
University of New Hampshire
University of New Hampshire Scholars' Repository

Master's Theses and Capstones Student Scholarship

Spring 2007

Simple authentication and security layer
incorporating extensible authentication protocol
Myung-Sun Kim
University of New Hampshire, Durham

Follow this and additional works at: https://scholars.unh.edu/thesis

This Thesis is brought to you for free and open access by the Student Scholarship at University of New Hampshire Scholars' Repository. It has been
accepted for inclusion in Master's Theses and Capstones by an authorized administrator of University of New Hampshire Scholars' Repository. For
more information, please contact nicole.hentz@unh.edu.

Recommended Citation
Kim, Myung-Sun, "Simple authentication and security layer incorporating extensible authentication protocol" (2007). Master's Theses
and Capstones. 270.
https://scholars.unh.edu/thesis/270

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by UNH Scholars' Repository

https://core.ac.uk/display/215515248?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://scholars.unh.edu?utm_source=scholars.unh.edu%2Fthesis%2F270&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholars.unh.edu/thesis?utm_source=scholars.unh.edu%2Fthesis%2F270&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholars.unh.edu/student?utm_source=scholars.unh.edu%2Fthesis%2F270&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholars.unh.edu/thesis?utm_source=scholars.unh.edu%2Fthesis%2F270&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholars.unh.edu/thesis/270?utm_source=scholars.unh.edu%2Fthesis%2F270&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:nicole.hentz@unh.edu

SIMPLE AUTHENTICATION AND SECURITY LAYER INCORPORATING

EXTENSIBLE AUTHENTICATION PROTOCOL

BY

MYUNG-SUN KIM

B.S., University of New Hampshire, 2005

B.A., University of New Hampshire, 2005

THESIS

Submitted to the University o f New Hampshire

in Partial Fulfillment of

the Requirements for the Degree of

Master of Science

In

Computer Science

May, 2007

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

UMI Number: 1443612

INFORMATION TO USERS

The quality of this reproduction is dependent upon the quality of the copy

submitted. Broken or indistinct print, colored or poor quality illustrations and

photographs, print bleed-through, substandard margins, and improper

alignment can adversely affect reproduction.

In the unlikely event that the author did not send a complete manuscript

and there are missing pages, these will be noted. Also, if unauthorized

copyright material had to be removed, a note will indicate the deletion.

®

UMI
UMI Microform 1443612

Copyright 2007 by ProQuest Information and Learning Company.

All rights reserved. This microform edition is protected against

unauthorized copying under Title 17, United States Code.

ProQuest Information and Learning Company
300 North Zeeb Road

P.O. Box 1346
Ann Arbor, Ml 48106-1346

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

This thesis has been examined and approved.

Thesis Director, Dr. Radim Bartos
Associate Professor o f Computer Science

Scott A. Valcourt
Research Project Manager o f Computer Science

Dr. Ted M. Sparr
Professor of Computer Science

W\ < ~ — 7 3 .
Date

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

DEDICATION

To my father, Young-Joo Kim

to my mother, Ae-Ja Kim

to my sister, Min-Sun Kim

to my brother-in-law, Jong-Seog Jung

to my nephew, Sae-Jun Jung

and to my wife, Sissy Kim.

iii

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

ACKNOWLEDGEMENT

I would like to express my appreciation to all those who made it possible for me

to finish my master thesis here at UNH.

I would like to thank my advisor, Dr. Radim Bartos, and my Research Project

Manager, Mr. Scott A. Valcourt for their support, time, and helpful feedback during my

master studies as well as my undergraduate studies. Their patience and their guidance

throughout my whole master thesis gave me a great experience here at UNH. I also wish

to thank my thesis committee, Dr. Ted M. Sparr, for his time and consideration.

Lastly, I would like to express my gratitude to the Meetinghouse Data

Communication, Inc. (now part o f Cisco Systems, Inc.) and the National Institute of

Justice; Datacasting Project for Project54™, for funding my graduate work.

iv

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

TABLE OF CONTENTS

DEDICATION.. iii

ACKNOWLEDGEMENTS...iv

LIST OF TABLES...vii

LIST OF FIGURES... viii

ABSTRACT...ix

1 INTRODUCTION...1

2 BACKGROUND...5

2.1 Terminology.. 5

2.2 Simple Authentication and Security Layer (SASL).. 7

2.3 Extensible Authentication Protocol (EAP)...9

2.4 EAP-Pre-Shared Key (EAP-PSK)... 12

2.5 EAP-Transport Layer Security-PSK (EAP-TLS-PSK)....................................12

2.6 Motivations and G oals...13

3 EXTENSIBLE AUTHENTICATION PROTOCOL - ADVANCED
ENCRYPTION STANDARD - PRE-SHARED KEY (EAP-AES-PSK) 15

3.1 Approach..16

3.2 EAP-AES-PSK Message Flows and Packet Format..18

3.3 Features o f EAP-AES-PSK...24

3.4 EAP-AES-PSK Supporting Aspects... 25

v

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

3.4.1 Fragmentation.. 25
3.4.2 Channel Binding..26
3.4.3 Fast Reconnection..26
3.4.4 Key Strength...27
3.4.5 Number o f Message Exchanges...28
3.4.6 Tunnel Support... 28

3.5 Protections against Security R isks...28

3.5.1 Dictionary Attack...29
3.5.2 Replay Attack... 30
3.5.3 Man-In-The-Middle (MITM) Attack... 30
3.5.4 Re-Keying...32
3.5.5 Data Encryption...32

4 VERIFICATIONS.. 33

4.1 Outcom es... 33

4.2 Evaluation.. 34

4.2.1 Verification o f Functionality o f a SASL Application
incorporating E A P ... 34

4.2.2 Performance Evaluation..40

5 CONCLUSION... 47

BIBLIOGRAPHY..49

APPENDICES............................. 51

APPENDIX A ABBREVIATION AND ACRONYM S.. 52

APPENDIX B EXPERIMENTS/USER GUIDES.. 53

B. 1 Cyrus Installation... 53
B.2 Cyrus usage of ANONYMOUS mechanism with file transfer.........................54
B.3 Cyrus Password Setup (using sasldb)...54
B.4 Add Mechanism Plugins... 55

vi

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

LIST OF TABLES

2-1 Terminology.. 5

3-1 Features of Pre- Shared Key M ethods... 24

4-1 Configuration o f EAP-AES-PSK...35

4-2 95% Confidence Level Authentication Time for each M ethod........................42

4-3 95% Confidence Level Completion Time in the Controlled Environment............... 46

4-4 95% Confidence Level Completion Time in the Un-Controlled Environment 46

vii

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

LIST OF FIGURES

1 -1 SASL Incorporating EAP Abstract Layer...4

2-1 SASL Abstract Layer...7

2-2 Authentication Protocols..9

2-3 (a) EAP Message Exchange without AAA, (b) EAP Message Exchange.................11

2-4 EAP Packet Form at... 12

3-1 Key Setup Algorithm in EAP-AES-PSK.. 17

3-2 Key Derive Algorithm in EAP-AES-PSK.. 17

3-3 EAP-AES-PSK Packet Format.. 19

3-4 EAP-AES-PSK Authentication Message Exchanges...20

3-5 Dictionary Attack...29

3-6 Man-In-The-Middle (MITM) Attack..31

4-1 Authentication Time for each M ethod..42

4-2 (a) Server Completion Time in the Controlled Environment,
(b) Client Completion Time in the Controlled Environment... 44

4-3 (a) Server Completion Time in the Un-Controlled Environment,
(b) Client Completion Time in the Un-Controlled Environment.................................. 45

viii

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

ABSTRACT

SIMPLE AUTHENTICATION AND SECURITY LAYER

INCORPORATING EXTENSIBLE AUTHENTICATION PROTOCOL

by

Myung-Sun Kim

University o f New Hampshire, May, 2007

There are many methods that support user authentication and access control,

important roles in the establishment of secure communication. Particularly, we examine

Simple Authentication and Security Layer (SASL) and Extensible Authentication

Protocol (EAP) and propose EAP-Advanced Encryption Standard-Pre-Shared-Key (EAP-

AES-PSK). SASL is an authentication framework in connection-oriented protocols. EAP

is an authentication framework providing multiple authentication methods. SASL is

vulnerable to the dictionary attack, replay attack, and Man-In-The-Middle attack as well

as the re-keying issue. We propose to incorporate EAP into SASL to enhance the security

of SASL and to provide a pathway for easy incorporation of future EAP enhancements

into SASL. Standalone EAP still faces some common attacks. We propose EAP-AES-

PSK, a new EAP method, to provide strong authentication and we implement this method

on the Cyrus SASL implementation: one of the publicly available SASL implementations.

This project is evaluated through the verification of functionality o f a SASL application

incorporating EAP. Further, we argue how the common security risks associated with

SASL are addressed, and we complete a performance evaluation of the new method

incorporated into SASL.

ix

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 1

INTRODUCTION

Authentication and access control of users are important functions in the

establishment of secure communication. Both senders and receivers should be able to

verify the identity the other party. However, successful authentication does not always

occur over insecure network connections. One o f the commonly used authentication

approaches is to authenticate via user identification (ID) and user password, or via host IP

address. These methods are subject to the risks o f insecure communication when an

intruder gains physical access of the communication medium between users and hosts,

such as what occurs in the dictionary attack, replay attack, and Man-In-The-Middle

(MITM) attack. Therefore, software developers must consider network security when

they design and develop network enabled software programs.

Simple Authentication and Secure Layer (SASL) [17] protocol provides a

straightforward solution for the software developer without a deep understanding of

network security. SASL provides an authentication framework in connection-oriented

protocols and a secure data transportation mechanism between a server and a client that is

detached from existing application protocols. The SASL framework allows either new

applications to reuse existing authentication protocol mechanisms or allows old

applications to use new authentication protocols without requiring any modifications of

1

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

the SASL library [17]. SASL has been incorporated into a few widely used protocols

such as the Lightweight Directory Access Protocol (LDAP), Post Office Protocol 3

(POP3), the Internet Message Access Protocol (IMAP), and Telnet to enable pluggable

authentication [23], Currently, there are two publicly available SASL libraries: the Cyrus

SASL library from Carnegie Mellon University and the GNU SASL library.

Even though SASL provides a standardized framework for an application

supporting multiple authentication methods, the SASL authentication methods are

vulnerable to many common attacks, such as dictionary attack, replay attack, and Man-

In-The-Middle (MITM) attack, in addition to insecure data transportation. Therefore, we

propose a method to protect against these attacks by integrating Extensible

Authentication Protocol (EAP) [2] into SASL.

EAP is an authentication framework providing multiple authentication methods.

Since EAP is not a specific authentication mechanism, the exact authentication type is

chosen by negotiating between a peer and an authenticator. EAP runs over data link

layers where the Internet Protocol (IP) is not required, e.g., Point-to-Point Protocol (PPP)

[21] or Institute o f Electrical and Electronics Engineers (IEEE) 802 standard protocols.

Currently, there exist over 40 different EAP methods [2] to provide strong authentication

services and secure data transmission.

This document outlines the benefits and the problems in standalone SASL,

followed by the advantages we will gain by combining EAP and SASL. Further, we

present details on how to integrate EAP into SASL, so that SASL incorporating EAP

addresses the existing weaknesses in SASL. This work builds upon a new EAP method,

EAP - Advanced Encryption Standard - Pre-Shared Key (EAP-AES-PSK) that is an

2

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

updated version of EAP - Transport Layer Security-Pre - Shared-Key (EAP-TLS-PSK)

[14].

Cyrus SASL implementation, randomly chosen for this project, incorporates

several types of plugins: mechanism plugins, user canonization plugins, and auxiliary

property plugins. Mechanism plugins are for authentication methods. User canonization

plugins are used to differ the ways o f canonizing authentication and authorization IDs.

Auxiliary property plugins enable auxiliary properties about user credentials to be

accessible, such as Authentication, Authorization and Accounting (AAA) services [18].

This project proposes to incorporate EAP into SASL to enhance security of SASL

and to provide a pathway for easy incorporation of future EAP enhancements into SASL

as well as to update and to implement EAP-AES-PSK. SASL incorporating EAP

typically works by placing the EAP interface into the SASL library. The EAP interface

not only bridges between the SASL library and existing SASL authentication methods,

but also links the SASL library and future EAP authentication methods.

Figure 1-1 illustrates the architecture of SASL incorporating EAP including

where the EAP interface is located in the SASL library directory and how the EAP

interface connects SASL with legacy and future authentication methods. A more detailed

explanation is presented in Chapter 2.

3

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Client Server

Application:
IMAP, SMTP, POP, or

LDAP

SASLDB, LDAP, or

Mechanism:
ANONYMOUS,
LOGIN, PLAIN,
DIGEST-MD5,

CRAM-MD5, or
EXTERNAL

New Mechanism
i.e. EAP-PSK

Application:
IMAP, SMTP, POP, or

LDAP

TCP connection

N etw o rk

SASL Abstraction SASL Abstraction

PluginsPlugins

SASLDB, LDAP, or

Mechanism:
ANONYMOUS,
LOGIN, PLAIN,
DIGEST-MD5,

CRAM-MD5, or
EXTERNAL

New Mechanism
i.e. EAP-PSK

Figure 1-1: SASL Incorporating EAP Abstract Layer

4

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 2

BACKGROUND

We present background details of Simple Authentication and Security Layer

(SASL), Extensible Authentication Protocol (EAP), EAP-Pre-Shared Key (EAP-PSK),

and EAP-Transport Layer Security-PSK (EAP-TLS-PSK).

2.1 Terminology

This document frequently uses the following terms:

Table 2-1: Terminology

AAA server The entity that provides Authentication, Authorization,
and Accounting services to an authenticator. In this
document, the terms "AAA server" and "authentication
server" are used interchangeably. The authentication
server is typically a Remote Authentication Dial-In User
Service (RADIUS) server.

Authentication Key (AK) A static long-lived key, derived from the Pre-Shared Key
(PSK), is to mutually authenticate the EAP peer and the
EAP server [2].

Authentication The process to verify the user identity in a
communication such as requiring to log in.

Client The end of the link that responds to the authenticator.
This end is known as the supplicant in [12] and the peer
in [2]. In this document, the terms "peer", "supplicant",
and “client” are used interchangeably.

5

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Table 2-1 Continued

Extended Master Session
Key (EMSK)

Additional keying material derived between the EAP
client and server that is exported by the EAP method. The
EMSK is at least 64 octets in length. The EMSK is not
shared with the authenticator or any other third party. The
EMSK is reserved for future uses that are not yet defined.

Key Derivation Key
(KDK)

A static long-lived key, derived from the Pre-Shared Key
(PSK), is to derive session keys [2].

Master Session Key
(MSK)

Master Keying material that is derived between the EAP
peer and server and exported by the EAP method. The
MSK is at least 64 octets in length. In existing
implementations, an AAA server acting as an EAP server
transports the MSK to the authenticator.

Nonce A number used once, such as a random number.

Pre-Shared Key (PSK) A key in symmetric cryptography that is installed/sent to
the opposite side of the connection in advance, or that is
distributed by third party.

Server The entity that terminates the EAP authentication method
with the peer. In the case where no backend
authentication server is used, the EAP server is part of
the authenticator. In the case where the authenticator
operates in pass-through mode, the EAP server is located
on the backend authentication server.

Successful Authentication In this document, "successful authentication" is involved
both authentication and authorization; even though the
peer may pass authentication to the server, the peer may
not have access to the server due to policy reasons [2],
For instance, the peer has a basic services right on a
server and the peer tries to access a premium services on
the server. The peer successfully authenticates to the
authenticator, but is not able to access to the server.

6

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

2.2 Simple Authentication and Security Layer (SASL)

SASL is a framework to incorporate authentication in connection-oriented

protocols and secure data transportation between a server and client that is detached from

application protocols.

The SASL framework allows either new applications to reuse existing

authentication protocol mechanisms, or allows old applications to use new authentication

protocols without requiring any modifications to the SASL library [17].

C lient Server

TCP connection

N etw ork

Plugins Plugins

DBs:
SA SL D B , LD A P, or

SQL

DBs:
SA SL D B , LD A P, or

SQL

SASL A bstraction SASL Abstraction

A pplication:
IM AP, SM TP, POP, or

LDAP

A pplication:
IM AP, SM TP, PO P, or

LDAP

M echanism :
A N O N Y M O U S,
LO G IN , PLAIN,
D IG E ST -M D 5,

C R A M -M D 5, or
EX TER NA L

M echanism :
A N O N Y M O U S,
LO G IN , PLAIN,
D I G E S T - M D 5 ,

C R A M -M D 5, or
EX T ER NA L

Figure 2-1: SASL Abstract Layer

7

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Figure 2-1 illustrates the SASL abstract layer. Both client and server sides in the

figure have three parts: an application, the SASL abstraction, and various plugins. The

application is generally some connection-oriented protocol, such as Internet Message

Access Protocol (IMAP), Simple Mail Transfer Protocol (SMTP), Post Office Protocol

(POP), or Lightweight Directory Access Protocol (LDAP). Plugins contain database

system and authentication protocol mechanisms. The SASL abstraction in the client and

the server communicate to authenticate and authorize the connection, while the SASL

abstraction monitors its application and plugins.

Both client and server sides in Figure 2-1 are symmetric; however, it is not

required. For example, in the client side, database system SASL is not necessary because

only the server side maintains user credential information within database systems. The

client does not need to have all of the authentication methods that the server has available

or vice-versa. When a client has only ANONYMOUS SASL method [24] that does not

require authentication for guest access, SASL works fine if a server provides the

ANONYMOUS SASL method with other authentication methods. However, if the server

does not support the ANONYMOUS SASL method, the server will not authenticate the

client. In order to access a server, a client must have one of the authentication methods

supported by the server.

GNU and Cyrus SASL libraries support the applications: LDAP, IMAP, SMTP,

and POP, and provide several authentication methods such as ANONYMOUS (for

unauthenticated guest access), PLAIN (a simple clear text password mechanism), LOGIN

(a simple password mechanism), CRAM-MD5 (a simple challenge-response scheme

8

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

based on HMAC-MD5 [7]), and EXTERNAL (for where authentication is implicit in the

context).

Although SASL has many advantages, standalone SASL is vulnerable to many

common attacks and insecure data transportation, in addition to re-keying issues, because

many existing SASL mechanisms are vulnerable to these attacks and do not provide

secure data encryption. Many of these attacks are addressed further in this chapter.

2.3 Extensible Authentication Protocol (EAP)

EAP was originally developed for the extensible usage o f authentication protocols

defined in Point-to-Point Protocol (PPP) [21], such as Password Authentication Protocol

(PAP) [RFC 1334] and Challenge Handshake Authentication Protocol (CHAP) [22].

Figure 2-2 describes authentication protocols hierarchy [4],

Password Authentication Protocol
(PAP)

MD5 - Challenge

Authentication Protocols
Challenge-Handshake

Authentication Protocol (CHAP)

Extensible Authentication Protocol
(EAP)

Generic Token Card (GTC)

One Time Password (OTP)

Figure 2-2: Authentication Protocols

9

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

EAP is an authentication framework providing multiple authentication methods.

Since EAP is not a specific authentication mechanism, the exact authentication type is

chosen by negotiation between a peer and an authenticator. EAP provides its own support

for avoiding duplication and retransmission, but not fragmentation. However, standalone

EAP is not secure enough to authenticate and has various vulnerabilities [2],

Since all traffic within EAP methods is exposed to attackers, user identities are

visible. EAP is vulnerable to replaying packets, dictionary attack, disrupting negotiation,

as well as other vulnerabilities described in [2]. Even though standalone EAP methods

are not acceptable over wireless networks or Virtual Private Networks (VPNs) due to

those attacks, EAP is widely used in wired networks and Point-to-Point connections

because EAP is an authentication framework, not a specific authentication mechanism.

EAP provides a negotiation of the desired authentication mechanism [9]. A stronger

authentication mechanism protects against the collection of vulnerable attacks while

standalone EAP does not.

Figure 2-3 demonstrates an EAP message exchange. In EAP message exchanges,

an EAP server requests user identity information from an EAP client and the client

responds with the requested information back to the server. After the server obtains user

identity information, more messages will be exchanged depending on the authentication

process. The EAP server finally sends a message indicating whether the user

authentication succeeds or fails.

In Figure 2-3 (b) including Authentication, Authorization, and Accounting (AAA),

the authentication server provides AAA services designed for ease in tracking usage for

billing and network statistics purposes. Authentication server clients transfer user

10

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

credentials to the authentication server and the authentication server authenticates the

user based on the provided credentials. The authentication server can be viewed as a kind

of database and controller for usage billing and for network traffic management.

However, this project mainly focuses on SASL and EAP, not on AAA services that the

authentication server provides. Figure 2-3 (a) illustrates the EAP message exchange

without AAA.

Client Server

EAP-Request/Identity

EAP-Response/Identity

Multiple Message Sequences Depending
on the Authentication Process

EAP-Success or Failure

Peer

(a)

Authenticator Authentication Server
(AAA)

EAP-Request/Identity

EAP-Response/Identity

Multiple Message Sequences
Depending on the Authentication

Process

EAP-Success or Failure

Other Systems for Authentication
such as RADIUS

(b)

Figure 2-3: (a) EAP Message Exchange without AAA,
(b) EAP Message Exchange

11

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Figure 2-4 describes an EAP packet format.

Type /1 byte

1 = Identification
2 = Notification
3 = NAK
4 = M D5-Challenge
5 = OPT
6 = Generic Token Card

D ata /1 0 1 5 bytes

Identifier /1 byte

Total Length o f Packet /
2 bytes

1 = Request
2 = Response
3 = Success
4 = Failure

Code /1 byte

Figure 2-4: EAP Packet Format [2]

2.4 Extensible Authentication Protocol - Pre-Shared Key (EAP-PSK)

A Pre-Shared Key EAP method (EAP-PSK) is one of the EAP methods that use

PSK for mutual authentication and session key derivation. While EAP is a framework to

authenticate, EAP-PSK is an actual authentication mechanism that utilizes PSK upon the

EAP framework. EAP-PSK normally exchanges four messages in the authentication

process between a client and a server. Once the authentication is successful, EAP-PSK

provides a protected communication channel [5],

2.5 Extensible Authentication Protocol - Transport Layer Security -
Pre-Shared Key (EAP-TLS-PSK)

EAP-TLS-PSK [14] is a new authentication method, EAP-PSK with TLS [6]

tunneling support, as an EAP protocol that extends EAP-PSK, one o f the authentication

protocols based on pre-shared keys. EAP-TLS-PSK uses secure tunnel establishment by

12

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

TLS handshake to exchange authentication-related information between a client and a

server, while EAP-PSK simply uses pre-shared keys to mutually authenticate.

Authentication not based on certificates allows a reduced cost of management with fewer

message exchanges between client and server.

EAP-TLS-PSK [14] consists o f two primary phases: Transport Layer Security

(TLS) Handshake Phase and TLS Tunnel Phase. The TLS Handshake Phase is similar to

the EAP-TLS [8] handshake Phase. Rather than using the EAP server to generate a

required certificate, the process uses the EAP-PSK scheme to authenticate mutually and

to establish the secure protected channel necessary for further connectivity.

In the TLS Tunnel Phase, further authentication takes place in the initially-

established secure tunnel from the TLS Handshake Phase. EAP-PSK with tunneling

employs the EAP-Type Length Value (EAP-TLV) method [11], allowing richer

communication between client and server, to further authenticate EAP identity. At the

conclusion of the TLS Tunnel Phase, MSK is derived using the TLS Pseudo Random

Function (PRF) [8] from inner authentications that are mixed with the inner secret Key-

Derivation Key (KDK) [5] from the TLS Handshake Phase and the TLS client and server

random numbers to protect subsequent data.

2.6 Motivations and Goals

This project merges two technologies, SASL and EAP, to make the network more

secure and introduces EAP-AES-PSK to provide strong authentication that is a new EAP

method and will be built on SASL.

13

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

SASL provides key security services to a number of application protocols such as

e-mail protocols, so that software engineers can have a handy security tool. Software

developers focus on only their application level, not communication security issues.

Currently publicly available SASL libraries are the Cyrus SASL library by Carnegie

Mellon University and the GNU SASL library. Both SASL libraries are used in IMAP,

LDAP, POP, and SMTP to provide secure authentication.

EAP is widely being deployed in environments such as wireless networks and

used over the Internet to support multiple authentication methods, such as token cards,

one-time passwords, Kerberos (a network authentication protocol using secret-key

cryptography) [13], and certificates. EAP-AES-PSK, described in Chapter 3, is a new

strong authentication method that will be built on the SASL implementation.

SASL incorporating EAP typically works by locating the EAP interface in SASL

plugins. The EAP interface not only bridges between the SASL library and existing

SASL authentication methods, but also links the SASL library and future EAP

authentication methods, still allowing future authentication methods to use existing SASL

mechanisms if necessary.

We recall that Figure 1-1 illustrates the architecture o f SASL incorporating EAP

including where the EAP interface is located in the SASL library directory and how the

EAP interface connects SASL with legacy and future EAP authentication methods. This

project proposes to incorporate EAP into SASL to enhance security of SASL and to

provide a pathway for easy incorporation of future EAP enhancements into SASL.

In next chapter we propose an updated EAP-TLS-PSK which is called EAP -

Advanced Encryption Standard - Pre-Shared-Key (EAP-AES-PSK).

14

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 3

EXTENSIBLE AUTHENTICATION
PROTOCOL - ADVANCED ENCRYPTION

STANDARD - PRE-SHARED KEY
(EAP-AES-PSK)

We propose a new EAP method: EAP - Advanced Encryption Standard - Pre-

Shared Key (EAP-AES-PSK) that is modified from EAP - Transport Layer Security -

PSK (EAP-TLS-PSK) for two primary reasons: to reduce the number of message

exchanges between the authenticator and the peer, and to ease the implementation and

management of Simple Authentication and Security Layer (SASL) while maintaining the

same security level that EAP-TLS-PSK provides.

TLS is a cryptographic protocol that provides many security algorithms. A peer

negotiates for an algorithm that TLS supports. However, TLS specifies that no data must

be sent when TLS initiates. Therefore, if we want to continue to use TLS, we must

modify the TLS implementation to be able to carry data in the initialization. We decided

not to use TLS in order to ease the implementation and management, and the AES used

in EAP-AES-PSK is one of the symmetric ciphers that TLS provides. As a benefit, there

is no notoriously known attack in AES.

15

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

At first glance, it may appear that EAP-AES-PSK is the same as EAP-PSK. EAP-

AES-PSK is similar to EAP-PSK, but is not the same. EAP-AES-PSK intends to

authenticate twice (in Phase 1 and Phase 2) to allow the use of password-based legacy

EAP methods in Phase 2 of EAP-AES-PSK, as well as to provide more security. At the

end of each phase, the end points generate an outer Master Session Key (MSK) and an

inner MSK. From the outer and inner MSKs, EAP-AES-PSK derives a MSK to protect

subsequent data. EAP-AES-PSK supports fragmentation and reassembly.

This chapter explains the details of EAP-AES-PSK and discusses the possible

attacks and insecure data exchanges in the currently available Simple Authentication and

Security Layer (SASL) mechanisms, which lead to the motivation for the study of this

area.

3.1 Approach

EAP-AES-PSK, similar to other current EAP outer methods, consists of two

primary phases. Phase 1 is similar to the EAP-PSK method. Rather than using the EAP

server to generate a required certificate, the process uses the EAP-PSK scheme to

authenticate mutually, generating a Transient EAP Key (TEK), to establish the secure

protected channel necessary for further connectivity. At the beginning o f Phase 1, a

server and a client derive the Authentication Key (AK) and the Key Derivation Key

(KDK) from PSK [5] such as following pseudo code in Figure 3-1. Note that actual

implementation should be more efficient since this pseudo code is to provide

straightforward explanation.

16

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

k e y s e t u p (p s k , ...) {
c o u t n e r = 0
s e t a k [1 6] w i t h Os
s e t k d k [16] w i t h Os
a e s 1 2 8 (p s k , a k , ...)
a e s 128 (p s k , k dk , ...)
a k A= c o u n t e r + +
kdk A= c o u n t e r
a e s 128 (p s k , a k , ...)
a e s 128 (p s k , k dk , ...)

}

Figure 3-1: Key Setup Algorithm in EAP-AES-PSK [5]

Both AK and KDK are 16 bytes. AK is used to mutually authenticate the EAP

peer and the EAP server and KDK is used to derive other necessary keys. At the end of

Phase 1, the outer master session key (MSK) derived from the KDK, peer nonce, and

more such as ou t e r MSK = k e y _ d e r i v e (KDK, RAND_P, ...) in Figure 3-2. The

outer MSK will be used as one of these inputs for deriving MSK after a successful

authentication is made.

All MSKs o f EAP-AES-PSK must be derived in the algorithm in Figure 3-2.

k e y d e r i v e (kd k , r a n d p , ..) {
h a s h [16]
c o u n t e r = 1
a e s 1 2 8 (kdk , r a n d p , h a s h , ...)
h a s h A= c o u n t e r
a e s 128 (kdk , h a s h , ...)
h a s h A= c o u n t e r + +
f o r i = 0 t o 3

h a s h A= c o u n t e r
a e s 1 2 8 (kd k , h a s h , m s k [i * 1 6] ,
h a s h A= c o u n t e r + +

}

Figure 3-2: Key Derive Algorithm in EAP-AES-PSK [5]

17

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Phase 2 performs further authentication in the initially-established AES secure

tunnel from Phase 1. Unlike EAP-TLS-PSK, EAP-AES-PSK does not employ the EAP-

TLV method to further authenticate EAP identity. At the conclusion of Phase 2, inner

MSK is derived from KDK, peer secret (i.e., password), and more such i nne rMSK =

k e y _ d e r i v e (KDK, p a s s w o r d , ...). After successful authentication is made,

MSK is derived from KDK, the concatenation of the first 8 bytes o f outer and inner

MSKs, and more such as MSK = k e y _ d e r i v e (KDK, o u t e r M S K [0 . . 7] | |

i nne rMSK [0 . . 7] , ...). MSK is to protect subsequent data. For more secure

communication, MSK is needed to update in timely manner. For instance, every round

trip both the server and the client renew the MSK to protect subsequent data.

3.2 EAP-AES-PSK Message Flows and Packet Format

The typical packet format of the EAP-AES-PSK messages would have the

appearance as is described in Figure 3-3. The first byte of the EAP-AES-PSK packet

indicates Request, Response, Success, or Failure. The second byte indicates message

identifier for each round trip between a server and a peer. After each round trip, the

identifier should be updated to the next available identifier from 0 to 255. The next two

bytes contain the total length of the EAP-AES-PSK packet. The next byte is for the EAP

type field. EAP-AES-PSK should set this value to 255 as this is an experimental EAP

method. The next byte is for flags. The subsequent bytes are for data. Thus, EAP-AES-

PSK needs at least 6 bytes for the header.

18

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Code /1 byte

1 = Request
2 = Response
3 = Success
4 = Failure

Total Length of Packet /
2 bytes

Identifier /1 byte

Type /1 byte

EAP-AES-PSK

11}I f

Data /1014 bytes

Flags /1 byte

M = More fragment
R = Reserved
R = Reserved
R = Reserved
R = Reserved
R = Reserved
V = Major Version = 1
V = Minor Version = 0

Figure 3-3: EAP-AES-PSK Packet Format

EAP-AES-PSK, as described in Section 3.1, may consist o f two primary phases of

message flows. EAP-AES-PSK standard authentication is comprised of four messages,

i.e., two round trips; see Figure 3-4. EAP-AES-PSK assumes that the pre-shared key

(PSK) is already known only to the EAP peer and EAP sever and that the distribution of

the PSK is outside of the scope of the EAP-AES-PSK mechanism. Note that ‘||’ within

Figure 3-4 means concatenation.

19

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

C lient

F \P - R e i | i i e s t . P S k l (1 lags| R A M) S| II) S |
.

i A P -R espon se PSK2 (M ags |R A M) S | i \ l At P | l l) P)

FAP-H ei|ues l. PSK 3 (Flags| R A M) S |P t H A N M t l . S)

F A P-R esp ou se PSK 4 (H ags| R A M) S PC I I A N M ’.L P)

Ph
as

e
2

F A I '-R eq u es t C. IX (prom pt user ill & passw ord)

FAP-K csponse. t i I t ' (user ill & passw ord)
►

F A P -S u ccess or Failure
■M

K A P -S u eee sso r Failure

Figure 3-4: EAP-AES-PSK Authentication Message Exchanges

In the EAP-AES-PSK method, the first message sent by the server to the peer

contains:

• An EAP-Request with EAP-Type=EAP-AES-PSK;

. Flags : MRRRRRVV;

20

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

- M = More fragments
- R = Reserved (must be zero)
- R = Reserved (must be zero)
- R = Reserved (must be zero)
- R = Reserved (must be zero)
- R = Reserved (must be zero)
- V = 1 (major version)
- V = 0 (minor version)

• The stated server identity (ID_S); and

• A server 16-byte random challenge (RAND_S).

The second message is sent by the peer to the server containing:

• An EAP-Response with EAP-Type=EAP-AES-PSK;

• Flags: MRRRRRVV (major version = 1);

• A notice that it will authenticate to the server by proving that it is able to

compute a particular Message Authentication Code (MAC_P), which is

a function of the two challenges and AK:

MAC_P = CMAC-AES-128(AK, I D _ P | | I D _ S | | R A N D _ S | |

RAND_P) ;

• A peer 16-byte random challenge (RAND P); and

• The stated peer identity (ID_P).

Like EAP-PSK [5], Authentication Key (AK) is used to mutually authenticate the

EAP peer and the EAP server. AK is a static long-lived key derived from the PSK.

Elowever, AK is not a session key.

The third message is sent by the server to the peer containing:

• An EAP-Request packet with EAP-Type=EAP-AES-PSK;

• Flags: MRRRRRVV (major version = 1);

21

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

• A notice that it will authenticate to the peer by proving that it is able to

compute another MAC (MAC_S), which is a function of the peer’s

challenge and AK: MAC_S = CMAC-AES-128 (AK, ID_S | |

RAND_P) ; and

• An established protected channel (PCHANNEL_S) to:

- Confirm that it has derived session keys (at least the TEK); and

- Give a protected result indication of the authentication.

PCHANNEL_S is an encrypted message by AES encryption with TEK that

contains information about Phase 1 authentication result. If the client is able to decrypt

PCHANNEL_S, the server verifies the client’s identity since TEK is derived directly

from PSK and never transported over the Internet.

The fourth message is sent by the peer to the server containing:

• An EAP-Response packet with EAP-Type=EAP-AES-PSK;

• Flags: MRRRRRVV (major version = 1); and

• A notice that the establishment of the protected channel

(PCHANNEL P) is complete to:

- Confirm that it has derived session keys (at least the TEK); and

- Give a protected result indication of the authentication.

PCHANNEL_P is an encrypted message by AES encryption with TEK that

contains information about Phase 1 authentication result. If the server is able to decrypt

PCHANNEL_P, the client verifies the server’s identity since TEK is derived directly

from PSK and never transported over the Internet.

22

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

The internal method (in Phase 2) can be any other EAP method, such as EAP-

GTC, and will allow for devices to establish safe authentication using the EAP-AES-PSK

method. For instance, the internal method is encrypted by AES 128 encryption.

Figure 3-4 shows messages 5 through 8 are engaged in the exchange of user

credentials using EAP-Generic Token Card (EAP-GTC) [2] exchanges. EAP-GTC has a

data field in the Request includes a displayable message and a length of the packet of

EAP-GTC is determined by adding message length to EAP-GTC header length. A

Response must reply to the Request. We assume message 5 through 6 contain typical

EAP header in Figure 3-3 with an EAP-Response packet with EAP-Type=EAP-AES-

PSK.

The fifth message is sent by the server to the peer containing:

• An EAP-Request packet with EAP-Type=EAP-GTC; and

• A displayable message that prompts user id and password.

The sixth message is sent by the peer to the server containing:

• An EAP-Response packet with EAP-Type=EAP-GTC; and

• A response to the Request.

Both the seventh and eighth messages are sent by the server to the peer

containing:

• An EAP-Success or Failure with no data.

Even though the seventh and eighth messages are exactly the same packets, we

still need to send the eighth message to satisfy the definition of successful authentication.

Successful authentication is defined in this document as involving both authentication

23

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

and authorization; even though the peer may pass authentication to the server, the peer

may not access the server due to policy reasons. Thus, we need to send the eighth

message although the message is a repeat of the previous seventh message. For instance,

a peer has a basic service right on a server and the peer tries to access a premium service

on the server. The peer probably passes the authentication, but not the authorization. In

the case, the server sends EAP-Success within seventh message and EAP-Failure within

eighth message.

While the EAP-AES-PSK method appears to offer 8 message exchanges at the

minimum, both the outer and inner EAP methods are established using PSK and AES.

This speedier method is expected to minimize message exchange latency that is found in

other methods, while maximizing the feature set of this method.

3.3 Features of EAP-AES-PSK

Table 3-1 summarizes the features that EAP-TLS-PSK and EAP-AES-PSK

provides. Both EAP methods propose tunneling support within EAP-PSK. The last

column shows that EAP-AES-PSK brings fewer message exchanges between the client

and server as compared to the EAP-TLS-PSK method. Details o f the features are shown

in Section 3.4.

Table 3-1: Features of Pre-Shared Key Methods

EAP-TLS-PSK [14] EAP-AES-PSK (proposed)

Fragm entation /
Reassembly

Yes
By use of TLV Flags ‘More

Fragment’ bit

Yes
EAP-AES-PSK flags contain

‘More Fragment’ bit

Channel Binding Yes
Inherited from EAP-PSK

Yes
Inherited from EAP-PSK

24

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Table 3-1 Continued

Fast Reconnection Yes Yes

Key Strength 128 bit 128 bit
Inherited from EAP-PSK Inherited from EAP-PSK

Minimum # of 11 8
Messages Exchanges Phase 1 (4) + Phase 2 (7) Phase 1 (4) + Phase 2 (4)

Tunnel Support Yes Yes
TLS tunnel AES tunnel

Difficulty of
Implementation

Harder than EAP-AES-PSK Easier than EAP-TLS-PSK

3.4 EAP-AES-PSK Supporting Aspects

This section explains details o f EAP-AES-PSK supporting aspects such as

fragmentation, channel binding, fast reconnection, key strength, number of message

exchanges, and tunnel support.

3.4.1 Fragmentation

The ideal EAP method supports fragmentation and reassembly. As RFC3748

states, EAP methods should support fragmentation and reassembly if EAP packets can

exceed the minimum Maximum Transmission Unit (MTU) of 1020 bytes [2],

Fragmentation in EAP-TLS-PSK can be done through the use o f flags within the TLV in

Phase 2 only.

EAP-AES-PSK has its own 1 byte flags field such as MRRRRRVV in Figure 3-3.

If the M bit is 1 in the received EAP packet, there will be more data. If following the size

o f the data is larger than the minimum MTU, M in the flags is set to 1. However

25

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

fragmentation and reassembly may be needed only in Phase 2 o f EAP-AES-PSK. Since

Phase 1 of EAP-AES-PSK is defined to support fragmentation and reassembly in its

definition, MTU sizes of EAP-AES-PSK packets will not exceed 1020 bytes when

normally transmitted in a network.

3.4.2 Channel Binding

The verification within an EAP method of integrity-protected channel properties

is the process o f channel binding. For instance, endpoint identifiers within an EAP

method can be compared to stored values (in AAA service systems).

EAP-AES-PSK uses an EAX mode o f operation, an authenticated-encryption with

associated data mode of operation for block ciphers, to provide channel binding as stated

in Section 2.2.3 o f EAP-PSK [5]. We explained earlier how EAP-AES-PSK achieves

channel binding in Section 3.2.

3.4.3 Fast Reconnection

The ability to create a new or refreshed security association, in the case where a

security association has been previously established, in a more efficient manner or in a

smaller number of round-trips is the goal of fast reconnection. Fast reconnection is

optional in EAP-AES-PSK since, by having fast reconnection, EAP-AES-PSK saves one

message round trip.

The server and peer must minimally cache the server and peer nonces, but not

master secret, in order to have fast reconnection within EAP-AES-PSK. The master

secret will be regenerated from the pre-shared key, server and peer nonce, and AES

ciphersuite. The peer attempts to resume a session by sending an encrypted message

26

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

along with peer nonce from a previous session. The message should be encrypted using

Transient EAP Key (TEK) derived from the pre-shared key and the AES ciphersuite. If

the server has a matched peer nonce and is able to decrypt the message, the server will

respond by sending an encrypted message to inform the peer o f the server’s successful

verification of the peer. Then, EAP-AES-PSK Authentication Phase 1 establishes a

secure tunnel and the conversation continues on to Phase 2. An example of fast

reconnection message exchanges is shown in Section 4.2 that presents verification of

EAP-AES-PSK functionality.

3.4.4 Key Strength

Following RFC3748 directives, if the method derives keys, then the effective key

strength must be estimated. This estimate is meant for potential users o f the method to

determine if the keys produced are strong enough for the intended application. Since the

keys within EAP-AES-PSK are derived by AES 128 ciphersuite like the EAP-PSK

method, EAP-AES-PSK has the same key strength as EAP-PSK, which is 128 bit.

However, the key strength of EAP-AES-PSK can be upgraded to 196 or 256 bit by

replacing AES algorithm function. No one can be able to tell how long any cryptographic

algorithm including the AES algorithm will last secure regardless key strength. As

following National Institute o f Standards and Technology (NIST) [1], AES algorithm

-JO C*7

approximately has 3.4 x 10 possible 128-bit keys, 6.2 x 10 possible 192-bit keys, and

1.1 x 1077 possible 256-bit keys.

27

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

3.4.5 Number of Message Exchanges

This indicates the number o f message exchanges between a client and a server.

EAP-AES-PSK has 8 message exchanges required in a normal configuration, while EAP-

TLS-PSK needs 11 message exchanges to establish a proper secure connection. Both

EAP-AES-PSK and EAP-TLS-PSK need 4 message exchanges in Phase 1, but EAP-

AES-PSK requires only 4 message exchanges in Phase 2 while EAP-TLS-PSK requires 7

message exchanges. Since EAP-AES-PSK does not require using Type Length Value

(TLV) for crypto-binding in Phase 2, EAP-AES-PSK has 3 less message exchanges than

EAP-TLS-PSK has.

3.4.6 Tunnel Support

Unlike EAP-TLS-PSK, EAP-AES-PSK uses Advanced Encryption Standard

(AES) [1] instead o f Transport Layer Security (TLS). AES published by the NIST, is

known to provide strong encryption and authentication. EAP-AES-PSK supports strong

encryption to prevent eavesdropping and mutual authentication and to guarantee that user

credentials are transmitted over legitimate networks. In the EAP-AES-PSK method, the

fifth to the seventh exchanged messages are protected by AES encryption tunnel support.

Section 3.2 explains how this works and Section 4.2 illustrates an example of actual

messages in communication.

3.5 Protections Against Security Risks

Typical attacks on Simple Authentication and Security Layer (SASL)

mechanisms include the dictionary attack, replay attack, and Man-In-The-Middle

(MITM) attack as well as re-keying issues. Extensible Authentication Protocols (EAP)

28

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

such as EAP-AES-PSK in SASL provides greater protection against the protections

against those previously listed attacks based on the designs o f both SASL and EAP and

their combined usage.

3.5.1 Dictionary Attack

A dictionary attack is a technique used to get around an authentication mechanism

for accessing a computer system by guessing typical passwords. In many cases, the

credential exchanges are open to attacks, such as dictionary attacks, on a password. This

attack could occur in SASL mechanisms that authenticate users by user ID and password.

For instance, in Figure 3-5, the intruder guesses on Bob’s password that matches with

Bob’s ID to gain access to Alice’s system.

/ K flc flS flsssffR S S R S a l a iS fA

Alice

Network

Gutessing passwords

Intruder

Figure 3-5: Dictionary Attack

EAP methods in SASL create a secured Advanced Encryption Standard (AES)

tunnel between the client and the authentication server first. Some legacy SASL

mechanisms, such as password based-authentication methods, could be used to

29

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

authenticate a client. Since user credential data transmission is performed only within a

protected tunnel, SASL incorporating EAP methods is safe from the dictionary attack.

3.5.2 Replay Attack

Attackers could obtain a message from a legitimate user with accesses into a

network and replay that message later. This attack is called the replay attack. Replay

attack causes unauthorized authentication or denial of service (DoS) [19].

The authentication process in EAP-AES-PSK is based not only on Pre-Shared key

(PSK), but also on nonces such as server and client random numbers. EAP-AES-PSK

server and clients exchange their nonces by including within the first and second

messages o f EAP-AES-PSK. Thus, the intruder will not gain successful authentication

even if the intruder captures a message and resends to the server during the authentication

process. The current server nonce will be not same as the server nonce from the last

authentication process. Therefore, SASL incorporating EAP methods are safe from the

replay attack.

3.5.3 Man-In-The-Middle (MITM) Attack

Some mechanisms in SASL define authentication as a one-way action, such as a

simple clear text password mechanism, PLAIN, although Generic Security Services

Application Program Interface (GSSAPI [16]) [18], an application programming interface

for programs to obtain security services [10], provide mutual authentication that uses

Kerberos V. For example, when a client logs onto a network, only the server requires the

client authentication. Because of one-way authentication, an attacker who resides

between a client and a server can participate in the login exchange without the knowledge

30

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

of the client or the server (see Figure 3-6). This attack is known as the Man-In-The-

Middle [3] attack.

I

MITM

Figure 3-6: Man-In-The-Middle (MITM) Attack

Typically MITM attack happens when mutual authentication is not performed.

However, SASL incorporating EAP methods do mutual authentication between a client

and a server. For instance, EAP-AES-PSK authenticates mutually via sending and

receiving message 3 and 4 that contain PCHANNEL_S and PCHANNEL_P, encrypted

messages by Advance Encryption Standard (AES) encryption. If the client is able to

decrypt PCHANNEL_S message from the server, the server achieves verifying the

client’s identity because TEK, a key to encrypt or decrypt a message, is derived directly

from PSK and never transported over the Internet. If the server is able to decrypt

PCHANNEL P, the client achieves verifying the client’s identity. Thus, SASL

incorporating EAP methods could protect against MITM attacks.

Network
Client

31

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

3.5.4 Re-keying

The SASL framework does not provide re-keying services. Thus, cryptographic

keys age and become insecure as they are used and as time goes by [9]. EAP generates

keying materials, such as Master Session Key (MSK) and Extended Master Session Key

(EMSK), during the authentication process. MSK, which is at least 64 octets in length, is

a keying material that is derived between the client and the server and carried by the EAP

method. The EMSK is extended from MSK and is reserved for future uses that are not yet

defined [2]. Secure EAP methods such as EAP-AES-PSK renew MSK in time manner.

For instance, EAP-AES-PSK updates keys every round trip between a server and a peer.

If SASL uses EAP keying services, future re-keying services o f EAP will be

automatically extended into the SASL mechanism and allow SASL incorporating EAP

methods to support stronger cryptographic keys.

3.5.5 Data Encryption

Existing SASL, as defined, does not strongly encrypt messages in a

communication between a client and a server. Standalone SASL only provides a 64 bit

encryption scheme. Thus, attackers could easily sniff messages in the communication by

using network protocol analyzers.

EAP in SASL solves the data encryption issue. Data in EAP-AES-PSK is

encrypted by AES 128 ciphersuite or higher. EAP generates MSK after a successful

authentication thus the M SK is used in AES 128 ciphersuite to encrypt data. Therefore,

SASL incorporating EAP provides secure data transfer.

32

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 4

VERIFICATIONS

Currently, there are two publicly available Simple Authentication and Secure

Layer (SASL) libraries available: Cyrus SASL library from Carnegie Mellon University

and the GNU SASL library. In this project, Cyrus SASL library was selected randomly

and used as part o f the implementation as well as Hostapd and Wi-Fi Protected Access

(WPA) supplicant [15] for SASL and EAP frames respectively. In Chapter 3 we proposed

a new Extensible Authentication Protocol (EAP) method, EAP - Advanced Encryption

Standard - Pre-Shared Key (EAP-AES-PSK). EAP-AES-PSK is successfully built on the

SASL library and used for simple file transfer. This chapter details the project outcomes

and evaluates the result.

4.1 Outcomes

This project proposes to incorporate EAP into SASL to enhance the security of

SASL and to provide a pathway for the easy incorporation of future EAP enhancements

into SASL. The practical details on how to merge EAP into a SASL application source

code library is stated in Appendix B, including documentation about SASL incorporating

EAP such as implementation of SASL incorporating EAP: EAP interface,

implementation of SASL incorporating EAP-PSK, implementation o f SASL

33

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

incorporating EAP-AES-PSK, SASL Application: basic file transfer application requiring

authentication, and a general SASL installation user guide, and a basic file transfer SASL

application user guide.

4.2 Evaluation

Evaluation o f this project contains three parts: verification of functionality of a

SASL application incorporating EAP, arguments to show how common security risks are

addressed, and a performance evaluation. In Section 3.5, we already argue that SASL

incorporating EAP will reduce or prevent the considerable security risks such as the

dictionary attack, replay attack, and Man-In-The-Middle (MITM) attack as well as re

keying issues.

4.2.1 Verification of Functionality of a SASL Application incorporating EAP

The outcomes specified in Section 4.1 above are performed for functionalities and

secure data encryption by using network protocol analyzers. The network protocol

analyzer examined transmissions to verify that the messages in the communication are

secure. For instance, captured messages between a client and a server in a SASL

application was compared with a result that we expect what the captured messages should

be.

The configuration of EAP-AES-PSK must be preplanned before we use EAP-

AES-PSK. Table 4-1 is a configuration example o f EAP-AES-PSK. Both a server and a

client must set the Pre-Shared Key and ID respectively to be “thisistemporarykey” and

“EAP-AES-PSK_server/ EAP-AES-PSK_client.” The client needs to provide a user ID

34

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

and a user password for Phase 2 that will be used in the inner method, i.e., “userl” and

“passl.”

Table 4-1: Configuration of EAP-AES-PSK

Server Client

Pre-Shared Key Thisistemporarykey

ID EAP-AES-PSK_server EAP-AES-PSK_client

User ID for Phase2 N/A userl

User Password for Phase2 N/A passl

The following boxed messages in octet form were captured during a SASL

incorporating EAP-AES-PSK communicated. Each line starts with a 7 digit line number

in octet form followed by 16 bytes, such as ‘od - x ’ format, in UNIX-like machine

format. Note that ‘||’ means concatenation and ‘n ’ (in ‘[n]’) represents a number of

byte(s), i.e., [3] means 3 bytes.

When EAP-AES-PSK is initialized, both the server and the client derive

Authentication Key (AK) and Key Derivation Key (KDK) from the MSK above.

AK [16]:

00 00 00 0 e b 6 9 f 5e C 5 9d c l c d 8 2 f l l c d 36 6 f 2 9 3 f d 3

KDK [16]:

00 00 0 00 0 3 c 4 b 3 4 0 c e 8 e l 3780 9 f 5 8 f 8 b e b b a c 8d04

35

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

First message (server -> client):

(EAP-Request [1] || identifier [1] || Total Length [2] || EAP-AES-PSK [1] || flags [1]

RAND S [16] || ID S [18]):

0000000 0101 0028 f f 02 2da5 f 99e f c l 8 162b 2 a d d

0000020 5534 7ba5 f 88d 4541 5 02 d 4145 5 32 d 5053

0000040 4 b 5 f 7365 7276 6572

EAP-Request, EAP-Response, EAP-Success, and EAP-Failure are defined to

values 1, 2, 3, and 4, respectively.

Second message (client -> server):

(EAP-Response [1] || identifier [1] || Total Length [2] || EAP-AES-PSK [1] || flags [1]

RAND S [16] || RAND P [16] || MAC_P [16] || ID_P [18]):

0000000 0201 0048 f f 02 2 da 5 f 99e f c l 8 162b 2 a d d

0000020 5534 7ba5 f 88d l a 4 c b 3 3 d 8 f 83 5 4 0 d l e 9 6

0000040 077b e e 3 a 2 d f a aObe d f f e e543 821a c d d d

0000060 c a 9 c 0c52 5a34 4541 502d 4145 5 3 2 d 5053

0000080 4 b 5 f 63 6c 6965 6e7 4

Third message (server client):

(EAP-Request [1] || identifier [1] || Total Length [2] || EAP-AES-PSK [1] || flags [1]

RAND S [16] || MAC S [16] || PCHANNEL S):

36

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

0 000000 0102 003b f f 02 2 da 5 f 99e f c l 8 162b 2 a d d

0000020 5534 7ba5 f 88d 3306 7 a 2 c 5 2 f e 7 2 d f 33d0

0000040 e 80 9 d 8 3 d e 8 d a 0000 0000 c 7 3 d 0 4dc c807

0000060 I f 9c 6e59 0e60 9 c dc 1 3 a e e d

Fourth message (client server):

(EAP-Request [1] || identifier [1] || Total Length [2] || EAP-AES-PSK [1] || flags [1]

RAND S [16] || PCHANNEL P):

0 000000 0202 002b f f 02 2 da 5 f 99e f c l 8 162b 2 a d d

0000020 5534 7ba5 f 88d 0000 0001 4d59 d 5 c l 0362

0 000040 0817 7c68 c053 4a 2 b e472 bb

Fifth message (server client):

(EAP-Request [1] || identifier [1] || Total Length [2] || EAP-AES-PSK [1] || flags [1]

nonce [4] || tag [16] || EAP-Request [1] || identifier [1] || Length [2] || EAP-GTC [1]

“UserID? Password?”):

0 000000 0103 0032 f f 02 0000 0000 2 a 4 f e c 4 a eb7 3

0 000020 7123 e a f 3 9073 7 01e 0 4 a e 6 cb e c 0a4 4 8 f e

0000040 c 8 a 3 8 a 2 c 64d2 bb4 0 9 c b a d e b 8 a 680 7583

0000060 c8 6b

Nonce and tag are needed to establish the AES tunnel. Nonce should be 16 bytes.

The first 12 bytes are set to be zeros and only the last 4 bytes are to be defined. Thus,

37

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

from the second EAP-Request of the fifth message is where the inner EAP method starts

encryption.

Sixth message (client server):

(EAP-Response [1] || identifier [1] || Total Length [2] || EAP-AES-PSK [1] || flags [1] ||

nonce [4] || tag [16] || EAP-Response [1] || identifier [1] || Length [2] || EAP-GTC [1] ||

“userl/passl”):

0000000 0203 002b f f 02 0000 0001 0a07 c l c c 67 f b

0 000020 b 4 7 c 0 00a 3c45 e 500 b 20 0 3 93e 8 2 c d 2cd7

0 000040 2 d b a 41d7 cdlO 7327 b82 6 75

Seventh message (server -> client):

(EAP-Response [1] || identifier [1] || Total Length [2] || EAP-AES-PSK [1] || flags [1]):

0000000 0304 0006 f f 0 2

EAP-AES-PSK needs 8 message exchanges. However EAP-AES-PSK within the

SASL framework does not require the eighth message, which is exactly the same as the

seventh message. We may send the seventh message again for the last message, but it

wastes time and is unnecessary because the SASL framework is required to send

“S A S L O K ”, indicating successful authentication is made, and that can replace the

eighth m essage o f EAP-AES-PSK in the EAP framework.

After successful authentication in SASL incorporating EAP (using EAP-AES-

PSK), the Master Session Key (MSK) is derived to protect subsequent data from

manipulating the outer and inner MSKs using KDK.

38

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Outer MSK [64]:

0 000000 33d8 4480 e 8 d a 64 4 f eO 90 7 8c6 0 a 5 d 97c6

0 000020 534 f b 7a 7 d8 99 6 a f d 62c8 5 9 3 d 7 6e0 3635

0 000040 8896 8 f I f 9 d aa b4 63 6dbc 7 f f 0 f 3 68 2d52

0 000060 c d d b e ! 4 6 5 9 f e e 8 4 d f e d d 3 f e d 15e4 6d4d

Inner MSK [64]:

0 000000 0440 e f 7 6 6652 9b2 9 42a8 cbdO 4946 5891

0000020 8722 f 10 9 0 2 e f 5062 0b60 8859 4 a d e 4 6c5

0000040 2bdb 02a0 a 8 7 a d2 4 2 e 6d8 3421 0c82 b 4 3 a

0000060 4 d e f 7612 a 6 b d 0850 d e e 2 2 4 a d b27D f b 3 2

MSK [64]:

0 000000 c a 9 9 f Oec 8 a l 3 c908 a f f 9 6 8 f 5 2 4cb 9 e b l

0000020 4 40c d 4 0 a 77b0 3373 c f Oe 2 2 dd 8353 5 3 0 c

0000040 7e92 9611 3543 8 8 f 8 f 90b 2077 9193 0e7 7

0 000060 5 f 87 6561 c c d l 481b ed58 c a e 5 e 9 a l d 3 1 c

The following two extra messages are from fast reconnection, described in

Section 3.4, after the successful authentication above. Both the server and the client saved

their nonces.

First message in fast reconnection (client server):

(EAP-Request [1] || identifier [1] || Total Length [2] || EAP-AES-PSK [1] || flags [1] ||

RAND P [16] || PCHANNEL P):

39

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

0 000000 0107 002b f f 02 l a 4 c b 3 3 d 8 f 83 54 Od l e 9 6

0 000020 077b e e 3 a 2 d f a 0000 0000 c7 3d 0 4dc c807

0 000040 I f 9c 6e59 0e60 9 c d c 1 3 a e e d

Second message in fast reconnection (server -> client):

(EAP-Request [1] || identifier [1] || Total Length [2] || EAP-AES-PSK [1] || flags [1]

RAND S [16] || PCHANNEL S):

0 000000 0207 002b f f 02 2da5 f 99e f c l 8 162b 2 a d d

0 000020 5534 7 ba5 f 88d 0000 0001 4d59 d 5 c l 0362

0000040 0817 7c68 c 053 4 a 2b e 472 bb

If the server and the client are able to decrypt the message that is encrypted by

each other, then EAP-AES-PSK Authentication Phase 1 establishes a secure tunnel and

the conversation continues on to Phase 2. Otherwise, both the server and the client start

normal authentication.

4.2.2 Performance Evaluation

Authentication Time Test (Access Time Test):

The authentication time test was executed on the SASL only-application (i.e.,

ANONYMOUS), SASL using EAP-PSK method, and SASL EAP-AES-PSK. Figure 4-1

and Table 4-2 show the amount o f time needed to perform authentication in

ANONYMOUS, EAP-PSK, and EAP-AES-PSK. Note that all performance tests were

executed on machines with 500 MHz CPU/256 MB memory and 700 MHz CPU/256 MB

memory for the server side and the client side respectively.

40

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

The server is always running and waiting for a client connection. Thus, server

authentication time is measured from the time a new client connects to the time the client

disconnects. Client authentication time is measured from the time the client initializes to

the time the client ends.

The authentication time for the each method are measured in both the controlled

environment and the un-controlled environment. Figure 4-1 and Table 4-2 shows both the

results from both the controlled experiment and the uncontrolled experiment. The

controlled environment is a test setup such as using two machines and a router in home

network (or private network). In the controlled environment, the messages are never

transported over Internet or public network. Thus, we can minimize the chance of un

wanted variants affect on the authentication time. Internet is one o f the un-controlled

environments where we cannot have all controls to maximize and to accurate test results.

The test in the un-controlled environment was executed on one machine (a server), is at

University of New Hampshire (UNH) and another machine (a client), is in Epsom, NH

where is about 27 miles away from UNH over Internet.

41

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

500 --

*//////,
S / / / / / / s
' / / / / / / ,'//////,'//////,
' / / / / / / ,

7777777.
/ / / / / / / .///////.
/ / / / / / / .///////.

' / / / / / / /
' / / / / / / / '/////// '/////// 5 '/////// A

ANONYMOUS EAP-PSK EAP-AES-PSK

Authentication Method

□ Server in the Controlled Experiment E2 Client in the Controlled Experiment
□ Server in the Un-Controlled Experiment B C lien t in the Un-Controlled Experiment

Figure 4-1: Authentication Time for Each Method

Table 4-2: 95% Confidence Level Authentication Time for each Method

Authentication Time [ms]
\Method

ANONYMOUS EAP-PSK EAP-AES-PSK

Controlled
Experiments

Server 88.5±0.5 101±0.5 113±0.7
Client 27.7±0.4 38.1±0.4 40.4±0.4

Un-Controlled
Experiments

Server 290±6 450±27 467±16
Client 227±3 386±26 395±8

The authentication time in EAP-PSK and EAP-AES-PSK took longer compared

to the time in ANONYMOUS because ANONYMOUS only needs 2 message exchanges

while EAP-PSK and EAP-AES-PSK requires 4 and 7 message exchanges along with

AES encryption.

AES Encryption Time Test:

We need to know how much AES encryption time affects on the performance of

SASL incorporating EAP-AES-PSK. EAP-AES-PSK, the new proposed EAP method,

uses AES encryption to protect data communications after successful authentication.

42

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Figure 4-2 & Table 4-3 and Figure 4-3 & Table 4-4 show the completion time

examined on SASL application incorporating EAP-AES-PSK in the controlled

environment and the un-controlled environment respectively. The SASL application

transfers different sizes of plain text and AES encrypted text files, such as 1 KB, 10 KB,

100 KB and 1000 KB. The text of RFC2800, the one o f IETF standards, was randomly

selected as a data file for the test and the file was truncated to satisfy the required file

sizes; 1 KB, 10 KB, 100 KB and 1000 KB. This completion time tests measured the time

from the authentication to the file transfer, which is the sum of the access time and the

transfer time.

Both (a) and (b) in Figure 4-2 and 4-3 have 800 elements, such as 2

(encrypted/plain text) x 4 (1, 10, 100, and 1000 KB) x 100 (trials). Since the completion

time is similar, whether the file is encrypted or not in each different size, we see 4~5

major horizontal lines. As file size increases, Both Figure 4-2 & Table 4-3 (from the

controlled experiments) and Figure 4-3 & Table 4-4 (from the un-controlled experiments)

show that AES encryption time does not increase much. As following Schneier’s AES

performance test [21], the test exposes that AES algorithm performs efficiently even in

large data, i.e., larger than 1 MB. AES algorithm can be coded in assembly for better

performance in where needs to run fast [21]. Thus, SASL file transferring application

incorporating EAP-AES-PSK takes an almost comparable amount o f time to transfer files

from one system to the other as compared to the time to transfer plain text files.

43

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

4 ', 1

i-.E P l a i n Text
i ' - E " l a m Text

1' -E P l a i n Tex t

Trial
loooEEi P l a i n Tex t 1—B—1 I*

1K8 AES E n c rx -~ e :i Tex t '—■ —1 I 1
It*® AES E n c ry p te d Text '—*—1

-.3 hE’5 E n c r y p t e d Te r
-S hES E n c r y p t e d T es t

(a)

' " “................ ~X*
r« ■<«•*«*■■■■■•■•■

4 m; u

i*E P l a i n Text >-
1' • E P l a i n T e x t 1 -

1* 1. r : P l a i n '

T r i a l

1 0 0 0 KB P l a i n T e x t 1 T3—1 i r n > ® hE'x E n c r y p t e d T e x t
1.KB HE’x T h r I ' . i ’ >x| T e x t 1— ■ —<1 T‘a :iX,:Ei hE'x E n c r y p t e d T»xt

l"KE1 t i F \ ! n i a • - i F . - . t i 0 <

(b)

Figure 4-2: (a) Server Completion Time in the Controlled Environment,
(b) Client Completion Time in the Controlled Environment

44

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

T r i a I

P l a i n T e x t
P l a i n Tex t
P l a i n T e x t

1000KB P l a i n Te:
1KB AES E n c ru n te d Te:

1"KB RES Encrurte-:! Te:

(a)

lx.1•:B hE'S E n c ry p t eel Text
•:8 RES E n c r y p t e d Text

rF

40

T r i a l

- l a m Text
■ la m Te-t
11.1111 r.-.i

1000KB Pl=
1KB R E S E n r r i . ' r *

11 ' KB t i l T m i - i . p ‘

(b)

100

■'•S hE'I. E n c r y p t e-d

f ' S HE';- E n c r u p t K r i

Figure 4-3: (a) Server Completion Time in the Un-Controlled Environment,
(b) Client Completion Time in the Un-Controlled Environment

45

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Table 4-3: 95% Confidence Level Completion Time in the Controlled Environment

Completion Time [ms]
YFile size [KB]

1 10 100 1000

Server Plain Text 119±0.8 121±0.7 138±0.8 301±1.3
AES Encrypted Text 119±0.7 122±0.8 160±0.9 576±0.9

Client Plain Text 45.9±0.5 47.9±0.4 63.7±0.5 227±0.8
AES Encrypted Text 46.2±0.5 49.2±0.5 86.5±0.6 501±1.0

Table 4-4: 95% Confidence Level Completion Time in the Un-Controlled Environment

Completion Time [ms]
Wile size [KB]

1 10 100 1000

Server Plain Text 456±5 540±5 2586±62 22692±172
AES Encrypted Text 456±9 577±15 2835±74 23363±240

Client Plain Text 402±5 484±5 2560±72 22556±165
AES Encrypted Text 402±7 521±15 2646±64 22806±161

46

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 5

CONCLUSION

Authentication and access control of users are key functions to establish secure

communication. However, successful authentication does not always occur over insecure

network connections. Weak authentication methods are subject to the risks o f insecure

communication such as dictionary attack, replay attack, and Man-In-The-Middle (MITM)

attack.

In this thesis, we demonstrated the incorporation o f Extensible Authentication

Protocol (EAP) into Simple Authentication and Security Layer (SASL) to enhance the

security of SASL and to provide a pathway for easy incorporation of future EAP

enhancements into SASL in addition to the establishment of secure communication.

Moreover, we proposed a new EAP method, EAP-Advanced Encryption Standard-Pre-

Shared Key (EAP-AES-PSK) to provide strong authentication and implemented it on the

Cyrus SASL library that is one o f the publicly available SASL implementations.

The evaluation of this thesis on the functionality of a SASL application

incorporating EAP, the arguments to show how common security risks are addressed, and

the performance evaluation shows that SASL incorporating EAP provides stronger

security services. The performance test results demonstrated that AES encryption does

47

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

not require much more time, and as a result it, this new EAP method, EAP-AES-PSK,

can be used in transferring a large sized fde.

For the future, EAP-AES-PSK needs a more efficient way to re-authenticate since

current re-authentication schemes reduce only 1 round trip. And interoperability with

other EAP methods that use other encryptions is an additional concern that warrants

further study.

48

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

BIBLIOGRAPHY

[1] “ADVANCED ENCRYPTION STANDARD (AES)”, Federal Information
Processing Standards (FIPS) Publication 197, November 26, 2001,
http://csrc.nist.gov/publications/fips/fipsl97/fips-197.pdf

[2] Aboba, B., Blunk, L., Vollbrecht, J., Carlson, J., and Levkowetz, H., "Extensible
Authentication Protocol (EAP),” RFC 3748, June 2004.

[3] Asokan, N., Niemi, V., and K. Nyberg, "Man-in-the-Middle in Tunneled
Authentication,” http://www.saunalahti.fi/~asokan/research/mitm.html, Nokia
Research Center, Finland, October 24, 2002.

[4] Authentication Protocols. Retrieved November 23, 2006,
http ://■www. comptechdoc. org / independent/networking/protocol
/protauthen.html

[5] Bersani F., Tschofenig H., “The EAP-PSK Protocol: A Pre-Shared Key Extensible
Authentication Protocol (EAP) method,” RFC 4764, January 2006.

[6] Blake-Wilson, S., Nystrom, M., Hopwood, D., Mikkelsen, J., and T. Wright,
"Transport Layer Security (TLS) Extensions,” RFC 3546, June 2003.

[7] Cheng, P., and Glenn, R., “Test Cases for HMAC-MD5 and HMAC-SHA-1,” RFC
2202, Retrieved November 15, 2006, http://tools.ietf.org/html/rfc2202

[8] Dierks, T. and C. Allen, "The TLS Protocol Version 1.0,” RFC 2246, November 1998.

[9] Extensible Authentication Protocol. (2006, November 14). In Wikipedia, The Free
Encyclopedia. Retrieved November 15, 2006, http://en.wikipedia.Org/w/
index.php?title=Extensible_Authentication_Protocol&oldid=87776933

[10] Generic Security Services Application Program Interface. (2006, October 31). In
Wikipedia, The Free Encyclopedia. Retrieved November 21, 2006,
http://en.wikipedia.org/w/index.php?title=Generic_Security_Services_Applicatio
n_Program_Interface&oldid=84773404

[11] Hiller, T., Palekar, A., and Zorn, G., “A Container Type for the Extensible
Authentication Protocol (EAP),” Retrieved November 06, 2006,
http://bgp.potaroo.net/ietf/all-ids/draft-hiller-eap-tlv-00.txt

49

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

http://csrc.nist.gov/publications/fips/fipsl97/fips-197.pdf
http://www.saunalahti.fi/~asokan/research/mitm.html
http://tools.ietf.org/html/rfc2202
http://en.wikipedia.Org/w/
http://en.wikipedia.org/w/index.php?title=Generic_Security_Services_Applicatio
http://bgp.potaroo.net/ietf/all-ids/draft-hiller-eap-tlv-00.txt

[12] IEEE Standards for Local and Metropolitan Area Networks: Port-Based Network
Access Control, IEEE Std 802.1X-2004, 13 December 2004.

[13] Kerberos: The Network Authentication Protocol (2006, November 18). Retrieved
November 23, 2006, http://web.mit.edU/kerberos/#what_is

[14] Kim, M., Valcourt, S., and Bartos, R., “Selecting a Standard Outer Method for
EAP,” Technical Report 06-01, University of New Hampshire, May 12, 2006.

[15] Malinen, J., “Host AP driver for Intersil Prism2/2.5/3, hostapd, and WPA
Supplicant,” Retrieved May 20, 2006, http://hostap.epitest.fi/

[16] Melnikov, A., “The Kerberos V5 (“GSSAPI”) SASL mechanism,” Retrieved
November 15, 2006, http://www.ietf.org/intemet-drafts/draft-ietf-sasl-gssapi-
08.txt

[17] Melnikov, A. and Zeilenga, K., “Simple Authentication and Security Layer
(SASL),” RFC 4422, June 2006.

[18] Project Cyrus, Carnegie Mellon University, Retrieved November 23, 2006,
http://cyrusimap.web.cmu.edu/

[19] Replay attack, (n.d.). Computer Desktop Encyclopedia. Retrieved November 02,
2006, http://www.answers.com/topic/man-in-the-middle-attack

[20] Schneier, B. and Whiting, D., “A Performance Comparison of the Five AES
Finalists,” Third AES Candidate Conference, 2000.

[21] Simpson, W. Ed., “The Point-to-Point Protocol (PPP),” RFC 1661 July 1994.

[22] Simpson, W., “PPP Challenge Handshake Authentication Protocol (CHAP),” RFC
1994, August 1996.

[23] “The Java SASL API Programming and Deployment Guide,” Sun Microsystems,
2004, http://java.sun.eom/j2se/l.5.0/docs/guide/seeurity/sasl/sasl-refguide.html

[24] Zeilenga, K., “Anonymous Simple Authentication and Security Layer (SASL)
Mechanism,” RFC 4505, June 2006.

50

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

http://web.mit.edU/kerberos/%23what_is
http://hostap.epitest.fi/
http://www.ietf.org/intemet-drafts/draft-ietf-sasl-gssapi-
http://cyrusimap.web.cmu.edu/
http://www.answers.com/topic/man-in-the-middle-attack
http://java.sun.eom/j2se/l.5.0/docs/guide/seeurity/sasl/sasl-refguide.html

APPENDICES

51

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

APPENDIX A

ABBREVIATIONS AND ACRONYMS

AAA Authentication, Authorization, and Accounting [RFC 3127]
AES Advanced Encryption Standard [FIPS 197]
AK Authentication Key
CHAP Challenge Handshake Authentication Protocol [RFC 1994]
DoS Denial of Service
EAP Extensible Authentication Protocol [RFC 3748]
EAP-GTC EAP-Generic Token Card [RFC 3748]
EAP-PSK EAP-Pre-Shared Key [RFC 4764]
EAP-TLS EAP-Transport Layer Security [RFC 2716]
EAP-TLS-PSK EAP- Transport Layer Security-Pre-Shared Key
EM SK Extended Master Session Key
GSSAPI Generic Security Services Application Program

GSS-API) [RFC 1508]
Interface (also

IEEE Institute of Electrical and Electronics Engineers
IMAP Internet Message Access Protocol
IP Internet Protocol
KDK Key-Derivation Key
LDAP Lightweight Directory Access Protocol
MAC Message Authentication Code, same as MIC
MIC Message Integrity Check, same as MAC

Authentication Code)
(also Message

M ITM Man-In-The-Middle attack
MSK Master Session Key
PAP Password Authentication Protocol
POP Post Office Protocol
PPP Point-to-Point Protocol
PRF Pseudo Random Function
PSK Pre-Shared Key
SASL Simple Authentication and Secure Layer [RFC 4422]
SMTP Simple Mail Transfer Protocol
SQL Structured Query Language
TEK Transient EAP Key
TLS Transport Layer Security [RFC 4346]
TLV T ype-Length-V alue
VPN Virtual Private Network
WPA Wi-Fi Protected Access

52

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

APPENDIX B

EXPERIMENTS/USER GUIDES

This document is written to help users to install and to use CYRUS (SASL

library) in the simplest way as well as to incorporate Extensible Authentication Protocol

(EAP) into SASL. CYRUS could be integrated with DB such as SASLdb (gdbm,

Sleepycat, ndbm), SQL (mySQL and PostgreSQL v7.2 or higher) to enable

userlD/password.

B.l Cyrus Installation

* Note that some of the following steps require users to be a root.
** If you want to have SASL file transfer application incorporating EAP, do all 10

steps. Otherwise, do only first seven steps.

Step 1 download cyrus-sasl-2.1.22
Step 2 untar cyrus-sasl-2.1.22
Step 3 cd (directory it was untarred into) i.e., cyrus-sasl-2.1.22
Step 4 . / c o n f i g u r e
Step 5 make
Step 6 make i n s t a l l
Step 7 I n - s / u s r / l o c a l / l i b / s a s l 2 / u s r / l i b / s a s l 2
Step 8 untar cyrus-sasl-2.1.22-eap.tar
Step 9 replace all files i n c l u d e / , l i b / , p l u g i n s / , a n d s a m p l e /

d i r e c t o r y with files in c y r u s - s a s l - 2 . 1 . 2 2 - e a p / directory
Step 10 re-compile

53

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

B.2 Cyrus usage of ANONYMOUS mechanism with file transfer

** Server side
Step 1 open terminal
Step 2 c d c y r u s - s a s l - 2 . 1 . 2 2 / s a m p l e
Step 3 . / s e r v e r
Now a server waits for client connection.

** Client side
Step 1 open terminal
Step 2 c d c y r u s - s a s l - 2 . 1 . 2 2 / s a m p l e
Step 3 . / c l i e n t -m ANONYMOUS h o s t _ a d d r e s s
Step 4 enter user account i.e., "mkim" (from m k i m g l o c a l h o s t)
Step 5 enter file name

After client transfers a file, it will terminate the program.

In order to use other authentication methods such as CRAM-MD5 and DIGEST-MD5,
type . / c l i e n t -m method__name h o s t _ a d d r e s s .

B.3 Cyrus Password Setup (using sasldb)

Password setup using SASLDB v.2
Step 1 / u s r / s b i n / s a s l p a s s w d 2 u s e r l D
Step 2 e n t e r u s e r p a s s w o r d
User ID and password will be saved on / e t c / s a s l d b 2
The script, / u s r / s b i n / s a s l d b l i s t u s e r s 2 , displays all users in the
SASLDB.

Password setup using SASLDB v .l
Step 1 /usr/sbin/saslpasswd userlD
Step 2 e n t e r u s e r p a s s w o r d
User ID and password will be saved on / e t c / s a s l d b
The script, / u s r / s b i n / s a s l d b l i s t u s e r s , displays all users in the SASLDB.

54

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

B.4 Add Mechanism Plugins

The following example explains how to add EAP-PSK. If you want to add other

methods, replace EAP-PSK with the method name.

Step 1 Implement the following functions in p l u g i n s / directory:

Step 1.1 Both client/server sides: add plugin__id
i.e., static const char plugin_id [] = "$Id: eappsk.c, v

1 . 1 1 yyyy/mm/dd hh:mm:ss mel Exp $"

Step 1.2 Server sides

Step 1.2.1 initialize server mechanism - mechName_server_mech_new
i.e., static int eappsk_server_mech_new (

void *glob_context attribute ((unused)),
sasl_server_params_t *sparams,
const char *challenge attribute ((unused)),
unsigned challen attribute ((unused)),
void **conn_context);

Step 1.2.2 process server mechanism - mechName_server__mech_step
i.e., static int eappsk_server_mech_step (

void *conn_context attribute ((unused)),
sasl_server_params_t *params,
const char *clientin,
unsigned clientinlen,
const char **serverout,
unsigned *serveroutlen,
sasl_out_params_t *oparams);

Step 1.2.3 fill up server mechanism plugins information - mechName_server
plugins

i.e., static sasl_server_plug_t eappsk_server_plugins [] =
{

{
"EAPPSK", /* mech_name */
0, / * max s s f */
SASL_SEC_NOANONYMOUS, /* security^flags */
SASL_FEAT_WANT_CLIENT_FIRST
I SASL_FEAT_ALLOWS_PROXY, /* features */
NULL, /* glob_context */
&eappsk_server_mech_new, /* mech_new */
&eappsk_server_mech_step, /* mech step */

55

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

NULL, /* mech dispose */
NULL, /* mech free */
NULL, /* setpass */
NULL, /* user query */
NULL, /* idle */
NULL, /* mech avail */
NULL /* spare */
}

};

Step 1.2.4 initialize server mechanism plugin - m e c h N a m e _ s e r v e r _
p l u g _ _ i n i t

i.e., i n t e a p p s k _ s e r v e r _ p l u g _ i n i t (
c o n s t s a s l _ u t i l s _ t * u t i l s ,
i n t m a x v e r s i o n ,
i n t * o u t _ v e r s i o n ,
s a s l _ s e r v e r _ p l u g _ t * * p l u g l i s t ,
i n t * p l u g c o u n t) ;

Step 1.2.5 de-initialize server mechanism - mechName_se r v e r _ m e c h
_ d i s p o s e

Step 1.2.6 other functions: m e c h N a m e _ s e r v e r _ m e c h _ f r e e ,
m e c h N a m e _ s e r v e r _ m e c h _ a v a i l

Step 1.3 Client side

Step 1.3.1 initialize client mechanism - m e c h N a m e _ c l i e n t _ m e c h _ n e w
i.e., s t a t i c i n t e a p p s k _ c l i e n t _ m e c h _ n e w (

v o i d * g l o b _ c o n t e x t a t t r i b u t e ((u n u s e d)) ,
s a s l _ c l i e n t _ p a r a m s _ t * p a r a m s ,
v o i d * * c o n n _ c o n t e x t) ;

Step 1.3.2 process client mechanism - mechName_server_mech_step
i.e., s t a t i c i n t e a p p s k _ c l i e n t _ m e c h _ s t e p (

v o i d * c o n n _ c o n t e x t ,
s a s l _ c l i e n t _ p a r a m s _ t * p a r a m s ,
c o n s t c h a r * s e r v e r i n a t t r i b u t e ((u n u s e d)) ,
u n s i g n e d s e r v e r i n l e n a t t r i b u t e ((u n u s e d)) ,
s a s l _ i n t e r a c t _ t * * p r o m p t _ n e e d ,
c o n s t c h a r * * c l i e n t o u t ,
u n s i g n e d * c l i e n t o u t l e n ,
s a s l _ o u t _ p a r a m s _ t * o p a r a m s) ;

Step 1.3.3 fill up client mechanism plugins information - m e c h N a m e _ c l i e t n
p l u g i n s

56

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

i.e., static sasl_client_plug_t eappsk_client_plugins []
{

{
"EAPPSK", /* mech_name */
0, /* max_ssf */
SASL_SEC_NOANONYMOUS, /* security_flags */
SASL_FEAT_WANT_CLIENT_FIRST
I SASL_FEAT_ALLOWS_PROXY,/* features */
NULL, /* required_prompts
NULL, /* glob_context */
&eappsk_client_mech_new, /* mech_new */
&eappsk_client_mech_step, /* mech_step */
&eappsk_client_mech_dispose, /* mech_dispose *
NULL, /* mech_free */
NULL, /* idle */
NULL, /* spare */
NULL /* spare */
}

};

Step 1.3.4 initialize client mechanism plugin - mechName_client_plug_
init

i.e., int eappsk_client_plug_init (sasl_utils_t *utils,
int maxversion,
int *out_version,
sasl_client_plug_t **pluglist,
int *plugcount);

Step 1.3.5 de-initialize client mechanism - mechName_client_mech_
dispose

Step 1.3.6 other function: mechName_client_mech_f ree

Step 2 Call the following functions in application codes

Step 2.1 Server side

Step 2.1.1 go to the line s a s l _ s e r v e r _ i n i t () is called

Step 2.1.2 call the fuction s a s l _ s e r v e r _ a d d _ p l u g i n ()

i.e., s a s l _ s e r v e r _ a d d _ p l u g i n ("EAPPSK" ,
S e a p p s k s e r v e r p l u g i n i t) ;

Step 2.1.3 include the new mechanism
i.e., # i n c l u d e " . . / p l u g i n s / e a p p s k . c "

57

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Step 2.2 Client side: Software engineers must call the following functions in
application codes where locates in the directory s a m p l e /

Step 2.2.1 go to the line s a s l _ c l i e n t _ i n i t () is called

Step 2.2.2 call the fuction sasl_client_add_plugin()

i.e., s a s l _ _ c l i e n t _ a d d _ p l u g i n ("EAPPSK",
& e a p p s k _ c l i e n t _ p l u g _ i n i t) ;

Step 2.2.3 include the new mechanism
i.e., # i n c l u d e " . . / p l u g i n s / e a p p s k . c "

Step 3 Modify the file configure in Cyrus directory

Step 3.1 search " - - e n a b l e - p l a i n "

Step 3.2 add the following code segment before the line you found
EAPPSK

C he c k w h e t h e r - - e n a b l e - e a p p s k o r - - d i s a b l e - e a p p s k
was g i v e n .
i f t e s t " $ { e n a b l e _ e a p p s k + s e t }" = s e t ; t h e n

e n a b l e v a l = " $ e n a b l e _ e a p p s k "
e a p p s k = $ e n a b l e v a l

e l s e
e a p p s k = y e s

f i ;

EAPPAK_LIBS=""
i f t e s t " $ e a p p s k " != n o ; t h e n

i f t e s t " $ c m u _ h a v e _ c r y p t " = y e s ; t h e n
EAPPSK_LIBS=$LIB_CRYPT

f i
f i

e c h o " $ a s _ m e : $LINENO: c h e c k i n g EAPPSK" >&5
e c h o $ECHO_N " c h e c k i n g E AP P SK . . . $ECHO_C" >&6

i f t e s t " $ e a p p s k " != n o ; t h e n
e c h o " $ a s _ m e : $LINENO: r e s u l t : e n a b l e d " >&5

e c h o " $ { ECHO_T}e n a b l e d " >&6
SASL_MECHS="$SASL_MECHS l i b e a p p s k . l a "
i f t e s t " $ e n a b l e _ s t a t i c " = y e s ; t h e n

SASL_STATIC_OBJS="$SASL_STATIC_OBJS e a p - p s k . o "

58

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Step 4

Step 5

Step 6

SASL_STATIC_SRCS="$SASL_STATIC_SRCS . . / p l u g i n s / e a p
p s k . c "

c a t > > c o n f d e f s . h <<_ACEOF
d e f i n e STATIC_EAPPSK
_ACEOF

f i
e l s e

e c h o " $ a s _ m e : $LINENO: r e s u l t : d i s a b l e d " >&5
e c h o " $ {ECHO_T}d i s a b l e d " >&6

f i
#

Add new mechanisms on the file, M a k e f i l e . am, in the directory
p l u g i n s /

Make sure that you re-compile for all the changes

Make sure that the directory / u s r / l i b / s a s l 2 / contains the new
mechanism library
i.e., l o c a t e l i b e a p p s k . l a

l o c a t e l i b e a p p s k . s o

59

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

	University of New Hampshire
	University of New Hampshire Scholars' Repository
	Spring 2007

	Simple authentication and security layer incorporating extensible authentication protocol
	Myung-Sun Kim
	Recommended Citation

	tmp.1520441287.pdf.Rf_IC

