University of New Hampshire

University of New Hampshire Scholars’ Repository

Master's Theses and Capstones Student Scholarship

Spring 2007

Word boundary detection

Deepak Jadhav
University of New Hampshire, Durham

Follow this and additional works at: https://scholars.unh.edu/thesis

Recommended Citation

Jadhav, Deepak, "Word boundary detection’ (2007). Master's Theses and Capstones. 268.
https://scholars.unh.edu/thesis/268

This Thesis is brought to you for free and open access by the Student Scholarship at University of New Hampshire Scholars' Repository. It has been
accepted for inclusion in Master's Theses and Capstones by an authorized administrator of University of New Hampshire Scholars' Repository. For

more information, please contact nicole.hentz@unh.edu.

https://scholars.unh.edu?utm_source=scholars.unh.edu%2Fthesis%2F268&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholars.unh.edu/thesis?utm_source=scholars.unh.edu%2Fthesis%2F268&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholars.unh.edu/student?utm_source=scholars.unh.edu%2Fthesis%2F268&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholars.unh.edu/thesis?utm_source=scholars.unh.edu%2Fthesis%2F268&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholars.unh.edu/thesis/268?utm_source=scholars.unh.edu%2Fthesis%2F268&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:nicole.hentz@unh.edu

WORD BOUNDARY DETECTION

BY
DEEPAK JADHAV

B.E. Babasaheb Ambedkar Marathwada University, India, 2000

THESIS
Submitted to the University of New Hampshire
in Partial Fulfillment of
the Requirements for the Degree of
Masters of Science
In

Electrical Engineering

May 2007

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

UMI Number: 1443609

INFORMATION TO USERS

The quality of this reproduction is dependent upon the quality of the copy
submitted. Broken or indistinct print, colored or poor quality illustrations and
photographs, print bleed-through, substandard margins, and improper
alighment can adversely affect reproduction.

In the unlikely event that the author did not send a complete manuscript
and there are missing pages, these will be noted. Also, if unauthorized

copyright material had to be removed, a note will indicate the deletion.

®

UMI

UMI Microform 1443609
Copyright 2007 by ProQuest Information and Learning Company.

All rights reserved. This microform edition is protected against

unauthorized copying under Title 17, United States Code.

ProQuest Information and Learning Company
300 North Zeeb Road
P.O. Box 1346
Ann Arbor, Ml 48106-1346

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

This thesis has been examined and approved.

S [C

Thesis Director, Andrew L. Kun Ph.D

Associate Professor of Electrical Engineering

NZ
W. Thomas Miller Il Ph.D

Professor of Electrical Engineering

Kent Chamberlin Ph.D ‘

Professor of Electrical Engineering

":»(("\'/o")

Date

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

ACKNOWLEDGEMENT

I would like to thank my advisor, Dr. Andrew L. Kun, for his constant support and

guidance throughout the research and writing of this thesis.

I would like to thank my thesis committee for their valuable input.

Finally, I would like to thank my family and friends without whom this thesis would

never have come to fruition.

iii

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

TABLE OF CONTENTS

ACKNOWLEDGEMENTcccovvvmmnnierrcrnnseivn e 1l
TABLE OF CONTENTScriieieieitinenetnsecesnstssncstsaesssesscsesessesessssssssnssssssssssssonssasassssassssnsssns iv
LIST OF FIGURES ... creereceerenrenercsenrnses e nesssessacsesesserasesssenssessasssnsatens s s enssnsnssassaans vi
ABSTRACToorirecmtcncrercseem s resssiesiasssbenet s e bt eb s s bt sas b b s sh s bbb e b b bbb bt s e rssbetsRsmen s X
CHAPTER NAME
CHAPTER 1: INTRODUCTIONcccooiiriniietrrirerisreseressstssenssesemseseesecseseesesssnsacssensnisnssesssrsess 1
1.1 Need For Accurate Boundary DeteCtion:c..covveeenircrirsmennsinssenenssosesessessensnssies 1
1.2 Problem Definition..................; ... 2
1.3 GOBL . cneerrerrieenrisset st e st sttt sttt et s s e e bRt s e sR s bR e s b 4
1.4 Proposed SLEPScvrvvmreerveremirinin et et 5
1.5 Thesis OTZANIZALION ..c.vveveererriinriciiiniesi i iitesssiasrissesseses st s sassasanossrsoseseasssssosserarases 6
CHAPTER 2: BACKGROUND ..ot scsssscssisi s s sssssssesss st s s sssssnsssssssnsnssss 7
2.1 Three Approaches to Word RECOZMEON.........ovmvmmiererit e 7
2.2 Speech REPIESEDLAIONccocverceiiririnisinetiste sttt s ss s s neaaesbasss s aes 9
23 INOISE..evruerereeeereerssesereeteaestesraratsestestsesessosessesestessssssssssestsessenssosstssessasassassessersinsssssssssonsses 15
24 Past RESEATCH ...ucceuiiiniriccee sttt sttt sttt st s s e saessess sonssnostens 17
CHAPTER 3: TESTING TOOL ...ttt sias s sss st sssesseseass s esas 21
3.1 OVEIVIBW ..cuinenceccreerninrie s eesessssiessesesisssessestsse shsstssonsenssstssnsstsssasesnens svesasssessasnsnsassasosions 21
3.2 FEALULES ...eereecneereeneresreniestesceensesssst i s essastontsassasr bbb s s s sas s r e e sh bbb sanerserbonteseans 22
33 Overview of Testing TOOl SOftWArecccerevrinciiiciici it 34
CHAPTER 4: OUR PROPOSED ALGGORITHMccccoomuiiniiimcmnisniiennc s 45
4.1 PreempPhasis. cccoeevieeirreenenireiisecesierees st e e e 45
4.2 Frame BIOCKINEZ......cccevreereiiieiniieire ettt et et eas s aesa s s e nssaane 46
4.3 WINAOWIIIE ..c.cviinieerrrrmen ittt sttt st eassns s sansbess s sa b et st e be e snsnbereenssessbans 47
44 Cepstral COeffICIENES.couceerneiriirctireic i et et 48

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

v

4.5 SHIENCE TEMPIALEeveeereeoereieeerereesiareaecaseeseteseteeseestssessse s bntesesssseessseassesasasene st 50

4.6 LFCC Distance COMPULALIONceeuereeererieseresersnesmeeesmssersssssessessssassossseosmssesnsasssesssssesss 51
4.7 LFCC Magnitude Envelope SMOOthEMINGccovurvecerirerisererencrscsessessssssssssstesnsseessesasans 52
4.8 Threshold COMPULALIONceeeeereririenrsereresssreassansesssenissssssssesssresassssessosssssesseseanssessosessens 55
4.9 PulSe EXIIACHON ..covimiiiineerecnstsineesncreeneirestriessenesensesssessssseseresssesssssststiencssossassssssonesson 56
CHAPTER 5: TESTINGcoiieirieiitircrtiererctesesssessesssessotsensssssisesssrsssscnsasssscssunasmassensossesessntoe 60
5.1 TESHNEZ OVEIVIEW ...oonniriircrieeetreneieteesie et sesesseesestesssesssseassssassssassessraesansensasesesas 60
5111 Baselineg TeSHNE ..ccceururueerirreereerreseieaeresereesesesstsssscsessesessssassesessacsesesenescssmsossseseence 60
5.12 Algorithm Performance Testing ettt et e s bbbt b ae s ea e e 61

5.2 TESE SEIUP vttt ittt sb st s e b et sr s s s bR st SR bR et 62
52.1 Stage 1 ... 62

522 SEAZE 2: ittt et ac s st s e et a s b n s s e b e b et s 64

523 SEAEE 3 uemrerreosrrressssceseessssesssssssssessesssessesssesstsesssssneesessesressssestosmessossersssesseesnns O
CHAPTER 6: RESULTS.....ccccoeomvreeiencnn detereteaer st e re st se s aenesanenen 72
6.1 Preliminary RESUIEScccoveurieerrrerieresneesesesesseeseissssssesesesssssssesssassseseesessossassassesesssasasess 72
6.2 TESHIZ eovvenviirir ittt e ss s o es st s b s b e sen s esssaaebbo s she s e e s b eeb san e en 74
6.2.1 The Time AIZOTItIIccviimiiieceriititi ettt s enes 76

6.2.2 The LPC AIZOIIMo..ceceiiiiicicsecetet ettt sercs e sisssbmmeesenss s saassees 83

6.2.3 The LFCC AIZOTHIML.....c.ceiirieiireineererniectressenesesisississsesesessssssesesssssoaseseassenssssenens 91

6.24 The MFCC AIZOTIIIM....c.cuimiiiienenrr e neastsesnseetsenstsent e ransarensessssesesesesens 98

6.2.5 Comparison of Algorithm Performances..........c.coeeeerrescnneeresenressrsesneeseesenssnsnene105
CHAPTER 7: CONCLUSIONS AND FUTURE RESEARCHccooiivciniimeeeieeeceneecnnnnens 108
7.1 CONCIUSIONScventv vt esiseenes s b ssse bt e sesm st sbsrassastsasssssin b abebsasensnsbsasasens 108
7.2 Futire RESEAICH.....c.cveiiiieiicierccciecrcnt ettt sa e et sss e sesnen 110
BIBLIOGRAPHYoonciiuirimreenincnsiesneereinectsecesss e sisessensienssensdnentassstsssssossestssessssssesasaonseseassssssses 111
APPENDIX: IRB APPROVALLETTER........cccoiiicrrtitentrcencs st secsenesassne e 113

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

LIST OF FIGURES

Figure 1.1 noise samples USed in thiS tNESIScciveeirerierintsieererenenserseeiesssesrssessesesessesnssessorsssssssesssssenein 3
Figure 2.1 eXPliCit @PPIrOaCh.....c.couiiiiivircieintcrt e snsiecenesessonteseeraesessssesconsesssessesastssassassersenesessron 8
Figure 2.2 implCIt aPPrOACH ..o ittt crenesesesenesensbesesrse et ssaconsenesessesssessanesscsaesesease 8
Figure 2.3 hybrid approachc.iiniciiciiiicivessesesisesessssstssesisesssnssssosssescassonsassonsne 9
Figure 2.4 short time magnitude representation of the UHErance 'Zero'.........co.eceeeeevecrercececreereerereeninenes 10
Figure 2.5 frequency magnitude representation of the UHErance 'Zero'.........oveveeeeeeerenvereerreneseesevesnene 11
Figure 2.6 ZCR representation of the UHErANCE 'ZEI0'cocoviverereeiriernrereereeiiceeneeeseseeeseseresseessesenas 12
Figure 2.7 LP spectrum of the phOneme /8e/ccceeieiirinircnernirnseertriereneerereseteneessesessesessessssssnseens 13
Figure 2.8 computation of the CEPSHUML.....c.coviiiinimeciesincntotisennior e sinesssssssesestsesersesessamsesesasssessesssenes 14
Figure 2.9 frequency spectrtim Of WING BOISE.......cccueeeeeeerarereeirnneersesreessscsssestrsessaesssssscsessssacsssessasssasenss 16
Figure 2.10 frequency spectrum of White NOISE........cvuvirerisiemiiriissesisicstsssaressescnintesesenesesesesssseensioses 16
Figure 2.11 frequency spectrum of PINK NOISE w.vovrrerecnriecneenrecrecrrrssese et sesnesesesesnsseseseensnsessesenes 17
Figure 2.12 the hybrid approach endpoint detector proposed by Lamel et al.........cccoccvvevrerrcereerereenenes 18
Figure 3.1 testing tool BlOCK GHAZIAM c.c..c.oouvierieiiirriereccec et sese sttt esesesesesesaeesesaseens 21
FIgure 3.2 tESHNG L0OL..... ittt neeea s sesens e oneasacresessssbnasnnssssest sessnassenemsbssearensrsns 22
Figure 3.3 frequency response of preempRasizZereveeeeereeeeerinreesenrennennnesd et saeen 23
Figure 3.4 selection of preemphasizer ... e s 23
Figure 3.5 suppressing background noise using preemphasis.........icciiiiivncinene 24
Figure 3.6 division of a speech segment into overlapping frameso.cooeeeevvercriererenecneneeencsecsassenene 25
Figure 3.7 selection of frame length/overlap/Window...........cccvvvnnennrccnennenneenersncre e esecsreens 25
Figure 3.8 selection of speech representation.... ... eieiieinneiniaminesisee it et sreasan 26
Figure 3.9 selection of smoothener ... 27
Figure 3.10 selection of threShOld.........covuririieririiinenin et secesaesesseresnssessssesssansessesesessessessas 28
Figure 3.11 selection of freqUEnCy SCAle.........civceivnnrntictrecreicn e s sseesessae e s 29
Figure 3.12 mel scale vs. freqUenCy SCALE.........oivcvuecriniirtiircenei et e asas s eresesesassnsseseons 29
Figure 3.13 selection of SpeeCh filecccoiiiiii s 30
Figure 3.14 selection of NOISE fI1E ...t 30

vi

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Figure 3.15 displaying segmented audio filecccvrieninreeeincencnincns s 32

Figure 3.16 displaying computed boundari€s...........ovmiininiiiciinnicnncnneniniennnnns 33
Figure 3.17 autOmMated tESHNEc.ccvvireererrrireemrariesseeeteseesteese et sessssssssienrssrs st sasssensssensssssssassnsssssnseons 33
Figure 3.18 overview of testing tool SOftWAre ...t 34
Figure 4.1 our proposed boundary detection algorithmcccoceimimiiinnitc s 45
Figure 4.2 premphasis of the NOISY WHETANCE ZETOuiviuiiiiririiiiireinneere e st reba s ssrenseses 46
Figure 4.3 framing of a noisy Speech recordingccoevvecvrivvnmiemnenrnr et 47
Figure 4.4 wWinAOWEd fTAINESoceruerircerereeieceeriieectntestesasesesesesiessesnisnsbossestssessssasssssassassrtass saosssosesnen 48
Figure 4.5 LFC coefficients of first five framesccccvvvceeenennnicciinii s 50
Figure 4.6 SIlence tEMPIALE......c.covirviviiveirrciiricincmecstretessessertnnetss e ebesssrsrestarssassssneresasssesarssserassssnsse 51
Figure 4.7 LFCC magnitude disténce ENVElOPE ...oveereinecireeeeeranne .. 52
Figure 4.8 LPC and FFT spectra of a vowel phoneme..........c.coeevevirmvicccnrccccreeressresreines 53
Figure 4.9 concatenated LFCC magnitude envelope...........ccoiviiineninieiinennecen s 53
Figure 4.10 IFFT of the concateﬁated LFCC magnitude envelope.......cooeveinrninnninnivneciennnnes 54
Figure 4.11 STOOLhENET OULPUL ...o..eevieiineirrrcereeecnnr et et et sees st erraes s eas s s s bs s s e sssbnsssberntens 55
Figure 4.12 pulSe EXIraCtiONccovveiivviiiricrmininiesinieressieset e iesssessere e s b sbssbssss s srsessessesssasssnessentossessases 56
Figure 4.13 - LPC smoothener produces only one pulse per Word.ccoevrencnnennnniinninnincneinnnenes 58
Figure 5.1 DaSEline tESHNE.....c.covememrrerereerreerereiereneeenenenernieecercessaereseeessessesss s ssas s s s s assssssssnsasbabensnsoss 60
Figure 5.2 oVErview Of teSt SEUPc.cuiiieiiiii ettt bbb g b ans 61
Figure 5.3 generation Of test fllecoceeminiiiciiirccr s 63
FIgure 5.4 SAPL OVEIVIEWcceereemiereereinieerecrisesesesreneseacaesescens e sesesessssssenssssssssss i sssssanssssassssbsnsssssssnssssns 64
Figure 5.5 software for recqgnition Of WAV fA1ES ..ottt ssssae st ecnessesssaes 66
Figure 5.6 construction of file NAMNE AITAYcoceveieiririiireiieireie e et 67
Figure 5.7 grammar for recognition of digits 0 10 Dc.ovveriivieneniiiirm ettt 68
Figure 5.8 (eSUNE PLOCEAUIE. c..covvvirmeriiiiererrereinteersceeinestenereetsneseenesaensssmessnses et sberesnsrantssnstessesenssestntessns 69
Figure 6.1 preemphasis vs N0 PrEEMPRASIScocuereiririiiriireecrcceieie et e et ae s eebs e 73
Figure 6.2 performance of various SMOOthENETS ...l e 74
Figure 6.3 recognition accuracy of the Time algorithm ..o 76
Figure 6.4 an example of the failings of the Time algorithm............coovrriiiniiii e 77
Figure 6.5 PDF of boundary errors from (Time Algorithm, -30dB to 20dB)........ccccovvninnrinneinrinnns 78

vii

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Figure 6.6 boundary error positions (Time Algorithm, -30dB t0 20 dB) ...c.ccoceveereevneevcccrenccineceeeee 78

Figure 6.7 PDF of boundary errors (Time Algorithm, 10dB t0 20dB)......ccccccconmvemmioineriiccrineisennns .79
Figure 6.8 boundary error positions (Time Algorithm, 10dB to 20dB)........ccocriieiiniiiniiiiniiiiiiinns 80
Figure 6.9 PDF of boundary errors (Time Algorithm, -19dB t0 9dB).......ccoccovviviiimiinniiiiniienn, 81
Figure 6.10 boundary error positions (Time Algorithm, -19dB t0 9AB) et 81
Figure 6.11 PDF of boundary errors (Time Algorithm, -30dB t0 -20dB)ccccooivmiciininniniiiiienns 82
Figure 6.12 boundary error positions (Time Algorithm, -30dB to -20dB)........cocommiriirmivcreniscninnnnnns 83
Figure 6.13 recognition accuracy of the LPC algorithmc.cccceeeirciicccnnnnncicncieeesccccseeseeensene 84
Figure 6.14 PDF of boundary errors (LPC Algorithm, -30dB t0 20dB).......c..cceesiviviinmincncniencsncinnn. 85
Figure 6.15 boundary error positions (LPC Algorithm, -30dB t0 20dB).......ccccerverecremercnnrercececreenencns 85
Figure 6.16 PDF of boundary errors from (LPC Algorithm, 5dB t0 20dB)cccivecreerecrerennrercrcseenen. 86
Figure 6.17 boundary error positions (LPC Algorithm, 5dB to 20dB).........ccccninninnninniiniien 87
Figure 6.18 PDF of boundary errors (LPC Algorithm, -24dB t0 4dB)....c...cvcoerermnmenereenicemrerescrsnsensenee 87
Figure 6.19 boundary error positions (LPC Algorithm, -24dB t0 4dB)......cccovicervineevinccrincncnencnnines 88
Figure 6.20 PDF of boundary errors (LPC Algorithm, -30dB t0 -25dB)cccooevevenrinemciorcccneennnes 89
Figure 6.21 boundary error positions (LPC Algorithm, -30dB to -25dB) 89
Figare 6.22 % of files with no boundaries detected ..o 90
Figure 6.23 no boundaries detectedcooviiiiiiiniii s 91
Figure 6.24 recognition accuracy of the LFCC AlgOTIthM ..ot 92
Figure 6.25 PDF of boundary errors (LFCC Algorithm, ;30dB t0 20dB) .cociiriririnicenici 93
Figure 6.26 boundary error positions (LFCC Algorithm, -30dB to 20dB).........ccocvcninnccniniinieninnennns 93
Figure 6.27 PDF of boundary errors (LFCC Algorithm, 0dB t0 20dB)cccocecmmnvnnrenreinccrnnennee 94
Figure _6.28 boundary error positions (LFCC Algorithm, 0dB t0 20dB)........ccecerverrmivvncnnecicincnnnns 95
Figure 6.29 PDF of boundary errors (LFCC Algorithm, -19dB t0 -1dB).......ccoccoeecinenncnerieceneennee 95
Figure 6.30 boundary error positions (LFCC Algorithm, -19dB t0 -1dB)ccccoermvrcivcrmverrcrneccecnennes 96
Figure 6.31 PDF of boundary errors (LFCC Algorithm, -30dB t0 -20dB).......cccccorereeveienmroneccircnnnins 97
Figure 6.32 boundary error positions (LFCC Algorithm, -30dB to -20dB)cc.ccceeriiviniiinenne e 97
Figure 6.33 recognition accuracy of the MFCC algorithm ..o 98
Figure 6.34 an example of the failings of the MFCC algorithm..........ccooiinninnnnncrne, 99
Figure 6.35 PDF of boundary errors (MFCC Algorithm, -30dB t0 20dB).......ccovnniiniiiiinn, 100

viii

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Figure 6.36
Figure 6.37
Figure 6.38
Figure 6.39
Figure 6.40
Figure 6.41
Figure 6.42
Figure 6.43

Figure 6.44

boundary error positions (MFCC Algorithm, -30dB t0 20dB)......c.cocovevvcernicrcrennrecnne 100
PDF of boundary errors (MFCC Algorithm, OdB t0 20dB)c.cocevccvirninmicnnscnnricnnennns 101
boundary error positioné (MFCC Algorithm, 0dB t0 20dB).....ccccccrvverrvrererurnecrecrencnsonens 102
PDF of boundary errors (MFCC Algorithm, -19dB t0 -1dB)...cc.eoereeevreincrcnrereesciricneenes 102
boundary error positions (MFCC Algorithm, -19dB t0 -1dB)ccoovevrvrccccnnincnne. 103
PDF of boundary errors (MFCC Algorithm, -30dB t0 -20dB)......ccccceovenrreenniunrnrernecvrenes 104
boundary error positions (MFCC Algorithm, -30dB to -20dB)c.coccvnenrninnniionnnnns 104
COMPArison Of IECOZMItION ACCULACYvvvrvrerereerernersrireseionsesssesseressransassensssesesssssanssasessssasss 105
comparison Of BOUNAATY EITOTS......curorieriiinierine ettt er et b naenss 107

ix

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

ABSTRACT
WORD BOUNDARY DETECTION
by
Deepak Jadhav

University of New Hampshire, May, 2007

Robust word boundary detection is essential for the efficient and accurate
performance of an automatic speech recognition system. Although word boundary
detection can achieve high accuracy in the presence of stationary noise with ﬁigh
vélues of SNR, its implementation becomes non-trivial in the presence of non-
stationary noise and low SNR values. The purpose of this thesis is to compare and
contrast the accuracy and robustness of various word boundary detection techniques

and to introduce modifications to better their performance.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 1

INTRODUCTION

Word boundary detection or endpoint detection involves the separation of speech
from unwanted noise. This noise may be background noise or speaker generated

artifacts.

1.1 Need For Accurate Boundary Detection:

Word boundary detection is an integral party of an Automatic Speech Recognition

System (ASRS).
Accurate word boundary detection in an ASRS is important for three main reasons.

e Accurate word boundary detection lessens the computational load on further
recognition stages.

e Greater accuracy in word boundary detection translates into greater accuracy in
the overall speech recognition system.

e Word boundary detection techniques may incorporate word recognition
techniques, in which case further recognition stages in the speech recognizer may

be easier to implement.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

1.2 Problem Definition

In concept, word boundary detection involves the use of certain parameters to
distinguish spoken word from background noise. In some cases, the values of
parameters for a speech sound and a noise sound may vary greatly, in which case
boundary detection is relatively more straight forward. However, in many practical
scenarios, the speech and noise sounds may be comparable to each other. In such
cases, separating speech from noise becomes difficult. For example, unwanted
speaker-generated artifacts such as mouth clicks or breathing may be wrongly
included within word boundaries. This problem is further aggravated in the presence
of higher background noise. Ideal word boundary detection involves extracting the
spoken segment of a recording, regardless of the level and nature of the background

noise.

The objective of the research reported in this thesis is to evaluate the performance of
several word boundary detection algorithms in a mobile environment, namely in a
moving vehicle. Common examples of noise in such an environment are wind noise,
engine noise, tire and air conditioner noise, as well as impulse noise arising from
speed bumps, potholes, etc. Different types of noise affect the boundary detection

process with varying degrees.

As an example of real world noise, we have chosen wind noise for testing various
boundary detection algorithms. A 2.5 sec sample recording was obtained by holding

up a microphone outdoors on a windy day.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

White and pink noise samples were also used to test the performance of various
boundary detection algorithms under different noise conditions as a measure of
algorithm robustness. White noise was obtained using Matlab’s random number

generator randn. Pink noise was downloaded from a web site [2].

These three examples of noise are shown in Figure 1.1.

Wind Noise

Magnitude
°

1 T T T

Il U
W "

|
) M ”
h ‘\m ‘

‘\ [\ ” lr!

5 e
IS

Magnitude

Pink Noise
1 T T T T

| “‘ I ‘\
i v i i

Magnitude

_1 { L 1 |
0 0.5 1 1.5 2 2.5

Time (sec)

Figure 1.1 noise samples used in this thesis

Any other noise that may have been present in the recording environment or within

the recording system itself was ignored.

There have been extensive publications documenting several word boundary detection

techniques. Authors such as L. Rabiner [5] and M. Sambur[6] have written a great

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

deal on this topic. Going through such a vast reservoir of proposed algorithms, one
feels the need of a testing tool which, with the click of a few buttons, allows the user
to test the robustness of several different algorithms under several noise conditions,

and compare their results.

Also, most of the proposed word boundary detection algorithms address signal to
noise ratios of down to only 10dB. There is a need for developing word boundary
detection algorithms that remain robust under signal-to- noise ratios of less than

10dB.

1.3 Goal

The work completed in this thesis achieved two goals:

The first goal was to develop a testing tool that allowed the user to test and compare
the performance of several word boundary detection algorithms. A typical word
boundary detection algorithm has several variables associated with it, such as the
frame length of the speech segment, design.of preemphasizer, type of background
noise, etc. The testing tool will allow the user to vary these variables and observe their

effects on the performance of these algorithms.

The second goal was to develop a word boundary detection algorithm that will remain
robust under noisy conditions with low signal to noise ratios. The detector will be
speaker-independent and will operate without any voice training. The algorithm will
be tested in a non-real time environment i.e. pre-recorded noisy speech segments will

be fed to the algorithms and the corresponding results noted.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

1.4 Proposed Steps

The research goals stated in the previous section were achieved by completing three

tasks:

Task 1:

We first task was the development of a testing tool in Matlab that gave the user the
ability to test several word boundary detection algorithms under a wide selection of
noise conditions. The user was able to introduce changes to algorithms and readily
observe the resulting changes in boundary detection accuracy. This provided further
insight into the factors affecting the accuracy and robustness of various word -

boundary detection techniques.

Task 2:

The second task was the implementation of several word boundary detection
algorithms. These algorithms were tested with pre-recorded speech segments, and

their accuracy and robustness under varying noise conditions were observed.

Task 3:

The third task was the development of a word boundary detector whose performance
surpassed that of all the boundary detectors we examined. We conducted tests with
multiple speakers and noise conditions to ensure that our algorithm demonstrated

higher boundary detection accuracy.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

1.5 Thesis Organization

This thesis is organized into seven chapters.

“The first chapter describes the problem definition and goals of this thesis as well as

the steps proposed to reach these goals.

The second chapter explores some signal characteristics of speech as well as a few
types of noise. It also summarizes some relevant research conducted by several

authors.

The third chapter presents our newly developed testing tool in detail. Examples

describing some of its features are illustrated.
The fourth chapter explains our proposed word boundary detection algorithm.

The fifth chapter presents the testing performed to compare and contrast several word
boundary detection algorithms, including the algorithm developed in Chapter 4. Also
presented is an overview of the software design behind the implementation of the

speech recognizer used in this thesis.
The sixth chapter presents the results of the testing performed.

The seventh chapter presents conclusions derived from tests performed and also

suggests future research that may provide further insight into this topic.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 2

BACKGROUND

Word boundary detection is used by automatic speech recognition systems to isolate
useful speech from background noise in order to extract speech patterns that further

recognition stages can recognize.

For speech produced in a relatively noise-free environment, boundary detection is a
simple problem. However, high levels of noise, be it background noise or noise in the

transmission system, make word boundary detection difficult.

2.1 Three Approaches to Word Recognition

Rabiner and Juang [5] broadly classified endpoint detection approaches as either
explicit, implicit, or hybrid depending upon the degree of interaction between the
endpoint detection and word recognition stages of the automated speech fecognition

system (ASRS).

Explicit Approach

An explicit detection approach has the endpoint detection stage occurring prior to and
independent of the recognition stage of the speech recognition system. The boundary

detection stage may or may not use the same features as the word recognition stage.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

This method carries the least computation load but its accuracy is the least of the three

approaches[5].
angut Fealure Endpaint Recogration Dedsion ordered list of
utterance P Exiraciion —™ Detedion » P Ry | recognition
candidates

Figure 2.1 explicit approach

Implicit Approach

An implicit approach combines the endpoint detection and word recognition stages.
This approach does not focus on extracting speech from noise, but it recognizes the
input noisy speech segment as one of several possible noisy speech templates. It
produces a list of endpoint pairs ordered according to likelihood. This method has the

greatest computational load but exhibits the highest accuracy.

Mflered list of
recognition
input Feature 1 Recogonition Decision g caniidates
witerans® P} Extracion | ™ —~ Rule > endpoints
T 1

Figure 2.2 implicit approach

Hybrid Approach

In the hybrid approach, the explicit method is employed to compute several estimates

of endpoints pairs, and the implicit method is used to choose a small and reasonable

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

set amongst them. The hybrid approach has a computational load comparable to the

explicit method and accuracy levels comparable to the implicit method.

ordered list of

recogaition
input Feature Endpoint | | Recogaition .| Dedsion — canddates
uterang®™® Extraction *1 Eshmates v * Re B revi
e pEvised
2 T endpoints

Figure 2.3 hybrid approach

In spite of its low boundary detection accuracy compared to the implicit and hybrid
methods, the explicit method inherently allows the testing of the word boundary
detection stage independent of the word recognition stage. Any insight obtained from
testing the explicit boundary detector can be applied to the hybrid detector as well.
Hence, the scope of this thesis was chosen to be limited to the explicit approach of

word boundary detection.

2.2 Speech Representation

There are several characteristics of speech that separate it from noise. The ones that

are most commonly employed for word boundary detection are as follows:

Short Time Magnitude

The short-time magnitude of a speech segment is computed along time. The time
magnitude of vowels is substantially larger than that of consonants and also that of

low-level background noise.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

The short-time magnitude [6] can be defined as

n ¢
L= ¥ x2(m)
m=n_N41
That is, the short-time magnitude at sample n is simply the sum of squares of N

samples n-N+1 through n.

In a typical word boundary detection algorithm using short-time magnitude,
thresholds are applied to separate the high-magnitude speech from the low-magnitude

background noise. Figure 2.4 shows the short-time magnitude for the utterance 'zero’.

Magnitude

seconds

Short-Time Energy

1] 05 i 15 2 25
seconds

Figure 2.4 short time magnitude representation of the utterance 'zero’

Short Time Frequency Magnitude

Here, the frequency power spectrum of the speech signal is used to distinguish speech
from noise. Similar to time magnitude, the frequency magnitude of speech, especially

vowels, is distinctly greater than that of low-level background noise. ‘

10

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

The frame by frame DFT [4] of a discrete sequence x[n] is given by:

2TIm

x,(»:):% AN o

where A=fL-{f-10O
L= frame length

»n

O = frame overiap

F = frame number

N = number of frequencies in the DFT ocutput
w=window aof length I

The frame by frame frequency magnitude is then computed as

Freguency Magritude(f) = zz_i [X (m)l

n=0

Figure 2.5 shows the short-time frequency representation of the utterance zero'.

Magnitude
=

seconds

|2

&
T
L

?
|

o

Shert-Time Frequency Energy

=)

05 i 15 2 25
seconds

Figure 2.5 frequency magnitude representation of the utterance 'zero’

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

11

Short Time Zero Crossing Rate

A signal's zero crossing rate (ZCR) is the rate at which the signal crosses the zero

axis. The zero crossing rates of fricatives tend to be greater than those of vowels. By

itself, the zero crossing rate is not a very useful parameter for differentiating speech

from noise. However, its use with other speech properties may prove beneficial due to

its ability to distinguish weak fricatives from background noise.

The short-time average zero crossing rate [6] can be defined as

Zo= Y senlx(m)] — sgrlxlm — Dljwin — m)

where
siglx(n)] = 1
=—1
ard

W(ﬂ)=2—§v—
=0

x(n) = 0
xln) < O

0<n=sN-1

otherwise

Figure 2.6 shows the zero crossing rate for the utterance zero’. The high values of the

zero crossing rate correspond to the fricative /z/in zero'.

Magnitude
o

seconds

a 04

seconds

Figure 2.6 ZCR representation of the utterance 'zero'

12

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Linear Prediction Spectrum

Linear Prediction Analysis has traditionally been used for the 'recognition’ part of an
automated speech recognition system. This thesis explores the possible use of Linear

Prediction in word boundary detection.

Linear Prediction models the human vocal tract as an all pole system defined by its
linear prediction coefficients. The coefficients are such that they most accurz;tely
predict the subsequent speech samples. This becomes useful for boundary detection as
the computed coefficients give an idea about whether the produced samples are of

speech or unwanted background noise.

A linear predictor with prediction coefficients ax can be defined [6] as a system that,

upon giving it an input s(n), produces an output:

3(n) = Yas(n— k)
k=1

Figure 2.7 shows the LP spectrum of a frame (18.75ms) of the phoneme /ee/.

Plagmitmde

e e N —
kE=—= "= p=" T SRASTD OIS BEICHD SREDID
[Y p——— P

Figure 2.7 LP spectrum of the phoneme /ee/

13

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Cepstrum

In the source filter model of speech production, the vibration of the vocal chords acts
as the source and the vocal tract acts as the filter. The cepstrum [3] provides a means
of taking a speech signal and separating the source signal from the filter's transfer

function as shown in Figure 2.8.

Sound Sample

Cepstral Liftefing

l l

Transfer Function Excitation
[low quefrequency] (high quefrequency]

Figure 2.8 computation of the cepstrum

The real cepstrum of a discrete sequence 'x' can also be represented in pseudo code as

y = real(ifft (log(abs(fft(x)))))

14

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

As depicted by the pseudo code, the magnitude of the Fourier Transform is taken, and
its log computed. The real inverse Fourier Transform of the resultant sequence

constitutes the cepstrum of the original sequence y.

~ Examination of the extracted source (excitation) signal provides valuable information
about its nature, i.e. whether the source is of voiced speech, unvoiced speech, or

unwanted noise.

23 Noise

As this thesis endeavors to design a robust word boundary detection algorithm that is
as immune to background noise as possible, we deem it important to study the nature

of several examples of noise.
The noise samples used in this thesis fall under two categories.

e real world noise

. e colored noise

The real world noise are recordings of noise taken out in the field. Examples would
include horn noise, wind noise and siren noise. Figure 2.9 shows the frequency

spectrum of the wind noise used for testing in this thesis.

15

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

TR WO AU WPN WL W YRR W ST A Liionsbi !ﬂ;iLim
2o Leey)

L) R Pz o 8
Feagumngy (i)

Figure 2.9 frequency spectrum of wind noise

Different colors of noise have different frequency spectra that may effect word

boundary detection accuracy differently. The colors of noise used in this thesis are:

‘White Noise

White noise has uniform frequency magnitude at all frequencies. It typically sounds

like the hiss of an untuned radio.

as

o

Figure 2.10 frequency spectrum of white noise

Pink Noise

The human ear perceives pink noise as having equal magnitude at all frequencies. The
power density of pink noise decreases by 3dB per octave. This noise sounds like a

hiss mixed with a rumble.

16

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

300

250

200 H

150

Maiiude

LU 0 il s Lt LTt e b s st s e e oo
SO0 1000 1500 2000 2500
frequency (H=)

o B

T 3000 00 3500 4000

Figure 2.11 frequency spectrum of pink noise

24 Past Research

S. Davis and P. Mermelstein [11] compared the performance of several acoustic
representations in an automatic speech recognition system based on syllabic
segments. The acoustic representations they compared were Mel frequency cepstrum,
the linear frequency cepstrum, the linear prediction cepstrum, reflection coefficients
and cepstral coefficients derived from linear prediction coefficients. They concluded
that the acoustic representation that provided the highest accuracy in word recognition
was the Mel frequency cepstrum with six to ten cepstral coefficients. With these
coefficients, they reported a recognition rate of 96.5% upon training of the recognition

system. Other conclusions they came to were:

e Parameters derived from the short Fourier spectrum such as Mel frequency
coefficients and linear prediction coefficients provide adequate representation of
vowels just as linear prediction coefficients. However, the frequency derived
representations are more adequate for representing consonants than the linear

prediction technique.

17

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

e The Mel frequency spectrum has a significant advantage over the linear frequency
spectrum.

e Cepstral parameters capture acoustic information better than their non-cepstral
counterparts.

e The Itakura distahce [11] is a less effective measure of spectral distance than the
Euclidean distance.

e Six Mel frequency coefficients capture most of the relevant information in a
speech signal, although the importance of higher order coefficients differs with

different speakers.

L. Lamel et al [6] combined an adaptive level equalizer, a pulse detector, and an

endpoint ordering 'system to form a hybrid word boundary detector as shown below.

equalized

- fist of - rdered list
noisy speech Adaptive éﬁﬁﬁ:g Energy endpoints Endpoint | of endpoints
racording > Lewel » Polse » Crdenng '

Equalizatien Detechan -

Figure 2.12 the hybrid approach endpoint detector proposed by Lamel et al

The adaptive equalizer produced an magnitude array from the recording such that the
array fluctuated around zero when speech was not present, and was much larger in the
presence of speech. This allows for the pulse detection stage to use absolute threshold
values to detect the presence of speech. The output of the detector was a set of
possible endpoints listed in order of their likelihood of being the true endpoints of the
spoken utterance. This ordered list of endpoints was given to the recognizer, which
found the endpoint pair representing a segment with the smallest distance from its set

of patterns. If the distance obtained from one endpoint pair was sufficiently small, that

18

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

pair was taken as the true endpoint pair, otherwise the next endpoint pair was
considered, and so forth. Lamel et al achieved a recognition rate of 95% with their top
five endpoint pairs. They also concluded that the hybrid endpoint detector displayed a
10-15 % increase in recogﬁition accuracy compared to a standard explicit endpoint

detector.

L. Rabiner and M. Sambur [6] proposed an algorithm that used short-time magnitude
to make an initial estimate of the endpoints and then used zero crossing rates to fine
tune these endpoints. As the zero crossing rate was sensitive to the presence of weak
fricatives, it allowed the computed boundaries to include weak fricatives which the
time magnitude plot alone would normally miss. Using ten speakers uttéring the

numbers 0 to 9, they found that their algorithm committed no errors.

Gin-Der Wu and Chin-Teng Lin [1] proposed a word boundary detection algorithm
which used the smoothened sum of time and frequency energies. This algorithm
adaptively selected bands of a Mel-scale frequency bank based on the level of speech
magnitude present. The algorithm reduced the recognition error rate due to incorrect

boundary detection to around 20%.

M. Karnjanadecha and S. Zahorian [9] suggested varying the length of the analysis
window based on its position in a recording. Shorter block lengths provided finer
temporal resolution, and were thus beneficial towards the beginning and end of an
utterance where the rate of spectral change was typically higher. Longer block lengths
provided higher temporal smoothening. This proved useful towards the center of an
utterance, which typically consisted of a slowly changing vowel region. Having

introduced their varying block length concept into their word boundary detection

19

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

algorithm (using discrete cosine transform coefficients), Karnjanadecha and

Zahorian's word boundary detection algorithm achieved an accuracy of 97.9%.

20

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 3

TESTING TOOL

In accordance with Task 1 proposed in Chapter 2, we developed a testing tool to
provide a quick and easy means of comparing and contrasting the performance of
several word boundary detection algorithms. The values of several factors can be

varied to observe their effects on the outcome of these algorithms.

3.1 Overview

NOISY SPEECH | SELECTION OF SELECTION OF TIME/

o] PREEMPHASIS o | SELECTION OF SR § SELECTION OF _ i LPCAFCOMFCE

71 FRAME BLOCKING WINDOWING g SIGNAL
REPRESENTATION
¥
COMPUTED
BOUNDARIES
PULSE THRESHOLD SMOOTHENER ENERGY
B e ot -t e
EXTRAGTION COMPUTATION DESIGN ENVELOPE

Figure 3.1 testing tool block diagram

As shown in Figure 3.1, the testing tool allows the user to select/design various
parameters of a word boundary detection algorithm and observe their effects on
algorithm performance. The parameters that can be changed by the user include

preemphasis, frame blocking, windowing, signal representation and smoothener.

The various features provided by the testing tool are described in the following

section.
21

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

3.2 Features

Figure 3.2 testing tool

As shown in Figure 3.2, the tool allows the user to select one of several clean speech
recordings superimposed with one of several noise recordings. The user can vary the
SNR of the resulting noisy speech recording from 20dB to —30dB. The resulting noisy
speech signal can be applied as input to a word boundary detection algorithm that the
user designs by essentially selecting several design parameters provided by the tool.

The functions provided by the testing tool are described below:

Preemphas

In a speech recording, there are certain sources of noise that have spectral properties

that are very distinct from those of any speech sound we may be interested in. It may

22

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

be advantageous to remove such unwanted noise before any further processing. The
preemphasizer is a high pass filter that removes low frequency noise present in the
recording. The preemphasizer used by the tool can be represented by the transfer

function

H(z) = 1-az’
Figure 3.3 shows the frequency response of the preemphasizer.

Frequency Response of Preemphasizer with a = 0.95

magnitude {dB)

)) .) X : :
o 0.1 02 0.3 0.4 0.5 0.6 a7z o8 0.9 U
frequency normalized by pi

Figure 3.3 frequency response of preemphasizer

As shown in Figure 3.4, the tool allows the user to vary the value of the constant a to
vary the amount of preemphasis applied to the noisy speech recording. A value of

95<a<0.97 [3] is the value most commonly used by researchers.

Figure 3.4 selection of preemphasizer

23

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

The benefit of using such a preemphasizer to eliminate background noise can be seen

by preemphasizing a noisy recording of the utterance 'zero' as shown in Figure 3.5.

Magnitude

Using

Magnitude

seconds

Figure 3.5 suppressing background noise using preemphasis

In spite of the benefits of using a preemphasizer, the user may refrain from using

preemphasis to save on computation time.

Framing

In an automatic speech recognition system, the input speech recording is temporally
divided into short speech segments, called frames, and the spectral or temporal
properties of each frame are computed. Figure 3.6 demonstrates how a speech

recording is divided into overlapping frames.

24

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

0,034 ¢
D3
.00

fu e)]

g £
g <1034
B u W xg
.08 fame 1
J
R § _ frame 2
-t i85 | L 1
overlap

Figure 3.6 division of a speech segment into overlapping frames

As shown in Figure 3.7, the tool allows the user to choose and vary the length of each

frame as well as the degree of overlap between frames.

Figure 3.7 selection of frame length/overlap/window

Shorter frame lengths provide finer temporal resolution, and may prove beneficial
where the rate of spectral change is high, whereas longer frame lengths provide higher
temporal smoothening, which may prove useful in regions of slower spectral change.
Another factor a user may consider is computational load. Smaller frame lengths with
higher éverlap would result in a larger number of frames per recording and hence a

higher computational load on the word boundary detection algorithm.

25

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

The tool also allows the user to window each frame using a Hamming window given

by

win) =0.54 - 0.46 cos| 27 =
N

O<u=<N

P. Loizou and A. Spanias [10] and M. Karnjamadecha and S. Zahorian [9] are

amongst many researchers that employ the Hamming window.

The effects of various combinations of frame length, overlap and windowing on an

endpoint detection algorithm can be readily observed.

Speech Representation

Figure 3.8 selection of speech representation

As shown in Figure 3.8, the user is able choose one of several representations of

speech to use in his word boundary detection algorithm. The available choices are:

s Time Magnitude

e Frequency Magnitude

26

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

e Linear Prediction Coefficients

o Cepstral Coefficients

Details of each of the above representations have been explained in Chapter 2. The
frame by frame representation of the noisy speech recording is called the magnitude

envelope.

Smoothener

Figure 3.9 selection of smoothener

As shown in Figure 3.9, the user can choose one of three available smootheners to
- smoothen the magnitude envelope produced by the algorithm so that thresholds can be

applied to separate speech from background noise. The choices of smootheners are:

¢ Linear Smoothener
This smoothener computes the average of every three consecutive samples of
the magnitude envelope. Lamel et al [6] employ the use of this filter in their

word boundary detection algorithm.

27

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

e Median Smoothener
This smoothener computes the median of every three consecutive samples of
the magnitude envelope. Wu and Lin [1] employ a 3 point median smoothener

in their algorithm.

¢ LPC Smoothener
This thesis introduces a new smoothener and claims that it is superior to the
linear and median filters. This smoothener uses the properties of an LPC
spectrum to smoothen the magnitude envelope in a manner more suitable for

applying thresholds. Details of this smoothener are provided in Chapter 5.

Threshold

Figure 3.10 selection of threshold

As shown in Figure 3.10, the user can choose to explicitly specify a threshold level to
be applied to the magnitude envelope, or he can allow the testing tool to adaptively
compute the threshold for him. The manual selection allows the user to explicitly set
the threshold value. The testing tool computes the threshold by evaluating the
magnitude of noise in the initial frames of the test recording. This is because all test

recordings are assumed to begin with background noise, which in turn is assumed to

28

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

remain constant throughout the test recording. Details of how the threshold is

calculated by the testirig tool are given in Section 4.8.

Frequency Scale

Figure 3.11 selection of frequency scale

As shown in Figure 3.11, the user can choose between using the regular frequency
scale or the Mel scale to represent the noisy speech recording. The Mel scale is a scale
of pitches which are perceived by the human ear to be equidistant from one another.

The conversion of the linear frequency scale to the Mel scale is given in Figure 3.12.

2500 ¥ " T ¥ ¥ v g

0L el = 1127 loge(l +%ﬁ} T

1800 |- .

mels

I000 - -

SO0 | v .

o SO0 1 C&JC! i 500 2003 2500 3000 3800 4000
e

Figure 3.12 mel scale vs. frequency scale

29

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Several researchers such as Davis and Mermelstein [11] and Wu and Lin [1] use Mel

frequency cepstral coefficients in their proposed algorithms.

Speech Files

Figure 3.13 selection of speech file

As shown in Figure 3.13, the user can select from a number of prerecorded 'clean’
speech files that include the utterances 'zero' to 'nine' from several different speakers.
If the user chooses, he can also record his own 2.5 second (20,000 sample, 8KHz)

speech file for testing.

Noise Files

Figure 3.14 selection of noise file

As shown in Figure 3.14, the user can select from a number of prerecorded noise files
to superimpose upon the selected speech files to form noisy speech files with which to

test a word boundary detection algorithm. The SNR of these noisy speech samples can

30

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

also be varied from 20dB to —30dB. The user can also record his own 2.5 sec (20,000

samples at 8 KHz) noise file to superimpose upon any selected ‘clean’ speech file.

The SNR of the noisy speech recording is controlled by multiplying the noise file by a
factor such that once it is superimposed upon the clean speech recording, the desired

SNR between the manually computed boundaries is obtained.

speech power

HOIse power
Jactor = sgrt R
10 10

31

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Segmented Aundio File

Figure 3.15 displaying segmented audio file

As shown in Figure 3.15, the tool allows the user to view the segmented noisy speech
waveform where the region of speech is extracted from background noise. The

normalized magnitude envelope is also displayed along with the computed or user

specified threshold.

32

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Displaying Results

Figure 3.16 displaying computed boundaries

As shown in Figure 3.16, the computed boundaries are displayed along with the
manually derived boundaries. The tool also provides a measure of how close the

computed boundaries are to the manually derived boundaries.

Automated Testing

Figure 3.17 automated testing

As shown in Figure 3.17, the user can sclect several combinations of speakers, noise
types and algorithms and run automated tests wherein the selected noise type is

superimposed onto clean speech segments consisting of the selected speaker's

" Signal to noise ratios of 20dB to —30dB are tested.
33

utterances of the digits ‘0’ to ’

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

The results of this testing are the extracted segments of speech which are saved as

WAV files into a séparate folder.

3.3 Overview of Testing Tool Software

This section highlights the important functions that contribute to the software
implementation of the testing tool. The source code for the software is included in

folder named TestingTool on the CD located at the end of this document.

START
Select Speech LOADED Change Algorithm
and/or Noise Files GUI Parameters

Compute Word
Boundaries

Figure 3.18 overview of testing tool software

The overview of our testing tool software is shown in Figure 3.18. Our testing tool is
implemented as a graphical user interface (GUI) designed in Matlab. All of the
operations of the GUI aré executed by a series of 'callback’ routines that are ‘triggeréd
* upon user actions such as clicking a push button or selecting a radio button. This
section gives a brief 0verview of the callback routines involved in the operation of the

testing tool.

34

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

GetAudioFile

switch arg2

case 1 % Zelect
AudioFileName=uigetfile{'Speaker¥. wav');

case 2 % Begord
xtime_clean=transpose (wavrecord(20000,saupling rate}}:
xtime=xtime_clean;
AudioFileName=uiputfile('tenp','Save Recording'):;
wavyrite (xtine,sampling rate,iudioFileName);

cagse 3 % Play
pause(0);
wavplay(xtime,sampling rate):

end

This callback allows the user to select one of several 2.5 sec speech files to be tested
against his word boundary detection algorithm. The time waveform of the selected

speech file is also displayed.

35

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

ChangeFrame

elseif stremp(command str, 'Change Frane') ¥
frame_length_samples=strZnum{get{h FrawelengthSamples,'string'}};
frame_length msec=str2num({get(h_FrameLengthSeconds,'string')}:
frame_pverlap samples=str2num{get{h_FrameOverlapSamples,‘string')):
frame overlap msec=str2num(getih_FrameOverlapSeconds, ‘string'});
switch arg2
caze 1,
if frame length samples>=50 && frame length samples<=400
frame_length_msec=frame length samples/sampling_rate*1000;
zet(h_FramelengthSeconds, 'string’,nun2str(frame_length msec)):
set{h_ErrorMessage,’scring',''):
else
set(h_ErrorMessage, 'string',’'FRANE LENGTH MUST BE BETWZEN S0 AND 300 SAMRLES'):
exd
case 2;
if frame_length msec>=5 && frame_length msec<=40
frame_length samples=fioor{frame_length_msec*sawmpling_rate/1000):
set{h_FrameLengthSamples,'string’,nunZstr(frame_length samples)):
set{h_ExrrorMessage, 'string’,''});
glge
set(h_ErrorMessage,'string', ' FRAME LENGTH NUST BE BETWEEN § AND 40 MSEC');

end
caze 3,
if frame_overlap samples<frame_length samples
frame_overlap_msec=frame_overlap_ samples/sampling_rate*1000;
set{h_FrameOverlapSeconds, 'string’,num2str(frame overlap msec}};
set(h_ErrorMessage, 'scring’,'")’
elge
setih_ErrorMessage, 'string’, ' FRAME OVERLAP MUST BE LESZ THAN FRAME LENGTH'):
end
case 4;
if frame_overlap msec<frame length_msec
frame_overlap_samples=floor(freme_overlsp msec*sampling_rate/1000):
set{h_FrameOverlapSamples,'string’,numZstr (Erame_overlsp_samples})):
seti{h ErrorMessage,'string®,'*);
rlaze
set{h ErrorMessage,'string', ' FRAME OVERLAP NUST BE LESS THAN FRANE LENGTH'):
end
caze 57
set(h_WindowHamming, 'walue®,0};
if get(h_WindowRectangular,'value')==0
set(h WindowRectangular,'walue’,1):
end
window=5;
case 6
set(h_WindowRectanmular, ‘valus',0):
if get(h_WindowHamming, 'walue'}==
set(h_WindowHemming, 'value', 1)
end '
window=6;

Through this callback, the user can vary the length and overlap of the frames into
which the test recording is divided. He can also select/deselect a Hamming window

used to window each frame.

36

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

ChangeSpeechRepresentation

switch arg2

case 1; % Time Enexgy
set(h_freq scale(3), ‘backgroundcolox’,[0.8 0.8 0.8]):
set(h_freq scale,’enable’,'nff', 'value',0};
set{h_TimeEnergy, ‘value’,l):
set{h_NumCoefficients, 'backyroundcelor',[0.8 0.8 0.8], 'enable!, 'off!);
vector_selection=1;

case 2; % LPU
set(h_freq scale(3),'backgroundcolox®,[0.8 0.8 0.8]):
set{h_freq scale,’enable’,'sff’', 'valus',0);
set(h_LPC,'wvalue',1}?
set(h_NumCoefficients, 'backgroundcolox ', 'white’, 'ensbhle! , ‘ont}:
vector_selection=2;

case 3; % LFCC
set(h_freq_scale(3), 'backgroundcolox*,[0.8 8.8 0.8]):
set({h_freq_scale,‘enable’,'off’, 'value',0};
set(h_LFCC, 'wvalue’,l):
set({h_NunCoefficients, 'backgroundcolor’, ‘white’, 'enable’,'on'}); *Ho of coefficients
vector_selection=3;

caze 4; % HFCO
set(h_freq scale,’'enable’,'un'):
set(h_freq scale(3), ‘enable’,'off');
setth freq scale{2),’‘value',l};
set(h_MFCC, ‘value',l);
set(h_NumCoefficients, ‘backgroundcolsr', 'vhite', ‘enable’,'on');
vector_selection=4;

case 5; % First Formant
set(h_FrameOverlapSamples, 'string’ ,nun2str{100));
MyGUI('Change Frawe',3);
set(h_FirstFormant, 'value',1l);
set{h_NumCoefficients, 'backgroundcolar’,[0.8 0.8 0.8], ‘enable’ ,'off?!);
vector_selection=5;

case 7;
set(h_Testl, 'valus',l);
set(h_NumCoefficients, thackgroundoolor!,[0.8 0.8 0.8], 'snablet, tofft):
vector_selection=7;

cage 8}
set(h_Test2,'value',l};
gec{h NumCoefficients, ‘backgroundcolsxr',[0.8 0.8 0.8], ‘enable’,’ofE’);
vector_selection=6;

end

The user uses this callback to select which type of speech representation he wants for
his word boundary detection algorithm. There are 4 different representations for the

user to choose from. They are:

¢ Time Magnitude
e Linear Prediction Coefficients
¢ Linear Cepstral Coefficients

e Mel Cepstral Coefficients

37

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

ChangeMagnitudeEnvelopeFineTuning

if audic_file_ select==1
set(h_DisplayParameterVector,'enable',‘on’); % enable the 'display paraseter vastoxr' pushbutton
end
if get(h_ZCRFineTuning, 'value’)==
set(h_ZCRFineTuningThreshold,'enable’, ‘off', 'backgroundeoloxr',[0.8 0.8 0.8]):
else
set(h_ZCRFineTuningThreshold, 'enahle’, 'on’, 'backgroundcolor’, 'vhita')
end

This callback enables the user to select zero crossing rate based fine tuning for his
boundary detection algorithm. Here the zero crossing rate around potential end points

is employed to further fine tune their positions.

SmoothenMagnitudeEnvelope

gwitch arg2
case 1;
set(h_No3moothener, 'value’,1};
smoothen selection=1;
case 2;
set{h_Linear3moothener, 'value’, 1);
smoothen selection=2;
case 3;
set{h_Medianimoothener, 'walue', 1};
smoothen selection=3;
caze 4;
set(h_LPCSmoothener, ‘walue',1};
smoothen selection=4;
end

This callback allows the user to select which method of magnitude envelope
smoothening he wishes to use. There are 3 different smootheners for the user to

choose from. They are:

e Linear Smoothener
e Median Smoothener

e LPC Smoothener
38

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

DisplayMagnitudeEnvelope

axes(h TestRecordingPlot); % the upper plot needs to be replotted
plot(xtime);

set(gca, 'colox' ,[0.8 0.8 0.8])

grid on:

xlin({l length(xtine)]}:

title('dudio File'}):

xlabel {'sanple index'):

set({h play_audio,'snahle','on’');

axes (h_ParameterVectorPlot);
plot(smoothened_wector):

set{gca,'color',[0.8 0.8 0.8])

xlim([l no_of_ frames]);

xlabel {'frame index'});

title('Nornalized Ensrgy Envelope','color','blue’);
grid on;

set(h DisplayParameterVector, ‘enahkle’,'off');

line ([0 no_of_frames],[thresholdl thresholdl],’'color','red'}
hold on;

X=templ: tempd;

y=3moothened wector(templ:tempzZ):
plot(x,v,'coloxrt,'hlack!'):;

hold off:

axes (h_TestRecordingPlot);
hold on;

X=tenp3: tenpd;

y=Xtime (tenp3: tenpd) ;
plotix,y, 'colox’,'black’);
hold off:;

% Display boundaries and threshold
set(h_threshold(3), 'string' ,num2str{thresholdl)};
set(h_ComputedBoundaries, 'string',temp_stringl}:

temp string2=[nunZstr(ManualBegin) ' - ' numZstr (ManualEnd) 1:
set(h _ManualBoundaries, 'string',temp string2);

set(h _BeginPointError, 'string’ ,numZstr (tenp3-ManualBegin));

set (h_EndPointError, ‘string’ ,nunZstr(tenpd-ManualEnd)};

This callback performs all the algorithm computation based on the user's selection of
preemphasis, framing, speech representation, smoothener and threshold to compute
the word boundaries of the test recordings. The callback also displays the segmented

speech recording wherein the speech segment of the recording is extracted from the

background noise.
39

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

ChangeThreshold

switch arg2
case 1;
set(h_threshold(l),‘valus',l);
case 2;
set.(h_threshold(2),'value’,1l);
set(h_threshold(3),'snable! ,'off');
case 3;
set(h_threshold(l),'wvalue’,1});
threshold=strZmum{get (h_threshold (3}, 'string')):
end

The user uses this callback to either explicitly set his own threshold value or call on
the testing tool to adaptively set the threshold for him. The threshold is ultimately

used to extract speech from background noise of the test recording.

PlaySegmentedAudioFile

if arg2==1

wavplay(xtime,sampling_ rate);
else

x_temp=[];
[rows columns]=gsize (boundaries};

if strcmp (boundaries,'¥o Endpoints Found!)==0
for i=l:columns
X_temp=cat(2,x_temp,xtime_clean({boundaries(3,i):boundaries(4,i))); 3if vhere ars several p
end
end
x=cat(2, zeros{l, {20000-length(X_temp}}/2), x_temp, =zeros{l, (20000-lengthix temp)}/2))2
if automation==0
wavplay(x,sampling ratej;
else
if strcmp{boundaries, '¥o Endpoints Found!)j==1
x=zeros{l,15000}; 5This umskes a 30KB f£ile.
else
if {boundaries{3,l}<ManualBegin-100) | (boundaries(4,columnns}>ManualEnd+100) %the boundaris
x=zeros({l,10000); %Thiz makes a 20EE file.
end

Once the testing tool has extracted the speech segment from the background noise of
the test recording, the user can use this callback to listen to that extracted segment of

speech.

40

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Record

xtime=transpose (wavrecord(10000,strZnun{get{h_edit_sawpling rate,’string')}})}:
MyGUI(Get Audio File',2);

axes(h_TestRecordingPlot):

plot(xtime);

title{'Audio File');

xlabel {'sanple index?);

grid on;

hox on;

set(h_DisplayParameterVector, ‘enable’,‘on'):

audic_file_select=1;

The user employs this callback to record his own 2.5 sec speech files to be tested

against his word boundary detection algorithm.

Preemphasis

set{h preemphasis, 'wvalue’,0);
switch arg2
case 1
set(h_preemphasis(l),'value',1}:
set(h_preemphasis {3}, ‘backgroundcolor’,[0.8 0.8 0.8],'enable’,'0ff');
case 2
zet(h_preemphasis(2}, ‘wvalue',1l);
set(h preemphasis{3), 'backgroundcolor’,‘white', 'enable’,'on’);
case 3
set(h_preemphasis(2),’‘wvalue’,l);
end
if audio_file select==1
set(h DisplayParameterVector, 'enable','mn'}:
end

This callback allows the user to select/deselect the preemphasizer used by the testing

tool.

41

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

ChangeFrequencyScale

set{h_freq scale,'wvalus',0}:
switch arge
case 1
set{h_freq scale({l},'walue',1);
setih_freq scale(3), 'backgroundcolor’,[0.8 0.8 0.8],'enable’,'on');
case 2
set(h freq scale(2),'value’,l}:
set(h_freq scale(3), ‘backgroundcolor','white®, 'enable’,'off?};
caze 4
set(h_freq scale(4),'walue’,l};
set(h_freq scale(3),'backgroundcolor',[0.8 0.8 0.8], 'enable’, 'off');
end
if audio file_select==
set(h DisplayParameterVector, ' 'enable’,'on’);
end

This callback allows the user to select either a linear frequency scale or a Mel
frequency scale to use for the speech representation used in the boundary detection
algorithm. In the case of the Mel frequency scale being selected, the user can also

specify the number of filters used in the Mel frequency bank

ChangeNoCoefficients

set(h DisplayParameterVector, 'snsble’',’'on'):;

If the user chooses to use Linear Prediction coefficients or Cepstral coefficients as his
speech representation, he can use this callback to specify the number of coefficients to

be employed.

42

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

GetNoiseFile

set(h_noise_file name_text,'wisible','on');
set(h_noise_file nawme, 'wiszible’,'on','string' ,noise_file_name);
noise_file select=1;
if audio_file_select==1
Xtime=wavread{iudioFileName)';
Xtime=xtime+noise (1l:length(xtine)) ;
axes (h_TestRecordingPlot):
plot(xtime) ;
grid on;
axis on;
title('Noizy Speech');
Xlabel('sanple index'):
set(gea, 'color’,[0.8 0.8 0.8]):
set(h_DisplayParameterVector, 'enable’,‘on'):
else
axes{h TestRecordingPlot);
ploti(noise);
grid on;
axis on;
title{'Moise Recording'}:
xlabel ('sanple index');
set(gca,'color’,[0.8 0.8 0.8]):;

The user can select one of several noise files to superimpose onto his selected speech

file to form a noisy speech file to test against his word boundary detection algorithm.

SNR

SHR=get.(h_snr, 'wvalue');
set(h noise(2),'string’ numzstr(SNR});
noise=wavread(noise file_name)';
Xtime=wavread (AundioFileName)®;
noise=get_noise(noise(l:length{xtime}) ,SNR,xtime);
Xtine=wavread (&udioFileNane) '+hoize;
if automation==

axes (h_TestRecordingPlot);

plot(xtime};

grid on;

axis on;

title{'Hoisy Speech'):

set(gca,'color’ ,[0.8 0.8 0.8]);

set(h DisplayParameterVector, ‘enable’,’‘on');
end

43

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

This callback allows the user to vary the signal to noise ratio (SNR) of a noisy speech
record by superimposing a selected noise file onto a selected speech file. The SNR

can be varied from 20dB to -30dB.

Automation

for snrNum = 20:-1:-30
snr = num2str(snrifun) ;
outpuc_file = cav(2 , snx , ‘dB_’, NoiseType , ' ' , ParamVector , '_' , person , '_' , letter , ' ' , number);
set{h snr,’'value',str2num{snr)}:
HyGUL{'SHR,1};
MyGUI{'Display Parametar Vector'):
MyGUI{'Play Segmented Budio File',2):

This callback allows the user to perform automated tests on several combinations of

speech files, noise files and boundary detection algorithms.

44

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 4

OUR PROPOSED ALGORITHM

This chapter presents our proposed word boundary detection algorithm and explains

the motivation behind several of our chosen design parameters.

Figure 4.1 displays a block diagram of our proposed algorithm.

Pre-erophasis » Frame | Windewing . LFC
p— &' ~—# Biocking - . Coefficients
Silence
Template
Polze Threshald Energy Enwelope | LFCC Energy

F 3

el Bubrastion Computabion [®“| smoothening [% Envelope

Figure 4.1 our proposed boundary detection algorithm

4.1 Preemphasis

The noisy speech signal is first filtered using a first order high pass filter. The

premphasizer is defined by:

H(z)=1—az-!

45

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

This eliminates unwanted low frequency background noise. The constant a is

typically chosen from within 0.9 < a < 1[3].

Figure 4.2 shows the preemphasis of a noisy utterance of the word 'zero'

1 v T T - T T —_ T —r

@ 05 before preemphasis 7]
2
= 1] . p v Yooy w miyephinime
g
=
05} » E
_1 1 1 1 1 i | - — 3 P R '
0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
sample index % 10
1 ¥ v v v T -+ — T —r
E MR
05| after preemphasis T
a
€ o
=
:;3 05} -
b .
_1-5 | S N—) - - 1 1 L 1 L 1
D 0.2 0.4 0.6 D.8 1 1.2 1.4 1.6 1.8 2
sample index x 10%

Figure 4.2 prempbhasis of the noisy utterance 'zero'

4.2 Frame Blocking

The preemphasized noisy speech segment is then divided into overlapping frames.
The length of each frame is 150 samples and the dverlap is 50 samples. For a
sampling rate of 8000 Hz, these values correspond to approximately 19ms and 6ms
respectively. Greater values of overlap result in higher temporal granularity at the cost
of computational load. The values of frame length and frame overlap used were

chosen to provide a good balance between the two.

The first five frames of the noisy utterance 'zero' are shown in Figure 4.3.
46

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Frame 1

[0}

3 002 , .

E O AW A A AR A AN A~
g -0.02 ']

= 0 50 100 150
o Frame 2 _

3 0.02 . .

s 0 AN A A~~~ A AN AN~ A~
& -0.02) *

= 0 50 100 150
o Frame 3

g 002 ; ;

= 0 BAA—~ MW A

& -0.02 ' L

= 10 50 100 150
® Frame 4

g 002 ; .

= 0 M AAPASANAN A\ A
& -0.02 , '

= 0 50 100 150
o Frame 5 v

T 0.02 ; ;

= 0 P AMAMMAA A AAAANAMAA AN AN ANAMA AN
g -0.02 . '

= 0 50 100 150

sample index

Figure 4.3 framing of a noisy speech recording

4.3 Windowing

Each frame is multiplied by a Hamming window given by

wik + 1) = 0.54 — Cos(zﬂ}z—i_l)

where k=0,..,0 -1

A Hamming window was chosen as it was the most common window used by

previous researchers [9].

47

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Figure 4.4 displays the first four frames of the noisy utterance ‘zero’ after they are

windowed with a Hamming window.

0.02 7 T

-0.02 ' !
50 100 150

0.01

0 'VN‘/\/\/W‘—'W\/V—\/\/V\/\/\/\/\/\/\/
-0.01 ; L

50 100 150

0.01 " T

-0.01 ' .

0.01 ;
0 WNMMNW\/WV\/VW/VMM\/\/VW/\N\WWVMN

-0.01 ! !

0.02 ' '

-0.02 !

Magnitude Magnitude Magnitude Magnitude Magnitude
o
o (e o % o (=]

sample index

Figure 4.4 windowed frames

4.4 Cepstral Coefficients

Several researchers such as Davis and Mermelstein [11] and Wu and Lin [1] have
published results proving the superiority of Ceps;tral Coefficients for use in word
boundary detection. Our own tests corroborate these findings. Hence we have chosen
Linear Frequency Cepstral (LFC) coefficients in our algorithm to distinguish speech
from background noise. Four linear frequency cepstral (LFC) coefficients are

computed for every frame. The number of coefficients was limited to four as it was

48

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

observed that a greater number of coefficients did not improve algorithm
performance. Each frame of 20 elements is converted into a 4 element frame. The

LFC coefficients are computed from each frame using the pseudo code.

LFC coefficients=real (ifft (log (abs (fft (frame)))));

As depicted by the pseudo code, the magnitude of the Fourier Transform is taken, and
its log computed. The real inverse Fourier Transform of the resultant sequence

constitutes the real cepstrum of the original sequence.
The first 4 cepstral coefficients of each frame are used.

Figure 4.5 shows the first 4 coefficients of the first five frames of the noisy speech

recording 'zero'.

49

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Frame 1
Bxa“'ﬁi i * * Ed *

Mapgnitude
o
N o)

[} % £ ? 4, o
1 1.5 25 3 3.5 4
Frame 2
0.02 r r
£ oo -
%
P
2 o i

1 1.5 2 25 3 35
% 107> Frame 3
¥ v v v g
g 21 -
E °
£ b
~2 L k3 £ L%, L, T
1 " 1.8 2 2.8 3 3.5 4
% 10" Frame 4
4 r ¥ v ¥ r
P
g2l]
=
go ?

1 1.5 2 2.5 3 .5
Frame S 345

Magnitude

0.0 i3 Iy £] I
1 1.5 2 25 3 35

cepstral coefficient index

b
B
sloig

Figure 4.5 LFC coefficients of first five frames

4.5 Silence Template

The first LFCC frame is chosen as the silence template to which all further LFCC
frames are compared. The first frame is chosen because it is assumed that all test
recordings begin with silence or background noise. Thus the silence template defines

the background noise.

50

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Figure 4.6 shows the silence coefficient template for the noisy utterance 'zero'.

0.012 T T 7 T

.01} 1

0.008 + E

Magnitude
o
1

o002} T -
b
D L i

1
1 15 2 25 3 35 4
coefficient index

Figure 4.6 silence template

4.6 LFCC Distance Computation

The Euclidean distance between the LFC coefficient set of each frame and the silence
template is computed to form the LFCC magnitude envelope. Thus, the number of
elements in the magnitude envelope is equal to the number of frames of the recording.

The Euclidean distance between two 4-element vectors is given by

4 2
Buclidean Dist = Z (x,. - Ss)

il
where x is the coefficient set for a frame and s is the silence template. The Euclidean

distance was chosen over the Itakura distance as it was found to be more successful in

51

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

indicating phonetic differences between spectra [11]. Figure 4.7 shows the LFCC

magnitude envelope for the noisy utterance of Zero.

0.7 T T T v T T T v T

0.5 -

0.4 -

Magnitude

02t .

2.1 F -

0 L L L L L . L L L
O 20 40 [=1u] 80 100 120 140 160 180 200

frame index

Figure 4.7 LFCC magnitude distance envelope

4.7 LFCC Magnitude Envelope Smoothening

An ideal smoothener takes a magnitude envelope, amplifies the peaks arising from
speech, and flattens all other peaks. Our proposed linear prediction smoothener meets
these two requirements due to its ability to follow the contour of a frequency spectrum

as shown in Figure 4.8.

52

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

---- FFT spectrum
LPC spectrum

[
BEEZREeas

LooIIlre

(gp) wnsaadg apnyubey

L

0

-
,

-2

1000 1500 2000 2500 3000 3500 4000

500

Freguency (Hz)

Figure 4.8 LPC and FFT spectra of a vowel phoneme

Our LP smoothener is applied to the LFCC magnitude envelope in three steps.

1

Ste

The mirror image of the LFCC distance envelope is concatenated to its original form

as shown in Figure 4.9.

&
150

A

BB

SN

b
=50

45
1ie]

[

s

sample mdex

Figure 4.9 concatenated LFCC magnitude envelope

53

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

If we treat this concatenated distance envelope as the frequency spectrum of a discrete

sequence, we can eventually obtain the smooth LPC spectrum of that sequence.

Step 2

The inverse FFT of the concatenated magnitude envelope is computed as shown in

Figure 4.10.

Wagitude

i £ 1 i N 3
a3 =0 TNk 150 prie3 2] 260 pe X 2] 360 S0

sample index
Figure 4.10 IFFT of the concatenated LFCC magnitude envelope

Step 3

The 12" order linear prediction spectrum of the resulting sequence is then computed

and then normalized by its maximum value to produce the final output of the

smoothener as shown in Figure 4.11.

54

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

09t
08
0.7
0.6+

a5t

Magnitude

0.4

0.3

0.2+

0.1 F

i L 1 L
2] 20 40 60 80 100 120 140 160 180 200
frame index

Figure 4.11 smoothener output

This version of the original magnitude envelope emphasizes the peak caused by
speech over the other peaks, providing a much smoother magnitude envelope to apply

thresholds against.

4.8 Threshold Computation

The threshold is computed from the first 20 values of the smoothened, normalized

LFCC magnitude envelope ‘s’ using the following equation:

threshold — 03 + Ss(0)
1=1

The initial values of the magnitude envelope were chosen as each recording was
assumed to begin with background noise which in turn was assumed to be constant

throughout the test recording. The first 20 values corresponded to approximately

55

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

25ms of the test recording and were assumed to adequately represent the level of
background noise. Thus, the threshold represented the magnitude of background
noise. This threshold was deduced empirically such that the algorithm displayed the

highest accuracy possible.

4.9 Pulse Extraction

The computed threshold is applied to the smoothened magnitude envelope to extract
one or more boundary pairs. Only boundary pairs that are at least 5 frames (93.75 ms)
wide and whose peaks are at least 0.1 units above the threshold are considered to be
of speéch. These values were empirically deduced. The boundaries thus obtained are
the beginning and ending frame boundaries. The first sample of the beginning frame
and the last sample of the ending frame are the final'output of our word boundary
detection algorithm. Figure 4.12 shows how the computed threshold is applied to

extract a speech pulse.

0.9

0.8

0.7

0.6

0.5

threshold = 0.4037

0.4

Normalized Magnitude

0.3

0.2

0.1

|
l
l
I
|

start l end

—] 1 i 1
a} 20 40 B0 80 100 120 140 160 180 200
Frame Index

Figure 4.12 pulse extraction
56

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

An advantage of using the LPC smoothener over other smootheners is that the LPC
smoothener tends to pfoduce an magnitude envelope with only one peak per word
(assuming the recorded speaker is speaking at a normal speed) as seen in Figure 4.13.
In many cases, this precludes the added algorithm complexity of accommodating
multiple magnitude pulses, wherein the algorithm has to decide whether the distinct
peaks are of the same word or separate words. In the case of the LPC smoothener,

each distinct pulse tends to be of a single word.

57

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

08

[ud:3 8
0.4

03¢

4.2

0.4 ¥

A&

2 i 3
[02 1.4 85 na] k3] 1.4 1.8 1.8 2
ssrnple index » 45t

[13:2 3
0.8 linar srmooihenes T
[l ® "
06} “
0.5

1.4

Honradized Magitude

03
0.2
.9

23 . 3] A0¥ Bk B0 {0 20 T4 1863 1R 200
frame index

0%
3.7+ LEAC semootherer
oBk
0.5 -

0.4 F

Homalized Macpiude

035
D35
0.9 : .
“ e W & P 4 . 4 ‘ m
23 AL B "/l 300K 120 40 a0 180 200

frowavee inade

Figure 4.13 LPC smoothener produces only one pulse per word.

But in cases where the smoothened distance envelope does contain more than one
peak, the algorithm initially computes a boundary pair for each peak. However, if the

end boundary of a boundary pair is less than 5 frames from the beginning boundary of

58

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

the following boundary pair, then the algorithm combines both boundary pairs into
one. Such cases arise in the event of multiple words per recording. However, these
cases are not within the scope of this thesis, as all the test recordings are of single

words.

59

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 5

TESTING

This chapter describes the testing performed to compare the performance of several

word boundary detection algorithms.

5.1 Testing Overview

5.1.1 Baseline Testing

All 90 of the noise-free test recordings were randomly fed to the SAPI based word
recognizer 10 times each and the accuracy of the recognizer was noted, as shown in

Figure 5.1.

Clean Test Recognition
Files WORD Results
s RECOGNIZER

Figure 5.1 baseline testing

The recognizer was able to recognize all of the clean test files with 100% accuracy.
Given this result, we assume that any recognition error made by the recognizer during
the course of testing a boundary detection algorithm can be attributed to the algorithm

and not the word recognizer.

60

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

5.1.2 Algorithm Performance Testing

Testing the various word boundary detection algorithms involved testing these
algorithms against prerecorded noisy speech files and attempting to measure the

accuracy of the computed boundaries using a word recognizer as shown in Figure 5.2.

Noisy Test Extracted
Files RESEARCH Speech Files WORD Recognition
TOOL RECOGNIZER ’ Restults

Manuai Boundary
. L
Boundaries Errors

Figure 5.2 overview of test setup

The tcsting tool (as described in the Chapter 3) and the word recognition system were
the main tools in this setup. The testing tool computed word boundaries of noisy
speech segments and these boundaries were applied to the corresponding clean speech
segments (the speech segments before superimposing noise). The word recognition
system in turn attempted to recognize these speech segments. If the recognition
system recognized the segmented clean speech correctly, then it was assumed that the
boundaries were correctly computed. However, if the recognition system failed to
correctly recognize the segmented clean speech, then the computed boundaries were
deemed to be incorrect. A log Was maintained depicting all the WAV files tested

along with their recognition results (recognized or not recognized).

With this test setup, a correct recognition occurred if a boundary detector erroneously
computed the boundaries to be the first and last samples of the test recording. This

would incorrectly suggest high performance of the boundary detector. Hence a second

61

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

log was maintained depicting magnitudes of boundary errors committed by the

boundary detection algorithms.

Details of the test setup are given in the following sections.

5.2 Test Setup

The work involved in our testing was divided into three stages.

"~ 5.2.1 Stage 1:

Several noise-free speech segments were recorded from 3 different speakers. The set
of utterances consisted of the digits 0 to 9 . The 3 different speakers are described

below:

GENDER AGE

SPEAKERI1 : Male 29
SPEAKER2 : Male 30
SPEAKER3 : Female 32

These 'clean’ utterances were saved as WAV files with a sampling rate of 8 KHz and a
file length of 20,000 samples (2.5 sec). Several noise files were obtained either by
recording them or by downloading them from web sites. These sample noise files

were also of a sampling rate of 8Kz and 20,000 samples long. These noise files

62

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

include wind noise, fan noise as well as several colors of noise. During the course of
testing, these noise files were amplified and superimposed onto the ‘clean’ speech files
to produce 'noisy' speech files. The degree of amplification was determined by the
level of Signal to Noise Ratio (SNR) we desired. We employed 51 different SNR
values from 20dB to —30dB in 1dB intervals.

Noise

Recording

BOUNDARY Boundaries AFPPLY BOUNDARIES WAV fik
DETECTION TO CLEAN SPEECH - joscgie
ALGORITHM RECORDING

¥

Boundary
COMPARE WITH Enor
- MANUAL I—

BOUNDARIES

Figure 5.3 generation of test file

As shown in Figure 5.3, each WAYV file thus created was fed as input to 4 different
word boundary detection algorithms. Each algorithm extracted from each input file a
pair of sample numbers as proposed endpoints of the noisy utterance. These computed
endpoints were compared with manually deduced endpoints and the resulting
boundary errors were logged into an Excel file. Furthermore, the contents of the
original 'clean' utterance present between the above computed boundaries were saved
into a separate WAV files. These WAYV files were the final outputs of this stage. This
complete stage was implemented in Matlab. The number of WAYV files produced by

3 speakers uttering 10 numbers 3 times each, with 3 different types of superimposed

63

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

noise to form noisy speech recordings with 51 different SNR values, applied to 4

different algorithms = 3*10*3%3*51*4 = 55,080 files.

Details of the Matlab software used do create these files are provided in Section 3.3

5.2.2 Stage 2:

The WAV files generated above were given to the second stage which employed a
Microsoft SAPI (Speech Application Programming Interface) application. SAPI
provides an interface for applications to use the Microsoft Speech Engine as shown in

Figure 5.4.

APPLICATIONS
API
SAPI RUNTIME
DDI
RECOGNITION
ENGINE

Figure 5.4 SAPI overview

5.2.3 Stage 3:

The third stage involved recognition of all 55,080 files generated in stagel. The
speech recognition application attempted to recognize all of these WAV files in

" random order. The recognizer was developed in VC++ and employs SAPI to achieve

64

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

word recognition. Recognition results were logged into a six-dimensional matrix. The
six dimensions were for speaker, utterance, attempt at utterance, SNR value, noise
type, and algorithm. Once recognition attempts were made on all the files the matrix
was exported to an Excel sheet, from which graphs were plotted displaying
recognition accuracy against SNR values. It were these graphs along with the
boundary errors logged in Stage 1 that provided insight into the performance of our

word boundary detection algorithms under various levels of background noise.

Figure 5.5 presents an overview of the software developed to implement the
recognizer. The source code for the software is included in folder named Recognizer

on the CD located at the end of this document.

65

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

START

CONSTRUCT
STRING ARRAY OF
FILE NAMES

A

INITIALIZE GLOBAL
RESULTS MATRIX
OF ZEROS

INITIALIZE SAPI

RANDOMLY
CHOOSE FILE
NAME FROM
STRING ARRAY

A

CONFIGURE SAPI
TO RECOGNIZE
FILE

IS
RECOGNITION
CORRECT ?

YES INCREMENT
RESULTS MATRIX

HAVE ALL

FILES BEEN
RECOGNIZED h
?

YES

CLEAR SAPI

PARSE RESULTS
MATRIX AND PRINT
TO TEXT FILE

END

Figure 5.5 software for recognition of WAYV files

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Construct String Array of File Names

void CreateCell ()

int fileindex=0;
for (int isnr=0; isnr<MAXSNR: isnr++)

for {int inoise=0 ; inoise<MAXNOISETYPE ; inoise++)
for {int ialgorithm=0 ; ialgorithm<MAXALGORITHMS : ialgorithm++)
for (int ispeaker=0; ispeaker<MAXSPEAKERS: ispeaker++)
for (int iletter=0: iletter<MAXATTEMPTS:. iletter++)
{ for (int iutterance=0 . iutterance<HMAXUTTERANCE . iutterance++)}

wchar_t sun[MAXFILENAMELENGTH].
wchar_t =suml, *sum2. #*sum3, *sumi, *sum5, *sumb:
suml=snr[isnr]:

sum2=Noise[inoise];
sum3=Algorithm[ialgorithm};
sumd=Speaker[ispeaker]:
sumb=Iletter[iletter]:;

sumb=Ut terance[iutterance]:
wescpy(sum, suml}

wescat (sum, sun2)

wescat (sum, sun3) ;

wescat (sum, sund)

wescat (sum, sumb)

wescat (sum, sumb)

for{int i=0;i<HAXFILENAMELENGTH: i++)

Files[fileindex][i] = sum[i]:

fileindex++;

*sum = NULL;
suml = NULL:
sum2 = NULL;
sund = NULL;
sumd = NULL;
sunb = NULL:
sumbé = NULL;

Figure 5.6 construction of file name array

The snippet of code displayed in Figure 5.6 displays how a global string array is

constructed to contain the names of all the WAV files we want to be recognized.

Initialize Global Results Matrix

A global multidimensional matrix is initialized with zeros. This 'Results’ matrix is
used to store recognition results. Each element of the 'Results' matrix corresponds to
one file from the global string array. Every correct recognition of a file increments its

corresponding matrix element by one.

67

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Initialize SAPI

CComPtr<ISpStream> cplnputStream;
CComPtr<ISpRecognizer> cpRecognizer:
CComPtr<ISpRecoContext > cpRecoContext:
CComPtr< ISpRecoGrammar> cpRecoGrammar:

Since SAPI is a COM (Component Object Model) based application, COM must be
initialized to activate SAPIL. The main interface SAPI provides for speech recognition
is the IspRecoContext COM interface. It is from this interface that SAPI receives
requests for speech recognition. The application must set up one of two available
speech engines using SAPI's IspRecoContext interface. The engine used for out
testing was the InProc speech recognition engine. The application also has to specify
a grammar using SAPI's IspRecoGrammar interface. This grammar essentially
dictates the type of utterances to be recognized, and is defined in an XML format. The
XML file defining the grammar used in our testing limits recognition to one of ten
possibilities, namely the digits 0 to 9. Figure 5.7 shows the XML file defining the

grammar used in our testing.

<GRAMMAR LANGID="409">
<DEFINE>
<ID NAME="DIGIT" VAL="3"/>
</DEFINE>
<RULE NAME="DIGIT" TOPLEVEL="ACTIVE">
<L PROPNAME="DIGIT">
<P VALSTR="Zero">Zero</P>
<P VALSTR="One">One</P>
<P VALSTR="Two">Two</P>
<P VALSTR="Three">Three</P>
<P VALSTR="Four">Fowr</P>
<P VALSTR="Five">Five</P>
<P VALSTR="Six">Six</P>
<P VALSTR="Seven">Seven</P>
<P VALSTR="Eight">Eight</P>
<P VALSTR="Nine">Nine</P>
</L>
</RULE>
</GRAMMAR>

Figure 5.7 grammar for recognition of digits 0 to 9

68

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Randomly Choose File Names From String Array

S;@Q —_—

S.0) RANDOM S, () SPEECH
2 T NUMBER » RECOGNITION |+ Excel Report
| | ceneraTOR APPLICATION

S 55.080 () ——

Figure 5.8 testing procedure

Figure 5.8 displays how WAV files are randomly chosen to be recognized by the

recognizer to prevent any 'learning' by the recognizer.

Configure SAPI To Recognize WAY File

hr = SPBindToFile(file name, SPFM_OPEN_READONLY.é&cplInputStream, NULL,NULL):
hr=cpRecognizer.CoCreatelnstance{CLSID_SpInprocRecognizer):
hr=cpRecognizer->SetInput (cpInputStrean, FALSE}:
hr=cpRecognizer->CreateRecoContext (&cpRecoContext) ;
hr=cpRecoContext—->CreateGrammar(3, &cpRecoGrammar):
hr=cpRecoGranmar—>LoadCndFronFile(L"tenp.xnl" SPLO_STATIC)
hr=cpRecoContext->SetInterest (SPFEI(SPEI_RECOGNITION) , SPFEI (SPEI_RECOGNITION));
hr=cpRecoGrammar->SetGrannarState{SPGS_ENABLED) :
hr=cpRecoGrammar—>SetRuleIdState(0,SPR5_ACTIVE)

BOOL fRecognition = FALSE:

while ((!fRecognition) && 5 OK == cpRecoContext->WaitForNotifyEvent(2700})
{

] CSpEvent spEvent; ’
while (!fRecognition && S_OK == spEvent . GetFrom{cpRecoContext})

switch (spEvent.sgEventId)
{
masae SPEI_RECOGNITION:
static conzt WCHAR wszUnrecognized[]=1"<Unrecognized>" .
dstrText . Append(L""):
fRecognition=TRUE;
brealk:
¥
if (wecsstr{file name.dstrText) |= NULL)
{

result=1;

spEvent .Clear(}:

The application has to set up events used by SAPI to communicate with the
application and also specify which events it wants to be notified of. Examples of
event notifications provided by SAPI are SPEI SOUND_START,

1SPEI_SOUND_END, SPEI_SR_END_STREAM and SPEI_RECOGNITION.

69

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

A SAPI stream object is set up with each WAV file to be recognized. An in-process
speech recognition engine is configured and each WAV file is bound to the engihe. A

recognition context is configured to store the required SAPI events.

Increment Results Matrix

if (resultRecognized ==1)

AddToMatriz(file name):

Whenever a WAV file is correctly recognized, its corresponding element in the global
'Results’ matrix is incremented by one. Incrementing does not occur if the recognizer
makes an incorrect recognition. Thus, upon completion of testing, the value of each
element denotes the total number of successful recognitions of its corresponding test
WAV file. As the maximum possible value of each matrix element (corresponding to
all successful recognitions) is known, the value of each element denotes the

recognition accuracy of the tested algorithm for that particular test WAV file.

70

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Parse Results Matrix And Print To Text File

void PnntText.(){
FILE » pFile:
pFlle = fopen(“Results. txt”, “w+"};
int ResultSet[l{AXUTTERANCE][HAXSNR] = {0.0}; //For Utterance vs SNR
for (int ialgorithm=0 : ialgorithm<MAXALGORITHMS . ialgorithmi+)
{

wchar_t algoName[30]:

wcscpy(algDNane LAlgoxrithm: ").

wescat (algolane, Algorithr{ialgorithel);

for (int inoise=0 [inoise<MAXNOISETYPE : inoise++)

wchar_t noiseName[30}:

vwcsepy(noiseHane, L"Noise: ");

wescat {noiseNane, Noise[inoise]):

for (int ispeaker=0; ispeaker<MAXSPEAKERS: ispeaker++)
{

wchar_t speakerName[30}:

wesepy speakerNane, L Speaker)
wcscat
for (int iletter=0: 11etter<MAXATTEMPTS iletter++)

for (int isnr=0. isnr<MAXSNR. isnr++)

for (int iutterance=0 ; iutterance<HAXUTTERANCE : iutterance++)

RecultSet[iutterance]{isnr] += Results[iutterance]}{isnr][ispeaker}[iletter][ialgorithn]{inoise];

}

#/Print To File
if (pFile!=NULL)
{

f'rlte(algo“ame 1,30.pFile):;

fprintf{pFile, "~n");

furite(noiseNane, 1,30, pFile);

fprintf(pFile,"~n")

fvrxte(speakexlhne 1.30,pFile):;

fprintf (pFils. "\n"):

for(int sLine=MAXSNR-1:sLine>=0:sLine--){
fprintf (pFile, "\t"):
fwrite(snr[sLine],1,7.pFile);

fp:nntf(phle *\n").
for({int si=0.si<MAXUTTERANCE: si++){
fvrite(Utterance[si]}.1,7, prla)
for(int sj=MAXSNR- 1 s;|>=0 ~){
fprintf(pFile, " \t/d“ RasultSet[s1][s;|])
ResultSet[si}{sj}=0:

}
fprintf(pFile. "\n");
L
fprintf(pFile. "“n\n\n");
}

¥
%:lose(pFila) :

After the recognizer attempts to recognize all the files present in the global string

array, the 'Results’ matrix is parsed and the results are printed to a text file.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

71

CHAPTER 6

RESULTS

This chapter presents the results of testing performed using the testing tool and SAPI
driven recognizer configured in this thesis. We also present a comparison of the

performances of the algorithms tested in this thesis.

6.1 Preliminary Results

Our testing tool allows the user to select or deselect the use of a preemphasizer and to
select one of 3 available smootheners. All of the algorithms tested in this thesis have

used the preemphasizer and an LPC smoothener provided by our testing tool.

Preemphasis

We employed preemphasis in all of our testing to remove low frequency background
noise. Figure 6.1 shows the recognition accuracy obtained from testing a Mel
Frequency Cepstral Coefficient (MFCC) algorithm with several noisy speech files.
Testing was perfdrmed once without using preemphasis and once using preemphasis.

The results shows the benefit of using preemphasis.

72

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

100 T T T U ¥ T ¥ ¥ T

o
f1sd
§ 80T No Preemphasis
2 ,
- BOF
8
T 40}
[
o
a 20}
o
S i
30 25 20 -5 -10
= 100 T T T T T T T
(&)
o
2 80 Preemphasis 4
g
S 60 .
‘E
S
g 40 1
o
39‘ 20 1 i 1 1 1 I 1 —1 A
30 25 280 15 10 5 0 5 10 15 20
SNR (dB)
Figure 6.1 preemphasis vs no preemphasis
LPC Smoothening

In this thesis, we introduced an LPC smoothener used to smoothen magnitude
envelopes to make it easier to apply thresholds to extract speech. We used this LPC
smoothener throughout the testing performed for this thesis. Figure 6.2 displays the
results of testing the 'Time Magnitude' algorithm with various noisy speech files using
several smootheners. Compared to the other smootheners, the LPC smoothener

allowed for the highest recognition accuracy.

73

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

100 ¥ T Y T Y ¥ T T T
No.Smoothener

% Accuracy
g
T
L

0 1 1 1 1 1 1 I 3 1

30 2% 200 15 10 5 0 5 10 15 20

Linear Smoothener
so |-

% Accuracy

1 1 i
30 25 200 15 -0 -5 0 5 10 15 20

Median Smoothener

% Accuracy

0 L1 1 1 [1
30 25 20 -5 -10 5 1] & 10 15 20

100 .
LPC Smoothener

% Accuracy

[I 9
iy
—
O
e
(8]

1
-10 5
SNR (dB)

1 i 1
30 23 200 15 20

Figure 6.2 performance of various smootheners

6.2 Testing

Our testing tool provides a means of comparing and contrasting the performance of
various word boundary detection algorithms. We have tested 4 well know algorithms
using 3 different speakers and 3 different types of npise. The performances of these
algorithms are compared using two measures: recognition accuracy and boundary

CIrors.

74

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Recognition Accuracy

The recognition accuracy is a measure of how well the SAPI driven recognizer is able
to recognize clean speech segments with boundaries computed by a word boundary

detection algorithm.

Boundary Error

The boundary error is a measure of how close the computed boundaries are to the

manually deduced boundaries. The boundary error is measured as:

Boundary Error = Manually Deduced Boundary — Computed Boundary

Boundary errors are positive when the computed boundaries lie to the left of the
manually deduced boundaries and are negative when the computed boundaries lie to
the right of the manually deduced boundaries. When the computed begin boundary
error is negative or the computed end boundary error is positive, then that computed
boundary is said to lie within its manually deduced counterpart, and part of the speech
signal is lost. However, if the computed begin boundary error is positive or the
computed end boundary error is negative, then that computed boundary is said to lie

outside its corresponding manually deduced counterpart and no speech signal is lost.

In the following sections, we present the results obtained from testing four algorithms
for their recognition accuracies and boundary errors. All four algorithms employed
the same 1* order preemphasizer, frame length of 150 samples and frame overlap of
50 samples, a Hamming window, an LPC smoothener and a threshold calculated from

the smoothened magnitude envelope s[i] by:

75

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

threshold = 0.3 + _22(])5(2')

1=

6.2.1 The Time Algorithm

Recognition Accuracy

Figure 6.3 displays the recognition accuracy of the Time algorithm against SNR
values from -30dB to 20dB. The algorithm displayed an accuracy of 98% at 20dB and

deteriorated at lower SNR values.

Time Performance

100 T T T T T T T T
) t i) 1 ' 1
i t 1 I | 1
95 | - - - - B s T ———— k- - ——] e e s e B
P | t t |
| t i [i
Q0L - -l Ll __._ om0l ________

851 ----

80| ----

e S
et

D

% Recogrition Accuracy
N
ol

| ! | 1
| 1 i | |
i | | I I |
70 """ T - i R [L St e e ‘{
I i | i] | | 1
| i | } | 1 | i
65 77777 + _—— - e - = I U I — e I RO U U U Y S —
I I i I i t i !
1 3 1 t) | !
A R L e e e A R
! } i i i I | |
e -
1 I | 1 } t ! I
i | | | | 3 ! t
50 1 - i L I i i 1
-30 -25 -20 -15 -10 -5 0 5 10 15 20
SNR (dB)

Figure 6.3 recognition accuracy of the Time algorithm

The performance of the Time algorithm was less than perfect even at SNR values as
high as 20dB. Further investigation revealed that this was mainly due to the

algorithm's difficulty in accurately computing boundaries for the utterance 'six". An

76

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

example of this limitation is shown in Figure 6.4, wherein the algorithm failed to

accurately compute the end boundary of the utterance ‘six’ at an SNR of 20dB.

The Literance "ix™ ar 2048
1 ¥

o
n

2
&=
=
& D54 1 : -
= prariusl begin manual end
4 .
’-t .5 3 =l.‘ i X L 1. . k3 £ L d
o b2z D4 D8 08 1 1.2 14 1B 18 2
. gample index 5« 1m0t
'g ¥ i) L3 LA ¥ ¥ £ ¥ ¥
% 8k ;‘ Z_ Energy Bavelope ;
= 06r comped threshold ; | I

2 0af
o
g 2 ;;__W"'//
= ’
0 e 3 3

i i 43 B3 = 4] 100
frame index

20 140 W0 Bk 2

Figure 6.4 an example of the failings of the Time algorithm

Boundary Errors

The probability distribution functions (PDFs) of boundary errors and the distributions
of the positions of the boundary errors relative to their manually deduced counterparts
are shown in Figure 6.5 to Figure 6.12. These distrilﬁ_utions are shown for several
ranges of SNR values to provide insight into the performance of the Time algorithm

under these ranges.

The PDFs of begin and end boundary errors of the Time algorithm under SNR values
from -30dB to 20dB are shown in Figure 6.5. The distributions of begin and end

boundaries were found to be bimodal with means and standard deviations as shown.

77

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

x10% PDF of Begin Boundary Erors x10* PDF of End Boundary Emrors
g v ; T 8 T T T T

7 7
6 6l 1
5L mean = 363.2413 1 sl i
> std = 671.6139 -
24 24 1
K g
o o

3 mean = -7601,2352
std = 1307.5586

69.5643 %

mean = -1170.7277
1L std= 12775159

mean = -5458.5657
1} std=1855.6136

e L I3 1 0 1] L L i
-5 -1 05 0 0.5 1 45 -1.5 -1 05 0 0.5 1 1.5
Boundary Detection Emor (samples} x 10" Boundary Detection Emor (samples) w10t

Figure 6.5 PDF of boundary errors from (Time Algorithm, -30dB to 20dB)

Figure 6.6 shows the distribution of boundary error pbsitions for SNR values from -
30dB to 20dB. It can be seen that roughly 52% of computed begin boundaries and

90% of computed end boundaries lay within their manually deduced counterparts.

Lt
=
%
A
3
a
=]
S
£
=
41.1547 % 488017 %
< g
-ive Begin Boundary Error +ive Begin Boundary Error
26013 % 34423 %
{ boundsries include complete speech sighal)
x
r
2
=4
&
=3
i
£

Figure 6.6 boundary error positions (Time Algorithm, -30dB to 20 dB)

78

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

The PDFs of begin and end boundary errors made by the Time algorithm under SNR
values from 10dB to 20dB are shown in Figure 6.7. The distributions of begin and end
boundaries were found to be bimodal and trimodal respectively with means and
standard deviations as shown. The recdgnition accuracy of the Time algorithm against
this range of SNR values was greater than 94%. This high performance is reflected in
the small magnitudes of the means and standard deviations as well as the large sizes

of the primary modes relative to the other modes of the distributions.

x 0% PDF of Begin Boundary Erors o 10t POF of End Boundary Errors

7k mean = 53.1017

std = 519.6756 mean = -389.0678

std = 634.3076
6 49.3939 %
96.9697 %

Probability
B

Probability
£

3 mean = -2170.5858
std = 232.8434
2z 9.0236 %
mean = 1748.2889
std = 350.8989 4 1| mean = -3423.4167

std = 296.3534

3.0303 % 16162 %
1 J L I 0 1 i1 |
-15 -1 05 0 0.5 1 15 -15 -1 0.5 0 05 1 15
Boundary Detection Error (samples) x1 04 Boundary Detection Emor (samples)

Figure 6.7 PDF of boundary errors (Time Algorithm, 10dB to 20dB)

Figure 6.8 shows the distribution of computed boundary positions relative to their
manually deduced counterparts for SNR values from 10dB to 20dB. It can be seen
that 54% of computed begin boundaries and 74% of computed end boundaries lay
within their corresponding manual boundaries. In spite of these seemingly
unfavorable results (favorable results would have computed boundaries lying outside
their manually deduced counterparts), the algorithm displayed high recognition

accuracy. This would suggest that even if the computed boundaries lie within the

79

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

manually deduced boundaries, recognition accuracy is not harmed as long as the

magnitudes of boundary errors are small.

'y Error

418855% | 32.1549%
-ive Begin Bo‘fndary Error +ive Begin Bou:dary Error
126936 % 13.2660 %
5 [boundsaries include plete speech signal)
>\“‘

~ive End Boundar:

Figure 6.8 boundary error positions (Time Algorithm, 10dB to 20dB)

The PDFs of begin and end boundary errors made by the Time algorithm under SNR
values from -19dB to 9dB are shown in Figure 6.9. The distributions of begin and end
boundaries were found to be bimodal with means and standard deviations as shown.
The recognition accuracy of the Time algorithm against this range of SNR values was

found to be between 75% and 97%.

80

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

x10* PDF of Begin Boundary Erors % 10* POF of End Boundary Errors
7 T T T T T

v T T T

mean = 508.2201
std = 6354747

80.4215 %

-

mean = -7635.3903
std = 1276.6488

Probability
Prabability

(2]
-

1| mean= -1259.5927
std = 1167.4884

1+ . mean = 4931.2335
std = 2139.7684

L

.5 -1 0.5 0 05 1 15 -1.5 -1 £5 0 0.5 1 1.5
Boundary Detection Error (samples) <1 Boundary Detection Emor (samples)

Figure 6.9 PDF of boundary errors (Time Algorithm, -19dB to 9dB)

Figure 6.10 shows the distribution of boundary error positions for SNR values ranging
from -19dB to 9dB. It can be seen that 62% of computed begin boundaries and 92%
of computed end boundaries lay within their corresponding manually deduced

boundaries.

y Error

‘gn

&

2

W

%

Coi213% 372414 %
-iwe Begin Bo:ndary Error +ive Begin Bouerary Error
55284 % 1.0089 %

51 { boundaries include pl peech signal)
=

o

2y

Figure 6.10 boundary error positions (Time Algorithm, -19dB to 9dB)
81

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

- The PDFs of begin and end boundary errors made by the Time algorithm under SNR
values from -30dB to -20dB are shown in Figure 6.11. The distributions of begin and
end boundaries were found to be bimodal with means and standard deviations as
shown. The recognition accuracy of the Time algorithm against this range of SNR
values was less than 75%. This is reflected in the large magnitudes of the means and

standard deviations of the primary modes of the distributions.

x10% PDF of Begin Boundary Errors «10* PDF of End Boundary Emors
[6t
5 5t
>4F =4
= =
2 2 mean = -7522.4475
o - = =. ’
a3 mean = -5788.2624 =3 sid = 13587316
std = 1694.6072
s 2t B
1t STO04% fnean =-1014.1218 . 1t mean = 34022022
std = 1582.7477 std = 1751.793
/ 129
0 I 1 L L 0 , X
15 -1 0.5 0 05 1 15 -15 -1 05 0 0.5 1 1.5
Boundary Detection Emor (samples) x 10" Boundary Detection Emor (samples) %10

Figure 6.11 PDF of boundary errors (Time Algorithm, -30dB to -20dB)

Figure 6.12 shows the distribution of computed boundary positions relative to their
manually deduced counterparts for SNR values from -30dB to -20dB. It can be seen
that 4% of computed begin boundaries and 99% of computed end boundaries lay

within their corresponding manual boundaries.

82

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

+ve End Bouidary Error

36027 % 959259 %
-ive Begin Bofndary Ervor +ive Begin Bouirdary Error
04377 % 0.0337 %

(boundaries include complete speech signal)

y Error

&
.«

-ive End Boundar

‘Figure 6.12 boundary error positions (Time Algorithm, -30dB to -20dB)

6.2.2 The LPC Algorithm

Recognition Accuracy

Figure 6.13 displays the recognition accuracy of the LPC algorithm against SNR
values from -30dB to 20dB. The LPC word boundary detection algorithm displayed
an accuracy of 98%. at an SNR of 20dB and its performance deteriorated gradually

below SNR values of SdB.

83

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

LPC Performance
100

T T T L — T T
t] 1 1 1] t I
] 1] [i ! 1]
90 ---- i et s e T i Al i ity
| I I I | | | |
| I I I i | ! |
80 fffff | OV U PO 0 N U U U
] 1 I 1] | 3 1
| | | | | I ! I
| | | I | | ' i
g 70F----~ [el sttt s Fmmr— g ——— - — - —
I | I ' d I 1 |
1 1 1 i] i t]
§ 60 ---- [N L N L AU S
i ! T
5 | : : I] :
= |) | | 1 i
§ 50 -~~~ et e e T e e
! ! | | | I
| i ' | | I
40+ -~--- g 2 Sy VA TV U
S i l i i t 1
| \ I i ! |
S R I /S S]
| 1 | | | |
o | | |) |
200 S
; I | | I | | ! I
10)) : : l ! : : :
-30 -25 -20 -15 -10 -5 0 5 10 15 20
SNR (dB)

Figure 6.13 recognition accuracy of the LPC algorithm

Boundary Errors

The probability distribution functions (PDFs) of boundary errors and the distribution
of the positions of the boundary errors made by the LPC algorithm are shown in
Figure 6.14 to Figure 6.21. These distributions are shown for several ranges of SNR
values to provide insight into the performance of the LPC algorithm under these

ranges.

The PDFs of begin and end boundary errors made by the LPC algorithm under SNR
values from -30dB to 20dB are shown in Figure 6.14. The distributions of begin and
end boundaries were found to be bimodal with means and standard deviations as

shown.

84

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

x10* PDF of Begin Boundary Emors x 10* PDF of End Boundary Eors
T T T 8 v T T T

—

-

7 7
6 6
5| 5+
= =
E 4 mean = 177.4614 g 4 mean = 418.2052
3 std = 890.7744 k)
o a std = 846.2817

L

68.9292 %] 2 .
mean = -4414.7901 60.6814 %

H std= 1510.7229

mean = -6280.3275
1 std=2075.5354

5 - 05 0 05 1 15 A5 4 05 0 05 1 15

Boundary Detection Emor (samples) w10t Boundary Detection Emor {(samples}) x10*

Figure 6.14 PDF of boundary errors (LPC Algorithm, -30dB to 20dB)

Figure 6.15 shows the distribution of boundary error positions for the SNR values
ranging from -30dB to 20dB. It can be seen that roughly 64% of computed begin
boundaries and 20% of computed end boundaries lay within their manually deduced

counterparts.

ui
ey
5
A
&
-
&
2
0.0 % 20177 %
-ive Bagin Bo:ndary Error +ive Begin Bou;dary Error
54,3097 ¥ 15513 %
5 (boundaries include complete speech signal)
&
=
&
Y
3
&
=
]
¢

Figure 6.15 boundary error positions (LPC Algorithm, -30dB to 20dB)
85

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

The PDFs of begin and end boundary errors made by the LPC algorithm under SNR
values from 5dB to 20dB are shown in Figure 6.16. The distributions of begin and end
boundaries were found to be bimodal with means and standard deviations as shown.
The recognition accuracy of the LPC algorithm against this range of SNR values was
greater than 93%. This is reflected in the small magnitudes of the means and standard

deviations as well as the large sizes of the primary modes relative to the other modes

of the distributions.
* PDF of Begin Boundary Emors * PDF of End Boundary Errors
X 10) 8 x 10
7 7
6l mean = -65.5422 6

std = 721,449
o : hean = -308.2002
I std = 960.92 1

Probability
o

Probability
-

97.2164 %
98.1907 %

e
mean = -4599.0256 mean = -5826.375
1 std = 995.4927 1 std = 1605.1844
1.8093 % 27836 %
0 i | 1 0 1 1 R
-15 -1 0.5 1] 0.5 1 15 -1.5 -1 0.5 0 0.5 1 1.5

Boundary Detection Error (samples) 4 Boundary Detection Error {samples) 4
x 10 x 10

Figure 6.16 PDF of boundary errors from (LPC Algorithm, 5dB to 20dB)

Figure 6.17 shows the distribution of computed boundary positions relative to their
manually deduced counterparts for SNR values from 5dB to 20dB. It can be seen that
62% of computed begin boundaries and 41% of computed end boundaries lay within

their manually deduced counterparts

86

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

y Error

L

A

2

2

=

15

2

F

23867 % 377407 %
-ive Begin Bo;ndary Error +ive Begin Boun’dary Error
588727 % 0%

3 [boundaties include complete speech signal }
S

L

oy

=1

2

-

P

2

Figure 6.17 boundary error positions (LPC Algorithm, 5dB to 20dB)

The PDFs of begin and end boundafy errors made by the LPC algorithm under SNR
values from -24dB to 4dB are shown in Figure 6.18. The distributions of begin and
end boundaries were found to be bimodal with means and standard deviations as
shown. The recognition accuracy of the LPC algorithm against this range of SNR

values was found to be between 15% and 92%.

x 107 POF of Begin Boundary Emors x 10° PDF of End Boundary Errors
g
8 T g T T T 8 ; T ™ T
7 7t
8 6
5 5t
Z Z
g4 g4
ng mean = 547.918 g mean = -1025.2997

1L std = 905.6998 i 3t std = 1009.3318

mean = -4320.2897 [mean = -7013.0168 56.7439 %

std = 1624.9647

56.947 %

. . . . :
-1.5 -1 -0.5 0 0.5 1 15
Boundary Detection Error (samples) 4

Figure 6.18 PDF of boundary errors (LPC Algorithm, -24dB to 4dB)
87

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Figure 6.19 shows the distribution of boundary error positions for SNR values ranging
from -24dB to 4dB. It can be seen that 40% of computed begin boundaries and 92%
of computed end boundaries lay within their corresponding manually deduced

boundaries

+ive End Boundary Error

33.3051 % 81147 %
-jve Begin Bo:ndary Error +ive Begin Bomilary Error
6. 7016 % 1.8785 %

(boundaries include

plete speech signal }

-ive End Boundary Ert ..

Figure 6.19 boundary error positions (LPC Algorithm, -24dB to 4dB)

The PDFs of begin and end boundary errors made by the LPC algorithm under SNR
values from -30dB to -25dB are shown in Figure 6.20. The distributions of begin and
end boundaries were found to be bimodal with means and standard deviations as
shown. The recognition accuracy of the LPC algorithm against this range of SNR
values was less than 15%. This is reﬂectéd in the large magnitudes of the means and

standard deviations of the primary modes of the distributions.

88

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

x 10* PDF of Begin Boundary Erors x 1% POF of End Boundary Emors
T T T T v 8 T T T T

™

7 7
6 6}
5 5
= frd
2 =
3 ¢ mean = 4247.9029 2 4 mean = -7115.7369
a std = 1492.6444 & sid = 1283.4062
3 <‘ 3 1
2r 2
mean = 809.92 mean = -1307.3913
1+ = g 1t =
95,3704 9 std = 903.8694 std = 435.2166
4.6296 % 42593 %
c 1 1 1 | I3 0 1 1 1]]
A5 B 0.5 0 05 1 15 15 -1 0.5 0 05 1 15
Boundary Detection Emor (samples) 10) Boundary Detection Emor (samples) 1ot

Figure 6.20 PDF of boundary errors (LPC Algorithm, -30dB to -25dB)

Figure 6.21 shows the distribution of computed boundary positions relative to their
manually deduced counterparts for SNR values from -30dB to -25dB. It can be seen
that 4% of computed begin boundaries and 100% of computed end boundaries lay

within their corresponding manual boundaries.

5

ui

oy

]

g .

2

o

S

2

¥

3.8889% 261111 %
< >
-ive Begin Boundary Error +ive Begin Boundary Error
B 0%

x5 [boundaries include complete speech signal)
&

>

g

1Ad

3

8

b=

P

t

Figure 6.21 boundary error positions (LPC Algorithm, -30dB to -25dB)
89

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

The LPC algorithm failed to compute any boundaries for numerous test files, most of
which contained white noise at very low SNR values. Figure 6.22 indicates the

percentage of all test files that the LPC algorithm failed to compute boundaries for.

35 T T T T T T T T T
3]] 3 t 3
o : : : : : : 1 : : |
o) S R B CEEEEE Rl EREE EEEE
8 I I 3 3] L] 1
]] I I t] | b
5 sl N B N . L]
H]] 1 I I i]
§ ¥ I] { I] i 1
]] I | i 3 1 i
t
§ S S R A oot
3]] I i] !]
]] } !]] 3 I
] t i] 1 1 | 1
15 ————— t--— - - - [ttt B s Bl v == === L afheii s Ml | Rt
g ! : : : : ! : |
¥ t] | 3 i i]
0L+ o R R O L o]
2 : : : ! : ! | !
8 i 3 | i I] I i
A R S N S S S U S S L
& ! : ! : ! ! ! ! !
o~ |] | i i | 1 1 1
o ! ! : : ! : ! | :
-30 -25 -20 -15 -10 -5 o} 5 10 15 20
SNR (dB)

Figure 6.22 % of files with no boundaries detected

Figure 6.23 shows an example where the LPC algorithm failed to compute boundaries

for one of the test files.

90

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

anrplitude

samples x 10
1 Smoothened Vector of Abowve Test File
§ smoothened energy enwelope
'E, -7 tweshod i
§ 0.5+ B
E o] 1 1 L 1] 1
(V] 20 40 60 80 100 120 140 200

frame index

Figure 6.23 no boundaries detected”

6.2.3 The LFCC Algorithm

Recognition Accuracy

Figure 6.24 displays the recognition accuracy of the LFCC algorithm against SNR
values from -30dB to 20dB. The LFCC word boundary detection algorithm displayed

an accuracy of about 100% at 20dB and an accuracy of around 95% at 0dB.

91

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

LFCC Performance

100 T T T T T T
i | i 1 3
I I i) ' I
90 - -~ - P P SR S ZC O T o v
I ! + 1 3 1
I | ' i ' I
80 ---- :77774:47777"777"‘*777TAf*ffv*fAifan‘Tff_‘T 77777
I !) i I I I
R S S S S RN SR SRS SR S
I I 1 i | } |
g I I 1 | I | |
60—~ - R e 3 S
§ I I 1 I | ; |
I I ! | i | |
L e B L T B St SR
! t 1 !] 1 ' }
g who S SN SO SN
I I ' I i ! :
i I ! I i I I
B4 30L---- T) A S T T Y T R
| I | : I ! :
| i
i B R e e
' ' i I | | I I
7 SO R /o AN S AU SR SN U S S
i |] | 1 I | ' |
| ! I i I I ' I
o i 1 1 L 1 L L 1 i
-30 25 -20 -15 -10 -5 [¢] 5 10 15 20
SNR (dB)

Figure 6.24 recognition accuracy of the LFCC algorithm

Boundary Errors

The probability distribution functions (PDFs) of boundary errors and the distributions
of the positions of the boundary errors made by the LFCC algorithm are shown in
Figure 6.25 to Figure 6.32. These distributions are shown for several ranges of SNR
values to provide insight into the performance of the LFCC algorithm under these

ranges.

The PDFs of begin and end boundary errors made by the LFCC algorithm under SNR
values from -30dB to 20dB are shown in Figure 6.25. The distributions of begin and
end boundaries were found to be trimodal with means and standard deviations as

shown.

92

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

10 PDF of Begin Boundary Ertors

= mean = -21.3503
o4 _
= std = 806.1587
[
o
3 L
63.1659 %
24
mean =_ -4102.4556 mean = 7664.5776
1 std = 13411059 std = 1718512 1
0
; 2818% 8.9592%
A5 1 05 0 05 1 15
Boundary Detection Emor (samples) 10

< 10* PDF of End Boundary Errors
8 . . : —
7
8
5
z
=4
2 mean = 417.6001
o std = 960.1114

59.425 %

mean = -6264.3237
std = 1403.7498 mean = 5556.0738
std = 1233.7595

8.0859 %

) .
05 0 0.5 1 1.5
Boundary Detection Eror {samples) X0

Figure 6.25 PDF of boundary errors (LFCC Algorithm, -30dB to 20dB)

Figure 6.26 shows the distribution of boundary error positions for SNR values ranging

from -30dB to 20dB. It can be seen that roughly 38% of computed begin boundaries

and 70% of computed end boundaries lay within their manually deduced counterparts.

&

by

'g,

[}

g

¢
23.1878 % 473945 ¥

“ive Begin Bo:ndary Error +ive Begin Boundary Error
15.2547 % 141630 %
[boundaries include pl peech signal }

g

§\'

Z

£

Figure 6.26 boundary error positions (LFCC Algorithm, -30dB to 20dB)

93

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

The PDFs of begin and end boundary errors made by the LFCC algorithm under SNR
values from 0dB to 20dB are shown in Figure 6.27. Tﬁe distributions of begin and end
boundaries were found to be bimodal with means and standard deviations as shown.
The recognition accuracy of the LFCC algorithm within this SNR range was greater
than 95%. This high performance is reflected in the small magnitudes of means and
standard deviations of the primary modes as well as the large sizes of the primary

modes relative to the other modes.

x10? PDF of Begin Boundary Erors x10° POF of End Boundary Emors
R
7 7t
6 mean = -178.7321 A 6
mean = -149,3209
99.5414 % std = 648.7137) std = 820.3194
51 5
= =
= 5, 97.7778 %
s K
o. [a %
3+ 3t
2 24
mean = -4333.36 mean = -3778.5952
i std = 1554.8517 i 1 std = 1315.4085
0.44002 % 2.2222 %
0 I I L) 1 0 I L L L
-15 -1 0.5 0 05 1 1.5 -1.5 -1 0.5 0 0.5 1 15
Boundary Detection Eror (samples) 1 Boundary Detection Emor (samples) x10

Figure 6.27 PDF of boundary errors (LFCC Algorithm, 0dB to 20dB)

Figure 6.28 shows the distribution of computed boundary positions relative to their
manually deduced counterparts for SNR values from 0dB to 20dB. In spite of the
algorithms high recognition accuracy in this range SNR range, it can be seen that 37%
of computed.begin boundaries and 54% of computed end boundaries lay within their

manually deduced counterparts.

94

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

v Ervor

%
EA
a
b4
S5
¢
243563 % 299295 %
-ive Bégin Bo‘;ndary Error +ive Begin Bouerary Error
125220 % 331922 %
[boundaries include complete speech signal)
5
i
o
B
5
&
=]
&
g

Figure 6.28 boundary error positions (LFCC Algorithm, 0dB to 20dB)

The PDFs of begin and end boundary errors made by the LFCC algorithm undet SNR
values from -19dB to -1dB are shown in Figure 6.29. The distributions of begin and
end boundaries were found to be trimodal with means and standard deviations as
shown. The recognition accuracy of the LFCC algorithm against this range of SNR

values was found to be between 9% and 95%.

x 10 PDF of Begin Boundary Emors x 167 POF of End Boundary Erors
8 T v v T v 8 T T 4 T
7 T+
6 (23
5+ 5
Z z
=1 4 3 4
% mean = 539.0318 _g
o sid = 758.264 o mean = -1064.9009
3 45,9119 % 1 3 std = 830.8357
2} ean = -3879.3002 2| mean = -6262.5852 47798 % -
std = 1514.5604 mean = 7850.22 std = 1412.6935 : mean = 5865.8561
1 g = 1440.2343] 1 std = 1289.2865
5872 % 55784 %
o L 1 L N S S)] L L N e - L
-1.5 -1 -0.5 [0.5 1 1.5 -15 -1 -0.5 0 0.5 1 1.5
Boundary Detection Error (samples) x 10° Boundary Detection Ervor {samples) % 10°
Figure 6.29 PDF of boundary errors (LFCC Algorithm, -19dB to -1dB)

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Figure 6.30 shows the distribution of boundary error positions for SNR values from -
24dB to 4dB. It can be seen that 53% of computed begin boundaries and 90% of
computed end boundaries lay within their corresponding manually deduced

boundaries.

ve End Boug_dary Error

24.2337 % CC.4903 %
-ive Begin Boindary Error +ive Begin Bou%dary Error
9.0233 % 1.2527 %
[boundaties include complete speech signal }

-ive End Boundary Error

Figure 6.30 boundary error positions (LFCC Algorithm, -19dB to -1dB)

The PDFs of begin and end boundary errors made by the LFCC algorithm under SNR
values from -30dB to -20dB are shown in Figure 6.31. The distributions of begin and
end boundaries were found to be bimodal with means and standard deviations as

shown.

96

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

x 16 PDF of Begin Boundary Emors x10* PDF of End Boundary Emrors
T T T T 8 T T : T

o
[2)

Probability
=

Probability
$

3 -6412.8065
mean = .

ol Mmean=-3752.7981] 2 std = 1266.0816

std = 1521.407

mean = 21815444 oo - 7787 15 mean = -539.5328

std = 1664.5779

mean = 5301.6081

std = 1230.2861 std = 1605.036 1 std = 1352.634 B

3.0385 %

L] 1 hx 1 I
5 -1 0.5 0 05 1 15 -15 -1 0.5 0 05 1 15
Boundary Detection Enor (samples}) 10 Boundary Detection Emor {samples)

Figure 6.31 PDF of boundary errors (LFCC Algorithm, -30dB to -20dB)

Figure 6.32 shows the distribution of computed boundary positions relative to their
manually deduced counterparts for SNR values from -30dB to -20dB. It can be seen
that 33% of computed begin boundaries and 68% of computed end boundaries lay

within their corresponding manually deduced counterparts.

g

i

oy

o5

A

2

&

-l

S

¢

1.8913% 658692 %
-ive Begin Boundary Error +ive Begin Bou;dary Error
31.23924 % 0%

N [boundsries include complete speech signal)
=

&

oy

3¢

2

[+]

=]

S5

2

Figure 6.32 boundary error positions (LFCC Algorithm, -30dB to -20dB)
97

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

6.2.4 The MFCC Algorithm

Recognition Accuracy

Figure 6.33 displays the recognition accuracy of the MFCC algorithm against SNR
values from -30dB to 20dB. The MFCC word boundary detection algorithm displayed

an accuracy of 95% at 20dB and displayed rapid deterioration in performance at lower

SNR values.
MFCC Performance
100 T T F T T T
1 I 3 ! '
| I t ' t
| b i [I
90 —————————————— ==t --=-- t-—-—-—-- | i rFr-———="-"=—-=—=-—p "= - -
i : l
' t
80+---- O e U G [)
i
1

70 ----

,,,,,,

R e I I
I
I
I
I
[|
t
|
I
|
i
R
I
I
I
I
el e e
|
i
i
i

% Recognition Accuracy
3

S
@)
T
1
I
|
|
R ——

R UV

@
<
U
N
o
N
3
t
—
o
t
—
S
]
P
ol---
-
S
-
o
N
S

SNR (dB)

Figure 6.33 recognition accuracy of the MFCC algorithm

Like the Time algorithm, the performance of the MFCC algorithm was less than
perfect even at SNR values as high as 20dB. This was also due to the algorithm's
difficulty in accurately computing boundaries for the utterance ‘six. An example of
this limitation is shown in Figure 6.34, wherein the algorithm failed to accurately

compute the end boundary of the utterance 'six’ at an SNR of 20dB.

98

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

The Utterance "six" With White Noise At -20dB

1 ¥ i T] T K T ¥ ¥ I

05k computed boundary |
=
2
= 0
£ manual boundary
05} .
-1] I 1 i i 1 1 1 L
0 02 04 06 08 1 12 14 16 18

samples «10°

Figure 6.34 an example of the failings of the MFCC algorithm

Boundary Errors

The probability distribution functions (PDFs) of boundary errors and the distributions
of the positions of the boundary errors made by the MFCC algorithm are shown in
Figure 6.35 to Figure 6.42. These distributions are shown for several ranges of SNR
values to provide insight into the performance of the MFCC algorithm under these

ranges.

The PDFs of begin and end boundary errors made by the MFCC algorithm under SNR
values from -30dB to 20dB are shown in Figure 6.35. The distributions of begin and
end boundaries were found to be unimodal with means and standard deviations as

shown.

99

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

PR PDF of Begin Boundary Emors x10* POF of End Boundary Errors
v T 7 ¥ 8 T T v T

a
7 7
[J 3
5l 5
= z
24 24 1
=] =
] o
o o
3l mean = 441,072] 3L - 787.6650
std = 1969.3235 mean = -/o/.
sid = 2567.7358
2 2t
T 100 % I t 100 %
(‘, i 1L r 1 0 L - 1 L
-15 -1 {5 0 0.5 1 15 -15 -1 4.5 4 05 1 1.5
Boundary Detection Emor (samples) w1t Boundary Detection Emor {samples) x 10!

Figure 6.35 PDF of boundary errors (MFCC Algorithm, -30dB to 20dB)

Figure 6.36 shows the distribution of boundary error positions for SNR values ranging
from -30dB to 20dB. It can be seen that roughly 57% of computed begin boundaries

and 64% of computed end boundaries lay within their manually deduced counterparts.

ve End Boundary Errar

27.2027 % 37.1392%
£ s
-ive Begin Boundary Error +ive Begin Boundary Error
29.9003 % Y579 %

§ [boundaries include complete speech signsl)
%
Sy
2
a
-
i+
2
¥

Figure 6.36 boundary error positions (MFCC Algorithm, -30dB to 20dB)

100

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

The PDFs of begin and end boundary errors made by the MFCC algorithm under SNR
values from 0dB to 20dB are shown in Figure 6.37. The distributions of begin and end
boundaries were found to be bimodal and trimodal respectively with means and

standard deviations as shown.

x10° PDF of Begin Boundary Erors 10 POF of End Boundary Enors
7 7k

mean = -81.5705
6 std = 592.4042 b [

mean = -478.5806

87.3732%
std = 887.3326

o

Probability
P

Probability
-y

88.9122 %

(%)
-

mean = 2691.2752
std = 985.6366
11.4376 %

mean = -2268.1176
1 std = 634.9868

mean = 2941.8693

mean = -3480.1695
| 6.9605 9 Std =876.7767

std =604.0443

1.1892 % 41273 %

L 4 t] . 0 1. AL
5 -1 0.5 0 0.5 1 1.5 -15 -1 0.5 0 05 1 15
"Boundary Detection Eror (samples) « 10" Boundary Detection Emor (samples) x 10

—e

Figure 6.37 PDF of boundary errors (MFCC Algorithm, 0dB to 20dB)

Figure 6.38 shows the distribution of computed boundary positions relative to their
manually deduced counterparts for SNR values from 10dB to 20dB. It can be seen
that 49% of computed begin boundaries and 66% of computed end boundaries lay

within their manually deduced counterparts.

101

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

v Exvor

&
-1
215845 % 341378 %
-ive Begin Boﬁwdary Evror +ive Bagin Bou:dary Error
174537 % 168241 %
g [boundsries include complete speech signal)
E
B4
3
2

Figure 6.38 boundary error positions (MFCC Algorithm, 0dB to 20dB)

The PDFs of begin and end boundary errors made by the MFCC aIgorithm under SNR

values from -19dB to 9dB are shown in Figure 6.39. The distributions of begin and

end boundaries were found to be unimodal with means and standard deviations as

shown. The recognition accuracy of the MFCC algorithm against this range of SNR

values was found to be between 8% and 81%.

Probability

Lo

x10° PDF of Begin Boundary Erors

mean = 518.7266
std = 2086.0623

100 %
I

-
T

L h L
5 -1 -0.5 4] 0.5 1

Boundary Detection Error (samples) % 16*

x 107 PDF of End Boundary Errors

Probability
>

mean = -812.0415
std = 2735.4408

100 %

. L \ - .
-1.5 -1 -0.5 0 0.5 1 15
Boundary Detection Error (samples) x 10°

Figure 6.39 PDF of boundary errors (MFCC Algorithm, -19dB to -1dB) |

102

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Figure 6.40 shows the distribution of boundary error positions for SNR values ranging
from -19dB to 9dB. It can be seen that 60% of computed begin boundaries and 63%
of computed end boundaries lay within their corresponding manually deduced

boundaries.

v Error

S
Ca

ve End Boundar

26,3739 % 37.0459 %

-ive Begin Boﬁndary Error +ive Begin Bou:Tdary Error
33.2801 % 3.33001 %

{ boundaries include complete speech signal)

&
-

~jve End Boundary Error

Figﬁre 6.40 boimdary error positions (MFCC Algorithm, -19dB to -1dB)

The PDFs of begin and end boundary errors made by the MFCC algorithm under SNR
values from -30dB to -20dB are shown in Figure 6.41. The distributions of begin and
end boundaries were found to be unimodal and bimodal respectively with means and

standard deviations as shown.

103

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

x 10" PDF of Begin Boundary Errors x10* PDF of End Boundary Emors
8 T T T T 8 T T T v

7 7
[[
5 5
= z
a4 B4
oy =
e e
o [+
3 mean = 460,324 1 3t mean=-3100.4773
std = 2273.8996 std = 1375.5639
2+ E 2t .
mean = 2308.1568
1 ' std = 1332.3942
100 %
0 , . h ; 0 \ \
-5 -1 0.5 0 05 1 15 -15 -1 0.5 0 05 1 1.5
Boundary Detection Emor (samples) x 10" Boundary Detection Emor {samples) <10

Figure 6.41 PDF of boundary errors (MFCC Algorithm, -30dB to -20dB)

Figure 6.42 shows the distribution of computed boundary. positions relative to their
manually deduced counterparts for SNR values from -30dB to -20dB. It can be seen
that 58% of computed begin boundaries and 65% of computed end boundaries lay

within their corresponding manually deduced boundaries.

g
N}
o
S
5 A
@
a
S
2
25.00% 7 40.3846 %
~ive Begin Bo:ndary Error +ive Begin Bou:dary Error
334615 % 1.1538 %
H [boundaries include complete speech signal)
z
BV
2
2
=
i
g

Figure 6.42 boundary error positions (MFCC Algorithm, -30dB to -20dB)
: 104

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

6.2.5 Comparison of Algorithm Performances

In this thesis, we have used recognition accuracy and boundary error magnitude as the
two measures of word boundary detection algorithm performance. This section

presents the comparison of the performances of the four tested algorithms.

Recognition Accuracy:

A good boundary detection algorithm displays high recognition accuracy even at low
values of SNR. Figure 6.43 displays the comparison of recognition accuracies

exhibited by the four algorithms tested in this thesis.

Comparison of Algorithm Performances

100 : : ; : s ;
: : ; : : —
o0 |------ R A N e 2 A0y e L R <77
5 S A A : L
) i S A S R i G SRt S o bkt A
Pt 5 P : e :
Z B VST P PO AT * Time 17
e " : ' P — LPC
g &0 £ S S X 4 b A + LFCC |+
< 5 : R E ——= MFCC
& BO0f----- R R Y SO S 5 S R - P
= : : P : : :
5 : : L7 : : : :
S 40f------ Ao JREREETEEELEE booonee 4--n--d oo bomnm e
a) . ' .) ’
o] : : : : :
® 30 - FRREERES RRELE Fomoee- IRREEEES AR Fomeee
20 . R Hai oo poeeee- 3o o P
; X PO ; : : : : :
10 f~---- e - LIRS R CREEERE boseons R oo e
b TS A : ; : : ; : :
0 { i 1 1 I] 1 I i
30 25 20 15 0 5 0 5 10 15 20
SNR (dB)

Figure 6.43 comparison of recognition accuracy

o For SNR values above 0dB, the LFCC algorithm displayed the highest recognition
accuracy, and the MFCC algorithm displayed the lowest accuracy. The Time and

105

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

LPC algorithms displayed similar recognition accuracies slightly lower than that
of the LFCC algorithm.

e For SNR values below 0dB, the Time algorithm displayed the highest recognition
accuracy of the four algorithms. However, its recognition accuracy was not high
-enough to be used in any practical speech recognition system under noise
conditions below 0dB.

e Although the LFCC algorithm displayed the highest recognition accuracy under
SNR values above OdB, it also displayed the most rapid degradation of

recognition accuracy for SNR values less than 0dB.

Boundary Errors

The performance of a good boundary detection algorithm results in boundary errors
with very small magnitudes of mean and standard deviation. Figure 6.44 displays the
comparison of the means and standard deviations of the boundary errors committed

by the four algorithms under noise conditions from OdB to 20dB.

106

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

BEGIN BOUNDARY ERRORS END BOUNDARY ERRORS
MEAN STD MEAN STD

TIME 23936 613.48 -772.30 878.99
(29.92ms) (76.69ms) (-96.54ms) (109.87ms)

LEC -103.52 1051.50 -626.46 1466.1
(-12.94ms) (131.44ms) (-78.31ms) (183.26ms)

LFCC -198.29 710.79 -229.97 998 44
(-24.79ms) (88.49ms) (-28.75ms) (124.81ms)

MFC{C 41880 1482.10 -356.54 1884.90
(52.35ms) (185.26ms) (44.56ms) (235.61ms)

Figure 6.44 comparison of boundary errors

Negative boundary errors indicate computed boundaries that lie to the right and
poéitive boundary errors indicate computed boundaries that lie to the left of the
manually deduced boundaries. This means that loss of speech information occurs in
the case of negative begin boundary errors as well as positive end boundary errors,

which typically results in degraded recognition accuracy.

The LFCC algorithm displayed. the lowest magnitudes of mean and standard deviation

of boundary errors.

107

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 7

CONCLUSIONS AND FUTURE RESEARCH

This chapter presents the conclusions obtained from testing the performance of 4
different word boundary detection algorithms and also suggests areas of future

research.

71 Conclusions

The characteristics of speech that we explored were

Time Magnitude

¢ Frequency Magnitude

e Linear Prediction Coefficients
e Linear Cepstral Coefficients

e Mel Cepstral Coefficients

It was observed that these characteristics displayed magnitudes that differed for

~ speech and background noise.

The first task we had set out to complete was to develop a testing tool that allowed the
user to implement several boundary detection algorithms and vary their parameters to

observe their effects on boundary detection accuracy. Chapter 3 explained in detail

108

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

the functionality of the testing tool developed in this thesis. This tool proved very
useful in observing the effect different factors had on word boundary detection

performance.

Our second task was to develop a word boundary detection algorithm which displayed
high boundary detection accuracy. The algorithm we proposed employed Linear

Frequency Cepstral Coefficients

Our final task was to perform extensive testing to compare and contrast our proposed
boundary detection algorithm with other algorithms. We found that our algorithm
displayed higher accuracy than the other tested algorithms and was robust under SNR

values as low as OdB. Other conclusions made in the course of the testing were:

¢ Preemphasis resulted in higher word boundary detection accuracy.

e The LPC smoothener introduced in this thesis facilitated higher performance of
word boundary detection algorithms.

e QOur proposed algorithm employing Linear Frequency Cepstral Coefficients
displayed the highest word boundary detection performance with a recognition
accuracy of above 96% at SNR values above 1dB.

e The recognition accuracy of word boundary detection algorithms does not degrade
when computed boundaries fall within their manually deduced counterparts as

long as the magnitudes of boundary errors are small (<700 samples).

109

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

7.2 Future Research

This section proposes several ideas for future research in the field of word boundary

detection

e This thesis was limited to testing boundary detection algorithms with pre-recorded
noisy test recordings. Real time testing of boundary detection algorithms can be
performed in which an utterance is recorded and the boundaries computed in real
time.

e We examined algorithms that employ a given type of speech representation to
compute boundaries and it was observed that an algorithms performance differed
under different types of noise. Algoﬁthms may Be developed wherein the first few
frames of background noise are‘ observed and the algorithm's speech
representation chosen accordingly.

e The testing of algorithms in this thesis was performed with a 'command and
control’ grammar which was limited to the digits '0' to '9". Further testing can be
performed using other ‘command and control' grammars or a context-free
'dictation’ grammar.

e Boundary detection algorithms can be developed that will remain robust even in
the presence of non-stationary background noise. This may involve the use of a
pulse extraction threshold whose value varies throughout the length of the test
recording.

e The scope of this thesis was limited to 'explicit’ word boundary detection
algorithms. Similar testing can be performed for 'implicit' and 'hybrid' boundary

detection algorithms.

110

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

BIBLIOGRAPHY

1. Gin-Der Wu, Chin-Teng Lin (IEEE Transactions on Acoustics, Speech and Signal
Processing Vol 8, No 5, September 2000): "Word Boundary Detecﬁon with Mel-

Scale Frequency Bank in a Noisy Environment”

2. http://en.wikipedia.org/wiki/Colors of noise

3. http://enx.org/content/m12469/1atest/

4. http://en.wikipedia.org/wiki/Short-time Fourier transform

5. Lawrence Rabiner, Biing-Hwang Juang (Prentice-Hall Signal Processing Series)

: "Fundamentals of Speech Recognition”

6. Lawrence Rabiner, M.R.Sambur (The Journal of Acoustical Society of America,

1974) : "An Algorithm for Determining the Endpoints for Isolated Utterances”.

7. Lawrence Rabiner, R. Schafer : (Prentice-Hall Signal Processing Series) :

"Digital Processing of Speech Signals”

8. Lori F. Lamel, Aaron E. Rosenberg and Jay G. Wilpon (IEEE Transactions on
Acoustics, Speech and Signal Processing, August 1981): "An Improved Endpoint

Detector for Isolated Word Recognition”

111

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

http://en.wikipedia.org/wiki/Colors
http://cnx.org/conten
http://en.wikipedia.org/wiki/Short-time

9. Montri Karnjamadecha and Stephen A. Zahorian (IEEE Transactions on Speech
and Audio Processing Vol 9, No 6, September 2001) : "Signal Modeling for High-

Performance Robust Isolated Word Recognition"

10. Philipos C. Loizou and Andreas Spanias (IEEE Transactions on Speech and
Audio Processing Vol 4, No 6, November 1996) : "High Performance Alphabet

Recognition”

11. Steven B. Davis, Paul Mermelstein (IEEE Transactions on Acoustics, Speech and
Signal Processing Vol ASSP-28, No 4, August 1980). "Comparisons of Parametric
Representations for Monosyllabic Word Recognition in Continuously Spoken

Sentences"

112

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

APPENDIX

IRB APPROVAL LETTER

LINIVERSITY of NEW HAMPSHIRE

ke 21, 2006

Argdraw Kun
Electrical and Computer Enginesring
Kirgsbury Hall

. Durham, NH 03824

B #: 2980
Study: Speech Sample Collection for Sneach Recaanition Engine Comparisan and D&‘éﬁiﬁ?{ﬁ%
Review Level: Expediad Approval Expiration Datey 087242007

The Instiutional Review Board for the Protection of Human Sublects in Ressarch (JRE) has
reviewed and appeoved your request for Hime extension for this study. Approval for this study
expires on the date indiceted sbove. At the end of the approval perod vou wil be asked 1o subreit
8 report with regard 1o the invelvement of humar subjects. ¥ your study is sl active, you may
apply Tor extension of 1RE approval through this office

Researchers who conduct studies Involving human subjects have responsiblfities a5 nutlined in the
documert, RAssoonsbililes of wm of me‘e swa fﬁm&fm Hisman Subjects. This
decument is avaliable at bito ffwsnn unt sdudr piis

I you hawe guestions or concerns abam yotsr study o this approvsl, please kel free to contact me
&t S03-862-2005 or Julls simpson@unb.edy. Messe refer to the IRB # above in all eofrespondence
rafated o this study, The IRB wxsém ‘}'ﬁﬁ SL@CC\‘ESS with your mesarch,

For the I?B /
f/b.r{ /

fudie & Eimos:
g\j.‘mﬁ& . Finpsen

M T
ad Fiie
Bretl Vingiguerre

Research Conduct and Compliance Sarvices, Office of Sponsarad Research, Service Building,
51 Colleps Road, Durham, KH 03824-3585 * Fax: 603-862-3564

113

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

	University of New Hampshire
	University of New Hampshire Scholars' Repository
	Spring 2007

	Word boundary detection
	Deepak Jadhav
	Recommended Citation

	tmp.1520441287.pdf.fJZb1

