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ABSTRACT

ACOUSTIC CALIBRATION AND BATHYMETRIC PROCESSING 
WITH A KLEIN 5410 SIDESCAN SONAR

by

James M. Glynn, Jr.

University of New Hampshire, May, 2007

In 2001, NOAA acquired an L-3 Communications Klein 5410 bathymetric 

sidescan sonar system that simultaneously provided high resolution multibeam 

acoustic imagery and wide swath bathymetry. The sonar’s inability to produce 

matching bathymetry in overlapping swaths motivated the detailed acoustic and 

signal processing analyses described in this thesis.

Results of this research include specific corrections for phase distortions 

introduced by the sonar’s transmit pulses, receiver electronics, and transducer 

elements, which are implemented in a newly-developed full vector bathymetric 

processing algorithm to estimate accurate acoustic arrival angles for each 

sample of the seafloor echo acquired by the Klein 5410 sonar. Performance of 

this algorithm was verified during a survey conducted in New York Harbor during 

October of 2006. The resulting bathymetry matches bathymetry obtained 

independently over the same survey area with a Reson SeaBat 8125 focused 

multibeam echo-sounder operating at the same acoustic frequency.

xx

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



CHAPTER 1

INTRODUCTION

1.1 Background

L-3 Klein Associates of Salem, NH has traditionally manufactured 

sidescan sonar systems which produce high quality backscatter imagery. The 

Series 5000 is Klein’s flagship family of digital sidescan sonars which can acquire 

high resolution (20 cm) acoustic backscatter over a 300 m swath with 100% 

bottom coverage at survey speeds up to 10 knots. This is achieved by using 

phased array signal processing techniques in conjunction with a long sidescan 

line array containing multiple acoustic elements.

Klein 5000 sonar systems consist of three major components: a towbody 

(towfish) in which the transducer arrays and data acquisition electronics are 

mounted, a topside processing computer or transceiver processing unit (TPU), 

and a PC for operator command and control, as well as data logging. The 

towfish, which houses the transducer arrays, is shown in Figure 1.1. The port 

transducer is shown in the image as the black rectangular device that follows the 

long axis of the towfish. Figure 1.2 and Figure 1.3 show the Klein 5000 TPU and 

PC respectively.

1
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Figure 1.1 Klein 5000 Towfish

Figure 1.2 Klein 5000 TPU Figure 1.3 Klein 5000 PC

Klein 5000 systems operate at a center frequency of 455 kHz with a 

nominal acoustic wavelength of 3.3 mm assuming a seawater sound speed of 

1500 m/s. The sonar receivers have a 20 kHz bandwidth centered at 455 kHz. 

The effective sampling rate is 22.75 kHz per channel with an A/D converter that 

has a resolution of 12 bits. The port and starboard transducer arrays are 

approximately 1.2 m in length, and each produces five dynamically focused 

receive sidescan sonar beams which enable the system to function at high 

survey speeds. By design, the maximum operating slant range of the sonar is 

150 m to either side of the towing line.

In 1999, Klein Associates began developing a Series 5000 bathymetric 

sidescan sonar system which was designated the Klein 5410. The sidescan 

function of the Klein 5410 sonar is identical to that of any other Klein Series 5000

2
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sonar, but the port and starboard acoustic arrays in the Klein 5410 sonar each 

incorporate two additional acoustic elements to be used for seafloor bathymetry. 

These elements are referred to in this thesis as bathymetric elements.

Figure 1.4 shows the geometry involved in making bathymetric 

measurements with a sidescan sonar. The seafloor is shown to have some 

arbitrary across-track profile. The transducer in the towfish transmits an acoustic 

pulse through the water. As the pulse propagates, it interacts with different 

regions of the seafloor, and each region backscatters some of the incident 

acoustic energy. Backscatter echoes are received by the sonar at different times 

and with different angles of arrival. If an acoustic arrival angle, 0, can be 

determined for each pulse echo arriving at a travel time, T, it is possible to 

determine the water depth, D, beneath the sonar across the swath.

Towfish

90'

Travel Time, T

CL

0° Cross Track Distance, R
Figure 1.4 Geometry of Bathymetric Measurements with a Sidescan Sonar. Black arcs on outer 

edges of towfish represent transducer arrays. Towfish viewed from the rear.
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Travel times are inherently measured by Klein 5000 sonar systems given 

the nature of their digital sampling hardware. However, some additional effort is 

required to measure arrival angles. Figure 1.5 illustrates the general array 

geometry used by bathymetric sidescan sonar systems to determine acoustic 

arrival angles at each sampling instant. The two receivers shown in Figure 1.5 

are configured in the same manner as the two additional bathymetric elements 

installed in each Klein 5410 transducer. In practice, arrival angles are measured 

with respect to broadside (a=0), and then referenced to nadir (0=0).

Receiver 1

Ax
Horizontal

Receiver 2

Acoustic
Wavefrontbroadside

a=0Nadir

Figure 1.5 General Array Geometry for Measuring Differential Phase with a Bathymetric
Sidescan Sonar.

For a narrowband acoustic signal, the differential path, Ax, traversed by an 

acoustic wavefront between receivers 1 and 2 can be related to a differential 

phase, A<J).

A ^ = Ax ^
In  X

The acoustic wavelength, X (m), is a function of the sound speed in the medium, 

c (m/s), and the operating frequency of the sonar, f (Hz).

4
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In Figure 1.5, Ax can be expressed as a function of the acoustic arrival angle, a, 

and the baseline between the receivers, d (m), using trigonometry.

Substituting (1.3) into (1.1), and solving for A(j>, the fundamental relationship 

defining the operation of phase differencing bathymetric sidescan sonars is 

obtained.

If d and X are both constants, the arrival angle of a plane acoustic wavefront can 

be determined by measuring the differential phase between two receivers, and 

solving (1.4) for a. Figure 1.6 shows a block diagram of the Klein 5410 sonar 

which illustrates that the system provides differential phase quantities, but those 

quantities must be processed externally to compute arrival angle solutions.

Ax = d sin(a) (1.3)

(1.4)

 -TX Signal

—  -RX Signal

TX
Electroi* ,  [■

Port
Array

“
Analog 

■» Signal 
Processing

I t

i 5 Focused 
J Sidescan 
■ Sonar Beams 
! Per Side

Differential 
Phase 

Measuiemen 
For Bathymel

L Propagati 
Thiougf 

W ater Coll

j

Figure 1.6 Klein 5410 Sonar Block Diagram
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Bathymetric sidescan sonar systems have been discussed in the technical 

literature since the 1960’s. Data from specific systems such as the 

SeaMARC II1, SARA2, and Bathyscan 3003 has been presented. Specialized 

signal processing algorithms4 for bathymetric sidescan systems have also been 

developed and discussed. In addition, the impact of phase errors on depth 

errors5 has been explored. The expression in (1.4) assumes absolute phase 

matching between the sonar channels used to measure differential phase. 

However, absolute phase matching is impossible in real world electronic 

systems. An error analysis presented by Denbigh5 derives (1.5) where 0 is the 

acoustic arrival angle with respect to nadir, (3 is the mounted inclination angle of 

the receivers with respect to nadir (illustrated in Figure 1.5), D is the true water 

depth, and AD is the depth error associated with the phase error A(A(j>).

A(A^) = -^^ -cos(/? -0 )-^cot(#) (1.5)
X D

Figure 1.7 (shown below) was generated using AD/D = 0.01, which 

corresponds to a depth error of 1 % of the total water depth. The bathymetric 

receivers in a Klein 5410 sonar are separated by 1.5X, but baseline distances of 

2.5X and 4.OX are also relevant to the Klein system, as discussed in CHAPTER  

4. To obtain bathymetry which is accurate to within 1 % of the water depth out to 

a swath angle of 80°, the phase error between the receivers can be no more than 

0.02 rad for a baseline of 1.5X.

6
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Phase Error Tolerances Corresponding to 1% Depth Errors for Three Relevant Baseline Distances

V>
c
03
‘o
«s
tz

0.8
U J
4)
<n<o
.cQ.
<u

0.4

0.2

80
Arrival Angle Measured from Nadir, Degrees

Figure 1.7 Phase Error Tolerances Corresponding to 1% Depth Errors for Three Relevant
Baselines

It is important to note that the 1 % depth errors associated with phase 

errors are only a part of the overall error budget for the sonar. The expression in

(1.5) does not account for GPS positioning errors, attitude measurement errors, 

or refraction errors, which must also be considered.

In 2001, the U.S. National Oceanic and Atmospheric Administration 

(NOAA) acquired a Klein 5410 bathymetric sidescan sonar. NOAA personnel 

conducted numerous field tests of the sonar, and found that the port bathymetry 

data was consistently of poorer quality than the starboard bathymetry data. 

Despite the higher quality of the starboard bathymetry, its accuracy was 

unknown. Through its partnership with the University of New Hampshire (UNH), 

NOAA requested an investigation of methods to understand, and possibly 

increase, the level of bathymetric performance achieved by the Klein 5410 sonar. 

This is the basis of the research described in this thesis.

7
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1.2 Objectives

The objectives of this research were twofold. The first objective was to 

conduct precise amplitude and phase calibration of the Klein 5410 sonar to 

determine whether any fundamental problem would preclude the Klein 5410 

sonar from producing realistic bathymetry. The second objective was to 

demonstrate that realistic seafloor bathymetry could be obtained from Klein 5410 

sonar data.

1.3 Approach and Summary of Results

The Klein 5410 sonar was subjected to a multifaceted calibration process. 

CHAPTER 2 discusses deployment of the sonar in an engineering test tank to 

characterize its transmit pulses. Frequency modulation in the transmit pulses 

was confirmed to introduce phase distortions in the samples acquired by the 

sonar. To minimize the phase distortions, and maximize the accuracy of depth 

measurements, it was necessary to operate the sonar with a CW  (continuous 

wave) transmit pulse instead of the standard FM pulse.

The sonar’s analog signal processing electronics and data acquisition 

electronics were tested as discussed in CHAPTER 3. Proper function of the 

digital data acquisition electronics was verified, but phase mismatches between 

some analog receive channels of up to 0.15 rad were discovered. These 

mismatches reduce the accuracy of depth measurements at the outer edges of 

bathymetric swaths, and must be compensated to maximize accuracy.

8
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CHAPTER 4 addresses acoustic calibration of the sonar’s port and 

starboard transducers. The vector impedance of each element in the 

transducers was measured, and 0.3 rad phase mismatches in the mechanical to 

electrical response of some elements were discovered. Beam patterns and 

differential phase patterns were measured for each of the system’s acoustic 

elements and subarrays. Distortions in the differential phase patterns of 0.6 rad 

were discovered throughout some regions of arrival angles. The phase 

mismatches introduced by the transducers were compensated as much as 

feasible to maximize the accuracy of depth measurements across the sonar 

swath.

Physical properties of the transducers such as the sound speed of the 

transducer potting urethane and the mounted broadside angle of each transducer 

were characterized from the calibration data. The transducer parameters which 

were extracted from the calibration data were used to generate closed-form 

models of the differential phase patterns for each subarray. The calibrated 

differential phase models deviate from the measurements by as much as 0.1 rad 

in some regions, which corresponds to a shift between the true and computed 

arrival angle solutions of 1.5° in the worst case.

After the calibration data provided convincing evidence that the Klein 5410 

sonar could measure accurate differential phase quantities and arrival angles, a 

set of field data was collected and processed. CHAPTER 5 discusses a 

specialized bathymetric processing algorithm developed to implement the proper 

calibration factors for the sonar, customized digital filters, and vector processing

9
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methods for arrival angle detection. Using the calibration factors which were 

established during this research, and the bathymetric processing algorithm which 

was developed, the Klein 5410 sonar produced bathymetry of a field survey area 

that matches the known bathymetry collected by NOAA to hydrographic 

standards with a Reson SeaBat 8125 multibeam sonar in 2006.

10
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CHAPTER 2

TRANSMIT ELECTRONICS TESTING

2.1 Introduction

The Klein 5410 sonar is able to measure acoustic backscatter and 

bathymetry by transmitting acoustic pulses through the water and receiving and 

processing the acoustic echoes. For bathymetric processing, the instantaneous 

differential phase of the received signal at each sampling time is used to 

determine the arrival angle of the echo. If the transmit pulses cause any phase 

corruption in the samples acquired by the sonar, the arrival angle estimates 

obtained from those samples will also be corrupted, and a false representation of 

the seafloor bathymetry will be produced.

During this research, the sonar’s FM chirp transmit pulses combined with 

its quadrature sampling scheme were confirmed to cause phase errors. The 

sonar was reconfigured by Klein Associates to provide two continuous wave 

(CW) pulse options which do not cause such phase errors. After the sonar was 

reconfigured, its transmitter was tested to verify the pulse characteristics. This 

chapter demonstrates that the temporal and spectral characteristics of the new 

CW pulses are as specified. The resolution tradeoffs of CW  pulses are 

discussed, and it is concluded that CW transmit pulses must be used to minimize 

phase errors and optimize the system’s bathymetric performance.

11
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2.2 Standard Configuration Pulse Options

The standard Klein 5410 sonar is configured to provide the user with four 

pulse options. There are three FM chirp pulses of varying lengths, and one two- 

tone hop pulse. In each of the FM chirp pulses, the instantaneous pulse 

frequency is swept over a 20 kHz range from 445 kHz at the beginning of the 

pulse to 465 kHz at the end of the pulse. The available FM chirp pulse lengths 

are 50 ps, 100 ps, and 200 ps. The two-tone hop pulse has a duration of 200 ps. 

The first 100 ps of the pulse is occupied by a 445 kHz pure tone, and the last 100 

ps of the pulse is occupied by a 465 kHz pure tone.

In its standard configuration, the Klein 5410 offers no CW pulse options. 

However, the system’s data acquisition electronics are only able to acquire true 

quadrature samples of a CW 455 kHz sinusoid. Since each of the system’s 

standard transmit pulses contains frequencies other than 455 kHz, true 

quadrature samples of acoustic echoes from the seafloor cannot be acquired by 

the sonar when these pulses are used. To acquire true quadrature samples 

which maintain phase integrity, a CW transmit pulse must be used.

2.3 Engineering Configuration Pulse Options

During this research, the Klein 5410 sonar was reconfigured to provide 

two CW transmit pulse options while retaining two FM transmit pulse options. 

There is a 132 ps CW pulse, a 132 ps FM chirp pulse, a 176 ps CW  pulse, and a 

176 ps FM chirp pulse. The CW pulses have a frequency of 455 kHz. The FM 

chirp pulses exhibit the same 20 kHz sweep described in section 2.2. Pulse

12
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lengths of 132 \is and 176 (as were chosen because, at the baseband sampling 

frequency of 22.75 kHz, they allow the sonar to acquire 3 and 4 samples 

respectively over the pulse’s duration, as opposed to the 1 and 2 samples 

acquired during the 50 (as and 100 jas FM pulses. The low sample densities 

provided by the 50 jas and 100 (as FM pulses prevent accurate pulse 

reconstruction, and are not desirable from a signal processing standpoint.

2.4 Physical Test Setup

The Klein 5410 sonar was deployed at the UNH Acoustic Calibration 

Facility (ACF) to test the transmitter and verify the new transmit pulses. An 

overhead view of the ACF is shown in Figure 2.1 below.

Figure 2.1 UNH Acoustic Calibration Facility

The engineering test tank at the ACF is 18 m long, 12 m wide, and 6 m deep. 

There are two bridges which span the test tank and accommodate the mounting 

of multiple acoustic devices.

13
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During this test, the Klein 5410 sonar was configured to transmit, and a 

model E27 calibrated reference transducer leased from the Naval Undersea 

Warfare Center (NUWC) was used as a receiver. The devices were aligned near 

the center of the engineering tank in the x direction, and separated by a range of 

roughly 10 m in the y direction as shown in Figure 2.2. The devices were 

submerged to a depth of approximately 3 m.

Figure 2.2 Engineering Tank Configuration for Transmit Waveform Measurements 

The Klein 5410 sonar was mounted in a CNC (computer network 

controlled) rotator table during the tests, and rotated so that the starboard array 

was directly facing the NUWC E27 transducer. The Klein 5410 was set to ping, 

and the acoustic pulses received by the E27 transducer were amplified, filtered, 

and sampled at a rate of 5 MHz. For more detailed descriptions of how the 

acoustic devices were mounted and the electronics were connected and 

configured for testing, see appendices A.2 and A.3 respectively.

Rotator T able

Primary
Bridge

Klein 5410

Overhead View of 
Engineering Test Tank

10m. Radiated 
Sound Fielc

NUWC E27

Secondary
Bridge

x
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2.5 Data Processing

The data collected during the transmit pulse testing was processed with 

MATLAB. First, simulated transmit pulses were generated for comparison with 

the measured Klein 5410 transmit pulses. Second, a spectral analysis was 

performed for each measured transmit pulse. The method of spectral analysis 

used is consistent with that described in The Mathworks’ MATLAB Tech Notes6, 

and is equivalent to the periodogram method of power spectral density 

estimation7.

2.6 Analysis of Recorded Waveform Data

Figure 2.3 and Figure 2.4 show the temporal behavior of the 176 ps CW  

and FM pulses respectively. Both plots contain simulated and measured 

waveforms which are sampled at a rate of 5 MHz, and both contain a view of the 

full transmit pulse in the top window, and close-up views of the three regions 

selected with brackets in the bottom windows. This plot configuration was used 

so that the pulse behavior could be checked at several instants to ensure that the 

simulated and measured pulses match in amplitude and phase throughout. In 

general, the waveforms shown in the figures demonstrate behavior which is 

consistent with the expectations of acoustic pulses transmitted through water. 

They exhibit finite rise and fall times, and regions of steady state.

15
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Comparison of Measured and Simulated 176 us C W  Pulses
1.5
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Figure 2.3 Comparison of Measured and Simulated 176 ps CW Pulses, full pulse in top window, 
zoom views of 3 bracketed regions in bottom windows.

Comparison of Measured and Simulated 176 us FM Chirp Pulses
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Figure 2.4 Comparison of Measured and Simulated 176 ps FM Chirp Pulses, full pulse in top 
window, zoom views of 3 bracketed regions in bottom windows.
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There is a 0.3 v drop in the FM transmit pulse from its beginning to its end. 

The apparent voltage drop is due to transmit waveform sampling in the sonar’s 

memory. The Klein 5410 transmit electronics supply a D/A (digital to analog) 

converter with 32 samples per cycle of a 455 kHz carrier frequency. When a CW  

455 kHz pulse is transmitted, the 32 samples of each successive cycle of the 

carrier are identical. However, when an FM pulse is transmitted, the 32 samples 

of each successive cycle of the pulse vary slightly. From one cycle to the next, 

the change in the samples is small, but over the entire duration of the transmit 

pulse, these differences become noticeable and are manifested as an apparent 

drop in the voltage of the transmit pulse.

Spectral analyses of the 176 ^s CW and FM pulses are shown in Figure

2.5 and Figure 2.6 respectively. The top window in each figure shows the full 

power spectrum of the pulse from its DC component to 2.5 MHz. The bottom 

window shows a close-up view of the spectral peak between 430 kHz and 480 

kHz.

The power spectral density (PSD) of the CW  pulse shows well-defined 

peaks and nulls in a sine function pattern as expected. The PSD of the FM pulse 

shows peaks and nulls which are more smeared. The 20 kHz linear frequency 

sweep does increase the pulse bandwidth over the CW prediction from 5 kHz to

7.7 kHz. However, the frequency sweep does not provide the intended 20 kHz 

pulse bandwidth. Overall, the spectral level of the CW pulse is approximately 2 

dB higher than that of the FM pulse.
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PSD Estimate of 176 us CW  Pulse via Periodogram
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Figure 2.5 Power Spectral Density of 176 ps CW Pulse, full spectrum in top window, zoom view 
of spectral peak in bottom window, - 3dB spectral level indicated with red line.

PSD Estimate of 176 us FM Chirp Pulse via Periodogram
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Figure 2.6 Power Spectral Density of 176 ps FM Chirp Pulse, full spectrum in top window, zoom 
view of spectral peak in bottom window, - 3dB spectral level indicated with red line.

18

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Measurements for only one CW pulse and one FM pulse are presented in this 

chapter. However, both temporal measurements and spectral analyses for the 

remaining pulses can be found in appendices A.4 and A.5.

2.7 Pulse Bandwidth and Sonar Resolution

A summary of predicted and measured bandwidths for all of the pulses 

which were tested can be found in Table 2.1. The -3 dB theoretical bandwidth 

predictions for CW pulses were computed using equation (2.1) where T  is the 

pulse duration in seconds.

(2 .1)

In addition to bandwidth, the table shows the actual range resolution capability of 

the sonar as given by the measured pulse bandwidth. Sonar range resolution 

was computed using equation (2.2) where c is the sound speed in water 

(c =  1500 m/s).

=  —  (2 .2) 
2 B

Standard Pulse Options Engineering Pulse Options

Pulse Duration, ps 50
FM

100
FM

200
FM

132
CW

132
FM

176
CW

176
FM

Predicted Bandwidth, 
kHz 20 20 20 6.7 20 5 20

Measured Bandwidth, 
kHz 17.5 9.4 8.5 6.3 7.5 4.8 7.7

Equivalent CW Pulse 
Bandwidth, kHz 17.6 8.8 4.4 6.7 6.7 5 5

Number of Samples 
Acquired 1 2 4 3 3 4 4

Actual Sonar Range 
Resolution, cm 4.3 8.0 8.8 12.0 10.0 15.6 9.7

Table 2.1 Summary of Bandwidth and Resolution Observations for Klein 5410 Transmit Pulses
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Table 2.1 shows that all of the FM transmit pulses fell short of providing 

the 20 kHz bandwidth which was desired. For each FM pulse, the measured 

bandwidth is closer to the theoretical CW pulse bandwidth than the predicted 20 

kHz bandwidth. In the worst case, use of a CW  pulse instead of its FM 

equivalent reduces the sonar’s range resolution by 5.9 cm. This is a price that 

must be paid in order to minimize phase errors and maximize the bathymetric 

performance of the sonar.

2.8 Recommendations for Transmit Pulse Selection

FM content in the Klein 5410 transmit pulses prevents the system from 

acquiring true quadrature samples which maintain phase integrity. Use of a CW  

pulse allows the sonar to acquire true quadrature samples without the 

introduction of phase distortion. For bathymetric surveying, either the 132 ps CW  

pulse or 176 ps CW pulse should be selected.
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CHAPTER 3

RECEIVE CHANNEL PHASE MATCHING

3.1 Introduction

There are a total of 32 receive channels in a Klein 5410 sidescan sonar.

Of those 32 channels, 6 are dedicated to the port transducer’s bathymetry 

elements, and 6 are dedicated to the starboard transducer’s bathymetry 

elements. To make differential phase measurements between the bathymetry 

elements which are a true indication of acoustic arrival angles, each group of 6 

receive channels must be phase matched. However, an investigation of the 

receive electronics, discussed in this chapter, revealed that the channels within 

each group were not phase matched, and some compensation was required to 

maximize the bathymetric performance of the system.

The sequential sampling scheme implemented in the Klein 5410 sonar is 

known to cause phase mismatches between the quadrature samples acquired 

from different channels. The system uses a single A/D converter to sample all 32 

receive channels. Each of the 32 channels is sequentially routed to the A/D 

converter through a multiplexer, and each is sampled at a different instant. This 

type of sequential sampling scheme minimizes the amount of sampling hardware 

which is necessary, but inherently introduces a phase skew between the samples 

recorded from different channels. This chapter begins with an illustration of the
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effects of the sequential sampling scheme, and demonstrates the need for a 

sample “deskewing” procedure. A theoretical development of the deskewing 

algorithm used in this research is presented, and it is predicted that samples from 

multiple channels can be deskewed such that their phase matches to within 0.03 

rad.

Next, a direct signal injection experiment devised to test the deskewing 

algorithm is described. The deskewing algorithm is shown to remove the 

majority of the phase mismatches observed between the 6 channels in each 

group. The remaining phase mismatches observed in the samples recorded 

from each channel are attributed to mismatching DC bias points and tolerances 

in analog electronic components. This chapter addresses those problems and 

discusses signal processing algorithms which compensate for the phase 

mismatches. Gain mismatches from channel to channel are also addressed.

After deskewing and phase matching algorithms are applied, the phase 

mismatches between multiple receive channels are reduced from as much as 

0.15 rad to 0.02 rad when a constant amplitude CW 455 kHz sinusoidal test 

signal is input to the electronics. This degree of phase matching is sufficient to 

produce bathymetry with depth errors of less than 1%.

3.2 The Effects of Sequential Sampling

Figure 3.1 shows simulated results of the sequential quadrature sampling 

scheme implemented in the Klein 5410 sonar systems. For the purposes of this 

simulation, sequential sampling is assumed to be the only source of phase

22

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



offsets between channels. The solid line shown in the figure represents a 455 

kHz CW sinusoidal carrier signal which is simultaneously input to each of the 

system’s 32 receive channels. During a single cycle of the sonar’s 22.75 kHz 

baseband sampling clock, each of the 32 channels acquires a single pair of 

quadrature samples. The sequences of star and plus symbols in Figure 3.1 

represent in-phase and quadrature phase baseband samples of the signal, which 

are obtained “by rapidly re-sampling a single channel twice in succession with a 

sample interval of 1/(4*455kHz)”8.

Sequential Sampling Illustration, Constant Amplitude CW  Signal
1.0

 CWSinewave
- Seq. I Samples 
i Seq. Q Samples

Ch1Q
Ch28QCh14l Ch14Q

0.5

</>

4>T33
a

I
-0.5

Ch1l
Ch28l

-1.5
0.5 2 2.5

Time, Seconds
3.5 4.5

v*x1(F

Figure 3.1 Simulation of Klein 5410 Sequential Sampling, quadrature samples from the first and 
last port receive channels (1 and 14) and the first and last starboard receive channels (15 and 28)

are annotated with arrows.

Samples acquired from consecutive receive channels (e.g. channels 14 

and 15) are separated in time by a delay which is equivalent to the sampling 

period of the A/D converter. For a CW signal, the time delay between the 

samples corresponds to a phase shift which must be accounted for prior to 

determining acoustic arrival angles from differential phase measurements.
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3.3 Sample Deskewing Theory

The channel to channel phase delay introduced by sequential sampling of 

a CW signal is constant and can be computed using (3.1)

^  = ^  (3.1;
2n T

A(|) is the phase delay which corresponds to the time delay between samples of 

successive channels, At. T is the period of the CW carrier signal. Solving for A(j>, 

the expression in (3.2) is obtained.

At is the inverse of the frequency at which the channels are sampled, and T is the 

inverse of the carrier frequency. The time quantities in (3.2) can be replaced by 

frequency quantities to obtain the expression in (3.3).

The effective sampling frequency for each of the 32 individual channels is 

22.75 kHz. Since each of the 32 channels is sampled during one revolution of 

the 22.75 kHz sampling clock, the true sampling rate of the A/D converter is 32 

times higher than the effective sampling rate.

T
(3.2)

(3.3)

f s = 32 * 22.15kHz = 728kHz (3.4)

The CW carrier signal frequency is a constant.

f c = 455kHz (3.5)
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The numerical quantities obtained in (3.4) and (3.5) were substituted into

(3.3) to obtain the constant phase delay associated with the sequential sampling 

delay.

ls.<j> = 2n —  -  2n (3.6)
f s 728000

Reducing the fraction in (3.6), the phase quantity in (3.7) is obtained.

A<* = ^  (3.7)

The simulated quadrature samples from 32 channels shown in Figure 3.1

can be adjusted using the quantity in (3.7) so that each pair of quadrature 

samples has a matched phase. For instance, assume two quadrature sample 

vectors of a CW 455 kFIz signal have been recorded. The quadrature samples in 

vector Si were acquired from channel 1, and the quadrature samples in vector S2 

were acquired from channel 2. The phase of the samples in vector S2 can be 

advanced so that they appear as though they were acquired at the same 

sampling instants as the samples in vector Si. This is accomplished through the 

multiplication of the S2 sample vector by a complex exponential with a phase 

angle of -57i/4. The mathematics are written explicitly in (3.8). The new sample 

vector S2 ’ contains phase corrected quadrature samples from channel 2.

,5n

S2' =S2xe~JT (3.8)

In general, the samples acquired from any channel, N, can be time 

synchronized to any reference channel, Nref, by using the mathematics in (3.9).

SN' =SN xe nf̂  (3.9)
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In practice, samples from the port bathymetry elements and samples from the 

starboard bathymetry elements are phase matched to different references. 

Receive channels 1 through 14 are assigned to the port transducer, and channel 

1 is used as the port phase reference. Receive channels 15 through 28 are 

assigned to the starboard transducer, and channel 15 is used as the starboard 

phase reference.

Figure 3.2 shows the phase of each of the quadrature sample pairs 

simulated in Figure 3.1 before and after they are deskewed. Before the samples 

are deskewed, the phase of each channel’s quadrature sample pair is different. 

After the samples are deskewed, channels 1 through 14 are phase matched and 

channels 15 through 28 are phase matched. Samples from channels 29-32 are 

left unprocessed since they were not acquired from the sidescan sonar arrays.

Quadrature Sample Phase Comparison by Channel
4

—  Before 
~ e  After

3

</>c 2

1x:
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£■§
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Ch14

■2
Ch28Ch15

•30 5 10 15
Channel Number

20 25 30 35

Figure 3.2 Quadrature Sample Phase Before and After Deskewing, phase of samples from the 
first and last port receive channels (1 and 14) and the first and last starboard receive channels

(15 and 28) are annotated with arrows.
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The results shown in Figure 3.1 and Figure 3.2 assume that the input 

signal to the 32 receive channels is a CW 455 kHz signal. If an FM signal with a 

20 kHz linear sweep is input to the electronics instead, the deskewing process 

described above produces deskewed samples which are mismatched in phase 

by as much as 0.6 rad as illustrated in Figure 3.3. These results reinforce that 

use of an FM transmit pulse introduces sampling phase errors and is not 

advisable for bathymetric survey applications.

Quadrature Sample Phase Comparison by Channel, FM Driving Signal
3

—  Before 
e  After

Ch1
2

Ch14

V)
1c  

2 T3 (0
-e --

</)jS 0
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CO -1 Ch2l
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■3

■40 5 10 15 20 25 30 35
Channel Number

Figure 3.3 Quadrature Sample Phase Before and After Deskewing, Simulated Input to the 
Electronics is the 50 ps FM Klein 5410 Transmit Pulse, phase of samples from the first and last 

port receive channels (1 and 14) and the first and last starboard receive channels (15 and 28) are
annotated with arrows.

Using a CW transmit pulse, it is possible to completely avoid frequency 

modulation in the signals received by the Klein 5410 sonar. However, amplitude 

modulation of the received signals provides backscatter information and can not 

be avoided. In Figure 3.4, a 10 kHz sine wave has been used to amplitude
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modulate the CW  455 kHz carrier signal which was simulated in Figure 3.1. A 10 

kHz amplitude modulation is the highest frequency amplitude modulation which is 

allowed to pass through the bandpass filter in the system’s analog front end 

electronics, so Figure 3.4 represents an extreme condition.

Sequential Sampling Illustration with Modulation

—  CW  Sinewave 
*  Seq. I Samples 
i Seq. Q  Samples

Ch28Q

0.5

Ch1Q(A

I

I
Ch1l

-0.5

Ch28l

0.5 2 2.5
Time, Seconds

3.5 4.5

x 10"

Figure 3.4 Simulation of Klein 5410 Sequential Sampling with 10 kHz Amplitude Modulation on 
CW 455 kHz Carrier, quadrature samples from the first and last port receive channels (1 and 14) 

and the first and last starboard receive channels (15 and 28) are annotated with arrows.

Figure 3.5 shows the first 10 îs of the amplitude modulated pulse from 

Figure 3.4. There is a change in pulse amplitude, A, between acquisition of 

samples from channels 1 and 3. Additionally, there is a change in the ratios of I 

and Q samples acquired from those channels. Since the ratios of I and Q 

samples define the phase of a quadrature sample, (3.10), amplitude modulation 

of the carrier creates a small phase shift in each pair of quadrature samples.

(j> = tan -i ' Q )
U J

(3.10)
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Sequential Sampling Illustration with Modulation
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Figure 3.5 Close-up View of First 10ps of Simulation of Klein 5410 Sequential Sampling with 10 
kHz Amplitude Modulation on CW 455 kHz Carrier, quadrature samples from channels 1 and 3

are annotated with arrows.

Internally, the Klein 5410 sonar uses a Lagrange interpolator to 

compensate for the small phase shifts introduced by amplitude modulation before 

the data is used for backscatter processing. Based on the results of the 

simulation in Figure 3.6, however, it was decided that compensation of the phase 

shifts due to amplitude modulation was not necessary for bathymetric 

processing.

Figure 3.6 shows the raw and deskewed phase of the quadrature sample 

pairs from the simulated 10 kHz modulated CW  455 kHz carrier signal. Although 

there is a phase deviation of approximately 0.2 rad from channel 2 to the channel 

1 reference, the majority of the samples fall within 0.03 rad of their reference. In
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practice, phase errors less than 0.03 rad were found to be acceptably small for 

arrival angle detection.

Quadrature Sample Phase Comparison by Channel, AM  Signal
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Figure 3.6 Quadrature Sample Phase Before and After Deskewing, Simulated Input to the 
Electronics is a 10 kHz Modulation on CW 455 kHz Carrier, phase of samples from the first and 

last port receive channels (1 and 14) and the first and last starboard receive channels (15 and 28)
are annotated with arrows.

The deskewing algorithm used in this research implements the proper 

processing to deskew quadrature sample phase offsets due to progression of the 

455 kHz CW  carrier phase. Phase offsets introduced by amplitude modulation 

are ignored. Any large sample phase errors which remain after deskewing are 

treated by discarding the arrival angle solutions corresponding to those samples 

from the final results.
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3.4 Overview of a Direct Signal Injection Test

The deskewing algorithm and phase matching of the sonar’s receive 

channels were tested by direct injection of a 455 kHz sinusoidal signal. The best 

injection scheme would be to simultaneously inject the same test signal into each 

receive channel. The phase of quadrature samples across all of the channels 

could then be compared. However, there is an electronic restriction that prevents 

one from testing the system in this manner. Of the 6 bathymetry channels per 

side, 4 are used to transmit and receive, while 2 are used strictly to receive. 

Connecting a 455 kHz input signal to all 6 channels in parallel would effectively 

short the transmitters for 4 channels during the transmit cycle. Even though the 

transmitters were shut off during this test, the effects of shorting them were 

unknown. In order to avoid damaging the transmit circuits, no transmit channels 

were connected in parallel during the direct injection test.

For both the port and starboard channel groups, each of the four channels 

which transmits was separately connected in parallel with the two channels which 

strictly receive. The deskewing algorithm was tested and phase mismatches 

between the channels were characterized. The details of injecting signals into 

the Klein 5410 receive channels are included in appendix B.2.

Receive channels 5, 6, 7, 8, 13, and 14 are dedicated to the port 

bathymetric elements, and channels 19, 20, 21, 22, 27, and 28 are dedicated to 

the starboard bathymetric elements. Channel 5 is a channel which transmits 

whereas channels 13 and 14 are channels which strictly receive. Channels 5,

13, and 14 have been chosen to demonstrate phase mismatches and the effects
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of deskewing in this thesis. Figure 3.7 shows the phase of raw quadrature 

samples acquired on channels 5, 13, and 14 during the direct injection test. The 

samples in the figure have not been deskewed.

Quadrature Sample Phase Comparison

C h 5  
Ch 13 
Ch 14

(ft
C
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T3<0ce
4></><0
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Figure 3.7 Phase of Unprocessed Quadrature Samples From Channels 5, 13 and 14 

The phase ramps in Figure 3.7 are the result of a slight frequency offset 

between the 455 kHz carrier generated by to the Klein sonar and the 455 kHz 

test signal which was injected. Had the frequencies been exactly matched, the 

phase of the samples recorded from each individual channel would be constant.

Theoretically, the deskewing process should produce three sets of phase 

matched samples from the data shown in Figure 3.7. The deskewed results 

shown in Figure 3.8 are far better matched than those shown in Figure 3.7, but 

phase mismatches of approximately 0.1 rad remain. The residual phase
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mismatches are attributed to mismatches in each channel’s DC bias point and 

mismatches in analog electronic components in the receive channels.

Quadrature Sample Phase Comparison
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Figure 3.8 Phase of Deskewed Quadrature Samples From Channels 5, 13, and 14

3.5 DC Bias Removal

Non-zero DC bias points in sampled data are known to cause phase 

errors, and were observed for each of the receive channels in the sonar. Raw 

noise data from each receive channel was recorded for approximately 100 pings 

while the sonar was in air with the transducers connected. DC bias points for 

each receive channel were determined by computing the mean value of the noise 

over those 100 pings. In post-processing, the bias points are subtracted from the 

samples recorded by each channel, forcing each channel to have a DC bias of 0, 

and minimizing the phase errors which are introduced.
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Figure 3.9 shows raw I and Q samples recorded on channel 14 of the 

Klein 5410 sonar for a single ping. The I and Q samples are observed to have 

different DC bias points. To compensate, separate DC bias points were 

computed for the I and Q samples recorded on each of the channels, and those 

corrections were applied separately to the I and Q sequences.

Quadrature Samples Recorded on Channel 14
30 i i i , i , i i , i I

I
 I  Q

-20

_ 3 0   i_________ I_________ I_________ I_________ i_________ I_________ l_________ i_________ i_________ i_________ i___
200 400 600 800 1000 1200 1400 1600 1800 2000 2200

Sample Number

Figure 3.9 Single Ping of Raw Quadrature Samples Recorded From Channel 14, vertical axis in
units of scaled Klein 5000 A/D output.

Figure 3.10 shows the same sequences in Figure 3.9 re-plotted after 

removing the DC bias points in post-processing. The I and Q sample sequences 

are now zero-mean sequences which can be reliably used to make differential 

phase measurements.
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Quadrature Samples Recorded on Channel 14, DC Bias Points Removed
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Figure 3.10 Single Ping of DC Bias Corrected Quadrature Samples Recorded From Channel 14, 
vertical axis in units of scaled Klein 5000 A/D output.

3.6 Channel Phase Matching

Application of the DC bias corrections only slightly improved the phase 

matching across multiple receive channels. The remaining phase mismatches in 

the data are due to tolerances in the analog circuit components which compose 

each channel, and must be compensated. The residual phase mismatches can 

be determined by a subtraction of any channel’s phase response from a 

reference phase response to determine the offset between the channels. 

Channels 13 and 27 were selected as the port and starboard phase references 

respectively. As an example, Figure 3.11 shows the phase offset between 

channel 14 and the channel 13 reference for a single ping. This result was
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obtained by subtracting two phase responses similar to those shown in Figure 

3.8.

Residual Phase Mismatch Between Channels 13 and 14
0.1
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Figure 3.11 Residual Phase Mismatch Between Channels 13 and 14 for a Single Ping 

The vertical axis limits in Figure 3.11 have been forced to +/- 0.1 rad to 

show the details of the phase offsets. However, there are points that exceed the 

+/- 0.1 rad threshold due to phase wrapping and transient spikes. Excluding 

phase wraps and spikes, the data in Figure 3.11 were used to compute an 

arithmetic mean phase offset of 0.054 rad between the two channels. The 

periodic component of the phase offset between channels 13 and 14 is due to 

the mismatch in 455 kHz frequencies of the internal and injected signals. The 

periodicity produces a slight bias in the mean phase offset over the course of a 

single ping. In practice, however, the mean offsets computed over a single ping 

were found to produce phase matching across multiple channels to within 0.02 

rad. This degree of phase matching is a vast improvement over the 0.15 rad
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phase matching which was previously observed, and was found to produce 

reliable arrival angle solutions. Figure 3.12 shows sample data from channels 5, 

13, and 14 after the phase matching corrections for channels 5 and 14 have 

been applied.

Quadrature Sample Phase Comparison
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Figure 3.12 Comparison of Quadrature Sample Phase for Channels 5, 13, and 14 after Phase 
Matching Corrections for Analog Component Tolerances are Applied

3.7 Gain Equalization

Each of the receive channels must be recorded with equal gain so that 

their samples are of equal weight when used for array signal processing. 

However, inspection of data from multiple channels revealed that differences in 

gain exist from channel to channel. To compensate, the gain of each channel 

was equalized to a reference gain in post-processing. Channels 13 and 27 were 

used as gain references for the port and starboard channels respectively.
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Figure 3.13 shows the I and Q samples recorded on channels 6  and 13 

during one ping of the direct signal injection test. Once again, the sinusoidal 

shape of the waveforms in Figure 3.13 is due to the 455 kHz carrier frequency 

mismatch between the internal and injected signals.
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Figure 3.13 Single Ping of Raw Quadrature Samples Acquired From Channels 6 and 13 During 
Direct Signal Injection Test, vertical axis in units of scaled Klein 5000 A/D output.

The samples in Figure 3.13 have had their DC bias points removed and

have been deskewed. The gain of channel 6  was found to be approximately 1.36

times larger than the gain of channel 13. This factor was determined by dividing

the raw samples acquired on channel 6  by the raw samples acquired on

reference channel 13. The I and Q samples were divided separately and were

found to yield an identical gain correction factor. The samples acquired on

channel 6  were multiplied by a gain correction factor (1/1.36) to yield the results

shown in Figure 3.14.
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Figure 3.14 Single Ping of Gain Corrected Quadrature Samples Acquired From Channels 6 and 
13 During Direct Signal Injection Test, vertical axis in units of scaled Klein 5000 AID output.

3.8 Phase Matching Accuracy

Phase mismatches between raw samples acquired from multiple receive 

channels in the Klein 5410 electronics were found to be caused by the sequential 

sampling scheme, DC biases, and tolerances of analog circuit components.

After the raw sonar samples were subjected to the phase matching algorithms 

described in this chapter, the receive channels exhibited phase matching better 

than 0.02 rad (Figure 3.12) when a constant amplitude CW 455 kHz input was 

used. This degree of phase matching is suitable to produce bathymetry with 

depth errors of 1 %.
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CHAPTER 4

ACOUSTIC CALIBRATION

4.1 Introduction

During this research, both the port and starboard acoustic transducers 

were subjected to an extensive acoustic calibration in which their vector 

impedance, beam patterns, and differential phase patterns were measured.

These measurements were made to investigate phase offsets and distortions 

introduced by the transducers which would negatively impact the bathymetry 

produced by the sonar. This chapter begins with an overview of the Klein 5410 

transducer, and then presents analyses of the acoustic calibration data.

Vector impedance measurements made during the calibration showed that 

the mechanical to electrical phase response of the individual sidescan elements 

in each transducer are matched to within 0.1 rad. Based on the phase matching 

of the sidescan elements, it is possible to coherently sum their outputs to 

synthesize a composite element whose aperture is the same as the transducer’s 

bathymetry elements. This additional synthetic bathymetry element in each 

transducer can be advantageously used to eliminate 2n phase ambiguities in the 

differential phase measurements, and to compute arrival angle solutions with a 

higher degree of certainty. However, there are phase offsets of as much as 0.3 

rad between the responses of sidescan elements and bathymetry elements.
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These mismatches far exceed the error thresholds which are acceptable for 1% 

bathymetry errors, and must be compensated as much as possible before the 

synthetic bathymetry elements can be used effectively.

Beam patterns and differential phase patterns for the bathymetry elements 

in each transducer were measured. The vertical plane beam patterns for the port 

bathymetry elements show mismatches of as much as 8  dB while the vertical 

plane beam patterns for the starboard bathymetry elements match to within 2 dB. 

The quality of the measured differential phase patterns coincides with the beam 

pattern matching. The port differential phase patterns deviate from theoretical 

predictions by as much as 0 . 6  rad over some regions of arrival angles, but the 

starboard patterns generally adhere to the predictions to within 0 . 1  rad across the 

angular range of interest.

Mounted transducer broadside angle references for each of the arrays 

were determined. In addition, phase offsets for each bathymetry element in each 

transducer were computed to compensate for the mismatches observed in the 

vector impedance measurements. Sound speed values for the transducer 

potting urethane were also empirically computed.

Finally, all of the acoustic calibration measurements were combined to 

produce mathematical differential phase pattern models for both transducers 

which can be solved to determine arrival angle solutions. The models generally 

match the differential phase pattern measurements to within 0.1 rad. In the worst 

case, an error of 0 .1  rad in phase shifts the computed arrival angle solution by 

approximately 1.5° from the true solution.

41

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



4.2 Physical Configuration of the Klein 5410 Acoustic Array

Each acoustic array is composed of 14 individual elements, as shown in 

Figure 4.1. Twelve of the elements form a line array which is used for sidescan 

imaging. Two bathymetric elements, each consisting of 4 sidescan elements 

wired in parallel, reside directly above the center of the sidescan array providing 

the necessary resolution to measure arrival angles in the vertical plane. The 

sidescan elements in each transducer are numbered 1 - 1 2  from the nose to the 

tail of the towfish. The bathymetry elements are assigned numbers of 13 and 14. 

Sidescan elements 5, 6 , 7, and 8  are highlighted in Figure 4.1. These are the 

elements which are used to synthesize a third bathymetry element in each 

transducer.

Jk 4

di 1.5JL
f

13 „ Bathymetric 
Elements

i3 14

1*-
---

---
---

-
1 

s- 2.5X
Synthetic Bathymetric Element

i*--------------------------------►)

1 2 3 4 5 6  7 8  9 10 11 12
+-------------------------- Sidescan Array : 380A,---------------------------------------►

Figure 4.1 Physical Layout of the Klein 5410 Acoustic Array, elements not drawn to scale.

The dimensions listed in Figure 4.1 are in wavelengths. The wavelength, 

X, is computed assuming a sound speed, c, of 1500 m/s and an operating 

frequency, f, of 455 kHz.
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2 = - ^ .  15l 0-- ^3.3 mm (4.1)
/  455000

With the synthesis of a third bathymetric element, there are three possible pairs 

of bathymetric elements separated by three different baselines (1.5X, 2.5A,, and 

4.0X).

4.3 Vector Impedance Measurements

The vector electrical impedance9 of an acoustic element is a function of 

frequency, and consists of both a resistance and a reactance as written in (4.2) 

where to = 2uf. The magnitude and phase of the impedance are defined in (4.3) 

and (4.4) respectively.

Z(<o) = R((o)+jX(to) (4.2)

| Z(co\ = 4 r (o))2 + X {co)2 (4.3)

ZZ(o)) = t a n " ^ Z W (4-4)

The electrical impedance of each element used for bathymetric processing 

was measured over a frequency range from 300 kHz to 600 kHz using an 

automated process developed at CCOM. The process utilizes the l-V method of 

vector impedance measurement10. Figure 4.2 and Figure 4.3 show the results.
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Figure 4.2 Magnitude and Phase Components of Electrical Impedance Measured for Port Side 
Elements used in Bathymetric Processing, vertical lines at 455 kHz carrier frequency.
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Figure 4.3 Magnitude and Phase Components of Electrical Impedance Measured for Starboard 
Side Elements used in Bathymetric Processing, vertical lines at 455 kHz carrier frequency.
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While the complete frequency response of each element’s impedance is of 

interest, the vector impedance phase of each element at 455 kHz is of most 

importance. Since the sidescan elements in each transducer are matched to 

within 0.1 rad at 455 kHz, the signals recorded from these elements can be 

coherently summed to synthesize a third bathymetric element in each transducer 

without additional phase matching. However, inspection of the vector impedance 

phase for the bathymetric elements at 455 kHz shows that phase mismatches of 

as much as 0.3 rad exist between the sidescan and bathymetric elements. This 

is not a sufficient match for coherent array signal processing involving the pure 

bathymetric elements and the synthetic bathymetric element. If bathymetric 

errors of 1 % are to be achieved, the phase mismatches between these elements 

must be reduced to 0 . 0 2  rad or less.

In practice, acoustic calibration data indicated that some phase 

mismatches between pure and synthetic bathymetric elements were actually 

larger than 0.3 rad. The most probable cause of the increased phase offsets is 

an electronic connection between the receive electronics and the transducers 

when the system is configured for acoustic calibration (and field operation). The 

circuit containing both a transducer element and a receive channel likely has 

different impedance characteristics than either of those circuits independently. 

The combined impedance characteristics are the ones which must actually be 

compensated. This issue is discussed further in section 4.10, and the observed 

phase offsets between multiple bathymetric elements are compensated to 

improve the potential for 1 % accuracy in the bathymetry.
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4.4 Synthesis of a Third Bathymetric Element

A third bathymetric element in each transducer is synthesized by summing 

the outputs of elements 5, 6 , 7, and 8  in the sidescan line array. For ideal array 

signal processing, the sample sequences provided by each sidescan element 

must be amplitude matched before they are summed. However, Klein 

Associates only guarantees the sensitivity of each transducer element to be 

matched to within +/- 3 dB. Mismatches in the sensitivity of each element were 

observed because the sample sequences from each element had different 

amplitude characteristics. Sensitivity equalization factors were applied to each 

individual element to correct this problem.

Summing of the 4 sample sequences recorded from the sidescan 

elements resulted in a synthetic sequence with a larger magnitude than that of 

the sequences associated with either of the pure bathymetric elements. Gain 

correction factors for the synthetic bathymetry elements were applied to equalize 

the sample sequences. The gain correction factors were determined from the 

calibration data by comparing the amplitudes of acoustic pulses received by each 

element. Samples of gain corrected receive pulses are shown in Figure 4.4 and 

Figure 4.5 for the port and starboard bathymetry elements respectively.
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Calibration Pulses with Synthetic Element Gain Correction Factor Applied
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Figure 4.4 Direct Path 4.4 ms Calibration Pulses Acquired at Broadside for Port Bathymetric 
Elements with a Sampling Rate of 22.75 kHz, synthetic element gain correction factor applied, 

vertical axis in units of scaled Klein 5000 A/D output.

Calibration Pulses with Synthetic Element Gain Correction Factor Applied
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Figure 4.5 Direct Path 4.4 ms Calibration Pulses Acquired at Broadside for Starboard 
Bathymetric Elements with a Sampling Rate of 22.75 kHz, synthetic element gain correction 

factor applied, vertical axis in units of scaled Klein 5000 A/D output.
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4.5 Simulation of Far Field Beam Patterns

The aperture of a sidescan transducer can be modeled as a uniform line 

array of many omni-directional point sources. For simulation purposes, it was 

assumed that the Klein 5410 element apertures radiate uniformly, and each point 

source was given a uniform weight of 1. In the far field, the amplitude beam 

pattern for a uniformly weighted line array is defined as follows11.

N is the total number of point sources in the line array model. The symbol d 

represents the uniform spacing increment between each of the point sources in 

the line array.

Eleven point sources were used to simulate the 1.0A, vertical aperture of 

each of the Klein 5410 bathymetry elements (including the synthetic element). In

(4.5), 0=0 corresponds to the element’s maximum response axis. However, 

when the sonar geometry is considered, maximum response axes for the port 

and starboard bathymetry elements are located at approximately 290° and 70° 

respectively as viewed from the tail of the towfish. The theoretical beam patterns 

shown in Figure 4.6 reflect the true sonar geometry.

(4.5)
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Figure 4.6 Vertical Plane Beam Patterns for Single Bathymetric Elements on Each Side of the 
Klein 5410 Sonar, port beam pattern shown in red, starboard beam pattern shown in green.

The theoretical -3 dB beamwidth for any aperture of length L > 4X can be 

computed using (4.6)12.

The horizontal aperture length of each Klein 5410 bathymetry element (including 

the synthetic element) is approximately 128A-, and was modeled using a uniform 

line array of 4001 omni-directional point sources. Using (4.6), a beamwidth of 

0.0069 rad, or 0.40° is predicted for the 128X aperture. Because of the extremely 

narrow beamwidth, it is difficult to discern the details of the horizontal beam 

pattern on a polar plot. The details of the general beam pattern for such an 

aperture are highlighted in the rectangular plot in Figure 4.7. The angular range 

of the figure was limited so that the details of the main lobe and largest sidelobes

Beamwidth (4.6)
L
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could be seen more clearly. The geometry of the Klein 5410 sidescan sonar has 

not been accounted for.
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Figure 4.7 General Beam Pattern for the Horizontal Bathymetry Aperture, limited to -5°<0<5° to
view the details of the pattern.

The beam pattern model shown in Figure 4.7 was computed using (4.5) 

Which assumes a flat element aperture. In reality, the horizontal aperture of the 

bathymetry elements is curved as discussed in appendix C .1. While the effects 

of the curvature are not simulated in the beam pattern model, they have a 

relatively small influence on the overall beam pattern and are neglected.

Accounting for the geometry of the towfish, the bathymetry element beam 

patterns shown in the polar plot of Figure 4.8 are obtained. The beam patterns in 

the figure are shown as viewed looking down over the top of the towfish. The 

nose and tail of the towfish correspond to CTand 180° respectively.
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Figure 4.8 Horizontal Plane Beam Patterns for Single Bathymetric Elements on Each Side of the 
Klein 5410 Sonar, port beam pattern shown in red, starboard beam pattern shown in green.

The beam patterns shown in section 4.5 were modeled using a far field 

assumption. However, the dimensions of the engineering tank at the ACF 

(Figure 2.1) limited the physical separation of the calibrated NUWC projector and 

Klein 5410 sonar to approximately 10 m. This prohibited far field measurements 

of the horizontal beam patterns.

In underwater acoustics, the range, R, to the far field of any aperture is 

defined in (4.7)13, where L is the transducer aperture length.

For the 1.0A vertical aperture of the Klein 5410 bathymetry elements, the 

range to the far field is only 1.0A, or approximately 3.3 mm. However, the
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horizontal aperture of the Klein 5410 bathymetry elements is approximately 128X, 

and the range to the far field of the horizontal aperture is approximately 54 m. At 

a range of 1 0  m, the vertical plane beam patterns were measured in the far field, 

but the horizontal beam patterns were measured in the near field.

Vertical (roll) plane and horizontal (pitch) plane beam patterns are shown 

for the bathymetric elements in the figures below. The port vertical plane beam 

patterns show magnitude mismatches of up to 8  dB at some angles, but the 

starboard beam patterns are matched to within 2 dB throughout. The large 

mismatches in the port beam patterns coincide with distortions in the 

transducer’s differential phase pattern as illustrated in section 4.12.

The horizontal plane beam patterns are shown in rectangular plots to 

illustrate the fine details. Measurement of the beam patterns in the near field has 

resulted in a lack of main lobe definition compared to the far field model, as well 

as some extraneous peaks and nulls which are not present in the far field model. 

The beamwidths of the measured horizontal beam patterns are as much as 3 or 

4 times that of the simulation.

Given these measurements, it is impossible to say what the far field 

characteristics of the horizontal beam patterns actually are. However, matching 

of the beam patterns in the near field suggests that they should not have any 

negative impact on differential phase patterns or arrival angle estimates. The 

details of acquiring and processing the calibration data to measure beam 

patterns are included in APPENDIX C.
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Figure 4.9 Vertical Plane Beam Patterns for Pure and Synthetic Port Bathymetric Elements, 
Normalized to 0 dB at -76° (angle corresponding to the maximum magnitude out of all three beam 

patterns), theoretical far-field beam pattern plotted with a dashed line for comparison.
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Figure 4.10 Vertical Plane Beam Patterns for Pure and Synthetic Starboard Bathymetric 
Elements, Normalized to 0 dB at 76° (angle corresponding to the maximum magnitude out of all 

three beam patterns), theoretical far-field beam pattern plotted with a dashed line for comparison.
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Figure 4.11 Horizontal Plane Beam Patterns for Pure and Synthetic Port Bathymetric Elements, 
Normalized to 0 dB at 89.6° (angle corresponding to the maximum magnitude out of all three 
beam patterns), theoretical far-field beam pattern plotted with a dashed line for comparison.
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Figure 4.12 Horizontal Plane Beam Patterns for Pure and Synthetic Starboard Bathymetric 
Elements, Normalized to 0 dB at -90.4° (angle corresponding to the maximum magnitude out of 

all three beam patterns), theoretical far-field beam pattern plotted with a dashed line for
comparison.
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4.7 Suggestions for Transducer Design Modification

A wide horizontal bathymetry element aperture prevents the Klein 5410 

sonar from acquiring data in the far field of its transducers until a slant range of 

54 m is exceeded. This limitation is not optimal considering that the sonar 

nominally works over slant ranges from 10 m to 150 m.

According to equation (4.7), cutting the aperture length in half would 

reduce the far field range from 54 m to 13.5 m. This is demonstrated by the 

continuous line source axial pressure solution14 shown in Figure 4.13 for a 64A, 

aperture as opposed to a 128A, aperture. At an axial range of 10 m, the actual 

pressure solution and the asymptotic far field pressure solution are equivalent. If 

the aperture of the bathymetric elements could be cut in half, data collected at an 

axial range of as little as 1 0  m would be far field measurements, and all of the 

assumptions pertaining to far field operation would be valid.

Axial Pressure for Klein 5410 Half Length Aperture Modeled as Continuous Line Source

Actual
Far Field Approx.0.08

■a 0.07

S ’ 0.05

I  0.04

0.03

0.02

0.01

Axial Range, Meters

Figure 4.13 Axial Pressure for a Continuous Line Source with length 0.2080 m (64X.) and
Diameter of 3.3 mm (1.0 ,̂).
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Figure 4.14 shows beam patterns measured at a range of 10 m for 

bathymetry elements with apertures of 64X and 128A,. The 64A, aperture was 

synthesized using elements 6  and 7 in the sidescan line array as opposed to the 

normal synthesis where elements 5, 6 , 7, and 8  are used. The beamwidth of the 

2 element beam pattern is 1.2° compared to the 1.8° beamwidth of the 4 element 

beam pattern. In the far field, a 4 element combination with a narrower beam is 

superior to the 2 element combination. However, the 2 element combination is 

more optimal considering the slant ranges over which the Klein 5410 sonar 

operates. It is recommended that the Klein 5410 transducer be modified to 

include only two elements in the horizontal bathymetry aperture as opposed to 

four.

4 Element 
 2 Element

-10

-15

a  -20

-25

-30

-35

-40

e, Degrees

Figure 4.14 Horizontal Beam Pattern for 2 Element Bathymetry Aperture, shown with 4 element
aperture beam pattern for comparison.
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4.8 Differential Phase Models for the Klein 5410 Arrays

The expression in (4.8) (equation (1.4) from section 1.1 repeated here for 

convenience) is the fundamental relationship which relates the differential phase 

measured between two receivers to the arrival angle of the acoustic wavefront at 

those receivers.

A fS(a)=M | 4 « )  (4 8 )

With three bathymetric elements in each transducer (2 pure and 1 

synthetic), there are three independent pairs of elements, separated by three 

different baselines (1.5A,, 2.5X, and 4 .OX,, see Figure 4.1), which can be used to 

measure differential phase. Because three pairs will be used to measure 

differential phase and compute arrival angle solutions, it is necessary to model 

the differential phase for each of the three pairs. Each possible baseline, d, was 

substituted into (4.8) to model the differential phase for each pair of receivers, 

with a  ranging from -90° to +90°.

Figure 4.15 and Figure 4.16 show first order differential phase models for 

each pair of bathymetric receivers in the port and starboard transducers. A, was 

defined using c = 1500 m/s as in (4.1), and the broadside angles for the port and 

starboard transducers were assumed to be exactly +/- 70° with respect to nadir, 

as specified by the manufacturer. Note that a broadside angle of -70° is 

equivalent to the broadside angle of 290° which was shown for the beam patterns 

in Figure 4.6 and Figure 4.9.
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Differential Phase Models for 3 Port Receiver Pairs
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Figure 4.15 Differential Phase Models for 3 Port Receiver Pairs Assuming an Array Broadside 
Angle of -70° and a Sound Speed of 1500 m/s

Differential Phase Models for 3 Starboard Receiver Pairs
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Figure 4.16 Differential Phase Models for 3 Starboard Receiver Pairs Assuming an Array 
Broadside Angle of +70° and a Sound Speed of 1500 m/s
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In Figure 4.15 and Figure 4.16, the modeled differential phase for each 

pair of receivers is shown to progress smoothly from one extreme to the other 

without any discontinuities. In practice, however, phase wrapping is observed 

due to the 2n limitations of physical phase measurements. To make a direct 

comparison between the models and phase wrapped measurements, it is 

necessary to force phase wrapping in the models. Phase wrapping at the +l-n 

boundaries was forced by applying (4.9) to the phase predictions of each model.

 ̂sin(A^)a a * -i sinlk<t>wraP = tan
vcos(

(4.9)

Wrapped differential phase models are shown in Figure 4.17 and Figure 

4.18. After phase wrapping is introduced, the phase measured by a single pair of 

bathymetric receivers ambiguously predicts multiple arrival angle solutions. For 

instance, the 1.5X port differential phase model has three 0 crossings, and there 

are three possible arrival angle solutions which correspond to a differential phase 

of 0  rad.

The ambiguities introduced by phase wrapping are most effectively 

resolved using arrival angle solutions derived from other pairs of receivers under 

the restriction that the baselines for the other pairs must be non-integer multiples 

of the original baseline. Transducers which satisfy this criterion have differential 

phase patterns where there is only one point across the entire visible region 

(+/- 90° around broadside) at which all three differential phase models intersect. 

That point is referred to in this thesis as a triple point. Figure 4.17 and Figure 

4.18 show a triple point at the broadside angle for each Klein 5410 transducer.
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Differential Phase Models for 3 Port Receiver Pairs
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Figure 4.17 Wrapped Differential Phase Models for 3 Port Receiver Pairs Assuming an Array 
Broadside Angle of -70° and a Sound Speed of 1500 m/s

Differential Phase Models for 3 Starboard Receiver Pairs
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Figure 4.18 Wrapped Differential Phase Models for 3 Starboard Receiver Pairs Assuming an 
Array Broadside Angle of +70° and a Sound Speed of 1500 m/s
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4.9 Differential Phase Measurements

Differential phase measurements between multiple receivers in the Klein 

5410 transducers were made using phasor processing techniques. For example, 

assume that quadrature sample vectors B1 and B2 were produced by two 

bathymetric elements in the Klein 5410 transducer.

B\ = I l + jQ x= M xeJh (4.10)

B2 = I 2+ jQ 2 = M 2eJh (4.11)

The complex conjugate of B1 is expressed in (4.12).

Bl* = I x -  jQx = M xe-M (4.12)

The product of B2 and B1* is written in (4.13).

B2B1* = ( / 2 (4.13)

The expression in (4.13) is a phasor with magnitude M1M2 and phase A<J> = 

<J)2—<t>i 1 which has preserved the coherence of the quadrature samples from each 

of the bathymetric receivers. For calibration phase measurements, the real and 

imaginary parts of (4.13) were filtered individually by an FIR filter (see appendix 

C.5.2). If the filtered real and imaginary parts of (4.13) are designated If and Qf 

respectively, then the differential phase between the two receivers is computed 

as follows.

= tan 1
K h j

(4.14)

Figure 4.19 and Figure 4.20 show differential phase measured between the 

bathymetric receivers on the port and starboard sides using the phasor 

processing techniques in (4.13) and (4.14).
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Differential Phase Measurements for 3 Unique Port Side Receiver Pairs
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Figure 4.19 Measured Differential Phase from 3 Pairs of Port Side Bathymetric Receivers
Separated by 3 Different Baselines

Differential Phase Measurements for 3 Unique Starboard Side Receiver Pairs
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Figure 4.20 Measured Differential Phase from 3 Pairs of Starboard Side Bathymetric Receivers
Separated by 3 Different Baselines
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Figure 4.19 and Figure 4.20 show a degradation of the phase 

measurements at the outer edges of the visible region. At arrival angles which 

are more than approximately 60° from broadside in either direction, the 

measurements become quite noisy and unreliable. This could be due to many 

factors including towfish geometry or transducer construction. However, there is 

approximately a 1 2 0 ° window, centered at broadside, in which the differential 

measurements appear to be very reliable.

There is a critical difference between the models and measurements 

directly at broadside. The triple points which were observed in the differential 

phase models are not apparent in the measurements. There are phase 

mismatches between the 3 bathymetric elements, as predicted by the vector 

impedance measurements, which must be compensated in order to produce a 

triple point before any processing is done to estimate arrival angles from phase 

differences.

It is unclear from the differential phase measurements whether the 

transducer broadside angles are exactly +/- 70° as specified by the manufacturer. 

Some small deviations may exist. There is also a possibility that the true sound 

speed in the array potting urethane is not exactly 1500 m/s as assumed in the 

differential phase models. Possible deviations need to be accounted for to 

produce the best possible match between the models and measurements, and 

are addressed below.
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4.10 Determining True Broadside Angles and Element Phase Offsets

Differential phase models for three unique pairs of bathymetric receivers 

with different baselines are written explicitly in (4.15) through (4.17).

. , / \ 2  ndx sin (a)
A </>i (a) = ----- 1 (4.15)

. , r \ 2nd2 sin(a)
= ^ (4 -16)

. , / \ 2 ^ i3 sin(a) ..
M ( « )  = — (4 -17)A .

Note that for a given transducer, A, is a constant, and the only parameters 

which differ from (4.15) through (4.17) are the baselines, di, d2, and d3. Under 

ideal phase matching conditions, when the Klein 5410 transducer baselines of 

1.5A, 2.5A, and 4.0A are substituted, and (4.15) through (4.17) are divided in 

pairs, the following constants are expected, regardless of a.

A^ 2 d2 2.5
A^j dx 1.5

1.67, V o  (4.18)

^  = ^  = — = 1.60,Va (4.19)
A^ 2 d2 2.5

^  = ^  = — «2.67 ,V a  (4.20)
A^j dx 1.5

Due to phase offsets between the bathymetric elements in each 

transducer, constant values were not observed across the entire visible region 

when the measurements were divided. In practice, the differential phase 

patterns measured by the Klein 5410 receivers are more realistically modeled in

(4.21) through (4.23). The variables si, S2 , and s3 represent phase offsets at
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broadside which are associated respectively with element 13, element 14, and 

the synthetic element in the Klein 5410 array.

If 8 1 , 8 2 , and S3 can be compensated to produce a triple point at broadside and 

phase matching across the entire visible region, the expressions in (4.21) 

through (4.23) will reduce to those in (4.15) through (4.17). Then, a pair-wise 

division of the phase models will result in the constants predicted by (4.18) 

through (4.20).

Before manipulating the differential phase measurements to solve for si, 

8 2 , and S3 , the measurements were unwrapped about broadside so that they 

were in the same form as the models shown in Figure 4.15 and Figure 4.16. To 

solve for the element phase offsets, the first step consists in summing all of the 

measurements from a particular transducer as expressed in (4.24).

Recognizing that d3 is the sum of di and d2 (see Figure 4.1), (4.24) can be written 

as:

(4.21)

(4.22)

(4.23)

Z A^ (« )= A î (a) + A(f>2 (a )+ A^3 (a)
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Equation (4.25) can be rearranged so that the differential phase function written 

in (4.23) is explicit in the expression.

2^ji3 sin(a)
^ A ^ (a )  = 2 + e\ + f 3 + 2 e2 = 2 A ^ 3(q:)+2£'2 (4.26)

X

In (4.26), EA(j)(a) and A<|>3 (a)are known quantities which come directly from 

the differential phase measurements. Equation (4.26) can be solved for 82 in 

terms of the known quantities as shown below.

V  AM a)  , .

% -  2  - * & ( « )  (4.27)

Once a solution for 82 has been obtained, it is straightforward to solve for and 

83 using (4.21) and (4.22).

To produce a triple point in each set of phase measurements, it was only 

necessary to solve for si, 8 2 , and 83 at the broadside angle. To determine the true 

broadside angle, several possibilities were tested within a + / - 1 0 window centered 

at the manufacturer’s specified broadside angle. In each test, offsets s-i, 8 2 , and 

83 were computed and removed from the measured data to force a triple point. 

The measurements were divided pair-wise as written in (4.18) through (4.20).

The broadside angle which produced the most constant quotients over the entire 

visible region was assumed to be the true broadside angle, and the solutions for 

si, 8 2 , and 83 at that angle were assumed to be the true phase offsets. Figure

4.21 and Figure 4.22 show the corrected differential phase measurements with 

true broadside angles of -70.50° and 70.04° respectively.
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Differential Phase Measurements for 3 Unique Port Side Receiver Pairs
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Figure 4.21 Measured Differential Phase from 3 Pairs of Port Bathymetric Receivers with Proper 
Element Phase Offsets Applied, Broadside is at -70.50°

Differential Phase Measurements for 3 Unique Starboard Side Receiver Pairs
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Figure 4.22 Measured Differential Phase from 3 Pairs of Starboard Bathymetric Receivers with 
Proper Element Phase Offsets Applied, Broadside is at 70.04°
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The differential phase measurements shown in Figure 4.21 and Figure

4.22 were divided pair-wise to produce the quotients in Figure 4.23 and Figure 

4.24. In each quotient, the data near broadside has been intentionally omitted 

due to the numerical instability introduced by dividing two differential phase 

quantities which are very nearly zero.

The starboard quotients are essentially constant across the visible region 

as predicted by (4.18) through (4.20), with deviations which are generally less 

than 0.03. However, the most constant port quotients which could be achieved 

over the visible region deviate from predictions by as much as 0.1. The 

variations in the port quotients indicate that the phase errors in the port 

transducer are a function of the acoustic arrival angle, and cannot be corrected 

by compensating for the single set of phase offsets observed at broadside. This 

was not surprising since the vertical beam pattern matching of the port 

bathymetric elements is also largely a function of the acoustic arrival angle.

In a calibration setting, where the acoustic arrival angle is known ahead of 

time, it is possible to characterize the phase errors throughout the visible region 

of the port transducer, and make the appropriate corrections at each angle. In 

the field, however, arrival angle solutions are derived from differential phase 

measurements, and are not known ahead of time. It is not possible to correct 

field data for phase offsets which are a function of the acoustic arrival angle.

This underscores the need for transducers with well-matched beam patterns and 

smooth differential phase patterns in bathymetric sidescan sonar systems.
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Quotients of Pairs of Differential Phase Measurements
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Figure 4.23 Pair-Wise Quotients of Port Differential Phase Measurements Across the
Transducer’s Visible Region
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Figure 4.24 Pair-Wise Quotients of Starboard Differential Phase Measurements Across the
Transducer’s Visible Region
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4.11 Empirical Determination of Urethane Sound Speed

The true sound speed in each of the Klein 5410 transducers was 

empirically determined by adjusting sound speed parameters in the differential 

phase models to produce the best match between the models and the measured 

data. The models and measurements were compared over angular sectors in 

which the measurements were observed to be smooth and free of errors (-55° to 

-85° on port and 40° to 100° on starboard, see Figure 4.21 and Figure 4.22).

Each set of phase measurements was unwrapped around its broadside angle.

Differential phase models were computed using a range of sound speeds 

from 1450 m/s to 1700 m/s. The mean squared error between each set of 

differential phase models and the measurements was computed by subtraction. 

The plots shown in Figure 4.25 and Figure 4.26 show the logarithm of the mean 

squared error between the measured and modeled phase for each pair of 

bathymetric receivers in each transducer.

To determine true sound speeds, the minimum mean square error values 

for the three bathymetric pairs in each transducer were normalized so that their 

minimum was 0 dB. The 0 dB mean square error value was assigned a linear 

weight of 1, and the higher error values were assigned correspondingly lower 

linear weights. The weight values (w) and corresponding sound speed values (c) 

were substituted into (4.28) to compute weighted average sound speeds.

3

/=1
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Mean Square Error Between Port Measurements and Models
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Figure 4.25 Mean Squared Error Between Port Differential Phase Measurements and Models
with Varying Sound Speeds
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Figure 4.26 Mean Squared Error Between Starboard Differential Phase Measurements and
Models with Varying Sound Speeds
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The weighted average sound speeds computed for the port and starboard 

arrays are 1556.8 m/s and 1504.3 m/s respectively. Normally, one would expect 

to find equal sound speed parameters for the port and starboard transducers. 

However, the particular transducers installed on this towfish were built several 

years apart using different materials. The different construction dates are the 

most likely cause of the 50 m/s difference in sound speeds.

The sound speed values computed using the weighted averaging 

technique fall within 4% of the design sound speed for Klein 5000 transducer 

urethane (1500 m/s). The port and starboard transducer sound speed values will 

be shown to produce bathymetric results which are consistent across a swath 

and on overlapping swaths, proving that refraction errors are minimal, and that 

the computed sound speeds are accurate.

4.12 Comparing Differential Phase Measurements and Models

After making all the model and measurement corrections discussed 

above, the differential phase models and measurements for each pair of 

receivers were plotted for comparison in Figure 4.27 through Figure 4.32. In 

addition to differential phase models and measurements, beam pattern models 

and measurements are shown in the plots. To obtain beam pattern 

measurements, the complex sequences from pairs of bathymetric receivers were 

summed, and the magnitude of the complex result was extracted. This is in 

contrast to the differential phase measurements obtained by multiplication of one 

complex sequence by the complex conjugate of the other sequence in each pair.
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Figure 4.27 Comparison Between Differential Phase and Beam Pattern Models and 
Measurements, 1.5A, Baseline Port Bathymetric Receivers.
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Figure 4.28 Comparison Between Differential Phase and Beam Pattern Models and 
Measurements, 1.5A, Baseline Starboard Bathymetric Receivers.
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Beam Pattern for Port 2.5a. Bathymetric Pair
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Figure 4.29 Comparison Between Differential Phase and Beam Pattern Models and 
Measurements, 2.5A, Baseline Port Bathymetric Receivers
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Figure 4.30 Comparison Between Differential Phase and Beam Pattern Models and 
Measurements, 2.5X Baseline Starboard Bathymetric Receivers
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Beam Pattern for Port 4.0A. Bathymetric Pair
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Figure 4.31 Comparison Between Differential Phase and Beam Pattern Models and 
Measurements, 4.OX Baseline Port Bathymetric Receivers

Beam Pattern for Starboard 4.0?. Bathymetric Pair

-10

|  -20

-30

-40 120 160100 140-20
e, Degrees

Differential Phase for Starboard 4.0?. Bathymetric Pair
4

Model
Meas

C2
S“ 0
<tT
VI(0JCa -2

120 16020 40 60 80 100 1400
e, Degrees

Figure 4.32 Comparison Between Differential Phase and Beam Pattern Models and 
Measurements, 4.OX, Baseline Starboard Bathymetric Receivers
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4.13 Phase Matching and Bathymetric Errors

Port swath angles of 0° to -90° and starboard swath angles of 0° to +90° 

are of interest for bathymetric processing. Some large mismatches between the 

models and measurements exist where they diverge near nadir (0°). Otherwise, 

the worst matching between the models and measurements in these sectors 

appears between -10° and -45° in the port 1.51 baseline data shown in Figure 

4.27. In this region, there is a phase deviation of up to 0.6 rad. This mismatch 

produces a shift of up to 5° between the true and computed arrival angle 

solutions, and yields bathymetric errors of up to 7% of water depth near 45° 

(equation 1.5).

Aside from errors near nadir, and the poor matching on the port side 

between -10° and -45°, all the models and measurements exhibit phase matching 

of 0.1 rad or better in the angular sectors of interest. In the worst case, a 

deviation of 0.1 rad results in a shift of 1.5° in the arrival angle solution. This 

corresponds to overall bathymetric errors of less than 5% of water depth, which 

are larger than the 1% errors sought in this calibration, but still tolerable.

To maximize the amount of useable data produced by the sonar, the port 

transducer should be replaced with a transducer which is of comparable quality 

to the starboard array. The manufacturer should also consider mounting the 

acoustic arrays so that their broadside angles are at +/- 60°, instead of +/-70°, to 

allow for better bathymetric detection near nadir, and less stringent swath overlap 

requirements.
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CHAPTER 5

PROCESSING AND MAPPING FIELD DATA

5.1 Introduction

After being calibrated, the Klein 5410 sonar was installed aboard a 

hydrographic launch, and was used to conduct a bathymetric survey in New York 

Harbor, NY. APPENDIX D discusses the details of how the survey was 

conducted. Using parameters obtained from the calibration, the field data 

recorded in NY Harbor was processed to obtain the bathymetry of the survey 

area.

There are 3 layers of bathymetric processing to which the Klein 5410 data 

was subjected: MATLAB processing, GSF file generation, and Caris processing. 

GSF file formats15 and Caris processing tools16 are well documented, and these 

layers of processing are only briefly discussed in appendices E.1 and E.2. The 

emphasis of this chapter is the MATLAB processing algorithms developed as 

part of this research.

At the conclusion of this chapter, two bathymetric charts of the field survey 

area are shown. A bathymetric chart which was generated with Klein 5410 data 

is compared to a bathymetric chart which was generated from data collected with 

a Reson SeaBat 8125 focused multibeam echo-sounder. The Klein system and 

Reson system produce comparable results.
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5.2 MATLAB Processing of the Raw Klein 5410 Sonar Data

To take advantage of the transducer calibration parameters which were 

established during this research, a set of custom bathymetric processing 

algorithms were developed using MATLAB. The critical aspects of the MATLAB 

data processing are addressed below.

5.2.1 First Arrival Detection

The Klein 5410 sonar is outfitted with an active acoustic altimeter. A 

sample acoustic altimeter output is shown in Figure 5.1. The data recorded from 

the altimeter was used to estimate the sample when the first bottom echo was 

received for each ping.

Klein 5410 Optional Acoustic Altimeter Output
2500

2000

■8 1500

500

1000 1500 2000500
Sample Number

Figure 5.1 Output of Klein 5410 Active Acoustic Altimeter, sampling rate of 22.75 kHz, vertical
axis in units of scaled Klein 5000 A/D output.
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It was assumed that the first bottom echo in each ping corresponds to the 

largest sample in the altimeter time series. However, the largest sample in 

Figure 5.1 occurs near sample 0, and is due to crosstalk between the transmitter 

and receiver at ping time, not the first bottom echo. In practice, the crosstalk 

always tapers off by approximately the 30th sample. The first bottom echo 

sample was assumed to fall after sample 30 in the altimeter time series to ensure 

that the crosstalk did not result in a false first arrival detection. In the particular 

example shown in Figure 5.1, the first bottom echo occurs at approximately 

sample 400 after a period of low level ambient and electronic noise. Samples 

from the sidescan elements which occurred before sample 400 were discarded 

during bathymetric processing since they do not produce meaningful arrival angle 

solutions.

5.2.2 Variable Bandwidth FIR Filtering

Figure 5.2 shows a single ping of raw differential phase measured 

between the bathymetric pair of receivers with a 2.5A, baseline in the starboard 

Klein 5410 transducer. The differential phase was obtained using the analytic 

signal processing techniques described in section 4.9 of this thesis. No post 

processing filter of any kind has been applied to the data.
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Differential Phase from Starboard 2.5l Bathymetric Receivers

I

800 1000 1200 1400 1600 1800 2000 2200200 400 600
Sample Number

Figure 5.2 Raw Differential Phase Measured in the Field Between 2.5X Baseline Starboard 
Bathymetric Receivers, sampling rate of 22.75 kHz, sample 1 corresponds to 0 m slant range at 

transmit time, sample 2276 corresponds to 75 m slant range.

Inspection of the raw differential phase shown between sample 400 (near 

the first arrival) and sample 2200 reveals that the data becomes progressively 

more noisy as the sample number increases. This can be largely attributed to 

two factors: a progressive reduction in the signal to noise ratio of the 

measurements, and a progressive increase in the instantaneous area of the 

seafloor which is sampled.

Assuming a sound speed of 1500 m/s, the slant range to the seafloor 

increases by 3.3 cm with each subsequent set of quadrature samples that is 

acquired by the sonar due to the 22.75 kHz temporal sampling rate, as illustrated 

in Figure 5.3. This results in a sample sequence in which both the slant range 

and transmission loss are constantly increasing. While the sonar compensates
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for the increasing transmission loss by applying TVG (time varying gain), the 

signal to noise ratio tends to decrease as time progresses within a single ping.

Towfish Body

Progression of 
Spatial Sampling

Ocean Floor

1st Sample 10th Sample

Figure 5.3 Spatial Progression of Samples Acquired with the Klein 5410 Sonar, flat bottom and 
constant sound speed in the water column have been assumed for the illustration, samples 1-10 

occur sequentially in time with sample 1 corresponding to bottom detection near nadir, slant 
range increases by 3.3 cm with each sample that is acquired, figure not to scale.

As the slant range from the sonar to the seafloor increases, the segment 

of the seafloor which is sampled becomes larger due to the range dependent 

increase in the along track dimension of the beam footprint as illustrated in 

Figure 5.4. The set of arcs in the along-track beam patterns represent a set of 

sampling times. For a given arc, the sampling time is constant. For small slant 

ranges, such as 10 m, the beam pattern footprint occupies an along track 

distance of approximately 7 cm. However, as the slant range increases to 75 m, 

the beam pattern footprint spreads to cover an along track distance of 

approximately 50 cm.
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Figure 5.4 Representation of Beam Pattern Spreading in the Klein 5410 Bathymetric Subsystem, 
sampling time and slant range are constant along each arc.

Each point on the seafloor which lies within the along-track beam pattern 

footprint at a particular slant range contributes its own magnitude and phase to 

the composite IQ samples which are acquired. When the along track distance 

occupied by the beam pattern footprint is narrow, the contribution of each point 

within the footprint is more likely to be well matched in amplitude and phase. As 

the along-track distance occupied by the beam pattern footprint grows, so does 

the number of acoustic scatterers found within the beam footprint. The acoustic 

echoes produced by the increased number of scatterers tend to be incoherent 

and there is increasing decorrelation between successive samples of the IQ time 

series used to estimate phase differences. The decorrelation results in IQ 

samples which are less coherent from receiver to receiver, and differential phase 

measurements between pairs of receivers which are more noisy in nature.
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To counteract the decreasing signal to noise ratios and increasing 

decorrelation described above, a digital filter with variable bandwidth was 

implemented. An FIR running mean filter was chosen for the filtering task 

because of its computational simplicity and linear phase characteristics. In 

practice, the bandwidth of the running mean filter was varied by increasing the 

number of taps in the filter as the slant range increased.

Near the first arrival, the FIR filter has 11 taps and a bandwidth of 

approximately 1.8 kHz. After 25 samples have been filtered, the filter grows in 

length to 45 taps and has a bandwidth of approximately 450 Hz. The filter length 

remains steady at 45 taps until a swath angle of 45° is detected, at which point it 

is increased by 2 taps to a total of 47 taps. After 5 samples are filtered with the 

47 tap filter, the length of the filter is increased by an additional 2 taps for a total 

of 49 taps. The next 5 samples are filtered, and the filter continues to grow in 

steps of 2 taps until the filter exceeds the bounds of the available data.

The 45° transition angle for the filter was specified empirically. Although 

many different angles were tested, use of a 45° transition angle for the filter 

seemed to produce the smoothest differential phase data across the entire 

swath. Ideally, the instantaneous bandwidth of the received acoustic signal 

should be detected and used to adjust the bandwidth of the adaptive filter. 

However, the development of such a filter was beyond the scope of this 

research.

Because the 45° swath angle is detected at a different sample number for 

each ping, the filter bandwidth for one ping generally has a different progression
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than the filter bandwidth for the next ping. Figure 5.5 shows how the bandwidth 

of the filter varied for the sample ping whose differential phase was plotted in 

Figure 5.2. Bottom detection occurred at sample 423, and the filter length 

exceeded the bounds of the sample sequence after sample 2049. No filtering in 

the regions before or after these sample numbers was possible, and the filter 

bandwidth is undefined outside of these bounds.

Bandwith of Variable Boxcar Filter
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800 1000 1200 1400 1600 1800 2000 2200200 400 600
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Figure 5.5 Bandwidth of Variable Field Data Processing Filter, Sampling rate of 22.75 kHz, filter 
bandwidth undefined before bottom detect (sample 423) and after filter exceeds boundary of last

sample (sample 2049).

Figure 5.6 shows three data sequences which were derived from the 2.5A,

baseline starboard Klein 5410 bathymetric receivers: raw differential phase,

differential phase obtained after processing with a constant bandwidth filter, and
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differential phase obtained after processing with the variable bandwidth filter 

illustrated in Figure 5.5. The constant bandwidth filter used in this demonstration 

was a 45 tap FIR filter with a bandwidth of 450 Hz, which is roughly equivalent to 

the section of the variable filter illustrated in the middle of Figure 5.5. Inspection 

of Figure 5.6 reveals that the variable bandwidth filter produced differential phase 

estimates with acceptable levels of smoothness across the entire swath.

Comparison o f Raw and Filtered Differential Phase from Starboard 2.5X Bathymetric Receivers
4

Raw
Constant Filter 
Variable Filter3

2

1

04)</>OSszCL
■1

■2

;' . . . t v■3

•4
200 400 600 800 1000 1200 1400 1600 1800 2000 2200

Sample Number

Figure 5.6 Comparison of the Performance of a Constant Filter and a Variable Bandwidth Filter 
on Raw Phase Data from the Starboard 2.5X Klein 5410 Bathymetric Pair, sampling rate of 22.75

kHz, bottom detection occurs at sample 423.

The differential phase which was produced from the variable bandwidth 

filter at the beginning of the raw sample sequence shown in Figure 5.6 has
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retained a reasonable level of variability and will be shown to produce realistic 

bathymetry in the near nadir region.

At the end of the sample sequence, the variable bandwidth filter produced 

differential phase estimates which are smoother than those produced by the 

constant bandwidth filter. While the phase estimates from the constant 

bandwidth filter produced bathymetry which was noisy and disjoint between 

overlapping outer swaths, the phase estimates from the variable bandwidth filter 

produced more consistent bathymetry overall.

In the intermediate sections of the raw sample sequence, the variable 

bandwidth filter and constant bandwidth filter produced both differential phase 

estimates and bathymetry which are roughly equivalent. However, the variable 

bandwidth filter produced better overall differential phase estimates and 

bathymetry than the constant bandwidth filter.

5.2.3 Angle of Arrival Computation

The differential phase quantities produced by the variable bandwidth filter 

were used to estimate acoustic angles of arrival. In CHAPTER 1 of this thesis, a 

mathematical differential phase model for each pair of bathymetric receivers in 

each transducer was given in equation (1.4).

The differential phase term, Acj)(a), is a quantity which has been measured 

by the sonar receivers. Since the baseline, d, and the acoustic wavelength, X,
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are known parameters of the sonar system, the expression in (1.4) can be solved 

for the acoustic arrival angle, a, as shown below.

a = sin-1
{A^(a)+ riln\X 

2 7vd
(5.1)

With baselines of 1.5A,, 2.5A,, and 4.0X, the bathymetric receivers in the 

Klein 5410 sonar produce differential phase which wraps 1, 3, and 5 times 

respectively over the angular sector from 0° (nadir) to 90° (horizontal). The n27t 

term in (5.1) has been added to account for the phase wrapping and to allow for 

the multiple arrival angle possibilities for a given phase measurement.

The multiple arrival angle solutions for a particular phase measurement 

are illustrated in the example shown in Figure 5.7, where differential phase 

across the visible region of each pair of bathymetric elements has been mapped 

to color. In this example, a differential phase of -1.57 rad has been measured by 

the 1.5A, baseline receivers. This differential phase measurement suggests 2 

possibilities for the true arrival angle of the acoustic wavefront. The 2.5X 

baseline receivers have a measured differential phase of +1.57 rad which 

suggests 3 possibilities for the true arrival angle, and the 4.0A, baseline receivers 

have a measured differential phase of 0 rad which corresponds to 4 possible 

arrival angles.
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At a given time sample: one measured phase difference per pair 
maps into several possible polar angles

-1.57 rad (-80°) 1.57 rad (90°) 0 rad (0°)
2 polar angles 3 polar angles ^  4 polar angles -  %

actual angle -  -30° from broadside (0°)

Figure 5.7 Illustration of Phase Wrapping and Multiple Angle of Arrival Solutions for 1.5k, 2.5k, 
and 4.0k Baseline Receivers in the Klein 5410 Transducer from Nadir to the Horizon,

(C. de Moustier, Acoustics Lecture Notes, 2006)

Even though the differential phase measured by each pair of receivers in 

the array is associated with multiple arrival angle possibilities, there is only one 

solution that is consistent across all three pairs of bathymetric receivers. This is 

illustrated in Figure 5.8. The color mapped differential phase plots in the top half 

of the figure are identical to those shown in Figure 5.7. Each of the possible 

arrival angles, from each pair of bathymetric receivers, is plotted as a vector in 

the bottom half of Figure 5.8. Black, red, and green vectors correspond to 1,5k, 

2.5k,, and 4.0A, baseline solutions respectively. The -30° arrival angle solution 

(with respect to broadside) is the only one that is common to all three pairs of 

receivers. All other solutions are inconsistent, and are discarded.
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d = 1.5 A. 
2 angles

d = 2.5 % 
3 angles

d = 4 A. 
4 angles
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Compare polar angles 
across the 3 sets

Only one angle 
is common 

to all three pairs

Figure 5.8 Illustration of the Arrival Angle Solution Which is Common to All 3 Pairs of Bathymetric 
Receivers, (C. de Moustier, Acoustics Lecture Notes, 2006)

The software algorithm which solves for each acoustic arrival angle in the 

Klein 5410 field data is similar to the processing scheme illustrated in Figure 5.8. 

First, the algorithm computes each possible angle of arrival from the differential 

phase measured by each pair of bathymetric receivers. If there are three arrival 

angle solutions from the three different pairs of receivers which are consistent to 

within +/-1.5°, their vector average is computed using the magnitude of the 

vector sum for each pair.

Note that the magnitude of the vector sum of the complex sequences 

sampled at each pair of receivers corresponds to the interferometric backscatter 

magnitude that changes as a function of the acoustic arrival angle as illustrated 

by the beam patterns in Figure 4.27 through Figure 4.32. The lobes seen in 

these beam patterns are the basis of the interference fringes usually displayed in
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raster plots of backscatter magnitude. When the acoustic arrival angle passes 

through a null in the interferometric backscatter from a particular pair of 

receivers, less weight is given to the arrival angle solution from that pair of 

receivers. This is advantageous because nulls in interferometric backscatter 

correspond to wraps in differential phase where the measurements are least 

dependable. If three consistent arrival angle estimates (within + /-1 .5°) can not 

be found for a particular set of samples, no arrival angle solution is returned.

5.2.4 Writing Processed Data into CBF Files

The CUBE (Combined Uncertainty and Bathymetric Estimator)17 

Bathymetry Format (CBF)18 was originally specified by GeoAcoustics Ltd. and 

CCOM to process data produced by GeoAcoustics bathymetric sidescan sonar 

systems with CUBE. Since the GeoAcoustics and Klein 5410 systems produce 

the same basic data types, it was possible to extend the use of the CBF file 

format and export Klein 5410 data from MATLAB. All relevant Klein 5410 

bathymetric data in the MATLAB environment was exported to CBF files to 

complete the MATLAB processing.

5.3 Bathymetric Chart Comparisons

Figure 5.9 and Figure 5.10 show bathymetry produced by the Reson 

SeaBat 8125 multibeam echo-sounder and Klein 5410 bathymetric sidescan 

sonar. The charts presented in the figures have the same geographical bounds 

such that a feature in one chart should appear at the same location in the other.
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Figure 5.9 Color Coded Bathymetry of Test Survey Area Produced by Reson SeaBat 8125 
Multibeam Echo-Sounder, white areas indicate a lack of data coverage, Projection: NAD83, 

datum: GRS80, Tidal Reference: MLLW, Grid Size: 40 cm, Area Surveyed « 0.75 km2.
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Figure 5.10 Color Coded Bathymetry of Test Survey Area Produced by Klein 5410 Bathymetric 
Sidescan Sonar, white areas indicate a lack of data coverage, Projection: NAD83, Datum: 

GRS80, Tidal Reference: MLLW, Grid Size: 40 cm, Area Surveyed ® 0.75 km2.
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Figure 5.11 shows single bathymetric profiles produced by each system 

along the same geographical path. When data from the Klein 5410 sonar was 

processed through the algorithm discussed in section 5.2, the Klein and Reson 

systems produced profiles which match to within 2 cm in the best case, and 35 

cm in the worst case. A complete statistical analysis of the differences between 

the bathymetry produced by each system is beyond the scope of this thesis. 

However, the preliminary results are promising.

(a)

Depth Profiles from Klein and Reson Systems
-12.5

Klein 5410 
Reson 8125

-13

-13.5

-14

& -14.5

-15

-15.5

-16
100 150

Distance Along Track, Meters
200 300 350250

(b)

Figure 5.11 (a) Color Coded Bathymetry of Test Survey Area, single profile over sand wave field 
highlighted in white, (b) Depth Profiles for Klein and Reson Systems Along the White Track

Shown in (a).
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Figure 5.12 shows the survey tracks covered during the Klein and Reson 

surveys. A major advantage of surveying with the Klein 5410 sonar was its 

ability to cover wide (150 m) swaths in shallow water while simultaneously 

providing high resolution sidescan imagery. It was only necessary to traverse 

5.07 nautical miles to obtain full bathymetric coverage of the survey area with the 

Klein 5410 system. By comparison, it was necessary to traverse 9.09 nautical 

miles to obtain full coverage with the Reson 8125 system. In addition, the Klein 

5410 survey included two orthogonal survey lines which were not included in the 

Reson 8125 survey. If such lines had been included in the Reson 8125 survey, 

its length would be even further increased relative to the Klein 5410 survey.

40*41'50”N

40*41'40"N

40*41'30"N

40°41'20"N

40*41'10"N

40*41'50"N

40*41'40”N

40*41'30"N

40*41'20“N

40*41,10”N

(a) (b)
Figure 5.12 (a) Survey Tracks from Klein 5410 Survey, (b) Survey Tracks from Reson 8125

Survey
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In general, the Reson SeaBat 8125 system provided more subtle details 

about the shape of the bottom than were provided by the Klein 5410. This could 

be due to several factors including the focusing aspects of the Reson system 

which are not possible in the Klein bathymetric processing, a lack of highly 

refined digital processing filters in the Klein bathymetric processing, or 

differences in the spatial sampling abilities of the two systems. However, the 

Klein 5410 system provided bathymetric results which nominally match those 

produced by the Reson 8125 multibeam echo-sounder.
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CHAPTER 6

CONCLUSIONS AND FUTURE WORK

6.1 Summary and Conclusions

The Klein 5410 sonar’s standard FM transmit pulses were found to 

produce phase distortions in the quadrature samples acquired by the system. To 

alleviate this problem, two CW transmit pulse options were added to the sonar’s 

functionality so that samples with true phase integrity could be acquired. During 

the calibration process, phase mismatches were discovered in the system’s 

electronic receive channels and transducer elements which caused errors in the 

arrival angle solutions, and mismatches in bathymetry from overlapping swaths. 

Additionally, the calibration revealed some significant phase distortions 

throughout portions of the port transducer’s visible region. The phase 

mismatches discovered through the calibration were compensated to the extent 

that it was feasible.

At the conclusion of the calibration work, differential phase models for 

each pair of bathymetric receivers in the Klein 5410 sonar were defined which 

generally matched the calibration measurements to within 0.1 rad. A full vector 

bathymetric processing algorithm was developed which used the differential 

phase models and measurements to produce acoustic arrival angle solutions 

with a worst case error of 1.5°, and total bathymetric errors of less than 5% over
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the cross track survey swath. This level of accuracy is far superior to the 25%  

accuracy which was possible before the calibration corrections were applied.

After the calibration was complete, a hydrographic survey was conducted 

in NY Harbor with the Klein 5410 sonar to demonstrate the validity of the 

calibration parameters and the performance of the processing algorithms which 

were developed. Bathymetric swath coverage of 150 m in nominal water depths 

of 8-20 m was demonstrated. The data collected during the survey was 

successfully processed using a combination of the newly developed MATLAB 

vector processing algorithms and Caris HIPS software. Bathymetry of the field 

survey area was produced which matches bathymetry obtained independently by 

NOAA surveyors over the same area with a Reson SeaBat 8125 multibeam 

echo-sounder operating at the same acoustic frequency.

In conclusion, based on the results presented in this thesis, a calibrated 

Klein 5410 sonar, combined with the vector processing algorithm developed as 

part of this research, show promise for producing survey grade bathymetry.

6.2 Suggestions for Future Work

Suggestions for future work are split into two categories: work that could 

be done by Klein Associates to enhance and further develop the Klein 5410 

bathymetric sidescan sonar, and work that could be done by CCOM to enhance 

the bathymetric processing algorithm.
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6.2.1 Suggested Improvements to the Klein 5410 Sonar

Transducers are the most important component of the Klein 5410 sonar 

which need to be improved. Several Klein 5410 transducers were recently tested 

by CCOM, and they demonstrate a high degree of variability. Some transducers 

show significant deviations from theoretical predictions in the beam patterns for 

the sidescan and bathymetric elements. These transducers tend to produce 

sidescan imagery which is contaminated by low backscatter artifacts due to 

beam pattern nulls in the nadir region, and also tend to exhibit differential phase 

distortions across their visible regions which prevent accurate solutions for arrival 

angles across the entire swath. However, some of the transducers have well 

shaped beam patterns for each element, differential phase characteristics which 

are free of distortions across the entire visible region, and demonstrate very high 

levels of performance. Klein Associates has demonstrated its capability of 

manufacturing transducers whose performance nearly matches theoretical 

predictions. However, recent calibration results obtained at CCOM indicate that 

manufacturing variability is too high. Every transducer which is fabricated should 

be calibrated in a test tank to verify its performance prior to costly sea testing or 

distribution to customers.

Currently, the range to the far field of the bathymetric elements in the Klein 

5410 transducer is approximately 54 m (see section 4.6). Results of the work 

presented in this thesis suggest that better short range (10-50 m) performance 

would be obtained if the length of the bathymetric elements in the transducers 

were cut in half. This would increase the along track beamwidth of the elements
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by a factor of 2, but would reduce the range to the far field by a factor of 4, to 

approximately 13.5 m. Reducing the range to the far field would allow the 

transducer to make more reliable differential phase measurements closer to the 

towfish, and may allow for better bathymetric coverage near nadir.

For bathymetric surveying, precise timing and high speed attitude sensors 

are absolutely essential. The PNI TCM2 attitude sensor in the Klein 5410 sonar 

should be upgraded to a sensor with a higher data update rate, higher resolution, 

and better accuracy. The sonar clock should be upgraded from a PC clock to a 

precisely synchronized UTC clock. Incorporation of these hardware 

improvements would greatly reduce the amount of effort which is required to 

conduct a bathymetric survey and process the data.

Finally, the Klein SonarPro software should be upgraded to provide real

time bathymetric visualization capabilities so that the sonar operator can 

troubleshoot any problems which arise while conducting the survey.

6.2.2 Suggested Updates for the Processing Software

Some effort should be devoted to designing a more optimal digital filter to 

be used in the bathymetric processing algorithm. The current filter functions at a 

proficient level for the specific data set that was collected in NY Harbor, but may 

not be a suitable filter for data collected in other survey conditions. Currently, the 

data recorded from each pair of bathymetric receivers in a transducer is 

subjected to an identical filter which adapts based on the slant range to the 

seafloor. The filter should be modified so that it adapts based on the
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instantaneous bandwidth of the received phasor signal, which is different for 

each pair of bathymetric receivers.

The MATLAB bathymetric processing algorithms should be converted to C 

programs to increase the speed of bathymetric computations. Ideally, the angle 

of arrival and travel time solutions should be computed and written into CBF files 

in real-time as the data are collected. Then, the CBF files would be ready for 

conversion to GSF files and processing in Caris shortly after acquisition.

In addition to bathymetric data, the Klein 5410 sonar records high 

resolution sidescan imagery. To make optimal use of both the bathymetry and 

imagery, they should be displayed in a co-registered fashion. So far, no effort 

has been devoted to producing such a display, but this should be investigated.

Finally, a depth uncertainty model for the Klein 5410 swath bathymetry 

data should be developed. Development of a such a model would allow the 

bathymetry to be automatically processed with CUBE, which will save many 

hours of swath editing and data cleaning.
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APPENDIX A 

DETAILS OF TRANSMIT ELECTRONICS TESTING

A.1 Theoretical Operation of the Transmit Electronics

Samples of the various Klein 5410 transmit pulses are stored in a PROM 

(Programmable Read Only Memory) and clocked out to a digital to analog (D/A) 

converter by a master system clock. The analog output of the D/A converter 

serves as the input to a Class-D MOSFET driver circuit. The system clock runs 

at a frequency of 14.56 MHz providing 32 samples per cycle of the system’s 455 

kHz carrier frequency. There is enough memory to store up to sixteen 560 ps 

waveforms, but typically only four waveforms are actually stored. Each 

waveform contains a total of 8192 samples.

A.2 Mounting the Acoustic Devices

The Klein 5410 sonar was configured for calibration by removing the tail 

cone and replacing it with a custom machined mounting bracket as shown in 

Figure A .1. The nose cone was left in place. Figure A.2 shows the NUWC E27 

transducer.
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Figure A.1 Klein 5410 Sonar Configured for Calibration, 
mounting bracket on left side, nose cone on right side.

Figure A.2 NUWC E27 Transducer 

The Klein 5410 was mounted at the end of a carbon fiber pole and the E27 was 

mounted at the end of a fiber glass pole. The transducer faces were covered 

with a layer of liquid soap to avoid the formation of air bubbles.
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A.3 Configuration and Interconnection of the Electronics

During transmit waveform testing, the Klein 5410 sonar was set to ping 

freely as it would during normal operation. The ping rate is determined by the 

system’s range scale setting combined with the speed over ground of the towfish 

Clearly, when the sonar is mounted in the engineering tank, speed becomes an 

invalid parameter. It is possible, however, to manually set the speed of the 

towfish in Klein’s SonarPro control and data viewing software. Once the speed 

of the towfish has been defined, and a range scale has been selected, the ping 

rate of the sonar becomes a constant.

The block diagram in Figure A.3 shows the electrical connections made 

between the electronic devices used during this test.

.lein PC h Ethemet Klein TP

Klein 5410 
' Towfish

Water

Nl PCI  __ „ PC with
6110 ADC LabVIEW

Figure A.3 Transmit Test Block Diagram

On the transmit side of the diagram, the Klein 5410 towfish was connected 

via a coaxial cable to the Klein Series 5000 TPU. The TPU was connected to an 

Ethernet hub through a CAT-5 cable. The Klein PC was also connected to the
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Ethernet hub with a CAT-5 cable. These connections allowed communication 

and data transfer between the Klein 5410 towfish, the TPU, and the PC.

On the receive side of the diagram, the NUWC E27 transducer received 

the acoustic pulses which had propagated through the water from the Klein 5410 

transmitter. The low level signal from the E27 was processed through an analog 

Krohn-Hite 3944 Programmable filter. The programmable filter was configured 

as a lowpass Butterworth filter with a -  3 dB frequency of 600 kHz, and served as 

an appropriate anti-aliasing filter for the 455 kHz Klein 5410 transmit frequency. 

Since this filter is active, it was also used to provide a gain of 20 dB. The output 

of the programmable filter was connected to the Nl (National Instruments) BNC- 

2110 connector block, which serves as a breakout box for the 12 bit Nl PCI-6110 

A/D converter. In this case, the data was sampled at a rate of 5 MHz.
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A.4 Standard Transmit Pulse Measurements

TS 0.5

Comparison of Measured and Simulated 50 us FM Chirp Pulses

I I
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Measured Pulse
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Figure A.4 Comparison of Measured and Simulated 50 ps FM Chirp Pulses, full pulse in top 
window, zoom views of 3 bracketed regions in bottom windows.

PSD Estimate of 50 us FM Chirp Pulse via Periodogram
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Figure A.5 Power Spectral Density of 50 us FM Chirp Pulse, full spectrum in top window, zoom 
view of spectral peak in bottom window, - 3dB spectral level indicated with red line.
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Comparison of Measured and Simulated 100 us FM Chirp Pulses

Simulated Pulse 
Measured Pulse
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Figure A.6 Comparison of Measured and Simulated 100 |o.s FM Chirp Pulses, full pulse in top 
window, zoom views of 3 bracketed regions in bottom windows.

PSD Estimate of 100 us FM Chirp Pulse via Periodogram
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Figure A.7 Power Spectral Density of 100 ps FM Chirp Pulse, full spectrum in top window, zoom 
view of spectral peak in bottom window, - 3dB spectral level indicated with red line.
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Comparison of Measured and Simulated 200 us FM Chirp Pulses
1 . 5  r

Simulated Pulse 
Measured Pulse
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Figure A.8 Comparison of Measured and Simulated 200 ps FM Chirp Pulses, full pulse in top 
window, zoom views of 3 bracketed regions in bottom windows.

PSD Estimate of 200 us FM Chirp Pulse via Periodogram
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Figure A.9 Power Spectral Density of 200 ps FM Chirp Pulse, full spectrum in top window, zoom 
view of spectral peak in bottom window, - 3dB spectral level indicated with red line.
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A.5 Engineering Transmit Pulse Measurements

Comparison o f Measured and Simulated 132 us CW Pulses
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Figure A.10 Comparison of Measured and Simulated 132 ps CW Pulses, full pulse in top 
window, zoom views of 3 bracketed regions in bottom windows.
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Figure A.11 Power Spectral Density of 132 ps CW Pulse, full spectrum in top window, zoom view 
of spectral peak in bottom window, - 3dB spectral level indicated with red line.
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Comparison of Measured and Simulated 132 us FM Chirp Pulses

Simulated Pulse 
Measured Pulse
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Figure A.12 Comparison of Measured and Simulated 132 ps FM Chirp Pulses, full pulse in top 
window, zoom views of 3 bracketed regions in bottom windows.
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Figure A.13 Power Spectral Density of 132 us FM Chirp Pulse, full spectrum in top window, 
zoom view of spectral peak in bottom window, - 3dB spectral level indicated with red line.
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APPENDIX B 

DETAILS OF RECEIVE ELECTRONICS TESTING

B.1 Theoretical Operation of Klein 5410 Receive Electronics

The Klein 5410 receive electronics are responsible for analog signal 

conditioning as well as digitization and storage of data from 32 electronic 

sensors. Of the 32 electronic receive channels, channels 1 through 28 are 

reserved for the port and starboard sidescan sonar arrays. There is also a 

channel reserved for an acoustic altimeter. The remaining 3 channels service 

additional electronic sensors. Only the sidescan channels are used in the Klein 

5410 swath bathymetry measurements.

Each of the 28 sidescan receive channels has an identical electronic 

architecture. The analog front end of each of these 28 electronic channels is 

composed of a filter, a preamplifer, and a TVG (time-varying gain) amplifier. The 

analog filter is a bandpass filter with a 20 kHz bandwidth centered at 455 kHz. 

The output of the analog filter drives a preamplifier with a specified constant gain. 

The output of the preamplifier drives the TVG amplifier. TVG is applied to the 

acoustic signals to counteract the spherical spreading losses associated with 

acoustic wave propagation.

Four 8-channel multiplexers are used to sequentially route each of the 32 

electronic channels to the A/D converter for quadrature sampling. After
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sampling, the data from each of the 32 electronic channels is sent through a 

telemetry link to the TPU, and saved in a raw data file.

B.2 Wiring for the Direct Signal Injection Test

Figure B.1 shows an end view of the Klein 5410 towfish with the nose 

cone removed and the electronics pressure housing exposed. The front ends of 

the port and starboard transducers are visible near the sides of the towfish body. 

The transducer cables have been removed from the receptacles on the pressure 

housing.

Figure B.1 End View of Klein 5410 Towfish, nose cone removed to expose pressure housing.

Of the 4 transducer receptacles, two are dedicated for the port side 

transducer and two are dedicated for the starboard side transducer. The 

receptables are designated 1P, 2P, 1S, and 2S respectively. Receptacle 1P
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accommodates channels 1-6 and 13. Receptacle 2P accommodates channels 7- 

12 and 14. On the starboard side, receptacle 1S accommodates channels 15-20 

and 27. Receptacle 2S accommodates channels 21-26 and 28.

A 455 kHz sinusoidal test signal was generated by an Agilent 33120A 

function generator. The amplitude of the waveform was set to 100 mV peak to 

peak. The function generator was connected to the Klein 5410 receive 

electronics through a 40 dB attenuator and a set of test cables. The attenuator 

was connected in line to prevent overdriving of the Klein 5410 front end 

electronics.

The output of the attenuator was connected to a set of test cables with 

exposed wires on one end and SUBCONN 10 pin male connectors on the other 

end. The SUBCONN connectors plug into the transducer receptacles on the end 

of the Klein 5410 pressure housing. A photograph of the wiring is shown in 

Figure B.2 below.

Figure B.2 Direct Injection Test Wiring 

The output of the attenuator is terminated in two clip leads. Multiple wires 

in the test cables were stripped, twisted together, and connected to the positive 

clip lead so that their corresponding electronic channels could be driven in
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parallel. The shields in the test cables serve as the common ground connection 

for all channels and were connected to the negative clip lead. The remaining 

unused wires in the test cables were wrapped in electrical tape as shown in 

Figure B.2. The 10 pin SUBCONN connectors on the ends of the test cables 

were plugged into two of the four transducer receptacles at a time to test the 

electronic channels.

During testing of the port side channels, the starboard transducer 

remained connected to the electronics. When the starboard channels were 

tested, the port transducer remained connected. Maintaining a connection with 

at least one of the transducers at all times ensured that an electrical load would 

be present in case the transmitter circuits accidentally switched on. This method 

of testing did not pose any danger to the transmitters, and still provided useful 

information regarding the phase matching of the receive electronics and validity 

of the deskewing algorithm.
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APPENDIX C

DETAILS OF ACOUSTIC CALIBRATION

C.1 Details of the Transducer Construction

Figure C.1 shows the cross sectional assembly drawing of the acoustic 

array with physical dimensions listed in inches. The acoustic separations of 1.5A, 

and 2.5A, convert to physical separations of 0.195 inches and 0.325 inches 

respectively.

The thin tray shown in Figure C.1 is the backing plate for the array. The 

tray holds a grooved structure which serves as a template for holding the 

individual ceramic crystals in place during assembly. The large groove on the left 

side of the template is a cable channel which carries all of the individual element 

wires. The first three grooves to the right of the cable channel accommodate the 

sidescan elements, lower bathymetry element, and upper bathymetry element

TfP + PLACES
1.260 - -  *' lo

Tem plate riruiru If— f  -465

- H  1.040

Figure C.1 Cross Sectional Assembly Drawing of Klein 5410 Acoustic Array
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respectively. The width of each of these grooves is approximately 0.115 inches 

or 0.89A. However, the effective aperture of each acoustic element is 

approximately 1.0A due to vibration of the surrounding materials once the 

peramics are glued in place.

There is one additional groove at the far right side of the template which 

accommodates an additional bathymetry element. The ceramic crystals for this 

element are physically installed and the wires are brought out to the transducer 

connectors. However, there is no electronic channel available for this element. 

The only way to connect this element to the Klein 5410 electronics would be to 

disconnect one of the sidescan elements. Disconnection of a sidescan element 

would have a large impact on the sidescan function of the system. Synthesis of 

a third bathymetry element from the sidescan line array alleviates the need to 

disconnect a sidescan element.

When the array is built, it is flat and all of the acoustic elements are 

coplanar. However, there is a curvature in the potting urethane that 

encapsulates the elements. The curvature is shown in Figure C.2.

RAD 3,31

,270
,250

T r a y

Figure C.2 Cross Sectional View of Transducer Urethane Curvature

115

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



The radius of curvature of the urethane is 3.31 inches as listed in the 

figure. The urethane is cut with this curvature so that the transducers are nearly 

flush with the towfish housing when installed. The “T” shaped block held by the 

tray contains the individual ceramic crystals. The circular objects inside this 

block structure are holes which accommodate the transducer cables.

Once the array is mounted to the towfish, it no longer remains flat. There 

are 7 sets of bolts along both sides of the towfish body which hold the arrays in 

place. The bolts are adjusted in such a fashion that the array is forced to curve. 

Figure C.3 shows the estimated curvature of the transducer when it is installed. 

The curvature is estimated based on the length of the transducer and the 

locations of the bolts.

x 1 q-3 Transducer Curvature Pattern0

2! -0  5
"ft
2

H
*5

£
i  -1.5

o
c«

b

-2.5

-0.6 -0.4 -0.2 0 0.2 0.4 0.6
Distance from Center Bolt, Meters

Figure C.3 Locations of Transducer Mounting Posts and Transducer Curvature Pattern
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The center bolt is used as a reference point from which all other 

measurements are made. The edges of the array are recessed by approximately 

2.5 mm compared to the center of the array. The slight curvature introduced by 

this installation causes the array to have a mechanical back-focus at 75 m. Klein 

engineers have forced this mechanical back-focus in order to optimize the 

transmit beam pattern of the sonar. However, the curvature of the array impacts 

the receive beam patterns as well. The array curvature steers the maximum 

response axis of each individual acoustic element in a slightly different direction. 

This mechanical steering has some effects on the bathymetry beamforming.

C.2 Test Setup for Acquisition of Vertical Plane Calibration Data

In order to acquire calibration data, the Klein 5410 transducers had to be 

rotated in a controlled fashion through an acoustic field provided by the NUWC  

E27 transmitter. The NUWC E27 transmitter and Klein 5410 sonar towfish were 

mounted in the engineering test tank as shown in Figure C.4 and Figure C.5.

The end of the Klein 5410 towfish was mounted to a carbon fiber pole using a 

custom machined mounting bracket. The sonar arrays were rotated about the 

axis of the carbon fiber pole to characterize the vertical receive beam patterns 

and differential phase patterns. The depth of the NUWC E27 was adjusted to 

measure the beam pattern of each of the Klein 5410 sonar transducers used in 

bathymetric processing.

117

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Figure C.4 NUWC E27 Transmitter Mounted on Figure C.5 Klein 5410 Towfish Mounted on 
Secondary Bridge in Acoustic Test Tank for Primary Bridge in Acoustic Test Tank for Vertical 
Vertical Plane Beam Pattern Measurements Plane Beam Pattern Measurements

In order to obtain precise measurements, the NUWC E27 and Klein 5410 

sonar had to be precisely aligned in space. The first step in the alignment 

procedure was to remove the slant in the vertical orientation of the Klein 5410 

towfish using a dial indicator as shown in Figure C.6. The dial indicator was 

pressed against the towfish body and the towfish was rotated. Any variation in 

the reading of the dial indicator suggested that the sonar was not hanging exactly 

vertical. Adjustments were made to the custom mounting bracket until the dial 

indicator reading remained constant as the towfish rotated.

Figure C.6 Vertical Orientation Adjustment of the Klein 5410 Towfish using a Dial Indicator
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Once the towfish was vertically aligned, the transmitter and towfish were 

aligned laterally across the tank. Figure C.7 and Figure C.8 illustrate the 

procedure used for lateral alignment of the acoustic devices.

Figure C.7 Laser Level and Square Used for Figure C.8 NUWC E27 and Klein 5410 Sonar
Lateral Alignment of Acoustic Devices Laterally Aligned in Engineering Test Tank

A laser level with a narrow vertical beam was used to align the devices in 

the test tank. The laser level was made square to the skirt of the test tank by 

using a framing square. Once the laser beam was square to the test tank, the 

level was adjusted laterally until the laser beam was in the center of the E27 

suspension post at the opposite end of the test tank. Then the position of the 

Klein 5410 sonar was adjusted laterally until the laser beam was in the center of 

the carbon fiber post from which it was suspended. This procedure provided 

relatively accurate alignment of the two acoustic devices.

Finally, the rotational alignment of the Klein 5410 sonar was adjusted so 

that nadir pointed in the direction of the E27 projector. This was accomplished 

by using the vertical laser beam as a visual guide. The acoustic altimeter on the 

Klein 5410 sonar resides exactly at nadir on the bottom of the towfish. The sonar 

was rotated in small increments until the center line of the altimeter appeared to
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be in alignment with the projector. This was the best alignment that could be 

accomplished with the equipment available.

C.3 Test Setup for Acquisition of Horizontal Plane Calibration Data

The mechanical mounting of the Klein 5410 towfish was altered for the 

purposes of measuring horizontal plane beam patterns. The NUWC E27 

transmitter and Klein 5410 sonar towfish were mounted in the engineering test 

tank as shown in Figure C.9 and Figure C.10. The Klein towfish was mounted 

horizontally in the engineering test tank. A custom mounting bracket was 

manufactured by Klein Associates which allowed for the lateral movement of the 

towfish underneath the carbon fiber suspension pole to center each individual 

acoustic element about the axis of rotation. Without the ability to center each 

element, parallax and lever arm corrections would be required, adding 

uncertainty to the beam pattern measurements. The flotation blocks on the ends 

of the mounting bracket are installed to reduce torque on the suspension pole 

when the towfish is moved off center. The NUWC E27 remained stationary 

during these measurements.

Figure C.9 NUWC E27 Transmitter Mounted Figure C.10 Klein 5410 Towfish Mounted on 
on Secondary Bridge in Acoustic Test Tank for Primary Bridge in Acoustic Test Tank for

Horizontal Beam Pattern Measurements Horizontal Beam Pattern Measurements
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C.4 Configuration of Electronics for Calibration Measurements

Figure C .11 shows the electronic hardware configurations and 

connections which were used to acquire calibration data. The sonar transmitters, 

including the altimeter, were configured to transmit a null pulse. The TVG was 

turned off. The sonar was then allowed to ping freely (with a null pulse). In this 

configuration, the waterfall display in the Klein SonarPro software showed a 

scrolling black screen with no acoustic echoes received.

The rear panel of the Klein 5410 TPU provides a TTL trigger pulse through 

a BNC connector each time the system pings. This trigger pulse was connected 

to the external trigger port of the Agilent 33220A function generator. The function 

generator was configured through a GPIB interface using LabVIEW. It was set 

up to provide a 2000 cycle sinusoidal burst waveform with a frequency of 455 

kHz and an amplitude of 20 volts peak to peak. The Agilent 33220A generated 

this burst waveform each time it was triggered by the Klein TPU. The output of 

the function generator was connected to drive a Krohn-Hite 7500 power amplifier 

configured with a gain of 20 dB. The power amplifier output was used to drive 

the NUWC E27 projector.
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TTL
Trigger

Figure C.11 Block Diagram Showing Electronic Connections for Calibration Data Acquisition

Once the transmit instrumentation was connected and configured, and the 

Klein 5410 began to trigger, the waterfall display in the Klein SonarPro software 

showed evidence of acoustic echoes being received. Figure C.12 shows a 

screenshot of the waterfall display when the port transducer was nearly facing 

the NUWC E27 projector. There are stationary vertical stripes in the port side 

waterfall display that indicate the presence of an acoustic pulse through a 

particular range of sample times in the sonar record for each ping. Some faint 

multipath stripes are present in the starboard side waterfall display as well.
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Figure C.12 Screenshot of Klein SonarPro Waterfall Display showing evidence of Acoustic
Echoes

In addition to configuring the Agilent 33220A function generator, the 

LabVIEW PC served two other control functions. First, this PC issued serial 

rotation commands to the CNC rotator table. Second, the PC wrote serial data, 

in the form of a NMEA GGA string, out of a COM port and into the Klein TPU. 

Under normal surveying conditions, the NMEA GGA string is issued from a GPS 

receiver and contains information regarding the position of the sonar in space. 

During calibration, however, the GGA string was created using the LabVIEW  

software and contained information regarding the rotation angle of the CNC 

rotator table. The rotation angle information during each ping was recorded in 

the ping header of the System 5000 data page.
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C.5 Calibration Data Processing

The signal processing procedures discussed in Chapter 3 of this thesis 

are all applicable in the processing of beam pattern data. The data must be 

extracted, the electronic channels must be equalized, and the samples must be 

deskewed. There are a few additional processing steps that are required in the 

processing of calibration data including ping sifting, finite impulse response (FIR) 

filtering, direct path pulse detection, and receive voltage magnitude computation. 

These additional signal processing procedures are addressed below.

C.5.1 Ping Sifting

During the process of acquiring calibration data, the Klein 5410 sonar 

acquired many pings while the sonar was in transit from one rotation angle to 

another. These pings must not be used to compute calibration results because 

the rotation angle of the sonar during these pings is not exactly known. Use of 

data collected during transit would result in inaccurate calibration measurements.

Each of the pings acquired while the sonar was transiting from one 

rotation angle to another was tagged by the LabVIEW control PC with a dummy 

rotation angle. This dummy rotation angle is easily recognizable and 

distinguishable from the rotation angles written for pings when the sonar was in 

position and stationary. A MATLAB function was written to separate the 

transition pings from the stationary pings. The function opens each sonar data 

file collected in the measurement process and indexes through every ping. Pings 

that were acquired during transit are skipped, and pings that were acquired while 

the sonar was stationary are extracted and written into a new composite data file.

124

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



C.5.2 FIR Filtering

Once the ping sifting is complete, the data can be extracted and 

processed according to the methods described in chapter 3. After these steps 

are completed, the data must be filtered to remove noise. The I and Q samples 

must be filtered individually before they are added in quadrature. An FIR digital 

filter was designed for this purpose using the firl.m  function in MATLAB’s signal 

processing toolbox. The firl function was supplied with arguments which defined 

the desired filter order and normalized cutoff frequency. The function returns an 

FIR digital filter designed using the window method19. The magnitude and phase 

response of the resulting filter is shown in Figure C.13.

Frequency Response of FIR Filter
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Figure C.13 Magnitude and Phase Response of FIR Filter 

The specified cutoff frequency of the filter was determined by estimating 

the bandwidth of the CW  calibration transmit pulse. The bandwidth of a CW
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transmit pulse can be roughly estimated by inverting the pulse length. The 

transmit pulse consisted of 2000 cycles of 455 kHz. This corresponds to a length 

of approximately 4.4 ms. The bandwidth of a 4.4 ms rectangular pulse is 

approximately 227.5 Hz. The filter order was set to 32.

The magnitude response of the filter shows a very gradual attenuation as 

a function of frequency. The attenuation at 227.5 Hz is only about 0.3 dB. 

However, since the data to be filtered were collected in a relatively low noise 

environment, the filter cutoff response does not need to be very sharp.

The MATLAB function filtfilt.m was used to filter the data20. This function 

filters the input sequence with precisely zero phase distortion. This is 

accomplished by running the data through the filter in both the forward and 

reverse directions. The reverse filtering removes any phase distortions that were 

introduced by the forward filtering. The magnitude of the filtered data is 

effectively modified by the square of the filter’s magnitude response. The 

attenuation at 227.5 Hz is increased from roughly 0.3 dB to roughly 0.6 dB.

Figure C.14 shows a comparison of raw and filtered in-phase samples 

acquired on channel 27 of the Klein 5410 sonar during the calibration 

measurements. The filter has removed a great deal of the noise that was 

present in the raw signal. The magnitudes of the raw and filtered sequences 

match quite well. Use of the filtfilt.m function has produced a filtered sequence 

without any phase distortion or group delay21. This is evident in the sequences 

because there is no lag of the filtered result with respect to the raw samples. In
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practice, the FIR filter has the desired effect of removing high frequency noise 

while preserving the phase of the signal.

Comparison of Raw and Filtered Samples
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Figure C.14 Comparison of Raw and Filtered In-Phase Samples Recorded on Channel 27

C.5.3 Isolation of the Direct Path Pulse

For the purposes of calibration measurements, it was necessary to 

characterize the magnitude and phase of the direct path receive pulse only. 

Multipath echoes were ignored. When the calibration data was acquired, the 

transmit and receive devices were separated by a range of 10 m as shown in 

Figure C.15. The Klein 5410 sonar is shown in a mechanical configuration which 

allows its vertical plane beam patterns and differential phase patterns to be 

measured. Since the range between the devices is a static 10 m, it is 

straightforward to predict the temporal window in which the direct path peak

Raw
Filtered
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resides and to isolate it from the other parts of the sample sequence containing 

noise and multipath interference.

Overhead View of 
Engineering Test Tank

y

------------------► x

Figure C.15 Engineering Tank Configuration for Calibration Measurements 

The 10m  range between the two devices can be converted to a 

propagation time by using the sound speed in the water. Assuming a sound 

speed of 1500 m/s in the water, the propagation time can be computed using the 

following mathematics.

At = — = ^  » 6.6ms (C.1)
c 1500

The 6.6 ms propagation time can be converted in a sample number using the 

sampling frequency of the Klein 5410 sonar.

S = A tx f s = 6.6x l0 “3 x 22750 « 150 (C.2)

The length of the transmit pulse used to measure the beam patterns is 

approximately 4.4 ms. This time duration can be converted to a sample count
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using the same mathematics in (C.2). A pulse duration of 4.4 ms converts to 

approximately 100 samples.

Filtered Quadrature Samples of the Direct Path Pulse
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Figure C.16 Quadrature Sample Sequences for a Direct Path Pulse 

The leading edge of the direct path pulse should arrive at sample number 

150. The pulse should last until sample 250, and then decay. The first 500 

samples of the quadrature components of a filtered pulse are shown in Figure

C.16. The pulse follows the predicted behavior.

In practice, pulse transients should not be used in the calibration 

measurements. Rising and falling edges must be eliminated. To avoid using 

transient data in the computations, it is necessary to choose bounding sample 

numbers inside the bounds of the pulse. The pulse was bounded at samples 170 

and 240 respectively.
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C.5.4 Estimation of Receive Pulse Magnitude for Beam Patterns

The magnitude of each received pulse was estimated by computing the 

root mean square magnitude of the quadrature samples recorded during that 

pulse’s specified temporal window. The magnitude of each quadrature sample 

pair was computed using (C.3).

The magnitude, M, of the quadrature sample sequences from Figure C.16 

is shown in Figure C.17. The RMS magnitude of samples 170 through 240 was 

computed using (C.4).

The RMS pulse magnitude at each rotation angle around the transducer face 

constitutes the transducer’s beam pattern.

m  = J i 2+ q (C.3)

(C.4)

Magnitude of the Direct Path Pulse Analytic Samples
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Figure C.17 Magnitude of the Direct Path Pulse Analytic Sample Sequence
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C.5.5 Accounting for Off-Axis Rotation of the Klein 5410 Arrays

The Klein 5410 towfish was rotated about its long axis when the vertical 

plane calibration measurements were made. Technically, each array should 

have been rotated about its own central axis instead of being rotated about the 

towfish axis. However, this was not possible given the physical constraints of the 

mounting hardware used during the calibration experiments. As a result of the 

off-axis rotation of each array, there is a lever arm correction that must be 

applied in order to reference each calibration measurement to its proper array 

rotation angle. This is possible if the broadside angle for each array is known. 

Figure C.18 shows the geometrical relationships between the NUWC E27 

projector, Klein 5410 sonar array, and towfish during the calibration experiment.

O verhead V iew

Water r=8.4cm Klein 5410  
(tail up)

Array

d=10m

E27

Figure C.18 Geometry of Off-Axis Array Rotation during Calibration Experiment 

The black arc shown along the edge of the Klein 5410 towfish represents 

one of the acoustic arrays. The lever arm of interest in this case is the distance 

from the center of the towfish to the acoustic center of the array. The acoustic 

center of the array is estimated to be 1.4 cm beneath the surface of the potting
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urethane. The radius of the towfish is 8.4 cm. Subtracting 1.4 cm from 8.4 cm, 

the effective lever arm is 7.0 cm.

There are three angles (am, a 0, ar|d « c) shown in the figure. The angle a m 

is the angle of rotation of the towfish relative to the E27 projector, which was 

recorded in the data files during the calibration experiment. The angle a c is the 

angle of rotation of the acoustic array relative to the E27 projector. Although a m 

was recorded, a c is the true rotation angle of the array relative to the projector.

The true rotation angle, a c, can be computed by summing a m and the 

offset angle, a0.

^ C=ocm+ a 0 (C.5)

The offset angle can be computed using the geometry in Figure C.18. First, it is 

necessary to compute values for x and y as a function of the recorded rotation 

angle, a m. In the computations, the effective lever arm will be denoted as re.

X ( a m ) = r e Sin(«m ) (C.6)

y(am) = recos{am) (C.7)

Knowing numerical values for x and y allows computation of the offset angle, a 0.

f  * ( « J
a 0( « J  = tan_1 (C.8)

d - y ( a m)

The variable d is the range between the NUWC E27 projector and the center of 

rotation of the Klein 5410 sonar. Substituting the appropriate expressions into 

(C.5), the true rotation angle is computed as follows.

a = am + tan 1
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C.6 Vertical Beam Pattern Measurements for Sidescan Elements
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Figure C.19 Vertical Plane Beam Patterns for 6 Elements used in Bathymetric Processing on 
Port Side, simulated beam pattern shown for reference.
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Figure C.20 Vertical Plane Beam Patterns for 6 Elements used in Bathymetric Processing on 
Starboard Side, simulated beam pattern shown for reference.
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Figure C.21 Vertical Plane Beam Patterns for 6 Elements Used in Bathymetric Processing on 
Port Side, sensitivity matching factors applied.
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Figure C.22 Vertical Plane Beam Patterns for 6 Elements Used in Bathymetric Processing on 
Starboard Side, sensitivity matching factors applied.
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C.7 Horizontal Beam Pattern Measurements for Sidescan Elements

—  Elnt5
—  Elnt6
—  Elnt7 

Elnt8
—  Sim

-10

-15

B -20

-25

-30

-35

-40 100
e, Degrees

Figure C.23 Horizontal Plane Beam Patterns for 4 Sidescan Elements Used in Bathymetric 
Processing on Port Side, sensitivity matching factors applied.
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Figure C.24 Horizontal Plane Beam Patterns for 4 Sidescan Elements Used in Bathymetric 
Processing on Starboard Side, sensitivity matching factors applied.
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APPENDIX D 

CONDUCTING A BATHYMETRIC SURVEY

D.1 Installation of the Klein 5410 Towfish and Electronics

During this research, a hydrographic survey was conducted with the Klein 

5410 sonar installed aboard NOAA launch 3102 deployed from NOAA ship 

Thomas Jefferson. For the purposes of the Klein 5410 test survey, positioning 

resolution of less than 1 m was required. To achieve this, the towfish was rigidly 

mounted to the hull of the launch so that its orientation and position could be 

sensed using the launch’s POS MV attitude and position sensors. Figure D.1 

shows the Klein 5410 towfish mounted to the hull of the launch.

Figure D.1 Hull Mount Configuration for Klein 5410 Towfish aboard NOAA Launch 3102
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A set of 6 cm spacers was inserted between the I-beam and each omega 

bracket, allowing the sonar to have an unobstructed view of the seafloor. 

However, insertion of the spacers caused a clearance problem between the 

towfish and the launch’s cradle. Wood blocks were added to the pads that 

support the hull of the launch in the cradle to increase the clearance between the 

keel and the base of the cradle, and to allow installation of the towfish with the 

spacers. Figure D.2 shows a side view of the towfish mount with the port 

transducer clearing the launch keel.

Figure D.2 Klein 5410 Towfish Secured in a Reconfigured Mount to Provide the Port Array an
Unobstructed View

Figure D.3 shows a view of the towfish in its mount from astern. The 

spacers and through hull fitting for the towfish cables are in clear view. The 

towfish was manually leveled with respect to the mount using the vertical groove 

in the towfish tail cone and the vertical slot in the aft omega bracket as visual 

references. Residual towfish roll errors were removed in post-processing. The 

towfish is shown to clear the launch cradle by several inches.
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Figure D.3 View from Aft End of Klein 5410 Towfish in Reconfigured Sonar Mount 

In addition to installing the Klein 5410 towfish aboard the launch, it was 

necessary to install the Klein 5410 TPU and PC. These components were 

installed in the instrument rack aboard the NOAA launch as shown in Figure D.4. 

Other electronic components such as GPS receivers and computer peripherals 

were already mounted aboard the launch.

Figure D.4 Electronics Rack aboard NOAA Launch 3102
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D.2 Auxiliary Positioning and Attitude Sensors

The Klein 5410 sonar is factory equipped with a Precision Navigation Inc. 

TCM2 three axis orientation sensor. The TCM2 provides heading, pitch, and roll 

data to the sonar. An external GPS positioning system must be connected to the 

Klein 5410 TPU to provide the sonar with positioning and speed information.

The update rate of the TCM2 sensor is only 4 Hz, which is insufficient for 

high resolution bathymetric surveying. Launch 3102 is equipped with an 

Applanix POS MV (Position and Orientation System for Marine Vessels), which 

was separately used to provide positioning and attitude data at a rate of 50 Hz.

The POS MV would have been the ideal source of GPS information for the 

Klein TPU, but the POS MV RS-232 ports which are dedicated for GPS NMEA 

output were already occupied by other instrumentation. A Garmin GPS 76 

handheld receiver was used to provide the Klein 5410 sonar with serial NMEA 

data containing the speed over ground information necessary to dynamically 

adjust the sonar’s ping rate. Neither the accuracy nor the location of the 

handheld receiver were critical in this application. The GPS 76 positioning data 

was ultimately superseded by the POS MV data in post-processing

D.3 Resolving Timing Discrepancies

The POS MV and Klein 5410 data streams had to be recorded on a 

common time base so that they could be synchronized in post processing. 

However, the clocks in the Klein 5410 sonar and POS MV sensor are derived 

from two different sources. The POS MV internal clock is derived from GPS 

composite time, and its level of drift is sub-microseconds22. The internal Klein
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5410 clock is initially set using one of two methods. If a NMEA GPS timing 

message is present at the Klein 5410 TPU during the TPU boot process, the 

sonar clock is synchronized to the GPS clock. If a GPS timing message is not 

present, the sonar clock is synchronized to the clock in the Klein PC. Regardless 

of the synchronization method, the sonar clock in the Klein TPU is a simple PC 

clock which can drift more than 1 second per day. This level of drift is intolerable 

for precise time synchronization.

A method was developed at CCOM to overcome this time synchronization 

problem. The method is based on the IEEE 1588 precise time protocol (PTP)23.

A National Instruments PCI-1588 PTP hardware timing device was installed in 

the Klein PC, and its hardware clock was synchronized to the POS MV clock 

using 1 pulse per second (1PPS) and NMEA ZDA outputs from the POS MV. 

Each time the sonar pinged, its TTL output pulse was used to trigger the PCI- 

1588 timing device, which recorded a synchronized UTC timestamp into a text 

file to be used in post-processing. In this configuration, the UTC timestamps for 

POS MV data and Klein 5410 data were synchronized to a common reference.

Before the survey began, the Klein 5410 sonar was configured and started 

pinging. Since the survey vessel was not yet in position to start the survey, these 

pings were not recorded. However, each of these pings was tagged with a PTP 

timestamp. As a result, more PTP timestamps were recorded than sonar pings, 

and some effort was required to determine which PTP timestamp actually 

corresponded to each Klein 5410 ping. The normal Klein 5000 system 

timestamps were used as an aid in accomplishing this task.
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Before any of the Klein sonar data was processed, MATLAB was used to 

index through every ping of recorded data and extract the Klein 5000 timestamp 

which was applied to that ping. The system timestamps, which are written in 

hours, minutes, and seconds on a particular date, were converted to serial 

seconds counted from midnight on January 1, 1970 (Unix epoch). The pair-wise 

difference between each consecutive set of Klein 5000 timestamps was 

computed and the pair-wise difference between each consecutive set of PTP 

timestamps was computed. The Klein 5000 time difference vector was zero 

padded on the front and back ends to match the length of the PTP time 

difference vector. The time difference vectors are plotted in Figure D.5

Time Difference Between Consecutive Ping Timestamps

Ping Number

Kle n 5000
PTP UTC

x 10

Figure D.5 Time Differences Between Timestamps Applied to Consecutive Pairs of Pings, low 
resolution Klein 5000 timestamp differences in blue, high resolution precision time protocol (PTP)

UTC timestamp differences in red.
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There are some very distinct random features in each of the time 

difference vectors shown in Figure D.5. Since the ping interval in a Klein 5410 

sonar is dynamically adjusted based on its speed over ground, the randomness 

of the time difference vectors can be attributed to the variability of the survey 

vessel’s speed. Given the random nature of the time difference vectors, it is 

expected that their cross-correlation will produce a single distinct peak which can 

be used to determine the number of UTC timestamps which were logged before 

recording of the Klein sonar data began. The cross-correlation result is shown in 

Figure D.6
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Figure D.6 Cross-Correlation of System 5000 and PTP UTC Time Difference Vectors, peak at lag
of -45.

The single peak in Figure D.6 was used to determine the total number of 

timestamps which were recorded before any sonar pings were recorded. These
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timestamps were discarded from the data records, and the remaining PTP 

timestamps in the records were the correct high resolution UTC timestamps 

corresponding to the Klein 5410 pings in the sdf files. These timestamps were 

saved in a separate file, and applied to each ping before it was written into a 

processed data file.

D.4 Interconnection and Configuration of the Electronics

It was necessary to make several connections between the sonar, 

navigation, and attitude sensing electronics as shown in Figure D.7. The launch 

Ethernet switch allowed data to flow between several instruments including the 

POS MV and the Hypack PC, which is normally used for the launch’s navigation 

displays. During this survey, the Hypack PC served as a platform on which to 

run the Hypack software for survey planning and execution, and also served as a 

means of data storage for the attitude and position data streaming over Ethernet 

from the POS MV.

The UNH Ethernet switch served as the communication hub for all of the 

Klein sonar electronics. The Klein 5410 towfish acquired sonar data and 

streamed it to the TPU over a coaxial telemetry link. The TPU accepted the 

sonar data as well as command and control data from the Klein PC and 

navigation data from the Garmin GPS 76. The sonar data was then transferred 

over Ethernet from the TPU to the Klein PC.
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Figure D.7 Block Diagram of Electronic Connections Between Instruments During Field Testing
of the Klein 5410 Sonar

The Klein PC served as the heart of this data acquisition system. The PC 

was used to issue commands to the Klein TPU over Ethernet, monitor the TPU 

boot sequence and status over a serial link, and accept and display sonar data 

streaming over Ethernet from the Klein TPU. The sonar data was routed by the 

PC through a Firewire connection and stored on a 200 GB RAID drive.

The Klein PC also housed the National Instruments PCI-1588 timing 

device and accepted a serial NMEA ZDA timing message to synchronize the 

PCI-1588 clock. The PCI-1588 card itself accepted two TTL logic signals 

including a 1PPS signal from the POS MV and a ping trigger from the Klein 5410 

TPU. The launch Ethernet switch and UNH Ethernet switch were connected to 

allow data flow between the launch hydrographic systems and the Klein sonar 

systems. In this configuration, all relevant data from each sensor could be saved
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on the portable RAID drive, and ultimately taken off the launch when the survey 

was complete.

The Garmin GPS was configured to supply NMEA navigation information 

at a rate of 4800 baud. The Klein sonar was configured to ping with a 176 ps 

CW pulse. Raw data acquisition was enabled for all of the hydrophones. The 

sonar range scale was set to 75 m. The POS MV was configured to log latitude, 

longitude, pitch, roll, heading, and true heave data. The update rate for the POS 

MV data stream was set to 50 Hz.

D.5 The Survey Area

The area of New York Harbor which was surveyed for this research is 

approximately 1.2 km southwest of the southern tip of Manhattan. The survey 

area is within 1 km of the western shore of Governors Island. The area had been 

previously surveyed with a Reson SeaBat 8125 multibeam sonar. The color 

coded bathymetry from that survey is overlaid on a Google Earth overhead 

image of the survey area in Figure D.8. The two most interesting features of the 

bathymetry in this area are a large field of sand waves, and a small shipwreck.
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Figure D.8 Overhead View of Survey Area with Color Coded Bathymetry Overlaid, deepest areas 
are purple and shallowest areas are red, survey area approximately 1500 x 500 m.

The track followed by Launch 3102 during the Klein 5410 survey is shown

in Figure D.9. Survey lines were spaced at intervals of approximately 50 m. The

nominal survey speed was 6 knots.

Track Lines Followed in Klein 5410 Field Survey
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Figure D.9 Track Followed by NOAA Launch 3102 during Klein 5410 Test Survey Conducted in 
New York Harbor, location of SSP indicated at approximately 40.696 N, -74.025 W.
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Collection of a sound speed versus depth profile (SSP) is a necessary 

procedure in bathymetric surveying. Changes in sound speed as a function of 

depth introduce refraction in the path followed by the acoustic waves from the 

sonar to the seafloor. If the refraction is ignored, and the acoustic waves are 

assumed to travel along a straight path, errors are introduced in the resulting 

bathymetry. The sound speed profile was measured at the deepest location in 

the survey area (indicated in Figure D.9), and is plotted in Figure D.10.

Sound Speed Profile for Klein 5410 Field Survey in NY Harbor

10

1504.5 1505 1505.5 1506 1506.5 1507 1507.5 1508 1508.5 1509
Sound Speed, m/s

Figure D.10 Sound Speed Profile for Klein 5410 Test Survey in New York Harbor, 12:48:00 Z,
October 6, 2006.

Depending on the phase of the tide cycle during the survey, the tide level 

rises or falls, either lengthening or shortening the distances traversed by acoustic 

pulses between the sonar and the seafloor. The tide cycle must be removed 

from the measured depths in order to report all of the depths with respect to the 

same reference water level. In this case, the MLLW (mean lower low water)
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reference was used. The tide was observed by automated NOAA 

instrumentation at tide station 8518750 located at The Battery, NY. Water levels 

were measured in meters. The tidal observations are shown in Figure D.11. The 

survey was conducted between the hours of 12:30:00 Z and 14:00:00 Z on 

October 6, 2006.

Tidal Observations on October 6, 2006 at The Battery, NY
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Figure D.11 Tidal Observations Recorded During Klein 5410 Survey at The Battery, NY, Zulu
time reference on horizontal axis.
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APPENDIX E

GSF FILES AND CARIS PROCESSING

E.1 Converting CBF Files to GSF Files

Ultimately, the Klein 5410 bathymetric data needed to be imported into a 

software package such as Caris HIPS (Hydrographic Information Processing 

System) for final processing, mapping, and visualization. However, the Caris 

software does not recognize files of the CBF format, and it was necessary to 

convert the CBF files to GSF files to complete the bathymetric processing. Each 

CBF file generated by the MATLAB bathymetric processing algorithm was 

converted and split into a port and starboard pair of GSF files using a file 

conversion program developed at CCOM. The CBF files were converted into 

separate port and starboard GSF files to allow for the definition of different spatial 

references for each of the Klein 5410 transducers.

E.2 Final Processing in Caris HIPS

A Caris HIPS vessel configuration file allows the user to define parameters 

regarding the survey vessel and its instrumentation including physical offsets 

between sensors, time offsets between sensor clocks, and attitude biases. 

Because the port and starboard transducers have different spatial locations, it 

was necessary to create separate vessel configuration files to process the data

149

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



from each transducer. Once the proper spatial references for each transducer 

were defined, GSF files were imported using the Caris Conversion Wizard.

The CBF files which were originally produced by the MATLAB processing 

algorithm had no knowledge of the high accuracy position and orientation data 

which was measured by the POS MV and recorded in separate binary files. To 

make use of the binary POS MV data, a conversion to ASCII format was 

required. This was accomplished using a binary data reader developed at 

CCOM. Once the data were converted to ASCII format, they were imported 

using Caris’ Generic Data Parser. Caris automatically matched the UTC 

timestamps of the POS MV data with the UTC timestamps of the Klein 5410 

data, and replaced the position and orientation measured by integrated Klein 

sensors with the appropriate position and orientation measured by the POS MV.

A sound speed profile was measured at the survey site during the Klein 

5410 test survey. When provided with acoustic travel times, arrival angles, and a 

sound speed profile, Caris computes a ray traced solution for the seafloor 

surface. The measured sound speed profile was imported using the Caris HIPS 

SVP (sound velocity profile) Editor, and was applied to the data using the Caris 

Sound Velocity Correction tool.

The tidal variations at NOAA tide station 8518750 during the survey were 

measured and recorded, and imported using the Caris Tide Editor. The tidal 

variations were removed from the sonar data using the Caris Load Tide tool so 

that all depth soundings were referenced to the mean lower low water (MLLW)
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level. After the tide was loaded for each survey line, the Caris Merge tool was 

used to apply the sound speed and tide corrections.

After all of the relevant sensor data had been imported, and corrections 

had been applied, a Caris field sheet was created. The geographical boundaries 

of the field sheet were set to be identical to those of the reference bathymetric 

chart generated from Reson SeaBat 8125 data. A swath angle BASE surface 

with 40 cm resolution was created which showed the major features which were 

expected to be observed within the survey area. However, the surface also 

showed many bad soundings which needed to be cleaned from the data. After 

using the Caris Swath Editor (Figure E.) and Subset Editor to clean the data, the 

surface was recomputed, finalized, and then interpolated.
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Figure E.1 Screenshot of Klein 5410 Bathymetric Data in the Caris Swath Editor
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