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ABSTRACT

WORD BOUNDARY DETECTION 

by

Deepak Jadhav 

University of New Hampshire, May, 2007

Robust word boundary detection is essential for the efficient and accurate 

performance of an automatic speech recognition system. Although word boundary 

detection can achieve high accuracy in the presence of stationary noise with high 

values of SNR, its implementation becomes non-trivial in the presence of non- 

stationary noise and low SNR values. The purpose of this thesis is to compare and 

contrast the accuracy and robustness of various word boundary detection techniques 

and to introduce modifications to better their performance.
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CHAPTER 1

INTRODUCTION

Word boundary detection or endpoint detection involves the separation of speech

from unwanted noise. This noise may be background noise or speaker generated

artifacts.

1.1 Need For Accurate Boundary Detection:

Word boundary detection is an integral party of an Automatic Speech Recognition

System (ASRS).

Accurate word boundary detection in an ASRS is important for three main reasons.

• Accurate word boundary detection lessens the computational load on further 

recognition stages.

• Greater accuracy in word boundary detection translates into greater accuracy in 

the overall speech recognition system.

• Word boundary detection techniques may incorporate word recognition 

techniques, in which case further recognition stages in the speech recognizer may 

be easier to implement.
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1.2 Problem Definition

In concept, word boundary detection involves the use of certain parameters to 

distinguish spoken word from background noise. In some cases, the values of 

parameters for a speech sound and a noise sound may vary greatly, in which case 

boundary detection is relatively more straight forward. However, in many practical 

scenarios, the speech and noise sounds may be comparable to each other. In such 

cases, separating speech from noise becomes difficult. For example, unwanted 

speaker-generated artifacts such as mouth clicks or breathing may be wrongly 

included within word boundaries. This problem is further aggravated in the presence 

of higher background noise. Ideal word boundary detection involves extracting the 

spoken segment of a recording, regardless of the level and nature of the background 

noise.

The objective of the research reported in this thesis is to evaluate the performance of 

several word boundary detection algorithms in a mobile environment, namely in a 

moving vehicle. Common examples of noise in such an environment are wind noise, 

engine noise, tire and air conditioner noise, as well as impulse noise arising from 

speed bumps, potholes, etc. Different types of noise affect the boundary detection 

process with varying degrees.

As an example of real world noise, we have chosen wind noise for testing various 

boundary detection algorithms. A 2.5 sec sample recording was obtained by holding 

up a microphone outdoors on a windy day.
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White and pink noise samples were also used to test the performance of various 

boundary detection algorithms under different noise conditions as a measure of 

algorithm robustness. White noise was obtained using Matlab’s random number 

generator randn. Pink noise was downloaded from a web site [2].

These three examples of noise are shown in Figure 1.1.

Wind Noise

1 1.5
White Noise

Pink Noise

Time (sec)

Figure 1.1 noise samples used in this thesis

Any other noise that may have been present in the recording environment or within 

the recording system itself was ignored.

There have been extensive publications documenting several word boundary detection 

techniques. Authors such as L. Rabiner [5] and M. Sambur[6] have written a great
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deal on this topic. Going through such a vast reservoir of proposed algorithms, one 

feels the need of a testing tool which, with the click of a few buttons, allows the user 

to test the robustness of several different algorithms under several noise conditions, 

and compare their results.

Also, most of the proposed word boundary detection algorithms address signal to 

noise ratios of down to only lOdB. There is a need for developing word boundary 

detection algorithms that remain robust under signal-to- noise ratios of less than 

lOdB.

1.3 Goal

The work completed in this thesis achieved two goals:

The first goal was to develop a testing tool that allowed the user to test and compare 

the performance of several word boundary detection algorithms. A typical word 

boundary detection algorithm has several variables associated with it, such as the 

frame length of the speech segment, design of preemphasizer, type of background 

noise, etc. The testing tool will allow the user to vary these variables and observe their 

effects on the performance of these algorithms.

The second goal was to develop a word boundary detection algorithm that will remain 

robust under noisy conditions with low signal to noise ratios. The detector will be 

speaker-independent and will operate without any voice training. The algorithm will 

be tested in a non-real time environment i.e. pre-recorded noisy speech segments will 

be fed to the algorithms and the corresponding results noted.

4
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1.4 Proposed Steps

The research goals stated in the previous section were achieved by completing three 

tasks:

Task 1:

We first task was the development of a testing tool in Matlab that gave the user the 

ability to test several word boundary detection algorithms under a wide selection of 

noise conditions. The user was able to introduce changes to algorithms and readily 

observe the resulting changes in boundary detection accuracy. This provided further 

insight into the factors affecting the accuracy and robustness of various word 

boundary detection techniques.

Task 2:

The second task was the implementation of several word boundary detection 

algorithms. These algorithms were tested with pre-recorded speech segments, and 

their accuracy and robustness under varying noise conditions were observed.

Task 3:

The third task was the development of a word boundary detector whose performance 

surpassed that of all the boundary detectors we examined. We conducted tests with 

multiple speakers and noise conditions to ensure that our algorithm demonstrated 

higher boundary detection accuracy.

5
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1.5 Thesis Organization

This thesis is organized into seven chapters.

The first chapter describes the problem definition and goals of this thesis as well as 

the steps proposed to reach these goals.

The second chapter explores some signal characteristics of speech as well as a few 

types of noise. It also summarizes some relevant research conducted by several 

authors.

The third chapter presents our newly developed testing tool in detail. Examples 

describing some of its features are illustrated.

The fourth chapter explains our proposed word boundary detection algorithm.

The fifth chapter presents the testing performed to compare and contrast several word 

boundary detection algorithms, including the algorithm developed in Chapter 4. Also 

presented is an overview of the software design behind the implementation of the 

speech recognizer used in this thesis.

The sixth chapter presents the results of the testing performed.

The seventh chapter presents conclusions derived from tests performed and also 

suggests future research that may provide further insight into this topic.
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CHAPTER 2

BACKGROUND

Word boundary detection is used by automatic speech recognition systems to isolate 

useful speech from background noise in order to extract speech patterns that further 

recognition stages can recognize.

For speech produced in a relatively noise-free environment, boundary detection is a 

simple problem. However, high levels of noise, be it background noise or noise in the 

transmission system, make word boundary detection difficult.

2.1 Three Approaches to Word Recognition

Rabiner and Juang [5] broadly classified endpoint detection approaches as either 

explicit, implicit, or hybrid depending upon the degree of interaction between the 

endpoint detection and word recognition stages of the automated speech recognition 

system (ASRS).

Explicit Approach

An explicit detection approach has the endpoint detection stage occurring prior to and 

independent of the recognition stage of the speech recognition system. The boundary 

detection stage may or may not use the same features as the word recognition stage.

7
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This method carries the least computation load but its accuracy is the least of the three 

approaches[5].

R ecognita orderedlistof 
recognition 
canS dates

Figure 2.1 explicit approach

Implicit Approach

An implicit approach combines the endpoint detection and word recognition stages. 

This approach does not focus on extracting speech from noise, but it recognizes the 

input noisy speech segment as one of several possible noisy speech templates. It 

produces a list of endpoint pairs ordered according to likelihood. This method has the 

greatest computational load but exhibits the highest accuracy.

ortoredl list m i 
recognition

Hybrid Approach

Figure 2.2 implicit approach

In the hybrid approach, the explicit method is employed to compute several estimates 

of endpoints pairs, and the implicit method is used to choose a small and reasonable
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set amongst them. The hybrid approach has a computational load comparable to the 

explicit method and accuracy levels comparable to the implicit method.

inpt 
uterancl ►

srteellistsf

Feature Efidpomt Recagattsn Decision
ExtFKtian — ► Estimates — ► — p. Rule

4
L.

retised

Figure 2.3 hybrid approach

In spite of its low boundary detection accuracy compared to the implicit and hybrid 

methods, the explicit method inherently allows the testing of the word boundary 

detection stage independent of the word recognition stage. Any insight obtained from 

testing the explicit boundary detector can be applied to the hybrid detector as well. 

Hence, the scope of this thesis was chosen to be limited to the explicit approach of 

word boundary detection.

2.2 Speech Representation

There are several characteristics of speech that separate it from noise. The ones that 

are most commonly employed for word boundary detection are as follows:

Short Time Magnitude

The short-time magnitude of a speech segment is computed along time. The time 

magnitude of vowels is substantially larger than that of consonants and also that of 

low-level background noise.

9
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The short-time magnitude [6] can be defined as

En= 2  x'^(m)
m = n —N + 1

That is, the short-time magnitude at sample n is simply the sum of squares of N  

samples n-N+1 through n.

In a typical word boundary detection algorithm using short-time magnitude, 

thresholds are applied to separate the high-magnitude speech from the low-magnitude 

background noise. Figure 2.4 shows the short-time magnitude for the utterance 'zero'.

i
0.5

■a 
3

'I  0

0.25

I 0-2
*  015 I
H 01 
■c

I  005 

0I

Figure 2.4 short time magnitude representation of the utterance 'zero'

Short Time Frequency Magnitude

Here, the frequency power spectrum of the speech signal is used to distinguish speech 

from noise. Similar to time magnitude, the frequency magnitude of speech, especially 

vowels, is distinctly greater than that of low-level background noise.

10

seconds

2 2.50.5 1 1.5

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



The frame by frame DFT [4] of a discrete sequence x[n] is given by:

L-1 -2IIM y,
X j (m) = ^  x(n}w(A- n).e M

n=0

where A  = f L  -  ( /  - 1).0 
L = frame length 
O = frame overlap 
f  — frame number
N  = number o f frequencies in the DFT output 
w = window o f  length L

The frame by frame frequency magnitude is then computed as

L - 1

Frequency Magnitude(f) -  ^  |J£"(w*)|
W-0

Figure 2.5 shows the short-time frequency representation of the utterance 'zero'.

5 600
cIII
1«D
3
O’
®

» 200 
EH
I oc .W 05 1.5 2 2.50

Figure 2.5 frequency magnitude representation of the utterance 'zero'
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Short Time Zero Crossing Rate

A signal's zero crossing rate (ZCR) is the rate at which the signal crosses the zero 

axis. The zero crossing rates of fricatives tend to be greater than those of vowels. By 

itself, the zero crossing rate is not a very useful parameter for differentiating speech 

from noise. However, its use with other speech properties may prove beneficial due to 

its ability to distinguish weak fricatives from background noise.

The short-time average zero crossing rate [6] can be defined as

PB

Zi= ~ sgn[x(m -  l)]|w(« — m)

where

and

sig [x(7i)] = 1 jc(/i) 5: 0
= — 1 x(n) < 0

2N
= 0

0 <  n <  N -  1 

otherwise

Figure 2.6 shows the zero crossing rate for the utterance 'zero'. The high values of the 

zero crossing rate correspond to the fricative /z / in 'zero'.

1 1.5
seconds

0.5

g 0 . 4

0.3.1
% 0.2 

w 0.1

0,
1.50 0.5 1 2 2.5

seconds

Figure 2.6 ZCR representation of the utterance 'zero'

12
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Linear Prediction Spectrum

Linear Prediction Analysis has traditionally been used for the 'recognition' part of an 

automated speech recognition system. This thesis explores the possible use of Linear 

Prediction in word boundary detection.

Linear Prediction models the human vocal tract as an all pole system defined by its 

linear prediction coefficients. The coefficients are such that they most accurately 

predict the subsequent speech samples. This becomes useful for boundary detection as 

the computed coefficients give an idea about whether the produced samples are of 

speech or unwanted background noise.

A linear predictor with prediction coefficients a* can be defined [6] as a system that, 

upon giving it an input s(n), produces an output:

~ Ps ( n) =  £ a k s ( n - k )
k= i

Figure 2.7 shows the LP spectrum of a frame (18.75ms) of the phoneme /ee/.

&
X

Figure 2.7 LP spectrum of the phoneme /ee/

13
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Cepstrum

In the source filter model of speech production, the vibration of the vocal chords acts 

as the source and the vocal tract acts as the filter. The cepstrum [3] provides a means 

of taking a speech signal and separating the source signal from the filter's transfer 

function as shown in Figure 2.8.

Sound Sample

abs(DFT)

Cepstral Littering

Window

IDFT

Log

Transfer Function Excitation 
(low quefrequency) (high quefrequency)

Figure 2.8 computation of the cepstrum 

The real cepstrum of a discrete sequence 'x' can also be represented in pseudo code as

y = real( ifft ( log( abs( fft(x)) ) ) )

14
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As depicted by the pseudo code, the magnitude of the Fourier Transform is taken, and 

its log computed. The real inverse Fourier Transform of the resultant sequence 

constitutes the cepstrum of the original sequence y.

Examination of the extracted source (excitation) signal provides valuable information 

about its nature, i.e. whether the source is of voiced speech, unvoiced speech, or 

unwanted noise.

2.3 Noise

As this thesis endeavors to design a robust word boundary detection algorithm that is 

as immune to background noise as possible, we deem it important to study the nature 

of several examples of noise.

The noise samples used in this thesis fall under two categories.

• real world noise

• colored noise

The real world noise are recordings of noise taken out in the field. Examples would 

include hom noise, wind noise and siren noise. Figure 2.9 shows the frequency 

spectrum of the wind noise used for testing in this thesis.

15
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m

m m

Figure 2.9 frequency spectrum of wind noise

Different colors of noise have different frequency spectra that may effect word 

boundary detection accuracy differently. The colors of noise used in this thesis are:

White Noise

White noise has uniform frequency magnitude at all frequencies. It typically sounds 

like the hiss of an untuned radio.

Figure 2.10 frequency spectrum of white noise

Pink Noise

The human ear perceives pink noise as having equal magnitude at all frequencies. The 

power density of pink noise decreases by 3dB per octave. This noise sounds like a 

hiss mixed with a rumble.

16
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Figure 2.11 frequency spectrum of pink noise

2.4 Past Research

S. Davis and P. Mermelstein [11] compared the performance of several acoustic 

representations in an automatic speech recognition system based on syllabic 

segments. The acoustic representations they compared were Mel frequency cepstrum, 

the linear frequency cepstrum, the linear prediction cepstrum, reflection coefficients 

and cepstral coefficients derived from linear prediction coefficients. They concluded 

that the acoustic representation that provided the highest accuracy in word recognition 

was the Mel frequency cepstrum with six to ten cepstral coefficients. With these 

coefficients, they reported a recognition rate of 96.5% upon training of the recognition 

system. Other conclusions they came to were:

• Parameters derived from the short Fourier spectrum such as Mel frequency 

coefficients and linear prediction coefficients provide adequate representation of 

vowels just as linear prediction coefficients. However, the frequency derived 

representations are more adequate for representing consonants than the linear 

prediction technique.

17
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• The Mel frequency spectrum has a significant advantage over the linear frequency 

spectrum.

• Cepstral parameters capture acoustic information better than their non-cepstral 

counterparts.

• The Itakura distance [11] is a less effective measure of spectral distance than the 

Euclidean distance.

• Six Mel frequency coefficients capture most of the relevant information in a 

speech signal, although the importance of higher order coefficients differs with 

different speakers.

L. Lamel et al [6] combined an adaptive level equalizer, a pulse detector, and an

endpoint ordering system to form a hybrid word boundary detector as shown below.

list of 
endpoints

ordered list 
of endpointsno isy  sp e ec h  

recording

Figure 2.12 the hybrid approach endpoint detector proposed by Lamel et al

The adaptive equalizer produced an magnitude array from the recording such that the 

array fluctuated around zero when speech was not present, and was much larger in the 

presence of speech. This allows for the pulse detection stage to use absolute threshold 

values to detect the presence of speech. The output of the detector was a set of 

possible endpoints listed in order of their likelihood of being the true endpoints of the 

spoken utterance. This ordered list of endpoints was given to the recognizer, which 

found the endpoint pair representing a segment with the smallest distance from its set 

of patterns. If the distance obtained from one endpoint pair was sufficiently small, that

18
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pair was taken as the true endpoint pair, otherwise the next endpoint pair was 

considered, and so forth. Lamel et al achieved a recognition rate of 95% with their top 

five endpoint pairs. They also concluded that the hybrid endpoint detector displayed a 

10-15 % increase in recognition accuracy compared to a standard explicit endpoint 

detector.

L. Rabiner and M. Sambur [6] proposed an algorithm that used short-time magnitude 

to make an initial estimate of the endpoints and then used zero crossing rates to fine 

tune these endpoints. As the zero crossing rate was sensitive to the presence of weak 

fricatives, it allowed the computed boundaries to include weak fricatives which the 

time magnitude plot alone would normally miss. Using ten speakers uttering the 

numbers 0 to 9, they found that their algorithm committed no errors.

Gin-Der Wu and Chin-Teng Lin [1] proposed a word boundary detection algorithm 

which used the smoothened sum of time and frequency energies. This algorithm 

adaptively selected bands of a Mel-scale frequency bank based on the level of speech 

magnitude present. The algorithm reduced the recognition error rate due to incorrect 

boundary detection to around 20%.

M. Kamjanadecha and S. Zahorian [9] suggested varying the length of the analysis

window based on its position in a recording. Shorter block lengths provided finer

temporal resolution, and were thus beneficial towards the beginning and end of an

utterance where the rate o f spectral change was typically higher. Longer block lengths

provided higher temporal smoothening. This proved useful towards the center of an

utterance, which typically consisted of a slowly changing vowel region. Having

introduced their varying block length concept into their word boundary detection

19
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algorithm (using discrete cosine transform coefficients), Kamjanadecha 

Zahorian's word boundary detection algorithm achieved an accuracy of 97.9%.
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CHAPTER 3

TESTING TOOL

In accordance with Task 1 proposed in Chapter 2, we developed a testing tool to 

provide a quick and easy means of comparing and contrasting the performance of 

several word boundary detection algorithms. The values of several factors can be 

varied to observe their effects on the outcome of these algorithms.

3.1 Overview

NOISY S P E E C H

COM PUTED
BOUNDARIES

THRESHOLD
COMPUTATION

SM OOTHENER
DESIGN

SELECTION OF 
FRAM E BLOCKING

SELECTION OF
WINDOWING

P U LSE
EXTRACTION

SELECTION OF 
PR EEM PH A SIS

ENERGY
ENVELOPE

Figure 3.1 testing tool block diagram

As shown in Figure 3.1, the testing tool allows the user to select/design various 

parameters of a word boundary detection algorithm and observe their effects on 

algorithm performance. The parameters that can be changed by the user include 

preemphasis, frame blocking, windowing, signal representation and smoothener.

The various features provided by the testing tool are described in the following 

section.
21
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3.2 Features

w m & s m

Figure 3.2 testing tool

As shown in Figure 3.2, the tool allows the user to select one of several clean speech 

recordings superimposed with one of several noise recordings. The user can vary the 

SNR of the resulting noisy speech recording from 20dB to -30dB. The resulting noisy 

speech signal can be applied as input to a word boundary detection algorithm that the 

user designs by essentially selecting several design parameters provided by the tool. 

The functions provided by the testing tool are described below:

Preemphasis

In a speech recording, there are certain sources of noise that have spectral properties 

that are very distinct from those of any speech sound we may be interested in. It may

22

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



be advantageous to remove such unwanted noise before any further processing. The 

preemphasizer is a high pass filter that removes low frequency noise present in the 

recording. The preemphasizer used by the tool can be represented by the transfer 

function

H(z) = 1-az'1

Figure 3.3 shows the frequency response of the preemphasizer.

Frequency Response of Preem phasizer with a = 0.95

O 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
frequency normalized by pi

Figure 3.3 frequency response of preemphasizer

As shown in Figure 3.4, the tool allows the user to vary the value of the constant a to 

vary the amount of preemphasis applied to the noisy speech recording. A value of 

95<a<0.97 [3] is the value most commonly used by researchers.

.  - 1  -  .

X1 InJ - r InJ - a »In 1 j

0.95

Figure 3.4 selection of preemphasizer
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The benefit of using such a preemphasizer to eliminate background noise can be seen 

by preemphasizing a noisy recording of the utterance 'zero' as shown in Figure 3.5.

-s
a

I

seconds

Figure 3.5 suppressing background noise using preemphasis

In spite of the benefits of using a preemphasizer, the user may refrain from using 

preemphasis to save on computation time.

Framing

In an automatic speech recognition system, the input speech recording is temporally 

divided into short speech segments, called frames, and the spectral or temporal 

properties of each frame are computed. Figure 3.6 demonstrates how a speech 

recording is divided into overlapping frames.

24
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- 0 . 0 4 frame 2

overlap

Figure 3.6 division of a speech segment into overlapping frames

As shown in Figure 3.7, the tool allows the user to choose and vary the length of each 

frame as well as the degree of overlap between frames.

r—  L i '•  A u c  :  ■" i - i t u  F . o n

Frame Length 1 5 0  sample? 1 8 7

Frame O verlap. 50 samples 6 25

Frame Window C  rectangular 

hamming

......i

Figure 3.7 selection of frame length/overlap/window

Shorter frame lengths provide finer temporal resolution, and may prove beneficial 

where the rate of spectral change is high, whereas longer frame lengths provide higher 

temporal smoothening, which may prove useful in regions of slower spectral change. 

Another factor a user may consider is computational load. Smaller frame lengths with 

higher overlap would result in a larger number of frames per recording and hence a 

higher computational load on the word boundary detection algorithm.

25
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The tool also allows the user to window each frame using a Hamming window given 

by

0 <n < N

P. Loizou and A. Spanias [10] and M. Kamjamadecha and S. Zahorian [9] are 

amongst many researchers that employ the Hamming window.

The effects of various combinations of frame length, overlap and windowing on an 

endpoint detection algorithm can be readily observed.

Speech Representation

As shown in Figure 3.8, the user is able choose one of several representations of 

speech to use in his word boundary detection algorithm. The available choices are:

• Time Magnitude

• Frequency Magnitude

r  LP Coefficients 

f* MFC Coefficients 

C  Tecf 1 Test 2

ime Energy 

FC Coefficients 

irsl Format if

no of coefficients = ] 4

f" ZCR Fine Tuning

fine tuning zcr threshold —

Figure 3.8 selection of speech representation
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• Linear Prediction Coefficients

• Cepstral Coefficients

Details of each of the above representations have been explained in Chapter 2. The 

frame by frame representation of the noisy speech recording is called the magnitude 

envelope.

Smoothener

..moothene-

no smouthening 

f  linear smoothening 

C  3-point median smoothening 

LPC jmoothening

Figure 3.9 selection of smoothener

As shown in Figure 3.9, the user can choose one of three available smootheners to 

smoothen the magnitude envelope produced by the algorithm so that thresholds can be 

applied to separate speech from background noise. The choices of smootheners are:

Linear Smoothener

This smoothener computes the average of every three consecutive samples of 

the magnitude envelope. Lamel et al [6] employ the use of this filter in their 

word boundary detection algorithm.

27
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• Median Smoothener

This smoothener computes the median of every three consecutive samples of 

the magnitude envelope. Wu and Lin [1] employ a 3 point median smoothener 

in their algorithm.

• LPC Smoothener

This thesis introduces a new smoothener and claims that it is superior to the 

linear and median filters. This smoothener uses the properties of an LPC 

spectrum to smoothen the magnitude envelope in a manner more suitable for 

applying thresholds. Details of this smoothener are provided in Chapter 5.

Threshold

C  manual

Figure 3.10 selection of threshold

As shown in Figure 3.10, the user can choose to explicitly specify a threshold level to 

be applied to the magnitude envelope, or he can allow the testing tool to adaptively 

compute the threshold for him. The manual selection allows the user to explicitly set 

the threshold value. The testing tool computes the threshold by evaluating the 

magnitude of noise in the initial frames of the test recording. This is because all test 

recordings are assumed to begin with background noise, which in turn is assumed to

28

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



remain constant throughout the test recording. Details of how the threshold is 

calculated by the testing tool are given in Section 4.8.

Frequency Scale

i— Ffp.iuenry Scs'e ---------------------------------

(• mel no ot mel filters = [ Jo

Figure 3.11 selection of frequency scale

As shown in Figure 3.11, the user can choose between using the regular frequency 

scale or the Mel scale to represent the noisy speech recording. The Mel scale is a scale 

of pitches which are perceived by the human ear to be equidistant from one another. 

The conversion of the linear frequency scale to the Mel scale is given in Figure 3.12.

2500

>*§>000 

1600

n
1DOQ

soo

° Q  S Q O  1 0 0 0  1 5 0 0  2 0 0 0  2 5 0 0  3 0 0 0  3 9 0 0  4 0 0 0
I M S

Figure 3.12 mel scale vs. frequency scale
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Several researchers such as Davis and Mermelstein [11] and Wu and Lin [1] use Mel 

frequency cepstral coefficients in their proposed algorithms.

Speech Files

Select I Record

Select. Record or Play Speec

Figure 3.13 selection of speech file

As shown in Figure 3.13, the user can select from a number of prerecorded 'clean' 

speech files that include the utterances 'zero' to 'nine' from several different speakers. 

If the user chooses, he can also record his own 2.5 second (20,000 sample, 8KHz) 

speech file for testing.

Noise Files

As shown in Figure 3.14, the user can select from a number of prerecorded noise files 

to superimpose upon the selected speech files to form noisy speech files with which to 

test a word boundary detection algorithm. The SNR of these noisy speech samples can

Select Record Pley

Add Noiie

Select, Record or Play Noise File

snr ;; j j

Figure 3.14 selection of noise file
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also be varied from 20dB to -30dB. The user can also record his own 2.5 sec (20,000

samples at 8 KHz) noise file to superimpose upon any selected 'clean' speech file.

The SNR of the noisy speech recording is controlled by multiplying the noise file by a

factor such that once it is superimposed upon the clean speech recording, the desired

SNR between the manually computed boundaries is obtained.

{  \  
speeth power
noise power

10
s. j
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Segmented Audio File

A u d io  F ile

0 2 0.4 0.6 0.8 1 1.2 1 4 1.6 1.8 2
s a m p le  in d ex  

-■'hy Filf1 p|ay j

i'! .it- di i a d  E n c j y  Eri'^fcljpe

0.8

0 6

I I I " ~ - t —  — L -
I 100 120 140 160 180
fra m e  in dex

Figure 3.15 displaying segmented audio file

As shown in Figure 3.15, the tool allows the user to view the segmented noisy speech 

waveform where the region of speech is extracted from background noise. The 

normalized magnitude envelope is also displayed along with the computed or user 

specified threshold.
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Displaying Results

computed boundaries. I - 1 T  fl?

manual boundaries. 'IC31 • 1J17L

begin point error: -1130

end point error: 74

Figure 3.16 displaying computed boundaries

As shown in Figure 3.16, the computed boundaries are displayed along with the 

manually derived boundaries. The tool also provides a measure of how close the 

computed boundaries are to the manually derived boundaries.

Automated Testing

SL-lect S peaket } S peaker I ~ j * l ]  

Select Nmse j white 3

3 :Select S peech  
R ep re ie r itahon fim e

LPC  
LFCC i 
M FCC  
All

Start T e ,r

Figure 3.17 automated testing

As shown in Figure 3.17, the user can select several combinations of speakers, noise

types and algorithms and run automated tests wherein the selected noise type is

superimposed onto clean speech segments consisting of the selected speaker's

utterances of the digits 'O' to '9'. Signal to noise ratios of 20dB to -30dB are tested.
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The results of this testing are the extracted segments of speech which are saved as 

WAV files into a separate folder.

3.3 Overview of Testing Tool Software

This section highlights the important functions that contribute to the software 

implementation of the testing tool. The source code for the software is included in 

folder named TestingTool on the CD located at the end of this document.

Select Speech 
and/or Noise Files

START

Change Algorithm 
Parameters

LOADED
GUI

Compute Word 
Boundaries

Figure 3.18 overview of testing tool software

The overview of our testing tool software is shown in Figure 3.18. Our testing tool is 

implemented as a graphical user interface (GUI) designed in Matlab. All of the 

operations of the GUI are executed by a series of 'callback' routines that are triggered 

upon user actions such as clicking a push button or selecting a radio button. This 

section gives a brief overview of the callback routines involved in the operation of the 

testing tool.
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GetAudioFile

sw itch  arg2
case 1 % S e le c t

A udioFileH am e=uigetfile( 1 Speaker*.wav');  
case 2 % Record

xtim e_clean=transpose(w avrecord(20000,sam pling_rate));  
xtim e=xtim e_clean;
A udioFileN am e=uiputfile( 1 temp1, 1 Save R ecording');  
wavwrite(xtim e,sam pling_rate,AudioFileNam e);

case 3 % Play
pause(0);
w avplay(xtim e,sam pling_rate);

end

This callback allows the user to select one of several 2.5 sec speech files to be tested 

against his word boundary detection algorithm. The time waveform of the selected 

speech file is also displayed.
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ChangeFrame

e i s e i f  s trc m p  (coiom and_str, 1 C hange_Fr a&e')  s-  _________________________________________________
f  caE fle_length_sam ple3= 3tr2nuiit(get(h_F raiiieL engthS am ple3/ ' s t r i n g ' ) )  ; 
f  ram e_ len g th _ _ m sec= str2 n u m (g et(h _ F ram eL en g th S eco n d s,1 s t r i n g ' ) )  ; 
£ ram e _ o v e rla p _ sa m p le s= s tr2 n u m (g e t(h _ F ra m e 0 v e rla p S a i& p le 3 ,’s t r i n g ' ) ) ;  
f ram e_ o v e r la p _ m se c= s tr2 m m (g e t(h _ F ra m e 0 v e E la p S e co n d s , ' s t r i n g ' ) ) ;  
s w i tc h  a rg 2  

c a se  1,
i f  £ram e__length_sam ples>=50 && £ ram e_ leng th_sam ples< = 400

£ ram e_ len g th _ itt3 ec= £ ram e_ len g th _ sa iiip le s/sam p lin g _ E ate* 1 0 0 0 ; 
se t(h _ F ram e L e n g th S ec o n d s , ’s t r i n g *  ,n u m 2 s tr  (£ ra m e _ le n g th _ » 3 e c )) ;  
s e t{ h _ E rro rM e s 3 a g e , ' s t r i n g ' , ' ' ) ;

e l s e
s e t( h _ E r ro r H e s s a g e ,  1 s t r i n g ' ,  * FRAME LENGTH MUST BE BETWEEN 50 AND 300 SAMPLES');

end 
c a se  2 ;

i£  £ram e_leng th_m sec> = 5 && £ ram e_length_m sec<=40
fra a e _ le n g th _ sa iA p le s = f lo o r  (fra m e _ len g th _ m se c * sa ttp lin g _ ra te /lQ O O ); 
se t(h _ F ra m e L e n g th S a m p le s , ' s t r i n g ', n u m 2 s t r  (£ ra m e _ le n g th _ sa m p le s )) ;  
se t{ h ._ E rro rM essag e , ' s t r i n g ' ,  1 ')  ;

e l s e
s e t(h _ E r ro rM e ss a g e , ‘ s t r i n g ' ,  'FRAME LENGTH HOST BE BETWEEN 5 AND 40 M SEC');

end 
c a se  3 ,

i f  £ ram e_ o v erlap _ 3 am p les< ftam e_ len g th _ sam p le3
f ra m e _ o v e r la p _ m se c= f£ a m e _ o v e r la p _ sa m p le s/sa m p lin g _ ra te * 1 0 0 0 ; 
s e t(h _ F ram e O v e rla p S e c o n d s , ' s t r i n g '  / n u n 2 s tr  (£r  ame_ove r 1ap__msec) ) ;  
3 e t{ h _ E rro rM e s s a g e ,1 s t r i n g ' , ' ' ) ;

e l s e
s e t( h _ E r ro r M e s s a g e , ' s t r i n g ’ , 1 FRAME OVERLAP MIST BE LESS THAN FRAME LENGTH') ;

end 
ca se  4 ;

i £ f ra m e_ o v e r1ap_m sec<£ram e_ len g th _ m sec
f  ram e _ o v e rla p _ sa m p le s= f l o o r  (£ ram e_ o v erlap _ iiisec* sa ittp lin g _ ra te /1 0 0 0 ) ; 
s e t(h _ F ra m e O v e rla p S a ittp le s , ' s t r i n g '  ,n u m 2 s tr  (£ ra m e_ o v e r la p _ sa m p le s )) ;  
s e t ( h _ E r r o r M e s s a g e , 's t r i n g ' , * ' ) ;

e l s e
s e t(h _ E r ro rM e s s a g e , 's tr in g ', 'F R A M E  OVERLAP MUST BE LESS THAN FRAME LENGTH');

end 
c a se  5 ;

se t(h _ U in d o w H a m m in g ,'v a lu e ', 0 ) ;  
i t '  g e t(h _ W in d o w R ec tan g u la r ,  'v a l u e 1) ==0 

s e t (h_D Iindow R ectangular, 1 v a lu e '  ,1 )  ;
end
window=5;

c a se  6;
se t(h _ N in d o w R e c ta n g u la r , 'v a l u e 1, 0 ) ;  
i £  g e t(h_W indow H am m ing ,'va lue ')= = 0  

s e tfh J J in d o w H a im in g , , 'v a lu e ' , 1 ) ;
end
window=6;

Through this callback, the user can vary the length and overlap of the frames into 

which the test recording is divided. He can also select/deselect a Hamming window 

used to window each frame.
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ChangeSpeechRepresentation

s w i t c h  a cg 2
c a s e  1 ;  % Time E n ergy

s e t ( h _ fr e q _ _ s c a le  { 3 ) ,  ‘b a c k g r o u n d c o lo r  1 ,  [ 0 . 8  0 .8  0 . 8 ] ) ;  
s e t ( h _ f r e g _ s c a l e , ‘e n a b le ' , ' o f f ’ , ' v a l u e 1, 0 ) ;  
s e t (h _ T im e E n e r g y ,‘v a l u e ’ , 1 ) ;
s e t ( h J f f u m C o e f f ic ie n t s , 'b a c k g r o u n d c o lo r ' , [ 0 . 8  0 .8  0 . 8 ] , 1 e n a b le 1, ‘o f f 1) ;  
v e c t o r _ s e l e c t i o n = l ;  

c a s e  2 ;  % LPC
s e t ( h _ f r e g j 3 c a l e ( 3 ) , 'b a c k g r o u n d c o lo r ' , [ 0 . 8  0 .8  0 . 8 ] ) ;  
s e t ( h _ f r e q _ s c a l e , ' e n a b l e 5, ‘o f f * , ' v a l u e ' , 0 ) ;  
s e t ( h _ L P C ,'v a lu e 1, 1 ) ;
s e t ( h _ ! f f u m C o e f f ic ie n t s , 'b a c k g r o u n d c o lo r ' , ’w h ite  * , ' e n a b le ' , 1 o n ' ) ;  
v e  c  t o r _ s  e 1 e c t io n = 2 ;  

c a s e  3 ;  % LFCC
s e t ( h _ f r e q _ s c a l e ( 3 ) , 'b a c k g r o u n d c o lo r ' , [ 0 . 8  0 .8  0 . 8 ] ) ;  
s e t ( h _ f r e q _ s c a l e , ‘ e n a b le ' , 1 o f f ' , ' v a l u e ' , 0 ) ;  
s e t (h _ L F C C ,'v a lu e ' , 1 ) ;
s e t ( h _ N u m C o e f f ic ie n t s , 'b a c k g r o u n d c o lo r ' , ' w h i t e ‘ e n a b l e o n ' ) ;  %Ho o f  c o e f f i c i e n t s  
v e c t o r _ s e l e c t io n = 3 ;  

c a s e  4 ;  % HFCC
s e t ( h _ f r e q _ s c a l e , ' e n a b le 1, '  o n ' ) ;  
s e t ( h _ f r e q _ s c a l e ( 3 ) , ' e n a b l e ' , ' o f f ) ;  
s e t ( h _ f r e q _ s c a l e { 2 ) , ' v a l u e ' , 1 ) ;  
se t(h _ H F C C ,‘v a l u e ' , 1 ) ;
s e t ( h _ K u m C o e f f ic ie n t s , 'b a c k g r o u n d c o lo r ' , 'w h i t e ' , ' e n a b l e ' , ' o n ' ) ;  
v e c t o r _ s e l e c t io n = 4 ;  

c a s e  5 ;  % F i r s t  Form ant
s e t (h _ F r a m e O v e r la p S a m p le s , ' s t r in g ' ,n u m 2 s tr ( 1 0 0 ) ) ;
HyGUI( ' C hange_Fram e‘ , 3 ) ;  
s e t ( h _ F ir s t F o r m a n t , ' v a lu e ' , 1 ) ;
se t (h J S T u m C o e ff ic ie n ts , 'b a c k g r o u n d c o lo r  ' , [ 0 . 8  0 .8  0 . 8 ] ,  'e n a b le  * , '  o f f ' ) ;  
v e c t o r _ s e l e c t io n = 5 ;  

c a s e  ? ;
s e t ( h _ T e s t l , ' v a l u e ' , 1 ) ;
s e t ( h _ K u m C o e f f ic ie n t s , 'b a c k g r o u n d c o lo r 1, [ 0 . 8  0 .8  0 . 8 ] , ' e n a b le ' , 1 o f f ' ) ;  
v e c t o r _ s e l e c t i o n = 7 ; 

c a s e  8 ;
s e t ( h _ T e s t 2 , ' v a l u e ' , 1 ) ;
s e t (h _ _ N u m C o e f f ic ie n ts , 'b a c k g r o u n d c o lo r ' , [ 0 , 8  0 .8  0 . 8 ] , ' e n a b le ' , ' o f f ' ) ;  
v e c t o r _ s e l e c t io n = 6 ;

end

The user uses this callback to select which type of speech representation he wants for 

his word boundary detection algorithm. There are 4 different representations for the 

user to choose from. They are:

• Time Magnitude

• Linear Prediction Coefficients

• Linear Cepstral Coefficients

• Mel Cepstral Coefficients
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ChangeMagnitudeEnvelopeFineTuning

i f  a u d i o _ f i l e _ s e le c t = » l
se t fh J J isp la y P a r a m e te r V e c to x : , ' e n a b l e * , ' o n * ) ;  % e n a b l e  t h e  ' d i s p l a y  p a r a m e t e r  v e c t o r '  p u s h b u t t o n

e n d
i f  get(h_Z C R F ineT uning, ‘v a lu e*  )==0

set(h _Z C R F ineT un in gT h resh old , ‘ e n a b l e E ,  * o f f ' ,  ‘ b a c k g r o u n d c o l o r 1 , [ 0 . 8  0 . 8  0 . 8 ] ) ;
e l s e

set(h JZ C R F ineT un in gT h resh old , ' e n a b l e * ,  ' o n * ,  ' b a c k g r o u n d c o l o r ' ,  'w h it e 1) ;
e n d

This callback enables the user to select zero crossing rate based fine tuning for his 

boundary detection algorithm. Here the zero crossing rate around potential end points 

is employed to further fine tune their positions.

SmoothenMagnitudeEnvelope

sw itch  acg2 
case 1;

set(h_WoSmoothener, ' v a l u e ' , 1 ) ;  
smoothen_se1ection = 1;

case 2;
set(h_LinearSm oothener,'v a lue  
sm oothen_selection=2;

case  3;
s e t (h_Hedi anSmoo thene r , ‘v a lu e 1,1 ) ;  
smoothen_se1ection = 3;

case 4;
set(h_LPCSmoothener,‘v a l u e 1,1 ) ;  
smoothen_se1ection = 4;

end

This callback allows the user to select which method of magnitude envelope 

smoothening he wishes to use. There are 3 different smootheners for the user to 

choose from. They are:

• Linear Smoothener

• Median Smoothener

• LPC Smoothener
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DisplayMagnitudeEnvelope

axes(h_T estR ecordingPlot); % the  upper p l o t  needs to  he r e p l o t t e d
p lo t(x t im e );
s e t ( g c a , 'c o l o r ' , [ 0 .8  0 .8  0 .8 ])  
grid  on;
x lim ([ l  len g th (x tim e)] ) ;  
t i t l e ( 'Audio F i l e ' ) ;  
x la b e l( ' sample in d e x ' ) ;

se t(h _ j)lay_au d io ,' e n a b le ' , ' o n ' );  
axes(h_Param eterV ectorPlot); 
p lot(sm oothened_vector); 
s e t ( g c a ,1 c o l o r ' , [ 0 .8  0 .8  0 .8 ])  
x lim ([ l  no_of_fram es]);  
x la b e l( ' frame i n d e x ' ) ;
t i t l e ( 'no rm alized  Energy Envelope ' , 'c o l o r 1, 'b l u e ' ) ;  
grid  on;
set(h_D isplayParam eterVector , ' e n a b le ' , ' o f f ' ) ;
l in e ( [ 0  no_of_fram es], [th re3h old l th r e sh o ld l] , ' c o l o r ' , ' r e d ' )
hold  on;
x=templ:temp2;
y=smoothened_vector(tem pi: temp2 );  
p l o t ( x ,y , ' c o l o r ' , 'b lack  1);  
hold  o f f ;

axes(h_T estR ecordingPlot); 
hold  on; 
x=temp3:temp4;
Y=xtime (temp 3: temp 4);  
p l o t ( x , y , 1 c o l o r ' , ' b l a c k ' ) ;  
hold  o f f ;

% D isp lay  boundaries  and th re s h o ld  
se t(h _ th r e sh o ld (3 ), ' s t r i n g ' ,n u m 2str(th resh o ld l));  
set(h_ComputedBoundaries,' s t r i n g ' ,te m p _ str in g l); 
temp_string2=[ num2str(HanualBegin) ' -  ' num2str(HanualEnd) ];  
set(h_M anualBoundaries,1 s t r i n g ' ,tem p _str in g2); 
set(h_B eginP oin tE rror,' s t r i n g ' ,num2str(temp3-HanualBegin)); 
set(h_E ndPointE rror,1 s t r i n g ' ,num2str(temp4-HanualEnd));

This callback performs all the algorithm computation based on the user's selection of 

preemphasis, framing, speech representation, smoothener and threshold to compute 

the word boundaries of the test recordings. The callback also displays the segmented 

speech recording wherein the speech segment of the recording is extracted from the 

background noise.
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ChangeThreshoId

switch arg2 
case 1;

s e t (h _ th r e s h o ld { l ) , 'v a lu e 1,1 ) ;  
case 2;

se t (h _ th r e sh o ld (2 ) , 'v a lu e ' ,1 ) ;  
se t (h _ th r e sh o ld (3 ) , 'en a b le ' , ‘o f f );  

case 3;
se t (h _ th c e s h o ld ( l ) , 'value
threshold=str2num(get(h_threshold(3), ' s t r i n g ' ) ) ;

end

The user uses this callback to either explicitly set his own threshold value or call on 

the testing tool to adaptively set the threshold for him. The threshold is ultimately 

used to extract speech from background noise of the test recording.

PlaySegmentedAudioFile

i f  arg2==l

w a v p la y (x tim e ,sa iiip lin g _ ra te );

x_tem p =[];
[row s colum ns]=*size (b o u n d a r ies);

i f  s tr cm p (b o u n d a r ie s , ‘ N o  E n d p o i n t s  F o u n d ' ) = = G  
f o r  i= l:co lu m n s

x__tem p=cat(2,x__tem p,xtim e_clean(boundaries ( 3 , i )  r b o u n d a r ie s ( 4 ,i ) ) ) ;  % i f  t h e r e  a r e  s e v e r a l  p
e n d

e n d
x = c a t (2 ,  z e r o s ( l ,( 2 0 0 0 0 - le n g t h (x _ t e m p ) ) /2 ) , x_tem p, z e r o s ( l ,(2 0 0 0 0 - le n g th (x _ te m p )) /2 )  ) ;
i f  au t oma t i  on==0

w avplay(x , sam pling_r a t e ) ;
e l s e

i f  s trcm p (b o u n d a r ie s , ’ N o  E n d p o i n t s  F o u n d ' ) = = !  
x = z e r o s ( l ,150 0 0 ); % T h i s  s t a k e s  a  3 0 K B  f i l e .

e l s e
i f  (b o u n d a r ie s ( 3 , l)<M anualB egin-100) I (b o u n d a r ie s ( 4 ,columns)>HanualEnd+10Q) %the b o u n d a r i e  

x = z e r o s ( l ,10000 ); V T h i s  m a i z e s  a  2 0 K B  f i l e .
e n d

Once the testing tool has extracted the speech segment from the background noise of 

the test recording, the user can use this callback to listen to that extracted segment of 

speech.
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Record

xtime=transpose(wavrecord(10000,str2num(get(h_edit_sampling_rate, 1 s tr in g 1) ) ) ) ;
HyGUI( ' Get_Audio_File' ,2 ) ;
axes(h_TestRecordingPlot);
plot(xtime);
t i t l e ( 'Audio F i l e ');
x la b e l( ' sample index'J;
grid on;
box on;
set(h_DisplayParameterVeetor,'enable', 'on'); 
audio f i l e  se lect= l;

The user employs this callback to record his own 2.5 sec speech files to be tested 

against his word boundary detection algorithm.

Preemphasis

set(h_preemphasis, 'v a lu e 1,0 );
switch arg2 

case 1
set(h_preemphasis( 1 ) , 'value1,1 );
set(h_preemphasis(3) , 'backgroundcolor' , [ 0 .8  0 .8 0 . 8 ] , 'enab le1, ' o f f ); 

case 2
set(h_j>reemphasis (2 ),  'v a lue ' , 1 ) ;
set(h_preemphasis(3), 'backgroundcolor' , 'w h ite ' , 'e n a b le ', 1 o n '); 

case 3
set(h_preemphasis( 2 ) , ' value ' , 1);

end
i f  au dio_file_select==l

set(h_DisplayParameterVector, 'e n a b le ' , ' o n ' );
end

This callback allows the user to select/deselect the preemphasizer used by the testing 

tool.
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ChangeFrequencyScale

s e t ( h _ f r e q _ s c a le , 'v a lu e ' , 0 );
switch arg2 

case 1
s e t ( h _ f r e q _ 3 c a le { l ) , 'v a lu e ' ,1 ) ;
s e t ( h _ f t e g _ s c a ie  (3) > 'backguoundcolor' , [ 0 . 8  0 .8  0 . 8 ] , 'e n a b le ' , 'o n ' );  

case 2
s e t ( h _ f t e g _ s c a l e ( 2 ) , 'v a lu e ' , 1 ) ;
s e t ( h _ f r e q _ s c a le ( 3 ) , 'backgtoundcoloE' , ‘w h i te ' , ' e n a b le ' , ' o f f ' ) ;  

case 4
se t (h _ fE e q _ s c a le (4 ) , 'v a lu e ' ,1 ) ;
se t(h_ fE eq_sca le ( 3 ) ,  'backgroundcoloE' , [ 0 . 8  0 .8  0 . 8 ] ,  ' e n a b l e ' , ' o f f  );

end
i f  a u d io _ f i le _ se le c t= = l

set(h_DisplayPaEameteEVector,' e n a b le ' , ' o n ');
end

This callback allows the user to select either a linear frequency scale or a Mel 

frequency scale to use for the speech representation used in the boundary detection 

algorithm. In the case of the Mel frequency scale being selected, the user can also 

specify the number of filters used in the Mel frequency bank

ChangeNoCoefficients

set(h_DisplaYParameterVector, ' e n a b le 1, ' on ' ) ;

If the user chooses to use Linear Prediction coefficients or Cepstral coefficients as his 

speech representation, he can use this callback to specify the number of coefficients to 

be employed.
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GetNoiseFile

3 e t ( h _ n o i s e _ f i l e _ n a m e _ t e x t , ‘v i s i b l e  1, 1o n ‘ ) ;
s e t ( h _ n o is e _ f i le _ n a m e , 'v is ib le ' , 'o n ' , ' s t r in g ' ,n o is e _ f i le _ n a m e ) ; 
n o i s e _ f i l e _ s e l e c t = l ; 
i f  a u d io _ f i le _ se le c t= = l

xtime=wavread(AudioFileName)';  
xtime=xtime+noise(1 : len g th (x t im e));  
axes(h_TestRecordingPlot); 
p lo t (x t im e ) ; 
grid  on; 
axis  on;
t i t l e ( ' N o i s y  Speech');  
x l a b e l ( ' sample in d ex1);  
s e t ( g c a , ' c o lo r ' , [ 0 .  8 0 .8  0 .8 ] ) ;  
set(h_DisplayParameterVector,' en ab le ' , ‘o n ');

e ls e
axes(h_TestRecordingPlot);
p lo t ( n o i s e ) ;
gr id  on;
ax is  on;
t i t l e ( ' N o i s e  Recording');  
x l a b e l ( '3 ample in d ex ' ) ;  
s e t ( g c a , ' c o lo r ' , [ 0 . 8  0 .8  0 .8 ] ) ;

end

The user can select one of several noise files to superimpose onto his selected speech 

file to form a noisy speech file to test against his word boundary detection algorithm.

SNR

SNR=get(h_snr,'value');  
se t (h _ n o is e ( 2 ) , ' s t r i n g ' ,num2str(SNR));  
noise=wavread(noise_file_nam e)';  
x time =wavr e ad(Audi oFileName)1;
n o ise = g e t_ n o ise (n o ise (1 : len g th (x t im e)) ,SNR,xtime); 
x time =wavr e ad (Audi o Fi 1 el'Iame) ' +no i  s e ; 
i f  automation==0

axes(h_TestRecordingPlot); 
p lo t (x t im e ) ; 
grid  on; 
axis  on;
t i t l e ( 'Noisy Speech'); 
s e t ( g c a , 'c o l o r ' , [ 0 .8  0 .8  0 . 8 ] ) ;  
set(h_DisplayParameterVector, ' e n a b l e ' , ' o n ' ) ;

end
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This callback allows the user to vary the signal to noise ratio (SNR) of a noisy speech 

record by superimposing a selected noise file onto a selected speech file. The SNR 

can be varied from 20dB to -30dB.

Automation

Cor snrEFum ■ 2 0 : - l : - 3 0
sn r  = num 2str (snrJffum);
o u tp u t_ £ ile  = c a t (  2 ,  sn r  ,  HoiseType ,  , ParamVector , , perso n  ,  , l e t t e r  , ,  num ber);
s e t( h _ s n r ,  'v a lu e ' , s tr2 n u m (s n r) ) ;
HyGUr(’3 S R * ,i);
MyGDI( 'D isp Ia y _ ? a ra a e te r_ y e c to E 1) ;
HyGUI ( ’ P1 &y_Segaented_Audlo__Fi 1 e 1 ,2 ) ;

This callback allows the user to perform automated tests on several combinations of 

speech files, noise files and boundary detection algorithms.
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CHAPTER 4

OUR PROPOSED ALGORITHM

This chapter presents our proposed word boundary detection algorithm and explains 

the motivation behind several of our chosen design parameters.

Figure 4.1 displays a block diagram of our proposed algorithm.

j  LFC C  E n erg y  
1 E n v e lo p e

LFC
C o e ff ic ie n ts

Figure 4.1 our proposed boundary detection algorithm

4.1 Preemphasis

The noisy speech signal is first filtered using a first order high pass filter. The 

premphasizer is defined by:

H(z) = 1 -  az~ 1
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This eliminates unwanted low frequency background noise. The constant a is 

typically chosen from within 0.9 < a < 1 [3].

Figure 4.2 shows the preemphasis of a noisy utterance of the word 'zero'

1

0.5

E 0
-0.5

- 1 ,

1

0.5

0
-0.5

-1

-1.5

before p reem p h as is

_J------------------L_
0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

sam p le  index x 10

z  I k
after p re em p h as is -

-
r

I I I !
0.2 0.4 0.6 0.8 1 1.2 1.

sam p le  index
1.6 1.8 2 

x  1 0 4

Figure 4.2 premphasis of the noisy utterance 'zero'

4.2 Frame Blocking

The preemphasized noisy speech segment is then divided into overlapping frames. 

The length of each frame is 150 samples and the overlap is 50 samples. For a 

sampling rate of 8000 Hz, these values correspond to approximately 19ms and 6ms 

respectively. Greater values of overlap result in higher temporal granularity at the cost 

of computational load. The values of frame length and frame overlap used were 

chosen to provide a good balance between the two.

The first five frames of the noisy utterance 'zero' are shown in Figure 4.3.
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Figure 4.3 framing of a noisy speech recording

150

150

150

4.3 Windowing

Each frame is multiplied by a Hamming window given by

w(k  +  1) =  0 .54  -  cos^2

where k = 0 — 1

A Hamming window was chosen as it was the most common window used by 

previous researchers [9].
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Figure 4.4 displays the first four frames of the noisy utterance ‘zero’ after they are 

windowed with a Hamming window.
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Figure 4.4 windowed frames

4.4 Cepstral Coefficients

Several researchers such as Davis and Mermelstein [11] and Wu and Lin [1] have 

published results proving the superiority of Cepstral Coefficients for use in word 

boundary detection. Our own tests corroborate these findings. Hence we have chosen 

Linear Frequency Cepstral (LFC) coefficients in our algorithm to distinguish speech 

from background noise. Four linear frequency cepstral (LFC) coefficients are 

computed for every frame. The number of coefficients was limited to four as it was
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observed that a greater number of coefficients did not improve algorithm 

performance. Each frame of 20 elements is converted into a 4 element frame. The 

LFC coefficients are computed from each frame using the pseudo code.

LFC coefficients= real ( ifft ( log (abs ( fft ( frame ) ) ) ) ) ;

As depicted by the pseudo code, the magnitude of the Fourier Transform is taken, and 

its log computed. The real inverse Fourier Transform of the resultant sequence 

constitutes the real cepstrum of the original sequence.

The first 4 cepstral coefficients of each frame are used.

Figure 4.5 shows the first 4 coefficients of the first five frames of the noisy speech 

recording 'zero'.
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Figure 4.5 LFC coefficients of first five frames

4.5 Silence Template

The first LFCC frame is chosen as the silence template to which all further LFCC 

frames are compared. The first frame is chosen because it is assumed that all test 

recordings begin with silence or background noise. Thus the silence template defines 

the background noise.
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Figure 4.6 shows the silence coefficient template for the noisy utterance 'zero'.
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Figure 4.6 silence template

4.6 LFCC Distance Computation

The Euclidean distance between the LFC coefficient set of each frame and the silence 

template is computed to form the LFCC magnitude envelope. Thus, the number of 

elements in the magnitude envelope is equal to the number of frames of the recording. 

The Euclidean distance between two 4-element vectors is given by

n  2
Euclidean Dist =

V

where x  is the coefficient set for a frame and .v is the silence template. The Euclidean 

distance was chosen over the Itakura distance as it was found to be more successful in
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indicating phonetic differences between spectra [11]. Figure 4.7 shows the LFCC

magnitude envelope for the noisy utterance o f 'zero'.

0 . 7

0.6

0.5

“  0.4
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100 
f ram e  index

120 140 160 180 20020 40 60 80

Figure 4.7 LFCC magnitude distance envelope

4.7 LFCC Magnitude Envelope Smoothening

An ideal smoothener takes a magnitude envelope, amplifies the peaks arising from 

speech, and flattens all other peaks. Our proposed linear prediction smoothener meets 

these two requirements due to its ability to follow the contour of a frequency spectrum 

as shown in Figure 4.8.
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Figure 4.8 LPC and FFT spectra of a vowel phoneme 

Our LP smoothener is applied to the LFCC magnitude envelope in three steps.

Step 1

The mirror image of the LFCC distance envelope is concatenated to its original form 

as shown in Figure 4.9.

2® CH3

'4JQO
sample index

Figure 4.9 concatenated LFCC magnitude envelope
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If we treat this concatenated distance envelope as the frequency spectrum of a discrete 

sequence, we can eventually obtain the smooth LPC spectrum of that sequence.

Step 2

The inverse FFT of the concatenated magnitude envelope is computed as shown in 

Figure 4.10.

a.oi

§*

-0.01

3SO3 0 0ISO

Figure 4.10 IFFT of the concatenated LFCC magnitude envelope

Step 3

The 12th order linear prediction spectrum of the resulting sequence is then computed 

and then normalized by its maximum value to produce the final output of the 

smoothener as shown in Figure 4.11.
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Figure 4.11 smoothener output

This version of the original magnitude envelope emphasizes the peak caused by 

speech over the other peaks, providing a much smoother magnitude envelope to apply 

thresholds against.

4.8 Threshold Computation

The threshold is computed from the first 20 values of the smoothened, normalized 

LFCC magnitude envelope 's' using the following equation:

20threshold =  0 .3  4- 2  j(z)
i=  1

The initial values of the magnitude envelope were chosen as each recording was

assumed to begin with background noise which in turn was assumed to be constant

throughout the test recording. The first 20 values corresponded to approximately
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25ms of the test recording and were assumed to adequately represent the level of 

background noise. Thus, the threshold represented the magnitude of background 

noise. This threshold was deduced empirically such that the algorithm displayed the 

highest accuracy possible.

4.9 Pulse Extraction

The computed threshold is applied to the smoothened magnitude envelope to extract 

one or more boundary pairs. Only boundary pairs that are at least 5 frames (93.75 ms) 

wide and whose peaks are at least 0.1 units above the threshold are considered to be 

of speech. These values were empirically deduced. The boundaries thus obtained are 

the beginning and ending frame boundaries. The first sample of the beginning frame 

and the last sample of the ending frame are the final output of our word boundary 

detection algorithm. Figure 4.12 shows how the computed threshold is applied to 

extract a speech pulse.
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Figure 4.12 pulse extraction
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An advantage of using the LPC smoothener over other smootheners is that the LPC 

smoothener tends to produce an magnitude envelope with only one peak per word 

(assuming the recorded speaker is speaking at a normal speed) as seen in Figure 4.13. 

In many cases, this precludes the added algorithm complexity of accommodating 

multiple magnitude pulses, wherein the algorithm has to decide whether the distinct 

peaks are of the same word or separate words. In the case of the LPC smoothener, 

each distinct pulse tends to be of a single word.
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Figure 4.13 LPC smoothener produces only one pulse per word.

But in cases where the smoothened distance envelope does contain more than one 

peak, the algorithm initially computes a boundary pair for each peak. However, if the 

end boundary of a boundary pair is less than 5 frames from the beginning boundary of
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the following boundary pair, then the algorithm combines both boundary pairs into 

one. Such cases arise in the event of multiple words per recording. However, these 

cases are not within the scope of this thesis, as all the test recordings are of single 

words.
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CHAPTER 5

TESTING

This chapter describes the testing performed to compare the performance of several 

word boundary detection algorithms.

5.1 Testing Overview

5.1.1 Baseline Testing

All 90 of the noise-free test recordings were randomly fed to the SAPI based word 

recognizer 10 times each and the accuracy of the recognizer was noted, as shown in 

Figure 5.1.

Clean Test Recognition
Fites . WORD Results,

RECOGNIZER

Figure 5.1 baseline testing

The recognizer was able to recognize all of the clean test files with 100% accuracy. 

Given this result, we assume that any recognition error made by the recognizer during 

the course of testing a boundary detection algorithm can be attributed to the algorithm 

and not the word recognizer.
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5.1.2 Algorithm Performance Testing

Testing the various word boundary detection algorithms involved testing these 

algorithms against prerecorded noisy speech files and attempting to measure the 

accuracy of the computed boundaries using a word recognizer as shown in Figure 5.2.

Noisy Test 
Files

Extracted 
Speech Files

Manual
Boundaries

Boundary
Errors

WORD
RECOGNIZER

RESEARCH
TOOL

Recognition
Results

Figure 5.2 overview of test setup

The testing tool (as described in the Chapter 3) and the word recognition system were 

the main tools in this setup. The testing tool computed word boundaries of noisy 

speech segments and these boundaries were applied to the corresponding clean speech 

segments (the speech segments before superimposing noise). The word recognition 

system in turn attempted to recognize these speech segments. If the recognition 

system recognized the segmented clean speech correctly, then it was assumed that the 

boundaries were correctly computed. However, if the recognition system failed to 

correctly recognize the segmented clean speech, then the computed boundaries were 

deemed to be incorrect. A log was maintained depicting all the WAV files tested 

along with their recognition results (recognized or not recognized).

With this test setup, a correct recognition occurred if a boundary detector erroneously 

computed the boundaries to be the first and last samples of the test recording. This 

would incorrectly suggest high performance of the boundary detector. Hence a second
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log was maintained depicting magnitudes of boundary errors committed by the 

boundary detection algorithms.

Details of the test setup are given in the following sections.

5.2 Test Setup

The work involved in our testing was divided into three stages.

5.2.1 Stage 1;

Several noise-free speech segments were recorded from 3 different speakers. The set 

of utterances consisted of the digits 0 to 9 . The 3 different speakers are described 

below:

GENDER AGE

SPEAKER1 : M ale 29

SPEAKER2 : M ale 30

SPEAKER3 : Female 32

These 'clean' utterances were saved as WAV files with a sampling rate of 8 KHz and a 

file length of 20,000 samples (2.5 sec). Several noise files were obtained either by 

recording them or by downloading them from web sites. These sample noise files 

were also of a sampling rate of 8Kz and 20,000 samples long. These noise files
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include wind noise, fan noise as well as several colors of noise. During the course of 

testing, these noise files were amplified and superimposed onto the 'clean' speech files 

to produce 'noisy' speech files. The degree of amplification was determined by the 

level of Signal to Noise Ratio (SNR) we desired. We employed 51 different SNR 

values from 20dB to -30dB in ldB intervals.

Noise
Gain

Speech
Recording

Noisy
Speech WAV f i tBOUNDARY

DETECTION
ALGORITHM

COMPARE WITH 
MANUAL 

BOUNDARIES

APPLY BOUNDARIES 
TO CLEAN SPEECH 

RECORDING

Figure 5.3 generation of test file

As shown in Figure 5.3, each WAV file thus created was fed as input to 4 different 

word boundary detection algorithms. Each algorithm extracted from each input file a 

pair of sample numbers as proposed endpoints of the noisy utterance. These computed 

endpoints were compared with manually deduced endpoints and the resulting 

boundary errors were logged into an Excel file. Furthermore, the contents of the 

original 'clean' utterance present between the above computed boundaries were saved 

into a separate WAV files. These WAV files were the final outputs of this stage. This 

complete stage was implemented in Matlab. The number of WAV files produced by 

3 speakers uttering 10 numbers 3 times each, with 3 different types of superimposed
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noise to form noisy speech recordings with 51 different SNR values, applied to 4 

different algorithms = 3*10*3*3*51*4 = 55,080 files.

Details of the Matlab software used do create these files are provided in Section 3.3

5.2.2 Stage 2:

The WAV files generated above were given to the second stage which employed a 

Microsoft SAPI (Speech Application Programming Interface) application. SAPI 

provides an interface for applications to use the Microsoft Speech Engine as shown in 

Figure 5.4.

API

DDI

SAPI RUNTIME

APPLICATIONS

RECOGNITION
ENGINE

Figure 5.4 SAPIoverview

5.2.3 Stage 3:

The third stage involved recognition of all 55,080 files generated in stagel. The 

speech recognition application attempted to recognize all of these WAV files in 

random order. The recognizer was developed in VC++ and employs SAPI to achieve
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word recognition. Recognition results were logged into a six-dimensional matrix. The 

six dimensions were for speaker, utterance, attempt at utterance, SNR value, noise 

type, and algorithm. Once recognition attempts were made on all the files the matrix 

was exported to an Excel sheet, from which graphs were plotted displaying 

recognition accuracy against SNR values. It were these graphs along with the 

boundary errors logged in Stage 1 that provided insight into the performance of our 

word boundary detection algorithms under various levels of background noise.

Figure 5.5 presents an overview of the software developed to implement the 

recognizer. The source code for the software is included in folder named Recognizer 

on the CD located at the end of this document.
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Figure 5.5 software for recognition of WAV files
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Construct String Array of File Names

void CreateCeil ()
{ int fileindex=0;

for (int isnr-0; isnr<MAXSNR; isnr++)
for (int inoise=0 ; inoise<MAXNOISETYPE ; inoise++)

for (int ialgorithm=0 ; ialgorithm<HAXALGORITHMS ; ialgorithm++)
{ for (int ispeaker=0; ispeaker<MAXSFEAKERS; ispeaker++)

{ for (int iletter=0; iletter<MAXATTEMPTS; iletter++)
{ for (int iutterance=0 ; iutterance<MAXUTTERANCE ; iutterance++) 

wchar_t sum[MAXFILENAMELENGTH];
wchar_t *suml, *sum2, *sum3, *sum4, *sum5, *sum6;
suml=snr[isnr];
sum2=Noise[inoise];sum3*Aigorithm[ialgorithm];
sum4=Speaker[ispeaker];
sum5=Letter[iletter];
sum6=Utterance[iutterance];wcscpy(sum,surnl);
wcscat(sum,sum2);
wcscat(sum,sum3);
wcscat(sum,sum4);
wcscat(sum,sum5);
wcscat(sum,sum6);
for(int i=0;i<MAXFILENAMELENGTH;i++)
{ Files[fileindex][i] ■ sum[i];
>f ileindex++;
•sura = NULL 
suml = NULL 
sum2 = NULL 
sum3 = NULL 
sum4 = NULL 
sum5 = NULL 
sum6 = NULL

Figure 5.6 construction of file name array

The snippet of code displayed in Figure 5.6 displays how a global string array is 

constructed to contain the names of all the WAV files we want to be recognized.

Initialize Global Results Matrix

A global multidimensional matrix is initialized with zeros. This 'Results' matrix is 

used to store recognition results. Each element of the 'Results' matrix corresponds to 

one file from the global string array. Every correct recognition of a file increments its 

corresponding matrix element by one.
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Initialize SAPI

C C om P tr< IS pS tream  > c p I n p u tS t r e a m ; 
C C o m P tr< IS p R e c o g n iz e r> c p R e c o g n iz e r ; 
C C o m P tr< IS p R eco C o n tex t > c p R e c o C o n te x t;  
CComP t  r  <IS pR ecoG ram m ar> cpR ecoG ram m ar;

Since SAPI is a COM (Component Object Model) based application, COM must be 

initialized to activate SAPI. The main interface SAPI provides for speech recognition 

is the IspRecoContext COM interface. It is from this interface that SAPI receives 

requests for speech recognition. The application must set up one of two available 

speech engines using SAPI's IspRecoContext interface. The engine used for out 

testing was the InProc speech recognition engine. The application also has to specify 

a grammar using SAPI's IspRecoGrammar interface. This grammar essentially 

dictates the type of utterances to be recognized, and is defined in an XML format. The 

XML file defining the grammar used in our testing limits recognition to one of ten 

possibilities, namely the digits 0 to 9. Figure 5.7 shows the XML file defining the 

grammar used in our testing.

< GRAMMAR LANGID="409”>
<DEFINE>

<ID NAME= "DIGIT" VAL=”3"/>
</DEFINE>
<RTJLE NAME="DIGIT" TOPLEVED="ACTIVE"> 

<L PROPNAME= ”D IGIT">
<P VALSTR="Zero">Zero</P>

<P VALSTR="One">One</P>
<P VALSTR="Two”>Two</P>
<P VALSTR="Three">Three</P>
<P V ALSTR="Four">Four</P>
<P V ALSTR="Five">Five</P>
<P V ALSTR="Six">Six</P>
<P V ALSTR="S evcn"> Seven</P>
<P V ALSTR="Ei ght">Eight</P>
<P V ALSTR="Nine">Ninc</P>

</L>
</RULE>

</GRAMMAR>

Figure 5.7 grammar for recognition of digits 0 to 9
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Randomly Choose File Names From String Array

Excel Report

o p p p p u

RECOGNITION
APPLICATION

RANDOM
NUMBER

GENERATOR

Figure 5.8 testing procedure

Figure 5.8 displays how WAV files are randomly chosen to be recognized by the

recognizer to prevent any 'learning' by the recognizer.

Configure SAPI To Recognize WAV File

hr = SPBindToFile( file_name, SPFM_OPEN_READONLY,&cplnpu t St ream, HULL.NULL); 
hr=cpRecognizer.CoCreateInstance(CLSID_SpInprocRecognizer); hr=cpRecognizer->SetInput(cplnputStream, FALSE); 
hr=cpRecognizer->CreateRecoContext(&cpRecoContext); 
hr=cpRecoContext->CreateGrammar(3, &cpRecoGrammar); 
hr=cpRecoGrammar->LoadCmdFromFile(L" temp. xml", SPLO__ST AT IC);
hr=cpRecoContext->SetInterest(SPFEI(SPEI.RECOGNITION),SPFEI(SPEI_RECOGNITIOH)); 
hr=cpRecoGramirtar~>SetGranuaarState(SPGS_ENABLED); 
hr=cpRecoGrammar-->SetRuleIdState(0,SPRS_ACTIVE);
BOOL fRecognition = FALSE;
while ( (!fRecognition) && S_OK == cpRecoContext— >WaitForNoti£yEvent(2700))

I CSpEvent spEvent;while (! fRecognition && S_OK == spEvent. GetFront(cpRecoContext))
switch (spEvent.eEventId)
{ case SPEI_RECOGNITION:

static const ¥CHAR wszUnrecognized[ ]=LH<Unrecognized>,, ; dstrText.Append(L“"); 
f Recogni t ion=TRUE; 
break;

>>
if(wcsstr(file_name,dstrText) != NULL)
{ result=1;
>spEvent.Clear();

}

The application has to set up events used by SAPI to communicate with the

application and also specify which events it wants to be notified of. Examples of

event notifications provided by SAPI are SPEI_SOUND_START,

1 SPEI_SO UND_END, SPEI_SR_END_STREAM and SPEIJRECOGNITION.
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A SAPI stream object is set up with each WAV file to be recognized. An in-process 

speech recognition engine is configured and each WAV file is bound to the engine. A 

recognition context is configured to store the required SAPI events.

Increment Results Matrix

i f ( r e s u l t R e c o g n i z e d  ==1 )
{

A d d T o M a trix (f  i l e _ n a m e ) ;
>

Whenever a WAV file is correctly recognized, its corresponding element in the global 

'Results' matrix is incremented by one. Incrementing does not occur if the recognizer 

makes an incorrect recognition. Thus, upon completion of testing, the value of each 

element denotes the total number of successful recognitions of its corresponding test 

WAV file. As the maximum possible value of each matrix element (corresponding to 

all successful recognitions) is known, the value of each element denotes the 

recognition accuracy of the tested algorithm for that particular test WAV file.
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Parse Results Matrix And Print To Text File

void PrintText(){
FILE * pFile;
pFile ■ fopen(’Results.txt",’w+’);
int ResultSet[KAXUTTERANCE][HAXSHR] - {0.0}; //For Utterance vs SHR 
for (int ialgorithm*0 ; ialgoriths<MAXALGORITHMS ; ialgorithm++){ wchar_t algoName[30];

wcscpy(algoNa*e.L’Algorithm: ’);
wcscat(algoHame,Algorithm[ialgorithn]);
for (int inoisez0 ; inoise<MAXNOISETYPE ; inoise++){ wchar_t noiseNa»e[30}; 

vcscpy(noiseHaae,L"Noise: “); 
vcscat(noiseHaae,Noise[inoise]);
for (int ispeakers0; ispeaker<MAXSPEAKERS: ispeaker++){ vchar_t speakerName[30];

vcscpy (speakerNone,L’Speaker: “);
vcsca t(speakerHane,Speaker[ispeaker]);
for (int iletter=0; iletter<MAXATTEMPTS; iletter++){

for (int isnr=0; isnrcMAXSNR; isnr++){ for (int iutterance=0 ; iutterance<MAXUTTERANCE ; iutterance++){ ResultSet[iutterance][isnr] +* Results[iutteranee][isnr][ispeaker][iletter][ialgorithn][inoise];>>}//Print To File 
if (pFile!-NULL){

fwrite(algoName,1,30,pFile); 
fprintf(pFile,"Nn"); 
fwrite(noiseNawe,1,30,pFile); 
fprintf(pFile,"\n");
£ vri te(speakerNane.1.30,pFile); 
fprintf(pFile,“\n");
f or(int sLine“MAXSNR-l;sLine>* 0;sLine— ){ 

fprintf(pFile,"\t“); 
fwrite(snr[sLine],1,7,pFile);>fprintf(pFile,“\n"); 

for(int si=0;si<MAXUTTERANCE;si++){ 
fwrite(Utterance[si].1,7,pFile); 
for(int sj=MAXSNR-l;sj>=0;sj— ){

fprintf(pFile,”\t^d’,ResultSet[si][sj]);
ResultSet[si][sj]=0;}fprintf(pFile.’\n");

}fprintf(pFile.“\n\n\n");}
}>}fclose(pFile);)

After the recognizer attempts to recognize all the files present in the global string

array, the 'Results' matrix is parsed and the results are printed to a text file.
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CHAPTER 6

RESULTS

This chapter presents the results of testing performed using the testing tool and SAPI 

driven recognizer configured in this thesis. We also present a comparison of the 

performances of the algorithms tested in this thesis.

6.1 Preliminary Results

Our testing tool allows the user to select or deselect the use of a preemphasizer and to 

select one of 3 available smootheners. All of the algorithms tested in this thesis have 

used the preemphasizer and an LPC smoothener provided by our testing tool.

Preemphasis

We employed preemphasis in all of our testing to remove low frequency background 

noise. Figure 6.1 shows the recognition accuracy obtained from testing a Mel 

Frequency Cepstral Coefficient (MFCC) algorithm with several noisy speech files. 

Testing was performed once without using preemphasis and once using preemphasis. 

The results shows the benefit of using preemphasis.

72

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



„  100occl_
3 No Preem phasisOO<co
co>oo
CDcc

-30 -25 -20 -15 -10

^  100o
05
3 P reem phasisOCJ<co

'-30 -25 -20 -15 -10
SNR (dB)

Figure 6.1 preemphasis vs no preemphasis

LPC Smoothening

In this thesis, we introduced an LPC smoothener used to smoothen magnitude 

envelopes to make it easier to apply thresholds to extract speech. We used this LPC 

smoothener throughout the testing performed for this thesis. Figure 6.2 displays the 

results of testing the 'Time Magnitude' algorithm with various noisy speech files using 

several smootheners. Compared to the other smootheners, the LPC smoothener 

allowed for the highest recognition accuracy.
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Figure 6.2 performance of various smootheners

6.2 Testing

Our testing tool provides a means of comparing and contrasting the performance of 

various word boundary detection algorithms. We have tested 4 well know algorithms 

using 3 different speakers and 3 different types of noise. The performances of these 

algorithms are compared using two measures: recognition accuracy and boundary 

errors.
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Recognition Accuracy

The recognition accuracy is a measure of how well the SAPI driven recognizer is able 

to recognize clean speech segments with boundaries computed by a word boundary 

detection algorithm.

Boundary Error

The boundary error is a measure of how close the computed boundaries are to the 

manually deduced boundaries. The boundary error is measured as:

Boundary Error = Manually Deduced Boundary -  Computed Boundary

Boundary errors are positive when the computed boundaries lie to the left of the 

manually deduced boundaries and are negative when the computed boundaries lie to 

the right of the manually deduced boundaries. When the computed begin boundary 

error is negative or the computed end boundary error is positive, then that computed 

boundary is said to lie within its manually deduced counterpart, and part of the speech 

signal is lost. However, if the computed begin boundary error is positive or the 

computed end boundary error is negative, then that computed boundary is said to lie 

outside its corresponding manually deduced counterpart and no speech signal is lost.

In the following sections, we present the results obtained from testing four algorithms 

for their recognition accuracies and boundary errors. All four algorithms employed 

the same 1st order preemphasizer, frame length of 150 samples and frame overlap of 

50 samples, a Hamming window, an LPC smoothener and a threshold calculated from 

the smoothened magnitude envelope .s[i] by:
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threshold =  0.3 +- £  s(i)
i = l

6.2.1 The Time Algorithm 

Recognition Accuracy

Figure 6.3 displays the recognition accuracy of the Time algorithm against SNR 

values from -30dB to 20dB. The algorithm displayed an accuracy of 98% at 20dB and 

deteriorated at lower SNR values.

Time Perform ance
100

95

90

85

80

75

70

65

60

55

50
-30 -10 10 15 20-25 -20 -15

SNR (dB)

Figure 6.3 recognition accuracy of the Time algorithm

The performance of the Time algorithm was less than perfect even at SNR values as 

high as 20dB. Further investigation revealed that this was mainly due to the 

algorithm's difficulty in accurately computing boundaries for the utterance 'six'. An
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example of this limitation is shown in Figure 6.4, wherein the algorithm failed to 

accurately compute the end boundary of the utterance 'six' at an SNR of 20dB.

1
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- 1 . 5

The Utterance ' W  at 20dB
- p — .  i— ,.T —— y
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0,4

0.2
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Figure 6.4 an example of the failings of the Time algorithm 

Boundary Errors

The probability distribution functions (PDFs) of boundary errors and the distributions 

of the positions of the boundary errors relative to their manually deduced counterparts 

are shown in Figure 6.5 to Figure 6.12. These distributions are shown for several 

ranges of SNR values to provide insight into the performance of the Time algorithm 

under these ranges.

The PDFs of begin and end boundary errors of the Time algorithm under SNR values 

from -30dB to 20dB are shown in Figure 6.5. The distributions of begin and end 

boundaries were found to be bimodal with means and standard deviations as shown.
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Figure 6.5 PDF of boundary errors from (Time Algorithm, -30dB to 20dB)

Figure 6.6 shows the distribution of boundary error positions for SNR values from - 

30dB to 20dB. It can be seen that roughly 52% of computed begin boundaries and 

90% of computed end boundaries lay within their manually deduced counterparts.
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( boundaries include complete sp eech  s ig n a l)

Figure 6.6 boundary error positions (Time Algorithm, -30dB to 20 dB)
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The PDFs of begin and end boundary errors made by the Time algorithm under SNR 

values from lOdB to 20dB are shown in Figure 6.7. The distributions of begin and end 

boundaries were found to be bimodal and trimodal respectively with means and 

standard deviations as shown. The recognition accuracy of the Time algorithm against 

this range of SNR values was greater than 94%. This high performance is reflected in 

the small magnitudes of the means and standard deviations as well as the large sizes 

of the primary modes relative to the other modes of the distributions.
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Figure 6.7 PDF of boundary errors (Time Algorithm, lOdB to 20dB)

Figure 6.8 shows the distribution of computed boundary positions relative to their 

manually deduced counterparts for SNR values from lOdB to 20dB. It can be seen 

that 54% of computed begin boundaries and 74% of computed end boundaries lay 

within their corresponding manual boundaries. In spite of these seemingly 

unfavorable results (favorable results would have computed boundaries lying outside 

their manually deduced counterparts), the algorithm displayed high recognition 

accuracy. This would suggest that even if the computed boundaries lie within the
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manually deduced boundaries, recognition accuracy is not harmed as long as the 

magnitudes of boundary errors are small.

41.8855 94
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13.2660 %
[ boundaries include complete sp eech  s ig n a l)

Figure 6.8 boundary error positions (Time Algorithm, lOdB to 20dB)

The PDFs of begin and end boundary errors made by the Time algorithm under SNR 

values from -19dB to 9dB are shown in Figure 6.9. The distributions of begin and end 

boundaries were found to be bimodal with means and standard deviations as shown. 

The recognition accuracy of the Time algorithm against this range of SNR values was 

found to be between 75% and 97%.

80

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



x 10 PDF of Begin Boundaiy Errors

mean = 508.2201 
std =635.4747

n 3-

80.4215%

mean = -4931.2335 
std = 2139.7684

-1.5 -1 -0.5 0 0.5 1
Boundaiy Detection Error (samples)

1.5

x 10

x 10 PDF of End Boundary Errors
I

6

5

mean = -7635.3903 
std = 1276.6488

ro
I 3

2

mean = -1259.5927 
std = 1167.4884

1
>.5683 Vo

0L-
-1.5 ■1 -0.5 0 0.5 1 1.5

Boundaiy Detection Error (samples)

Figure 6.9 PDF of boundary errors (Time Algorithm, -19dB to 9dB)

Figure 6.10 shows the distribution of boundary error positions for SNR values ranging 

from -19dB to 9dB. It can be seen that 62% of computed begin boundaries and 92% 

of computed end boundaries lay within their corresponding manually deduced 

boundaries.
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Figure 6.10 boundary error positions (Time Algorithm, -19dB to 9dB)
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The PDFs of begin and end boundary errors made by the Time algorithm under SNR 

values from -30dB to -20dB are shown in Figure 6.11. The distributions of begin and 

end boundaries were found to be bimodal with means and standard deviations as 

shown. The recognition accuracy of the Time algorithm against this range of SNR 

values was less than 75%. This is reflected in the large magnitudes of the means and 

standard deviations of the primary modes of the distributions.

x 10 PDF of Begin Boundary Errors
f

6

5

CO

mean = -5788.2624 
std = 1694.6072

2

787.0034 %1 mean = -1014.1218 
std = 1582.7477

0L
-1.5 •1 1 1.5-0.5 0 0.5

x 10 PDF of End Boundary Errors

Boundary Detection Error (samples) x 10

7

6

5

CO
_o
o mean = -7522.4475 

std = 1358.7316

2

1 mean = -3402.2022 
std = 1751.793

'87.5084 i

,12.4iO1-
-1.5 •1 -0.5 0 0.5

Boundaiy Detection Error (samples)
1 1.5

x 10

Figure 6.11 PDF of boundary errors (Time Algorithm, -30dB to -20dB)

Figure 6.12 shows the distribution of computed boundary positions relative to their 

manually deduced counterparts for SNR values from -30dB to -20dB. It can be seen 

that 4% of computed begin boundaries and 99% of computed end boundaries lay 

within their corresponding manual boundaries.
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Figure 6.12 boundary error positions (Time Algorithm, -30dB to -20dB)

6.2.2 The LPC Algorithm 

Recognition Accuracy

Figure 6.13 displays the recognition accuracy of the LPC algorithm against SNR 

values from -30dB to 20dB. The LPC word boundary detection algorithm displayed 

an accuracy of 98% at an SNR of 20dB and its performance deteriorated gradually 

below SNR values of 5dB.

83

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



LPC Performance
100

90

80

70

60

50

40

30

20

10
-30 10 15 20-25 -20 -15 -10

S N R  (dB)

Figure 6.13 recognition accuracy of the LPC algorithm 

Boundary Errors

The probability distribution functions (PDFs) of boundary errors and the distribution 

of the positions of the boundary errors made by the LPC algorithm are shown in 

Figure 6.14 to Figure 6.21. These distributions are shown for several ranges of SNR 

values to provide insight into the performance of the LPC algorithm under these 

ranges.

The PDFs of begin and end boundary errors made by the LPC algorithm under SNR 

values from -30dB to 20dB are shown in Figure 6.14. The distributions of begin and 

end boundaries were found to be bimodal with means and standard deviations as 

shown.
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Figure 6.14 PDF of boundary errors (LPC Algorithm, -30dB to 20dB)
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Figure 6.15 shows the distribution of boundary error positions for the SNR values 

ranging from -30dB to 20dB. It can be seen that roughly 64% of computed begin 

boundaries and 20% of computed end boundaries lay within their manually deduced 

counterparts.

0 .0 %

-ive Begin Boundary E rror

64 .3097  %

20.177%

+ive Begin Boundary E rror

15.513%
( boundaries include com plete s p e e c h  s ig n a l)

Figure 6.15 boundary error positions (LPC Algorithm, -30dB to 20dB)
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The PDFs of begin and end boundary errors made by the LPC algorithm under SNR 

values from 5dB to 20dB are shown in Figure 6.16. The distributions of begin and end 

boundaries were found to be bimodal with means and standard deviations as shown. 

The recognition accuracy of the LPC algorithm against this range of SNR values was 

greater than 93%. This is reflected in the small magnitudes of the means and standard 

deviations as well as the large sizes of the primary modes relative to the other modes 

of the distributions.
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Figure 6.16 PDF of boundary errors from (LPC Algorithm, 5dB to 20dB)

Figure 6.17 shows the distribution of computed boundary positions relative to their 

manually deduced counterparts for SNR values from 5dB to 20dB. It can be seen that 

62% of computed begin boundaries and 41% of computed end boundaries lay within 

their manually deduced counterparts
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Figure 6.17 boundary error positions (LPC Algorithm, 5dB to 20dB)

The PDFs of begin and end boundary errors made by the LPC algorithm under SNR 

values from -24dB to 4dB are shown in Figure 6.18. The distributions of begin and 

end boundaries were found to be bimodal with means and standard deviations as 

shown. The recognition accuracy of the LPC algorithm against this range of SNR 

values was found to be between 15% and 92%.
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Figure 6.18 PDF of boundary errors (LPC Algorithm, -24dB to 4dB)
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Figure 6.19 shows the distribution of boundary error positions for SNR values ranging 

from -24dB to 4dB. It can be seen that 40% of computed begin boundaries and 92% 

of computed end boundaries lay within their corresponding manually deduced 

boundaries

33.3051 %

-ive Begin Boundary Error

6.7016%

58.1147%

+ive Begin Boundary Error

1.8785 %
( boundaries include complete sp eech  s ig n a l)

Figure 6.19 boundary error positions (LPC Algorithm, -24dB to 4dB)

The PDFs of begin and end boundary errors made by the LPC algorithm under SNR 

values from -30dB to -25dB are shown in Figure 6.20. The distributions of begin and 

end boundaries were found to be bimodal with means and standard deviations as 

shown. The recognition accuracy of the LPC algorithm against this range of SNR 

values was less than 15%. This is reflected in the large magnitudes of the means and 

standard deviations of the primary modes of the distributions.
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Figure 6.20 PDF of boundary errors (LPC Algorithm, -30dB to -25dB)

Figure 6.21 shows the distribution of computed boundary positions relative to their 

manually deduced counterparts for SNR values from -30dB to -25dB. It can be seen 

that 4% of computed begin boundaries and 100% of computed end boundaries lay 

within their corresponding manual boundaries.
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-ive Begin B oundary E rror

0 %
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{ boundaries include com plete s p e e c h  s ig n a l)

Figure 6.21 boundary error positions (LPC Algorithm, -30dB to -25dB)
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The LPC algorithm failed to compute any boundaries for numerous test files, most of 

which contained white noise at very low SNR values. Figure 6.22 indicates the 

percentage of all test files that the LPC algorithm failed to compute boundaries for.

35

30 
2 
5
m 25

8 20

15

8

-30 -25 -20 -15 -10 10 15 20
SNR (dB)

Figure 6.22 % of files with no boundaries detected

Figure 6.23 shows an example where the LPC algorithm failed to compute boundaries 

for one of the test files.
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Figure 6.23 no boundaries detected'

6.2.3 The LFCC Algorithm

Recognition Accuracy

Figure 6.24 displays the recognition accuracy of the LFCC algorithm against SNR 

values from -30dB to 20dB. The LFCC word boundary detection algorithm displayed 

an accuracy of about 100% at 20dB and an accuracy of around 95% at OdB.
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Figure 6.24 recognition accuracy of the LFCC algorithm 

Boundary Errors

The probability distribution functions (PDFs) of boundary errors and the distributions 

of the positions of the boundary errors made by the LFCC algorithm are shown in 

Figure 6.25 to Figure 6.32. These distributions are shown for several ranges of SNR 

values to provide insight into the performance of the LFCC algorithm under these 

ranges.

The PDFs of begin and end boundary errors made by the LFCC algorithm under SNR 

values from -30dB to 20dB are shown in Figure 6.25. The distributions of begin and 

end boundaries were found to be trimodal with means and standard deviations as 

shown.
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Figure 6.25 PDF of boundary errors (LFCC Algorithm, -30dB to 20dB)

Figure 6.26 shows the distribution of boundary error positions for SNR values ranging 

from -30dB to 20dB. It can be seen that roughly 38% of computed begin boundaries 

and 70% of computed end boundaries lay within their manually deduced counterparts.
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15.2547 %
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( boundaries include complete speech  s ig n a l)

Figure 6.26 boundary error positions (LFCC Algorithm, -30dB to 20dB)
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The PDFs of begin and end boundary errors made by the LFCC algorithm under SNR 

values from OdB to 20dB are shown in Figure 6.27. The distributions of begin and end 

boundaries were found to be bimodal with means and standard deviations as shown. 

The recognition accuracy of the LFCC algorithm within this SNR range was greater 

than 95%. This high performance is reflected in the small magnitudes of means and 

standard deviations of the primary modes as well as the large sizes of the primary 

modes relative to the other modes.
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Figure 6.27 PDF of boundary errors (LFCC Algorithm, OdB to 20dB)
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Figure 6.28 shows the distribution of computed boundary positions relative to their 

manually deduced counterparts for SNR values from OdB to 20dB. In spite of the 

algorithms high recognition accuracy in this range SNR range, it can be seen that 37% 

of computed begin boundaries and 54% of computed end boundaries lay within their 

manually deduced counterparts.
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Figure 6.28 boundary error positions (LFCC Algorithm, OdB to 20dB)

The PDFs of begin and end boundary errors made by the LFCC algorithm under SNR 

values from -19dB to -ldB are shown in Figure 6.29. The distributions of begin and 

end boundaries were found to be trimodal with means and standard deviations as 

shown. The recognition accuracy of the LFCC algorithm against this range of SNR 

values was found to be between 9% and 95%.
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Figure 6.29 PDF of boundary errors (LFCC Algorithm, -19dB to -ldB)
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Figure 6.30 shows the distribution of boundary error positions for SNR values from - 

24dB to 4dB. It can be seen that 53% of computed begin boundaries and 90% of 

computed end boundaries lay within their corresponding manually deduced 

boundaries.
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55 .4903
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1.2527 %
{ boundaries include com plete sp e ec h  s ig n a l)

Figure 6.30 boundary error positions (LFCC Algorithm, -19dB to - ldB)

The PDFs of begin and end boundary errors made by the LFCC algorithm under SNR 

values from -30dB to -20dB are shown in Figure 6.31. The distributions of begin and 

end boundaries were found to be bimodal with means and standard deviations as 

shown.
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Figure 6.31 PDF of boundary errors (LFCC Algorithm, -30dB to -20dB)
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Figure 6.32 shows the distribution of computed boundary positions relative to their 

manually deduced counterparts for SNR values from -30dB to -20dB. It can be seen 

that 33% of computed begin boundaries and 68% of computed end boundaries lay 

within their corresponding manually deduced counterparts.
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Figure 6.32 boundary error positions (LFCC Algorithm, -30dB to -20dB)
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6.2.4 The MFCC Algorithm

Recognition Accuracy

Figure 6.33 displays the recognition accuracy of the MFCC algorithm against SNR 

values from -30dB to 20dB. The MFCC word boundary detection algorithm displayed 

an accuracy of 95% at 20dB and displayed rapid deterioration in performance at lower 

SNR values.

MFCC Perform ance
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Figure 6.33 recognition accuracy of the MFCC algorithm

Like the Time algorithm, the performance of the MFCC algorithm was less than 

perfect even at SNR values as high as 20dB. This was also due to the algorithm's 

difficulty in accurately computing boundaries for the utterance 'six'. An example of 

this limitation is shown in Figure 6.34, wherein the algorithm failed to accurately 

compute the end boundary of the utterance 'six' at an SNR of 20dB.
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The Utterance "six" With White Noise At -20dB
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Figure 6.34 an example of the failings of the MFCC algorithm 

Boundary Errors

The probability distribution functions (PDFs) of boundary errors and the distributions 

of the positions of the boundary errors made by the MFCC algorithm are shown in 

Figure 6.35 to Figure 6.42. These distributions are shown for several ranges of SNR 

values to provide insight into the performance of the MFCC algorithm under these 

ranges.

The PDFs of begin and end boundary errors made by the MFCC algorithm under SNR 

values from -30dB to 20dB are shown in Figure 6.35. The distributions of begin and 

end boundaries were found to be unimodal with means and standard deviations as 

shown.
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Figure 6.35 PDF of boundary errors (MFCC Algorithm, -30dB to 20dB)

Figure 6.36 shows the distribution of boundary error positions for SNR values ranging 

from -30dB to 20dB. It can be seen that roughly 57% of computed begin boundaries 

and 64% of computed end boundaries lay within their manually deduced counterparts.
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Figure 6.36 boundary error positions (MFCC Algorithm, -30dB to 20dB)
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The PDFs of begin and end boundary errors made by the MFCC algorithm under SNR 

values from OdB to 20dB are shown in Figure 6.37. The distributions of begin and end 

boundaries were found to be bimodal and trimodal respectively with means and 

standard deviations as shown.
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Figure 6.37 PDF of boundary errors (MFCC Algorithm, OdB to 20dB)

Figure 6.38 shows the distribution of computed boundary positions relative to their 

manually deduced counterparts for SNR values from lOdB to 20dB. It can be seen 

that 49% of computed begin boundaries and 66% of computed end boundaries lay 

within their manually deduced counterparts.
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Figure 6.38 boundary error positions (MFCC Algorithm, OdB to 20dB)

The PDFs of begin and end boundary errors made by the MFCC algorithm under SNR 

values from -19dB to 9dB are shown in Figure 6.39. The distributions of begin and 

end boundaries were found to be unimodal with means and standard deviations as 

shown. The recognition accuracy of the MFCC algorithm against this range of SNR 

values was found to be between 8% and 81%.
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Figure 6.39 PDF of boundary errors (MFCC Algorithm, -19dB to -ldB)
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Figure 6.40 shows the distribution of boundary error positions for SNR values ranging 

from -19dB to 9dB. It can be seen that 60% of computed begin boundaries and 63% 

of computed end boundaries lay within their corresponding manually deduced 

boundaries.
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Figure 6.40 boundary error positions (MFCC Algorithm, -19dB to - ldB)

The PDFs of begin and end boundary errors made by the MFCC algorithm under SNR 

values from -30dB to -20dB are shown in Figure 6.41. The distributions of begin and 

end boundaries were found to be unimodal and bimodal respectively with means and 

standard deviations as shown.
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Figure 6.41 PDF of boundary errors (MFCC Algorithm, -30dB to -20dB)

Figure 6.42 shows the distribution of computed boundary positions relative to their 

manually deduced counterparts for SNR values from -30dB to -20dB. It can be seen 

that 58% of computed begin boundaries and 65% of computed end boundaries lay 

within their corresponding manually deduced boundaries.
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Figure 6.42 boundary error positions (MFCC Algorithm, -30dB to -20dB)
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6.2.5 Comparison of Algorithm Performances

In this thesis, we have used recognition accuracy and boundary error magnitude as the 

two measures of word boundary detection algorithm performance. This section 

presents the comparison of the performances of the four tested algorithms.

Recognition Accuracy:

A good boundary detection algorithm displays high recognition accuracy even at low 

values of SNR. Figure 6.43 displays the comparison of recognition accuracies 

exhibited by the four algorithms tested in this thesis.

Comparison of Algorithm Performances
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Figure 6.43 comparison of recognition accuracy

• For SNR values above OdB, the LFCC algorithm displayed the highest recognition 

accuracy, and the MFCC algorithm displayed the lowest accuracy. The Time and
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LPC algorithms displayed similar recognition accuracies slightly lower than that 

of the LFCC algorithm.

• For SNR values below OdB, the Time algorithm displayed the highest recognition

accuracy of the four algorithms. However, its recognition accuracy was not high

enough to be used in any practical speech recognition system under noise 

conditions below OdB.

• Although the LFCC algorithm displayed the highest recognition accuracy under

SNR values above OdB, it also displayed the most rapid degradation of

recognition accuracy for SNR values less than OdB.

Boundary Errors

The performance of a good boundary detection algorithm results in boundary errors 

with very small magnitudes of mean and standard deviation. Figure 6.44 displays the 

comparison of the means and standard deviations of the boundary errors committed 

by the four algorithms under noise conditions from OdB to 20dB.
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BEG IN  BOUNDARY ERRORS 

MEAN STB

END BOUNDARY ERRORS 

MEAN STD

TIM E 239.36
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-772.30 

(-96.54ms)

878.99

(109.87ms)
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(131.44ms)
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(-78.31ms)

1466.1

(183.26ms)

LFCC -198.29

(-24.79ms)

710.79

(88.49ms)
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M FCC 418.80

(52.35ms)

1482.10

(185.26ms)

-356.54 

(-44.56ms)

1884.90

(235.61ms)

Figure 6.44 comparison of boundary errors

Negative boundary errors indicate computed boundaries that lie to the right and 

positive boundary errors indicate computed boundaries that lie to the left of the 

manually deduced boundaries. This means that loss of speech information occurs in 

the case of negative begin boundary errors as well as positive end boundary errors, 

which typically results in degraded recognition accuracy.

The LFCC algorithm displayed the lowest magnitudes of mean and standard deviation 

of boundary errors.
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CHAPTER 7 

CONCLUSIONS AND FUTURE RESEARCH

This chapter presents the conclusions obtained from testing the performance of 4 

different word boundary detection algorithms and also suggests areas of future 

research.

7.1 Conclusions

The characteristics of speech that we explored were

• Time Magnitude

• Frequency Magnitude

• Linear Prediction Coefficients

• Linear Cepstral Coefficients

• Mel Cepstral Coefficients

It was observed that these characteristics displayed magnitudes that differed for 

speech and background noise.

The first task we had set out to complete was to develop a testing tool that allowed the 

user to implement several boundary detection algorithms and vary their parameters to 

observe their effects on boundary detection accuracy. Chapter 3 explained in detail
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the functionality of the testing tool developed in this thesis. This tool proved very 

useful in observing the effect different factors had on word boundary detection 

performance.

Our second task was to develop a word boundary detection algorithm which displayed 

high boundary detection accuracy. The algorithm we proposed employed Linear 

Frequency Cepstral Coefficients

Our final task was to perform extensive testing to compare and contrast our proposed 

boundary detection algorithm with other algorithms. We found that our algorithm 

displayed higher accuracy than the other tested algorithms and was robust under SNR 

values as low as OdB. Other conclusions made in the course of the testing were:

• Preemphasis resulted in higher word boundary detection accuracy.

• The LPC smoothener introduced in this thesis facilitated higher performance of 

word boundary detection algorithms.

• Our proposed algorithm employing Linear Frequency Cepstral Coefficients 

displayed the highest word boundary detection performance with a recognition 

accuracy of above 96% at SNR values above ldB.

• The recognition accuracy of word boundary detection algorithms does not degrade 

when computed boundaries fall within their manually deduced counterparts as 

long as the magnitudes of boundary errors are small (<700 samples).
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7.2 Future Research

This section proposes several ideas for future research in the field of word boundary

detection

• This thesis was limited to testing boundary detection algorithms with pre-recorded 

noisy test recordings. Real time testing of boundary detection algorithms can be 

performed in which an utterance is recorded and the boundaries computed in real 

time.

• We examined algorithms that employ a given type of speech representation to 

compute boundaries and it was observed that an algorithms performance differed 

under different types of noise. Algorithms may be developed wherein the first few 

frames of background noise are observed and the algorithm's speech 

representation chosen accordingly.

• The testing of algorithms in this thesis was performed with a 'command and 

control' grammar which was limited to the digits 'O' to '9'. Further testing can be 

performed using other 'command and control' grammars or a context-free 

'dictation' grammar.

• Boundary detection algorithms can be developed that will remain robust even in 

the presence of non-stationary background noise. This may involve the use of a 

pulse extraction threshold whose value varies throughout the length of the test 

recording.

• The scope of this thesis was limited to 'explicit' word boundary detection 

algorithms. Similar testing can be performed for 'implicit' and 'hybrid' boundary 

detection algorithms.
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