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A B S T R A C T

A COMPARATIVE STUDY OP THE EXTENDED KALMAN FILTER AND 

SLIDING MODE OBSERVER FOR ORBITAL DETERMINATION FOR 

FORMATION FLYING ABOUT THE I 2  LAGRANGE POINT

by

Oliver Olson

University of New Hampshire, May, 2007

Two nonlinear state estimation techniques, the Sliding Mode Observer and the Ex

tended Kalman Filter, are compared in terms of their ability to provide accurate relative 

position and velocity estimates for a  formation flying mission about the Earth/M oon. - Sun 

L2 libration point. The observers are individually tested on the NASA Constellation X 

simulation model. Constellation X is a proposed x-ray telescope mission, where formation 

flying spacecraft was considered as a  possible mission scenario. A follower spacecraft is 

controlled to  maintain a fixed distance (50 meters) from a leader spacecraft to  within 1 

millimeter accuracy.

The s ta te  estimates propagated by each observer were of sufficient accuracy to  maintain 

the required separation distance to within mission design requirements. For these particular 

formations of the Extended Kalman Filter and the Sliding Mode Observer, the Extended 

Kalman Filter is shown to  be less sensitive to  measurement noise levels, and the Sliding 

Mode Observer is shown to  be less sensitive to  input disturbances. There is no overall 

significant difference in sensitivity to parametric uncertainties between observers.
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1

CHAPTER 1 

INTRODUCTION

1.1 D is tr ib u te d  S p acec ra ft S y stem s an d  F o rm a tio n  F lying

A Distributed Spacecraft System (DSS) consists of two or more spacecraft op

erating together to accomplish a  shared objective. Formation flying is a subset of 

the DSS architecture. Formation flying missions impose the requirement th a t the 

spacecraft maintain a  designated attitude and/or relative position with respect to 

one another, or a  common point of interest [2]. Meeting such requirements demands 

precise measurement and control capabilities. Although such capabilities are costly, 

the use of individual satellites in a  formation is an attractive alternative to  rigidly 

connecting spacecraft for several reasons. Many satellite formations which would be 

small enough to be rigidly connected would still be too large to be connected during 

launch. This would require assembly in space, increasing complexities for a successful 

mission. In the event of vibration between formation members, the absence of atmo

spheric damping beyond low earth orbit would impose the requirement for damping 

control, or the necessity to wait for damping to  die out due to internal heat losses 

in the connecting members. Finally, DSS missions may require separation distances 

of a  kilometer or more, making rigidly connecting the formation members a practical 

impossibility.

Deep space imaging is one particular venue tha t is driving the need for forma

tion flying systems. For stand-alone telescopes, an increase in resolution demands 

an increase in size. Obeying this constraint quickly leads to  the requirement for
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telescopes which are simply too large to build practically. To overcome this hurdle, 

astronomers make use of a technique called interferometry, the process of coupling 

two or more telescopes together to synthetically build an aperture equal to the sepa

ration of the telescopes. The potential usefulness of formation flying systems for deep 

space imaging is made evident in the context of interferometry. Multiple spacecraft 

can each serve as constituent elements for the formation of a large telescope, allowing 

for greater resolution than can be achieved by stand-alone telescopes.

As an example of formation flying applications, several NASA formation flying 

missions are currently under development:

• The Stellar Imager (SI) [4] is a mission to investigate solar and stellar mag

netic activity and its impact on the origin and continued existence of life in the 

universe. To accomplish this goal it will require a resolution of 100 microarcsec- 

onds, 100 times greater than that of the Hubble telescope. To that end it will 

require a multi-spacecraft interferometer composed of more than 2 0  members in 

a stable environment, such as in a Lissajous1 orbit about the Earth/Moon-Sun 

L2 libration point.

• The Terrestrial Planet Finder (TPF) [5] is a formerly proposed NASA mission. 

It was to be NASA’s first space-based mission to directly observe planets in 

other solar systems. The TPF was to make use of five member spacecraft flying 

in formation about one kilometer apart. Four of the satellites were to have 

telescopes, while the fifth was to act as a combiner.

• The Microarcsecond X-ray Imaging Mission (MAXIM) [6 ] has the potential for 

achieving 1 0 0  nanoarcsecond resolution, which would allow it to provide the 

first ever x-ray images of Sagittarius A, the suspected supermassive black hole

1 Lissajous orbits are the natural periodic motion of a satellite about any two-body system ’s collinear 

libration points: L\ ,  L2, and L3. They are composed of a combination of planar and vertical components.
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at the center of the Milky Way galaxy. For an X-ray interferometer large enough 

to achieve such resolution, MAXIM would require 33 spacecraft equipped with 

telescopes, and a combiner spacecraft located 500 kilometers behind the mir

rors. The proposed MAXIM mission could launch in the latter part of the next 

decade.

1.2 O rbit D eterm ination

This research investigates the performance of two state estimation techniques, 

implemented in a formation flying mission about the Earth/Moon-Sun L2  libration 

point. As will be discussed, the L 2 point is too far from Earth (c± 1,500,000 km) for 

spacecraft to obtain GPS relative position updates of adequate accuracy. On-board 

hardware is required to obtain adequate relative position estimates. As a basis for 

comparison, relative position and velocity estimation errors are discussed.

Relative position measurements are obtained with the aid of the Visual Navigation 

(VISNAV) system developed by Kim et al [7]. VISNAV is an on-board measurement 

system comprised of an electro-optical sensor placed on one spacecraft to detect the 

light emitted by beacons on another spacecraft in the formation. The unit vectors 

between the beacons and the sensor are measured, then processed to produce relative 

position and attitude estimates. For this research, satellite attitude (orientation in 

space) measurements are not considered. The VISNAV measurement system shows 

promise in applications such as spacecraft rendezvous and docking, autonomous aerial 

refuelling of UAVs, and lost-in-space attitude and position determination [8 , 9, 10].

1.2.1 General Orbit D eterm ination

The act of determining the relative position and velocity between spacecraft in a 

formation flying pattern is the act of specifying each spacecraft’s orbit. An orbit is
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the curved path (some conic section) traversed by a satellite about a celestial body. 

Assume there exists a celestial body and its satellite, both of known mass. A satel

lite’s orbit is defined when its relative position and velocity are known with respect 

to its celestial body at some point in time [1]. Although this is a straightforward 

mathematical concept, it does not provide an intuitive visualization of a satellite’s 

orbit. For this reason, other quantities are used to specify a satellite’s orbit. Although 

there are different techniques using differing parameters to describe an orbit, these 

parameters must be used to reveal the shape of the orbit, the satellite’s position in 

the orbit at a given time, and the orientation of the orbit in space (i.e. the orientation 

of the orbital plane with respect to the equatorial plane of the celestial body).

Information regarding the satellite’s position in the orbit was originally updated 

to  the satellite from ground stations on Earth. W ith the advent of GPS, however, 

improved methods of updating a satellite’s position have evolved [1 1 ]. Satellites with 

GPS receivers are able to receive accurate position estimates from GPS satellites. 

This is advantageous over ground station updates because it eliminates the periodic 

unavailability of position updates when the satellite is not within view of the ground 

station. W ith missions requiring accurate attitude knowledge, the method of using 

onboard GPS updates can be improved with systems such as the GPS-MAGNAV sys

tem developed at NASA’s Goddard Space Flight Center [12]. In addition to onboard 

GPS updates, the GPS-MAGNAV system uses low-cost, low weight magnetometers 

to determine attitude for satellites in Low-Earth Orbiting (LEO) satellites.

1.2.2 O rb it D e te rm in a tio n  A b o u t L2

More specific than orbit determination in general, is orbit determination for satel

lites about the Earth/Moon-Sun L2  Libration point (libration points and associated 

dynamics are discussed later in this work). This point is approximately 1,500,000 kilo
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meters from Earth, on the side not facing the Sun. At this point a satellite’s inertial 

acceleration is balanced by the gravitational acceleration from the Earth (and Moon) 

and the Sun. The Genesis spacecraft mission, charged with collecting solar wind 

samples, entailed the first ever unmanned sample return from a libration point orbit 

to an Earth touchdown [13]. The Genesis spacecraft orbited the Earth/Moon-Sun L\ 

point for 2 years while collecting samples, and flew by the L 2 point on its return to 

Earth. Another example of a satellite mission involving orbit around the Earth/M oon 

- Sun L 2 point is Gaia [14]. Beginning in 2011, this mission involves the Gaia space

craft orbiting L 2 for ten years. Gaia’s mission is to collect compositional information, 

as well are positional and radial velocity measurements of approximately one billion 

stars in the Milky Way Galaxy and throughout the Local Group (the group of 30 

closely packed galaxies including the Milky Way). The data collected by Gaia will 

provide information for a complex three-dimensional map of our Galaxy (although 

one billion stars is less than one percent of the total number of stars in our galaxy). 

Yet another satellite mission involving orbit about the Earth/M oon Sun L2 point is 

the James Webb Space Telescope [15, 16]. This mission, scheduled for launch in 2013, 

involves a large, infrared telescope whose mission is fourfold: to search for light from 

the first stars and galaxies, study galactic evolution, study the formation of stars and 

planetary systems, and to investigate planetary systems and the origins of life.

1.2.3 O rb it D e te rm in a tio n  for F o rm ation  F ly ing  A b o u t L2

Other specific examples requiring orbit determination, are formation flying mis

sions, whether they be formation flying missions about the Earth/Moon-Sun L2 point, 

or some other location. An example of the latter is the Gravity Recovery and Climate 

Experiment (GRACE) project [17]. Launched in March of 2002, this formation flying 

mission involves flying two satellites 100-500 km apart, in orbit about the Earth, to
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produce a new model of the E arth’s gravitational field every 30 days. The differing 

gravitational forces experienced by each satellite in the formation reveal the differ

ences in Earth’s gravitational field on a position basis. Because a new gravitational 

model is produced every 30 days by the GRACE satellites, the time-varying nature 

of Earth’s gravitational field will also be investigated.

Most specifically, examples of formation flying missions about the Earth/Moon- 

Sun L2  libration point follow. The previously mentioned Stellar Imager (SI), Ter

restrial Planet Finder (TPF) and Microarcsecond X-ray Imaging Mission (MAXIM), 

were all proposed to orbit about L2  [18,19, 20]. The European Space Agency’s Darwin 

Mission [21] consists of four spacecraft, each containing an infrared telescope. Sched

uled for launch sometime after 2014, the mission is charged with detecting Earth-like 

planets, and searching for the possibility of life on these planets by searching for 

atmospheric gases tha t may indicate life.

The preceding missions represent a sampling of future applications of formation 

flying. There are multiple architectures for formation flying missions, with the ap

propriate architecture decided upon for each mission on an individual basis. Scharf 

et al. summarize these architectures in [2 2 ].

1.2.4 T he E xtended K alm an Filter

The Extended Kalman Filter (EKF) is the natural extension to the Kalman Fil

ter for nonlinear estimation problems. It is often used as a nonlinear state estimator 

because of its ability to minimize the mean square estimation error. The EKF has 

a lack of guaranteed stability, so filter design is often verified through Monte-Carlo 

simulations. Despite its lack of guaranteed stability, the EKF has been successfully 

implemented in a wide variety of applications, and is considered standard for forma

tion flying applications. Kim et al. developed an approach for relative navigation
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and attitude estimation using the VISNAV system [7]. Accurate relative position 

and attitude estimates are obtained by processing line-of-site measurements coupled 

with gyroscopic measurements and dynamic models in an EKF. Busse, How, and 

Simpson used the EKF along -with a carrier-phase differential GPS (CDGPS) mea

surement model for Low-Earth Orbit (LEO) formation estimation [23]. The EKF’s 

dependence on a near-perfect system model is reduced by augmenting the filter with 

adaptive filtering techniques based on the method of maximum likelihood estimation 

(MMLE). Hardware-in-the-loop simulations at NASA Goddard Space Flight Center 

demonstrate less than 2 cm relative position error and less than 0.3 mm/s relative ve

locity error for formation separations of 1-2 km. Philip also shows the EKF to provide 

adequate results when used to filter noisy relative position and velocity measurements 

for spacecraft rendezvous [24].

1.2.5 T he Sliding M ode Observer

Sliding Mode Observers (SMO) are nonlinear state estimators whose development 

stems from the theory of variable structure systems [25]. They were developed to 

address the dependence of the classical observers, such as the Kalman Filter and Lu- 

enberger Observer, on precise mathematical representations of the plant. As a result, 

some advantages of the SMO include robustness to bounded system parameter uncer

tainties and input disturbances. Examples of SMO for state estimation in formation 

flying are rare, though Thein et al. have investigated their use in a formation flying 

mission about the Earth/Moon-Sun L2  point [26]. Limited examples of comparisons 

between the EKF and SMO have been found for applications not pertaining to forma

tion flying. For example, Park et al. [27] compared these two state estimators in a cold 

flow circulating fluidized bed, a system applied to a wide variety of chemical industry 

processes. This system’s purpose is to  reduce pollution and raise efficiency. The de
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cision to investigate the performance of an SMO is prompted by the EKF’s inability 

to provide adequate state and standpipe height estimates for certain oscillating input 

cases. In this case, the Sliding Mode Observer is found to compare favorably to  the 

Extended Kalman Filter. Chen and Dunnigan compare the performance of the EKF 

and SMO for full state estimation (stator currents and rotor fluxes) in an induction 

machine [28]. For this application, the SMO and EKF perform comparably, but the 

Sliding Mode Observer is favored due to its ease of implementation, lower computa

tional burden, and lack of demand for accurate noise statistics. It should be noted 

that the SMO used by Chen and Dunnigan is formulated differently than the SMO 

used in this work, as proposed by Misawa [29, 30]. As will be explained subsequently, 

this work utilizes a constant gain matrix K  multiplied by a suitable switching func

tion (e.g. the signum or saturation function) to ensure that error trajectories remain 

on the sliding surface. As a means of dealing with the chattering associated with the 

sliding mode method, this work employs a boundary layer to minimize chatter. The 

SMO implemented in [28] accomplishes these tasks by using a variable observer gain 

K ,  modified as a function of the sliding surface.

The goal of this thesis is to provide a more extensive effort into comparing the 

Extended Kalman Filter and Sliding Mode Observer proposed by Misawa for state 

estimation in the context of formation flying about the L2 Lagrange point. The con

tributions of this research include developing a simulation model for each observer and 

individually implementing each observer into the pre-existing NASA Constellation X 

simulation model in MATLAB/Simulink. Simulations are run assuming various con

ditions, and the observers are compared in terms of their ability to provide accurate 

relative position and velocity estimates.
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1.3 T hesis O utline

This thesis is organized as follows:

• Chapter 2, Formation Flying About L 2 Libration Points - An explanation of 

the Restricted Three Body Problem and Libration Points are given. Based on 

this explanation, Formation Flying in orbit about an L 2 point is discussed.

• Chapter 3, The Extended Kalman Filter - The continuous-time Extended Kalman 

Filter is derived by extending the Kalman Filter to nonlinear systems.

• Chapter 4, Sliding Mode Observers - The Sliding Mode Observer is described by 

first describing Sliding Mode Control and extending these concept to estimation.

• Chapter 5, Constellation X - The NASA Constellation X simulation model 

is introduced as the platform on which the observers will be compared. The 

measurement model and control laws are subsequently explained.

• Chapter 6 , The Extended Kalman Filter For Formation Flying - The Extended 

Kalman Filter is implemented on an example L2 formation flying mission. It is 

defined by describing the state and measurement Jacobi and the selection and 

tuning of the covariance matrices. Relative position and velocity estimates and 

errors are discussed.

• Chapter 7, The Sliding Mode Observer For Formation Flying - The Sliding 

Mode Observer is implemented on the same L 2 formation flying mission as the 

EKF. It is defined by describing the selection of the sliding surface, boundary 

layer thickness, and Luenberger and Switching Gain selection and tuning. As 

with the Extended Kalman Filter, relative position and velocity estimates and 

errors are discussed.
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•  Chapter 8 , Comparison Of Extended Kalman Filter And Sliding Mode Observer 

- The results of the simulations from Chapters 6  and 7 are discussed.

• Chapter 9, Research Summary and Future Work - Contributions of this research 

are summarized and conclusions are drawn. Possible topics of future research 

are suggested.
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CHAPTER 2 

FORMATION FLYING ABOUT L2 LIBRATION 

POINTS

2.1 T h e  R e s tr ic te d  T h re e  B o d y  P ro b le m

The Restricted Three Body Problem (RTBP) investigates the motion of an. in

finitesimal mass influenced by the gravitational fields of two finite masses in circular 

orbit about their common center of mass. This problem was originally formulated by 

Euler in 1772 to study the motion of the Moon about the Earth, perturbed by the 

Sun [1]. In our own solar system there are many opportunities to use the RTBP. One 

may formulate the RTBP using the Sun and Jupiter as the primary bodies to study 

the motion of asteroids and comets, or one may use the Earth and Moon as primary 

bodies to  study the motion of spacecraft within the Earth/M oon system. The RTBP 

may also be used to find likely planetary orbits about double-star systems, once the 

motion of the two stars is known.

The Restricted Three Body Problem may be solved using numerical techniques, 

as there is no solution in the form of an analytic, differentiable function of both the 

initial conditions and time. Henri Poincare first proved tha t an analytical solution 

to the closed form solution does not exist. As the RTBP has been studied over the 

last 2 0 0  years, certain conventions have been established pertaining to units for mass, 

length and time, as well as coordinate frames.

The simplest unit convention is to use the* distance between the two primary bodies 

as the unit of length:
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a l2 — 1 (2 .1)

As a unit of mass, the masses of all bodies in the problem sum to unity. Since the 

mass of the third body is infinitesimal, only the two primary bodies are of importance.

The smaller mass is traditionally referred to as ra2. Note that the quantity p  referred 

to here is different than the gravitational parameter /X(.) referred to elsewhere. The 

quantity p  is the mass ratio of the restricted problem, or the ratio of the smaller 

mass to that of the larger mass. The quantity /j(.) is referred to as the standard 

gravitational parameter, the product of a celestial body’s mass M  and the universal 

gravitational constant G.

Kepler’s Third Law is used to define the time unit. Kepler’s Third law states that 

the square of the period of time it takes a planet to complete an orbit of the Sun is 

proportional to the cube of its mean distance from the Sun. This law was originally 

formulated in 1619 as

where p represents the orbit period and a represents the semi-major axis length. The 

constant k  was found by Kepler to be unique for every body under consideration,

mi  +  ra 2  =  1

m i  =  1 —  p

m 2 = p (2.2)

(2.3)

although he did not have an understanding of its physical meaning. Newton later 

stated that k was a description of gravitational force and rewrote Kepler’s Third Law

as
rjn 2 47T2

(2-4)
G(mi + m 2)
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n -+l

Figure 2-1: Restricted Three Body Problem Geometry [1]

where T  takes on the same meaning as P, G represents the universal gravitational 

constant, mi  represents the mass of the primary body, and m 2  represents the mass 

of the body orbiting the primary body. For the purposes of ascribing the time unit 

to the Restricted Three Body Problem, G is assumed to be 1, making the period of 

the two primary bodies in their orbit about one another

1 /2

T\2 — 2w 12 2tr (2.5)
_G(mi + m 2)_

Here the time unit is set as a result of the choice for G.

Traditionally, the RTBP is set in a reference frame that rotates with the orbital 

motion of the primary objects. The primary objects lie on the Si axis, and the origin 

of the reference frame is located at the center of mass of the two primary objects 

as depicted in figure 2-1. The second axis, s 2, is orthogonal to Si and lies in the 

orbital plane of the primary masses. The final axis, S3 , is the axis of rotation, and 

completes the dextral (right-handed) orthogonal triad. Note from Figure 2 - 1  that
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since the problem is considered using nondimensional units, all physical variables 

may be measured in terms of p. For instance, the quantity y  refers to both the mass 

of the secondary body m 2 , as well as the distance of the primary body m\  from the 

center of the reference frame. Conversely, the quantity 1 — y, refers to both the mass 

of the primary body m \ , and the distance of the secondary body m 2  from the center 

of the reference frame.

Because the rotational period of this frame is 27T, the rotating reference frame 

has a inertial angular velocity tosi =  l s 3. The inertial acceleration of the third body 

must be calculated in order to obtain the equations of motion. For convenience, this 

acceleration may be expressed in terms of the unit vectors of the rotating frame s

c P \ d ?  d  . . . .

d ^ V i )  =  d t ? V s  +  s i  X  d t ‘V s  +  ° ° s i  X  *  X

where the subscripts i and s denote the inertial and rotating frames, respectively. 

The position vector of the third body given as

r s =  xs i  +  y s2 +  z s 3 (2.7)

and the time derivatives on the right of Eq. (2.6) are given as

d
— r s = x s  1 +  ys2 + z s 3 
at
d?

— r s =  x s i + y s 2 + z s 3 (2 .8)

After carrying out the cross products, Eq. (2.6) is expressed in the inertial frame

as
d2 \
— Vi j  = ( x - 2 y -  x )s i + (y + 2x -  y)s2 +  z s 3 (2.9)

It is now necessary to calculate the gravitational acceleration of the third body. 

This acceleration is dependent upon the distances of this body from the primary 

bodies. The distance between the third body and the larger and smaller primary
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bodies are given as rq and r?, respectively.

n  =  [(x — p ) 2  + y2 + z 2 ] 1 / 2

r*2 =  [(x +  1 -  p ) 2  +  y2 +  z 2]1/2 (2.10)

The distances are calculated using the x, y, and z-components of the position vectors 

r*i and V2  based on the fact th a t the third body is located at (x, y, z ) and the larger and 

smaller primary bodies are situated at (p, 0 , 0 ) and (p — 1,0,0), respectively. Using

the equation for the force of gravity between two objects separated by a distance r

(M l)

the gravitational acceleration of the third mass can now be calculated

=  (2 -1 2 )
' 1  ' 2

where the first and second term represent gravitational accelerations experienced by 

m 3  from rrii and m2, respectively. The equations of motion can now be formulated by

equating the inertial acceleration of the third object with its gravitational acceleration

term. The final result becomes

i - 2 y - x  =  ( 2 1 3 )

» +  2  (2.14)

* =  (2.15)
r l '2

2.2 Libration P oin ts

As stated previously, there is no closed form solution to this set of nonlinear 

ordinary differential equations. However, useful information has been extracted from 

these equations, most notably the location of the libration points, or LaGrangian
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points. Libration points are the stationary solutions to the Restricted Three Body 

Problem (RTBP). When viewed in a rotating reference frame which rotates with the 

primary bodies (centered about their common center of mass), the infinitesimal mass 

is stationary with respect to the two primary bodies at each of the libration points. 

This is because at these points, inertial acceleration of the infinitesimal mass is equal 

to the net gravitational acceleration it experiences from the primary bodies. There 

are five stationary solutions to the RTBP, indicating that these three-body systems 

have five libration points. Further information about libration points can be found 

in[l].

Libration points are the equilibrium points of the RTBP. They are found when 

the RTBP is investigated in the rotating frame. To do this, Eqs. (2.13),(2.14), and

(2.15) must be investigated with all velocity and acceleration terms set to zero. The 

reformulation of the equations of motion becomes

=  +  (216) 

-y  = -  (I  ’ P.*?)
rl r2

Q =  (218)
rf

Eq. (2.18) immediately indicates that z  =  0, meaning all equilibrium points are 

contained within the orbital plane of the primary masses. This solution agrees with 

intuition. Since z is universally zero for all equilibrium points, only Eqs. (2.16) and 

(2.17) remain; a system of two equations and two unknowns. Two equilibrium points 

are found using the assumption that rq =  r 2  =  1. A review of figure 2-1 under these 

assumptions reveals that this situation presents two solutions, both having each of 

the three bodies centered at the vertex of an equilateral triangle. These two solutions 

are called the triangular points of the RTBP, and were found by the Italian-French
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Figure 2-2: Libration Point Locations [1]

Mathematician Joseph Louis LaGrange in 1772, the same year Euler formulated the 

RTBP. In honor of their discoverer, these points are named L4  and L5. A simple 

geometric analysis reveals the coordinates of L4  and L5 to be (—0.5,0.75,0) and 

(—0.5,—0.75,0), respectively. The reason L4  and L5  are equilibrium points is that 

at these points, the third body is equidistant from each of the two primary bodies. 

As a result, the gravitational forces felt by the third body from each of the two 

primary bodies are in the same ratio as that of the masses of the primary bodies. 

The resultant force acts through the barycenter (the center of mass and rotation, 

located at the origin of the inertial frame) of the system. This force is balanced by 

the inertia of the body in rotation about the barycenter.

There are three other equilibrium points lying on the Sj axis of the inertial frame. 

As such they  are in line w ith th e  prim ary  bodies and are called th e  collinear points 

of the RTBP. Euler discovered these points in 1765. Knowing that z =  0 for all 

equilibrium points, one can see with a brief analysis of Eq. (2.17) that this equation 

is satisfied for y =  0. Finding the three collinear libration points is now a m atter of
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finding the roots of Eq. (2.16) for y =  2  =  0 This yields the equation

+  (219)
\ x  — f i \ 3 | a; +  1  — // | 3

Clearing the denominators results in a quintic equation in x. For 0 <  fj, < 1, however, 

this equation never has more than three real roots. This equation may only be solved 

via numerical techniques, which will reveal the location of the equilibrium points 

(referred to  as the Li, L2, and L3  libration points). L3  is located on the far end of 

the larger primary body at a distance from the center of the inertial frame of slightly 

greater than one unit distance. L\  is located in between the two primary bodies at 

slightly less than one unit distance. Finally L2 is located on the far end of the smaller 

primary body at slightly more than one unit distance. Figure 2-2 shows the location 

of the libration points for the restricted three body problem.

2.3 Form ation F lying in Orbit A bout an L 2 Point

One particular class of formation flying missions involves a satellite formation 

about an L2 libration point. Segerman and Zedd investigated the dynamics of relative 

motion for certain formation flying missions about the Earth/Moon-Sun L2 point [31]. 

This type of mission involves a telescope composed of distributed coplanar spacecraft 

about a hub spacecraft. The dynamics are analyzed based on the Circular Restricted 

Three Body Problem (CRTBP), the special case of the (RTBP) where the orbits of 

the primary bodies are assumed to be circular. This is a good approximation for 

the Earth/Moon-Sun system. Here, the Earth and Moon are combined to form the 

Earth/M oon system, which is treated as a primary body. The equations of motion for 

the telescope are written relative to the hub, in terms of the hub’s distance from L 2. 

Luquette and Sanner analyzed the dynamics of relative motion about L2 for a different 

class of formation flying missions, subject to the constraints of the general restricted

Reproduced with permission o f the copyright owner. Further reproduction prohibited w ithout permission.



19

three body problem based on the Earth/Moon-Sun system [2]. These missions are 

in the Leader/Follower configuration, in which a Follower spacecraft is controlled to 

track a Leader spacecraft. The dynamics of relative motion are defined in terms of 

the motion of the Follower with respect to the Leader. There is no need for direct 

linkage to any specific point in the RTBP reference frame. This expression for the 

dynamics of relative motion will be used in this research.

2.4 Space Environm ent at th e  L 2 Point

The forces that govern orbital dynamics about any of the Earth-Moon/Sun libra

tion points include gravity, solar pressure, and thruster action.

In this formulation of the RTBP, the principal gravitational sources are the Sun 

and the Earth/M oon system. Here the Earth/M oon system is treated as a single 

body located at the system center of mass. It should be noted tha t although this 

analysis is based on the Earth/Moon-Sun system, there are no special assumptions 

associated with this selection. The results may be applied to any RTPB scenario with 

the appropriate definition of the gravitational parameters.

Consider a two-spacecraft formation about the Earth/Moon-Sun L2 point with 

one spacecraft designated Leader and the other Follower, as depicted in figure 2-3. 

Attitude Control is applied to the Leader according to mission objectives, as well 

as infrequent control for orbit maintenance. Control is also frequently applied to 

the Follower to maintain desired relative position and attitude requirements. In the 

scenario of this research, the desired relative position coordinates from the Leader to 

the Follower is (0 0 — 50m), expressed as the difference in position of a coordinate 

system centered on the Leader to one centered on the Follower.

In the scenario considered in this research, the Leader and Follower spacecraft are 

constituent parts of an x-ray telescope with a focal length of 50 meters. The Leader
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Tl

Sun

~&y
Earth

Figure 2-3: Two Spacecraft Orbiting in the Earth/M oon - Sun Rotating Frame [2]

contains x-ray optics and the Follower contains various x-ray science detectors on an 

optical bench. Upon receiving a signal to capture a target within its field of view, 

the Leader reorients itself based on the location of the target. As the repositioning 

of the Leader is occurring, the Follower slews and rotates as necessary to place the 

center of the detector optical bench at the focal point of the x-ray mirror, contained 

in the Leader. After the target has been acquired, the only control required on the 

Leader spacecraft is infrequent orbit maintenance control. As long as it is necessary 

to observe the target, however, frequent control must be applied to the Follower 

spacecraft in order to maintain the 50 meter relative position necessary for proper 

focus, to within sub-millimeter accuracy.

The principle environmental forces applied to a body in orbit about any Earth/Moon- 

Sun lib ration  poin t are solar pressure and gravity. Here gravity  terms take into ac

count the two massive bodies of the RTBP as well as mutual gravitational interaction 

between spacecraft, also called self gravity. Luquette and Sanner assume that the 

spacecraft are comparably small such that their mutual gravitational interaction is
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insignificant, so the self gravity term is ignored. For this example, however, the pre

cision required in the relative position is stringent enough to warrant the inclusion 

of self gravity. Gravitational effects from other planets are negligible. Thruster ac

tion works in conjunction with environmental forces to drive the spacecraft dynamics. 

Figure 2-3 illustrates the basis for the Leader dynamics per unit mass, given by

EL "f* SL
L /̂ eraTj ng ^ sTj [|3 f sôar^  fsg,L fpert,L ^thrust,L (2.20)

II || || r SL ||

where r F is the position of the leader with respect to the inertial frame. The relative 

position of the Leader and Follower Spacecraft is represented by x  =  r F — r F- The 

subscripts S, E  and L  represent the Sun, Earth, and Leader, respectively. As such, 

tel  represents the distance between the Leader and the Earth, and vsl represents 

the distance between the Leader and the Sun. By convention, two-letter vector sub

scripts, as in r EL, for example, are interpreted by subtracting the quantity alluded 

to by the first letter in the subscript from that alluded to by the second letter. By 

this convention, t Fl =  r L — r E- The coefficients and fiem represent the Sun 

and Earth/M oon system gravitational parameters, respectively. The forces of solar 

pressure and self gravity acting on the leader spacecraft are represented by f soiar,L 

and fsg,Li respectively. Finally, f pert,L and u thrust,L represent disturbance forces and 

control forces on the Leader, respectively.

The follower dynamics per unit mass are defined similarly by

Vej? T* Qj?
F f =  PemTj TTV /̂ s7] ipf T fsolar,F "F fsg,F T fpert,F T rtj/wiigt F (2.21)

II r EF II3  II r SF II3  

where the terms are defined similarly, with the subscript F  designating the Follower 

spacecraft.

We can find the relative acceleration vector between the Leader and Follower by 

taking the difference between Eqs. (2.20) and (2.21)
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X  =  V p  — V l

T E F  f ' S F  , , J. , ,

^ e m  i i  i i o  M s  i i  11 q  T  Jso lar ,F  T  J s g .F  i J p e r t .F  " r  ^M hrust .F
r EF 3 I r SF I3

"Mem ii iiq Ms ii 11o "I” fsolar,L~F fsg,L~̂ ~ Spert,L T  ' '̂thrust,L
r EL k s i l l 3

, \  /  r SF r SL
1 “ r EF | |> II r EL I I V  M  II t Sf  IIs  || r s i  I P

"t" fsolar,F fsolar,L “1“ fsg,F fsg,L “I” fpert,F fpert,L

^thrust, F 'U’thrust ,L

l^em . l ŝ \  (  1 1 \
+  i h ^ T l 3 ) x ~ ^ em V IT ^ T I i3 ~  )  Tel

-M, ( ll mo || ho ) f S L  "F solar  ~F ^ f s g  ~F ^ f p e r tV l k s i H I 3 || r SL | | 3 7

~̂ ~'U'thrust,F 'U'thrust.L (2.22)

Eq. (2.22) provides the nonlinear dynamics of relative motion between the Leader 

and Follower spacecraft. The first term in this equation represents a parameter-based 

function that can be linearly combined with x  to form a portion of the dynamics, the 

second term and third terms represent gravitational effects from Earth/Moon-Sun 

system.
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CHAPTER 3 

THE EXTENDED KALMAN FILTER

3.1 T h e  C o n tin u o u s-T im e E x te n d e d  K a lm an  F il te r

The following is a description of the Extended Kalman Filter, taken directly from 

Gelb [32], As described by Gelb, the Extended Kalman Filter is the natural exten

sion of the Kalman Filter for nonlinear systems. Consider the nonlinear stochastic 

differential, equation and a nonlinear measurement of the system of the following form

*{£) =  f ( x ( t ) , i ) + w ( t )  (3.1)

z k = h k(xh(tk)) + vk, K  = 1,2,... (3.2)

Here /(x (f),£ )d » ”x 1 is a nonlinear function of the state, w(t)  is a zero mean gaussian 

noise having spectral density matrix Q{t)1 {t%} is a white random sequence of zero 

mean gaussian random variables with associated covariance matrices {/?*}. An algo

rithm is sought for calculating the minimum variance estimate (conditional mean) of 

x(t)edlny<1 as a  function of time and the accumulated measurement data.

Assume the measurement at time £*_i has just been taken, and used to calculate 

the corresponding value of the conditional mean aj(£*_i). No measurements are taken 

between ik~i and and the state propagates according to  Eq. (3.1), which yields 

the following when integrated

(3.3)

The expectation of both sides of this equation, is taken conditioned on all the mea

surements taken up to tk- i .  Interchanging the order of expectation and integration,

x(t )  = x ( t k- i )  + I f ( x ( r ) , r ) d r +  f  w (r )dr
J t u  * J f i ,  t
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then differentiating, yields

^ E [ x ( t ) \  = E[ f (x ( t ) ,  t)], tk- 1 <  t < t (3.4)

with the intial condition

E[x(tk-i)] =  x{ tk- i) (3.5)

The conditonal mean of x(t)  is the solution to Eq. (3.4) on the interval tk- 1 < t < t ,  

which can also be expressed more compactly as

^ (i) =  f ( x ( t ) , t ) ,  tk- i < t < t  (3.6)

where the bar denotes the expectation operation. A differential equation for the error 

covariance matrix

P(t) = E (3.7)[x{t) -  x{t)][x{t) -  x{t)]T

is derived in a similar manner by substituting for x(t)  in Eq. (3.7) from Eq. (3.3), 

interchanging the order of expectation and integration, and differentiating to yield

P(t) = x f T - x f  + f x T -  f x  + Q(t), 4 - i  < t  < t  (3.8)

where the dependence of x  upon t and f  upon x  and t have been suppressed for 

notational convenience.

For general nonlinear systems

/
OO p O O

... f ( x , t ) p ( x , t ) d x 1...dxn ±  f ( x , t )  (3.9)
■OO J  — OO

where p(x , t )  denotes the probability density function of x.  Note that for general 

nonlinear systems f ( x , t )  ^  f ( x , t ) ,  unlike in linear systems where
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Methods of computing the mean (and covariance matrix) without the knowledge 

of p ( x , t ) are sought. To that end, f  is expanded in a Taylor series about a known 

vector x ( t )  ~  x(t).  The current estimate (approximation to the conditional mean) x  

of the state vector is chosen as % so that

d ff ( x , t ) =  f ( x , t ) +  d x (x  — x)  +  ... (3-11)

assuming the partial derivatives exist. Taking the expectation on both sides yields

f ( x ,  t) — f ( x ,  f) 4- 0 +  H.O.T. (3.12)

The first-order approximation to f ( x ( t ) , t )  is obtained by dropping all but the first 

term of the power series for /  and substituting the result into Eq. (3.6) to yield

x(t)  = f ( x ( t ) ) ,  £fc_i < t < t k (3.13)

Here x  differs from x  in that x  denotes the exact conditional mean; x  denotes an

estimate of the state that is an approximation to the conditional mean. The differen

tial equation for the error covariance is determined similarly by substituting the first 

two terms of the power series for f ( x , t ) into Eq. (3.8). The result after carrying out 

the expectation operation and combining terms is

P(t)  =  F ( x ( t ) , t )P ( t ) +  P(t)FT(x( t ) , t) +  Q(t), ffc_i < t < t k (3.14)

Where F(x( t ) , t )  represents the Jacobian matrix for the state, defined as

df i(x(t ) , t)
(3.15)

x ( t)= x ( t)dXj(t)

Eqs. (3.13) and (3.14) are referred to as the Extended Kalman Filter propagation 

equations as they are similar in structure to the Kalman Filter propagation equations 

for linear systems. It should be noted that the EKF propagation equations are not 

exact expressions for the conditional mean of the state and its associated covariance
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matrix. This is because they were developed by approximating f ( x ( t ) , t )  using a 

Taylor series expansion.

It is also necessary to  develop update equations to  account for the measurement 

data in the nonlinear case. Assuming Eqs. (3.13) and (3.14) have been used to obtain 

an estimate of the state x ( t ) at time tkf denote the solutions to these equations by 

Xk(~)  and Ffe(—), respectively. An improved estimate of the state is sought upon the 

completion of the measurement zk. Following the development of the Kalman Filter, 

the updated estimate is required to be a linear function of the measurement

x k(+) =  a k +  K kz k (3.16)

where the vector a k and gain matrix K k are not yet specified. Similar to the develop

ment of the Kalman Filter, the estimation errors immediately preceding and following 

the update are given by

* (+ ) =  x k( + ) - x k

* ( - )  =  * * ( - ) - * *  (3-17)

The measurement error is formulated by combining Eqs. (3.16) and (3.17) with Eq. 

(3.2) to yield

*fc(+) T  K^fifc(x^) T K kv k -f- x k( ) x k( ) (3.18)

As in the development of the Kalman Filter the requirement th a t the estimate be 

unbiased is imposed. As a result the expected value of the updated estimation error 

£c(+) is equal to 0. Recognizing that E[xk(—)] — E[vk] — 0 and applying the latter 

requirement to Eq. (3.18) the result

^k  T. K kh k(y'Ek') *hfc( ) — b (3.19)

is obtained. This result is then solved for a k and substituted into Eq. (3.16) to obtain

x k(+) =  x k(~) + K k[zk -  h k(x k)} (3.20)
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Combining Eqs. (3.18) and (3.20) provides an alternative expression for the estima

tion error

■®fc(d~) — "®ft( ) T  K k\hk{xk) h^(aifc)] -F K kvk (3.21)

Determining the optimal gain matrix K k is accomplished in the same way as tha t of 

the Kalman Filter. First, the estimation error covariance matrix Pk{+) is expressed 

in terms of K k. Then K k is chosen to minimize a function of Pk(+)- The definition

Pfc(+) =  E[xk(+)xk(+)T} (3.22)

is applied to Eq. (3.21). Assuming that Pk(+) is independent of z k, recognizing that 

v k is uncorrelated with x k(—) and x k, and using the relations

Pfc( - )  =  E[xk( - ) x k( - ) T] 

R k = E[vkvl]

(3.23)

(3.24)

a new expression is obtained for the updated estimation error covariance matrix

Pfc(+) =  Pk(~) + K kE [hk(x k) -  h k(x k)][hk(x k) -  h k(x k)]q K i

+E [xk( - ) [ h k(x k) -  h k(x k)]q K i

+ K kE [hk(x k) -  h k(zcfc)]*fc(-)a +  K kR kK 1 (3.25)

Again, as with the case for the Kalman Filter, the estimate being sought is a minimum 

variance estimate, one that will minimize the class of functions

Jk — E x k{+)TS x k{+) (3.26)

for any positive semidefinite matrix S, again chosen to be the identity matrix as it 

has no bearing on the optimal estimate, leading again to

Jk — E X k ( + ) T X k(+ ) trace[Pk(+ )] (3.27)
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The trace of both sides of Eq. (3.25) is taken, and the result is substituted into Eq. 

(3.27). The equation
dJk
d K k

0 (3.28)

is solved for K k to yield the optimal gain matrix

K k .= - E

x l E

x k( - ) [h k( x k) -  h k(x k)]T 

\hk{Xk) fj,fc(®fc)][̂ 'fc(®fc) h k(Xkji\ +  Rk
-1

(3.29)

Eq. (3.29) can be substituted into Eq. (3.25), and the resulting equation can be 

manipulated to obtain

Pk(+) = Pk(~) + K kE [hk(x k) -  h k(x k)]xk( - Y (3.30)

Although Eqs. (3.20), (3.29), and (3.30) provide updating algorithms for obtaining 

a new estimate given a new measurement, they are impractical to implement due to 

their dependence on the probability density function for x(t )  to calculate h k. This 

obstacle is overcome by expanding h k(x k) in a power series about x k(—) as follows

h k( x k) = h k( x k( - ) )  +  Hk{xk( - ) ) { x k -  x k( - ) )  +  ...

where

Hk( x k[ )) —
d h k(x)

d x

(3.31)

(3.32)
x = x k{ - )

Truncating the above series after the first two terms, substituting the resulting approx

imation for h k(xk) into Eqs. (3.20), (3.29), and (3.30) and carrying out the indicated 

expectation operations results in the Extended Kalman Filter measurement update 

equations

x k{+) = x k( - )  + K k[zk -  h k(x k(-))}

K k = p k( - ) H U x k( - ) ) Hk{xk( - ) ) P k( - ) H l  ( x k( - ) )  + Rk

Pk(+) =  [I -  K kHk{xk(-))]Pk{ - )

(3.33)
-l

(3.34)

(3.35)
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Eqs. (3.13), (3.14), (3.33), (3.34), and (3.35) constitute the Extended Kalman Fil

ter algorithm for nonlinear systems with discrete measurements. It should be noted 

that the gains K appearing in Eqs. (3.33), (3.34), and (3.35) are random variables

a consequence, the sequence cannot be pre-computed and must be determined

on-line. The sequence of approximate estimation error covariance matrices is

also random and depends on the time history of x(t),  indicating that the estima

tion accuracy achieved is trajectory dependent. Using a similar limiting technique as 

was applied to the Kalman Filter, the Extended Kalman Filter measurement update 

equations can be formulated for continuous time, resulting in the following continuous 

time EKF measurement update equations

depending on the estimate x ( t ) through the matrices F(x( t ) , t )  and Hk(xk(—)), re

sulting from the choice to  linearize f  and hk about the current estimate of x(t).  As

x{t) = f ( x ( t ) , t )  + K ( t ) [ z { t ) -h { x ( t ) , t ) ]

P ( t ) =  F(x( t ) , t )P ( t )  + P( t )FT{x(t),t) + Q(t) (3.37)

(3.38)

(3.39)

(3.36)

- P { t ) H T{x(t), t )R - \ t )H {x{ t ) , t )P { t )  

K(t) = P t y i F i x t t W R r ' t t )

where

(3.40)

(3.41)
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CHAPTER 4

SLIDING MODE OBSERVERS

4.1 S lid ing  M ode O b serv ers

Sliding Mode Observers (SMO) are nonlinear state estimators whose development 

stems from the theory of variable structure systems. Some advantages of the SMO in

clude robustness to bounded system parameter-'Uncertainties and input disturbances.

As a  foundation for understanding the  SMO, sliding mode behavior is described 

in the venue of sliding mode control. These concepts are then extended to estimeir 

tion. This discussion is similar in content to  the work done by Misawa [29] and 

Koprubasi [3].

Begin with a  general nonlinear system model

b(x; t) and u(t) represent the control gain and scalar control input, respectively, and 

the superscript n  represnts the n th time derivative. The function / ( * ;  t) is unknown, 

but is assumed to have known bounds. The same is true for the input disturbance

The task in controlling this system is to force the system state to track a de-

tainties and unknown input disturbances. To tha t end, one must introduce a time- 

varying sliding surface s (x , t )  =  0 based on the tracking error vector x  — x  — x a  —

=  /(*(*)) +  6 (*(<))tt(f) +  d(t)

where x  is the scalar output of interest, x  =  [a?, x, ...,x^n 1̂ ]T represents the state,

d ( i ) .

despite the previously mentioned model uncer-

x<" ^]T. This surface is often chosen to  be
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Reaching & Sliding Phenomena

dx/dfc -f x =  0

x

Figure 4-1: Reaching And Sliding Phenomena of Sample State Trajectories on the 

Phase Plane [3]

S ( i , t ) = ( 4 +  A

where A represents some positive constant.

The following is an example of sliding mode control applied to a system in the 

absence of input disturbances. This example demonstrates exponential error conver

gence and necessity for a discontinuous control law, with Figure 4-1 showing the

sliding condition.

Applying Eq.(4.2) to the system

x = f ( x , x )  (4.3)

yields a possible (out of many) sliding surface

s =  x + Xx (4-4)

To accurately track a desired state Xd, the error trajectories must be made to

71 —  1

x, A > 0 (4.2)
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remain on the sliding surface, therefore s (x , t )  =  0. Those error trajectories which 

fall outside of the sliding surface must be redirected toward s(t) by an appropriate 

control law. Since the sliding surface s (x , t )  is required to be zero, the solution 

x = xoe~M is obtained. This guarantees exponential convergence as A is a positive 

constant.

The control law is required to satisfy Eq.(4.5), referred to as the sliding condition.

< -r?|s| 77 > 0  (4.5)

By Lyapunov stability (V =  s2), the sliding condition guarantees that the sliding 

surface is attractive. Solving Eq.(4.5) for the equality yields

s s  = — rj\s\ s = —T)sgn{s) (4.6)

where

!+ l  if s > 0

(4.7)

- 1  if s < 0

represents the signum function. This demonstrates the discontinuous nature of sliding 

mode behavior. Finally the sliding surface becomes

s(t) =  s(0) ±  rft (4.8)

If met, the sliding condition guarantees via Lyapunov stability analysis that the error

trajectories will reach the sliding surface in finite time t reach where

treach < \s(0)\/v (4.9)

Having chosen the sliding surface using Eq. (4.2), it is necessary to select a control

law u tha t satisfies Eq. (4.5), i.e. such that there exists a valid Lyapunov function

( y  =  s2).

The principles of sliding mode control can be applied to the design of observers. 

However, in estimation, a sliding surface definition analog to Eq. (4.2) is not adequate,
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as the full state is not available for measurement. Slotine et al. formulated an observer 

for second order systems with a single measurement [30], and further extended this 

observer for nth-order and multi-output systems. This work goes on to prove stability 

for these systems, which are of the form

x  — A x  +  D

z  = C x  (4.10)

Here the system and measurement matrices are represented by A esRnxn and Ce5ftmxn, 

respectively, with De^tn representing lumped nonlinearities and uncertainties, such 

that \D\ < Da

The observer design proposed in [29] assumes a nonlinear, observable system with 

a linear measurement model

x  — f ( x , t ) ,  xe$ln

z  =  C x  + u, z e W 1 (4.11)

The proposed observer design is of the form

i  =  / ( * ,  t) +  H z  +  K l s (4.12)

Where the vector of state estimates is reeSR” , f ( x ( t ) )  represents the model of f ( x ( t ) ) ,  

He$tnxm and Keifcnxr are constant gain matrices, as yet unspecified, and r  represents 

the number of sliding surfaces. The m x l  vector l s represents any suitable switching 

function, e.g. the signum function

l s =  [sgn(z j) sgn(z2) ... sgn(zm]T (4.13)

where

z  = z  — z  =  z  — C x  (4.14)

One may choose to use a saturation function instead of the signum function. To

do so, it is necessary to design a diagonal matrix <1*, containing a boundary layer
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(j>i for each sliding surface (there may be multiple sliding surfaces employed in a 

given Sliding Mode Observer). These boundary layers are scalar constants that relax 

the requirement that s  = 0. Rather, estimation error trajectories are considered 

satisfactory if they satisfy s t < (fy The saturation function is often favored over the 

signum function because, when used with <f>, it eliminates most high amplitude chatter 

associated with switching in each of the sliding surface functions. Such chatter occurs 

when the switching action of the signum function causes the estimates to oscillate 

about the actual values at high frequencies. Another advantage of the boundary 

layer is that the steady-state error may be adjusted by changing the value of the 

boundary layer.

The sliding surface s  in Eq. (4.2) can be extended for multivariable systems as 

the m  dimensional vector

s  =  C x  =  C ( x  — x)  (4.15)

The error dynamics are determined by Eqs. (4.11) and (4.12) as

i  =  A f  — H z  — K l s (4.16)

where

A /  =  f ( x , t )  -  f ( x , t ) ,  | A / | < £ ,  £ > 0  (4.17)

The extent of the imprecision | A f  | on f ( x , t ) is bounded and known to not exceed 

£. For notational convenience, Eq. (4.16) is rewritten as

£  =  / ,  f  = A f - H z - K l s (4.18)

The m  dimensional surface, s = 0 will be attractive if

SiSi < 0, * =  1,2, ...,m  (4-19)

and sliding is achieved if the extended sliding condition is met

s^ i  < -rj  | Si |, i =  1,2, ...,m  (4.20)
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Eqs. (4.20) defines the sliding surface, chosen considering Lyapunov stability cri

teria. The sliding surface is chosen such tha t the energy function V  (t ) is positive and 

its derivative is negative definite. During sliding, the system dynamics are reduced 

from an nth order system to an (n — m)  equivalent or reduced order system. The 

approximate sliding dynamics of the reduced order manifold can be modelled using 

the equivalent control method [25]. During sliding, the switching term l s acts to 

assure s = s  =  0. The latter condition

g . /  =  0 (4.2!)

can be used in conjunction with Eqs. (4.16) and (4.18) to obtain an expression for 

the equivalent switching vector.

C ( A f  — H z  — K l s) = 0 (4.22)

so that

l a =  (C K ) - lC A f  (4.23)

Therefore, the equivalent dynamics on the reduced order manifold are given as

i  =  ( /  -  K { C K ) - 1C ) A f  

C x  = 0 (4.24)

The absence of the Luenberger gain matrix, H ,  in Eq. (4.24) marks the indepen

dence of the reduced order manifold dynamics on these linear gains. The Luenberger 

gains serve to force the initial error trajectory toward the sliding surface. The switch

ing gain matrix, K ,  is chosen to ensure stable error dynamics on the reduced order 

manifold. To tha t end, K  is chosen, in order to satisfy Lyapunov stability, to be 

larger than known modelling uncertainties and disturbances, tha t is

AT, > £  +  £>„. (4.25)
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CHAPTER 5 

SIMULATION CHARACTERISTICS

5,1 F o rm a tio n  F ly in g  Scenario

The performance of the Sliding Mode Observer and the Extended Kalman Filter 

are compared against one another through implementation into a simulated forma

tion flying mission about the Earth/Moon-Sun La libration point. The name of this 

mission is Constellation X (Con-X), a previously proposed NASA mission involving 

two satellites in the Leader/Follower formation discussed in Chapter 1, utilizing the 

VISNAV measurement system, discussed later in this chapter. The Leader and Fol

lower satellites of the Con-X mission form an x-ray telescope with a focal length of 50 

meters. This formation is maintained while in halo orbit about the Earth/Moon-Sun 

L-2 point, with a nominal distance of 300,000 km and orbital period of 6 months. 

The Leader telescope is also called the mirror spacecraft (MSC), while the Follower is 

called the detector spacecraft (DSC). The MSC and DSC are controlled to  maintain 

a separation distance of 50 meters to an accuracy of within 1 millimeter. This design 

requirement follows from the fact that the focal length of the x-ray telescope formed 

by the MSC and DSC is 50 meter's. Therefore, the relative positioning of these two 

satellite must be maintained for proper focus.

The Leader contains x-ray optics and the Follower contains various x-ray science 

detectors on an optical bench. Upon receiving a  signal to capture a target within its 

field of view, the Leader reorients itself based on the location of the target. As the 

repositioning of the Leader is occurring, the Follower slews and rotates as necessary
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to place the center of the detector optical bench at the focal point of the x-ray 

mirror, contained in the Leader. After the target has been acquired, the only control 

required on the Leader spacecraft is infrequent orbit maintenance control. As long 

as it is necessary to observe the target, however, frequent control must be applied to 

the Follower spacecraft in order to maintain the 50 meter relative position necessary 

for proper focus, to within sub-millimeter accuracy.

The system model for the Constellation X mission is

x  = [A + A A(t)} x  +  f ( x ,  t ) +  Uthrust{t) + [r(f) +  A r(t)] +  D(t)  (5.1)

where £ce5R3xl =  r F — rq,, the distance between the Leader and Follower spacecraft, 

and u thrust(t) represents control effort. Note that, unlike in Eq. (2.22), the state- 

dependent self-gravity term is included

Gx
f { x , t ) =  — jjn{ M m sc ~  M d s c ) (5.2)

II x  II

where G =  6.6726 x 10~20|p ^  represents Newton’s universal gravitational constant, 

and M m s c  =  6000 and M d s c  =  3000 represent the mass of the Leader and Follower 

spacecraft, respectively.

The terms [A + AA(f)] and [r(t) -I- Ar(t)] represent the linear system matrix and 

gravitational effects from the Sun and Earth/M oon system and solar pressure, respec

tively. The distance of the satellites from the Earth and the Sun (v e f ^ ), r EiM)i r sp{t)i 

and rsL{t)) are not assumed to be continuously available. This orbital information is 

updated every seven days with information provided by a ground station. A review 

of Figure 2-3 shows that only the quantities r$E (the Earth’s distant from the Sun 

- not shown), and t e l  (the distance between the Leader and the Sun) are required 

in the update procedure. The required orbital parameters rEF{t),r BL(t),f’SF(t), and 

rsL{t)) are calculated through the following relationships, with inaccuracies carrying
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through from the inaccuracies in rsE and tEl

f'EF = r EL + x

r SF = r SE + r EL +  x

tsl  '=  r SE + r EL (5.3)

Because of time between updates, time-dependent, parametric uncertainties exist in 

A  and T(t). This problem is addressed by defining orbital parameters vEE, t s f - i Tel, 

and tsl such that

r(t) = f ( t )  + 8r(t) (5.4)

where f  and Sr represent the nominal value and time-varying uncertainties in r ,  

respectively. Eq. (5.1) is defined with the following

[A +  AA(t)] =  [ -  ( p ^ | j l  +  | |  r s % )  | p ) ]  ^  < 5 ' 5 )

where J 3 represents an identity matrix of size three, and

[r(() +  AT(i)] =  - ^ “ ( n ^ , )  r  +  | | r J ( t )  ||» ) r e M

( | |  vSF{t) ||3 +  | |  rs l(t) I I 3 )  ^  +  A / ” <5 6 )

where A f soiar represents input disturbances from solar pressure. All other uncertain

ties are lumped into the uncertainty term

T^(t) A fpert A tlthrust,F A Ufhrust,L (5-7)

Here A f pert represents any other perturbation forces, and A u tfirUst,L and A u t)irustip 

take into account thrust uncertainties in the MSC and DSC, respectively.

5.2 V ISN A V  M easurem ent System

Formation flying requires precise measurement of the relative positions and atti

tudes of all spacecraft in the formation. For a formation flying mission involving satel

lites orbiting the Earth/Moon-Sun L 2  libration point, this point’s 1,500,000 kilometer
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distance from Earth precludes the possibility of using GPS or any other Earth-based 

orbit determination system to provide this information. Such techniques would not 

yield suitable accuracy in relative position and attitude estimation. In order to obtain 

measurements of adequate accuracy, on-board measurement systems must be used. 

For formation flying missions beyond the GPS constellation, the Visual Navigation 

(VISNAV) system developed by Crassidis et al. is a suitable method for obtaining 

on-board relative position and attitude measurements [7].

The VISNAV system utilizes an electro-optical sensor placed on one spacecraft to 

detect the light emitted by a beacon on another spacecraft, yielding relative position 

and attitude estimates. The sensor contains a Position Sensing Diode (PSD) placed 

in the focal plane of a wide angle lens. Incoming light from the beacons is focused 

by the lens, illuminating some part of the rectangular silicon area of the PSD. The 

PSD is wired to generate electrical currents in four directions which provide the 

information necessary to calculate the energy centroid on the PSD. The imbalances 

in these currents are almost linearly proportional to the location of this centroid. 

After calculation, the x  and y coordinates of the centroid can be calculated. It is 

then possible to determine the incident direction of this light on the wide angle lens. 

In this way the sensors are able to supply directional vector readings pointing to the 

beacons. Three beacon-sensor pairs between spacecraft provide enough information 

to designate a unique relative position and attitude. In this study, four beacon-sensor 

pairs are used. The VISNAV concept is demonstrated in Figure 5-1.

The reason the sensors are only able to detect light from the beacons, as opposed 

to other ambient light sources, is tha t the beacon light is modulated at a known fre

quency, while the currents generated on the PSD are driven through an active filter 

set on the same frequency. This makes for excellent rejection of ambient light under 

many operating conditions. Other advantages include the compactness of the sensor
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£ Lens
x

PSD
Beacon N

Beacon 2
(  x  , . Y  , . Z  , )

Beacon 1

Figure 5-1: VISNAV Measurement System

size and wide field of view due to the use of a wide angle lens in the electro-optical 

sensors. The VISNAV system also benefits from having relatively simple electronic 

circuitry and low signal processing requirements, which ease the computational bur

den on the microprocessors. These advantages make the VISNAV system a reliable 

tool to aid in relative position and attitude estimation for formation flying missions.

5.2.1 M easurem ent M odel

The VISNAV system is to be implemented to provide relative position estimation 

for a two-satellite formation flying scenario in a halo orbit about the Earth/Moon-Sun 

system’s L2 point. For this research, the attitudes of the satellites in the formation 

are assumed to be perfectly known and, without loss of generality, are considered to 

be identity.

The basic nonlinear measurement model is

bi =  RrdVi + v i = r i + v i (5.8)

Here, bi represents the measured unit vector for the ith beacon, u, represents zero-
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mean random measurement noise, and R rei represents the relative attitude matrix, 

here assumed to be the identity matrix. The true unit vector r * is defined as

1
n  “  y/(Xi  -  x f  +  (Yi -  y f  +  { Z ^ z f

Here, ( X i , Y i , Z i )  represent the coordinates of the i th beacon with respect to the 

body-fixed coordinates of the Leader spacecraft (the spacecraft carrying the beacon), 

while (x , y , z ) represents the relative position coordinates between the frames of the 

two spacecraft carrying the beacon-sensor pair.

5.2.2 Sim ulation Conditions

The following conditions apply to both the Extended Kalman Filter and Slid

ing Mode Observer implementation. The relative attitudes of the MSC and DSC 

from Eq. (5.8) are assumed to be perfectly known and held constant at identity. As 

such, the subject of interest is relative position and velocity estimation. To test the 

reliability of initial startup, the desired separation distance, a?d(0), the actual values 

of the MSC and DSC relative position, se(0), and the initial values of the estimator 

state estimates, *(0), are initialized at different values

2^(0) =  [0,0, -50m ]r  

x(0) =  [10.4815m,-20.7256m,-44.2785m]T 

*(0) =  [11.5927m,-22.7981m,-48.7064m]T

All estimate and actual relative velocities are initialized at rest

x d(0) =  0 

x(0) = 0 

* (0) =  0

Y i - y

Z i -  z

(5.9)
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In the Con-X mission, the MSC and DSC are subject to disturbance accelerations 

from solar pressure, self gravity, and thruster action, averaging lO~6N/kg.  Input 

uncertainties (due to thruster errors, external disturbances, etc.) are applied to the 

system as periodic and random forcing functions

dx =  0.25 x 10~6sm(2.227rf) +  ax

dy = 0.06 x 10~6sin(.00747rf) +  ay

dz = 0.10 x 1 0 - 6 s in ( 1 .4 7 rf) +  az (5.10)

Here, ax,ay and oz are independent, zero-mean, random input pulses of 5Hz, 

the same as the VISNAV measurement sample rate. These thrust disturbances are 

measured in Newtons per unit mass, with an average intensity level of 0.5 x 10~6N /K g .  

Inaccuracies are also introduced to the system in the form of parameter uncertainties 

in tse and Tel because-orbital updates are available once every seven days.

Finally, the VISNAV system used in the simulation utilizes four beacons on the 

front side of the MSC. These beacons are assumed to be in the line of sight of the

detectors located on the DSC. The coordinates of these beacons with respect to the

MSC body-fixed inertial coordinates (in meters) are given as

L x =  [-5 .5 ,3 .5 ,-0 .5]

L 3  =  [-5 .5 ,-3 .5 ,-0 .5 ]

L 5  =  [1.5,3.5,-0.5]

L 7 =  [1 .5 ,-3 .5 ,-0 .5 ]

Here, odd-numbered beacons are located on the back of the Leader spacecraft, facing 

the Follower. The unmentioned even-numbered spacecraft are on the front of the 

Leader, pointing away from the follower. For this research, Follower spacecraft is 

assumed to be in view of all of the odd-numbered beacons.

Reproduced with permission o f the copyright owner. Further reproduction prohibited w ithout permission.



43

All VISNAV directional measurements are corrupted with measurement noise, 

chosen by NASA designers to be such that it would amount to noise levels of 0.0005 

degrees on each beacon axis. After this corruption, the vector measurements are nor

malized once again to satisfy the requirement tha t VISNAV directional measurements 

be unit directional vectors! All simulations are performed using MATLAB/Simulink.

5.3 Control Law

For both the EKF and the SMO, observer estimates will provide relative positions 

and velocity updates to an adaptive controller to  maintain satellite relative position, 

as developed by Luquette and Sanner [33]. The control law is known to be globally 

stable in the absence of uncertainties and is able to perfectly track desired smooth 

trajectories. The required differential thrust per unit mass is determined by the 

control law

'U 'thrust,F  'U 'thrust,L  " F  [ - 1  J  T

=  x r +  — Kj'Sj'

4  =  - 7 r  JsT (5.11)

Here x r is a reference acceleration based on a reference velocity

x r =  x d -  At (x  - x d)

with x d and x d representing the desired relative position and velocity. The ma

trix Rri provides the transformation from an inertial reference frame to tha t of the 

Earth/Moon-Sun rotating frame. At  and K r  are constant, symmetric, positive- 

definite gain matrices, ©i and © 2  represent adaptive estimates of unknown constant 

system vectors (e.g., uncertainties in absolute position and velocity and unknown

©!

© 2

K t St
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perturbing forces). The control law uses the error signal St  computed as

s t  =  x  — ±d  +  A t {x  — x d) =  x  — x r

Eqs. (5.11) and (5.11) provide asymptotic stability of the tracking error, 

stability analysis is provided in [33].

44

A detailed
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CHAPTER 6 

EXTENDED KALMAN FILTER FOR 

FORMATION FLYING

6.1 E x te n d e d  K a lm an  F ilte r  S im ula tions

The Extended Kalman Filter (EKF) is the direct extension of the Kalman filter 

for nonlinear state estimation problems. The Kalman gain K(t)  is calculated by 

linearizing the system and measurement, model equations at the current state estimate 

x.

For the continuous Extended Kalman Filter, the following system model is as

sumed

sr(f) =  + w(t) N(Q,Q(t))

z(t)  =  h(x ( t ) , t )  +  v(t)  N(0 ,R( t ) )  (6.1)

where w(t)  and v(t)  represent uncorrelated zero-mean gaussian state and measure

ment noise with intensities Q(t) and /?(£), respectively.

The state estimates are propagated by integrating the state estimate equation

*{<) =  f ( x ( t ) , t )  +  K(i)[z(i) 4- h(x(i), t)] (6.2)

where the Kalman gain K(t) is calculated, using the error covariance matrix P(t)
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upon integrating the error covariance equation

P(t) = F(x( t ) , t )P( t )  + P( t )FT(x(t) , t)  + Q(t)

— P( t )HT(x(t), fyR-1 (t)H(x(t),  t)P( t )

K(t)  = P{t)HT(x{ t ) , t )R r l (t)

The system state is defined as the relative position and velocity between the two 

spacecraft.

x

y

z

X

V

z

Also required for the error covariance and Kalman gain equations are the Jacobi 

for the system and measurement. The Jacobian matrix for the state

x{t) = (6.3)

-

X

X

X 0
+

f  (x,t)X

0 I  

A  + A A  0

where Y (x, t) = f ( x ,  t ) +  u thrust(t) +  [T(t) +  AT(£)] +  D(t)  from Eq. 5.1, is

d f ( x ( t ) , t )

(6.4)

dx(t) x ( t = x W

0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 1

0 0 0 a b c

0 0 0 d e /

0 0 0 9 h i

(6.5)
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where

. Vem  Vs \  3G(Mmsc +  M dsc)£2
d  I n /  #\ n o  I Ti /  »\ iTô  1 '

b,d =

II r EF(t) | | 3  || r SF(t) | | 3  /  (x2 + y 2 + z 2) 2

G.(Mmsc + Mpsc)
(x2 + y 2 + z 2)%

3 G(MMsc  +  MdscYMj 
if( x 2 +  y 2 + z 2Y‘ 

3G(M msc +  M dsc)xz
ci 9 =  ---------------------------5-----

( x 2 +  y 2 +  £ 2 ) 2

e _ _  1 V e m  Vs \  3G(MMsc  +  M DSC) y 2

TEF{t) | | 3  || r SF(t) ||3/  (x2 + y 2 +  z 2 ) 2

G(M msc +  M Dsc )

f , h  =

( x 2 + y 2 +  £ 2 ) 2  

3 G(M msc +  MDSc)yz
(x 2 + y 2 + z 2)

i _  _  , Ve m  Vs A 3G(Mmsc  +  M dsc)z 2

f ' E F i t )  ||3 || r SF ( t )  II3/  (i*2 4 - j/2 + i 2 ) 2

G(MMSc +  M dsc)
(x2 + y 2 + i 2 ) 2 

The Jacobian of the measurement,

dh(x ( t ) , t )

x ( t) = x ( t )
(6 .6)d x ( t )

is the augmented matrix of the Jacobian of each of I measurements evaluated at the 

estimate, such that
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H(x(t ) , t )
- - T

d z i  (t ) d z 2(t) dzi{ t )
dx ( t ) dx ( t ) d x( t )

(6.7)
x ( t ) = x ( t )

In the case of the simulation conditions, four beacon measurements are used, from

beacons LI, L3, L5, and L7, resulting in the (12 x 6 ) matrix 

H(x(t ) , t )
r 1T

d z \  (t ) d z 3(t) d z 5(t) dzy( t )
dx ( t ) d x  (t) d x ( t) d x ( t)

x{ t )=x ( t )

where

resulting in

dzj(t) 
d x ( t )

V (X , -  x f  +  {Yi -  y f  +  (Zi -  z f

X i  X

Y i - y

Z i -  z

1

A

a' V d  0 0 0

d! e' f  0  0  0

of h! i' 0  0  0

(6 .8)

(6.9)

A  =  [ { X i  -  x ) 2 + ( Yi -  y ) 2 + ( Z i  -  z ) 2]* * = 1,3,5,7

a  =

b',d!

c',g'

e  =

f ' , h ' =

i '

( X i - x ^ Y i - y )

( X i  -  x ) ( Z i  -  z) 

- ( X i - x f - i Z i - z )2 

(:Y i - y ) ( Z i - z )

- ( X i  -  x ) 2 -  ( Y  -  y ) 2
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6.2 Extended Kalman Filter Covariance Matrix Selection

The process and measurement noise covariance matrices, Q  and R ,  respectively 

are now defined, These matrices are chosen to represent a reasonable level of expected 

noise. As such, the measurement noise covariance matrix R  is defined based on the 

variance of the presumed level of measurement noise.

Here, 0.0005(7r/180) represents the expected level of measurement noise, then scaled 

by 1,000 to convert from kilometers to meters (NASA simulations were constructed 

such that measurement noise measured in kilometers was added to each axis of each 

beacon such tha t it would amount to noise levels of 0.0005 degrees on each beacon 

axis). The term 1 1 2  represents the identity matrix of size 12. The process noise co- 

variance matrix Q is significantly more difficult to quantify mathematically due to the 

time varying uncertainty of orbital parameter data. All uncertainties, disturbances, 

and unmodelled dynamics are modelled as lumped process noise. To quantify the 

variance of the process noise, the state was initially propagated with and without 

any lumped process noise, resulting in two different dynamic responses, X\ and X 2 - 

The dynamics without noise were subtracted from those containing noise to yield the 

process noise vector

The variance of the resulting noise vector is then taken, and the largest variance 

for a given state is used as a conservative measure to provide a starting point for Q.

R n o m in a l meters (6.10)

w(t)  =  X i  — ±2

(6 .11)

Q n o m in a l = 0.4825 X IQ- 1 0 ! 6 (6 .12)

The term I 6  represents an identity matrix of size 6 .
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6.3 Extended Kalman Filter Covariance Matrix Tuning

The simulation is run with the initial values of the noise covariance matrices, 

which are subsequently tuned to minimize steady-state position estimation error. 

The process noise covariance matrix Q is tuned first. Holding Rnaminai constant, 

Qnominal is tuned by incrementally varying a tuning constant a  from 1  to 1 ,0 0 0 , 0 0 0  

(by increments appropriate for size of a) until the best combination is found

Qtune — Qnominal (6.13)

This combination is found to  be ( 2 0 0 0  * Qnominai, Rnaminai)-, at a  =  2 0 0 0 . Com

binations about this “point” are tested to obtain the best combination of Q and 

R.

Q tune (3 2 0 0 0  ♦ Qnominal

Rtune 7  *  Rnominal

• The tuning constant (3 is varied from 0.85 to 1.15 by increments of 0.05.

• The tuning constant ' 7  is varied from 0.7 to 1.3 by increments of 0.1.

• All possible combinations of Qnominal and R nominai contained therein are inves

tigated.

The combination of {Qnominal, Rnominai) which yields the lowest steady-state po

sition estimation error yields the values of Q and R  that best represent the process 

and measurement noise, respectively, and the Extended Kalman Filter is defined.
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6.4 Extended Kalman Filter Results

The final choice for Q, R  are

Q = 0.111 * 10- 6  * I 6

R  = 0.5331 * 10- 4  * I 1 2 m e t e r s (6.14)

This formulation of the Extended Kalman Filter is implemented into the forma

tion flying simulation in MATLAB/Simulink. The estimator processes four beacon 

measurements to generate an estimate of the state vector

x { t )  = (6.15)

x

y

X  z

X  X

y

z

The observer is run in-the-loop, supplying the state estimate x  to Luquette’s adaptive 

controller. The performance of the observer is evaluated under the following condi

tions: Cases One through Four evaluate the observer’s efficacy given 1) differences 

in the observer’s initial conditions from actual, 2) input disturbances, 3) parameter 

uncertainty, and 4) measurement noise. Case Five evaluates the observer under the 

cumulative influences of Cases One through Four. The values of the uncertainties for 

each of these cases are given in Chapter 5. Results are given for a simulation runtime 

of 6000 seconds.

The constraints of the simulation conditions require that the relative position of
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the satellites be accurate to with a cubic millimeter in space, meaning

({xd -  x ) 2  +  (yd -  y f  +  (zd -  z)2)5 <  1 . 0  mm (6.16)

where x d represents the desired separation distance, in this case [0  0 —50,000 mm]. 

To determine the efficacy of the controller, a simulation was run (assuming the con

ditions of Case Five) in which the actual states were given to the controller (i.e. 

no estimator was used). Given perfect state knowledge, the controller was able to 

achieve a steady-state relative position error of 0.255 micrometers. This suggests that 

the criteria for acceptable estimator performance be

{ ( x d -  x ) 2 + (yd -  y ) 2  +  (zd -  £)2)5 <  0.9997 m m  (6.17)

Of course it is preferable tha t the left-hand side of Eq. (6.17), be not simply within 

acceptable bounds, but as close to  0  as possible. As a conservative rule of thumb, 

this research was conducted to  satisfy Eq. (6.17) to within 0.5 millimeters.

6.4.1 C ase One: In a c c u ra te  In it ia l C ond itions

Here the efficacy of the Extended Kalman Filter given inaccurate initial conditions 

is investigated. As discussed in Chapter 5, the initial estimated relative position, £c(0), 

of the spacecraft at the start of simulation, differs from the actual initial relative 

position x ( 0 )

x{0) =  [10.4815m,-20.7256m,-44.2785m]r

£(0) =  [11.5927m,-22.7981m,-48.7064m]r  (6.18)

All relative velocities are initialized at rest. Starting at time t — 0, observer 

estimates of the satellite relative position and velocity are given to the controller, 

charged with driving the states to the desired value

x d(0) = [0,0, -50m ]r  (6.19)
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In cases One through Four, the magnitude of the relative position error |a?e | ,  is 

considered, where

x e = x  — Xd (6 .2 0 )

This is the difference between the actual satellite relative position, and the desired 

value of this quantity.

Case One results are shown in Figure 6-1. This figure shows three different views 

of the actual relative position error magnitude \xe\. In the top view, the initial value

Relative Pos i t ion Error M e  l
5000

500 1000 1500 2000 2500 3000£
£

0.01

0.005

CL

1000 2000 3000 4000 5000 6000

x 10a:
4.6

4.4

4.2
0 1000 2000 3000 4000 5000 6000

Time (s)

Figure 6-1: Case One - EKF Relative Position Error Magnitude

of the relative position error magnitude, 5,014 mm,  corresponds to the difference 

between the initial estimated and actual states. The middle view demonstrates the 

steady-state behavior of the satellites. In this case (as with cases Two and Three 

for the extended Kalman Filter), the term “steady-state” must be used with the
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following caveat: there is a drift in the relative positions of the satellites over time, as 

shown in the third view of Figure 6-1. This drift does not result from differing initial 

conditions, but rather from the fact tha t measurement noise and certain causes of 

process noise (parameter uncertainty and input disturbances) are missing from Case 

One. Because the Extended Kalman Filter covariance matrices were tuned assuming a 

certain level of process and measurement noise, these covariance matrices are too large 

when implemented in simulations that do not include measurement noise and certain 

process noise (Cases One, Two, and Three). For these cases, the actual process and 

measurement noise are smaller than expected, so the Q and R  matrices are oversized. 

The performance of the Extended Kalman Filter is dependent upon the accuracy of 

Q and R  as they are used to calculate the Kalman Gain K. In these cases the effect 

of the inaccuracy in the covariance matrices is seen over the course of many hours of 

simulation run-time, where the drift becomes significant and compromises the efficacy 

of the observer. For the simulation run-time considered here (6,000 seconds), however, 

the drift is small (~  0 . 2  micrometers), so the steady-state behavior is considered to 

begin at t = 3502 seconds. Figure 6-1 demonstrates that Eq. (6.16) is satisfied at 

t = 748 seconds, with an RMS error of 4.5 micrometers. Overshoot of magnitude 

1361.5 mm occurs at t = 362 seconds.

6.4.2 Case Two: Input D isturbances

The system’s reaction to input disturbances is shown in Figure 6-2. Again, the 

drifting phenomenon is shown in the bottom view of |xe|. This drift will become 

unmanageable over the course of many hours of simulation run-time. The periodic 

oscillations seen in the steady-state are a result of input disturbances.

The oscillations, occurring once every 500 seconds, correspond to the motion of the 

satellite as it oscillates back and forth about Xd■ The pairings of these oscillations are
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Relative Position Error |®e
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Figure 6-2: Case Two - EKF Relative Position Error Magnitude

best seen in the bottom view, where, beginning at t — 1538 seconds, pairs of peaks of 

equal magnitude propagate, increasing gradually (the first peak in this picture, does 

not have a corresponding peak of equal magnitude, as the peak before it (not shown) 

is still affected by the transient response).

The pairs of peaks begin with a maximum amplitude of approximately 0.0484 

mm, and grow by .0004 mm (per pair) to the end of the simulation (i.e. second and 

third peak have a magnitude of 0.0484 mm, fourth and fifth have a magnitude of 0.488 

mm, and so on). Case Two satisfies (6.16) within 319 seconds and begins steady-state 

behavior at 1040 seconds. Overshoot of 3.8 mm occurs at t =  135 seconds.

6.4.3 Case Three: Param eter U ncertainty

Case Three considers the effect of parameter uncertainties. In this simulation, 

the orbital parameters representing the distance of the satellites from the Earth and
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Figure 6-3: Case Three - EKF Relative Position Error Magnitude

the Sun and Tsx(0 , are made available once every seven

days by implementing a zero-order hold on the update parameters Tse  and Tel- 

In between updates, the observer estimates the state based on the system model 

subject to these parametric uncertainties. Furthermore, the values of Vse and Te l  

are corrupted with zero-mean noise levels of 5,000,000 m and 4,000 m, respectively. 

These values were determined by NASA designers as reasonable noise levels for their 

respective measurements. Figure 6-3 shows the effects of parameter uncertainty on the 

magnitude of the actual relative position error, |£Ce|. Eq. (6.16) is satisfied within 319 

seconds, after an overshoot of 3.7 mm occurring at 135 seconds. Steady-state behavior 

begins at t — 1815 seconds, with an RMS error of 0.0044 mm. The drift phenomenon 

occurs in this figure as well, demonstrated in the third view. The RMS error is small 

due to the short simulation run-time. W ith such a short run-time, the percentage 

difference between the actual values of t S e  and t E l , and the current estimates of Vse
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and vel from the previous ground update, is negligible. W ith simulations lasting 

longer than seven days, the parameter uncertainties would be greatest just before the 

update of the orbital parameters, thus the affect on estimation accuracy would be 

greatest.

6.4.4 Case Four: M easurem ent N oise

Measurement noise is considered in Case Four. All beacon measurements axe 

subject to zero-mean measurement noise levels of 0.0005 degrees applied to each axis. 

This value was determined by NASA designers as a reasonable noise level for VISNAV 

measurements in this application. The results of measurement noise is shown in Figure 

6-4. The top view of the figure demonstrates an overshoot of 3.8 mm occurring at 

t =  138 seconds.

Relative Posi t ion Error | ® G

Time (s)

Figure 6-4: Case Four - EKF Relative Position Error Magnitude
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The bottom view demonstrates tha t the drift phenomenon of cases One, Two and 

Three has been eliminated with the incorporation of measurement noise, with steady- 

state behavior commencing at t = 449 seconds at an RMS error of 0.0867 mm. Eq.

(6.16) is satisfied within 315 seconds.

6.4.5 Case Five: Cum ulative Inaccuracies and Disturbances

For Case Five, the effects of Cases One through Four are applied to the system 

and their cumulative influence on behavior efficacy is considered. Figures 6-5 and 6 - 6
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- 2

E
E

-4.5
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Figure 6-5: Case Five - EKF Relative Position Estimates

show the Actual and Estimated relative position vectors for the Extended Kalman 

Filter. The observer is quite capable of accurately estimating the relative position of 

the Follower Satellite with respect to the Leader Satellite for each axis.

Reproduced with permission o f the copyright owner. Further reproduction prohibited w ithout permission.



59
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Figure 6 -6 : Case Five - EKF Relative Position Estimates (Magnified)

Figures 6-7 and 6 - 8  show |®|, where

X  =  x  —  X

and demonstrate the ability of the observer to satisfy Eq. (6.17) within ~  924 seconds.
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Figure 6-7: Case Five - EKF Relative Position Estimate Error Magnitude
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Figure 6 -8 : Case Five - EKF Relative Position Estimate Error Magnitude(Magnified)
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Although this research assumes no formal relative velocity constraints, it is neces

sary to minimize relative velocity for the sake of minimizing control effort. Figures 6-9 

and 6 - 1 0  demonstrate the ability of the observer to estimate these quantities.
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Figure 6-9: Case Five - EKF Relative Velocity Estimates
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Figure 6-10: Case Five - EKF Relative Velocity Estimates (Magnified)

Figures 6-11 and 6-12 show the magnitude of the relative velocity estimation error, 

which settles to a steady-state value of 0.0256 millimeters per second. The observer’s 

efficacy in estimating relative position and relative velocity leads to adherence to Eq.

(6.17), as shown in the magnitude of the actual relative position error in Figures 6-13 

and 6-14. Here it is shown that the actual system satisfies Eq. (6.16) within ~  1716 

seconds.
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Figure 6-11: Case Five - EKF Relative Velocity Estimate Error Magnitude
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Figure 6-12: Case Five - EKF Velocity Estimate Error Magnitude (Magnified)
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. CHAPTER 7 

SLIDING MODE OBSERVER FOR 

FORMATION FLYING

X 0

+
Y (as, t )

—

X h 2
> -j- / v  S&t (f>) ( , ! >

7.1 S lid ing  M o d e O b serv er S im u la tions

The Sliding Mode Observer used in simulation is of the form given in Eq. (4.12), 

with the exception tha t the function sat(-^) is used in lieu of the sigmim(-) function.

i  0 1

I  A + AA  0

where Y (a;, t) =  f ( x ,  t) +  « ^ m#(f) +  [r(t) + Ar(i)] +D{t)  from Eq, 5.1, Here, x  and 

x  are measured in meters and meters per second, respectively. Each sliding surface 

is represented by $ = z — z. The saturation function is defined as

+ 1  if s >  <b
s

=  < s / ¥  if  |js| <  4> (7 .2 )

— 1  if s < —#  -

In this case the saturation function is chosen over the signum function because, as 

mentioned in Chapter 5, as it eliminates most high amplitude chatter associated with, 

switching in each of the sliding surface functions.

7.2 S lid ing  M ode O b serv er G a in  S election

For both the Extended Kalman Filter and Sliding Mode Observer simulations, 

the nonlinear VISNAV measurement model is implemented. The formulation o f  the
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Sliding Mode Observer in Eq. (4.12) assumes a linear measurement model

z  =  C x

W ith a linear measurement model, the Luenberger Gain HelR6x3m (where m  is the 

number of measurements, with three axes each) is chosen such tha t the eigenvalues 

of A — H C  are stable, where

0 I 

A  0

Because these simulations implement a nonlinear measurement model, the desired 

eigenvalues of A cannot be easily chosen. As such, H  is arbitrarily chosen as in [26]. 

From this basis, gains are further tuned to minimize the steady-state error of the 

position between the MSC and DSC. Initially, for each beacon (LI, L3, L5, or L7)

H

A =

/ / ,  =

H o  =

% —

Hy

H i

5 0 0

0 1 0 0

0 0 25

O.OlHi

L1,L3,L5,L7.

Because there are four beacons and three axes for each beacon measurement, there 

may be up to twelve measurements, resulting in Hetfl6*12. For this same reason there 

can be up to twelve sliding surface functions. The Switching Gain Matrix is ife3?6xr. 

This matrix is chosen according to uncertainty bounds, following the criteria

Ki > £ +  Do

For twelve measurements, the resulting K  matrix is initially chosen to be an aug-
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K \ 1  x KT 5 ! 3

k 2 1 x KT 7 / 3

mented matrix of four sub-column matrices such that

K i =

This research uses a single sliding surface, chosen to be the summation of the 

measurement errors for each of the 1 2  beacon axes

s(.z) — Zi) — ^  ](.z z), i L \ x, L\y, L l z, L3x..., L7z

As a result, the K  matrix used in the observer takes the following form

1  x 1 (T 5  

1 x KT 5  

1  x 1 (T 5  

1  x 1 (T 7  

1  x 1 0 ~ 7  

1  x 1 (T 7

Initially, the boundary layer for the sliding surface function is arbitrarily chosen to 

be 5 mm. This value, as well as the values for H ,  K ,  and s(z)  were chosen from [26].

K (7.3)

7.3 Sliding M ode Observer G ain Tuning

When the sliding surface and nominal values are defined, the Luenberger Gain 

Matrix, H ,  Switching Gain Matrix, K ,  and boundary layer (f> (now a scalar as there 

is only one sliding surface), are tuned to minimize position estimation error. For 

each combination of these three values, a simulation is run, and the magnitude of 

the resulting position estimation error is evaluated. This criteria is chosen to evalu

ate observer performance because the MSC and DSC satellites must maintain strict 

relative position in order to ensure proper focus of the X-Ray telescope.
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The Luenberger Gain Matrix, which determines whether the error trajectories are 

driven toward the sliding surface, is tuned first in the following manner

(7.4)

The tuning constants a, /?, and 7  are adjusted to propagate new versions of the 

Luenberger gain matrix. The ranges for these values were selected assuming the best 

choice for H  was somewhere reasonably close to the nominal value (not more than 

twice as large and not less than one-tenth as large). In the tuning method employed, 

the tuning constants are distributed to all H t for i =  LI, L3, L5, L7, making all H i  

identical. Also, the relative proportion of the numerical terms on the diagonal of H i  

remain unchanged throughout the tuning process. The off-diagonal terms in the H i  

and H 2 matrices are kept at zero as well. Although it is not necessary to maintain 

any of these constraints in the tuning, process, these constraints were adopted in the 

tuning method to avoid the dramatic increase in the number of possible gain sets as 

the number of tuning constants increases. Simulations are run for various values of 

the tuning constants, then evaluated for steady state position estimation error. The 

constants a , /3, and 7  are varied as follows

• {a, (3,7 ) =  (a, 1,1): Here the constant a  is varied from 0.1 to 2 in increments 

of 0.1, holding (3 and 7  constant.

•  (a, 13,7 ) =  (1, /3,1): Here the constant (3 is varied from 0.1 to 2 in increments 

of 0 .1 , holding a  and 7  constant.

• (a, (3,7 ) =  (1 , 1 , 7 ): Here the constant 7  is varied from 0.1 to 2 in increments 

of 0 .1 , holding a  and beta constant.

• (a ,/? ,7 ) =  (1,/?,7 ): Here the constants (3 and 7  take on values from 0.1 to 1.9, 

by increments of 0 .1 , and are changed in the opposite direction of the other

Hitune — Q
(3Hi

l H 2

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



69

(7.5)

tuning constant. All combinations of tuning constants fit the form:

(a,/?, 7 ) =  (1,1 — O.ln, 1 +  O.ln)

where n represents the number of increments. Example values are (1,0.8,1.2) 

and (1 , 1 .2 , 0 .8 )

Once the best choice of H  is determined, the Switching Gain Matrix K  is tuned 

in similar fashion
" (3 x 10~ 5  

(3 x 10- 5  

/3 x 1 0 ~ 5  

7  x 1 0 ~ 7  

7  x 1 0 ~ 7  

7  x 1 0 - 7

Finally, once the best choices of H  and K  are determined, the boundary layer 4> is 

tuned as follows

4*tune OLlfi ( 7 -6 )

Since there is only one sliding surface, and therefore one boundary layer, the search 

for the best boundary layer is more straightforward than for the H  and K  matrices. 

Here, a  is varied from 0.1 to 2.0 in increments of 0.1. Upon finding the best choice 

for <j), the Sliding Mode Observer is defined.

The following trends were observed in gain tuning. The choice of the linear gain 

Matrix H  has bearing over the transient response. In tuning H  for the simulation 

conditions, it is observed that smaller values of H  result in slower transient responses, 

and vice versa.

The choice of the switching gain matrix K  and boundary layer (j) have little bearing 

over the transient response, but rather affect the quality of estimation results in the 

steady state. The Luenberger gain matric H  determines whether the error trajectories
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will approach the sliding surface, while K  and 4> determine whether they will remain 

on the sliding surface. In selecting X , it is necessary to choose values large enough 

to account for modelling uncertainties and disturbances. Choosing K  to be larger 

than necessary will decrease the quality of the estimate, as the saturation function 

will have to switch at a higher rate. The boundary layer must be chosen large enough 

such that estimation error remains within the boundary layer, and not so small as 

to mimic a signum function (induce high chattering). Overly large boundary layer 

values will result in poor estimates, as large values make the observer more tolerant 

of the condition s(z)  =  0  not being met.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



71

7.4 Sliding Mode Observer Results

The final choice for H ,  K ,  and </> are

H H \ I l 2 H 3 H a

H i

-5 .5 0 0

0 - 1 1 . 0 0

0 0 -27 .5

-0 .05 0 0

0 - 0 . 1 0

0 0 -.2 5

K  = 1*10"

1 , 2 , 3 , 4

0.8

0.8

0.8

0.008

0.008

0.008

4> =  6  m m

This formulation of the Sliding Mode Observer is implemented into the simulation 

in MATLAB/Simulink, in the same fashion as the Extended Kalman Filter. The per

formance of the observer is evaluated considering the same five cases as the Extended 

Kalman Filter in Chapter 6 .
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7.4.1 Case One: Inaccurate Initial Conditions

Case One demonstrates the effect of inaccurate initial conditions on the actual 

relative position error magnitude, |a?e|. Figure 7-1 demonstrates an overshoot of 

893.4 mm occurring at t = 164 and the satisfaction of eq (6.16) after 748 seconds. 

No drift phenomenon occurs with the Sliding Mode Observer for zero measurement 

noise. Steady-state behavior begins at f =  1544 with an RMS error of 0.0014 mm.

Relative Position Error |®e|
■ ----------- 1"'

K  ,

....... . -T --.... - ...... T ... ... ...... 1 ...... . " 1

0 500 

x 10 3

1000 1500 2000 2500 3000

1 1 1 1 1
0 1000 2000 3000 4000 5000 6000 

x 10‘3

1................  1 t l ...........1
0 1000 2000 3000 4000 5000 6000

Time (s)

Figure 7-1: Case One - SMO Relative Position Error Magnitude

7.4.2 Case Two: Input D isturbances

The effect of input disturbances on |cce| is considered here. Figure 7-2 demon

strates a decreased overshoot of 6.7 mm, given the removal of inaccurate initial con

ditions, occurring at t = 231. Eq. (6.16) is satisfied after 418 seconds, with steady
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Relative Position Error Me I
 , ,
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1 0 0 - 1
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O)> 0

5  *Q>
^  0.07

4000 5000 60001000 2000 3000

TT T

0.06

0.05
5000 60001000 2000 3000 4000

Time (s)

Figure 7-2: Case Two - SMO Relative Position Error Magnitude

state behavior beginning at f =  1135 seconds. As with Case Two for the Extended 

Kalman Filter, the pairing associated with oscillations about Xd occurs here, begin

ning at t = 1135. Here, the first peaks of each pair have a value of 0.053 mm, and 

the second peaks have a value of 0.56 mm, and the magnitude of the pairs of peaks 

does not grow over time. This indicates that the overshoot past Xd is greater on one 

side of the oscillation than the other.

7.4.3 Case Three: Param eter U ncertainty

Figure 7-3 shows the effect of uncertainties in orbital parameters on x e. Overshoot 

of magnitude 6.7 mm occurs at t = 232, and eq (6.16) is eventually satisfied after 

420 seconds. Steady-state behavior begins at t =  1815 with an RMS error of 0.0014 

mm. The RMS error is small, as with the Extended Kalman Filter, due to the short 

simulation run-time. W ith such a short run-time, the percentage differences between
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the actual values of Vse  and Te l , and the current estimates of these parameter from 

the previous ground update, is negligible.

Relative P osition  Error |® e

2 0 0

1 0 0

100 200 300 400 800 900 1000E
E

8 0.2
Lilc
o

ifi 
D

CLa>> 5000 60001000 2000 3000 4000_2?a>a. ■3X 10
2

1.5

1
20000 1000 3000 4000 5000 6000

Time (s)

Figure 7-3: Case Three - SMO Relative Position Error Magnitude
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7.4.4 Case Four: Measurement Noise

The effect of measurement noise on x e is demonstrated in Figure 7-4. Here it is 

shown that eq (6.16) is satisfied within 418 seconds, following a 6.4 mm overshoot at 

t =  225. Steady-state behavior begins at t — 514 at an RMS error value of 0.1374 

mm. This error value is a significant increase over Cases One, Two, and Three.

Relative Position Error K d
250

I  200

|  150
LU  
5 100

Q.

100 200

p  0.3

!= 0 . 2

S 0.1

1000 2000 3000 4000 5000 6000
Time (s)

Figure 7-4: Case Four - SMO Relative Position Error Magnitude
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7.4.5 Case Five: Cumulative Inaccuracies and Disturbances

Case Five investigates the influence of all inaccuracies and disturbances on x e. 

Figures 7-5 and 7-6 show the actual and estimated relative position vectors for the 

Sliding Mode Observer.

Relative Position Estimates X
10000

"E
E, 5000
-s

X
0

100 200 300 400 500 BOO 700 800

x 10

E 0
£  -1  s  
^  - 2

T 1 I I 1 1 1

f
I

1 ' 1 1 1

---------Actual

» i
Estimate

r
0 100 200 300 400 500 600 700 800

x 104

-4.5 %

0 100 200 300 400 500 600 700 800
Time (s)

Figure 7-5: Case Five - SMO Relative Position Estimates
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Although the state estimates for the Sliding Mode Observer appear somewhat 

comparable to those of the Extended Kalman Filter, the response is far more oscilla

tory. This is because of the switching function (saturation function) associated with 

the Switching Gain Matrix K  and boundary layer (j).

Relative Position Estimates X  (Magnified)

1
Actual Estimate

I

Time (s)

Figure 7-6: Case Five - SMO Relative Position Estimates (Magnified)

Figures 7-7 and 7-8 show the magnitude of the relative position estimate error and 

demonstrate the observer’s competency in satisfying equation Eq. (6.17). The RMS 

error for relative position estimation is 0.1322 mm, well within acceptable bounds. 

The Sliding Mode Observer satisfies Eq. (6.17) within ~  811 seconds.
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Relative Position Estimate Error I *  I
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Figure 7-7: Case Five - SMO Relative Position Estimate Error Magnitude

Relative Position Estimate Error | £ |  (Magnified)
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2500

Figure 7-8: Case Five - SMO Relative Position Estimate Error Magnitude (Magnified)
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Figures 7-9 and 7-10 show the relative velocity estimates are highly oscillatory, 

so oscillatory in fact that the standard deviation of the relative velocity estimate at 

steady state is 59% of the mean, as shown in the magnitude of the relative velocity 

estimate error, Figures 7-11 and 7-12. This issue can be addressed by using an integral 

term in the sliding surface to reduce the steady-state error. This does, however, result 

in slower convergence time[3].

Relative Velocity Estimates X
'wT
E

0
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■a■C
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>*' -1000

10 20 30 40 50 60 70 80 90 100

To'
E
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2000

1000
£

> * 0
I

'to' 0
£
E,

-200to.c
> H_ -400

Actual Estimate

10 20 30 40 50 60 70 80 90 100

0 10 20 30 40 50 60 70 80 90 100
Time (s)

Figure 7-9: Case Five - SMO Relative Velocity Estimates

Reproduced with permission o f the copyright owner. Further reproduction prohibited w ithout permission.



80

E£,
■gJZ

>x

0.5

0

-0.5

Relative Velocity Estimates £  (Magnified)

_to

£
•s o

“  0.5
E 
E
^  0

-0.5

--------------- ---------p r --------------------,------------------  f  - ........... r .......

rJPfrl

.................. 1..............................»....... .. .........

t 1

1

W fflff
i

0 100 200 300 400 500 600 700 800

------------------ Actiial Estimate

1 1 1 1 I 1 1

0 100 200 300 400 500 600 700 800

! ♦
« \
* 's

/ 1 ! I l l l 1 l
0 100 200 300 400 500 600 700 800

Time (s)

Figure 7-10: Case Five - SMO Relative Velocity Estimates (Magnified)
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Figure 7-11: Case Five - SMO Relative Velocity Estimate Error Magnitude
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Figure 7-12: Case Five - SMO Relative Velocity Estimate Error Magnitude (Magni

fied)

For the Sliding Mode Observer, as with the Extended Kalman Filter, the quality 

of relative position error is comparable to that of the relative position estimate error. 

Figures 7-13 and 7-14 show the magnitude of the actual relative position error, and 

demonstrate that Eq. (6.16) is satisfied permanently within 742 seconds.

Relative Velocity Estimate Error |IE j (Magnified)
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Figure 7-13: Case Five - SMO Relative Position Error Magnitude
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Figure 7-14: Case Five - SMO Relative Position Error Magnitude (Magnified)
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CHAPTER 8 

COMPARISON OF EKF AND SMO

8.1 C ase R esu lts

Chapters 8  and 7 demonstrated the Extended Kalman Filter and Sliding Mode 

Observer ability to  provide state estimates in the Constellation X model using a 

nonlinear measurement model, given inaccurate initial conditions, and nominal mea

surement noise, parameter uncertainties, and input disturbances.

The observers were implemented in simulations subject to five different conditions, 

reviewed here

» Case One: Inaccurate initial conditions are considered individually.

• Case Two: Input disturbances are considered individually.

•  Case Three: Parameter uncertainties are considered individually.

» Case Four:- Measurement noise is considered individually.

•  Case Five: Inaccuracies, noise and disturbances are considered, collectively.

The system behavior displayed in Cases One through Four are now analyzed to 

determine their contributions to Case Five. Figures 8-1 through 8-12 summarize the 

results of the individual cases. All cases are reviewed for relevant characteristics of 

the actual relative position error vector magnitude |ajc|. These characteristics include:

the time it takes to satisfy eq (6.16), tsaUsfy, the magnitude of the overshoot and the
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time at which it occurs, t^ershoot, the time at which steady-state behavior occurs, 

and the associated mean, standard deviation, and RMS value associated with the 

steady-state behavior. Results for Case Two, shown in Figure 8-3, did not include 

these last three values due to the cyclical nature of the steady-state behavior.

Case 1 
Steady-state Statistics of M

0.005

0.0045 - r ^ m  p p p ]
0.004 - § | | |  i l l

0.0035 - l l l l  I l l l
£  0.003 - l l l l  l l l l

|  0.0025 - H I !  l l l l
I  0.002 - l l l l  | | i |

0 .0015- | | | | _____  l l l l _____

0-001 - l l l l  l l l l
0.0005 - l l l l  l l l l

o -I— ------— ,—  1 — ,— te r n -----
Mean Standard Deviation RMS Error

Figure 8-1: Case One - Steady-State Statistics of |a;e|

0EKF 

□ SMO

Reproduced with permission o f the copyright owner. Further reproduction prohibited w ithout permission.



Case 1 
Time Values of |*e|
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Figure 8-2: Case One - Time Values of \xe\

Case 2 
Time Values of )xe

1400

1200

1000

|  800 -1 
O
# 600 -1 w

400 - 

2 0 0  - 

0

tss tsatisfy

BEKF 

□ SMO

tovershoot

Figure 8-3: Case Two - Time Values of \xe\
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Steadystate Statistics of |®e j

0.16 -j 
0.14 -
0 .1 2 - ------

2  0 .1  - pOk
I  0.08 - i | g p  I

1  0 0 6 '  1 1 1  r a d  . j

o.o4  - i n i  m i l  i
0 . 0 2  - p i |  l l l l  I

o -1— ------— ,— ------ — ■---- E
Mean Standard Deviation RMS Error
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The preceding figures also reveal that of the first four cases, Case Four is the 

only one in which the RMS error in x e is significant, indicating tha t most of the 

steady-state error and oscillation in Case Five is a result of measurement noise and 

input disturbances, not the initial conditions or parameter uncertainty. Interestingly 

enough, parameter uncertainty has negligible effect over the steady-state characteris

tics, as shown in Figure 8-4. This is because the simulations could only be reasonably 

run for 6 , 0 0 0  seconds, which is not a long enough time in orbit about the L 2 point 

to induce significant percentage differences in the orbital parameters. The choice for 

the 6 , 0 0 0  second run-time was a result of the large computational requirements of the 

simulation, and corresponding real-time required for each simulation.

Case Five also investigates the steady-state characteristics of the relative position 

and velocity estimate error magnitudes. Figures 8 -8 , 8-9, and 8-10 show similar 

values for the steady-state characteristics of |ai|, |®|, and |a:e|, respectively. This 

demonstrates the ability of the controller to produce accurate control given an es

timate. Figure 8-9 also demonstrates that the magnitude of the error in velocity 

estimation is greater for the Sliding Mode Observer than for the Extended Kalman 

Filter. This inaccuracy in relative velocity estimation results in wasted control ef

fort, which is finite in space missions. Finally, Figure 8-10 shows that although it 

is slower (as shown in Figure 8-11), the Extended Kalman Filter provides a smaller 

steady-state error in |a?e|, i.e. closer adherence to the desired position x (i-
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Figure 8-12 shows the overshoot characteristics for each case. Here it is shown that 

in case Five, the overshoot for the Extended Kalman Filter is greater than for that of 

the Sliding Mode Observer, even though this is not true for Cases Two through Four. 

However, the overshoot associated with using the Extended Kalman Filter is greater 

in Case One, when differing initial conditions are used. This result simply carries 

through in Case Five. A similar trend is seen in t satisf y and t ss, the time it takes |cEe| 

to reach steady-state behavior. Although some cases demonstrate these quantities as 

being smaller for the Extended Kalman Filter than for the Sliding Mode Observer, 

the Sliding Mode Observer converges faster in Case Five. This is largely caused by 

the differing initial conditions from Case One.
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8.2 Sensitiv ity  Com parisons

It is also useful to consider each observer’s sensitivity to changes in the nominal 

values of measurement noise, parameter uncertainties, and input disturbances, to 

determine each observer’s efficacy in estimating the state in spite of such uncertainties.

The estimators’ sensitivity to parameter uncertainty was assessed first. The sim

ulation run-times in Cases Three and Five were not long enough to induce significant 

relative position errors due to parameter uncertainty. Using the same run time, how

ever, significant errors can be induces by simulating inaccurate updates. The two 

orbital update parameters were varied, the position Earth’s distance from the Sun, 

and the Earth’s distance to the Leader, tse  and Ve l , respectively. The following 

two figures investigate each observers’ ability to accurately estimate the state given 

inaccurate parameter updates. Figure 8-13 shows the performance of each estimator

Obseiver Sensitivity to Parameter Uncertainty: r,
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Figure 8-13: Observer Sensitivity to Parameter Uncertainty - rsE
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for a given percentage inaccuracy in v s e ■ For each percentage inaccuracy in rsE > 

the percentage increase or decrease in the steady-state relative position estimation 

error magnitude over that obtained when using nominal values of all inaccuracies and 

disturbances (as in Case Five) is shown. Although the percentage inaccuracies in this 

figure are highly unrealistic (a 30% inaccuracy in the Earth’s Distance from the Sun 

is equal to approximately 28 million miles), the information is useful to assess each 

observer’s sensitivity to parameter uncertainties in general. The Sliding Mode Ob

server’s sensitivity to inaccuracies in r SE is less than that of the Extended Kalman 

Filter, as there is great variation in the increase relative position estimation error 

magnitude for differing percent changes in v s e -

The second parameter to be evaluated was the E arth’s distance to the Leader Te l , 

as shown in Figure 8-14. For the Extended Kalman Filter, lower values of tel  tend
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to decrease the steady-state relative position estimation error. No consistent trend 

regarding the Sliding Mode Observer’s sensitivity to inaccuracies in r EL appears in 

this figure. As Figures 8-13 and 8-14, reveal no consistent trend for either observer, 

general assertions regarding these observers’ sensitivity to parameter uncertainty are 

not made for the given simulation conditions.

The observers are next compared in terms of their sensitivity to measurement 

noise. Figure 8-15 shows why the Extended Kalman Filter is well known for its ability
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Figure 8-15: Observer Sensitivity to Measurement Noise

to handle measurement noise. In most cases, the Extended Kalman Filter outperforms 

the Sliding Mode Observer for measurement noise cancellation for most values, and 

becomes increasingly more favorable as the increase in measurement noise becomes 

more and more extreme. Such increases in measurement noise levels would not be
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reasonably expected, however it is useful to investigate the observers’ reactions to such 

increases. The nominal noise levels were selected by NASA designers as reasonable 

amount of expected measurement noise. In a real situation, if the measurement noise 

were to increase beyond the nominal values, the observers would be comparable for 

an increase of up to 80% over nominal.

Finally, the observers are compared in terms of their sensitivity to sinusoidal in

put disturbances, as shown in Figure 8-16. Here, it is evident tha t the Sliding Mode

Observer Sensitivity to Disturbance Accelerations
1 2 0  ------------------------ 1------------------------ 1------------------------ 1-------------------------1------------------------ 1------------------------1------------------------ 1----------------------- 1 r

  +
+  Extended Kalman Filter

^00 - q  Sliding Mode Observer *
  *
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Figure 8-16: Observer Sensitivity to Disturbance Accelerations

Observer is far superior to the Extended Kalman Filter for input disturbance can

cellation. The small slope that would be associated with locus of points pertaining 

the the Sliding Mode Observer would be quite low, indicating the Sliding Mode Ob

server’s low sensitivity to input disturbances. The Extended Kalman Filter, on the
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V- V

_1 !_ _ I ________________L_

Reproduced with permission o f the copyright owner. Further reproduction prohibited w ithout permission.



96

other hand, is quite sensitive to input disturbances, with estimation error increas

ing quite consistently with input disturbance magnitude. A 400% increase invokes a 

mere 8.25% change in the steady-state error of the Sliding Mode Observer relative 

position estimate, as opposed to 119.25% for the Extended Kalman Filter. As with 

the measurement noise levels, the nominal input disturbance levels were selected by 

NASA designers expected in a real situation.

8.3 C onsiderations

There are certain aspects of observer design that should be considered in deciding 

which observer to use for relative position estimates in a formation flying mission. 

There is no readily-defined optimal combination of gains, boundary layer thickness, 

and sliding surface for the Sliding Mode Observer, nor is there the same such combina

tion of covariance matrices for the Extended Kalman Filter. As such, it is necessary to 

define some criterion (or criteria) of best observer performance, and to tune observers 

in search of meeting this criterion (or criteria). In this work, the criterion of best 

observer performance was the minimization of steady-state position estimation error. 

This criterion was selected given the mission performance goals, to maintain the rel

ative position of the satellites at x j.  This emphasis in observer tuning did not take 

into account the effects that velocity estimation errors would have on overall system 

performance, and therefore likely hindered the definition of the best observer. The 

observers’ performance would have benefitted from considering velocity estimates as 

well as position, so the observer performance should have been evaluated accordingly.

There are also practices that could have been implemented in tuning the observers 

to comprise a more exhaustive tuning procedure. The tuning process assumed a hi- 

erarchal structure of tuning components (i.e. it was thought tha t finding the best 

process noise covariance matrix Q, then finding the best measurement noise covari
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ance matrix R ,  would lead to the best Extended Kalman Filter. Similarly, the process 

for tuning the Sliding Mode Observer was to find the best Luenberger gains H ,  then 

Switching gains K ,  then boundary layer (j)). This process however, leaves out combi

nations of tuning components tha t may yield better results. A better tuning process 

would have involved using a 2 -factorial study to investigate the effects of changing 

the tuning components. Moreover, for the Sliding Mode Observer, the sliding sur

face should be considered a tuning component. Various sliding surfaces should be 

constructed, and considered in a 2-factorial study with H , K ,  and <p.

Having considered the recommended tuning procedures, it is clear tha t the Sliding 

Mode Observer tuning process leans toward being more time-intensive than that of 

the Extended Kalman Filter. This is a price one must pay for the versatility of 

the Sliding Mode Observer design. In deciding on which observer to Implement, a 

decision must be made regarding how to weigh the value of tuning ease versus other 

constraints of the mission.

In deciding which observer to implement, it is beneficial to consider the versatility 

of observer design. The Sliding Mode Observer is very versatile in that its performance 

characteristics can be varied and improved by experimenting with different sliding 

surfaces, a technique not taken advantage of in this research. Nor is the Sliding Mode 

Observer sensitive to inaccuracies in the expected level of system and measurement 

noise, as is the case with the Extended Kalman Filter. The traditional Extended 

Kalman Filter may provide less accurate state estimates if noise levels are not as 

expected. One solution to this problem is the use of adaptive Extended Kalman 

Filters, beyond the scope of this research, which are capable of identifying the process 

and measurement noise covariances, and modifying noise parameters accordingly.

Another issue to consider is the computational burden of the observer on the on

board processors. When compared with the Sliding Mode Observer, the Extended
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Kalman Filter is typically more computationally intensive, due in part to the necessity 

to calculate the measurement and state Jacobi, and the Kalman gain. Computational 

power comes at a premium for space missions, and it is generally favorable to favor 

computationally efficient algorithms, so long as performance is not compromised.

The nature of the formation flying mission must also be considered in selecting 

an observer. For example, in the Constellation X mission, the Extended Kalman 

Filter was shown to  converge at a slower rate than the Sliding Mode Observer. In all 

actuality, this is not a problem for most interferometry missions involving large focal 

lengths. This is because as large focal lengths indicate a distant object of interest, 

one tha t will not move from a telescope’s field of view quickly. Missions involving 

spacecraft docking, however, could benefit from an observer with quicker convergence 

characteristics, as this could shorten the time required for the docking procedure. 

Similar considerations can be made for overshoot.
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CHAPTER 9 

RESEARCH SUMMARY AND FUTURE WORK

9.1 C onclusions

In this research, the Extended Kalman Filter and Sliding, Mode Observer are 

compared for relative position and velocity estimation in a formation flying mission 

about the Earth/M oon - Sun L2 point, A nonlinear measurement model employing 

the VISNAV relative navigation system is used, and the states are propagated in 

continuous time. State estimates are given to an adaptive controller.

Although both observers are successful in providing estimates to such a  degree 

of accuracy as to meet design requirements, the Extended Kalman Filter formulated 

in this research is typically more accurate in terms of steady state relative position 

estimation error, and usually has less standard deviation in such estimates as well, 

indicating a less oscillatory response. This oscillation indicates that there will be a 

non-zero relative velocity, and the Follower spacecraft will require control effort of 

increasing frequency for higher standard deviations in |ac|.

The Extended Kalman Filter used in this research is shown, as expected, to  be 

slightly more effective at processing measurement noise than the Sliding Mode Ob

server used in this research. Alternatively, the Sliding Mode Observer is shown to 

be far more effective at handling sinusoidal input disturbances than the Extended 

Kalman Filter.

Between the choice of the particular Extended Kalman Filter and particular Slid

ing Mode Observer considered in this research, it is the author’s opinion th a t the
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Extended Kalman filter would be a more prudent choice for state estimation for the 

Constellation X mission, assuming its integration is computationally feasible given 

on-board processing power. It should be noted however, that this recommendation 

pertains to the particular Extended Kalman Filter developed in this research over 

the particular Sliding Mode Observer developed in this research as well, not to either 

observer in general. The reason for this is that the method employed for observer 

tuning did not lead to a satisfyingly exhaustive search for either observer, and tuning 

emphasized only position estimate errors and not velocity. Considering the observers 

of this research in particular, the underlying reason for recommending this formula

tion of the Extended Kalman Filter lies in the desire to minimize relative velocity 

errors, in order to save on control effort. Both observers served well in propagating 

accurate state estimates for the Constellation X mission, but it is also necessary to 

consider the amount of control effort the system will require under each observer, as 

the amount of propellant used in the microthrusters proposed for Constellation X is 

finite. Fuel is a significant consideration for all space missions. Although this for

mulation of the Extended Kalman Filter is more sensitive to input disturbances than 

this formulation of the Sliding Mode Observer, the former is still capable of providing 

adequate state estimates given a four-fold increase over nominal input disturbance 

accelerations.

It should be noted, as stated earlier, tha t the Sliding Mode Observer used in this 

research should be tested using different sliding surfaces. There is a great deal of 

flexibility in selecting a sliding surface, so it is likely that the sliding surface used in 

this research is not optimal. If the observers are tuned further by using the results of a 

2 -factorial study, and evaluated considering the both velocity and position estimation, 

as opposed to simply position, a better comparison of the Extended Kalman Filter 

and Sliding Mode Observer can be obtained.
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9.2 Future W ork

Recommendations for future work include

• investigating the processing requirements of each observer on this particular 

mission. Given the expense of processing power in space missions, competent 

estimation algorithms that are computationally efficient should be favored.

•  investigating the use of alternative sliding surfaces on the given Sliding Mode 

Observer. Other sliding surfaces may yield an observer that is favorable to the 

Extended Kalman Filter in terms of estimation competency and computational 

burden.

• simulating the linearized measurement model for the Constellation X mission. 

There is currently no formal stability proof for the Extended Kalman Filter, 

and as such these observers are often verified through Monte Carlo simulations. 

There is, however, a formal stability proof for the Sliding Mode Observer given 

a linearized measurement model for the Constellation X mission.

• eliminating the assumption tha t satellite attitude remains known and constant 

at identity throughout the simulation. This presents an opportunity to compare 

the Extended Kalman Filter with the Sliding Mode Observer for attitude deter

mination in formation flying missions about the Earth/Moon-Sun L 2  libration 

point.

•  the further tuning of both observers, also considering multiple sliding surfaces 

for the Sliding Mode Observer. Integral and proportional terms can further 

improve the performance of the Sliding Mode Observer. For each observer, 

a 2-factorial study would provide a more methodical tuning process. Evalu

ating the estimate of the entire state instead of simply the estimation of the
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satellites’ relative position will also lead to more exhaustive results. Imple

menting these procedures will lead to a more comprehensive comparison of the 

Extended Kalman Filter and Sliding Mode Observer for formation flying about 

the Earth/M oon - Sun L2  libration point.

• comparing other nonlinear observers, such as H-Infinity Observers or Fuzzy 

Logic Observers for the formation flying mission considered here. Such con

siderations would lead to a more comprehensive understanding of the relative 

strengths and weaknesses of different observers for L2  formation flying missions.
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APPENDIX A

CONSTELLATION X MODELS

Included here are the necessary MATLAB/SimuHnk models and m-files for the 
Constellation X model and measurement model, both common to  the EKF and SMO 
simulations. Certain M-files and Simulink models are not included due to NASA 
proprietary considerations.

A .l  S im u la tio n  M odels
Figure A -l represents the overall Constellation X simulation model. Figure A-2 per
tains the  VISNAV measurement model.
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APPENDIX B

EKF - DIAGRAMS & MATLAB FILES

Included here are the necessary MATLAB/Simulmk models and. m-files for the
Extended Kalman Filter, Certain M-files and Simulink models are not included due 
to  NASA proprietary considerations.

B . l  E x t e n d e d  K a l m a n  F i l t e r

Figure B -l represents the Extended Kalman Filter simulation model. Figures 
B-2 through B-7 refer to  the different levels (sub-blocks) of the simulation model. 
E K F jobserve 'r.m  is required to  define the covariance matrices Q and R.

E K F_observer.m : 

beac_err = 0.0005*pi/180;
q -  le - 7 * [.4825 .4825 .4825 ,4825 ,4825 .4825 ];
Q_EKF = d ia g (q );
E_EKF = (bsac„e rr* iQ 0Q )'’2*ey@ (12);
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Figure B-l: Main Block Diagram - Extended Kalman Filter
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Figure B-5: Kalman Gain Sub-block
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Figure B-6 : Measurement Jacobian Sub-block
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Figure B-7: System Jacobian Sub-block
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APPENDIX C

SMQ - DIAGRAMS & MATLAB PILES

Included here arc the necessary MATLAB/Simulink models and m-files for the 
Sliding Mode Observer. Certain M-files and Simulink models are not included due to 
NASA proprietary considerations.

C , 1  S l i d i n g  M o d e  O b s e r v e r

Figure G-l represents the Sliding Mode Observer simulation model The necessary 
sub-block: diagrams, are identical to Figures B-2, B-3, and B-4 SM O_observer.m  
is required to initialize simulation conditions and parameters for me simulation.
UnitVectorSubBIock SMO_observer.ni:

H ia- -5; Hlb= -10; Hlc= -25; Hid- -.05; H ie- -.1; H lf-  - .2 5 ;H3a= -5; H3b- -10; H3c= -25; H3d= -.05; H3e= -.1; H3f= - .2 5 ;
H5a= -5 ; H5b= -10; H5c= -25; H5d= - .0 5 ;  H5e- -.1; H5f- -.25;
H7a= -5 ; H7b= -10; H7c= -25; H7d= - .0 5 ;  H7e= -.1; H7f= - .2 5 ;

% H_SM0 matrix is in this' form:Hla 0 0 H3a 0 0 H5a 0 0 H7a 0 0

0 Hlb 0 0 H3b 0 0 H5b 0 0 H7b 0

0 0 Hie 0 0 H3c 0 0 H5c 0 0 H7c
Hid 0 0 H3d 0 0 H5d 0 0 H7d 0 0

0 Hie 0 0 H3e 0 0 H5e 0 0 H7e 0

0 0 Hlf 0 0 H3f 0  0 H5f 0 0 H7f

H_SM0= [1.l*Hla 0 0 l.l*H3a 0 0 l.l*H5a 0 0 i.i*H7a 0 0;
0 1 .l*Hlb 0 0 1 . l*H3b 0 0 1 . i*H5b 0 0 l.i*H7b 0;
0 0 1 .l*Hlc 0 0 l.l*H3c 0 0 l.l*H5c 0 0 l.l*H7c;
Hid 0 0 H3d 0 0 H5d 0 0 H7d 0 0;
0 Hie 0 0 H3e 0 0 HSe 0 0 H7e 0;
0 0 Hlf 0 0 H3f 0 0 H5f 0 0 H7f];

K.SHO- .8*[le-5; le-5; le-5; le-7; le-7; le-7];
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