that message must be 

screened before it can be logged. The screening process involves comparing the 

incoming status messages to the list of status messages shown in Table 3.4. If 

the received message matches any of those messages shown in the table, the 

message is ignored. The listing shown in Table 3.4 was comprised through a 

heuristic filtering process. During testing, it was determined that certain 

messages did not provide significant contributions to the information collection 

endeavor, but they did get transmitted frequently. Therefore, those less-important 

messages were filtered out to save storage space and preserve the clarity of the 

user interaction event information. The listed radar messages were ignored 

because they represented the results of an officer’s actions (e.g. Turning on an 

antenna array results in knowing another car’s “Target Speed”). The listed 

records and record queries message were ignored to prevent private information 

from being logged during this research project. The listed lights messages were 

ignored because they only report whether or not the light bar control head is 

active. This information is obvious during tasks performed using the light bar. 

Finally, the listed radio messages were ignored because they deal with 

monitoring radio traffic, not necessarily an officer’s use of the radio itself. Special 

mention needs to be made regarding the “STATUS CHANNEL” entry within the
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Table 3.4 listing. Messages that contain information regarding STATUS 

CHANNEL VOL (i.e. radio channel volume) are not filtered out, while all other 

STATUS CHANNEL data is ignored.

The use of the message filtering process was reduced with the help of 

selective feedback registration. If an application was created using the feedback 

handler found in the FEEDBACK.CPP file, specific feedback messages could be 

retrieved from that application without receiving all possible feedback data. For 

example, since the STATUS SPEECHIN message is the only information from 

the Speechio application that relates a user interaction, a feedback request such 

as:

Message(self,speechio,L”DIRECTFEEDBACK”,L”FEEDBACK SPEECHIN ON”)

could be sent to the Speechio application. Any other status messages Speechio 

might be able to send to the Interaction Logger would automatically be filtered 

out, without being transmitted to the Logger in the first place. Since not all 

applications have been built with the FEEDBACK.CPP file, this pre-filtering 

cannot completely remove the need for the Interaction Logger’s own filtering 

functionality.

If a message does not get filtered out, it is checked for one more useful piece of 

information, whether or not it contains vehicle velocity data. If the message 

contains velocity information that data is stored and amended to all of the logged 

interaction information. If a message is not filtered out but does not contain
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vehicle velocity information, that message treated as an interaction and logged 

with whatever vehicle speed has already been saved. Since the in-vehicle GPS 

units update the vehicle speed every few seconds, the speed that gets logged 

along with the user interaction is an accurate one.

li  Project54 Application Ignored Messages
STATUS PATROL SPEED 
STATUS TARGET SPEED 

STATUS LOCK SPEED 
STATUS ALERT 
STATUS QUERY 

STATUS PING 
STATUS NEWQUERY 
STATUS ENDQUERY 

STATUS QUERYINPROGESS 
STATUS ADD 

STATUS QUERY 
STATUS RECEIVEDRECORD 

STATUS LIGHTS CONTROL HEAD 
STATUS CONTROLHEAD 

STATUS BUSY 
STATUS CHANNEL*

Table 3.4 STATUS messages not logged by the Interaction Logger application

Once the status messages have been identified as direct feedback 

information and screened to weed out less-important data, they are ready to be 

recorded. The process, shown in Figure 3.10, indicates both the logging startup 

procedure and how all subsequent interaction information is recorded. The first 

time data is to be recorded (and each time a new day starts), the application 

must open a file stream to which that information will be written. The file stream is 

left open for the duration of the application’s execution. The file stream will also
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close if the days change during logging, in which case the previous day’s file 

stream will close and the new day’s file stream will open. To keep the data logs’ 

nomenclature simple, the name of a file is the same as the date on which that file 

was created. In other words, if a file was created on May 4, 2007, the name of 

that file would be 05-04-2007.

This file naming scheme makes it necessary to check the date in order to 

determine when a new log file has to be created. The check is performed each 

time a new message is ready to be recorded. By checking each message’s date, 

it can be assured that no gray area would exist in which messages get logged in 

the wrong date’s text file. If data recording occurs for more than one day without 

the computer restarting, the Logger will still be able to automatically detect a 

change in the date, close the previous date’s log file, create a text file for the new 

date, open that new file, and write the buffered interaction message to the new 

date’s file, with no detectable real-time delay.

With the properly-dated file stream ready to receive interaction data, the 

application waits for incoming messages to record. The logging process 

determines, based on the information available, whether the message pertains to 

a GUI interaction or a text message interaction. The differentiation between GUI 

messages and P54text messages is important because the messages have 

different formats. This decision process is based on whether or not the Logger 

has the following information: the source application’s name, the active window 

name, and the vehicle’s velocity. When this information is absent, the application 

deems the message present to be GUI interaction data. In the case of receiving
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GUI interaction data, the vehicle velocity is appended to the original GUI 

message. If no GPS information is available, the velocity data appended to the 

corresponding usage logs is the string, “N/A”, to avoid knowingly recording a 

false speed. The text message data actually arrives at the message logger in 

pieces that must be put together before being written to the file stream. The 

pieces are the timestamp, an index (based on the number of milliseconds that 

have elapsed since system startup), the source application’s name, the active 

window’s name, the status message itself, and finally the vehicle velocity. Once 

the information is packaged in that format, it is recorded in a text file for later 

analysis.

The Interaction Logger’s shutdown routine is slightly more involved than 

most other Project54 applications’ shutdown processes. This is because, to 

ensure that no interactions are missed during system shutdown, the Interaction 

Logger must verify that it is the last application to terminate. Figure 3.11 shows a 

high-level block diagram for the Logger’s shutdown implementation. Once the 

Application Manager transmits the “BROADCAST SHUTDOWN” command to all 

the Project54 applications, the Interaction Logger checks its count of the number 

of currently-running applications. This count was created during startup by 

sniffing the number of “STARTUP” messages sent to the Application Manager. 

Similarly, during shutdown the Interaction Logger sniffs the number of 

“SHUTDOWN” messages each application sends to the Application Manager 

once they are ready to terminate. Each time a “SHUTDOWN” message is sniffed, 

the count of active applications is decremented by one. Once the count indicates
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that the Interaction Logger is the only application yet to shut down, the program 

will close the data log text file stream and terminate.
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Figure 3.10 User interaction logging process
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Figure 3.11 Interaction Logger program shutdown procedure
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CHAPTER 4

SOFTWARE TESTING AND DEPLOYMENT

4.1 Introduction

The second proposed step of the user interaction logging tool 

development was to perform testing to verify that Project54 HCI event 

information could be accurately gathered from police cruisers. As part of the 

initial development, the application was tested on a desktop computer where any 

noticeable bugs were removed from the program. More intensive testing was 

performed by loading the software into a laboratory car mock-up, a driving 

simulator, and two test vehicles. The tests were conducted in three phases -  

simulated HCI event recording under simulated driving conditions using the 

laboratory car (Lab Car), actual HCI event recording under simulated driving 

conditions using the driving simulator, and actual HCI event recording under 

actual driving conditions using two Project54 test cars. Once the tests proved the 

software was stable and functioning properly, it was deployed in two state police 

cruisers for actual user interaction data collection. All participants of any data 

collecting procedures had a signed consent form on record, prior to the collection 

of their data.
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4.2 Lab Car Testing

Once the interaction logging software was realized, the program was then 

tested in the Lab Car. The Lab Car, shown in Figure 4.1, is, practically speaking, 

the front seat of a police cruiser. The Project54 system within the Lab Car is 

equipped with an IDB network and assorted hardware devices, such as a radio, 

lights, siren, GPS, and radar. The IDB network connects the devices to a 

console-mounted embedded PC. This testing setup, with its hardware 

components and software settings, adequately represents the system currently 

installed within a typical New Hampshire state police cruiser.

Figure 4.1 Project54 lab car
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To keep the installation process simple, a batch file was created that could 

automatically load the Interaction Logger, the updated P54Gui software, and the 

necessary Windows Registry settings onto a Project54 system setup. The folder 

that contained the installation batch file also contained the Interaction Logger, as 

well as P54Gui and Records applications that had been updated to 

accommodate the Logger. Also included in the folder were the text files that 

contain data to be loaded into the Windows Registry and the Project54 

Application Selection program.

With the application loaded onto the Lab Car automated tests were 

conducted on button press user interactions and speech command user 

interactions separately. Samples of the files used to conduct these tests are 

shown in Figure 4.2 (the GUI file) and Figure 4.3 (the SUI file). In order to make 

sense of the information provided in these figures, Table 4.1 has been included 

as a key. The GUI test file example indicates that the test started within the 

Project54 Patrol Screen. Certain buttons (indicated by their column and row 

coordinates) had simulated presses occur once every ten seconds. The SUI test 

file sample also indicates that the test was conducted with the Patrol Screen as 

the active window. In this case, a simulated speech command (the text between 

the quotations) was issued once every ten seconds. These testing procedures 

were made possible by executing the test file commands within a pre-existing 

Project54 automated interface testing application [25].
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[percentage] ■
Braces delimit a block of test commands. 

Execute this line or block of commands based on

<milliseconds>
Once a command has been given, the test will wait 
the indicated number of milliseconds before moving 

to the next line.
(column row) ^u^(?n coordinates are given to the test file in

“SIMSPEECH
COMMAND”

The commands within quotations are interpreted as 
simulated speech but are treated by the system as 

standard speech commands.
Table 4.1 Test file command reference

II Patrol Screen GUI Test 
[100] {
(6,2) <10000>
(7.2) <10000>
(8.2) <10000>
(6.3) <10000>
(7.3) <10000>
(8.3) <10000>
(6.4) <10000>
(7.4) <10000>
(8.4) <10000>
}

Figure 4.2 Sample GUI test file
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II Patrol Screen SUI Test 
[100] {
“FRONT ANTENNA” <10000> 
“FRONT ANTENNA OFF” <10000> 
“REAR ANTENNA” <10000> 
“REAR ANTENNA OFF” <10000> 
“STROBES” <10000>
“STROBES OFF” <10000>
“AIR HORN” <10000>

Figure 4.3 Sample SUI test file

Since the Lab Car tests were automated, it was possible to perform 

constant testing for long periods of time. In this case testing was done on the 

button press interaction events and speech command interaction events 

separately over the course of one entire weekend each, spanning from Friday 

evening to Monday morning (approximately sixty six hours a piece). After those 

tests were complete, another round of testing was done in which both GUI and 

SUI commands were issued in ten second intervals. This round of testing went 

on for two weeks (approximately three hundred hours).

A program was written to verify that the recorded data matched the 

automated SUI and GUI commands. The process involved first manually looking 

at the recorded data to verify that the first iteration of commands matched the 

testing script. Once that step was completed the first iteration of recorded data 

was used as the benchmark to which all other iterations of recorded data were 

compared. After more than 1.4 million lines of recorded data (covering more than 

fourteen thousand iterations of automated SUI and GUI commands) were
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checked, no anomalous log entries were discovered. Test results concluded that 

the logging software was able to accurately keep track of Project54 user 

interactions without generating systems crashes.

4.3 Driving Simulator Testing

After the Lab Car tests were completed and positive results were 

generated, the program was then tested in the Project54 driving simulator. The 

driving simulator, shown in Figure 4.4, is, similarly to the Lab Car, the front seat 

of an automobile, but with the addition of a bank of computers and a projector 

array capable of displaying virtual driving scenarios under various conditions. 

Also like the Lab Car, the driving simulator is outfitted with Project54 software. 

However, the driving simulator does not make use of various hardware devices, 

such as lights; instead the simulator emulates most device functionality within 

software (as is the case with the radar, for example). However, unlike the Lab 

Car, the driving simulator is able to simulate vehicle speed. For testing purposes, 

the simulator sent vehicle speed messages via IP messaging to the Project54 

radar application which were interpreted as radar “patrol speed” data. Those 

radar patrol speed messages were then sent from the radar application to the 

Interaction Logger, to be appended to the end of every recorded user interaction 

message. Since there is no autonomous driving capability within the driving 

simulator, testing had to be performed manually.

The test procedure itself consisted of performing scripted tasks both in 

simulated driving and parked conditions. Table 4.2 contains an example of the
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script used to carry out the simulator testing. The tasks listed in the table were 

performed both under simulated driving conditions and under simulated parking 

conditions. In both cases the tasks were also performed using both the SUI and 

the GUI. The individual tests lasted for approximately fifteen minutes apiece and 

were performed a total of ten times by five different members of the Project54 

team. The result of the tests, verified using the same procedure in which the Lab 

Car logs were inspected, indicated that the Interaction Logger could accurately 

record user interactions as well as the appropriate driving condition (moving or 

stopped).

Order of Tasks Performed

Turn Front Antenna ON 
Turn Lock ON 
Turn Lights & Siren ON 
Turn Lights & Siren OFF 
Turn Lock OFF 
Turns Rear Strobes OFF 
Turn Rear Antenna ON 
Turn Rear Antenna OFF 

Table 4.2 Example of one script used to test interaction logging on the driving simulator
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Figure 4.4 Project54 driving simulator

4.4 Proiect54 Test Vehicle Testing

The third set of test conditions was realized during road tests, using the 

Project54 show car and Chevrolet Impala to collect interaction data. The show 

car and Impala are both Project54-equipped vehicles, identical in every respect 

to a New Hampshire State Police cruiser. The cars are outfitted with the same 

hardware (GPS, radar, radio, lights, siren, etc.) that may be found within a state 

police cruiser as well as the same Project54 software configuration. The biggest 

advantage to using the show car and Impala for testing was that they were able
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to recreate actual in-vehicle device usage more accurately than either the Lab 

Car or the driving simulator.

The Show Car and Impala testing both consisted of four experienced, 

authorized Project54 employees driving while using the SUI, GUI, or hardware 

controls to operate the in-vehicle equipment. The operators’ system usage was 

unscripted and only served to ensure the interaction logging application was 

stable. The testing went on for approximately ten hours with none of the test 

subjects detected system lags or any other system performance issues during 

any of the tests conducted.

4.5 Police Cruiser Deployment

Once all the test results were collected and reviewed it was evident that 

the interaction logging software was stable and could accurately record in-vehicle 

user interactions involving both Project54 interfaces (SUI and GUI) and the 

standard device control heads. The last step as far as the information gathering 

process was concerned was to implement interaction logging within actual police 

cruisers. Two New Hampshire state police officers volunteered to be test 

subjects for this user interaction evaluation. The Logger software was loaded in 

the two police cruisers, using the batch-file installer, and recorded usage data 

whenever the cruiser’s embedded computer was turned on and running 

Project54. The data logging went on for twenty-eight days, at which point the 

data was collected from the cruisers.
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Since the officers were not actually testing any software in this case, they 

were asked to refrain from using either the Project54 interfaces or the standard 

device controls in a manner that would be different from the way in which these 

controls are normally used. It was very important to make sure that the usage 

information that was recorded represented normal, day-to-day activities even if 

that meant the Project54 system never got turned on. Also as part of this 

evaluation, the officers were asked to fill out a questionnaire (See Appendix A). 

Among other things, this questionnaire gave the officers the opportunity to state 

how they felt they utilized the Project54 system during the course of their shifts. 

The results from this questionnaire were compared to the data collected directly 

from the police cruisers as part of this preliminary evaluation.
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CHAPTER 5

DATA ANALYSIS AND VISUALIZATION

5.1 Introduction

After twenty eight days, the interaction logs were retrieved from the police 

cruisers that were used in cooperation with this research. Table 5.1 provides a 

summary of the amount of data gathered from the two participating police 

officers. All told, there was approximately five megabytes of information available 

from both police cruisers that needed to be analyzed. To this end, a program was 

created to post-process the data by way of parsing information from the original 

log files and placing it into new files. The new files were then used to generate 

data visualizations, meant to illustrate system usage trends. This chapter details 

the design of both the information post-processing application and the data 

visualization program. Visualization examples are also included to demonstrate 

the usefulness of the quantitative analysis.
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Totals Days of 
Data 

Total Files of 
Data 

Total Amount of 
Data 

Mean Daily 
Log File Size 

Total Number of 
Messages 
Mean Daily 

Message Count

Officer #1 Officer #2 Combined Averaged

23 days 19 days 42 days 21 days

23 files 19 files 42 files 21 files

3.6 MB 1.8 MB 5.4 MB 2.7 MB

157 kB 95 kB 129 kB 126 kB

28,611 14,456 43,067 21,533

1243 760 1025 1,001

Table 5.1 Summary of collected data statistics from two deployed police cruisers

5.2 Data Post-Processing Development

The data analysis program provides an automated solution for determining 

a police officer’s Project54 usage characteristics. The software functions by 

applying two main data analysis techniques -  data selection and recoding -  to 

the raw data input stream [5], Data selection is a process by which the user 

interaction events of interest are separated from “noise” data (irrelevant data). 

Since a large amount.of undesirable information was never logged in the first 

place, the selection process was minimal in that it only applied to ignoring certain 

status messages. For example, if a speech command was issued to turn strobes 

on, the corresponding event log sequence would contain both “STATUS 

SPEECHIN STROBES” and “STATUS STROBES”. In this case the SPEECHIN 

message contains the user interaction while the second message represents 

system feedback, not an action taken by the officer. To avoid double-counting 

this event, the “STATUS STROBES” message is ignored. Similarly, when a

64

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



button press is used to turn strobes on, the button-press message is logged and 

the accompanying “STATUS STROBES” message is ignored.

Data recoding involves producing a new event log based on the results of 

the selection process. Once data selection identifies information as being 

important, that information is reorganized into a new text file. This step is 

especially useful considering not all of the raw data log events follow the same 

format. For instance, button press log entries do not contain the same data fields 

as the speech or hardware entries. This is because the status message format, 

discussed in Chapter 3, is not supported by the GUI application. Recoding the 

raw data makes such format discrepancies irrelevant because once events are 

recoded all the information is presented in the same fashion for analysis. A 

graphical representation for the data recoding procedure is shown in Figure 5.1. 

The uppermost portion of the figure contains snippets from two different log entry 

lines (separated by a dashed line), taken from one of the officers’ records. For 

the sake of fitting the figure better, the log entries have been edited. The boxes 

around the different data fields within the “Parsed Raw Data from Officer #1” 

block are color-coded to match corresponding fields within the “Data Analysis 

Software: Recode Fields” block. Even though it has not been used in the 

example illustrated by this figure, the box containing the Active Window field in 

the second log message has been included to better illustrate the difference in 

log entry formats.
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Officer #1

G U I : 04/26/2007 16:00:18 39954301 Project54 (Licensed to NH State Police): 
Patrol Information Screen Rear Floods Button Released Velocity (mph): 0

HW: 04/26/2007 16:05:35 40270946 Source A p p : radio Active Window: pscreen 
Message: STATUS CHANNEL VOL 7 Velocity (mph): 79

Officer #1

Patrol Information Screen

Velocity (mph): 0

16:05:35 Source App: radio Active Window: pscreen

Velocity (mph): 7 9Message: STATUS CHANNEL VOL 7

Data Analysis Software: Recode Fields

Officer ID

interface

Time Stamp

Task

Active Device

Vehicle Speed

Recoded Data

Officerl 16:00:18 Lights gui "Rear Floods Button Released" mph: 0 
Officerl 16:05:35 Radio hw "STATUS CHANNEL VOL 7" mph:79

Figure 5.1 Data Analysis Recoding Procedure
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Once events had been identified as user interactions (the selection 

process mentioned earlier), those data were parsed into the appropriate recoding 

fields (also color-coded in the figure). For example the time stamp, shown in the 

brown box of each log entry, can be thought of as being placed into the recoding 

field’s time stamp bin (also shown as a brown box), then dumped into the 

recoded data stream, unchanged. However, the items which refer to the 

particular task an officer carries out (shown in the blue boxes) possess 

information regarding both the task performed itself, and the interface used to 

perform that task (i.e. SUI, GUI, or hardware). The interface is evident based on 

the format of the message in that “STATUS SPEECHIN” messages must involve 

the SUI, “STATUS ...” messages must involve the hardware, and any other 

messages must involve the GUI. Therefore, any items contained in the raw 

data’s blue boxes may be thought of as placed into both blue recoding fields’ bins 

and then dumped into the “Recoded Data” file. When completed, each line of the 

recoded data file would hold the same fields of information: the officer whose 

data is being analyzed, a date stamp, a time stamp, the device/application used 

for the interaction, the interface used for the interaction, the specific interaction 

itself, and the vehicle’s speed during the interaction.

Also note that the contents of the blue box in the first raw-data event, 

“Rear Floods Button Released”, have a different font color than the other data. 

The color change is intended to signify the third piece of information that may be 

gleaned from the message -  namely that “Rear Floods” has to do with the lights 

application. While the GUI-related log messages do not contain their own field to
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specify the device used during a particular task, knowledge of each device’s 

features/components is enough to identify which device is being used. “Rear 

Floods” messages belong to lights, “Front Antenna” messages belong to radar, 

“Log On” messages belong to records, etc. The same knowledge could have 

been applied to those log messages within the “Source App” message field (the 

red box) but it was easier to simply use the “Source App“ information when it was 

readily available.

With some exceptions, the recoding procedure shown in Figure 5.1 was all 

that was required to decipher interactions directly involving the Project54 system, 

that is -  the SUI and the GUI. However, developing a method for determining 

hardware interactions had to take other factors into consideration. For one, timing 

played a role in determining hardware usage. If log entries occurred too rapidly, it 

was evident that a human did not perform them. Specifically, for status messages 

to have been considered as candidates for hardware interactions, they had to 

have occurred at least one tenth of one second after the previous known user 

interaction. Though one tenth of one second may seem low for a threshold 

setting, viewing the log data indicated that this time was both too fast for human 

responses and too slow for computer feedback responses.

Timing cues alone were not enough to judge hardware usage. 

Determining hardware interactions also involved monitoring each device’s 

operational status (i.e. “ON” or “OFF” in most cases), and updating that device’s 

status whenever a known interaction took place. In other words, if a speech 

command was issued to turn the rear floods on, there would be an

68

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



accompanying status message that indicated the rear floods were on. While this 

status message would not indicate a hardware interaction took place, the 

recoding application would still have to update the rear flood’s status from “OFF” 

to “ON”. If, however, a status change was observed in the front antenna without 

an accompanying SUI or GUI event, it would indicate that a hardware interaction 

had taken place.

The principle behind identifying hardware usage is shown in Figure 5.2. 

The figure begins with reading lines from the data logs, two at a time. If the 

“Current Line” (the first of the two lines read) contains either a GUI or a SUI event 

message, the data on the line is recoded. Failing either of these two options, the 

message is checked to see if a status change has occurred, with the application 

updating the device’s status when needed. If the message happens to be at least 

a tenth of a second after the previous known interaction, while simultaneously not 

occurring within the same millisecond as the next line’s event, it is likely that the 

current line’s event represents a hardware interaction. The lack of certainty 

comes from some caveats regarding the in-vehicle devices (the bottom-most 

block in the figure). These device exceptions had to be handled individually to 

ensure the accuracy of the hardware interaction accounting. In order to test the 

procedure, representative selections of the logs were individually analyzed by the 

algorithm and compared to manual observations to ensure the algorithm 

matched human perception of events.
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Read Lines from 
Raw Data Stream

Current Line of 
Raw-Data Log

i YesRecode Line as a 
Valid Interaction

SUI/GUI
used?

No

Device
Status

Changed?

No Ignore Current Line -  
Move to Next Line

Yes

Update Corresponding 
Device Status

NoPass Timing 
Criteria?

Yes

Yes . Pass
Hardware
Caveats?

No

Figure 5.2 Hardware Usage Identification Algorithm

In particular, there were two pieces of in-vehicle equipment that generated 

event logs which were inconsistent with the algorithm shown in Figure 5.2 -  the
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light bar and the radar. The list of possible user interaction message structures, 

shown in Table 5.2, was determined by manually looking through the officers’ log 

files for data irregularities, in a similar fashion to Nathan Purmort’s radio traffic 

analysis [26].

The first four types of logged message blocks were handled easily by the 

algorithm in Figure 5.2. Accounting for more than five thousand of the almost 

seven thousand total logged interactions (76% of the total interactions), the first 

four types were by far the most common. The remaining types of logged 

message blocks presented some conflict. Type 5 shows the case of speech 

command messages getting logged in a counter-intuitive order. There were 

perhaps twenty or so instances of such speech command logging present in the 

data available for this research that would not have been detected because the 

algorithm did not account for receiving a feedback message before the speech 

command that generated it. The solution for this project was to manually go 

through a copy of the raw data files and flip the order of logged events whenever 

it was clear that the speech command was out of logical order with its resulting 

device feedback message. In the future, however, an automated solution to this 

problem should be employed.

Types 6 through 9 are examples of light bar message groupings that are 

too complicated for the basic interface identification algorithm to handle. Types 6 

and 7 provide GUI and SUI examples (respectively) for the use of light bar 

strobes toggles. Both officers used a Whelen™ light bar and control head which 

employed a three-way switch that toggled the state of the strobes, between front
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strobes, rear strobes, and all strobes. The nature of this switch was such that 

only one strobes state could be active at a given time. In other words, if Front 

Strobes was active, Rear Strobes and All Strobes had to be off. The GUI buttons 

and SUI mimicked this behavior in such a way that issuing a Front Strobes “ON” 

command while another strobes state was active would automatically release 

either of the other two strobes GUI buttons (if either were already active), turn off 

the other strobes state, then activate the Front Strobes. In order to handle this 

data series properly, the strobes states were still updated, according to the 

process of Figure 5.2, but the three messages comprised only one GUI/SUI 

interaction, as opposed to, say, a GUI/SUI interaction and a hardware interaction 

(since, at first look it would appear as though there was an unaccounted-for 

hardware command).

Types 8 and 9 indicate examples for the use of the Project54 Lights and 

Siren functionality. There are situations in which police officers commonly turn on 

their Front and Rear Strobes, their Wig Wags, and their Wail Siren. To speed this 

process along Project54 developers added the Lights and Siren command to the 

GUI and SUI. Since the functionality of activating those three Lights and Siren 

functions only exists within Project54, it is possible to already have, for example, 

the Wig Wags on when the Lights and Siren button is pushed down. This does 

not affect the state of the Wig Wags but a log of the Wig Wags state is still 

recorded when Lights and Siren is pressed. The recoding program had to 

individually keep track of each of the states for the three Lights and Siren
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constituents and update them as needed. The program did not count the state 

change of any of the three devices as an interaction.

Types 10 and 12 represent examples for the use of the second piece of 

equipment in question, the radar. The radar used in both police cruisers is the 

Stalker radar, which comes with a remote control to perform hardware 

interactions. Type 10 demonstrates the act of activating the Front Antenna while 

the Rear Antenna is off. The main issue is the presence of the extra hardware 

feedback messages, “STATUS FRONT ANTENNA SELECTED” and the second 

occurrence of “STATUS FRONT ANTENNA”. The solution to this was to ignore 

all “STATUS X ANTENNA SELECTED” messages as they did not provide any 

information that was not readily available simply by observing the status of both 

antenna arrays themselves. In this case, the recoding program ignored the 

second antenna status message.

Type 11 represents those SUI/GUI commands issued to an antenna array 

when the other antenna array was already active. This type of message group 

was handled in the same fashion as the Type 6 strobes grouping, with the 

program ignoring the extra antenna status message.

Type 12 shows an example of an antenna array hardware control. In this 

case, one of the antenna arrays is already on when the remote control is used to 

turn the other antenna array on. Since the program has already ignored the 

“STATUS X ANTENNA SELECTED”, the only thing left for the program to do is 

to make sure that only the array getting activated is recorded as a hardware 

interaction, while the status of both arrays is updated.
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Type 1

Logged Message
XXX Button Pressed Down 
STATUS XXX

or
XXX Button Released 
STATUS XXX OFF 
STATUS SPEECHIN XXX

STATUS SPEECHIN XXX OFF 
STATUS XXX OFF
STATUS XXX

or
STATUS XXX OFF

Type 2■IH
Type 3

Type 4 Keystroke Entered: X

Type 5

Type 6 

Type 7

Type 8 

Type 9

Type
10

Type
11

STATUS XXX 
STATUS SPEECHIN XXX 

or
STATUS XXX OFF
STATUS SPEECHIN XXX OFF
Front Strobes Button Pressed Down
STATUS REAR STROBES OFF
STATUS FRONT STROBES
STATUS SPEECHIN FRONT STROBES 
STATUS STROBES OFF 
STATUS FRONT STROBES
Lights it Siren Button Pressed Down
STATUS LIGHTS AND SIREN
STATUS STROBES
STATUS WIG WAGS
STATUS WAIL
STATUS SPEECHIN LIGHTS AND SIREN
STATUS LIGHTS AND SIREN
STATUS STROBES
STATUS WIG WAGS
STATUS WAIL
Front Antenna Button Pressed Down
STATUS FRONT ANTENNA
STATUS FRONT ANTENNA SELECTED
STATUS FRONT ANTENNA
STATUS SPEECHIN REAR ANTENNA
STATUS FRONT ANTENNA OFF
STATUS REAR ANTENNA
STATUS REAR ANTENNA SELECTED
STATUS REAR ANTENNA
STATUS REAR ANTENNA SELECTED
STATUS FRONT ANTENNA OFF
STATUS REAR ANTENNA

A single GUI Interaction

A single SUI Interactic

A single Hardware 
Interaction

A single GUI Interaction

A single SUI Interaction 
(Type 2 -  Order Flipped)

A single GUI Interaction 
(Only seen when one of other 
2 Strobes States was active)
A single SUI Interaction
(Only seen when one of other 
2 Strobes States was active)

A single GUI Interaction
(Same Pattern for turning 

Lights & Siren “OFF")

A single SUI Interaction 
(Same Pattern for turning 

Lights & Siren “OFF”)

A Single GUI Interaction 
(Same Pattern for “OFF”)

A Single SUI Interaction

A single HardwareTuna STATUS FRONT ANTENNA OFF . ..
stat us re ar a n t e n n a Interaction

12 (Only seen when the other
antenna was active)

Table 5.2 Summary of logged message structures that contain usage information
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5.3 Data Visualizations

Once the raw data file recoding process was complete, the result was a 

series of concise data files with comparable information, one for each day of raw 

data logging for each officer plus an extra file for each officer that contained the 

total of all their days of interaction logging. In other words, the extra file was a 

concatenation of each individual officers’ usage activity over the entire length of 

their participation in this research. That means that for this research there were a 

total of forty four recoded data files created. To give some sense of the amount 

of information used during this research, the statistics of these files is shown in 

Table 5.3.

Officer #1 Officer #2 Combined

23 days 19 days 42 days

23 files + 1 19 files + 1 44 files

380 kB 135 kB 515 kB

17 kB 7 kB 12 kB

4938 1793 6731

214 160

Total Days of 
Recoded Data 
Total Files of 
Recoded Data 

Total Amount of 
Recoded Data 

Mean Daily 
Recoded File Size 
Total Number of 

Interactions 
Mean Daily 

Interaction Count
Table 5.3 Summary of recoded data statistics from two deployed police cruisers
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The next step in the post processing was to develop a MATLab-based 

visualization tool that could present the data graphically in order to accentuate 

the manner in which the Project54 system was used to carry out various user 

interactions. The different visualizations created by this tool are separated into 

so-called cells, a feature available in MATLab release R2006a. Using cells, the 

user can generate visualizations one at a time, which is faster than waiting for all 

the visualization figures to be produced. Also, the cells contain customization 

options such as creating visualizations that focus on what interactions take place 

while a police officer is driving.

The focus was not only on making sure data visualizations could be 

created automatically using this tool, but also to investigate which data 

visualizations were preferable. To that end, samples of the visualizations 

contained in the remainder of this chapter were shown to eight different research 

assistants within the Project54 design team, ranging in experience from several 

months to over three years. Not only did their feedback (which will be discussed 

during the introduction of each different set of visualizations) provide insight into 

which graphical representations were preferred, but also their input lead to 

several beneficial changes in the visualizations themselves. All of the 

visualization examples shown in this chapter are divided into two sections: 

information recorded while the police cruisers were moving and information 

recorded while the police cruisers were stopped. This information was received 

via GPS velocity data during the logging process. However, the police cruisers 

were not always within GPS signal reception areas so the counts of interactions
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and interface usage may not, in some cases, accurately reflect the total amount 

of activity going on within the vehicles. That being said, all identifiable user 

interactions were recorded during the logging process, regardless of whether or 

not the vehicle speed was available. The Logger noted the lack of vehicle speed 

data whenever such cases were present.

The first visualizations covered are the histograms. The histograms were 

included as an example of a visualization engineers were likely to feel 

comfortable dealing with, due to the likelihood of having come across them many 

times in the past. It came as no surprise that the engineers who viewed these 

visualizations found that, while the histograms tended to be the most “boring” of 

the visualizations, these presentations also required the least amount of 

explanation or time to understand. The main drawback to the histograms is that 

they can become hard to read, as is the case in Figure 5.3 through Figure 5.6. 

These four figures show interface usage while driving and while stopped (Figure

5.3 and Figure 5.4, respectively) as well as general device usage (lights, radar, 

radio, and records) while driving and while stopped (Figure 5.5 and Figure 5.6, 

respectively) from the two police officer participants. The data was averaged 

together over the course of all the days of their participation. That usage 

information is then presented as if it all transpired over the course of one day 

(one twenty-four hour period). While the information only covers a very small 

sample set, certain trends do tend to emerge. Among these trends are that the 

time corresponding to the evening commute tends to see a rise in activity, the 

GUI is the most frequently used interface while the vehicle is stopped, and the
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officers tend to spend their time running records checks when they are stopped 

more than any other in-vehicle activity.

The spikes shown in Figure 5.3 and Figure 5.5 are not anomalies. The 

spike at “Hour 1” (in both figures) is a result of one of the officers running records 

checks that made heavy use of the “Scroll Up” and “Scroll Down” GUI buttons 

during one of his shifts. The spike at “Hour 24” (in both figures) indicates that that 

same officer was turning his front antenna on and off repeatedly during the same 

shift that produced the “Hour 1” spike. This procedure is called “Hold Mode” and 

is done to avoid tipping-off drivers who may have radar detectors. The spikes 

shown in Figure 5.4 and Figure 5.6 are not anomalies either. All the GUI spikes 

(in both figures) are a result of one of the officers entering information into text 

fields during records checks over several shifts. The records checks also 

involved use of the “Scroll Up” and “Scroll Down” GUI buttons.
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First 2 Officers: Averages of interfaces Used by Hour, While Driving (All Days)
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Figure 5.3 A histogram of interface usage while the police were driving

First 2 Officers: Averages of Interfaces Used by H our, While Stopped (All Days)
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Figure 5.4 A histogram of interface usage while the police were stopped
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First 2 Officers: Averages of Tasks Performed by H our, While Driving (All Days)
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Figure 5.5 A histogram of interactions while the police were driving

First 2 Officers: Averages of Tasks Performed by H our, While Stopped (All Days)
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Figure 5.6 A histogram of interactions while the police were stopped
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The interface usage plots shown in Figure 5.7 and Figure 5.8 represent 

the average usage (averaged by officer) of lights, radar, radio, and records for 

both participants over the course of all days in which data was collected. The rest 

of the histograms presented in this thesis act as subsets of these two figures.

First 2 Officers: Average Interface Usage for All Tasks , While Driving (All Days)

1800-

1600-

§  1400-O
<5
^  1200- 
©
CD

Interface Percentages

Figure 5.7 A histogram of in-vehicle interface usage while driving

First 2 Officers: Average Interface Usage for All Tasks , While Stopped (All Days)

£  2500

§>2000

-o 1 0 0 0

SUI (8%) GUI (74%) 
Interface Percentages

HW (19%)

Figure 5.8 A histogram of in-vehicle interface usage while parked
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The next set of histograms (Figure 5.9 through Figure 5.16) demonstrates 

the ability of the analysis program to generate results capable of examining any 

link between the device to be controlled and the interface used to control that 

device. The plots show the interface usage by task (lights, radar, radio, and 

records). Each task has been further divided into two subsets indicating the 

difference in interface usage while the officers were driving or stopped when 

performing their tasks. For example, there are two figures that show the average 

of the two officers’ interface preferences for controlling lights -  one figure show 

preferences while driving and the other show preferences while stopped. One of 

the interesting results of the light bar control plots, in particular, is that they tend 

to go against what the police officers stated on their questionnaires. More 

specifically, the officers said they preferred to use the original hardware controls 

more than Project54 to operate the lights. In general, the SUI tended to be the 

least popular method for controlling devices, while the GUI tended to be the most 

popular, regardless of whether or not the officer was driving at the time. The 

exception appears to be with the radio. By and large the radio control head was 

used to execute radio functions, however nearly all of the radio operations 

involved changing the volume, which will be shown later.
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First 2 Officers: Average Interface Usage for Lights, While Driving (All Days)
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Interface Percentages

Figure 5.9 A histogram of in-vehicle interface preferences for controlling the light bar,
while driving

First 2 Officers: Average Interface Usage for Lights, While Stopped (All Days)
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Figure 5.10 A histogram of in-vehicle interface preferences for controlling the light bar,
while stopped
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First 2 Officers: Average Interface Usage for Radar, While Driving (All Days)

°  150 -

Interface Percentages

Figure 5.11 A histogram of in-vehicle interface preferences for controlling the radar, while
driving

First 2 Officers: Average Interface Usage for Radar, While Stopped (AH Days)

90" ' ' r

80-

8 7 0 '

Interface Percentages

Figure 5.12 A histogram of in-vehicle interface preferences for controlling the radar, while
stopped
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First 2 Officers: Average Interface Usage for Radio, While Driving (All Days)

2 5 0 -

Interface Percentages

Figure 5.13 A histogram of in-vehicle interface preferences for controlling the radio, while
driving

First 2 Officers: Average Interface Usage for Radio, While Stopped (All Days)

SUI (2%) GUI (1%) HW (97%)
Interface Percentages

Figure 5.14 A histogram of in-vehicle interface preferences for controlling the radio, while
stopped
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First 2 Officers: Average Interface Usage for Records, While Driving (All Days)

interface Percentages

Figure 5.15 A histogram of in-vehicle interface preferences for performing records checks,
while driving

First 2 Officers: Average Interface Usage for Records, While Stopped (AJI Days)

Interface Percentages

Figure 5.16 A histogram of in-vehicle interface preferences for performing records checks,
while stopped
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Due to what appeared to be a discrepancy between how the officers 

stated they preferred to operate their light bar assemblies and what the recorded 

data indicated they preferred, the next set of histograms takes a closer look at 

the lights usage (Figure 5.17 through Figure 5.20). The only apparent link 

between interface usage and whether or not the officer was driving is that the 

officer tended to rely more on the hardware controls and less on the SUI, when 

stopped as opposed to driving. The GUI was used consistently both while driving 

and while stopped. The results from the officers’ questionnaire responses 

indicated that they use the original hardware controls to turn light bar functions 

on and Project54 interfaces to turn off light bar functions. However, the available 

usage information from these two officers conflicted with their questionnaire 

responses.
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First 2 Officers: Average Interface Usage for Turning Front Strobes ON, While Driving (All Days) First 2 Officers: Average Interface Usage for Turning Front Strobes OFF, While Driving (All Days)

SUI (0%) GUI (25%) HW (75%) SUI (0%) GUI (33%) HW (67%)
Interface Percentages

a)
First 2 Officers: Average Interface Usage for Turning Rear Strobes ON, While Driving (AH Days) First 2 Officers: Average Interface Usage for Turning Rear Strobes OFF, While Driving (All Days)

Interface Percentages

b)

SUI (30%) GUI (57%) HW (13%) SUI (16%) GUI (68%)
Interface Percentages

HW (16%)
Interface Percentages

c) d)
First 2 Officers: Average Interface Usage for Turning Strobes ON, While Driving (All Days) First 2 Officers: Average Interface Usage for Turning Strobes OFF, While Driving (Alt Days)

SUI (33%) GUI (41%) SUI (20%) GUI (67%)
Interface PercentagesInterface Percentages

e) f)

Figure 5.17 Histograms of in-vehicle interface preferences for controlling various strobes
functions, while driving
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First 2 Officers: Average Interface Usage far Turning Rear Floods ON, White Driving (All Days) First 2 Officers: Average Interface Usage for Turning Rear Floods OFF, White Driving (AD Days)
25 r

SUI (36%) GUI (64%)
Interface Percentages

SUI (24%) GUI (76%) HW (0%)
Interface Percentages

a) b)
First 2 Officers: Average Interface Usage for Turning Wig Wags ON, While Driving (Alt Days) First 2 Officers: Average Interface Usage for Turning Wig Wags OFF, While Driving (Aff Days)

2 .5 r

GUI (40%) HW (0%)
Interface Percentages

GUI (60%) HW (20%)
Interface Percentages

c) d)
First 2 Officers: Average Interface Usage for Turning WaH ON, While Driving (All Days) First 2 Officers: Average Interface Usage for Turning Wail OFF. White Driving (AD Days)

| 1

SUI (56%) GUI (0%) 
Interface Percentages

GUI (11%) 
Interface Percentages

e) f)
Figure 5.18 Histograms of in-vehicle interface preferences for controlling various non­

strobes light bar functions, while driving
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F irst 2 Officers: Average Interface Usage for Turning Front Strobes ON. W hite Stopped (AB D ays) F irst 2 Officers: Average Interface Usage for Turning F ront S trobes OFF, W hile  Stopped (A ll Days)

GUI (25%) 
Interface Percentages

SUI(0%) GUI (25%) HW (75%)
Interface Percentages

a) b)
First 2 Officers: Average Interface Usage for Turning Rear Strobes ON. While Stopped (AM Days) First 2 Officers: Average Interface Usage for Turning Rear Strobes OFF, WhHe Stopped (All Days)

GUt (63%) 
Interface Percentages

SUI (22%) GUI (50%) HW (28%)
Interface Percentages

c) d)
First 2 Officers: Average interface Usage for Turning Strobes ON, While Stopped (All Days) First 2 Officers: Average Interface Usage for Turning Strobes OFF, While Stopped (All Days)

GUI (50%) 
Interface Percentages

O  10

GUI (32%) 
Interface Percentages

e) f)
Figure 5.19 Histograms of in-vehicle interface preferences for controlling various strobes

functions, while stopped
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First 2 Officers: Average Interface Usage for Turning Rear Floods ON. While Stopped (All Days)
15 .------------------- .--------------------------------=-------1---------------------------------------.-------------
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Figure 5.20 Histograms of in-vehicle interface preferences for controlling various non­

strobes light bar functions, while stopped
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As stated earlier in this chapter, the radio appeared to be the only device 

that the officers tended to prefer controlling with the original hardware control 

head (See Figure 5.21 and Figure 5.22). Further investigation revealed that, far 

and away, the radio control head was used to change the radio volume. The 

other radio functions tended to be controlled via SUI just as much as via the 

hardware control head while the vehicles were moving. It appeared as though the 

officers’ interface preferences were task-driven. In other words, they prefer to 

use a particular interface to perform a particular task, regardless of whether or 

not they are driving at the time.
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First 2 Officers: Average Interface Usage for Rado Volume Control, While Driving (AH Days) First 2 Officers: Average Interface Usage for Radio Scan Control, White Driving (AH Days)
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Figure 5.21 Histograms of in-vehicle interface preferences for controlling various radio

functions, while driving
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First 2 Officers: Average Interface Usage for Radio Volume Control, While Stopped (All Days) 
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Figure 5.22 Histograms of in-vehicle interface preferences for controlling various radio

functions, while stopped
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More than the histograms, the remaining data visualizations truly utilize 

different techniques, including coloring, location, and object size, in order to 

convey the analysis results. With the exception of the 3D plots (the last 

visualizations described), the remaining visualizations were geared more towards 

law enforcement officials and other non-technical observers. This is not to say 

they do not convey the same level of information, however. To the contrary, the 

remaining visualizations were generated using the same information as the 

histograms, merely expressed in a different fashion.

The next set of visualizations (Figure 5.23 and Figure 5.24) was ranked 

fourth out of the five different visualizations, by the Project54 research assistants 

who reviewed the images. This was mostly due to two factors. First, the original 

image contained an extra “button” placed between the “Project54” button and the 

“Hardware” button, which only served to confuse observers as to its meaning. 

The second complaint was that these two images present the same information 

as the next set of images (Figure 5.25 and Figure 5.26), but with less information 

resolution regarding what Project54 interfaces were preferred. Still, Figure 5.23 

and Figure 5.24 are useful in that they may immediately answer the questions, 

“Do police officers tend to prefer Project54 interface controls over the original 

hardware controls?” This is because the data that generates these visualizations 

takes into account the usage preferences for all tasks done by both officers, and 

for all days on which data was collected. The more the officers used Project54 to 

perform tasks, the more the colored police officer silhouette in the figure would 

turn green. This color indicator also had an arrow that pointed to the region of the
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color meter that corresponded to the officers’ level of Project54 usage vs. 

hardware control usage. The result appears to be that for the two participating 

officers, Project54 was the preferred method for device control, based on 

available usage records.

In Figure 5.23 and Figure 5.24, the officer’s silhouette changed color 

based on the average of interface usage for both participants. In other words the 

averages for SUI, GUI, and hardware usage were calculated in the MATLab 

visualization program. With those numbers on hand, the program was then able 

to treat the SUI, GUI, and hardware values as weights that affected how much 

red, green, and blue coloring was added to the silhouette. In order to actually add 

the color the x-y coordinates for a rectangle large enough to just fit the officer’s 

silhouette were used in the program to define the region to which color was to be 

added. The original silhouette color was red with a black outline. The only other 

color present in the defined rectangle was white. The program ignored pixels 

within the defined rectangle that were either white or black and augmented the 

rest according to:

p ix e l(x ,y ,n ) = 255 -  [255 x (S U I + G U I) ]  + (255 x hardw are) 

p ixe l(x , y , 3) = 0

The value pixel refers to the image pixel whose color is to be augmented. The 

values x and y were the coordinates within the defined rectangle at which color 

was to be added. The value n was either 1 or 2, and represented the red or 

green layer of the original image, respectively. In order to avoid blue colors within
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the image, n = 3 was set to zero (black). The value SUI is the count of times the 

SUI was used, averaged over both participants. The value GUI is the count of 

times the GUI was used, averaged over both participants. The value hardware is 

the count of times hardware was used, averaged over both participants. MATLab 

defines the maximum amount of color to be 255, so (255,255,255) is the red- 

green-blue (RGB) representation for white. For example, to add green color to 

the figure (n =2), the equations starts from an assumed full-green color value 

(255) and subtracts off an amount of green that has been weighted by the sum of 

SUI and GUI interactions. Then the program adds back an amount of green, 

weighted by the total number of hardware interactions.

The other addition to the original image, the arrow, was created by using 

MATLab’s arrow annotation. The arrow was only free to vary about the y-axis, 

where it was bounded from a minimum value of 0.25 to a maximum value of 0.8. 

The values for these bounds were derived based on the notion that the total y- 

axis range of the image went from 0 to 1. Within the y-axis bounds, the arrow 

was free to move up or down based on:

, 1 hardware S U I + G U I
a rrow  head -  — -  ---------------  +-----------------

2 2 2

The value arrow head refers to the location on the image of the head of the 

pointer arrow. The value SUI is the count of times the SUI was used, averaged 

over both participants. The value GUI is the count of times the GUI was used, 

averaged over both participants. The value hardware is the count of times
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hardware was used, averaged over both participants. In words, the arrow head 

started at the middle of the image (0.5) and moved up based on the amount of 

Project54 (SUI and GUI) usage and down based on the amount of hardware 

usage. Dividing both usage numbers by two was done to reduce the affect of the 

usage values on the arrow head’s overall displacement from the middle of the 

image.

First 2 Officers: Preference fo r Project54 vs. Hardware (Averaged per Officer), White Driving (All Days)

Figure 5.23 Use of color to contrast preference for Project54 vs. original controls, while
moving

First 2 Officers: Preference for Project54 vs. Hardware (Averaged per Officer), While Stopped (Al Days)

Figure 5.24 Use of color to contrast preference for Project54 vs. original controls, while
stopped
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Like Figure 5.23 and Figure 5.24, the images shown in Figure 5.25 and 

Figure 5.26 use color to represent interface preferences. Unlike the former two 

images, the latter two break down Project54 interfaces into SUI and GUI 

components. For this reason more than any other, those who reviewed the 

visualizations found this set of images to be the second-best. The image is 

straight-forward to understand -  the police officer silhouette in the upper right- 

hand corner changes color depending on the relative popularities of the three 

interfaces. The black dot located within the color triangle will gravitate towards 

the most popular interface as well. The results of this analysis indicate that the 

two police officers tended to prefer the GUI over the other two interfaces, 

especially while stopped. SUI usage actually increased while the officers were 

driving, which is the ideal scenario.

The technique used to change the officer’s silhouette color in Figure 5.25 

and Figure 5.26 was very similar to the technique described for adding color to 

Figure 5.23 and Figure 5.24. The only change came in the equations used to 

alter the color, which were:

p ix e l(x ,y , l)  = 255 + (255 x S U I)  -  (255 x G U I)  -  (255 x hardware)

p ix e l(x ,y ,2 ) = 255 -  (255 x S U I)  -  (255 x G U I) +  (255 x hardw are)

p ix e l(x ,y ,3 ) -  255 -  (255 x S U I) +  (255 x G U I)  -  (255 x hardware)

The value pixel refers to the image pixel whose color is to be augmented. The

values x and y were the coordinates within the defined rectangle at which color 

was to be added. The value 1, 2, or 3 represents the red, green, or blue layer of 

the original image, respectively. The value SUI is the percentage of times the SUI

99

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



was used, averaged over both participants. The value GUI is the percentage of 

times the GUI was used, averaged over both participants. The value hardware is 

the percentage of times hardware was used, averaged over both participants. 

Since the SUI button on the original image is red, SUI has a positive red color 

shift and negative green and blue color shifts. GUI and hardware usage obey the 

same trend, according to the set of equations.

The addition of the black dot within the original image was created by 

using MATLab’s ellipse annotation. The image length is normalized so that the 

point (0, 0) represents the lower left-hand corner of the entire image and the 

point (1 ,1)  represents the upper right-hand corner of the image. The starting 

location of the dot is the center of the image, (0.5, 0.5). The dot is free to move 

within a defined triangular region that is located within the color-gradient triangle, 

with bounds at the three vertices, (0.33, 0.3), (0.49, 0.67), and (0.65, 0.3). These 

values correspond to locations within the original image, as defined by 

normalized x- and y-axes. Within the bounded “inner” defined triangle, the dot 

was free to move around according to:

, _ _ hardware G U I
x  coord  — 0.5 +

y  coo rd  -  0.5 +

4.5 4.5
S U I G U I hardware

4.5 4.5 4.5

The value xjcoord refers to the dot’s x-coordinate. The value y_coord refers to 

the dot’s y-coordinate. The value 0.5 in each of the equations refers to the 

starting point for the x- and y-coordinates. The value SUI is the percentage of
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times the SUI was used, averaged over both participants. The value GUI is the 

percentage of times the GUI was used, averaged over both participants. The 

value hardware is the percentage of times hardware was used, averaged over 

both participants. In words, the dot’s x-coordinate shifts to the right (positive x- 

direction) based on hardware usage and to the left based on GUI usage, 

according to their x-axis locations within the colored triangle. Similarly, the y- 

coordinate shifts up (positive y-direction), based on SUI usage and down, based 

on both GUI and hardware usage.

For example, if an officer used the SUI for 50% of the total interactions 

performed, the GUI for 30% of the total interactions, and hardware for the 

remaining 20% of the total interactions, the dot would be located at the 

coordinates (0.47, 0.5), according to:

, n c  0.2 0.3
x  coord  = 0.5 H----------------

4.5 4.5
, 0.5 0.3 0.2

y coord  — 0.5 H------------------------
4.5 4.5 4.5

For the scenario in which an officer used each interface for a third of the total 

interactions, the dot would be located at the coordinates (0.5, 0.43). The dot does 

not remain at the starting location due to the equations governing its movement. 

However, the importance of the dot’s movement is that it gives an intuitive 

interpretation for how the police officers perform interactions.
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First 2  Officers: Interface Preferences (Averaged per Officer), While Driving (All Days)

Figure 5.25 Use of color and location to indicate interface preferences, while moving

First 2 Officers: Interface Preferences (Averaged per Officer), While Stopped (All Days)

Figure 5.26 Use of color and location to indicate interface preferences, while stopped
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The fourth set of visualizations, shown in Figure 5.27 and Figure 5.28 

were the overwhelming favorite of those Project54 employees who viewed the 

five different data presentation styles. The two images show the results of a 

button-press analysis and a speech command analysis (respectively) performed 

while the active window was the Patrol Screen. The background of the image is 

an actual screen shot from the Project54 Patrol Screen that matches the Patrol 

Screen from the two officers’ police cruisers. To show the frequency with which 

buttons were pressed or speech commands were issued, the visualization 

program gave the columns of buttons different intensities of color -  blue for 

button presses and red for speech commands. The amount of color was 

determined within the visualization program by normalizing the number of count 

of button presses (or speech commands) for each button. Once the program 

normalized the values they were scaled up by a factor of 85 in order to allow 85 

different color “chunks” to be defined for button-coloring purposes. Remember 

that the maximum amount of color is 255; dividing the maximum amount by 85 

means that each color “chunk” is capable of changing the image’s button color by 

3 color units. Before the program applied colors to the buttons, it first set all the 

buttons to white. This was done mainly to aid observers in detecting unused 

buttons but it also simplified the coloring algorithm, which was:

bu tton {i,ri) — bu tton {i,r i) — # C olorChunks(k)
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The value button refers to a particular button on the Project54 GUI window; both 

button references deal with the same window button. The values for / ranged 

from 1 to 18 and corresponded to the number of buttons on the Project54 

window. The values for n, used again to represent the RGB image layers, were 1 

to 3. The values for k  represent red and green for the GUI case (green and blue 

for the SUI case). The value #ColorChunks refers to the number of discrete color 

“chunks” used to color the buttons, as described earlier in this paragraph. In the 

GUI usage case, the more a button was pressed the more red and green were 

subtracted, leaving only blue. Similarly, in the SUI usage case, the more a 

speech command was used the more green and blue color was subtracted, 

leaving only red. The color bar next to each screen shot relates the amount of 

blue or red color to a percentage of button presses or speech commands, 

respectively. For example, approximately 18% of the total button presses were 

used to operate the Rear Floods, while the Patrol Screen was the active window. 

The images indicate a preference for using Project54 commands to control the 

strobes functions as well as the antenna arrays. There does not appear to be a 

bias towards one interface over the other in the button coloring, but that bias 

becomes clearer by noticing that button presses were performed 793 times, as 

opposed to speech commands, which were only performed 253 times within the 

same time frame.
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Officer #1: Patrol Screen Button Usage (All Days)
Color Bar Indicates Percentage of Total Button Presses (Total Presses = 793)
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Figure 5.27 Use of screen shot and color overlays to indicate button preferences

Officer #1: Patrol Screen Speech Command Usage (All Days)
Color Bar Indicates Percentage of Total Commands (Total Commands = 253)
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Figure 5.28 Use of screen shot and color overlays to indicate speech command
preferences
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The final two data visualizations to discuss, the 3D plots shown in Figure 

5.29 and Figure 5.30 were overwhelmingly the least favorite data representation 

style shown to the review group. The major problem was being able to read the 

results of the representation, as it can be very challenging to represent three- 

dimensional data on a two-dimensional medium, such as paper. To make 

matters more interesting, this visualization actually contains four dimensions. The 

data shown in the figures is, again, averaged over the number of officers (in this 

case, 2). The percentage of each device usage that was performed by the SUI is 

plotted on the x-axis. The percentage of hardware used is plotted on the y-axis. 

The percentage of the GUI used is plotted on the z-axis. Therefore, the radar 

was controlled approximately 12% of the time with the SUI, 58% of the time with 

the radar remote control, and 30% of the time with the GUI. If the plot only 

contained these relative percentages there would be no way of knowing, overall, 

how much each device was used. It is for this reason that the fourth dimension, 

the sizes of the cubes themselves, is useful. The larger the cube appears, the 

more that corresponding device (or application) is used, relative to the other 

available devices. For example, in both images Records is the largest box, which 

means it is the most-often used. The legend has been added to further reduce 

ambiguity in reading the plots. The legend is sorted in a top-down fashion, based 

on the percentage of GUI used for each device. The Records application uses 

the GUI the most so it is listed first on the legend. The radio uses the GUI the 

least so it is listed last in the legend. Finally, dotted lines and projections are 

used as another measure to help make reading the visualizations easier. The
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red-colored lines may be traced down to the x-y plane where the hardware and 

SUI percentages may be read. The other two dotted lines may be traced to their 

respective coordinate planes in a similar fashion where projections have been 

placed by the program to aid reading the 3-D plot. The two plots indicate 

interface preferences while the officers are driving and while they are stopped. It 

is evident both that running records checks was the most-performed task while 

the cruiser was stopped and that the officers used speech more for controlling 

lights than for anything else while driving.

This last set of figures is an excellent example of creating visualizations 

with enough flexibility to display different data sets without the need for altering 

program code. Initially the program was designed to allow the x-axis to change 

length depending on how much the SUI was used. While this effectively zoomed 

in on the 3D cubes, it created the issue of needing to adjust the x- and y-label 

locations every time the SUI usage percentage changed. Though the updated 

visualizations do not zoom in on the cubes, they are suited to handle any set of 

interface usages.

107

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



First 2 Officers: Controller Usage, Based on Task (Averaged per Officer), While Driving (All Days)
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Figure 5.29 Use of 3-D imaging to represent tasks by interface preference, while moving
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First 2 Officers: Controller Usage, Based on Task (Averaged per Officer), While Stopped (All Days)
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Figure 5.30 Use of 3-D imaging to represent tasks by interface preference, while stopped

109

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



CHAPTER 6

CONCLUSION

6.1 Research Conclusions

The first goal of this research project was to provide Project54 software 

developers and law enforcement officials with tools capable of conducting a 

comprehensive quantitative study into how police officers tend to use the 

Project54 system to operate the devices within their vehicles. This was 

accomplished by developing an application that could record all the user 

interactions within police cruisers and save that information in text files. The 

logging application employed knowledge of what messages constituted user 

interactions of interest, as suggested by Hilbert [4], Green [6], and Badre [7]. 

Those text files were then used as inputs to an analysis application that was 

designed to recode the raw data into comparable information fields. Finally, a 

visualization application was developed to display the results of the data 

analysis.

The second goal was to investigate the effectiveness of different analyses 

at conveying conclusive results to both the system designers and the law 

enforcement officials. This was accomplished by developing five different data 

presentations, a standard histogram plot, a 3D data plot, a screen shot with 

colored-button overlays, and two images that made use of coloring a cartoon
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police officer’s silhouette in order to indicate interface preferences. The technique 

for using Project54 screenshots [5] with color intensifiers [10] exemplified the 

positive results that could be achieved by merging two distinct, accepted 

visualization methods in order to make use of the strengths from both. The 3D 

plot, the cartoon police officer images, and the screen shot with button overlays 

all made use of colors (especially red, green, and blue) in order to enhance each 

visualization’s ability to convey conclusive data results, as explained by Healey

[13]. The visualizations (especially the three-dimensional visualizations) were 

also created with flexibility in mind in order to maximize their reusability, which 

was suggested in Humphrey’s work [14]. All the visualizations shown in this work 

were flexible enough to portray different data sets without making any alterations 

to the visualizations themselves. In other words, if different usage data from 

different officers was supplied to these visualizations, the results would be very 

similar to those shown in this thesis without having to make any changes to the 

program that generates the images. The five different visualizations were shown 

to eight research assistants within the Project54 design team to get their 

impressions. Once their feedback was received, the visualizations were altered 

to more clearly present the analysis results.

The research also involved a multi-tiered testing process that made use of 

the Lab Car, the driving simulator, road vehicle testing, and finally deployment 

into two police cruisers. The test results demonstrated that the data collection 

application was stable, did not induce any device operation delays, and 

accurately logged usage information as it was designed to do. The results of the
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vehicle deployment not only provided insights into how the participants were 

utilizing the device controls available to them, but also the data was useful for 

making improvements to the recoding algorithm. This was the case because the 

participants used the interfaces available to them in ways that were unaccounted 

for in previous test scenarios. The improvements to the data recoding algorithm 

ensured that future use of this same analysis program would generate valid 

results with minimal code refinements.

As a result of this thesis, Project54 developers were able to collect usage 

information from any Project54-equipped vehicles in service and use that 

information to extract interface usage patterns over the entire data pool.

6.2 Future Work

The current version of the Interaction Logger relies on GPS data for its 

vehicle speed information. This is undesirable for several reasons. First, the 

vehicles are not always within GPS range and so their speed is not always 

known. Second, many police cruisers do not posses GPS units and it may be the 

case that an officer’s GPS unit could break during data collection. In either case 

the result would be that vehicle speed would not be known. Third, the GPS unit 

takes time to receive updates. During this span of time it is possible that the 

recorded vehicle speed would no longer adequately match the actual vehicle 

speed. In order to improve the likelihood of marking data records with accurate 

vehicle speeds, the next release of the Logger should make use of the OBDII 

application. This application receives vehicle speed updates directly from the
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cruiser’s vehicle speed sensor so there is no chance of being out of range. 

Further, if the vehicle speed is the only feedback received from the OBDII 

application, the speed will refresh several times a second instead of once every 

several seconds so the recorded vehicle speeds would be far more accurate.

The Interaction Logger would also be improved if all the Speech 

input/output application’s feedback messages were recorded. It could be 

especially beneficial to monitor commands that give insight into timing issues, 

such as how long it takes when a records query is initiated before the records are 

made available. Knowledge of potential timing issues associated with speech 

usage would also prove useful for applications that utilize real-time speech 

interactions, such as the Project54 GPS-based mapping software, currently in 

development.

Another worthwhile change that could be made to the Interaction Logger 

would be to eliminate its sniffer functionality. Currently the application only makes 

use of sniffed messages in order to determine the active window during 

Project54 user interactions. It may be beneficial to retrieve the active window 

information contained within the P54Gui component or to identify the active 

window based on the currently active speech grammar file. With the Interaction 

Logger’s sniffer functionality replaced, there would still be knowledge of the 

active window but the messages received and handled by the logging application 

would effectively be cut in half.

Formal end-to-end testing of the data analysis software should be 

conducted to verify that the analyses employed in this research will be valid for
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new data sets. A Project54 system test script should be created with a known 

number of user interactions. That script should then be given to several different 

test subjects to perform. The test results should first be compared against the 

original script to verify that all activities were performed properly. Next, the 

number of interactions reported by the analysis software should be compared to 

the number of interactions within the script. The successful test will yield 

matching results after both comparison steps.

The addition of Active Window information should be included in all data 

analyses. Currently only the screenshot analysis makes use of the active window 

but, by providing knowledge of the Active Window to all analyses, further 

judgments may be made as to its relevance in how users interact with Project54. 

Adapting the analysis software to recode Active Window information will not be 

difficult because that information is already available within the recorded 

interaction text files.

To reduce the likelihood of interface usage scenarios that have been 

unaccounted for to this point in the recoding application’s lifetime, it may 

beneficial to enhance the recoding algorithm. One way to accomplish this would 

be to read information from the raw data logs three lines at a time, instead of just 

two. Using this approach, the algorithm will have knowledge of previous data 

entries as well as future data entries. This will not only accurately catch user 

interactions that were logged out of logical order but also it could provide a 

cleaner approach to handling the message blocks that deal with strobes- and 

antenna-switching functionality.
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Another improvement to the data analysis application would be to add 

data abstraction [5]. Data abstraction would allow groups of interactions to be 

combined to form a logical user tasks. For example, an officer may have to use 

several GUI button presses to change the radio volume to the desired level or 

use several keystrokes to generate a license plate check. Grouping the 

interactions into tasks (“Radio Volume Change” and “License Plate Check” for 

instance) would shift the focus from studying sources of driver distraction 

(multiple GUI interactions to accomplish certain jobs) to studying which interfaces 

the officers prefer to utilize to perform tasks.

115

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



REFERENCES

[1] A. L. Kun, W. T. Miller, III, W. H. Lenharth, "Project54: Introducing 
Advanced Technologies in the Police Cruiser," IEEE Spring VTC2002, 
Birmingham, AL, May 6-9, 2002

[2] Z. Medenica, A. L. Kun, “Comparing the Influence of Two User Interfaces 
for Mobile Radios on Driving Performance”, Driving Assessment 2007, 
Stevenson, WA, July 9 - 1 2 ,  2007

[3] A. Pelhe, “One-to-One Communication Between Objects in the Project54 
System Software,” University of New Hampshire, Master’s Thesis, 
September, 2003

[4] D. M. Hilbert, D. F. Redmiles, “Large-Scale Data Collection of Usage Data 
to Inform Design,” Proceedings of INTERACT ’01, Tokyo, Japan,
July 9 - 1 3 ,  2001, pp. 569 -  576

[5] D.M. Hilbert, D.F. Redmiles, “Extracting Usability Information from User 
Interface Events,” ACM Computing Surveys, Vol. 32, No. 4,
December 2000, pp. 384-421

[6] P. Green, “Human Factors and New Driver Interface: Lessons Learned 
from a Major Research Project,” 5th ITS-America, Washington, DC,
March 15-17, 1995

[7] A. N. Badre, P. J. Santos, “A Knowledge-Based System for Capturing 
Human-Computer Interaction Events: CHIME,” Georgia Institute of 
Technology Technical Report GITGVU-91, 1991

[8] B. L. Harrison, R. Owen, R. M. Baecker, “Timelines: An Interactive System 
for the Collection and Visualization of Temporal Data,” Proceedings of 
Graphical Interface ’94, Banff, Alberta, Canada, May 1 8 -2 0 ,  1994,
pp. 141-148

[9] M. Guzdial, C. Walton, M. Konemann, E. Soloway, “Characterizing 
Process Change Using Log File Data,” Georgia Institute of Technology 
GVU Center Technical Report No. 93, 1993, pp. 93 -  44

116

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



[10] M. Guzdial, P. Santos, A. Badre, S. Hudson, and M. Grey, “Analyzing and 
Visualizing Log Files: A Computational Science of Usablity,” Presented at 
HCI Consortium Workshop, February 2 - 6 ,  1994

[11] M. Guzdial, “Deriving Software Usage Patterns from Log Files,” GVU 
Technical Report; GIT-GVU-93-41, Georgia Institute of Technology, 1993

[12] S. G. Eick, M. C. Nelson, J. D. Schmidt, “Graphical Analysis of Computer 
Log Files,” Communications of the ACM, 37(12), December 1994,
pp. 5 0 - 5 6

[13] C. G. Healey, “Choosing Effective Colours for Data Visualization,” 
Proceedings from the Seventh IEEE Visualization 1996 (VIS ’96), 1996, 
pp. 263 -  270

[14] M. C. Humphrey, “Creating Reusable Visualizations with the Relational 
Visualization Notation,” Proceeding from IEEE Visualization 2000, Salt 
Lake City, UT, October 8 - 1 3 ,  2000, pp. 53 -  60

[15] X. Jiang, J. A. Landay, “Modeling Privacy Control in Context-Aware 
Systems,” IEEE Pervasive Computing, Vol. 1, No. 3, 2002, pp. 59-63

[16] T. Giuli, D. Watson, K. V. Prasad, “The Last Inch at 70 Miles Per Hour,” 
IEEE Pervasive Computing, Vol. 5, No. 4, 2006, pp. 20-27

[17] W. Y. Lum, F. C.M. Lau, “A Context-Aware Decision Engine for Content 
Adaptation,” IEEE Pervasive Computing, Vol. 1, No. 3, 2002, pp 41-49

[18] S. Voida, E. D. Mynatt, B. MacIntyre, G. M. Corso, “Integrating Virtual and 
Physical Context (p Support Knowledge Workers,” IEEE Pervasive 
Computing, Vol. 1, No. 3, 2002, pp 73-79

[19] S. S. Yau, F. Karim, Y. Wang, B. Wang, S. K.S. Gupta, “Reconfigurable 
Context-Sensitive Middleware for Pervasive Computing,” IEEE Pervasive 
Computing, Vol. 1, No. 3, 2002, pp 33-40

[20] M. Raento, A. Oulasvirta, R. Petit, H. Toivonen, “ContextPhone: A 
Prototyping Platform for Context-Aware Mobile Applications,” IEEE 
Pervasive Computing, Vol. 4, No. 2, 2005, pp. 51-59

[21] A. Ranganathan, R. H. Campbell, A. Ravi, A. Mahajan, “ConChat: A 
Context Aware Chat Program,” IEEE Pervasive Computing, Vol. 1, No! 3, 
2002, pp. 51-57

[22] S. Loke, “Context-Aware Artifacts: Two Development Approaches,” IEEE 
Pervasive Computing, Vol. 5, No. 2, 2006, pp. 48-53

117

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



[23] K. Rehman, F. Stajano, G. Coulouris, “An Architecture for Interactive 
Context-Aware Applications,” IEEE Pervasive Computing, Vol. 6, No. 1, 
2007, pp. 73-80

[24] D. Rogerson, “Inside COM,” Microsoft Press, Redmond, WA, 1997

[25] R. L. Lynch, “The SpeechBot,” Technical Report ECE.P54.2003.17, 
Electrical and Computer Engineering Department, University of New 
Hampshire, July 11, 2003

[26] N. Purmort, “Measuring New Hampshire State Police Radio Usage,” 
Technical Report ECE.P54.2005.4, Electrical and Computer Engineering 
Department, University of New Hampshire, June 2, 2005

118

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



APPENDICES

119

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



APPENDIX A

QUESTIONNAIRE

The following questionnaire was administered to both participants in this 

research. Responses were indicated only to those questions which did not 

contain information of a personal nature. Both participants were between the 

ages of forty five and sixty, each with over ten years of service as a police officer. 

Both officers also had at least five years of experience using the Project54 

system.

Subject ID :__________________Date:____________ Time:

1. Gender

Female Male

2. Age:

3. Are you left-handed or right-handed?

Left-handed Right-handed

4. How long have you been a police officer?

Exactly Approximately

5. How long has Project54 been installed in your car? 

Exactly ________  Approximately ___
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6. How often do you use the Project54 voice commands?

a) several times an hour b) several times a day X X
c) a few times a week d) never

7. How often do you use the Project54 graphical user interface (the touch­
screen)?

a) several times an hour b) several times a day X
c) a few times a week X d) never

8. How often do you use the original device controls (e.g. the lights switch)?

a) several times an hour X b) several times a day
c) a few times a week X d) never

9. Indicate the devices you prefer to control with speech commands.

Project54 window navigation  Lights X Radar X X
Radio X Records X X Video

What (if any) reason do you have for preferring this type of controls for 
these devices?

10. Indicate the devices you prefer to control with the touch-screen.

Project54 window navigation  Lights  Radar__
Radio Records___ Video

What (if any) reason do you have for preferring this type of controls for 
these devices?
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11. Indicate the devices you prefer to control with the original device controls.

Lights  Radar  Radio  Video___

What (if any) reason do you have for preferring this type of controls for 
these devices?

12. In what area or areas do you patrol regularly?

13. What does a typical shift for you consist of?

14. Do you have a routine that involves the use of the Project54 system?

15. Are there any upcoming events within the next month that will cause you 
to break any routines?

Please indicate your level of agreement with the following statements.

16. I am comfortable with using the Project54 system.

Strongly disagree  Disagree___
Neither agree nor disagree  Agree  Strongly agree X X
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17. I like using the Project54 system.

Strongly disagree 
Neither agree nor disagree

Disagree
Agree Stronglv agree X X

18. I think the Project54 system is reliable.

Strongly disagree 
Neither agree nor disagree

Disagree 
Agree X Strongly agree X

19. I prefer using Project54 over the original device controls.

Strongly disagree 
Neither agree nor disagree

Disagree
Agree Stronglv agree X X

20. I am satisfied with the accuracy of the speech recognition in my vehicle.

Strongly disagree 
Neither agree nor disagree

Disagree 
Agree X Stronglv agree X

21. Using speech commands improves my productivity.

Strongly disagree 
Neither agree nor disagree

Disagree
Agree X X Stronglv agree

22. Using speech commands makes operating my vehicle safer.

Strongly disagree 
Neither agree nor disagree

Disagree
Agree Stronglv agree X X

23. The touch-screen buttons I like to use are located in the best place on the
screen for me to use them.

Strongly disagree  Disagree___
Neither agree nor disagree  Agree X Strongly agree X
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APPENDIX B

INSTITUTIONAL REVIEW BOARD APPROVAL

University of New Hampshire

Research Conduct and Compliance Services, Office of Sponsored Research 
Service Building, 51 College Road, Durham, NH 03824-3585 

Fax: 603-862-3564

28-Feb-2007 

Kun, Andrew
Electrical & Computer Eng Dept 
Kingsbury Hall 
Durham, NH 03824

IRB # : 2980
Study; Speech Sample Collection for Speech Recognition Engine Comparison and Development 
Approval E xpiration Date: 24-Jun-2007 
M odifica tion Approval Date: 28-Feb-2007
M od ifica tion: Addition o f recording partJdpants' interactions with multiple user Interfaces and

The Institutional Review Board for the Protection o f Human Subjects In Research (IRB) has 
reviewed and approved your modification to this study, as indicated above. Further changes in 
your study must be submitted to  the IRB for review and approval prior to implementation.

Approval fo r th is  protocol exp ires on the  data indicated above. At the end of the approval 
period you will be asked to submit a report with regard to  the involvement o f human subjects in 
this study. I f  your study is still active, you may request an extension of IRB approval.

Researchers who conduct studies involving human subjects have responsibilities as outlined in tire 
document. Responsibilities o f D irectors o f Research Studies Involving Human Subjects. This 
document is available at http://www.unh.edu/osr/cwnpliance/irb.html or foorn me.

I f  you have questions or concerns about your study or this approval, please feel free to  contact me 
at 603-862-2003 or Julie.simpson@unh.edu. Please refer to the IRB #  above In all correspondence 
related to this study. The IRB wishes you success with your research.

questionnaires

fuiie F. Simpson

For the IRB,

Manager

c g  File
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APPENDIX C

DATA VISUALIZATION CREATION GUIDE

Once interaction records are retrieved from police cruisers they are already 

prepared for the full set of data analyses presented in this thesis. In order to use 

these analysis tools, the recorded interaction information must be saved in the 

following path:

C:\Project54\Logs\System Usage Logs\Officer ID Folder\

The name of the Officer ID Folder is a five-character folder name of the 

designer’s choosing. The two folders created for this project used the two 

officers’ badge numbers to name their respective folders. The folder name has to 

be five characters to make MATLab matrix string comparisons possible.

Before recoding interaction files for the first time, the P54 System Usage 

Analyzer program source code has to be altered. This one-time change involves 

going to the commented section at the start of the source code and adding:

public string m OfficerSource = @"C:\Project54\Loqs\System Usaqe Loqs\ 
Officer ID Folder\";

public string m OfficerRecode = @"C:\Project54\Logs\System Usage Logs\ 
Officer ID Folder\" ;
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Again, the Officer ID Folder is named according to the designer’s choosing. The 

rest of the both entries are formatted to following C# programming rules for 

creating a string that holds a path location name.

To generate visualizations for the data the MATLab visualization m-file 

has to be opened and the five-character Officer ID has to be added to each cell 

from which data visualizations are required.

The steps described for the analysis and visualization of interactions only 

need to be performed one time for each new officer that provides data. The 

various source file locations in which the changes are to be made (the MATLab 

code has several) are located at the beginning of the code (or MATLab cell) and 

are all marked with comments. Also, the additional lines of code will exactly 

match the lines that already exist for the two officers who have already 

participated in this research; all that will change is the five-character Officer ID.
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