I Complexation of iron(II), cobalt(II), nickel(II) and copper(II) by hexadentate tripodal aminopyridyl chelators II Binding preferences for zinc(II) relative to nickel(II) and copper(II) in novel tetradentate aminopyridyl chelators

Matthew Lloyd Childers
University of New Hampshire, Durham

Follow this and additional works at: https://scholars.unh.edu/thesis

Recommended Citation

Childers, Matthew Lloyd, "I Complexation of iron(II), cobalt(II), nickel(II) and copper(II) by hexadentate tripodal aminopyridyl chelators II Binding preferences for zinc(II) relative to nickel(II) and copper(II) in novel tetradentate aminopyridyl chelators" (2007) Master's Theses and Capstones. 263.
https://scholars.unh.edu/thesis/263

I. COMPLEXATION OF FE(II), CO(II), NI(II) AND CU(II) BY HEXADENTATE TRIPODAL AMINOPYRIDYL CHELATORS II. BINDING PREFERENCES FOR ZN(II) RELATIVE TO NI(II) AND CU(II) IN NOVEL TETRADENTATE AMINOPYRIDYL CHELATORS

BY

MATTHEW LLOYD CHILDERS

B.S., University of North Carolina at Wilmington, 2002

THESIS

Submitted to the University of New Hampshire in Partial Fulfillment of the Requirement for the Degree for

Master of Science
in

Chemisrty

May, 2007

INFORMATION TO USERS

The quality of this reproduction is dependent upon the quality of the copy submitted. Broken or indistinct print, colored or poor quality illustrations and photographs, print bleed-through, substandard margins, and improper alignment can adversely affect reproduction.

In the unlikely event that the author did not send a complete manuscript and there are missing pages, these will be noted. Also, if unauthorized copyright material had to be removed, a note will indicate the deletion.

UMI Microform 1443601
Copyright 2007 by ProQuest Information and Learning Company.
All rights reserved. This microform edition is protected against unauthorized copying under Title 17, United States Code.

ProQuest Information and Learning Company
300 North Zeeb Road
P.O. Box 1346

Ann Arbor, MI 48106-1346

This thesis has been examined and approved.

OII. Nennis Chastem
N. Dennis Chasteen

Professor of Chemistry

DEDICATION

To my parents,

Emily and Gary Childers

To my grandparents,

Elsie and Lloyd Childers and Ruby and William Wallace

To my sister, Carrie Godwin

ACKNOWLDEGEMENTS

I would like to thank my advisor, Dr. Roy Planalp for his guidance and patience during my time at UNH. While in his research group I have grown as a scientist and enjoyed working for someone who I can call a friend. I would also like to thank Dr. Edward Wong for always smiling as he walked down the hall and showing an interest, not only in my research, but also in my life off campus. Also, I would like to thank my committee members Dr. N. Dennis Chasteen and Dr. Vernon Reinhold. I would like to acknowledge the dedicated professors in the chemistry department. I am grateful for all individuals who have educated, trained or helped me over the years. This includes, but is not limited to Cindi Rohwer, Peggy Torch, Kristin McFarlane, Bob Constantine, Amy Lindsay, Kathy Gallagher, the UIC staff and my fellow graduate students.

I am grateful for the support from my family and friends. My Mom and Dad: who have done nothing but support me and encourage me to do my best and enjoy doing what I'm doing. I couldn't have done this without them. My Sister: for being a great sister. Kaleen: for being my best friend, for always making me happy and for putting up with me being me. Dan: for being a great labmate and a better friend. Jim: for being a great friend while we became accustomed to life in New England together. All of my friends: who were always interested in what I was doing even if they didn't understand it. I couldn't have done this without you.

TABLE OF CONTENTS

DEDICATION iii
ACKNOWLEDGEMENTS iv
LIST OF TABLES ix
LIST OF FIGURES xi
LIST OF SCHEMES xiv
LIST OF ABREVIEATIONS xv
ABSTRACT xviii
CHAPTER PAGE
GENERAL INTRODUCTION 1
I. STRUCTURAL AND ELECTRONIC PROPERTIES OF FE(II), CO(II), NI(II) AND CU(II) COMPLEXES OF PYRIDINE-RING ALKYLATED HEXADENTATE AMINOPYRIDYL LIGANDS 2
Introduction 2
Results 4
Electronic Studies 4
Iron (II) 5
Cobalt (II) 6
Nickel (II) 7
Copper (II)7
Structural Studies 8
${ }^{1} \mathrm{H}$ NMR 8
X-ray Crystallography 9
Solution Reaction with Ancillary Ligands 11
Discussion 12
Electronic Data 12
Structural Studies 15
X-ray Crystallography 15
Solution Reaction with Ancillary Ligands 16
Conclusion 17
II. IRON-MEDIATED OXIDATIVE DEHYDROGENATION OF TACHPYR AND TACHPYR DERIVATIVES: CORRELATING BIOLOGICAL EFFECTS WITH METAL-BINDING CHEMISTRY 18
Introduction 18
Results 21
Oxidation of $[\mathrm{Fe}($ tach $-x-\mathrm{Rpyr})] 2^{+}$ 21
Relative Rates of Oxidation for Tachpyr and Tach-x-Rpyr Fe(II) Complexes 21
Disproportionation Reaction of Fe (III) with Tach-4-Mepyr 22
Affinity of Unoxidized and Ox-2 Tachpyr Derivatives Towards Fe (II) 23
Syntheses and Characterization of Complexes 24
Inertness of $[\text { Fe(tach-3-Mepyr-ox-n) }]^{2+}(n=4$ or 6$)$ 25
Discussion 26
Relative Rate of Oxidation of Tachpyr and Derivatives 27
Affinity of Unoxidized and Partially Oxidized Chelators for Iron 29
Synthesis and Characterization of $[\text { Fe(tach-3-Mepyr-ox-n) }]^{2+}(n=4$ or 6) 30
Conclusion 34
III. STRUCTURAL AND ELECTRONIC PROPERTIES OF NI(II), CU(II) AND ZN(II) COMPLEXES OF LINEAR, TETRADENTATE, AMINOPYRIDYL LIGANDS: TOWARDS ZN(II) SELECTIVITY. 35
Introduction 35
Results 42
Ligand Synthesis 42
Metal Complexation 43
Electronic Structure 44
Nickel (II) 45
Copper (II) 47
Competition Reactions 49
Structural Studies 50
${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR 50
X-ray Crystallography 53
Discussion 55
Electronic Structure 55
Nickel (II) Spectra 56
Copper (II) Spectra 58
Competition Reactions 64
Structural Studies 66
${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR 66
X-ray Crystallography 73
Conclusion 77
IV. EXPERIMENTAL 79
General Experimental 79
Instrumentation 79
Solvents 80
Reagents 80
Chapter I Experimental 80
Chapter II Experimental 86
Chapter III Experimental 89
LIST OF REFERENCES 98
APPENDICES 102
APPENDIX A: Electronic Absorption Spectra 103
APPENDIX B: NMR Spectra 123
APPENDIX C: X-ray Data Tables 151

LIST OF TABLES

Table Page
Table 1.1. Spectral data for $1 \mathrm{a}-\mathrm{e}$ and other $\mathrm{Fe}(\mathrm{II})$ amino/pyridyl complexes. 6
Table 1.2. Spectral data for $\mathbf{2 a} \mathbf{- c}$ and other $\mathrm{Co}(\mathrm{II})$ amino/pyridyl complexes. 6
Table 1.3. Spectral data for 3a-e and other Ni(II) amino/pyridyl complexes7
Table 1.4. Spectral data for $4 \mathbf{a}-\mathbf{e}$ and other $\mathrm{Cu}(I I)$ amino/pyridyl complexes. 8
Table 1.5. Structural data for 1a and 1d and comparisons to other six-coordinate amino/pyridyl Fe(II) complexes 10
Table 2.1. Ratio of area under imine peak of $[\mathrm{Fe}(\mathrm{L}-\mathrm{ox}-2)]^{2+}$ to area under aromatic peaks 28
Table 2.2. IC50 values $(\mu \mathrm{M})$ of tachpyr, tach-3-Mepyr, tach-3-MeOpyr and tach- 6-Mepyr after 24, 48 and 72 hours and the relative rates of oxidation of the corresponding Fe(II) complex 29
Table 2.3. Deviations (\AA) of atoms from least-squares planes of the imino nitrogen and its three bound atoms in [Fe(tachIM-ox-6)] $\left(\mathrm{ClO}_{4}\right)_{2},[\mathrm{Fe}$ (tachpyrMe- $0 \mathrm{ox}-6)]\left(\mathrm{ClO}_{4}\right)_{2}$ and $\left[\mathrm{Fe}\right.$ (tach-3-Mepyr-ox-4)] $\left(\mathrm{PF}_{6}\right)_{2}(9)$ 33
Table 2.4. Structural comparisons of $\left[\mathrm{Fe}\right.$ (tachIM-ox-6)] $\left(\mathrm{ClO}_{4}\right)_{2}$, $[\mathrm{Fe}$ (tachpyrMe- ox-6)]($\left.\mathrm{ClO}_{4}\right)_{2}$, $\left[\mathrm{Fe}\left(\right.\right.$ tach-3-Mepyr-ox-4)] $\left(\mathrm{PF}_{6}\right)_{2}(9),\left[\mathrm{Zn}(\right.$ tachpyr-ox-6) $]\left(\mathrm{ClO}_{4}\right)_{2}$, and [Fe(trenpyr-trisimine)] $\left(\mathrm{PF}_{6}\right)_{2}$ 33
Table 3.1. Possible conformation that this series of linear tetraamine ligands could take on for coordination numbers 4,5 and 6 for visual aid and use in discussion 41
Table 3.2. Spectral data for $\mathrm{Ni}(\mathrm{II})$ tetraamine complexes 47
Table 3.3. Spectral data for $\mathrm{Cu}(\mathrm{II})$ tetraamine complexes 49
Table 3.4. Structural comparisons of $\left[\mathrm{Zn}\right.$ (bispicpn) $\left.\left(\mathrm{NO}_{3}\right)\right]\left(\mathrm{NO}_{3}\right)$ (19a), $\left[\mathrm{Zn}(\right.$ bis6Mepicpn $\left.)\left(\mathrm{NO}_{3}\right)\right]\left(\mathrm{NO}_{3}\right)(19 b)$ and $\left[\mathrm{Zn}(\right.$ bpdan $\left.)\left(\mathrm{NO}_{3}\right)\right]\left(\mathrm{NO}_{3}\right)(19 \mathrm{c})$ 55
Table 3.5. Geometries containing an element of symmetry 68

Table 3.6. Selected angles and conformations of $\left[\mathrm{Zn}\right.$ (bispicpn) $\left.\left(\mathrm{NO}_{3}\right)\right]\left(\mathrm{NO}_{3}\right)$ (19a), $\left[\mathrm{Zn}(\right.$ bis6Mepicpn $\left.)\left(\mathrm{NO}_{3}\right)\right]\left(\mathrm{NO}_{3}\right)(19 b)$ and $\left[\mathrm{Zn}(\right.$ bpdan $\left.)\left(\mathrm{NO}_{3}\right)\right]\left(\mathrm{NO}_{3}\right)(19 \mathrm{c}) \ldots 75$

LIST OF FIGURES

Figures Page
Figure 1.1. ORTEP view of the complex cation of [Fe(tach-3-Mepyr)] Cl_{2} (1a) (50\% probability ellipsoids) with hydrogens emitted for clarity. 11
Figure 1.2. ORTEP view of one of the complex cation of [Fe(tach-6- Mepyr)] $\left(\mathrm{ClO}_{4}\right)_{2}$ (1d) (50\% probability ellipsoids) with hydrogens emitted for clarity 11
Figure 1.3. UV-Vis spectra of 1d (a), 1d plus $\mathrm{Cl}^{-}(\mathrm{b})$ and 1d plus SCN^{-}(c) 12
Figure 1.4. Splitting diagram for $D_{3 h}$ and $C_{4 v}$ complexes 14
Figure 1.5. Deconvoluted electronic absorption spectrum of 4d 15
Figure 2.1. Observing the oxidation of $[\mathrm{Fe}(\text { tachpyr })]^{2+}$ by UV-Vis over a 20 hour period 21
Figure 2.2. Following the oxidation of $\left[\mathrm{Fe}(\text { tach-3-Mepyr) }]^{2+}\right.$ (1a) to $[\mathrm{Fe}$ (tach-3- Mepyr-ox-n) $]^{2+}\left(n=2\right.$ or $4 ; 5$ and 9 , respectively) by ${ }^{1} \mathrm{H}$ NMR 22
Figure 2.3. ${ }^{1} \mathrm{H}$ NMR spectrum of the disproportionation reaction between Fe (III) and tach-4-Mepyr 23
Figure 2.4. ${ }^{1} \mathrm{H}$ NMR of $[\mathrm{Fe}(\text { tach-4-Mepyr })]^{2+}$ (1b) and $[\text { Fetach-4-Mepyr-ox-2) }]^{2+}$ (7) from disproportionation reaction with addition of 1,10-phenanthroline to the reaction mixture 24
Figure 2.5. UV-Vis spectrum of 9 in MeCN 25
Figure 2.6. Following the degradation of 13 by UV-Vis in pH 7.4 MOPS buffer 26
Figure 2.7. ORTEP view of the complex cation of $\left[\right.$ Fe(tach-3-Mepyr-ox-4)] $\left(\mathrm{PF}_{6}\right)_{2}$
(9) (50 \% probability ellipsoids) 32
Figure 3.1. Variety of ligand structure types imposing tetrahedral coordination 37
Figure 3.2. Electronic absorption spectra of: a, $[\mathrm{Ni}($ bispicpn $)]\left(\mathrm{ClO}_{4}\right)_{2}(17 a)$ in water; b, [$\mathrm{Ni}($ bis6Mepicpn $)]\left(\mathrm{ClO}_{4}\right)_{2}(17 b)$ in water; $\mathrm{c},[\mathrm{Ni}($ bpdan $)]\left(\mathrm{ClO}_{4}\right)_{2}(17 \mathrm{c})$ in water.
Figure 3.3. Electronic absorption spectra of: a, $[\mathrm{Cu}($ bispicpn $)]\left(\mathrm{ClO}_{4}\right)_{2}(\mathbf{1 8 a})$ in water; $\mathrm{b},[\mathrm{Cu}(\mathrm{bis} 6 \mathrm{Mepicpn})]\left(\mathrm{ClO}_{4}\right)_{2}(\mathbf{1 8 b})$ in water; $\mathrm{c},[\mathrm{Cu}(\mathrm{bpdan})]\left(\mathrm{ClO}_{4}\right)_{2}(18 \mathrm{c})$ in water 48
Figure 3.4. ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra of 19a 51
Figure 3.5. Series of high temperature ${ }^{1} \mathrm{H}$ NMR of 19 b 52
Figure 3.6. ORTEP view of the complex cation of $\left[\mathrm{Zn}\right.$ (bispicpn) $\left.\left(\mathrm{NO}_{3}\right)\right]\left(\mathrm{NO}_{3}\right)$ (19a) (50 \% probability ellipsoids) with hydrogens omitted for clarity 54
Figure 3.7. ORTEP view of the complex cation of $\left[\mathrm{Zn}(\right.$ bis6Mepicpn $\left.)\left(\mathrm{NO}_{3}\right)\right]\left(\mathrm{NO}_{3}\right)$ (19b) (50 \% probability ellipsoids) with hydrogens omitted for clarity 54
Figure 3.8. ORTEP view of the complex cation of $\left[\mathrm{Zn}(\mathrm{bpdan})\left(\mathrm{NO}_{3}\right)\right]\left(\mathrm{NO}_{3}\right)(19 \mathrm{c})$ (50 \% probability ellipsoids) with hydrogens omitted for clarity 55
Figure 3.9. Tanabe-Sugano diagram for d^{8} metals 58
Figure 3.10. X-ray data of a series of $\left[\mathrm{CuN}_{4}\right]^{2+}$ complexes with amino/pyridyl donors and varying chelate ring sizes with all hydrogens removed except the 6,6'-hydrogens. 61
Figure 3.11. Deconvolution of $[\mathrm{Cu}($ bis 6 Mepicpn $)]\left(\mathrm{ClO}_{4}\right)_{2}(\mathbf{1 8 b})$ in water 63
Figure 3.12. Deconvolution of $[\mathrm{Cu}(\mathrm{bpdan})]\left(\mathrm{ClO}_{4}\right)_{2}(18 \mathrm{c})$ in water. 64
Figure 3.13. Comparison of ${ }^{1} \mathrm{H}$ NMR spectra of $[\mathrm{Zn} \text { (bispicpn) }]^{2+}$ (19a) with either Cl^{-}or OTf^{-}as the anion 66
Figure 3.14. ${ }^{13} \mathrm{C}$ NMR spectrum of $[\mathrm{Zn}($ bispicpn $)](\mathrm{OTf})_{2}$ (19a) showing two species in solution. 68
Figure 3.15. ${ }^{13} \mathrm{C}$ NMR spectra of $[\mathrm{Zn}(\text { bis } 6 \text { Mepicpn })]^{2+}(19 b)$ at $25^{\circ} \mathrm{C}, 45^{\circ} \mathrm{C}$ and $65^{\circ} \mathrm{C}$ 71
Figure 3.16. Aliphatic region of ${ }^{1} \mathrm{H}$ NMR spectra for 19 c with $\mathrm{NO}_{3}{ }^{-}$and Cl^{-}as anions 73

Figure 3.17. 6 -membered chelate rings formed from binding of amine nitrogens in 19a, 19b and 19c. 74

LIST OF SCHEMES

Scheme Page
Scheme 1.1. Structures and labeling of tach-x-Rpyr: open (a) and closed (b) conformation 2
Scheme 1.2. Structures and numbering of the metal complexes of tach-x- Rpyr. 3
Scheme 1.3. Chelators for comparison 4
Scheme 2.1. Oxidation of $[\mathrm{Fe} \text { (tachpyr) }]^{2+}$ 19
Scheme 2.2. Names and labeling of synthesized and studied complexes in the chapter 20
Scheme 2.3. Complexes used for comparison and discussion. 20
Scheme 2.4. Disproportionation reaction between Fe (III) and tach-4-Mepyr resulting in approximately a $1: 1$ mixture of $\left[\mathrm{Fe}(\text { tach-4-Mepyr) }]^{2+}\right.$ (1b) and [Fe(tach-4-Mepyr-ox-2)] ${ }^{2+}$ (7) 29
Scheme 3.1. Amino/pyridyl chelators used for comparison and discussion 40
Scheme 3.2. Synthesis of bispicpn, L^{6}, and bis6Mepicpn, L^{7} 42
Scheme 3.3. Synthesis of bpdan, L^{8} 43
Scheme 3.4. Structures and numbering of isolated metal complexes of bispicpn, bis6Mepicpn and bpdan. 43

LIST OF ABBREVIATIONS

Abbreviation	Name/Definition
Δ_{0}	splitting energy between the $\mathrm{t}_{2 g}$ and $\mathrm{e}_{\mathrm{q}}{ }^{*}$ orbitals in an octahedral environment
τ	value used to compare square-pyramidal and trigonal-bipyramidal geometries
Φ	twist angle
α	bite angle
v	wavenumber
ε	molar absorptivity
MLCT	metal-to-ligand charge-transfer
LS	low spin
HS	high spin
$\mathrm{C}_{4 \mathrm{v}}$	term for square-pyramidal
D_{3}	term for trigonal bipyramidal
py	pyridine
LFSE	ligand filed stabilization energy
ppm	parts per million
VT NMR	variable temperature NMR
ESI-MS	electrospray mass spectrometry
$\mathrm{T}_{\text {d }}$	tetrahedral
O_{h}	octahedral
$L^{1}-L^{4}$	tach-x-Mepyr ($x=3-6$)

Abbreviation	Name/Definition
L^{5}	tach-6-MeOpyr
L^{6}	bispicpn
L^{7}	bis6Mepicpn
L^{8}	bpdan
tach-x-Mepyr	N, N ', $N^{\prime \prime}$-tris(x-Me-2-pyridylmethyl)-cis, cis-1,3,5triaminocyclohexane
tach-6-MeOpyr	$N, N^{\prime}, N^{\prime \prime}$-tris(6-MeO-2-pyridylmethyl)-cis, cis-1,3,5triaminocyclohexane
bispicpn	1,7-bis(2-pyridyl)-2,6-diazaheptane (L^{6})
bis6Mepicpn	1,7-bis(6-methyl-2-pyridyl)-2,6-diazaheptane (L^{7})
bpdan	1,9-bis(2-pyridyl)-3,7-diazanonane (L^{8})
tptcd	1,4,7-tris(2-pyridylmethyl)-1,4,7-triazacyclononane
tpten	1,5,9-tris(2-pyridylmethyl)-1,5,9-triazacyclododecane
Ibpten	1-[(6-methyl-2-pyridinyl)methyl]-4,7-bis(2pyridinylmethyl) -1,4,7-triazacyclononane
tpen	N,N,N', ${ }^{\prime}$-tetrakis(2-pyridylmethyl)ethylenediamine
ampy	2-(aminomethyl)-pyridine
blbpen	N,N'-bis(6-methyl-2-pyridylmethyl)-N,N'-bis(2-pyridylmethyl)ethane-1,2-diamine
($\mathrm{N}-\mathrm{Me})_{3}$-tachpyr	$\mathrm{N}, \mathrm{N}, \mathrm{N}^{\prime \prime}$-trimethyl- N, N ', $\mathrm{N}^{\prime \prime}$-tris(2-pyridylmethyl)- 1,3,5triaminocyclohexane
tachpyrMe-trisimine	N, N ', $N^{\prime \prime}$-tris(1-pyridin-2-yl-ethylidene)-tach
trenpyr-trisimine	$N, N^{\prime}, N^{\prime \prime}$-tris-(2-pyridylmethyl)-tren
trenpyrMe-trisimine	$N, N^{\prime}, N^{\prime \prime}$-tris(1-pyridin-2-yl-ethylidene)-tren
tachlM-trisimine	$N, N^{\prime}, N^{\prime \prime}$-tris-(1-methyl-1H-imidazol-2-ylmethylene)tach
bipy	2,2'-bipyridine

Abbreviation	Name/Definition
phen	1,10-phenanthroline
bpdo	1,8-bis(2-pyridyl)-3,6-diazaoctane
pdan	N,N'-dimethyl-N,N'-bis[2-(2- pyridylethyl)]propylenediamine N,N'-bis(2-pyridinylmethyl)ethylenediamine
bispicen	N,N'-bis(6-methyl-2-pyridylmethyl)ethylenediamine
(N-Me) 2 bispicpn	N,N'-dimethyl-N,N'-bis(2- pyridylmethyl)propylenediamine

ABSTRACT
 I. COMPLEXATION OF FE(II), CO(II), NI(II) AND CU(II) BY HEXADENTATE TRIPODAL AMINOPYRIDYL CHELATORS II. BINDING PREFERENCES FOR ZN(II) RELATIVE TO NI(II) AND CU(II) IN NOVEL TETRADENTATE AMINOPYRIDYL CHELATORS

by
Matthew Lloyd Childers
University of New Hampshire, May, 2007

Chapter I

Effects of pyridyl-ring alkylation on complexation of $\mathrm{Fe}(\mathrm{II}), \mathrm{Co}(\mathrm{II}), \mathrm{Ni}(\mathrm{II})$ and $\mathrm{Cu}(\mathrm{II})$ by chelators based on cis,cis-1,3,5-triaminocyclohexane (tach) have been studied. The chelators studied are derivatives of tachpyr, where the ring substituents are $3-\mathrm{Me}, 4-\mathrm{Me}, 5-\mathrm{Me}, 6-\mathrm{Me}$ or $6-\mathrm{MeO}$ (tach-x-Rpyr). Divalent complexes were synthesized for most combinations of the 4 metals and 5 chelators. Their bonding and structure were analyzed by UV/Nis/NIR spectroscopy, magnetic moment determination and single crystal X-ray crystallography. Steric repulsions between the 6-substituents result in substantially weakened metal-ligand interaction. Effects of these repulsions
include bond angle and length distortions, decrease of coordination number to five, shifts of d-d electronic transitions to lower energies and spin-free complexes of the bound metal ion.

Chapter II

Effects of iron-mediated oxidative dehydrogenation on tachpyr and derivatives were studied. Relative rates of iron-mediated oxidation were established for tachpyr and its 3-substituted derivatives as $\left[\mathrm{Fe}(\text { tach-3-Mepyr) }]^{2+}>\right.$ $[\mathrm{Fe}(\text { tachpyr })]^{2+}>[\mathrm{Fe} \text { (tach-3-MeOpyr) }]^{2+}$ while no oxidation was seen for $[\mathrm{Fe}($ tach-6-Mepyr) $]^{2+}$. The affinity of partially oxidized tachpyr derivatives over unoxidized derivatives towards Fe(II) was demonstrated. The lability of oxidized tachpyr derivatives was studied in an aerobic environment. Fully oxidized (trisimine) complexes were shown to be labile while partially oxidized (bisimine) complexes were determined to be inert.

Chapter III

A series of tetradentate aminopyridyl ligands was synthesized in an attempt at developing a chelator that would bind in a four-coordinate (tetrahedral) fashion and possess zinc selectivity. The resulting 1,3-diaminopropane (pn) based chelators were complexed with divalent Ni, Cu and Zn and their complexes were analyzed by UV/Nis/NIR, IR and NMR spectroscopy as well as single-crystal X-ray crystallography. It was determined that methylation of the pyridine rings at the 6-position had a greater effect on ligand affinity towards $\mathrm{Ni}(\mathrm{II})$ than homologation of the aminopyridyl arms. The crystal structures of all
the Zn (II) complexes showed the metal center to be six-coordinate with a nitrate anion bound in a bidentate fashion. However, in solution the zinc complexes showed signs of lower coordination numbers of either 4 or 5 .

GENERAL INTRODUCTION

This thesis is divided into three separate chapters: 1) Structural and Electronic Properties of $\mathrm{Fe}(\mathrm{II}), \mathrm{Co}(\mathrm{II}), \mathrm{Ni}(\mathrm{II})$ and $\mathrm{Cu}(\mathrm{II})$ Complexes of PyridineRing Alkylated Hexadentate Aminopyridyl Ligands; II) Iron-Mediated Oxidative Dehydrogenation of Tachpyr and Tachpyr Derivatives: Correlating Biological Effects with Metal-Binding Chemistry; and III) Structural and Electronic Properties of $\mathrm{Ni}(\mathrm{II}), \mathrm{Cu}(\mathrm{II})$ and Zn (II) Complexes of Linear, Tetradentate, Aminopyridyl Ligands: Towards Zn (II) Selectivity. The first two chapters go with the first part of the title while the third chapter is responsible for the second part of the title. Due to the diverse nature of the material covered, each chapter is self-contained with its own introduction, results and discussion and conclusion.

CHAPTERI

STRUCTURAL AND ELECTRONIC PROPERTIES OF FE(II), CO(II), NI(II) AND CU(II) COMPLEXES OF PYRIDINE-RING ALKYLATED HEXADENTATE AMINOPYRIDYL LIGANDS

Introduction

Ligands that are preorganized or predisposed to bind metal ions form particularly thermodynamically or kinetically stable complexes. ${ }^{1-4}$ The hexadentate amino/pyridyl chelator tachpyr ($N, N^{\prime}, N^{\prime \prime}$-tris(2-pyridylmethyl)-cis,cis-1,3,5-triaminocyclohexane), based on the tripodal framework tach (cis-cis-1,3,5triaminocyclohexane), has been shown to readily complex divalent 3d transition metal ions. ${ }^{5-8}$ Tachpyr makes metal complexes by a ring flip from an open, allequatorial conformation, to a closed, all-axial conformation (Scheme 1.1), encapsulating metal ions ranging in size from $\mathrm{Ga}(\mathrm{III})$ (six-coordinate ionic radius of $0.76 \AA^{9,10}$) to $\mathrm{Hg}\left(\right.$ II) (ionic radius of $1.16 \AA$)..6,8,11,12

(a)

(b)
$L^{1}-L^{4}, R=M e$, tach-x-Mepyr $(x=3-6)$
$L^{5}, R=\mathrm{MeO}$, tach- $x-\mathrm{MeOPyr}(x=6)$
Scheme 1.1. Structures and labeling of tach-x-Rpyr: open (a) and closed (b) conformation

Tachpyr and its derivatives are under consideration as chemotherapeutic agents. ${ }^{13-15}$ Tachpyr is strongly cytotoxic to a variety of tumor cells as seen by an IC_{50} of $4.8 \mu \mathrm{M}$ toward cultured bladder tumor cells. We have recently shown that it binds Zn (II) and Fe (II) in cells, and that the binding of $\mathrm{Fe}(\mathrm{II})$ in vitro is accompanied by redox processes. ${ }^{16}$ We therefore pursue the hypotheses that tachpyr may affect cells by causing deprivation of essential biometals and/or that the complexes formed may go on to catalyze oxidative damage, particularly those of redox-active bioavailable metals such as Fe and Cu .

M	$\begin{gathered} L^{1} \\ \text { tach-3-Mepyr } \\ \hline \end{gathered}$	$\begin{gathered} L^{2} \\ \text { tach-4-Mepyr } \\ \hline \end{gathered}$	$\begin{gathered} L^{3} \\ \text { tach-5-Mepyr } \\ \hline \end{gathered}$	$\begin{gathered} L^{4} \\ \text { tach-6-Mepyr } \end{gathered}$	$\begin{gathered} \mathrm{L}^{5} \\ \text { tach-6-MeOpyr } \end{gathered}$
$\mathrm{Fe}(\mathrm{II})^{\text {a,b }}$	1 a	1b	1c	1d	1e
$\mathrm{Co}(\mathrm{II})^{\text {c }}$	2a	2b	2c	-	-
$\mathrm{Ni}(\mathrm{II})^{\text {a }}$	3a	3b	3c	3d	3 e
$\mathrm{Cu}(11)^{\text {a }}$	4a	4b	4c	$4 d^{\text {d }}$	$4 e^{\text {d }}$

${ }^{a} \bar{X}=\mathrm{ClO}_{4}{ }^{-} ;{ }^{b} \mathrm{X}=\mathrm{Cl}^{-} ;{ }^{\circ} \mathrm{X}=\mathrm{NO}_{3}{ }^{-}$; ${ }^{\text {p }}$ previously reported
Scheme 1.2. Structures and numbering of the metal complexes of tach-x-Rpyr
Study of pyridyl-ring-alkylated tachpyr variants appeared appropriate in order to change electronic properties or induce steric hindrance in tachpyr and its derivatives. Herein we focus on the ability of such derivatives to bind divalent biometals as seen from coordination geometries and the electronic properties of
$\left[M^{\prime \prime} \text { (tach-x-Rpyr) }\right]^{2+}(M=\mathrm{Fe}, \mathrm{Co}, \mathrm{Ni}, \mathrm{Cu} ; \mathrm{R}=\mathrm{Me}$ where $x=3-6$ and $\mathrm{R}=\mathrm{MeO}$ where $x=6$) (Scheme 1.2). The electronic structure in solution has been studied by spectroscopy, and solid-state structures have been studied by single-crystal X-ray crystallography. In toxicity studies, tach-3-Mepyr and tach-6-Mepyr emerged as most interesting, tach-3-Mepyr due to more rapid onset of toxicity and tach-6-Mepyr due to lack of toxicity, hence, these have received greater scrutiny in the present work.

Scheme 1.3. Chelators for comparison herein

Results

Electronic Studies

To examine metal-complex structures in solution and assess effects of pyridyl substituents at various positions, the UV-Vis/Near IR spectra of the Fe (II),
$\mathrm{Co}(\mathrm{II}), \mathrm{Ni}(\mathrm{II})$ and $\mathrm{Cu}(I I)$ complexes were measured, assigned and compared with other amino/pyridyl-metal compounds (Tables 1.1-1.4).

Iron (II). The Fe(II) complexes 1a-c exhibit a large absorption band at $22600-23100 \mathrm{~cm}^{-1}$ with a weak, low-energy shoulder at $17400-18200 \mathrm{~cm}^{-1}$. The intense absorption was assigned as a metal-to-ligand charge-transfer (MLCT) band. This band is due to a $d \pi-p \pi^{*}$ transition and is typical of low-spin (LS) $\mathrm{Fe}(\mathrm{II})$ complexes with π-acceptor ligands. ${ }^{17-20}$ The MLCT appears to mask all d-d transitions except the low-energy shoulder that is generally assigned as the ${ }^{1} A_{1 g} \rightarrow{ }^{1} T_{1 g}$ transition in LS Fe(II) complexes. ${ }^{18,21}$

Fe(II) complexes 1d and 1e contain a considerably weaker MLCT band that has blue-shifted to around $28500 \mathrm{~cm}^{-1}$ with a slight shoulder to low-energy. The weaker MLCT band is typical for high-spin (HS) Fe(II) complexes. ${ }^{18}$ Additionally, there is a very weak absorption at $11100-11700 \mathrm{~cm}^{-1}$ that was assigned as the ${ }^{5} \mathrm{~T}_{2 \mathrm{~g}} \rightarrow{ }^{5} \mathrm{E}_{\mathrm{g}}$ transition that is seen in $\mathrm{HS} \mathrm{Fe}(\mathrm{II})$ complexes. ${ }^{17,18,20}$

Table 1.1. Spectral data for $1 \mathrm{a}-\mathrm{e}$ and other $\mathrm{Fe}(I I)$ amino/pyridyl complexes

Complex	$v\left(\mathrm{~cm}^{-1}\right)^{\text {a }}$	Assignments	$\Delta_{0}\left(\mathrm{~cm}^{-1}\right)$	color
[$\left.\mathrm{FeL}{ }^{1}\right] \mathrm{Cl}_{2}$	22700 (7000)	MLCT		bronze
	18200 sh (290)	${ }^{1} \mathrm{~A}_{19} \rightarrow{ }^{1} \mathrm{~T}_{19}$		
$\left[\mathrm{FeL}^{2}\right] \mathrm{Cl}_{2}$	$23100 \text { (6600) }$ $17800 \operatorname{sh}(95)$	MLCT	-	bronze
$\left[\mathrm{FeL}^{3}\right] \mathrm{Cl}_{2}$	22600 (4200)		-	bronze
	17400 sh (500)	${ }^{1} \mathrm{~A}_{19} \rightarrow{ }^{1} \mathrm{~T}_{1}$		
[FeL^{4}] $\left(\mathrm{ClO}_{4}\right)_{2}$	28800 (650)	MLCT	11700	red-brown
	$\begin{aligned} & 19600 \mathrm{sh}(36.6) \\ & 11700(9.4) \end{aligned}$	${ }_{5}^{\text {unassigned }}$		
$\left[\mathrm{FeL}^{5}\right] \mathrm{Cl}_{2}$	28200 (790)	MLCT	11100	yellow
	11100 (5.0)	${ }^{5} \mathrm{~T}_{2 \mathrm{~g}} \rightarrow{ }^{5} \mathrm{E}_{\mathrm{g}}$		
$\left[\mathrm{Fe}(\text { tachpyr) }]^{2+}\right.$	23100 (5500)	MLCT		
	18400 (330)	${ }^{1} \mathrm{~A}_{1 \mathrm{~g}} \rightarrow{ }^{1} \mathrm{~T}_{1 \mathrm{~g}}$		bronze
[Fe (tptcn)] ${ }^{2+19}$	23100 (12400)	MLCT	-	red
[Fe (tptcd) ${ }^{\text {2 }}$ +22	$27600 \text { (1270) }$	MLCT	11500	It. brown

${ }^{\text {a }}$ spectra for complexes $1 \mathrm{a}-\mathbf{e}$ were measured in MeCN
Cobalt (II). Complexes 2a-c produced spectra typical of HS Co (II) with two absorptions at $21500-21000 \mathrm{~cm}^{-1}$ and $10700-10500 \mathrm{~cm}^{-1}$ assigned as the ${ }^{4} \mathrm{~T}_{1 \mathrm{~g}} \rightarrow{ }^{4} \mathrm{~T}_{1 g}$ and ${ }^{4} \mathrm{~T}_{1 \mathrm{~g}} \rightarrow{ }^{4} \mathrm{~T}_{2 \mathrm{~g}}$ transitions, respectively. A shoulder was observed on the high-energy transition and has been attributed to spin-orbit splitting of the ${ }^{4} \mathrm{~T}_{1 \mathrm{~g}}$ state (Table 1.2). ${ }^{23}$

Table 1.2. Spectral data for $\mathbf{2 a} \mathbf{- c}$ and other $\mathrm{Co}(\mathrm{II})$ amino/pyridyl complexes

Complex	$v\left(\mathrm{~cm}^{-1}\right)^{\text {a }}$	Assignments	$\Delta_{0}\left(\mathrm{~cm}^{-1}\right)$	color
$\left[\mathrm{CoL}{ }^{[}\right]\left(\mathrm{NO}_{3}\right)_{2}$	$\begin{aligned} & 10660(8.0) \\ & 18430 \mathrm{sh}(27) \\ & 21460(73) \end{aligned}$	${ }^{4} \mathrm{~T}_{1 g} \rightarrow{ }^{4} \mathrm{~T}_{2 \mathrm{~g}}$ ${ }^{4} \mathrm{~T}_{1 g} \rightarrow{ }^{4} \mathrm{~T}_{1 g}$	${ }_{0}$ (beige
$\left[\mathrm{CoL}^{2}\right]\left(\mathrm{NO}_{3}\right)_{2}$	$\begin{aligned} & 10540(12) \\ & 18430 \mathrm{sh}(14) \\ & 21300(57) \end{aligned}$	$4 \mathrm{~T}_{1 g} \rightarrow{ }^{4} \mathrm{~T}$ \% ${ }^{4} \mathrm{~T}_{19} \rightarrow{ }^{4} \mathrm{~T}$	-	beige
$\left[\mathrm{CoL}^{3}\right]\left(\mathrm{NO}_{3}\right)_{2}$	$\begin{aligned} & 10460(5.5) \\ & 18050 \mathrm{sh}(19) \\ & 21050(61) \end{aligned}$	$\begin{aligned} & { }^{4} \mathrm{~T}_{1 g} \rightarrow{ }^{4} \mathrm{~T}_{2 \mathrm{~g}}^{19} \\ & { }^{4} \mathrm{~T}_{1 \mathrm{~g}} \rightarrow{ }^{4} \mathrm{~T}_{19} \end{aligned}$	-	beige
$[\mathrm{Co} \text { (tachpyr) }]^{2+}$	$\begin{aligned} & 10787(3.8) \\ & 18315 \mathrm{sh} \\ & 21552(49) \\ & \hline \end{aligned}$	$\begin{aligned} &{ }^{4} \mathrm{~T}_{1 g} \rightarrow{ }^{4} \mathrm{~T}_{2 g}^{19} \\ &{ }^{4} \mathrm{~T}_{1 g} \rightarrow{ }^{4} \mathrm{~T}_{10} \end{aligned}$	-	brown

${ }^{\text {a }}$ spectra for complexes 2a-c were measured in MeOH

Nickel (II). The Ni(II) complexes $3 \mathrm{a}-\mathrm{e}$ all produced two principal bands, at $18100-19700 \mathrm{~cm}^{-1}$ and $10800-12900 \mathrm{~cm}^{-1}$. The high-energy absorption was assigned as the ${ }^{3} \mathrm{~A}_{2 g} \rightarrow{ }^{3} \mathrm{~T}_{1 g}$ transition while the two components of the lowenergy band were assigned as the ${ }^{3} \mathrm{~A}_{2 g} \rightarrow{ }^{3} \mathrm{~T}_{2 g}$ transition and the spin-forbidden ${ }^{3} \mathrm{~A}_{2 g} \rightarrow{ }^{1} \mathrm{E}_{\mathrm{g}}$ transition (Table 1.3). All of these transitions are typical of octahedral $\mathrm{Ni}(\mathrm{II})$ complexes. ${ }^{24}$

Table 1.3. Spectral data for 3 a - e and other $\mathrm{Ni}(I I)$ amino/pyridyl complexes

Complex	$v\left(\mathrm{~cm}^{-1}\right)^{\mathrm{a}}$	Assignments	$\Delta_{0}\left(\mathrm{~cm}^{-1}\right)$	color
$\left[\mathrm{NiL}^{\text {L }}\right]\left(\mathrm{ClO}_{4}\right)_{2}$	$\begin{aligned} & 11300 \operatorname{sh}(10.8) \\ & 12900(15.9) \\ & 19700(11.7) \end{aligned}$	$\begin{aligned} & { }^{3} \mathrm{~A}_{2 g} \rightarrow{ }^{1} \mathrm{E}_{\mathrm{g}} \\ & { }^{3} \mathrm{~A}_{2 g} \rightarrow \mathrm{~T}_{2 \mathrm{~g}} \\ & { }^{3} \mathrm{~A}_{2 g} \rightarrow{ }^{3} \mathrm{~T}_{1 \mathrm{l}} \end{aligned}$	12900	pink
$\left[\mathrm{NiL}^{2}\right]\left(\mathrm{ClO}_{4}\right)_{2}$	$\begin{aligned} & 11300 \operatorname{sh}(12.7) \\ & 12800(15.9) \\ & 19500(14.2) \end{aligned}$	$\begin{aligned} & { }^{3}{ }^{3} \mathrm{Ag}_{2 g} \rightarrow \mathrm{E}_{\mathrm{g}} \\ & { }^{3} \mathrm{~A}_{2 g} \rightarrow{ }^{3} \mathrm{~T}_{2 g} \\ & { }^{3} \mathrm{~A}_{2 \mathrm{~g}}{ }^{3} \mathrm{~T}_{19} \end{aligned}$	12800	pink
$\left[\mathrm{NiL}^{3}\right]\left(\mathrm{ClO}_{4}\right)_{2}$	$\begin{aligned} & 11200 \operatorname{sh}(12.7) \\ & 12800(17.0) \\ & 19500(14.2) \end{aligned}$	$\begin{aligned} & { }^{3}{ }^{3} \mathrm{~A}_{2 g} \rightarrow{ }^{1} \mathrm{E}_{\mathrm{g}}^{19} \\ & { }^{3} \mathrm{~A}_{2 g}{ }^{3} \mathrm{~T}_{2 g} \\ & { }^{3} \mathrm{~A}_{2 q} \rightarrow{ }^{3} \mathrm{~T}_{19} \end{aligned}$	12800	pink
$\left[\mathrm{NiL}^{4}\right]\left(\mathrm{ClO}_{4}\right)_{2}$	$\begin{aligned} & 10800(25.4) \\ & 12400 \operatorname{sh}(11.4) \\ & 18100(9.28) \end{aligned}$	$\begin{aligned} & { }^{3} \mathrm{~A}_{2 g} \rightarrow{ }^{3} \mathrm{~T}_{2 g} \\ & { }^{3} \mathrm{~A}_{2 g} \rightarrow{ }^{1} \mathrm{E}_{\mathrm{g}} \\ & { }^{3} \mathrm{~A}_{2 g} \rightarrow{ }^{3} \mathrm{~T}_{11} \end{aligned}$	10800	pale brown
$\left[\mathrm{NiL}^{5}\right]\left(\mathrm{ClO}_{4}\right)_{2}$	$\begin{aligned} & 10900(17.5) \\ & 12400 \operatorname{sh}(11.4) \\ & 18100(7.28) \end{aligned}$	$\begin{aligned} & { }^{3} \mathrm{~A}_{2 g} \rightarrow{ }^{3} \mathrm{~T}_{2 g} \\ & { }^{3} \mathrm{~A}_{2 g} \rightarrow{ }^{1} \mathrm{E}_{g} \\ & { }^{3} \mathrm{~A}_{2 g} \rightarrow{ }^{3} \mathrm{~T}_{1 g} \end{aligned}$	10900	violet
$[\mathrm{Ni}(\mathrm{tptcn})]^{2+19}$	$\begin{aligned} & 11300(24) \\ & 12300(36) \\ & 19400(27) \end{aligned}$	$\begin{aligned} & { }^{3} \mathrm{~A}_{2 g} \rightarrow^{3} \mathrm{~T}_{2 g}^{19} \\ & { }^{3} \mathrm{~A}_{2 g} \rightarrow{ }^{2} \mathrm{E}_{\mathrm{g}} \\ & { }^{3} \mathrm{~A}_{2 \mathrm{~g}} \rightarrow{ }^{3} \mathrm{~T}_{19} \end{aligned}$	11300	violet
$\left[\mathrm{Ni}(\text { tachpyr) }]^{2+}\right.$	$\begin{aligned} & 11400(11.8) \\ & 12500(16.0) \\ & 19600(16.6) \end{aligned}$	$\begin{aligned} & { }^{3} \mathrm{~A}_{2 g} \rightarrow{ }^{3} \mathrm{~T}_{2 g} \\ & { }^{3} \mathrm{~A}_{2 g} \rightarrow{ }^{1} \mathrm{E}_{\mathrm{g}} \\ & { }^{3} \mathrm{~A}_{2 g}{ }^{3} \mathrm{~T}_{1 \mathrm{~g}}{ }^{3} \mathrm{~T} \end{aligned}$	11400	violet
$\left[\mathrm{Ni}(\mathrm{ampy})_{3}\right]^{2+21}$	$\begin{aligned} & 11300(-) \\ & 12700(-) \\ & 18800(-) \end{aligned}$	$\begin{aligned} & { }^{3} \mathrm{~A}_{2 g} \rightarrow{ }^{3} \mathrm{~T}_{2 g} \\ & { }^{3} \mathrm{~A}_{2 g} \rightarrow{ }^{1} \mathrm{E}_{g} \\ & { }^{3} \mathrm{~A}_{29} \rightarrow{ }^{3} \mathrm{~T}_{19} \end{aligned}$	13300	pink

${ }^{\text {a }}$ spectra for complexes 3 a - e were measured in MeCN
Copper (II). The spectra of 4a-c are composed of a single broad absorption at approximately $15200 \mathrm{~cm}^{-1}$ (Table 1.4). This absorption was assigned as the ${ }^{2} \mathrm{E}_{\mathrm{g}} \rightarrow{ }^{2} \mathrm{~T}_{2 \mathrm{~g}}$ transition and is typical of tetragonally-distorted six-
coordinate $\mathrm{Cu}(\mathrm{II})$ complexes with an N_{6} donor set. ${ }^{5,25}$ Complexes 4 d and 4 e each produced a spectrum with a broad absorption between $14950-14560 \mathrm{~cm}^{-1}$ that possessed a low-energy shoulder which is indicative of a five-coordinate Cu (II) complex. ${ }^{7,25-27}$ Deconvolution of these spectra showed each peak to be composed of three Gaussian peaks which were assigned as the $d_{z^{2}} \rightarrow d_{x^{2}-y^{2}}$, $d_{x y} \rightarrow d_{x^{2}-y^{2}}$, and $d_{x, y z} \rightarrow d_{x^{2}-y^{2}}$ transitions as has been shown for other squarepyramidal $\mathrm{Cu}(11)$ complexes. ${ }^{26,28,29}$

Table 1.4. Spectral data for $4 \mathrm{a}-\mathrm{e}$ and other $\mathrm{Cu}(I I)$ amino/pyridyl complexes

Complex	$v\left(\mathrm{~cm}^{-1}\right)^{\text {a }}$	Assignments	$\Delta_{0}\left(\mathrm{~cm}^{-1}\right)$	color
$\left[\mathrm{CuL}^{1}\right]\left(\mathrm{ClO}_{4}\right)_{2}$	15200 (86.4)	${ }^{2} \mathrm{E}_{\mathrm{g}} \rightarrow{ }^{2} \mathrm{~T}_{2 g}$	15200	blue
$\left[\mathrm{CuL}^{2}\right]\left(\mathrm{ClO}_{4}\right)_{2}$	15200 (87.9)	${ }^{2} \mathrm{E}_{\mathrm{g}} \rightarrow{ }^{2} \mathrm{~T}_{2 g}$	15200	blue
$\left[\mathrm{CuL}^{3}\right]\left(\mathrm{ClO}_{4}\right)_{2}$	15200 (95.9)	${ }^{2} \mathrm{E}_{\mathrm{g}} \rightarrow{ }^{2} \mathrm{~T}_{2 g}$	15200	blue
$\left[\mathrm{CuL}^{4}\right]\left(\mathrm{ClO}_{4}\right)_{2}$	$\begin{aligned} & 11000(85.0) \\ & 14300(146) \\ & 16300(105) \end{aligned}$	$\begin{aligned} & d_{x_{x, y z}} \rightarrow d_{x^{2}-y^{2}} \\ & d_{y z} \rightarrow d_{x_{x} \cdot y^{2}} \\ & d_{z^{2}} \rightarrow d_{x^{2}-y^{2}} \end{aligned}$	-	green
$\left[\mathrm{CuL}^{5}\right]\left(\mathrm{ClO}_{4}\right)_{2}$	$\begin{aligned} & 10300(101) \\ & 14000(91.1) \\ & 16000(143) \end{aligned}$	$\begin{aligned} & d_{x, y z} \rightarrow d^{2}-y^{2}-y^{2} \\ & d_{y z} \rightarrow d_{x} x^{2} \cdot y^{2} \\ & d_{z^{2}} \rightarrow d_{x} x_{2} y^{2} \end{aligned}$	${ }^{-}$	blue
$[\mathrm{Cu} \text { (tachpyr) }]^{2+}$	15100 (93)	${ }^{2} \mathrm{E}_{\mathrm{g}} \rightarrow{ }^{2} \mathrm{~T}_{2 \mathrm{~g}}$	15100	blue
$\left[\mathrm { Cu } \left(\left(\mathrm{N}-\mathrm{Me}_{3}\right)-\right.\right.$ $\text { tachpyr) }]^{2+}$	13800 (81.4)	${ }^{2} \mathrm{E}_{9} \rightarrow{ }^{2} \mathrm{~T}_{29}$	14400	blue
$[\mathrm{Cu}(\mathrm{tpten})]^{2+19}$	14400 (121)	${ }^{2} \mathrm{E}_{0} \rightarrow{ }^{2} \mathrm{~T}_{20}$	14400	blue

${ }^{\text {a }}$ spectra for complexes 4 a - e were measured in MeOH

Structural Studies

${ }^{1} \mathrm{H}$ NMR. For complexes $\mathbf{1 a} \mathbf{- c}$ the ${ }^{1} \mathrm{H}$ NMR spectra were consistent with the octahedral-enforcing nature of tach-framework chelators as previously shown in $[\mathrm{Zn} \text { (tachpyr) }]^{2+}$ and $[\mathrm{Ga}(\text { tachpyr })]^{3+.}{ }^{8}$ Characteristic patterns of proton-proton coupling between cyclohexyl H atoms indicate closed, complexed tach as opposed to open tach. ${ }^{5}$ The two methylene protons of the coordinated pendant arms are diastereotopic, indicating that the arms of the complexes are twisted
about the metal ion in the Δ or Λ configuration, and $\Delta-\Lambda$ interconversion does not occur on the NMR time-scale at room temperature. This has been previously shown in the group with various $[\mathrm{M}(\text { tachpyr })]^{\mathrm{n+}}(\mathrm{M}=\mathrm{Fe}(\mathrm{II}), \mathrm{Zn}(\mathrm{II}), \mathrm{Ga}(\mathrm{III}), \ln (\mathrm{III}))$ complexes. ${ }^{5,6,12}$

X-ray Crystallography. Solid-state structural data was obtained for complexes 1a and 1d using X-ray crystallography. The average $\mathrm{Fe}-\mathrm{N}_{(\mathrm{py})}$ and Fe $N_{\text {(amine) }}$ bond lengths for 1 a are 1.972 and $2.011 \AA$ respectively. The twist angle (ϕ) of 54.9° possessed by 1 a indicates the trigonally distorted octahedral coordination geometry of the complex, compared to a ϕ of 60° for a perfect octahedron. The average bite angle (α) of 83.6° in 1 a is comparable to other sixcoordinate LS amino/pyridyl iron complexes having 5-membered chelate rings, as seen in the upper half of Table 1.5.

Table 1.5. Structural data for $\mathbf{1 a}$ and 1d and comparisons to other six-coordinate amino/pyridyl $\mathrm{Fe}(\mathrm{II})$ complexes

	SpinState	$\mathrm{Fe}-\mathrm{N}_{\text {(amine) }}$ distance ((Å)	$\mathrm{Fe}-\mathrm{N}_{(p y)}$ distance	Bite angle, α (${ }^{\circ}$)	Twist angle, $\phi\left(^{\circ}\right.$)
$\left[\mathrm{Fe}\left(\mathrm{L}^{\prime}\right)\right]^{2+}$	LS	2.008 (1)	1.971 (1)	83.16 (5)	54.9
		2.012 (1)	1.973 (1)	83.77 (6)	
		2.013 (1)	1.973 (1)	83.91 (5)	
$[\mathrm{Fe}(\mathrm{tptcn})]^{2+30}$	LS	2.001 (6)	1.979 (6)	83.1 (2)	48.9
$\begin{aligned} & \mathrm{fac-} \\ & {\left[\mathrm{Fe}(\mathrm{ampy})_{3}\right]^{2+31}} \end{aligned}$	LS	2.030 (1)	1.979 (1)	82.92 (4)	53.7
		2.021 (1)	1.987 (1)	83.08 (4)	
		2.026 (1)	1.991 (1)	80.75 (4)	
$\left[\mathrm{Fe}\left(\mathrm{L}^{4}\right)\right]^{2+a}$	HS	2.169 (3)	2.234 (3)	76.85 (11)	52.1
		2.173 (3)	2.238 (3)	78.42 (12)	
		2.181 (3)	2.384 (3)	78.48 (12)	
		2.151 (3)	2.219 (3)	77.50 (13)	53.9
		2.173 (3)	2.223 (3)	77.70 (13)	
		2.190 (3)	2.376 (3)	77.99 (13)	
$[\mathrm{Fe}(\text { tptcd })]^{2+32}$	HS	2.257 (5)	2.226 (5)	77.04 (19)	41.8
$\begin{aligned} & \text { mer- } \\ & {\left[\mathrm{Fe}(\mathrm{ampy})_{3}\right]^{2+31}} \end{aligned}$	HS	2.178 (4)	2.188 (4)	76.9 (2)	41.1
		2.192 (4)	2.218 (4)	75.2 (2)	
		2.189 (4)	2.223 (4)	75.6 (2)	
$\left[\mathrm{Zn}\left(L^{4}\right)\right]^{2+a 33}$		2.128 (4)	2.203 (4)	80.1 (2)	53.9
		2.133 (4)	2.216 (4)	80.3 (2)	
		2.135 (4)	2.566 (5)	74.89 (15)	
		2.115 (5)	2.213 (5)	79.9 (2)	49.5
		2.133 (5)	2.218 (5)	79.5 (2)	
		2.151 (5)	2.527 (5)	76.3 (2)	

${ }^{\text {a }}$ Structure has two independent molecules in the asymmetric unit and both corresponding sets of data are given.

The average $\mathrm{Fe}-\mathrm{N}_{(\mathrm{py})}$ and $\mathrm{Fe}-\mathrm{N}_{(\mathrm{amine})}$ bond lengths for 1d are 2.279 and 2.173 \AA respectively. However, each of the independent molecules in the unit cell has one $\mathrm{Fe}-\mathrm{N}_{(\mathrm{py)}}$ bond that is $\sim 0.15 \AA$ longer than the others. Complex 1d obtains a twist angle of 53.0°. The average bite angle of 77.9° is consistent with the elongated $\mathrm{Fe}-\mathrm{N}$ bonds and is in good agreement with other HS amino/pyridyl iron complexes as seen in the middle of Table 1.5.

Figure 1.1. ORTEP view of the complex cation of $\left[\mathrm{Fe}(\right.$ tach-3-Mepyr) $] \mathrm{Cl}_{2}$ (1a) (50 \% probability ellipsoids) with hydrogens omitted for clarity

Figure 1.2. ORTEP view of the one of the complex cations of [Fe(tach-6Mepyr)]((%5Cleft.%5Cmathrm%7BClO%7D_%7B4%7D%5Cright)_{2}\) (1d) (50% probability ellipsoids) with hydrogens omitted for clarity

Solution Reaction with Ancillary Ligands. Ancillary, monodentate ligands (Cl^{-}and SCN^{-}) were added to an acetonitrile solution of 1d and monitored by visible spectroscopy to probe the presence of an open or substitutable coordination site at the iron center. With the addition of one
equivalent of either a chloride or thiocyanate anion a red-shift of the chargetransfer band was observed (Figure 1.3). This spectral change is believed to be due to the formation of $\left[\mathrm{Fe}(\text { tach-6-Mepyr)(Cl) }]^{+}\right.$and $\left[\mathrm{Fe}(\text { tach-6-Mepyr)(SCN) }]^{+}\right.$ respectively. ${ }^{34}$

Figure 1.3. UV-Vis spectra of $\left[\mathrm{Fe}(\text { tach-6-Mepyr }]^{2+}\right.$ (1d) (a), 1 d plus Cl^{-}(b) and 1d plus SCN^{-}(c)

Discussion

Electronic Data

Comparison across the tach-x-Mepyr series shows that 6-substituted ligands have a weaker field strength toward $\mathrm{Fe}(\mathrm{II}), \mathrm{Ni}(\mathrm{II})$ and $\mathrm{Cu}(\mathrm{II})$ (no 6substituted Co (II) complexes were analyzed); while methyl substitution at the 3,4 and 5 positions on the pyridine rings has no notable effect on the field strength relative to tachpyr for the Fe (II), Co (II), Ni (II) or Cu (II) complexes.

Thus, the 6 -substituted $\mathrm{Ni}(\mathrm{II})$ complexes 3 d and 3 e have lower $\mathrm{d}-\mathrm{d}$ transition energies as compared to the 3 -, 4 - and 5 -substituted compounds 3 a c. Similar results have been seen for $\mathrm{Ni}(\mathrm{II})$ complexes of Ibpten and blbpen, 6substituted derivatives of tpten and tpen. ${ }^{18,35}$ With the octahedral enforcing nature of the metal center it is understandable that the added steric bulk at the 6 position would decrease the field strength of the ligands toward $\mathrm{Ni}(\mathrm{II})$. In an octahedral environment the 6 -positions of the pyridine rings are all pointing towards the same general area, above the metal center, producing unfavorable steric interactions.

In the Fe (II) series, the 6 -substitution causes a shift of Fe (II) from low-spin ($\mathbf{1 a} \mathbf{- c}$) to high-spin (1d and 1e). This is not surprising because LS Fe(II) metal center provides the greatest possible ligand field stabilization energy for octahedral geometry and it can π-backbond to the pyridyl donor group of amino/pyridyl chelators. To overcome the LFSE and the added stabilization of π backbonding to adopt a HS electron configuration in 1d and 1e, the steric interactions between the substituents in the 6 -positions must be quite substantial. Toftlund and Yde-Andersen showed this effect in their $[\mathrm{Fe}(\mathrm{blbpe})]^{2+}$ complex which is HS while $[\mathrm{Fe}(\text { tpen })]^{2+}$ is spin-crossover. ${ }^{18}$

Alkylation of the pyridyl 6-position leads to five-coordinate complexes in the case of $\mathrm{Cu}(\mathrm{II})$, based on the electronic spectra of $\mathbf{4 d}$ and 4 e . This result is not surprising because X -ray study showed that 4d is five-coordinate. The τ value of 58.0% for the complex shows that, in the solid state, it adopts a
geometry midway between a perfect square-pyramid ($\tau=0 \%$) and that of a trigonal-bipyramid $(\tau=100 \%) .{ }^{7}$ The spectra of 4 d and 4 e were more closely examined to determine what five-coordinate geometry the complexes obtain in solution. $\mathrm{Cu}(\mathrm{II})$ complexes with $\mathrm{C}_{4 \mathrm{v}}$ symmetry will have a low-energy shoulder while $D_{3 h}$ symmetry will produce a high-energy shoulder. ${ }^{7,26,29}$ Furthermore, a square-pyramidal ($\mathrm{C}_{4 \mathrm{v}}$) complex should be composed of three absorptions while a trigonal-bipyramidal ($\mathrm{D}_{3 \mathrm{~h}}$) complex should only possess two absorptions. An explanation of the number of absorptions present in the different geometries can be seen in d-orbital splitting diagrams of $D_{3 h}$ and $C_{4 v}$ complexes seen in Figure 1.4. ${ }^{29,36}$ Deconvolution of the spectra of $4 d$ and $4 e$ was undertaken to determine the number of transitions each possessed (Figure 1.5). Because spectra of 4d and 4 e contained a low-energy shoulder and were composed of three transitions, each was assigned a square-pyramidal geometry.

Figure 1.4. Splitting diagram for $D_{3 h}$ and $C_{4 v}$ complexes

Figure 1.5. Deconvoluted electronic absorption spectrum of [Cu(tach-6Mepyr) ${ }^{2+}$ (4d) (solid black line = experimental data, dashed red line = sum of black dashed lines)

Structural Studies

X-ray Crystallography. Complex 1 a takes on a slightly distorted octahedral geometry in the solid state. Its $\mathrm{Fe}-\mathrm{N}_{(\mathrm{amine})}$ and $\mathrm{Fe}-\mathrm{N}_{(\mathrm{py})}$ bonds are in good agreement with other LS amino/pyridyl Fe(II) complexes (Table 1.5). In LS Fe(II) complexes containing the aminomethyl pyridyl binding group, the $\mathrm{Fe}-\mathrm{N}_{(\mathrm{py})}$ bonds are generally shorter than the $\mathrm{Fe}-\mathrm{N}_{(\mathrm{amine})}$ bonds due to $\mathrm{d} \pi \rightarrow \mathrm{p} \pi^{*}$ backbonding of Fe(II) to the ligand. ${ }^{37}$ This was observed for $\mathbf{1 a}$. Tachpyr has shown the ability to obtain distorted octahedral geometries when binding Ni (II) and Zn (II), with twist angles of 45.5° and 43.7°, respectively. ${ }^{5,8}$ The larger twist angle of 54.9° seen in 1 a can be attributed to the large LFSE of LS Fe(II) when in an octahedral geometry.

The effect of the steric interactions of the 6-methyl groups can really be seen in the crystal structure of 1d. All of the Fe-N bonds show an elongation when compared to those of 1a. This is attributed to the HS nature of the complex where electrons now populate the e_{g} * orbitals and the six-coordinate ionic radius of $\mathrm{Fe}(\mathrm{II})$ is $0.92 \AA$. The steric interactions between the 6-methyl groups are most evident when examining the $\mathrm{Fe}-\mathrm{N}_{(\mathrm{py})}$ bonds. For each of the two independent molecules in the asymmetric unit there is one $\mathrm{Fe}-\mathrm{N}_{(\mathrm{py})}$ bond that is $\sim 0.15 \AA$ longer than the other two. The lengthening of one bond to compensate for steric interactions between 6-methyl groups was also observed in the Zn (II) and Mn (II) complexes of the same ligand, which are isostructural with 1d (Table 1.5). ${ }^{33}$ Even with these steric interactions, the complex is still able to obtain a geometry close to octahedral with an average twist angle of 53.0°. The bite angle of 77.9° is consistent with the elongated $\mathrm{Fe}-\mathrm{N}$ bonds and is in good agreement with other HS amino/pyridyl Fe (II) complexes as seen in Table 1.5.

Solution Reaction with Ancillary Ligands. Based on the X-ray analysis of 1d it was determined that a pyridyl group of the ligand could be either loosely bound or unbound to the metal center in solution and may be substitutable. To test this, monodentate ligands were added to acetonitrile solutions of the complex and monitored by visible spectroscopy. With the addition of one equivalent of Cl^{-}or SCN^{-}to solutions of 1 d a red-shift in the MLCT band was observed (Figure 1.3). We believe this red-shift is due to the formation of the species $\left[\mathrm{Fe}(\text { tach-6-Mepyr) }(\mathrm{Cl})]^{+}\right.$and $[\mathrm{Fe} \text { (tach-6-Mepyr)(SCN) }]^{+}$respectively. This
study was utilized by Toftlund and coworker to analyze the behavior of a bulky tpen derivative, N,N'-bis(6-methyl-2-pyridylmethyl)-N,N'-bis(2-pyridylmethyl)ethane-1,2-diamine, when bound to Fe (II) and they saw the same red-shift of the charge-transfer band that we observed. They rationalize the metal-to-ligand charge transfer, MLCT, shift to lower energy by stating that the introduction of an exogenous ligand lowers the formal oxidation state of the iron due to better σ-donor abilities of the new ligand. ${ }^{34}$

Conclusion

The 6-position has a considerable effect on metal-binding properties in tach-6-Rpyr due to steric interactions amongst 6-substituents of the metal-bound ligand. In solution, this was evident from the lowering of $d-d$ transition energies in Ni (II) complexes, the formation of a HS Fe(II) complex with a substitutable pyridyl group and the formation of five-coordinate $\mathrm{Cu}(\mathrm{II})$ complexes. In the solid state the steric interactions were apparent in the distorted octahedral geometry and elongated Fe- $\mathrm{N}_{(\mathrm{py})}$ bond in 1d. On the other hand, comparison to solution visible spectra of $[\mathrm{M}(\text { tachpyr })]^{2+}(\mathrm{M}=\mathrm{Fe}(\mathrm{II}), \mathrm{Co}(\mathrm{II}), \mathrm{Ni}(\mathrm{II}), \mathrm{Cu}(\mathrm{II}))$ indicate little electronic effect of 3-, 4- or 5-alkylation on ligand-field strength in the tach-xMepyr series, nor any steric effect of 3-alkylation.

CHAPTER II

IRON-MEDIATED OXIDATIVE DEHYDROGENATION OF TACHPYR AND TACHPYR DERIVATIVES: CORRELATING BIOLOGICAL EFFECTS WITH METAL-BINDING CHEMISTRY

Introduction

As mentioned in the previous chapter, it has been shown that tachpyr and its derivatives will readily bind divalent iron in an anaerobic, aqueous or alcoholic, environment. Previous group work has also revealed that $\mathrm{Fe}(\mathrm{II})$, once bound to tachpyr, promotes the oxidative dehydrogenation of one or two of the aminomethylene group(s) of the ligand when in an aerobic environment (Scheme 2.1). ${ }^{6,16,38}$ This process is well known in other Fe-amino complexes. ${ }^{39-43}$ The product of the dehydrogenation is a so-called $\alpha ; \alpha^{\prime}$-diimino binding group which has great ability to stabilize Fe (II) due to its σ-donor/ π-acceptor properties. ${ }^{44}$ The resulting mono- and diimino Fe (II) complexes (denoted as $[\mathrm{Fe} \text { (tachpyr-ox-n) }]^{2+}$ and $\left[\mathrm{Fe}(\text { tach }-x-\text { Rpyr-ox-n) }]^{2+}\right.$ where $\mathrm{n}=2$ or 4) are readily produced in air, however, more forcing conditions such as $\mathrm{H}_{2} \mathrm{O}_{2}$ are required to produce the fully oxidized product, $\left[\mathrm{Fe}(\text { tachpyr-ox-6) }]^{2+}\right.$.
$\mathrm{Fe}(\mathrm{II})$ or (aq or MeOH$)$

[Fe(tachpyr-ox-6)] ${ }^{2+}$

$[\mathrm{Fe} \text { (tachpyr-ox-2) }]^{2+}$

$\left[\mathrm{Fe}(\text { tachpyr-ox-4) }]^{2+}\right.$

Scheme 2.1. Oxidation of $[\mathrm{Fe} \text { (tachpyr) }]^{2+}$
Results from biological study of tachpyr indicate a need to better understand the metal-binding chemistry of it and its derivatives. Previous results have shown also that the iron, zinc and copper complexes of tachpyr are not effective as cytotoxic agents, whereas the calcium, magnesium and manganese complexes are, relative to the free ligand. These results are in accord with the ability of tachpyr to bind Fe (II), Zn (II) and Cu (II) more strongly than Ca (II), Mg (II) and $\mathrm{Mn}(I I)$, with the later complexes dissociating in aqueous media. ${ }^{5,11,38}$ Further, it has been shown that iron and zinc are the principal metals targeted by tachpyr in cells ${ }^{16}$ and that tachpyr preferentially binds $\mathrm{Fe}(\mathrm{II})$ over Zn (II). ${ }^{38}$ The resulting oxidative dehydrogenation of the ligand when bound to iron complicates the chemistry taking place in the cell, therefore the formation of the oxidized iron complexes and their role in the biological activity of tachpyr and derivatives has not been thoroughly assessed. This chapter describes the results of several experiments performed to better understand and correlate the iron-mediated oxidative dehydrogenation of tachpyr and derivatives with their biological activity.

[Fe(tachpyr-ox-2)] ${ }^{2+}$ (14)

$\left[\right.$ Fe(tachpyr-ox-4)] ${ }^{2+}$ (15)

Scheme 2.2. Names and labeling of synthesized and studied complexes in the chapter

$[\mathrm{Fe} \text { (tachpyrMe-trisimine) }]^{2+}$

[Fe(trenpy-trisimine)] ${ }^{2+}(\mathrm{R}=\mathrm{H})$
$[\mathrm{Fe} \text { (trenpyrMe-trisimine) }]^{2+}(\mathrm{R}=\mathrm{Me})$

$[\text { Fe(tachiM-trisimine) }]^{2+}$

$\left[\mathrm{Fe}(\mathrm{bipy})_{3}\right]^{2+}$

$\left[\mathrm{Fe}(\mathrm{phen})_{3}\right]^{2+}$

Scheme 2.3. Complexes used for comparison and discussion

Results

Oxidation of [Fe(tach-x-Mepyr)] $]^{2+}$ complexes

When exposed to air, oxidation of the Fe (II) complexes ensues resulting in the mono- and diimino complexes except for $[F e(t a c h-6-M e p y r)]^{2+}$, which shows no signs of oxidation when monitored by low-res ESI-MS. For the [Fe(tach-xMepyr) $]^{2+}(x=3,4,5)$ complexes where imine formation occurs, a color change from amber to green to blue is observed. Concomitant with the color change, a strong charge-transfer band around $16700 \mathrm{~cm}^{-1}$ develops in the UV-Vis spectrum (Figure 2.1), characteristic of α, α^{\prime}-diimine chelating groups. The presence of isobestic points indicates multiple species are present in the solution.

Figure 2.1. Observing the air oxidation of $[\mathrm{Fe}(\text { tachpyr })]^{2+}$ by UV-Vis over a 20 hour period

Relative Rates of Oxidation for Tachpyr and Tach-x-Rpyr Fe(II) Complexes
Combination of Fe (II) and unoxidized ligand in $\mathrm{D}_{2} \mathrm{O}$ in the presence of air
produces a mixture of unoxidized and partially oxidized Fe(II) complexes. By monitoring the reactions with ${ }^{1} \mathrm{H}$ NMR (Figure 2.2) and ESI-MS it was shown that the rate of oxidation decreases in the order $[\mathrm{Fe}(\text { tach-3-Mepyr })]^{2+}>[\mathrm{Fe}(\text { tachpyr })]^{2+}$ $>[\text { Fe(tach-3-MeOpyr) }]^{2+}$. Oxidation of $\left[\mathrm{Fe}(\text { tach-6-Mepyr) }]^{2+}\right.$ was not observed.

Figure 2.2. Following the oxidation of $[\mathrm{Fe} \text { (tach-3-Mepyr) }]^{2+}$ (1a) to $[\mathrm{Fe}$ (tach-3-Mepyr-ox-n) $]^{2+}$ ($n=2$ or $4 ; 5$ and 9 , respectively) by ${ }^{1} \mathrm{H}$ NMR

Disproportionation Reaction of Fe(III) with Tach-4-Mepyr

Combination of equal amounts of Fe (III) and tach-4-Mepyr in MeOD-d d_{4} produced a roughly $1: 1$ mixture of $\left[\mathrm{Fe}(\text { tach-4-Mepyr) }]^{2+}\right.$ and $[\mathrm{Fe}(t \mathrm{tach}-4-\mathrm{Mepyr}-\mathrm{ox}-$ 2) $]^{2+}$, quantified by ${ }^{1} \mathrm{H}$ NMR (Figure 2.3).

Figure 2.3. ${ }^{1} \mathrm{H}$ NMR spectrum of the disproportionation reaction between Fe (III) and tach-4-Mepyr

Affinity of Unoxidized and Ox-2 Tachpyr Derivatives Towards Fe(II)

Addition of 1.5 equivalents of either phen or bipy to a solution with approximately equal amounts of $[\mathrm{Fe} \text { (tach-4-Mepyr) }]^{2+}$ and $[\mathrm{Fe}$ (tach-4-Mepyr-ox2) $]^{2+}$ allowed for comparison of the affinity of an unoxidized tachpyr derivative and a partially oxidized derivative towards $\mathrm{Fe}(\mathrm{II})$. After addition of phen/bipy, ${ }^{1} \mathrm{H}$ NMR showed a larger decrease in the amount of $\left[\mathrm{Fe}(\text { tach-4-Mepyr) }]^{2+}\right.$ than [Fe(tach-4-Mepyr-ox-2)] ${ }^{2+}$. Also, a single peak appeared at approximately 2.44 ppm that corresponds to the pyridyl methyl group of the free unoxidized ligand.

Figure 2.4. ${ }^{1} \mathrm{H}$ NMR of $[\text { Fe(tach-4-Mepyr) }]^{2+}$ (1b) and $[\text { Fetach-4-Mepyr-ox-2) }]^{2+}$ (7) from disproportionation reaction with addition of 1,10-phenanthroline to the reaction mixture

Syntheses and Characterization of Complexes

Complex 13 was synthesized by reacting $\mathrm{Fe}\left(\mathrm{ClO}_{4}\right)_{2} \cdot 6 \mathrm{H}_{2} \mathrm{O}$ and tach-3-Mepyr-ox-6 in MeOH , from which crude product was obtained by vapor-phase diffusion of $\mathrm{Et}_{2} \mathrm{O}$. Washing the crude products with $\mathrm{Et}_{2} \mathrm{O}$ then drying provided 86% isolated yield. The $\left[\mathrm{Fe}(\text { tach-3-Mepyr-ox-4) }]^{2+}\right.$ complex (9) was prepared from the combination of $\mathrm{FeCl}_{2} \bullet 4 \mathrm{H}_{2} \mathrm{O}$ and tach-3-Mepyr in MeOH , in the presence of O_{2}. The solution was allowed to sit as oxidation occurred and resulted in the presence of only the bisimine complex. Product was precipitated from solution by the addition of $\mathrm{NH}_{4} \mathrm{PF}_{6}$ as blue microcrystals. Recrystallization of the crude product from $\mathrm{MeCN} / E t \mathrm{OH}$ by vapor-phase diffusion of $\mathrm{Et}_{2} \mathrm{O}$ at a reduced temperature afforded the product in 60% yield. The formulations of the products
were confirmed by elemental analysis (for 13), mass spectrometry, UV-Vis spectroscopy (Figure 2.5) and ${ }^{1} \mathrm{H}$ NMR.

Figure 2.5. UV-Vis spectrum of 9 in MeCN
Inertness of $[\mathrm{Fe}(\mathrm{tach}-3-\mathrm{Mepyr}-\mathrm{ox}-\mathrm{n})]^{2+}(\mathrm{n}=4$ or 6)
The inertness of $[\mathrm{Fe}(\text { tach-3-Mepyr-bisimine })]^{2+}(9)$ and $[\mathrm{Fe}($ tach-3-Mepyrtrisimine) $]^{2+}$ (13) were examined by heating them as buffered pH 7.4 solutions in air at $65^{\circ} \mathrm{C}$ while monitoring their UV-Vis spectra. Complex 9 was unchanged after 24 h while 13 showed a ca. 30% decrease in the spectral intensity of the peak at $585 \mathrm{~nm}\left(17100 \mathrm{~cm}^{-1}\right)$ (Figure 2.6) and formation of a precipitate, indicative of decomposition.

Figure 2.6. Following the degradation of $[\mathrm{Fe} \text { (tach-3-Mepyr-ox-6) }]^{2+}$ (13) by UVVis in pH 7.4 MOPS buffer

Discussion

Tachpyr has been shown to bind $\mathrm{Fe}(\mathrm{II})$ and Zn (II) in cells, actions that our group believe to underlie its cytotoxic activity. ${ }^{16,45}$ The binding of Fe (II) or Fe (III) by tachpyr under aerobic conditions leads to iron-mediated oxidative dehydrogenation to form $\left[\mathrm{Fe}(\text { tachpyr-ox-2) }]^{2+}\right.$ and $[\mathrm{Fe}(t a c h p y r-o x-4)]^{2+}$ which have also been detected in cells. ${ }^{16}$ Therefore, we have investigated the formation, bonding properties and lability of $\mathrm{Fe}(\mathrm{II})$ complexes of the mono-, bisand trisimine forms of tach-x-Mepyr and tachpyr in order to compare them to the corresponding amino complexes and to other related hexadentate chelators. This was done in an effort to understand the consequences of iron-mediated oxidative dehydrogenation for biological activity of the chelators.

Relative Rate of Oxidation of Tachpyr and Derivatives

It has previously been observed that Fe (II), once bound to tachpyr, promoted the oxidative dehydrogenation of the amino-methylene group (Scheme 2.1), ${ }^{6}$ as is well-known in other iron-amino complexes. ${ }^{39-43}$ It has also been observed that in the presence of air $[\mathrm{Fe} \text { (tachpyr) }]^{2+}$ readily oxidizes to the monoand bisimine complexes $\left[\mathrm{Fe}(\text { tachpyr-ox-2) }]^{2+}\right.$ and $\left[\mathrm{Fe}(\text { tachpyr-ox-4) }]^{2+}\right.$, respectively, but not to the trisimine complex, $[\mathrm{Fe} \text { (tachpyr-ox-6) }]^{2+}$. More forcing conditions, such as $\mathrm{H}_{2} \mathrm{O}_{2}$, are required to generate the trisimine complex (Scheme 2.1). The $[\text { Fe(tach- } x \text {-Mepyr) }]^{2+}$ species $(x=3,4$ or 5) have been shown to possess nearly the same physical properties as $\left[\mathrm{Fe}(\text { tachpyr) }]^{2+,}{ }^{33}\right.$ including the tendency to oxidize to mono- and bisimine complexes but not to the trisimine species. Accordingly, their solutions change from amber to green to blue, but not to purple (the color associated with the trisimine species) in air. The resulting electronic absorption spectra all agree with $\left[\mathrm{Fe}\left(\alpha, \alpha^{\prime} \text {-diimine }\right)\right]^{2+}$ spectra reported in the literature. ${ }^{44,46-48}$ Consistent with the low-spin, diamagnetic NMR and in analogy to other σ-donor $/ \pi$-acceptor ligand $\mathrm{Fe}(\mathrm{II})$ complexes such as [Fe (phen) $)_{3}{ }^{2+}$, the mono- and diimino derivatives of tach- x-Mepyr ($x=3,4$ or 5) interact strongly with Fe (II).

While alkylation at the 3-, 4- or 5-position of the pyridine rings of tachpyr does not affect the iron-binding ability of the chelators, it does change the rate of oxidation of the Fe (II) complexes. The rate of redox activity is substantially accelerated with 3 -methylation. This observation had been made previously in
the group when working with these iron complexes; however, the relative rates were not quantitated. The oxidation of the iron complexes of tachpyr, tach-3Mepyr and tach-3-MeOpyr was followed by ${ }^{1} \mathrm{H}$ NMR (Figure 2.2) or ESI-MS to obtain relative data. Within this series of complexes no substantial ground-state difference in chelating properties is inferred from comparison of the unoxidized Fe(II) complexes (the [Fe(tach-3-MeOpyr) ${ }^{2+}$ data comes from Joon Cho, unpublished), yet their rate of oxidation decreases in the order [Fe(tach-3Mepyr) $]^{2+}>[\mathrm{Fe}(\text { tachpyr })]^{2+}>\left[\mathrm{Fe}(\text { tach-3-MeOpyr) }]^{2+}\right.$. The relative rates were determined by integrating the area under the monoimine peak in the ${ }^{1} \mathrm{H}$ NMR and comparing it to the area under the aromatic peaks (Table 2.1).

Table 2.1. Ratio of area under imine peak of $[\mathrm{Fe}(\mathrm{L}-\mathrm{ox}-2)]^{2+}$ to area under aromatic peaks

Time	$[F e(t a c h-3-M e p y r)]^{2+a}$	$[F e(t a c h-3-M e O p y r)]^{2+\mathrm{b}}$	$[\mathrm{Fe}(\text { tachpyr })]^{2+c}$	Theoretical maximum d
0 h	0.000	0.000	0.000	0.000
4 h	0.066	0.047	0.048	0.111
24 h	0.071	0.049	0.056	

${ }^{\text {a }}$ Bisimine species was seen at both 4 h and 24 h for $\left[\mathrm{Fe}(\text { tach-3-Mepyr) }]^{2+}\right.$, thus, the degree of oxidation for $\left[\mathrm{Fe}(\text { tach-3-Mepyr) }]^{2+}\right.$ at 4 h and 24 h is greater than indicated by these data. ${ }^{\text {b }}$ Bisimine species was not observed for $[\mathrm{Fe}(\text { tach }-3-\mathrm{MeOpyr})]^{2+}$ during this
 oxidation for $[\mathrm{Fe} \text { (tachpyr) }]^{2+}$ at 24 h is greater than indicated by these figures. ${ }^{d}$ Maximum for total conversion to $[\mathrm{Fe}(\mathrm{L}-\mathrm{ox}-2)]^{2+}$.

The rate of oxidation of this series mirrors the rates of cytotoxicity of the chelators involved (Table 2.2). To expand this series to include a chelator that is not a strong iron chelator $\left[\mathrm{Fe}(\text { tach-6-Mepyr) }]^{2+}\right.$ was exposed to air, which did not cause oxidation as observed by ESI-MS. Again, this mirrors the cytotoxicity of the chelator, as tach-6-Mepyr is not cytotoxic. ${ }^{33}$

Table 2.2. IC50 values ($\mu \mathrm{M}$) of tachpyr, tach-3-Mepyr, tach-3-MeOpyr and tach6 -Mepyr after 24, 48 and 72 hours and the relative rates of oxidation of the corresponding Fe(II) complex

	24 hours	48 hours	72 hours	Relative rate of oxidation of the	
Tachpyr (II) complex					

Affinity of Unoxidized and Partially Oxidized Chelators for Iron

In previous group work it was shown that combining equal amounts of Fe(III) and tachpyr produces a roughly $1: 1$ mixture of $[\mathrm{Fe}(\text { tachpyr })]^{2+}$ and $\left[\mathrm{Fe}(\text { tachpyr-ox-2) }]^{2+} .^{16}\right.$ The same reaction was run between tach-4-Mepyr and Fe(III) with the same result (Scheme 2.4). Due to the difficulty

(ca. 1:1)
Scheme 2.4. Disproportionation reaction between Fe (III) and tach-4-Mepyr resulting in approximately a 1:1 mixture of $\left[\mathrm{Fe}(\text { tach-4-Mepyr) }]^{2+}(1 b)\right.$ and $[F e(t a c h-4-M e p y r-o x-2)]^{2+}$ (7)
of synthesizing and isolating the monoimine form of tachpyr and its derivatives, this disproportionation reaction is the best way to generate and study the $\mathrm{Fe}(\mathrm{II})$ monoimino complex. A competition reaction was run under anaerobic conditions in which an α, α^{\prime}-diimine ligand, either phen or bipy, was added to a freshly generated mixture of $\left[\mathrm{Fe}(\text { tach-4-Mepyr) }]^{2+}\right.$ and $\left[\mathrm{Fe}(\text { tach-4-Mepyr-ox-2) }]^{2+}\right.$ (ca. 1:1) in $\mathrm{MeOD}-d_{4}$ (Eqn 1). By monitoring this reaction the relative affinities towards
divalent iron of unoxidized and partially oxidized tachpyr derivatives could be determined and compared. Two observations were made when the reaction was followed by ${ }^{1} \mathrm{H}$ NMR. First, there was a larger decrease in the amount of $[\mathrm{Fe} \text { (tach-4-Mepyr) }]^{2+}$ than $\left[\mathrm{Fe}(\text { tach-4-Mepyr-ox-2) }]^{2+}\right.$. Second, a signal appeared at approximately 2.44 ppm that corresponded to free unoxidized chelator (Figure 2.4). The disappearance of the unoxidized complex along with the appearance of free unoxidized chelator shows that $\mathrm{Fe}(\mathrm{II})$ is more easily displaced from the unoxidized ligand than the partially oxidized ligand, which is rationalized by the increased π-acceptor ability of the α, α^{\prime}-diimine group of the oxidized chelator. ${ }^{44}$

$$
\begin{aligned}
& {[\mathrm{Fe} \text { (tach-4-Mepyr) }]^{2+}+\left[\mathrm{Fe}(\text { tach-4-Mepyr-ox-2) }]^{2+} \xrightarrow[\text { MeOD- } d_{4}]{\text { 3eq } \alpha \alpha^{\prime}-\text { diimine }}\right.} \\
& (1-x)[\mathrm{Fe}(\text { tach-4-Mepyr })]^{2+}+(1-y)[\mathrm{Fe}(\text { tach-4-Mepyr-ox-2 })]^{2+} \\
& +(x+y)\left[\mathrm{Fe}\left(\alpha, \alpha^{\prime}-\text { diimine }\right)_{3}\right]^{2+}+x \text { tach-4-Mepyr }+ \text { ytach-4-Mepyr-ox-2 }
\end{aligned}
$$

Synthesis and Characterization of $[\mathrm{Fe}(t a c h-3-M e p y r-0 x-n)]^{2+}(n=4$ or 6)

Normally, when methanolic solutions of Fe (II) and tachpyr or tach-x-Mepyr $(x=3,4,5)$ are combined in air a mixture of mono- and bisimine $\mathrm{Fe}(\mathrm{II})$ complexes results. Noticeably absent from the solution is the trisimine Fe(II) complex. It was serendipitously determined that when solutions of Fe (II) and tach-3-Mepyr were reacted on the bench top and allowed to sit, the product was exclusively the bisimine complex $\left[\mathrm{Fe}\left(\right.\right.$ tach-3-Mepyr-ox-4] ${ }^{2+}$. The bisimine complex was isolated and its inertness and solid state structure were examined and compared to that of several tach-based trisimine Fe(II) complexes, including $\left[\mathrm{Fe}(\text { tach-3-Mepyr-ox-6) }]^{2+},\left[\mathrm{Fe}(\text { tachpyr-ox-6) }]^{2+},\left[\mathrm{Fe}(\text { tachpyrMe-ox-6) }]^{2+}\right.\right.\right.$ and
$\left[\mathrm{Fe}\left(\right.\right.$ tachIM-ox-6)] ${ }^{2+}$ as well as several tren-based Fe (II) trisimine complexes (Scheme 2.2).

All tach-trisimine complexes of Fe (II) are labile in aqueous pH 7.4 medium at $65^{\circ} \mathrm{C}^{49}$ while the tach-bisimine complex is inert under the same conditions. Clearly the trigonal-prismatic coordination geometry that a tach-trisimine chelator prefers ${ }^{46,47,50,51}$ is unfavorable to $\mathrm{Fe}(\mathrm{II})$-LS which strongly favors octahedral coordination, thus providing an explanation as to why tach-trisimine complexes are not observed in cells treated with tachpyr and derivatives. While the rigidity of the tach-trisimine framework enforces trigonal-prismatic geometry and leads to labile or high-spin Fe (II) complexes the same cannot be said of the tach-bisimine Fe(II) complex. The amino N of tach-3-Mepyr-ox-4 allows for some flexibility in the oxidized ligand and produces an inert, low-spin Fe(II) complex. While the bisimine complex is inert it is not free of strain. Both imino N's show a substantial deviation from the plane formed by the N, C, C and Fe atoms (Table 2.3). Along with the distortion of the imino N's, a rotation along the $\mathrm{CH}-\mathrm{C}(2-\mathrm{pyridyl}-\mathrm{ipso})$ bond in each arm of the chelator of approximately 10° directs the lone pair of the pyridyl N away from the metal center. The combination of the imino N distortions and the rotation allow the inner coordination sphere to obtain a distorted octahedral geometry. This can be seen in the crystal structure of [Fe(tach-3-Mepyr-ox-4)] ${ }^{2+}$ (Figure 2.7).

Figure 2.7. ORTEP view of the complex cation of $\left[\mathrm{Fe}\left(\right.\right.$ tach-3-Mepyr-ox-4)] $\left(\mathrm{PF}_{6}\right)_{2}$ (9) (50 \% probability ellipsoids)

In contrast to the tach framework, the tren framework allows the $N(R)$ -CH_{2}-pyridyl donor arms to remain planar but all canted in a left- or right-handed twist about the C_{3} axis that travels through Fe and the apical N , resulting in a more inert Fe(II) complex. This was observed by Boubekeur in their structural study of of $[\mathrm{Fe}$ (trenpyr-trisimine) $]\left(\mathrm{PF}_{6}\right)_{2}$ (Table 2.4), in which the trigonal twist angle is 54° and distortions of the imino N atoms analogous to $[\mathrm{Fe}$ (tachpyrMetrisimine) $]^{2+}$ are not observed. ${ }^{52}$ This is consistent with previous findings in the group that $[\mathrm{Fe}(\text { trenpyrMe-trisimine })]^{2+}$ and $[\mathrm{Fe}(\text { trenpyr-trisimine })]^{2+}$ are inert in pH 7.4 media at $65^{\circ} \mathrm{C} .{ }^{49}$ In this case the flexibility present in the tren framework allows these complexes to obtain a more desired geometry and remain inert.

Table 2.3. Deviations (\AA) of atoms from least-squares planes of the imino nitrogen and its three bound atoms in $[\mathrm{Fe}($ tach $1 \mathrm{M}-\mathrm{ox}-6)]\left(\mathrm{ClO}_{4}\right)_{2}$, $[\mathrm{Fe}$ (tachpyrMe-ox-6)] $\left(\mathrm{ClO}_{4}\right)_{2}$ and $\left[\mathrm{Fe}\right.$ (tach-3-Mepyr-ox-4)] $\left(\mathrm{PF}_{6}\right)_{2}(9)$
Compound atoms and deviations from their least-square planes, \AA
$\left[\mathrm{Fe}(\text { tachlM-ox-6) }]^{2+} \quad \mathrm{Fe}, 0.01237(5)\right.$
$N(1),-0.051(4)$
C(1), 0.018(5)
C(3), 0.020(4)

$[\mathrm{Fe}$ (tachpyrMe-ox-	$\mathrm{Fe}, 0.0255(5)$	$\mathrm{Fe},-0.0245(5)$	$\mathrm{Fe},-0.0273(5)$
$6)]^{2+}$	$\mathrm{N}(1),-0.097(3)$	$\mathrm{N}(2), 0.094(3)$	$\mathrm{N}(3), 0.105(3)$
	$\mathrm{C}(1), 0.033(4)$	$\mathrm{C}(3),-0.033(4)$	$\mathrm{C}(5),-0.037(4)$
	$\mathrm{C}(7), 0.038(4)$	$\mathrm{C}(13),-0.037(4)$	$\mathrm{C}(19),-0.041(3)$

$$
\begin{array}{lll}
{[\text { [Fe(tach-3-Mepyr- }} & \mathrm{Fe}, 0.0014(5) & \mathrm{Fe},-0.0014(6) \\
\text { ox-4)] }^{2+} & \mathrm{N}(1),-0.1255(25) & \mathrm{N}(3), 0.1035(26) \\
& \mathrm{C}(1), 0.0739(32) & \mathrm{C}(5),-0.0564(32) \\
& \mathrm{C}(7), 0.0843(33) & \mathrm{C}(21),-0.0551(31)
\end{array}
$$

Table 2.4. Structural comparisons of $\left[\mathrm{Fe}(\right.$ tachIM-ox-6) $]\left(\mathrm{ClO}_{4}\right)_{2}$, $[\mathrm{Fe}$ (tachpyrMe-ox$6)]\left(\mathrm{ClO}_{4}\right)_{2}$, $\left[\mathrm{Fe}\left(\right.\right.$ tach-3-Mepyr-ox-4)] $\left(\mathrm{PF}_{6}\right)_{2}(9),[\mathrm{Zn}($ tachpyr-ox-6 $)]\left(\mathrm{ClO}_{4}\right)_{2}{ }^{53}$ and $[\mathrm{Fe}$ (trenpyr-trisimine) $]\left(\mathrm{PF}_{6}\right)_{2}{ }^{52}$

Substance	M- $\mathrm{N}_{\text {imine }}$ bond distances (\AA) or M- $\mathrm{N}_{\text {amine }}$ distances (\AA)	M- $\mathrm{N}_{\text {heterocycle }}$ bond distances $(\AA$)	bite angle of 5-ring, $\mathrm{N}_{\text {imine }}{ }^{-}$ $\mathrm{Fe}-\mathrm{N}_{\text {heterocycle }}$ (${ }^{\circ}$)	twist angle (${ }^{\circ}$)
$[F e(t a c h l M-o x-6)]^{2+}$	2.197(3)	2.185(3)	75.01(12)	12.30(13)
$\left[\mathrm{Zn}\right.$ (tachpyr-ox-6)] ${ }^{2+}$	$\begin{aligned} & 2.148(4), \\ & 2.142(4), \\ & 2.167(4) \end{aligned}$	$\begin{aligned} & 2.211(4), \\ & 2.282(4), \\ & 2.258(4) \end{aligned}$		4.6(3)
$[F e(t a c h p y r M e-o x-6)]^{2+}$	$\begin{aligned} & 1.906(3), \\ & 1.924(3), \\ & 1.929(3) \end{aligned}$	$\begin{aligned} & 1.987(3), \\ & 1.974(3), \\ & 1.981(3) \end{aligned}$	$\begin{aligned} & 80.51(13), \\ & 80.8(2), \\ & 80.66(13) \end{aligned}$	$\begin{aligned} & 44.6(2), \\ & 44.9(2), \\ & 44.9(2) \end{aligned}$
[Fe(tach-3-Mepyr-ox4) ${ }^{2+}$	$\begin{aligned} & 1.899(3), 1.909 \\ & \text { (3) (Fe-N imine); } \\ & 1.977(3)(\mathrm{Fe}) \end{aligned}$	$\begin{aligned} & 1.984(2) \\ & 1.991(3) \\ & 2.000(3) \end{aligned}$	$\begin{aligned} & 80.66(11) \\ & 80.88(11) \\ & 82.23(11) \end{aligned}$	$\begin{aligned} & 43.1 \\ & 44.5 \\ & 47.6 \end{aligned}$
$[F e(t r e n p y r-o x-6)]^{2+}$	$\begin{aligned} & \left(V_{\text {amine })}\right) \\ & 1.952(4), \\ & 1.953(4), \\ & 1.946(5) \\ & \hline \end{aligned}$	$\begin{aligned} & 1.983(5), \\ & 1.979(4), \\ & 1.979(4) \\ & \hline \end{aligned}$		54

Conclusion

From this work, multiple connections can be made between the chemistry of tach-based chelators and their biological properties. While tach-3-Mepyr, tachpyr and tach-3-MeOpyr all have similar binding properties toward $\mathrm{Fe}(\mathrm{II})$ in an oxygen-free environment, the rates of oxidative dehydrogenation of their Fe (II) complexes in air are substantially different. The rate of oxidation of the chelators appears related to their mechanism of cytotoxicity because rate of cytotoxicity correlates with the rate of oxidation. It was shown that tach-6-Mepyr does not undergo iron-mediated oxidative dehydrogenation, and that it is not cytotoxic. The affinity of a partially oxidized tachpyr derivative towards Fe (II) has been shown to be greater than the affinity of the same unoxidized derivative. This result shows how oxidation of the chelator improves its ability to act as an irondeprivation agent by introduction of the σ-donor $/ \pi$-acceptor function of an α, α^{\prime} diimine bonding group. Finally, it has been shown that tach-trisimine complexes decompose in aqueous pH 7.4 medium while a tach-bisimine Fe (II) complex is inert under the same conditions. This has been attributed to unfavorable coordination geometry imposed by the tach-trisimine chelator, while the bisimine chelator is flexible enough to obtain a suitable geometry. Several connections between the chemistry and biology of tachpyr and derivatives have been mentioned, but a full understanding of both chemical and biological aspects requires further study.

CHAPTER III

STRUCTURAL AND ELECTRONIC PROPERTIES OF NI(II), CU(II) AND ZN(II) COMPLEXES OF LINEAR, TETRADENTATE, AMINOPYRIDYL LIGANDS: TOWARDS ZN(II) SELECTIVITY

Introduction

The focus of this chapter is development of zinc-selective chelators. The need for Zn -selective chelators can be seen in several disciplines. Recently, the need to probe biological zinc has resulted in the development of several chelators with a chromophore or fluorophore built in that have an affinity towards divalent zinc. ${ }^{54-56}$ While these chelators do have an affinity for zinc they might not be selective for zinc. This allows other biometals to interfere by competing for the zinc-binding site. In this case selectivity is not essential because a response can still be measured. However, chelators designed to inhibit overactive matrix metalloproteinases (MMPs) by selectively binding zinc have not made it to clinical trials despite promising in vitro results due to a lack of metal binding selectivity. ${ }^{57}$ A similar problem has been seen in our own group's work with tachpyr. In cultured cells, tachpyr has been shown to bind both $\mathrm{Fe}(\mathrm{II})$ and $\mathrm{Zn}(\mathrm{II}) .{ }^{16,38}$ Our hypothesized mode of cytotoxicity, through iron deprivation, is difficult to prove if the chelator binds multiple metals. Development of a zincselective chelator that is chemically similar to tachpyr could provide more insight into tachpyr's mode of action and help in the determination of the cytotoxic effects of zinc deprivation along with iron deprivation. Zinc selective chelators
can also be used in separation chemistry. Development of a lipophilic ligand system that selectively removes zinc from acidic aqueous solutions has been thoroughly studied by Parker and coworkers who have had good results utilizing the formation of ZnL_{2} or $\mathrm{Zn}_{2} \mathrm{~L}_{2}$ species. ${ }^{58-60}$ This is of commercial interest because it is a more cost-efficient means of separation than traditional pyrometallurgical methods. ${ }^{59}$

The difficulty in obtaining selectivity for $\mathrm{Zn}(I)$ is in overcoming the IrvingWilliams series which states, the stability of complexes formed with divalent first row transition metals will increase in the order $\mathrm{Fe}<\mathrm{Co}<\mathrm{Ni}<\mathrm{Cu}>\mathrm{Zn}{ }^{61,62}$ This series predicts that Zn (II) will complex a given ligand with lesser stability than either $\mathrm{Ni}(\mathrm{II})$ or $\mathrm{Cu}(I)$. The remainder of this introduction discusses several aspects of Zn (II) coordination chemistry (geometric preferences and coordination number, donor atoms and the effect of increased steric bulk) that may be manipulated to increase the affinity of a chelator for $\mathrm{Zn}(\mathrm{II})$ relative to other divalent transition metals.

Divalent zinc is a d^{10} metal and therefore has a completely filled d shell. This leads to a ligand field stabilization energy (LFSE) of zero for any geometry. LFSE represents the stabilization of the d electrons, which is qualitatively determined by binding geometry, and whose magnitude is determined by strength of donor-acceptor interactions. ${ }^{63}$ With a LFSE of zero, $\mathrm{Zn}(\mathrm{II})$ can and will take on multiple geometries including tetrahedral. This cannot be said for most other transition metals where there is a preferred geometry other than
tetrahedral based on their LFSE. If a ligand with four donor atoms that can either force or easily attain a tetrahedral binding site is made, then the chelator's affinity for zinc relative to other metals should be enhanced. Tetrahedrally-enforcing chelators prepared for this purpose have been published in the literature with varied success. ${ }^{58-60,64-69}$ The most popular approaches to tetrahedral enforcement focus on the [2+2], $[2-2]_{2}$ and $[3+1]$ motifs (Figure 3.1 ${ }^{64}$).

$[2+2]$

[2-2]

$[3+1]$

[2-2]

[1 + 3]

Figure 3.1. Variety of ligand structure types imposing tetrahedral coordination
It is also important to use hard-soft acid-base theory to select the donor atoms to use for a zinc selective chelator. Zinc is considered an intermediate acid (in hard-soft terms) so it will bind with most types of donor atoms. While this might not be ideal, it can be used to rule out extremely hard donors such as anionic oxygen which prefer Fe (III) or Mn (II). Several donor groups have been investigated in the literature such as nitrogen in the forms of amines (primary, secondary and tertiary), pyridine, imidazole or sulfonamides as well as oxygen from carboxylates, phosphinates or phenolates. ${ }^{58-60,64-69}$ While no combination of donor atoms has been labeled as the best donor atoms for zinc selectivity, an N_{4}
donor set will readily bind zinc. This works out well since nitrogen is considered an intermediate base (in hard-soft terms) and matches up well with the intermediate acid characteristics of Zn (II).

In addition to limiting the number of donor atoms to four, use of steric bulk is another way of controlling the geometry a complex will obtain. Bulky groups can act in two different ways when binding a metal (depending on the binding motif, Figure 3.1). First, they can provide intra-ligand steric interactions and direct the donor atoms into the geometry that best alleviates steric strain, which is tetrahedral. An example of intra-ligand steric hindrance can be seen in our $[\mathrm{M} \text { (tach-6-Mepyr) }]^{2+}(\mathrm{M}=\mathrm{Cu}(\mathrm{II}), \mathrm{Zn}(\mathrm{II}))$ complexes. ${ }^{33}$ Second, they can prevent the binding of ancillary ligands through inter-ligand interactions, obscuring the binding sites not occupied by the donor atoms of the selective, and keeping the coordination number low. ${ }^{70}$

After having considered the preferred geometry of $\mathrm{Zn}(\mathrm{II})$, possible donor atoms and means of utilizing steric bulk we decided to focus our efforts on the [2 - 2] coordination motif using the known chelator, bispicpn (Scheme 3.2). It is an N_{4} chelator with sufficient flexibility to assume tetrahedral coordination. We saw two ways to derivatize the chelator, by adding steric bulk at the 6-position of the pyridine rings or homologating the arms of the ligand. Substitution at the 6position could provide intra- and inter-ligand steric effects. Homologation of bispicpn by adding a methylene unit to each arm would create three 6-membered chelate rings in the resulting complexes. These 6-membered chelate rings allow
for larger bite angles, which are favorable for tetrahedral geometry and metals with small atomic radii. ${ }^{71}$

In the literature it has been shown that bispicpn and its derivatives bind with varying stereochemistries. Thus, the $\mathrm{Ni}(\mathrm{II})$ complex of the N -methyl derivative formed a cis $-\beta$ complex ${ }^{72}$ while the $\mathrm{Cu}(I I)$ complex of bispicpn obtained a trans geometry ${ }^{73}$.

Our hope is to take advantage of the lack of LFSE of $\mathrm{Zn}(11)$ and determine if, by adding steric bulk, we can develop a chelator that binds in a tetrahedral geometry and ultimately is selective for divalent zinc, relative to other $\mathrm{M}(\mathrm{II})$ ions. The success of this project will rely on not only developing a chelator that has a high affinity towards zinc, but also one that has lowered affinities for other metals. As a result of this we will monitor the physical properties of other transition metal complexes ($\mathrm{Ni}(\mathrm{II})$ and $\mathrm{Cu}(\mathrm{II})$) as we study the $\mathrm{Zn}(\mathrm{II})$ complexes. The eventual goal of this project is to develop chelators with decreased affinities towards $\mathrm{Ni}(\mathrm{II})$ and $\mathrm{Cu}(\mathrm{II})$ without decreasing affinity for $\mathrm{Zn}(\mathrm{II})$ as much, thus gaining net selectivity towards $\mathrm{Zn}(\mathrm{II})$. Herein, the $\mathrm{Ni}(\mathrm{II}), \mathrm{Cu}(\mathrm{II})$ and $\mathrm{Zn}(\mathrm{II})$ complexes of bispicpn and two derivatives (Scheme 3.2 and Scheme 3.3) have been synthesized and characterized, and some qualitative changes in $M(I I)$ affinities that favor $\mathrm{Zn}(I I)$ are reported. Chelators used for comparison in this chapter are in Scheme 3.1.

Scheme 3.1. Amino/pyridyl chelators used for comparison and discussion
The nomenclature for six-coordinate geometries obtained by linear tetradentate chelators is dependent on the relative positions of the "open" coordination sites. They are typically occupied by an anion or solvent molecule, forming an overall pseudo-octahedral complex. For the five-coordinate geometries the relative positions of the pyridyl nitrogens along with the final geometry upon addition of an ancillary ligand (typically an anion or solvent molecule) determines the nomenclature. When an overall trigonal-bipyramidal geometry is attained a cis or trans label along with a Greek figure (if necessary) assigned. However, if an overall square-pyramidal conformation is attained that nomenclature is kept. Only one four-coordinate conformation, tetrahedral, can be expected from this series of linear tetraamine chelators.

Table 3.1. Possible conformations that this series of linear tetraamine ligands could take on for coordination numbers 4,5 and 6 for visual aid and use in discussion

Overall Coord. Number	Nomenclature
6	cis- α
6	cis- β
trans (5)	
5	cis- $\alpha(5)$
5	

Results

Ligand Synthesis

The tetraamine chelators bispicpn, L^{6}, and bis6Mepicpn, L^{7}, were prepared using an improvement to the method of Newkome and coworkers' method ${ }^{74}$ providing better yields than they reported. Ligands L^{6} and L^{7} were prepared by the condensation of the appropriate pyridyl aldehyde with 1,3diaminopropane in ethanol affording the desired diimino intermediate. Reduction of the diimine with NaBH_{4} in ethanol resulted in the target molecules. Yields for L^{6} and L^{7} were 85.0% and 96.6% respectively.

$\mathrm{R}=\mathrm{H}, \mathrm{L}^{6}$, bispicpn
$R=M e, L^{7}$, bis6Mepicpn
Scheme 3.2. Synthesis of bispicpn, L^{6}, and bis6Mepicpn, L^{7}
The homologated tetraamine chelator 1,9-bis(2-pyridyl)-3,7-diazanonane (bpdan), L^{8}, proved to be more difficult to obtain than L^{6} and L^{7}. The lack of availability of 2-pyridineacetaldehyde meant it needed to be synthesized. Attempts at making the desired aldehyde from 2-pyridylacetic acid by synthesizing the methyl ester, reducing it to the alcohol with NaBH_{4} and performing a Swern oxidation on the alcohol proved unsuccessful. Without the desired aldehyde other routes had to be explored. Among the routes attempted were the condensation of vinyl pyridine with 1,3-diaminopropane, coupling 2-(2aminoethyl)pyridine with 1,3-dibromopropane in an $S_{N} 2$ manner and formation of
the analogous amide through an active ester. However, these routes did not produce the desired product. L^{8} was successfully prepared by tosylation of the readily available starting materials 1,3-propanediol and 2-(2-aminoethyl)pyridine. Deprotonation of the pyridylsulfonamide with NaH to form the sodium salt followed by coupling with the tosyl diol afforded the protected ligand.

Deprotection of the amines with concentrated $\mathrm{H}_{2} \mathrm{SO}_{4}$ generated the free amine in 33 \% yield (Scheme 3.3).

a) $\mathrm{NaH}, \mathrm{MeCN}, 30 \mathrm{~min}, 60^{\circ} \mathrm{C}$

Scheme 3.3. Synthesis of bpdan, L^{8}

Metal Complexation

Scheme 3.4. Structures and numbering of isolated metal complexes of bispicpn, bis6Mepicpn and bpdan

The complexing properties of bispicpn, bis6Mepicpn and bpdan $\left(L^{6}, L^{7}\right.$ and L^{8} respectively) were evaluated by determination of reaction conditions needed to form $[\mathrm{ML}]^{2+}(\mathrm{M}=\mathrm{Ni}(\mathrm{II}), \mathrm{Cu}(\mathrm{II})$ and $\mathrm{Zn}(\mathrm{II}))$ and physical characterization of the resulting complexes (Scheme 3.4). To investigate the steric and electronic effects of varying pyridyl substituents and changing the chelate ring size, as well as obtain the coordination geometry around the $M(I I)$ center, the series of divalent metal complexes were isolated and characterized by UV-Vis or ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR as appropriate and IR spectroscopy. X-ray crystallography was performed for 19a-c. Isolation of the complexes was accomplished by reaction of equimolar amounts of the respective metal ion salts and the ligands in alcohol followed by precipitation with $\mathrm{Et}_{2} \mathrm{O}$. Purification by recrystallization from appropriate solvents produced crystalline solids for all the complexes except $[\mathrm{Ni}(\text { bispicpn })]^{2+}$ which was isolated and analyzed as a powder. For all of the $\mathrm{Ni}(\mathrm{II})$ and $\mathrm{Cu}(\mathrm{II})$ complexes ClO_{4}^{-}proved to be a suitable anion for isolation while $\mathrm{NO}_{3}{ }^{-}$ was the anion used for isolation of the $\mathrm{Zn}(\mathrm{II})$ species. Various anions $\left(\mathrm{Cl}^{-}, \mathrm{NO}_{3}{ }^{-}\right.$, ClO_{4}^{-}and $\left.\mathrm{CF}_{3} \mathrm{SO}_{3}^{-}\right)$were used to study $[\mathrm{Zn}(\text { bispicpn })]^{2+}$ and $[\mathrm{Zn}(\text { bpdan })]^{2+}$ in solution.

Electronic Structure

Solution phase UV-Vis/Near IR spectra of $\mathrm{Ni}(\mathrm{II})$ and $\mathrm{Cu}(I I)$ complexes served to characterize their structures and to assess the effects of varying pyridyl substituents and chelate ring size. The spectra were measured, assigned and compared with other amino/pyridyl complexes with both N_{4} and N_{6} chelators.

Nickel (III. The electronic absorption spectra of all the $\mathrm{Ni}(\mathrm{II})$ complexes produced absorptions typical of octahedral $\mathrm{Ni}(\mathrm{II})$. This suggests that in solution the $\mathrm{Ni}(I I)$ species exist in the form $\left[\mathrm{Ni}(\text { ligand })(\mathrm{X})\left(\mathrm{X}^{\prime}\right)\right]^{n+}$, where X or X^{\prime} could be any anion or solvent molecule and n can be 0,1 , or 2 depending on the charges of X and X^{\prime}. In both water and acetonitrile, 17a produced two principal bands at $18000-19000 \mathrm{~cm}^{-1}$ and $11000-12000 \mathrm{~cm}^{-1}$ (Figure 3.2, Table 3.2). These two bands have been assigned as the ${ }^{3} \mathrm{~A}_{2 g} \rightarrow{ }^{3} \mathrm{~T}_{1 g}$ and ${ }^{3} \mathrm{~A}_{2 g} \rightarrow{ }^{3} \mathrm{~T}_{2 g}$ transitions respectively. The low energy band is composed of two components as is seen by the presence of a small, high energy shoulder. The second component of the ${ }^{3} \mathrm{~A}_{29} \rightarrow{ }^{3} \mathrm{~T}_{29}$ transition which produces the shoulder is commonly seen in octahedral $\mathrm{Ni}(\mathrm{II})$ complexes and is assigned as the spin-forbidden ${ }^{3} \mathrm{~A}_{2 g} \rightarrow{ }^{1} \mathrm{E}_{\mathrm{g}}$ transition. A third, spin-allowed, transition is expected to be present in octahedral $\mathrm{Ni}(\mathrm{II})$ complexes at higher energies, however, this transition is not seen for 17a, as it is assumed to lie under the large charge-transfer $\left(\pi-\pi^{*}\right)$ band of the ligand.

Figure 3.2. Electronic absorption spectra of: a, [Ni(bispicpn)] $\left(\mathrm{ClO}_{4}\right)_{2}(17 a) ;$ b, $[\mathrm{Ni}(\mathrm{bis} 6 \mathrm{Mepicpn})]\left(\mathrm{ClO}_{4}\right)_{2}(\mathbf{1 7 b}) ; \mathrm{c}$, $[\mathrm{Ni}($ bpdan $)]\left(\mathrm{ClO}_{4}\right)_{2}(17 \mathrm{c})$ in water

The spectra of both 17b and 17c exhibit three bands at 27500-29000 $\mathrm{cm}^{-1}, 17000-18000 \mathrm{~cm}^{-1}$ and $10600-11400 \mathrm{~cm}^{-1}$ (Figure 3.2, Table 3.2). These bands have been assigned as the ${ }^{3} \mathrm{~A}_{2 g} \rightarrow{ }^{3} \mathrm{~T}_{1 g}(\mathrm{P}),{ }^{3} \mathrm{~A}_{2 g} \rightarrow{ }^{3} \mathrm{~T}_{1 g}(\mathrm{~F})$ and ${ }^{3} \mathrm{~A}_{2 g}$ $\rightarrow{ }^{3} \mathrm{~T}_{2 g}(\mathrm{~F})$ transitions, respectively. Again, the low energy transition contains a small, high energy shoulder assigned as the ${ }^{3} \mathrm{~A}_{2 g} \rightarrow{ }^{1} \mathrm{E}_{\mathrm{g}}$ transition. The major difference in the spectra of 17 b and 17 c when compared to 17 a is the red shift of the peaks and the resulting unmasking of the high energy $d-d$ transition. The appearance of this band is presumably due to the decrease in ligand field strength towards the $\mathrm{Ni}(\mathrm{II})$ center as either the steric bulk or the chelate ring size increases for $\mathbf{1 7 b}$ and $\mathbf{1 7 c}$ respectively. When comparing all three complexes, an important trend to note is the blue shift all of the spectra (17a-17c) undergo when taken in acetonitrile verses water. In acetonitrile, every peak is shifted to
higher energy by $\sim 1000 \mathrm{~cm}^{-1}$. This shift suggests coordination by solvent molecules instead of anion $\left(\mathrm{ClO}_{4}^{-}\right)$is what produces the observed octahedral geometry.

Table 3.2. Spectral data for $\mathrm{Ni}(I I)$ tetraamine complexes

Complex	Solvent	$\begin{gathered} v / \mathrm{cm}^{-1} \\ \left(\varepsilon / \mathrm{M}^{-1} \mathrm{~cm}^{-1}\right) \end{gathered}$	Assignments	$\Delta_{0}\left(\mathrm{~cm}^{-1}\right)$	color
$\left[\mathrm{Ni}\left(\mathrm{L}^{6}\right)\right]^{2+}$	$\mathrm{H}_{2} \mathrm{O}$	$\begin{aligned} & 18080(7.3) \\ & 13040 \mathrm{sh}(4.3) \\ & 11120(9.5) \end{aligned}$	$\begin{aligned} & { }^{3} \mathrm{~A}_{2 g} \rightarrow{ }^{3} \mathrm{~T}_{1 g} \\ & { }^{3} \mathrm{~A}_{2 g}{ }^{1} \mathrm{E}_{\mathrm{g}} \\ & { }^{3} \mathrm{~A}_{\mathrm{Lg}}{ }^{3} \mathrm{~T}_{2 g} \\ & { }^{\mathrm{A}} \mathrm{Ag}^{3} \mathrm{~T}_{1 g} \\ & { }^{3} \mathrm{~A}_{2 g}{ }^{1} \mathrm{E}_{\mathrm{g}} \\ & { }^{\mathrm{A}_{2 g} \rightarrow{ }^{3} \mathrm{~T}_{2 g}}{ }^{3} \mathrm{r} \end{aligned}$	11120	violet
	MeCN	$\begin{aligned} & 18910(9.7) \\ & 12840 \operatorname{sh}(5.4) \\ & 11920(6.7) \end{aligned}$		11920	violet
$\left[\mathrm{Ni}\left(L^{7}\right)\right]^{2+}$	$\mathrm{H}_{2} \mathrm{O}$	$\begin{aligned} & 27480(11.5) \\ & 16980(6.7) \\ & 12890 \mathrm{sh}(2.7) \\ & 10590(9.7) \end{aligned}$		10590	blue
	MeCN	$\begin{aligned} & 28900(13.1) \\ & 17920(8.3) \\ & 12830 \operatorname{sh}(5.4) \\ & 10940(9.5) \end{aligned}$		10940	violet
$\left[\mathrm{Ni}\left(\mathrm{L}^{8}\right)\right]^{2+}$	$\mathrm{H}_{2} \mathrm{O}$	$\begin{aligned} & 27470(14.7) \\ & 17090(8.8) \\ & 12850 \mathrm{sh}(1.5) \\ & 10610(6.0) \end{aligned}$	${ }^{3} \mathrm{~A}_{2 g} \rightarrow{ }^{3} \mathrm{~T}_{19}$ ${ }^{3} \mathrm{~A}_{2 g} \rightarrow{ }^{3} \mathrm{~T}_{19}$ ${ }^{3} \mathrm{~A}_{2 g} \rightarrow{ }^{1} \mathrm{E}_{9}$ ${ }^{3} \mathrm{~A}_{2 g} \rightarrow{ }^{3} \mathrm{~T}_{2 g}$	10610	blue
	MeCN	$\begin{aligned} & 28490(28.0) \\ & 18050(14.5) \\ & 12820 \text { sh (4.1) } \\ & 11390(7.0) \end{aligned}$	$\begin{aligned} & { }^{3} \mathrm{~A}_{2 g} \rightarrow{ }^{3} \mathrm{~T}_{19} \\ & { }^{3} \mathrm{~A}_{2 g}{ }^{3} \mathrm{~T}_{19} \\ & { }^{3} \mathrm{~A}_{29} \rightarrow \mathrm{E}_{g} \\ & { }^{\mathrm{A}_{2 g} \rightarrow{ }^{3} \mathrm{~T}_{2 g}} \end{aligned}$	11390	violet
$[\text { Ni(bispicen) }]^{2+75}$	MeOH	$\begin{aligned} & 16530(13.0) \\ & 9860(9.0) \end{aligned}$	$\begin{aligned} & { }^{3} \mathrm{~A}_{2 g} \rightarrow{ }^{3} \mathrm{~T}_{19} 2 \\ & { }^{3} \mathrm{~A}_{2 g} \rightarrow{ }^{3} \mathrm{~T}_{2 g} \end{aligned}$	9860	
$[\mathrm{Ni} \text { (tachpyr) }]^{2+5}$	MeOH	$\begin{aligned} & 19570(16.6) \\ & 12550(16.0) \\ & 11360 \operatorname{sh}(11.8) \end{aligned}$	$\begin{aligned} & { }^{3} \mathrm{~A}_{29} \rightarrow{ }^{3} \mathrm{~T}_{19} \\ & { }^{3} \mathrm{~A}_{2 g}{ }^{3} \mathrm{~T}_{2 g} \\ & { }^{3} \mathrm{~A}_{2 g} \rightarrow{ }^{1} \mathrm{E}_{\mathrm{g}}{ }^{3} \mathrm{~F} \end{aligned}$	11360	
$[\mathrm{Ni}(\text { (} \mathrm{bpdo})]^{2+76}$	$\mathrm{H}_{2} \mathrm{O}$	$\begin{aligned} & 28200(20.0) \\ & 22500(8.0) \\ & 17400(16.0) \\ & 11050(20.0) \end{aligned}$	$\begin{aligned} & { }^{3} \mathrm{~A}_{2 g} \rightarrow{ }^{3} \mathrm{~T}_{1 g}{ }^{\mathrm{g}} \mathrm{~A}_{2 g}{ }^{1} \mathrm{~A}_{2 \mathrm{a}} \\ & \mathrm{~A}_{2 g} \mathrm{~A}_{2 g}{ }^{3} \mathrm{~T}_{1 g} \\ & { }^{3} \mathrm{~A}_{2 g}{ }^{3} \mathrm{~T}_{2 g}{ }^{3} \end{aligned}$	11050	
$\begin{aligned} & {[\mathrm{Ni}((\mathrm{~N}-} \\ & \left.\left.\mathrm{Me})_{2} \mathrm{bispicpn}\right)\right]^{2+72} \end{aligned}$	MeOH	$\begin{aligned} & 16920(24.0) \\ & 10290(27.0) \end{aligned}$	$\begin{aligned} & { }^{3} \mathrm{~A}_{2 g} \rightarrow{ }^{3} \mathrm{~T}_{19} \\ & { }^{3} \mathrm{~A}_{29}{ }^{3} \mathrm{~T}_{2 g} \end{aligned}$	10290	

${ }^{\text {a }}$ The presence of this band is attributed to a square planar $\mathrm{Ni}(I I)$ species in solution along with the solvated, distorted octahedral complex.

Copper (II). Figure 3.3 shows the series of $\mathrm{Cu}(\mathrm{II})$ complexes ($\mathbf{1 8 a} \mathbf{- 1 8 c}$) in water. The series in acetonitrile shows similar profiles with slight shifts to
higher energy (Table 3.3). Again, the solvent dependence of the band positions indicates a bonding interaction between the metal center and solvent molecules. However, the determination of geometry for the $\mathrm{Cu}(\mathrm{II})$ complexes is not as straightforward as it was for the $\mathrm{Ni}(\mathrm{II})$ complexes. It has been well documented that the coordination sphere of $\mathrm{Cu}(\mathrm{II})$ is quite flexible and can assume multiple coordination geometries of various coordination numbers including 4,5 and 6 .

Figure 3.3. Electronic absorption spectra of: a, $[\mathrm{Cu}($ bispicpn $)]\left(\mathrm{ClO}_{4}\right)_{2}(\mathbf{1 8 a}) ; \mathrm{b}$, $[\mathrm{Cu}(\mathrm{bis6} 6 \mathrm{Mepicpn})]\left(\mathrm{ClO}_{4}\right)_{2}(\mathbf{1 8 b})$; $\mathrm{c},[\mathrm{Cu}($ bpdan $)]\left(\mathrm{ClO}_{4}\right)_{2}(\mathbf{1 8 c})$ in water

Complex 18a produces a large, symmetric peak around $16500 \mathrm{~cm}^{-1}$. Such a peak is associated with an octahedral $\mathrm{Cu}(\mathrm{II})$ complex. Any slight asymmetry seen in the peak is attributed to tetragonal distortions present in the complex. Complexes 18b and 18c each produce a single, broad, asymmetric peak with maxima around 14000 and $15000 \mathrm{~cm}^{-1}$, respectively. The asymmetry is due to the plasticity of the metal center, as the geometry around the metal center
dictates the shape of the peak. The spectra for 18b and 18c do not allow for unambiguous assignment of the geometry of the complex, but based on position and shape of the peaks 18b and 18c are most likely square-pyramidal and tetragonally distorted octahedral respectively in solution.

Table 3.3. Spectral data for $\mathrm{Cu}(\mathrm{II})$ tetraamine complexes

Complex	Solvent	$\begin{gathered} v / \mathrm{cm}^{-1} \\ \left(\varepsilon / M^{-1} \mathrm{~cm}^{-1}\right) \end{gathered}$	Assignments	$\Delta_{0}\left(\mathrm{~cm}^{-1}\right)$	Color
$\left[\mathrm{Cu}\left(\mathrm{L}^{6}\right)\right]^{2+}$	$\mathrm{H}_{2} \mathrm{O}$	16530 (134.7)	${ }^{2} \mathrm{E}_{\mathrm{g}} \rightarrow{ }^{2} \mathrm{~T}_{2 \mathrm{~g}}$	16530	violet blue
	MeCN	16720 (198.7)	${ }^{2} \mathrm{E}_{\mathrm{g}} \rightarrow{ }^{2} \mathrm{~T}_{2 g}$	16720	
$\left[\mathrm{Cu}\left(\mathrm{L}^{7}\right)\right]^{2+}$	$\mathrm{H}_{2} \mathrm{O}$	13990 (139.0)	$\mathrm{E}_{\mathrm{g}} \mathrm{T}_{2}$	13990	blue blue
	MeCN	14350 (280.0)	-	14350	
$\left[\mathrm{Cu}\left(\mathrm{L}^{8}\right)\right]^{2+}$	$\mathrm{H}_{2} \mathrm{O}$	14950 (159.1)	-	14950	blue blue
	MeCN	15630 (203.3)		15630	
$[\mathrm{Cu} \text { (bispicen) }]^{2+77}$	MeCN	16690 (182.0)	${ }^{2} \mathrm{E}_{\mathrm{g}} \rightarrow{ }^{2} \mathrm{~T}_{2 \mathrm{~g}}$	16690	
$[\mathrm{Cu} \text { (tachpyr) }]^{2+7}$	MeOH	15110 (93.0)	${ }^{2} \mathrm{E}_{g} \rightarrow{ }^{2} \mathrm{~T}_{2 g}$	15110	blue
$[\mathrm{Cu} \text { (bpdo) }]^{2+78}$	MeCN	17270 (180.0)	${ }^{2} \mathrm{E}_{\mathrm{g}} \rightarrow{ }^{2} \mathrm{~T}_{2 g}$	17270	
$[\mathrm{Cu}(\text { pdan })]^{2+79}$	$\mathrm{H}_{2} \mathrm{O}$	15170 (274.0)	${ }^{2} \mathrm{E}_{g} \rightarrow{ }^{2} \mathrm{~T}_{29}$	15170	

Competition Reactions

To compare the selectivity of chelators L^{6}, L^{7} and L^{8} for either $\mathrm{Ni}(\mathrm{II})$ or $\mathrm{Cu}(\mathrm{II})$ versus $\mathrm{Zn}(\mathrm{II})$, aqueous solutions of $17 \mathrm{a}-\mathbf{c}$ and 18a-c were prepared and 1,10 or 100 equivalents of Zn (II) was added to the solutions. The UV-Vis spectrum was followed for up to 24 hours after the addition of Zn (II) to monitor any spectral changes that would occur with exchange of the metal centers. Multiple wavelengths were monitored and used to determine that any spectral changes were due to the loss of the $\mathrm{Ni}(\mathrm{II})$ or $\mathrm{Cu}(\mathrm{II})$ complex. Only 17 b showed a decrease in spectral intensity with addition of Zn (II). For this reaction (Eqn. 2) the $K_{\text {eq }}$ value was determined to be $1.67(\pm 0.07) \times 10^{-2}$ showing little exchange, as expected from the Irving-Williams series. To ensure the reaction was at
equilibrium the solution was heated up and then allowed to cool down. Upon heating, the spectral intensity further decreased; but it returned when the solution cooled to its starting temperature.

$$
\begin{equation*}
\left[\mathrm{Ni}\left(\mathrm{~L}^{7}\right)\right]^{2+}+10 \mathrm{Zn}^{2+} \rightleftharpoons \mathrm{n}\left[\mathrm{Zn}\left(\mathrm{~L}^{7}\right)\right]^{2+}+\mathrm{nNi}^{2+}+10-\mathrm{n} \mathrm{Zn}^{2+} \tag{Eqn.2}
\end{equation*}
$$

Structural Studies

To elucidate the effects of alkylation at the six-position of the pyridine rings and of increasing the chelate ring size of the chelator on the solution-state structures of the $\mathrm{Zn}(\mathrm{II})$ complexes $\mathbf{1 9 a - c},{ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR studies were performed. To study the effects of alkylation and homologation of the chelator on the solid-state structures, we undertook crystallographic studies on 19a-c.
${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR. The NMR spectra of $19 a$ showed two symmetric species in solution (Figure 3.4). There are two distinct sets of peaks representing a major and minor species in both the ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR that, from integration of the pyridyl protons in the ${ }^{1} \mathrm{H}$ NMR, show the two species to exist in a ratio of 1:2.2. To examine the effect of other anions on the complex, a series of spectra with $\mathrm{Cl}^{-}, \mathrm{ClO}_{4}{ }^{-}$and OTf were collected. When Cl^{-}was used only one species was seen in solution, but when ClO_{4}^{-}and OTf were used two species were again seen.

Figure 3.4. ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra of 19a
Complex 19b provided a ${ }^{1} \mathrm{H}$ NMR that had several broad, unassignable peaks while the ${ }^{13} \mathrm{C}$ NMR only produced eight peaks; seven sharp, well defined peaks and a short, broad peak. It was determined that some type of dynamic process was occurring and variable temperature (VT) NMR was used to interpret the spectra. By increasing the temperature to $65^{\circ} \mathrm{C}$, several peaks in the ${ }^{1} \mathrm{H}$ NMR converged or sharpened up to produce a spectrum representative of one symmetric species. With an increase in temperature to $65^{\circ} \mathrm{C}$, the ${ }^{13} \mathrm{C}$ NMR produced the expected nine peaks.

Figure 3.5. Series of high temperature ${ }^{1} \mathrm{H}$ NMR of 19 b

Complex 19c produced ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra similar to 19 a . To analyze the association of anions to $[\mathrm{Zn}(\mathrm{bpdan})]^{2+}$, a series of spectra were collected with various anions including $\mathrm{NO}_{3}^{-}, \mathrm{Cl}^{-}, \mathrm{ClO}_{4}^{-}$and $\mathrm{CF}_{3} \mathrm{SO}_{3}^{-}$. When $\mathrm{NO}_{3}{ }^{-}$was used there appeared to be one species in solution. However, there was some broadening and lack of definition in the ${ }^{1} \mathrm{H}$ spectrum in the aliphatic region and not all of the carbons were accounted for in the ${ }^{13} \mathrm{C}$ spectrum. This was attributed to a dynamic process occurring in solution. The spectra of the Cl^{-} species clearly showed one symmetric species in solution. The spectra obtained for the $\mathrm{ClO}_{4}{ }^{-}$and $\mathrm{CF}_{3} \mathrm{SO}_{3}{ }^{-}$anion species provided evidence for two symmetric species in solution with ratios of 1:2.9 and 1:2.2 respectively.

X-ray Crystallography. Solid-state structural data were obtained for complexes 19a-c using X-ray crystallography. The crystal data showed that all three complexes obtained a distorted cis- β octahedral geometry around the metal center. The axial sites of the octahedron are occupied by a nitrate oxygen and a pyridyl nitrogen for each complex. Complexes 19a, 19b and 19c are depicted in Figures 3.6 - 3.8 and selected bond lengths and angles are listed in Table 3.4.

Figure 3.6. ORTEP view of the complex cation of $\left[\mathrm{Zn}(\right.$ bispicpn $\left.)\left(\mathrm{NO}_{3}\right)\right]\left(\mathrm{NO}_{3}\right)$ (19a) (50 \% probability ellipsoids) with hydrogens omitted for clarity

Figure 3.7. ORTEP view of the complex cation of $\left[\mathrm{Zn}\right.$ (bis6Mepicpn) $\left.\left(\mathrm{NO}_{3}\right)\right]\left(\mathrm{NO}_{3}\right)$ (19b) (50 \% probability ellipsoids) with hydrogens omitted for clarity

Figure 3.8. ORTEP view of the complex cation of $\left[\mathrm{Zn}(\mathrm{bpdan})\left(\mathrm{NO}_{3}\right)\right]\left(\mathrm{NO}_{3}\right)(19 \mathrm{c})$ (50% probability ellipsoids) with hydrogens omitted for clarity

Table 3.4. Structural comparisons of $\left[\mathrm{Zn}(\right.$ bispicpn $\left.)\left(\mathrm{NO}_{3}\right)\right]\left(\mathrm{NO}_{3}\right)(19 a)$, $\left[\mathrm{Zn}(\right.$ bis6Mepicpn $\left.)\left(\mathrm{NO}_{3}\right)\right]\left(\mathrm{NO}_{3}\right)(19 b)$ and $\left[\mathrm{Zn}(\right.$ bpdan $\left.)\left(\mathrm{NO}_{3}\right)\right]\left(\mathrm{NO}_{3}\right)(19 \mathrm{c}$

	$\mathrm{Zn}-\mathrm{N}_{\text {amine }}$ distances (A)	$\begin{aligned} & \mathrm{Zn}-\mathrm{N}_{\mathrm{py}} \\ & \text { distances } \\ & (A) \end{aligned}$	$\mathrm{Zn}-\mathrm{O}$ distances (\AA)	$\begin{aligned} & \mathrm{N}_{\text {amine }}-\left(\mathrm{CH}_{2}\right)_{n^{-}} \\ & \mathrm{N}_{\text {py }} \text { bite } \\ & \text { angle, } \alpha\left({ }^{\circ}\right) \end{aligned}$	$\mathrm{N}_{\text {amine }}-\left(\mathrm{CH}_{2}\right)_{\mathrm{n}}-$ $\mathrm{N}_{\text {amine }}$ bite angle, $\beta\left({ }^{\circ}\right)$
$\left[\mathrm{Zn}\left(\mathrm{L}^{6}\right)\left(\mathrm{NO}_{3}\right)\right]^{\text {+a }}$	2.1288 (16)	2.0709 (15)	2.2823 (14)	80.84 (6)	96.70 (6)
	2.0756 (16)	2.1493 (15)	2.2193 (14)	80.32 (6)	
	$\begin{aligned} & 2.0818(17) \\ & 2.1214(16) \end{aligned}$	$\begin{aligned} & 2.1215(15) \\ & 2.0841(15) \end{aligned}$	$\begin{aligned} & 2.2498(15) \\ & 2.2678(15) \end{aligned}$	$\begin{aligned} & 81.34(6) \\ & 81.13(6) \end{aligned}$	96.68 (7)
$\left[\mathrm{Zn}\left(\mathrm{L}^{7}\right)\left(\mathrm{NO}_{3}\right)\right]^{+}$	$\begin{aligned} & 2.0713(17) \\ & 2.0979(18) \end{aligned}$	$\begin{aligned} & 2.1105(17) \\ & 2.1401(17) \end{aligned}$	$\begin{aligned} & 2.1407(15) \\ & 2.5176(15) \end{aligned}$	$\begin{aligned} & 82.31(7) \\ & 79.33(7) \end{aligned}$	91.65 (7)
$\left[\mathrm{Zn}\left(\mathrm{L}^{8}\right)\left(\mathrm{NO}_{3}\right)\right]^{+}$	$\begin{aligned} & 2.069(2) \\ & 2.096(2) \\ & \hline \end{aligned}$	$\begin{aligned} & 2.178(2) \\ & 2.097(2) \end{aligned}$	$\begin{aligned} & 2.229(2) \\ & 2.429(2) \end{aligned}$	$\begin{aligned} & 93.79(8) \\ & 93.59(8) \end{aligned}$	93.17 (9)

${ }^{\text {a }}$ Structure has two independent molecules in the asymmetric unit and both corresponding sets of data are given.

Discussion

Electronic Structure

No surprises were encountered when characterizing the $\mathrm{Ni}(\mathrm{II})$ complexes.
The d^{8} electron configuration of divalent nickel will assume an octahedral
geometry when there are six donor atoms available to complex with the metal and that is what was observed. All the complexes produced spectra typical of octahedral amino/pyridyl nickel with either solvent molecules or anions providing the fifth and sixth donor atoms (Table 3.2). Divalent copper provides a more challenging characterization. Its d^{9} electron configuration allows for a more flexible coordination sphere, as seen in several reports of 4-, 5- and 6-coordinate $\mathrm{Cu}(\mathrm{II})$ compounds.

Nickel (II) Spectra. The entire series of Ni (II) spectra can be seen in
Figure 3.2. From the positions of the transitions and the subsequent Δ_{0} values the relative field strengths of the ligands towards divalent nickel can be listed as bispicpn > bpdan \sim bis6Mepicpn in both water and acetonitrile. It is the larger field strength towards nickel that makes the UV-Vis spectrum of 17a differ from those of 17 b and 17 c . With a larger field strength towards the metal center all of the electronic transitions are shifted to higher energies, placing the ${ }^{3} \mathrm{~A}_{2 \mathrm{~g}} \rightarrow{ }^{3} \mathrm{~T}_{1 \mathrm{~g}}$ (P) transition of 17a under the large $\pi-\pi^{*}$ transition of the ligand similar to the analogous amino/pyridyl complexes $[\mathrm{Ni}(\text { bispicen })]^{2+}$ and $\left[\mathrm{Ni}\left((\mathrm{N}-\mathrm{Me})_{2^{-}}\right.\right.$ bispicpn) $]^{2+72,75}$ and confirming the data of McKenzie et al. ${ }^{80}$ as well as Pandiyan et al. ${ }^{75}$

The reason for the weakened field strength and the appearance of the ${ }^{3} \mathrm{~A}_{2 g} \rightarrow{ }^{3} \mathrm{~T}_{1 g}$ transition in 17 b and 17 c is presumably different for each complex. In 17b an element of steric bulk has been added to the ligand by incorporating a methyl group onto the pyridine ring at the 6-position, as we have previously
reported for tach-6-Mepyr. ${ }^{33}$ Octahedral coordination in all of the cis- α, cis- β and trans configurations will always lead to collisions of the methyl groups. Complex 17c differs from 17a in the size of its chelate rings. Bispicpn offers 3 chelate rings; two 5-membered rings and one 6-membered ring for a 5-6-5 arrangement. Since the two arms of bpdan have been extended by one methylene unit it provides three 6-membered chelate rings in a 6-6-6 arrangement. The affinity of a ligand towards larger metals, such as divalent cadmium or lead, is lower for a ligand with a 6-membered chelate ring than for the same ligand with a 5membered chelate ring. ${ }^{81,82}$ However, it has also been pointed out that increasing the chelate ring size of more than one or sometimes two chelate rings will decrease the affinity of the ligand toward both large and small metal ions due to the introduction of steric crowding. ${ }^{71}$ The introduction of this steric crowding explains why the 6-6-6 arrangement of L^{8} provides a lower field strength toward $\mathrm{Ni}(I I)$ than bispicpn.

One similarity between the UV-Vis spectra of all the nickel complexes is the position of the weak shoulder of the ${ }^{3} \mathrm{~A}_{2 g} \rightarrow{ }^{3} \mathrm{~T}_{2 g}(\mathrm{~F})$ transition. As mentioned earlier, this absorption is assigned to the spin-forbidden ${ }^{3} \mathrm{~A}_{2 g} \rightarrow{ }^{1} \mathrm{E}_{\mathrm{g}}(\mathrm{D})$ transition. This transition is present due to spin orbit coupling. As the other bands in this series of spectra travel to various energies depending on the complex, the ${ }^{3} \mathrm{~A}_{2 g} \rightarrow$ ${ }^{1} E_{g}(D)$ transition stays relatively stagnant. This can be explained by examining the Tanabe-Sugano diagram for d^{8} metals (Figure 3.9).

Figure 3.9. Tanabe-Sugano diagram for d^{8} metals
The ${ }^{1} \mathrm{E}_{g}$ energy level is nearly parallel to the ground state ${ }^{3} \mathrm{~A}_{2 g}$ energy level while the other observed transitions all have energy levels with increasing slopes. This means, regardless of the ground state energy of the complex, the ${ }^{3} \mathrm{~A}_{2 g} \rightarrow{ }^{1} \mathrm{E}_{g}$ (D) transition will always be close to the same energy while the energy needed to facilitate the other transitions will vary depending on the system.

Copper (II) Spectra. While the electronic absorption spectra of Cu (II) amino/pyridyl complexes are relatively simple, usually containing only one, broad peak, they can be quite difficult to interpret. The difficulty of interpreting the electronic absorption spectrum of a $\mathrm{Cu}(11)$ complex arises from its flexible coordination sphere and ability to take on irregular geometries. ${ }^{25,83}$ There are some general rules regarding placement and shape of the transitions in a Cu (II) UV-Vis spectrum that can lead to assignments of stereochemistry around the metal center. For 4-coordinate complexes containing square planar or distorted
tetrahedral geometry a transition in the region of $15,000-21,000 \mathrm{~cm}^{-1}$ is usually seen. ${ }^{84,85}$ Complexes containing the 5 -coordinate square pyramidal geometry tend to have a band in the region of $15,000-18,000 \mathrm{~cm}^{-1}$ with a low energy shoulder ${ }^{25-27}$ while 5 -coordinate trigonal bipyramidal complexes have a band at energies lower than $14,000 \mathrm{~cm}^{-1}$ with a high energy shoulder ${ }^{27,83,86}$. The splitting diagrams for square pyramidal and trigonal bipyramidal complexes can be seen in Figure 1.4. Finally, 6-coordinate tetragonal octahedral complexes produce a band in the region of $15,500-20,000 \mathrm{~cm}^{-1} . .^{83,84}$ Although these rules are very general, they can be a useful starting place for spectral interpretation.

The complex [Cu(bispicpn)] ${ }^{2+}$ has been previously studied by several groups. ${ }^{77,80,85,87}$ Through the use of X -ray crystallography ${ }^{73}$, X-ray powder diffraction ${ }^{80}$, diffuse reflectance spectroscopy ${ }^{80}$ and UV-Vis spectroscopy ${ }^{79,85}$ a general consensus has been reached that 18a contains a tetragonally distorted octahedral geometry in solution. McKenzie and coworkers ${ }^{73,80}$ have shown through X-ray techniques that, in the solid state, the ligand wraps around the metal center in a distorted in-plane fashion and adopts a distorted square-planar geometry with axial interactions between perchlorate anions and the metal center (CSD reference code, PYDCUA). Comparison of the X-ray data of 18a reported by McKenzie, the solution state UV-Vis data of 18a from this work (Table 3.3,

Figure 3.3) and previous reports suggests that in solution the complex retains its solid state geometry, most likely with solvent molecules replacing the anions in the axial positions. It is difficult to rule out the possibility of square-pyramidal
geometry based on band position; however, the symmetry of the observed peak in the electronic absorption spectrum indicates our data agrees with previous reports and the complex is most likely in a tetragonally distorted octahedral environment.

McKenzie and Gibson suggested that B-strain is a contributing factor in determining the final geometry that tetradentate amino/pyridyl ligands such as bispicen and bispicpn will adopt. B-strain refers to the bulkiness of a ligand and the resulting steric interaction produced by increasing the bulk as substituents are added to a ligand or as individual chelate rings are lengthened. ${ }^{88}$ They state that a complex obtaining a trans geometry will incur the greatest B-strain while the cis- β and cis- α geometries will each possess less B-strain. ${ }^{80}$ Hancock and coworkers further demonstrated this point by performing molecular mechanics (MM) calculations on $\mathrm{Cu}(\mathrm{II})$ complexes with bispicen and bispicpn bound in a distorted square-planar geometry. Their calculations showed the distance between the 6,6 '-hydrogens of the pyridine rings of the bispicpn complex were closer than those of the bispicen complex and there was greater strain in the bispicpn complex. ${ }^{82}$ Rybak-Akimova and coworkers also contributed to the steric hindrance discussion by comparing the X-ray structures of three amino/pyridyl $\mathrm{Cu}(\mathrm{II})$ complexes with varying chelate ring sizes or 5-5-5, 5-6-5 and 6-5-6
(Figure 3.10). They were able to show that as the number of 6 -membered chelate rings increased the more tetrahedral distortion occurred around the metal
center, but the ligand still adopted a distorted trans geometry, with all the donor atoms wrapped around the equator of the metal center. ${ }^{78}$

Figure 3.10. X-ray data of a series of $\left[\mathrm{CuN}_{4}\right]^{2+}$. complexes with amino/pyridyl donors and varying chelate ring sizes with all hydrogens removed except the 6,6'-hydrogens; ${ }^{\text {a ref } \# 78, ~}{ }^{\text {b }}$ ref \# 73

As seen from the X -ray structure of $[\mathrm{Cu}($ bispicpn $)]\left(\mathrm{ClO}_{4}\right)_{2}$ (Figure 3.10), introduction of methyl groups at the 6 and 6^{\prime} positions of the pyridine rings of L^{6} should introduce a large amount of steric hindrance if the chelator binds around the equator of the metal center in a trans fashion. Newkome and coworkers studied the effect of 6-methylation by comparing $\operatorname{Pd}(I I)$ complexes of L^{6} and L^{7} by X-ray crystallography. Divalent palladium is a d^{8} metal and strongly favors a square-planar geometry. It was concluded that while the presence of methyl groups caused only minor distortions of square-planar geometry in $\left[\operatorname{Pd}\left(L^{6}\right)\right]^{2+}$ and $\left[\mathrm{Pd}\left(\mathrm{L}^{7}\right)\right]^{2+}$ it was probably due to the strong electronic preferences of $\mathrm{Pd}(\mathrm{II})$ and its larger ionic radius, which decreases the steric interactions. ${ }^{74}$ McKenzie and Gibson came to a similar conclusion when studying the solid state structure of $\left[\mathrm{Cu}\left(\mathrm{L}^{7}\right)\right]\left(\mathrm{ClO}_{4}\right)_{2}$. They state that there is a large tetrahedral distortion around the metal center, but the chelator is still wrapped around the metal center in a planar fashion due to the stabilization provided by the crystal lattice. ${ }^{80}$ While it is good to have an idea of the solid state geometry, it is important to realize that the
lattice stabilization McKenzie discusses will be gone in solution and the possibility of a new geometry around the metal center is quite likely.

With the introduction of methyl groups and possible steric interactions it is reasonable to expect either a drop in coordination number from 6 to 5 or a shift in octahedral binding from trans to either cis- α or cis- β as the pyridine rings of the chelator are forced away from each other. Unfortunately, the electronic absorption spectrum of 18b does not provide us with distinct evidence for one situation or the other. It does show two changes when compared to the spectrum of 18a. First, there is a shift to lower energy and second, there is an element of asymmetry introduced to the absorption. Based on the position of the peak, around $14,300 \mathrm{~cm}^{-1}$ (Table 3.3, Figure 3.3), it is difficult to fit the energy of the peak with any particular geometry according to the general rules mentioned above. Because of the ambiguity of the position of the peak it is necessary to focus on its shape to assign a geometry to the complex. The asymmetry of the absorbance spectrum makes it clear that multiple bands are under the peak requiring deconvolution of the spectrum. Upon deconvolution it was determined that the spectrum was composed of three peaks (Figure 3.11).

Figure 3.11. Deconvolution of $[\mathrm{Cu}($ bis 6 Mepicpn $)]\left(\mathrm{ClO}_{4}\right)_{2}$ (18b) in water (solid black line = experimental data, dashed red line = sum of black dashed lines)

The presence of three bands in a $\mathrm{Cu}(I I)$ UV-Vis spectrum usually suggests the complex has a square-pyramidal geometry. However, this geometry typically has a distinct low energy shoulder. The deconvolution does not allow unambiguous structural assignment, however it appears to be a five-coordinate geometry derived by adding a weakly bound ligand to the trans solid-state structure.

The electronic absorption spectrum of the novel complex 18c is slightly asymmetric and shifted to lower energy relative to 18a. This asymmetric band at $15,000 \mathrm{~cm}^{-1}$ was satisfactorily decomposed to two peaks (Figure 3.12).

Figure 3.12. Deconvolution of $[\mathrm{Cu}(\mathrm{bpdan})]\left(\mathrm{ClO}_{4}\right)_{2}(18 \mathrm{c})$ in water (solid black line = experimental data, dashed red line $=$ sum of black dashed lines)

This spectrum cannot readily be assigned to a specific geometry; although trigonal-bipyramidal Cu(II) may consist of two peaks, the relative intensities expected are reversed from those observed. On the other hand, comparison of similar complexes such as $\mathrm{L}^{8 \prime}$ s N -methylated derivative ${ }^{79}$ or the ethylenediamine backbone derivative ${ }^{78}$ (6-5-6 chelate ring system seen in Figure 3.10) which have both been assigned as having tetragonally distorted octahedral geometry in solution have been reported as having similar spectra with a single broad absorption, at a lower and a higher energy, respectively (Table 3.3). It therefore appears likely that 18c possesses a tetragonally distorted octahedral geometry.

Competition Reactions

To evaluate the affinity of L^{6}, L^{7} and L^{8} towards $\mathrm{Ni}(\mathrm{II})$ and $\mathrm{Cu}(\mathrm{II})$ relative to $\mathrm{Zn}(\mathrm{II})$, free zinc, in the form of anhydrous $\mathrm{Zn}(\mathrm{OTf})_{2}$, was added to aqueous
solutions of the individual complexes 17a-c and 18a-c. The generic equation for the resulting reaction is shown as Eqn. 3. This type of test provides a method

$$
\begin{equation*}
\left[\mathrm{M}\left(\mathrm{~L}^{n}\right)\right]^{2+}+\mathrm{Zn}^{2+} \Longrightarrow\left[\mathrm{Zn}\left(\mathrm{~L}^{n}\right)\right]^{2+}+\mathrm{M}^{2+} \quad(\mathrm{n}=6,7,8 ; \mathrm{M}=\mathrm{Ni}, \mathrm{Cu}) \tag{Eqn.3}
\end{equation*}
$$

of comparing stability constants of the complexes in solution without actually having to calculate their values. If the stability constants of the two complexes are the same and one equivalent of $\mathrm{Zn}(\mathrm{II})$ is added to a solution of $\left[\mathrm{M}\left(\mathrm{L}^{7}\right)\right]^{2+}$, when the reaction reaches equilibrium there should be equal amounts of both metal complexes. Based on the Irving-Williams series the likelihood of seeing any spectral changes due to an exchange of $\mathrm{Ni}(\mathrm{II})$ or $\mathrm{Cu}(\mathrm{II})$ with $\mathrm{Zn}(\mathrm{II})$ is very small ${ }^{61,62}$, and indeed a lack of exchange was observed for all complexes except 17b. This is a clear indication that the bulk introduced at the 6 -position of the pyridine rings plays a larger role in decreasing the stability of the metal complex than the incorporation of extra 6-membered chelate rings.

The equilibrium constant of a reaction is the ratio of stability constants of the complexes present. ${ }^{89}$ The calculated $K_{\text {eq }}$ value of $1.67(\pm 0.07) \times 10^{-2}$ allows a comparison of stability constants to be made between 17 b and 19 b . The stability constant of L^{7} with $\mathrm{Ni}(\mathrm{II})$ is approximately 60 times greater than with $\mathrm{Zn}(I I)$. While this in no way shows selectivity towards $\mathrm{Zn}(\mathrm{II})$ over $\mathrm{Ni}(\mathrm{II})$, it does show that we can decrease the affinity of a ligand towards $\mathrm{Ni}(\mathrm{II})$ with steric bulk, which was a goal of this project.

Structural Studies

黄 and ${ }^{13} \mathrm{C}$ NMR. To determine the solution state structure of the $\mathrm{Zn}(\mathrm{II})$ complexes, a series of ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR were taken for each complex. For 19a, solution reactions were run with various ZnX 2 salts $\left(\mathrm{X}=\mathrm{NO}_{3}^{-}, \mathrm{Cl}^{-}, \mathrm{ClO}_{4}^{-}\right.$and OTf $)$ and L^{6} to observe how the complex reacted with both coordinating $\left(\mathrm{NO}_{3}{ }^{-}\right.$, Cl^{-}) and non-coordinating $\left(\mathrm{ClO}_{4}^{-}, \mathrm{OTf}\right)$ anions. When comparing these spectra, two distinct results were seen. For the reactions with $\mathrm{NO}_{3}{ }^{-}, \mathrm{ClO}_{4}^{-}$and OTf as the anions the spectra showed signs of two symmetric species. For the reaction using Cl^{-}as the anion, only one symmetric species was present in the resulting spectra (Figure 3.13).

Figure 3.13. Comparison of ${ }^{1} \mathrm{H}$ NMR spectra of $[\mathrm{Zn}(\text { bispicpn })]^{2+}$ (19a) with either Cl^{-}or OTf ${ }^{-}$as the anion

The two-species ${ }^{1} \mathrm{H}$ NMR spectra in the range of $\delta 1.5-4.5$ were too complex to interpret without use of 2D techniques, although their sharpness
suggested species that are not undergoing interconversions at a rate corresponding closely to the NMR timescale. The aromatic region of the spectra provides a more useful area for interpretation. Each pyridine ring should produce four peaks. If no symmetry is present in the complex there should be 8 pyridyl peaks, but if a symmetry element (axis of rotation or a mirror plane) is present only 4 pyridyl peaks will be observed. For the spectra showing two species, a series of four large peaks were present in the aromatic region of the spectrum along with a series of four smaller peaks. Each set of peaks contains nearly identical splitting patterns and each set belongs to a species with a different conformation. The ${ }^{13} \mathrm{C}$ NMR of these reactions confirms the presence of two symmetric species. For a complex with symmetry, 8 carbon peaks should be present and for these spectra 2 distinct sets of 8 peaks, one large and one small, are seen (Figure 3.14).

Figure 3.14. ${ }^{13} \mathrm{C}$ NMR spectrum of $[\mathrm{Zn}$ (bispicpn) $](\mathrm{OTf})_{2}$ (19a) showing two species in solution

Since it can be shown that the species present in solution are symmetric the possible geometries of the complexes can be narrowed down to a small number of options, which are shown in Table 3.5. Unfortunately there are no clues as to which of the six possible geometries are actually present. All that can be said about the spectra is that there are two symmetric complexes present in any combination of two of the geometries listed in Table 3.5.

Table 3.5. Geometries containing an element of symmetry

Coord. Number	Geometry	Coord. Number	Geometry
4	distorted tetrahedral	5	square-pyramidal
4	square-planar	6	Trans
5	trans(5)	6	cis- α

The ${ }^{1} \mathrm{H}$ NMR spectrum for the reaction with Cl^{-}as the anion shows four peaks in the aromatic region as expected. It is the aliphatic protons in the complex that provide some insight as to how the complex is behaving in solution. The peaks for the methylene protons on either side of the amine show up as broad singlets at 4.16 and 3.01 ppm . The broad nature of these peaks suggests that there is some sort of dynamic process occurring. If the complex were rigid, each of the protons mentioned above would be inequivalent, and would produce unique peaks. Variable temperature (VT) NMR could be used to resolve the peaks, but was not since we could see that only one species is present in solution and that is the information we wanted. The ${ }^{13} \mathrm{C}$ spectrum shows 8 peaks and therefore supports the assignment of one symmetric species in solution.

The ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra for 19 b produced an interesting result. The ${ }^{1} \mathrm{H}$ spectrum showed several broad, unassignable peaks in the aliphatic region and broad peaks in the aromatic region while the ${ }^{13} \mathrm{C}$ spectrum gave 7 sharp peaks and 1 broad peak when 9 peaks were expected. It was decided that the broadening was due to a dynamic process and VT NMR would be used to further examine the complex and spectra were taken at $25^{\circ} \mathrm{C}, 35^{\circ} \mathrm{C}, 45^{\circ} \mathrm{C}, 56^{\circ} \mathrm{C}$ and $65^{\circ} \mathrm{C}$. As the temperature of the solution was increased, peaks throughout the ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ spectra sharpened up.

In the ${ }^{1} \mathrm{H}$ spectrum, the aromatic region gained resolution and the splitting of the signals could be seen. In the aliphatic region of the spectrum, the methylenes flanking the amine, which each started out as broad apparent
doublets, converged to singlets. Even the central methylene of the ligand began to show splitting at $65^{\circ} \mathrm{C}$ (Figure 3.5).

As mentioned above, the ${ }^{13} \mathrm{C}$ spectrum was missing a peak and had a broad signal. With the increase in temperature the broad peak at 50.6 ppm sharpened up and gained intensity. Also, the missing peak, which was thought to be underneath the solvent peak, grew out of the baseline at 26.7 ppm at $65^{\circ} \mathrm{C}$ (Figure 3.15).

Figure 3.15. ${ }^{13} \mathrm{C}$ NMR spectra of $[\mathrm{Zn}(\text { bis } 6 \text { Mepicpn })]^{2+}(19 \mathrm{~b})$ at $25^{\circ} \mathrm{C}, 45^{\circ} \mathrm{C}$ and $65^{\circ} \mathrm{C}$

The spectral changes in 19b suggest a dynamic process (such as a ring flip of the 6-membered chelate ring) occurs with greater speed as the temperature is increased. If the ring was rigid then all of the aliphatic protons would be inequivalent and produce their own signals. This is what is seen in the room temperature spectrum. The broad signals at about 4.2 and 2.8 ppm are a
result of both sets of methylene protons being inequivalent. The dynamic process occurring is slow enough so we can see individual peaks, but won't allow for any defined splitting. As the temperature is raised the movement in the complex becomes fast on the NMR timescale and the observed spectrum is an average of the movements in the complex.

For 19 c , the same series of solution reactions $\left(\mathrm{ZnX}_{2}+\mathrm{L}^{8}\right)$ were run as were run for 19 a and followed by ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR. Again, two types of spectra were observed. For reactions with NO_{3}^{-}and Cl^{-}as the anions one symmetric species was seen in solution while reactions with ClO_{4}^{-}and OTf as the anions showed two symmetric species in solution. The two reactions that show one species in solution both show evidence of a dynamic process. The $\mathrm{NO}_{3}{ }^{-}$product appears to have a slower process relative to the Cl^{-}product. This can be seen in the multiplicity of the methylene signals around 3 ppm (Figure 3.16). The sharper and more defined the peaks are, the faster the movement of the chelator in the complex.

Figure 3.16. Aliphatic region of ${ }^{1} \mathrm{H}$ NMR spectra for 19 c with $\mathrm{NO}_{3}{ }^{-}$and Cl^{-}as anions

The reactions that produced two species in solution gave similar spectra. The presence of multiple peaks with complex splitting patterns in the aliphatic region of the spectra for both the $\mathrm{ClO}_{4}{ }^{-}$and OTf reactions was a sign of rigid complexes in solution. The aromatic region of these spectra was very similar to those described for 19a with a set of four large peaks and a set of four small peaks, both with nearly identical splitting patterns. With this data as well as the presence of two sets of peaks present in the ${ }^{13} \mathrm{C}$ spectra it can be stated that two symmetric species are present in solution, but the geometries of those species can only be speculated on without further data.

X-ray Crystallography. For the $\mathrm{Zn}(\mathrm{II})$ complexes, 19a-c, X-ray crystallography was performed to determine their solid state structures. Each complex possesses a distorted octahedral geometry with one nitrate binding in a bidentate manner to occupy the fifth and sixth coordination sites. An amino-N and a pyridyl-N occupy the axial positions while an amino-N, a pyridyl-N and two
nitrate oxygens bind at the equatorial sites. All three complexes exist in the cis- β conformation. This is not surprising, as it has been shown that the pn backbone in L^{6} and its derivatives usually favor the cis- β conformation ${ }^{9091}$.

The six-membered chelate rings, formed upon binding of the two amine nitrogens of the ligands, exist in a different stereochemistry for each complex. 19a has a chair configuration, 19b has a twist boat configuration and 19c has a distorted boat configuration (Figure3.17). This is a good means of comparing distortion in the complexes since they all have the same, cis- β, conformation. The complex with the least amount of distortion is 19a. With the presence of only one 6-membered chelate ring and no alkylation on the pyridine rings to introduce steric interactions this is to be expected. The chair conformation of the 6membered chelate ring demonstrates the lack of strain in the molecule. Using the same logic, it can be said that the presence of the more strained twist boat and distorted boat conformations of 19b and 19c respectively show how the introduction of 6-methyl groups on the pyridine rings or the homologation of the ligand lead to a more strained atmosphere around the metal center.

19a (chair)

19b (twist boat)

19c (distorted boat)

Figure 3.17. 6 -membered chelate rings formed from binding of amine nitrogens in 19a, 19b and 19c

Another means of comparing strain in the series of the $\mathrm{Zn}(I I)$ complexes is by comparing the $\mathrm{N}_{\mathrm{amine}}-\mathrm{Fe}-\mathrm{N}_{\mathrm{py}}$ axial bond angles of the series. The ideal transaxial bond angle in an octahedral complex is 180°. The axial bond angles in this series decrease from 176° to 169° in the order 19a > 19c > 19b (Table 3.6). Again, $19 a$ is the least strained complex of the three while $19 b$ and 19 c show a larger deviation from 180°. However, when comparing the axial bond angles of 19 a - \mathbf{c} to other amino/pyridyl complexes with cis- β conformation it is difficult to call these complexes strained. The $\mathrm{Ni}(\mathrm{II})$ complex of the N -methyl derivative of L^{6} possesses an angle of $170.9^{\circ 72}$ while the $\mathrm{Fe}(\mathrm{II})$ complex $\left[\mathrm{Fe}\left(\mathrm{L}^{6}\right)(\mathrm{NCS})_{2}\right]$ has an angle of $164.9^{\circ 92}$. So, relative to similar complexes with different metal centers the axial bond angles show little strain, but when comparing the three Zn (II) complexes 19a shows the least amount of distortion in this bond angle.

Table 3.6. Selected angles and conformations of $\left[\mathrm{Zn}(\right.$ bispicpn $\left.)\left(\mathrm{NO}_{3}\right)\right]\left(\mathrm{NO}_{3}\right)$

	$\mathrm{N}_{\mathrm{py}} \mathrm{Zn}-\mathrm{N}_{\text {amine }}$ equatorial angle (${ }^{\circ}$)	$\mathrm{N}_{\mathrm{py}}-\mathrm{Zn}-\mathrm{N}_{\text {amine }}$ axial angle $\left({ }^{\circ}\right)$	$\mathrm{O}-\mathrm{Zn}-\mathrm{O}$ bite angle (${ }^{\circ}$)	Conformation of central chelate ring
$\left[\mathrm{Zn}\left(\mathrm{L}^{6}\right)\left(\mathrm{NO}_{3}\right)\right]^{+8}$	$\begin{aligned} & 117.05(6) \\ & 115.28(7) \end{aligned}$	$\begin{aligned} & 176.63(6) \\ & 175.51(6) \end{aligned}$	$\begin{aligned} & 57.25(5) \\ & 56.94(5) \end{aligned}$	chair
$\left[\mathrm{Zn}\left(L^{7}\right)\left(\mathrm{NO}_{3}\right)\right]^{+}$	117.66 (6)	172.35 (6)	54.29 (5)	twist boat
$\left[\mathrm{Zn}\left(L^{8}\right)\left(\mathrm{NO}_{3}\right)\right]^{+}$	112.65 (8)	169.30 (9)	54.89 (7)	distorted boat

${ }^{\text {a Structure has two independent molecules in the asymmetric unit and both corresponding sets of }}$ data are given.

The bond angle between the equatorial amino and pyridyl nitrogens for each complex is closer to that of a trigonal-bipyramidal complex (ideal TBP equatorial angle is 120°) rather than of an octahedral complex (ideal O_{h} equatorial angle is 90°). For 19a-c, these angles range from $112-117^{\circ}$ (Table
3.6). For other metal centers bound to L^{6} the reported angles are much smaller.

The complex $\left[\mathrm{Fe}\left(\mathrm{L}^{6}\right) \mathrm{Cl}_{2}\right.$] has a reported $\mathrm{N}_{\text {amine }}-\mathrm{Fe}-\mathrm{N}_{\mathrm{py}}$ equatorial bond angle of $85.9^{\circ 90}$ while the same angle for $\left[\mathrm{Fe}\left(\mathrm{L}^{6}\right)(\mathrm{NCS})_{2}\right]$ is reported as $87.6^{\circ 92}$, both closer to the expected 90° angle for an octahedral complex. The large $\mathrm{N}_{\mathrm{py}}-\mathrm{Zn}$ $N_{\text {amine }}$ equatorial bond angle for complexes $19 a-c$ is likely due to a combination of the small $\mathrm{O}-\mathrm{Zn}-\mathrm{O}$ bite angle from the bound nitrate and the lack of ligand field stabilization energy of $\mathrm{Zn}(\mathrm{II})$. In the cis- β conformation there are two equatorial sites which are unoccupied by the ligand. Typically, two monodentate ligands will bind in the open sites in a manner such that there is maximum separation between all binding groups. This means they will spread out roughly 90° from each other, resulting in an octahedral environment around the metal center. However, with the chelation of nitrate in a bidentate fashion, the two oxygen atoms are restricted to a smaller angle and this allows for larger angles elsewhere. The small bite angle can't be held solely accountable for the large $\mathrm{N}_{\mathrm{py}}-\mathrm{Zn}-\mathrm{N}_{\text {amine }}$ equatorial bond angle; the metal center also plays a role. The lack of ligand field stabilization energy for Zn (II) means the metal center will not force the chelator to bind in any particular manner and will take on geometries of coordination numbers other than six if necessary. As mentioned above the large equatorial angles are closer to those seen in trigonal-bipyramidal rather than octahedral complexes. Actually, if the bound nitrate in complexes 19a-c is viewed as a large, monodentate ligand, not a bidentate one, the average equatorial bond angles for 19a, 19b and 19c are $119.9^{\circ}, 119.8^{\circ}$ and 119.9°
respectively. Thus, 19a - c are appropriately viewed as pseudo-trigonalbipyramidal Zinc complexes with a cis- $\beta(5)$ conformation in the solid state.

Conclusion

This work demonstrates that linear, tetradentate amino/pyridyl chelators bind $\mathrm{Ni}(\mathrm{II}), \mathrm{Cu}(\mathrm{II})$ and $\mathrm{Zn}(\mathrm{II})$ in aqueous and nonaqueous environments. The effect of 6-substitution of the pyridine rings and homologation of the chelate arms was investigated. In the solid state the effects of substitution and homologation are minimal, as predicted. X-ray structures of the three Zn (II) complexes showed they all took on the same conformation, cis- β, with only small differences observed in the structures. In solution, more striking effects of substitution and homologation were seen. Chelators L^{7} and L^{8} showed a decreased ligand field strength towards both $\mathrm{Ni}(\mathrm{II})$ and $\mathrm{Cu}(\mathrm{II})$ compared to L^{6}. While the $\mathrm{Ni}(\mathrm{II})$ complexes 17a-c all obtained an octahedral geometry in solution, the geometry of the $\mathrm{Cu}(\mathrm{II})$ complexes appears to change from tetragonally distorted octahedral for $18 a$ and 18 c to square-pyramidal for 18 b . While both methylating and homologating L^{6} does affect the binding of divalent metals it appears that methylation, with resulting increased steric bulk, provides a greater impact as was seen in their relative affinities for $\mathrm{Ni}(\mathrm{II})$ vs $\mathrm{Zn}(I I) . L^{7}$ showed the only measurable, and therefore smallest, value of $\mathrm{K}_{\mathrm{f}}\left(\mathrm{Ni}^{i l}\right) / \mathrm{K}_{\mathrm{f}}\left(\mathrm{Zn}{ }^{\text {lI }}\right)$. Thus, the ligand L^{7} emerged from this work as having the largest relative affinity $\mathrm{K}_{f}\left(\mathrm{Ni}^{\prime 1}\right) / \mathrm{K}_{f}\left(\mathrm{Zn}^{\text {II }}\right)$ (althought still less than one). A reasonable approach to future work is to further
increase the steric bulk on L^{7} (i.e., replacement of Me by Et, ${ }^{i} \operatorname{Pr}$ or ${ }^{t} \mathrm{Bu}$) which may provide even greater affinity for $\mathrm{Zn}(\mathrm{II})$ over $\mathrm{Ni}(\mathrm{II})$ or $\mathrm{Cu}(\mathrm{II})$.

CHAPTER IV

EXPERIMENTAL

General Experimental

Instrumentation

${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra were recorded on a Varian Mercury 400 MHz NMR spectrometer or a Varian INOVA 500 MHz NMR spectrometer with an inverse probe. Spectra were measured in $\mathrm{CDCl}_{3}, \mathrm{D}_{2} \mathrm{O}, \mathrm{MeOD}-d_{4}, \mathrm{MeCN}-d_{3}$ or DMSO- d_{6} with $\left(\mathrm{CH}_{3}\right)_{4} \mathrm{Si}$ as an internal standard. Chemical shifts are reported in parts per million (ppm) relative to the internal standard

UV/Vis/NIR solution electronic spectra were measured using a Varian Cary 50Bio UVNis spectrometer with 1- or 3-mL quartz cuvettes (1 cm path length). Deconvolutions of electronic absorption spectra were performed using Microcal Origin 6.0 software.

Electrospray ionization (ESI) mass spectra in the positive ion detection mode were obtained with a Finnegan LCQ Classic instrument with dual optical Paul traps and Picoview nanospray source.

IR spectra were recorded on a Thermo Nicolet Avatar 380 FT-IR spectrophotometer.

Elemental analysis was performed by Atlantic Microlabs (Atlanta, Georgia).

Solvents

The following solvents were freshly obtained from the automatic still: diethyl ether $\left(\mathrm{Et}_{2} \mathrm{O}\right)$, dichloromethane $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$, methanol (MeOH), acetonitrile (MeCN), dimethylformamide (DMF). $\mathrm{Et}_{2} \mathrm{O}$ was also used immediately after distillation from Na . E-pure water was obtained from a Barnstead E-pure water purification, module deionization system. All deuterated solvents for NMR analysis were purchased from Cambridge Isotope Laboratories and kept in a dessicator.

Reagents

All reagents were purchased from the following companies: Aldrich, Sigma, Fischer Scientific (Acros), Alfa Aesar or Fluka.

Chapter I Experimental

Work with $\mathrm{Fe}(\mathrm{II})$ and $\mathrm{Ni}(\mathrm{II})$ involved isolating the complexes while $\mathrm{Cu}(\mathrm{II})$ work dealt only with solution reactions. All Fe(II) complexes were prepared under N_{2}, in a glovebox, unless otherwise stated.
[Fe(tach-3-Mepyr)] $\mathrm{Cl}_{2} \cdot \mathbf{1 . 5} \mathrm{H}_{2} \mathrm{O}\left(\mathbf{1 a} \cdot \mathbf{1 . 5} \mathrm{H}_{2} \mathrm{O}\right)$ A pale green solution of $\mathrm{FeCl}_{2} \cdot \mathbf{4 \mathrm { H } _ { 2 } \mathrm { O }}$ $\left(0.0070 \mathrm{~g}, 3.53 \times 10^{-5} \mathrm{~mol}\right)$ in $\mathrm{MeOH}(1 \mathrm{~mL})$ was added to a pale yellow solution of $\mathrm{L} 1\left(0.0155 \mathrm{~g}, 3.48 \times 10^{-5} \mathrm{~mol}\right)$ in $\mathrm{MeOH}(1 \mathrm{~mL})$ producing a red-brown solution. Slow diffusion of $\mathrm{Et}_{2} \mathrm{O}$, followed by addition of an aliquot of $\mathrm{Et}_{2} \mathrm{O}(1 \mathrm{~mL})$ and allowing the solution to sit for 48 hrs at $-10^{\circ} \mathrm{C}$ produced clusters of carmine red needles. Product was isolated and dried under reduced pressure affording deep red needles. ${ }^{1} \mathrm{H}$ NMR $\left[400 \mathrm{MHz},\left(\mathrm{CD}_{3}\right)_{2} \mathrm{SO}, 25^{\circ} \mathrm{C}\right]: \delta 7.59,7.15,6.91$ (d, dd, d, $3 \mathrm{H}, 3-\mathrm{Me}-\mathrm{C}_{5} \underline{H}_{3} \mathrm{~N}$); $5.29\left(\mathrm{brt}, 1 \mathrm{H}, \mathrm{N} \underline{\mathrm{H}}-\mathrm{CH}_{2}\right) ; 4.23,4.02$ [dd, dd, $2 \mathrm{H},\left(\mathrm{NH}-\mathrm{CH}_{2}-\mathrm{py}\right)$,
diastereotopic]; 2.95 (br s, 1H, cyclohexyl methine \underline{H}); 2.37 [s, 3H, (CH_{3}-py)]; 2.12 (br d, 1H, equatorial cyclohexyl methylene \underline{H}); $1.84(\mathrm{br} \mathrm{d}, 1 \mathrm{H}$, axial cyclohexyl methylene \underline{H}). $\lambda_{\max } / \mathrm{cm}^{-1}(\mathrm{MeOH}) 22700\left(\varepsilon / \mathrm{cm}^{-1} \mathrm{M}^{-1} 7000\right), 18200$ shoulder. (Found: $\mathrm{C}, 54.17 ; \mathrm{H}, 6.22 ; \mathrm{N}, 13.76 . \mathrm{C}_{27} \mathrm{H}_{36} \mathrm{Cl}_{2} \mathrm{~N}_{6} \mathrm{Fe} \cdot 1.5 \mathrm{H}_{2} \mathrm{O}$ requires: C, $54.25 ; \mathrm{H}, 6.58 ; \mathrm{N}, 14.07 \%)$.
[Fe (tach-4-Mepyr)]Cl $\cdot \mathbf{1 . 5 \mathrm { H } _ { 2 } \mathrm { O } (1 \mathrm { b } \cdot 1 . 5 \mathrm { H } _ { 2 } \mathrm { O }) \text { A pale green solution of } \mathrm { FeCl } _ { 2 } \cdot 4 \mathrm { H } _ { 2 } \mathrm { O } , ~}$ ($0.0110 \mathrm{~g}, 5.53 \times 10^{-5} \mathrm{~mol}$) in $\mathrm{MeOH}(1 \mathrm{~mL})$ was added to a pale yellow solution of tach-4-Mepyr $\left(0.0244 \mathrm{~g}, 5.49 \times 10^{-5} \mathrm{~mol}\right)$ in $\mathrm{MeOH}(1 \mathrm{~mL})$ affording a deep redbrown solution. Slow $\mathrm{Et}_{2} \mathrm{O}$ diffusion produced several deep red microcrystals. The supernatant was decanted and the solid was dried under reduced pressure giving deep red microcrystals. ${ }^{1} \mathrm{H}$ NMR $\left[400 \mathrm{MHz},\left(\mathrm{CD}_{3}\right)_{2} \mathrm{SO}, 25^{\circ} \mathrm{C}\right]: \delta 7.42$, 7.17, 6.86 (s, d, d, $3 \mathrm{H}, 4-\mathrm{Me}-\mathrm{C}_{5} \underline{H}_{3} \mathrm{~N}$); 5.45 (br t, $1 \mathrm{H}, \mathrm{N} \underline{H}-\mathrm{CH}_{2}$); 4.43, 4.19 [dd, dd, $2 \mathrm{H},\left(\mathrm{NH}-\underline{\mathrm{H}}_{2}-\mathrm{py}\right)$, diastereotopic]; 3.21 (br s, 1H, cyclohexyl methine \underline{H}); 2.37 [s, $3 \mathrm{H},\left(\mathrm{CH}_{3}-\mathrm{py}\right)$]; 2.02 (br d, 1 H , equatorial cyclohexyl methylene \underline{H}); 1.79 (br d, 1H, axial cyclohexyl methylene $\underline{H}) . \lambda_{\max } / \mathrm{cm}^{-1}(\mathrm{MeOH}) 23100\left(\varepsilon / \mathrm{cm}^{-1} \mathrm{M}^{-1} 6600\right), 17800$ shoulder. (Found: $\mathrm{C}, 54.56 ; \mathrm{H}, 6.16 ; \mathrm{N}, 13.86 . \mathrm{C}_{27} \mathrm{H}_{36} \mathrm{Cl}_{2} \mathrm{~N}_{6} \mathrm{Fe} \cdot 1.5 \mathrm{H}_{2} \mathrm{O}$ requires: C, $54.25 ; H, 6.58 ; N, 14.07 \%)$.
[Fe (tach-5-Mepyr)] $\mathrm{Cl}_{2} \cdot \mathrm{H}_{2} \mathrm{O}\left(1 \mathrm{c} \cdot \mathrm{H}_{2} \mathrm{O}\right)$ A pale green solution of $\mathrm{FeCl}_{2} \cdot 4 \mathrm{H}_{2} \mathrm{O}$ ($0.0108 \mathrm{~g}, 5.43 \times 10^{-5} \mathrm{~mol}$) in $\mathrm{MeOH}(1 \mathrm{~mL})$ was added to a pale yellow solution of tach-5-Mepyr ($0.0235 \mathrm{~g}, 5.28 \times 10^{-5} \mathrm{~mol}$) in $\mathrm{MeOH}(1 \mathrm{~mL})$ creating a deep red solution. Slow diffusion of $\mathrm{Et}_{2} \mathrm{O}$ followed by an additional aliquot of $\mathrm{Et}_{2} \mathrm{O}(15 \mathrm{~mL})$ produced a slightly cloudy solution. Allowing the solution to sit for a week
generated carmine red needles. The supernatant was decanted and the product was allowed to air dry giving a deep red needles. ${ }^{1} \mathrm{H}$ NMR $\left[400 \mathrm{MHz},\left(\mathrm{CD}_{3}\right)_{2} \mathrm{SO}\right.$, $\left.25^{\circ} \mathrm{C}\right]: \delta 7.65,7.49,6.78$ (d, d, s, $3 \mathrm{H}, 5-\mathrm{Me}-\mathrm{C}_{5} \underline{H}_{3} \mathrm{~N}$); $5.57\left(\mathrm{brt}, 1 \mathrm{H}, \mathrm{N} \underline{\mathrm{H}}-\mathrm{CH}_{2}\right) ;$ 4.43, 4.12 [dd, dd, $2 \mathrm{H},\left(\mathrm{NH}-\mathrm{CH}_{2}-\mathrm{py}\right)$]; 3.13 (br s, 1 H, cyclohexyl methine \underline{H}); 2.08 (partially obscured) [s, 3H, (Cㅐㅜ3-py)]; 2.09 (partially obscured) (br d, 1H, equatorial cyclohexyl methylene \underline{H}); 1.81 (br d, 1H, axial cyclohexyl methylene H). $\lambda_{\text {max }} / \mathrm{cm}^{-1}(\mathrm{MeOH}) 22600\left(\varepsilon / \mathrm{cm}^{-1} \mathrm{M}^{-1} 4200\right), 17400$ shoulder. (Found: C, 54.73; $\mathrm{H}, 6.45 ; \mathrm{N}, 13.88 . \mathrm{C}_{27} \mathrm{H}_{36} \mathrm{Cl}_{2} \mathrm{~N}_{6} \mathrm{Fe} \cdot \mathrm{H}_{2} \mathrm{O}$ requires: $\mathrm{C}, 55.08 ; \mathrm{H}, 6.51 ; \mathrm{N}$, 14.28\%).
[Fe(tach-6-Mepyr)](ClO()_{2} \cdot \mathrm{H}_{2} \mathrm{O} \cdot \mathrm{MeOH}\left(1 \mathrm{~d} \cdot \mathrm{H}_{2} \mathrm{O} \cdot \mathrm{MeOH}\right)\) A yellow solution of $\mathrm{Fe}(\mathrm{ClO} 4) \cdot 6 \mathrm{H}_{2} \mathrm{O}\left(0.0160 \mathrm{~g}, 4.41 \times 10^{-5} \mathrm{~mol}\right)$ in $\mathrm{MeOH}(1 \mathrm{~mL})$ was added to a pale yellow solution of tach-6-Mepyr ($0.0195 \mathrm{~g}, 4.39 \times 10^{-5} \mathrm{~mol}$) in $\mathrm{MeOH}(1 \mathrm{~mL})$ producing a dark red solution. During 24 hours at $5^{\circ} \mathrm{C}$ red needles precipitated from the solution. Removal of the supernatant and air-drying produced bright red needles. $\mu_{\text {eff }}\left(\mathrm{DMSO}, 25^{\circ} \mathrm{C}\right)=5.46$ B.M. $\lambda_{\text {max }} / \mathrm{cm}^{-1}(\mathrm{MeCN}) 19600$ shoulder $\left(\varepsilon / \mathrm{cm}^{-1} \mathrm{M}^{-1} 4.7\right), 11700$ (9.4). (Found C, 45.45; H, 5.31; N, 11.61. $\mathrm{C}_{27} \mathrm{H}_{38} \mathrm{Cl}_{2} \mathrm{FeN}_{6} \mathrm{O}_{9}$ requires: $\left.\mathrm{C}, 45.24 ; \mathrm{H}, 5.35 ; \mathrm{N}, 11.73 \%\right)$.
[Fe (tach-6-MeOpyr)] $\mathrm{Cl}_{2} \cdot 1.5 \mathrm{H}_{2} \mathrm{O}\left(1 \mathrm{e} \cdot 1.5 \mathrm{H}_{2} \mathrm{O}\right)$ A pale green solution of $\mathrm{FeCl}_{2} \cdot 4 \mathrm{H}_{2} \mathrm{O}\left(0.0113 \mathrm{~g}, 5.68 \times 10^{-5} \mathrm{~mol}\right)$ in $\mathrm{MeOH}(1 \mathrm{~mL})$ was added to a pale yellow solution of tach-6-MeOpyr ($0.0276 \mathrm{~g}, 5.61 \times 10^{-5} \mathrm{~mol}$) in $\mathrm{MeOH}(1 \mathrm{~mL})$ producing a yellow solution. Addition of ca. 15 mL of $\mathrm{Et}_{2} \mathrm{O}$ produced a slightly cloudy solution that deposited yellow prisms upon standing 48 hours. The
supernatant was decanted and the product allowed to air-dry resulting in bright yellow prisms. $\mu_{\text {eff }}\left(\mathrm{DMSO}, 25^{\circ} \mathrm{C}\right)=5.77$ B.M. $\lambda_{\text {max }} / \mathrm{cm}^{-1}(\mathrm{MeOH}) 11100\left(\varepsilon / \mathrm{cm}^{-}\right.$ ${ }^{1} \mathrm{M}^{-1} 4.7$). (Found: $\mathrm{C}, 50.21 ; \mathrm{H}, 6.10 ; \mathrm{N}, 12.84 . \mathrm{C}_{27} \mathrm{H}_{36} \mathrm{Cl}_{2} \mathrm{~N}_{6} \mathrm{FeO}_{6} \cdot 1.5 \mathrm{H}_{2} \mathrm{O}$ requires: $C, 50.22 ; H, 6.09 ; N, 13.02 \%)$.
[Ni (tach-3-Mepyr)] $\left(\mathrm{ClO}_{4}\right)_{2}$ (3a) A pale green solution of $\mathrm{Ni}\left(\mathrm{ClO}_{4}\right)_{2} \cdot 6 \mathrm{H}_{2} \mathrm{O}(0.0169$ $\mathrm{g}, 4.62 \times 10^{-5} \mathrm{~mol}$) in $\mathrm{MeOH}(1 \mathrm{~mL})$ was added to a pale yellow solution of L 1 ($0.0204 \mathrm{~g}, 4.59 \times 10^{-5} \mathrm{~mol}$) in $\mathrm{MeOH}(1 \mathrm{~mL})$ affording a pale purple-pink solution. Pink needles formed after 24 hours. The supernatant was decanted and the solid was washed with $\mathrm{Et}_{2} \mathrm{O}$ and dried, producing pale pink needles $(0.0191 \mathrm{~g}$, $59.3 \%) . \mathrm{MS}(\mathrm{ESI}, \mathrm{MeOH}): \mathrm{m} / \mathrm{z} 501\left(\mathrm{M}-2 \mathrm{ClO}_{4}{ }^{-}-\mathrm{H}^{+}\right), 601\left(\mathrm{M}-\mathrm{ClO}_{4}{ }^{-}\right) . \lambda_{\max } / \mathrm{cm}^{-1}$ (MeCN) 11300 shoulder ($\varepsilon / \mathrm{cm}^{-1} \mathrm{M}^{-1} 10.8$), 12900 (15.9), 19500 (11.7). (Found: C, 46.43; $\mathrm{H}, 5.28 ; \mathrm{N}, 12.06 . \mathrm{C}_{27} \mathrm{H}_{36} \mathrm{Cl}_{2} \mathrm{~N}_{6} \mathrm{NiO}_{8}$ requires: $\mathrm{C}, 46.20 ; \mathrm{H}, 5.17 ; \mathrm{N}$, 11.97\%).
[Ni (tach-4-Mepyr)] $\left(\mathrm{ClO}_{4}\right)_{2}$ (3b) A pale green solution of $\mathrm{Ni}\left(\mathrm{ClO}_{4}\right)_{2} \cdot 6 \mathrm{H}_{2} \mathrm{O}(0.0159$ $\left.\mathrm{g}, 4.35 \times 10^{-5} \mathrm{~mol}\right)$ in $\mathrm{MeOH}(1 \mathrm{~mL})$ was added to a pale yellow solution of tach-4Mepyr ($0.0197 \mathrm{~g}, 4.43 \times 10^{-5} \mathrm{~mol}$) in $\mathrm{MeOH}(1 \mathrm{~mL})$ producing a pink solution. Small pink needles were produced by $\mathrm{Et}_{2} \mathrm{O}$ diffusion into the MeOH solution. These crystals were isolated, washed with $\mathrm{Et}_{2} \mathrm{O}$, dried under reduced pressure, and taken up in $\mathrm{MeOH}(1 \mathrm{~mL})$. $\mathrm{Et}_{2} \mathrm{O}$ diffusion into the MeOH solution yielded pink needle clusters that were isolated and dried affording a pink solid $(0.0184 \mathrm{~g}$, $59.2 \%) . \mathrm{MS}(\mathrm{ESI}, \mathrm{MeOH}): \mathrm{m} / \mathrm{z} 501\left(\mathrm{M}-2 \mathrm{ClO}_{4}{ }^{-}-\mathrm{H}^{+}\right), 601\left(\mathrm{M}-\mathrm{ClO}_{4}{ }^{-}\right) . \lambda_{\max } / \mathrm{cm}^{-1}$ (MeCN) 11300 shoulder $\left(\varepsilon / \mathrm{cm}^{-1} \mathrm{M}^{-1} 12.7\right), 12800$ (15.9), 19500 (14.2). (Found: C,
46.31; $\mathrm{H}, 5.14 ; \mathrm{N}, 11.94 . \quad \mathrm{C}_{27} \mathrm{H}_{36} \mathrm{Cl}_{2} \mathrm{~N}_{6} \mathrm{NiO}_{8}$ requires: $\mathrm{C}, 46.20 ; \mathrm{H}, 5.17 ; \mathrm{N}$, 11.97\%).
[Ni (tach-5-Mepyr)] $\left(\mathrm{ClO}_{4}\right)_{2}(3 \mathrm{c})$ A pale green solution of $\mathrm{Ni}\left(\mathrm{ClO}_{4}\right)_{2} \cdot 6 \mathrm{H}_{2} \mathrm{O}(0.0162$ $\left.\mathrm{g}, 4.42 \times 10^{-5} \mathrm{~mol}\right)$ in $\mathrm{MeOH}(1 \mathrm{~mL})$ was added to a pale yellow solution of tach-5Mepyr ($0.0200 \mathrm{~g}, 4.50 \times 10^{-5} \mathrm{~mol}$) in $\mathrm{MeOH}(1 \mathrm{~mL})$ producing a purple-pink solution. Slow diffusion of $\mathrm{Et}_{2} \mathrm{O}$ produced light pink microcrystals. The microcrystals were isolated, washed with $\mathrm{Et}_{2} \mathrm{O}$, dried under reduced pressure, and taken up in MeOH (1 mL). Diffusion of $\mathrm{Et}_{2} \mathrm{O}$ into the MeOH solution produced pink needles that were isolated, washed with $\mathrm{Et}_{2} \mathrm{O}$, and dried producing pink needles (0.0221 g, 70.2\%). MS (ESI, MeOH): m/z 501 (M$\left.2 \mathrm{ClO}_{4}^{-}-\mathrm{H}^{+}\right), 601\left(\mathrm{M}-\mathrm{ClO}_{4}^{-}\right) . \lambda_{\text {max }} / \mathrm{cm}^{-1}(\mathrm{MeCN}) 11200$ shoulder $\left(\varepsilon / \mathrm{cm}^{-1} \mathrm{M}^{-1} 12.7\right)$, 12800 (17.0), 19500 (14.2). (Found: C, 46.21; H, 5.13; N, 11.76.
$\mathrm{C}_{27} \mathrm{H}_{36} \mathrm{Cl}_{2} \mathrm{~N}_{6} \mathrm{NiO}_{8}$ requires: $\left.\mathrm{C}, 46.20 ; \mathrm{H}, 5.17 ; \mathrm{N}, 11.97 \%\right)$.
[$\mathrm{Ni}\left(\right.$ tach-6-Mepyr)] $\left(\mathrm{ClO}_{4}\right)_{2} \cdot \mathrm{H}_{2} \mathrm{O}\left(3 \mathrm{~d} \cdot \mathrm{H}_{2} \mathrm{O}\right)$ A pale green solution of $\mathrm{Ni}\left(\mathrm{ClO}_{4}\right)_{2} \cdot 6 \mathrm{H}_{2} \mathrm{O}\left(0.0169 \mathrm{~g}, 4.62 \times 10^{-5} \mathrm{~mol}\right)$ in $\mathrm{MeOH}(1 \mathrm{~mL})$ was added to a pale yellow solution of tach-6-Mepyr ($0.0203 \mathrm{~g}, 4.57 \times 10^{-5} \mathrm{~mol}$) in $\mathrm{MeOH}(1 \mathrm{~mL})$ affording a dark yellow solution. Small light brown needles along with a yellowbrown oil formed after 24 hours. The supernatant was decanted, the needles and oil were washed with $\mathrm{Et}_{2} \mathrm{O}$, and the needles were isolated and dried under vacuum ($0.0046 \mathrm{~g}, 14 \%) . \mathrm{MS}(\mathrm{ESI}, \mathrm{MeOH}): \mathrm{m} / \mathrm{z} 501\left(\mathrm{M}-2 \mathrm{ClO}_{4}{ }^{-}-\mathrm{H}^{+}\right), 601(\mathrm{M}-$ $\left.\mathrm{ClO}_{4}{ }^{-}\right) \cdot \lambda_{\text {max }} / \mathrm{cm}^{-1}(\mathrm{MeCN}) 10800\left(\varepsilon / \mathrm{cm}^{-1} \mathrm{M}^{-1} 25.4\right), 12400$ shoulder (11.4), 18100
(9.3). $\mu_{\text {eff: }} 3.8$ B.M. at $25^{\circ} \mathrm{C}$. (Found: C, $45.37 ; \mathrm{H}, 5.32 ; \mathrm{N}, 11.63$.
$\mathrm{C}_{27} \mathrm{H}_{36} \mathrm{Cl}_{2} \mathrm{~N}_{6} \mathrm{NiO}_{8} \cdot \mathrm{H}_{2} \mathrm{O}$ requires: $\mathrm{C}, 45.03 ; \mathrm{H}, 5.32 ; \mathrm{N}, 11.65 \%$).
[Ni (tach-6-MeOpyr)]((%5Cleft.%5Cmathrm%7BClO%7D_%7B4%7D%5Cright)_{2}\) (3e) A pale green solution of $\mathrm{Ni}\left(\mathrm{ClO}_{4}\right)_{2} \cdot 6 \mathrm{H}_{2} \mathrm{O}$ $\left(0.0167 \mathrm{~g}, 4.57 \times 10^{-5} \mathrm{~mol}\right)$ in $\mathrm{MeOH}(1 \mathrm{~mL})$ was added to a pale yellow solution of tach-6-MeOpyr ($0.0208 \mathrm{~g}, 4.23 \times 10^{-5} \mathrm{~mol}$) in $\mathrm{MeOH}(1 \mathrm{~mL})$ producing a pale violet solution. Violet prisms fell out of solution after 24 hours. The prisms were isolated, washed with $\mathrm{Et}_{2} \mathrm{O}$, and dried under vacuum producing violet prisms ($0.0150 \mathrm{~g}, 47.3 \%) . \mathrm{MS}(\mathrm{ESI}, \mathrm{MeOH}): \mathrm{m} / \mathrm{z} 549\left(\mathrm{M}-2 \mathrm{ClO}_{4}{ }^{-}-\mathrm{H}^{+}\right), 649\left(\mathrm{M}-\mathrm{ClO}_{4}{ }^{-}\right)$. $\lambda_{\max } / \mathrm{cm}^{-1}(\mathrm{MeCN}) 10900\left(\varepsilon / \mathrm{cm}^{-1} \mathrm{M}^{-1} 17.5\right), 12400$ shoulder (11.4), 18100 (7.28).
$\mu_{\text {eff: }}$: 3.1 B.M. at $25^{\circ} \mathrm{C}$. (Found: $\mathrm{C}, 43.09 ; \mathrm{H}, 4.94 ; \mathrm{N}, 11.11 . \mathrm{C}_{27} \mathrm{H}_{36} \mathrm{Cl}_{2} \mathrm{~N}_{6} \mathrm{NiO}_{11}$ requires: $\mathrm{C}, 43.25 ; \mathrm{H}, 4.84 ; \mathrm{N}, 11.21 \%)$.
[Cu (tach-3-Mepyr)]((%5Cleft.%5Cmathrm%7BClO%7D_%7B4%7D%5Cright)_{2}\) (4a) A blue solution of $\mathrm{Cu}\left(\mathrm{ClO}_{4}\right)_{2} \cdot 6 \mathrm{H}_{2} \mathrm{O}$ in $\mathrm{MeOH}(50$ $\mathrm{mM}, 90 \mu \mathrm{l})$ was added to a pale yellow solution of L^{1} in $\mathrm{MeOH}(22.5 \mathrm{mM}, 200 \mu \mathrm{l})$ producing a fluffy light blue precipitate. After heating at approximately $65^{\circ} \mathrm{C}$ for 15 sec the solution turned bright blue and was brought to $1 \mathrm{~mL} . \lambda_{\max } / \mathrm{cm}^{-1}$ (MeOH) $15200\left(\varepsilon / \mathrm{cm}^{-1} \mathrm{M}^{-1} 86.4\right)$.
[Cu(tach-4-Mepyr)]((%5Cleft.%5Cmathrm%7BClO%7D_%7B4%7D%5Cright)_{2}(4 \mathrm{~b}) \mathrm{A}\) blue solution of $\mathrm{Cu}\left(\mathrm{ClO}_{4}\right)_{2} \cdot 6 \mathrm{H}_{2} \mathrm{O}$ in $\mathrm{MeOH}(50$ $\mathrm{mM}, 97 \mu \mathrm{l})$ was added to a pale yellow solution of tach-4-Mepyr in MeOH (24.3 $\mathrm{mM}, 200 \mu \mathrm{l})$ producing a fluffy light blue precipitate. After heating at approximately $65^{\circ} \mathrm{C}$ for 15 sec the solution turned bright blue and was brought to $1 \mathrm{~mL} . \lambda_{\max } / \mathrm{cm}^{-1}(\mathrm{MeOH}) 15200\left(\mathrm{\varepsilon} / \mathrm{cm}^{-1} \mathrm{M}^{-1} 87.9\right)$.
[Cu(tach-5-Mepyr)]((%5Cleft.%5Cmathrm%7BClO%7D_%7B4%7D%5Cright)_{2}(4 \mathrm{c})\) A blue solution of $\mathrm{Cu}\left(\mathrm{ClO}_{4}\right)_{2} \cdot 6 \mathrm{H}_{2} \mathrm{O}$ in $\mathrm{MeOH}(50$ $\mathrm{mM}, 63 \mu \mathrm{l})$ was added to a pale yellow solution of tach-5-Mepyr in MeOH (25.2 $\mathrm{mM}, 125 \mu \mathrm{l}$) producing a fluffy light blue precipitate. After heating at approximately $65^{\circ} \mathrm{C}$ for 15 sec the solution turned bright blue and was brought to $1 \mathrm{~mL} . \lambda_{\max } / \mathrm{cm}^{-1} .(\mathrm{MeOH}) 15200\left(\varepsilon / \mathrm{cm}^{-1} \mathrm{M}^{-1} 95.9\right)$.
[Cu(tach-6-Mepyr)] $\left(\mathrm{ClO}_{4}\right)_{2}$ (4d) A blue solution of $\mathrm{Cu}\left(\mathrm{ClO}_{4}\right)_{2} \cdot 6 \mathrm{H}_{2} \mathrm{O}$ in $\mathrm{MeOH}(50$ $\mathrm{mM}, 92 \mu \mathrm{l}$) was added to a pale yellow solution of tach-6-Mepyr in MeOH (22.9 $\mathrm{mM}, 200 \mu \mathrm{l})$ producing a bright green solution. The solution was brought to 1 $\mathrm{mL} . \lambda_{\text {max }} / \mathrm{cm}^{-1}(\mathrm{MeOH}) 14600\left(\varepsilon / \mathrm{cm}^{-1} \mathrm{M}^{-1} 168.2\right), 11100$ shoulder $\left(\varepsilon / \mathrm{cm}^{-1} \mathrm{M}^{-1} 87.7\right)$. [Cu (tach-6-MeOpyr)] $\left(\mathrm{ClO}_{4}\right)_{2}(4 \mathrm{e}) \mathrm{A}$ blue solution of $\mathrm{Cu}\left(\mathrm{ClO}_{4}\right)_{2} \cdot 6 \mathrm{H}_{2} \mathrm{O}$ in MeOH ($50 \mathrm{mM}, 81 \mu \mathrm{l}$) was added to a pale yellow solution of tach-6-MeOpyr in MeOH ($20.3 \mathrm{mM}, 200 \mu \mathrm{l}$) producing a fluffy light blue precipitate. After heating at approximately $65^{\circ} \mathrm{C}$ for 15 sec the solution turned bright blue and was brought to $1 \mathrm{~mL} . \lambda_{\text {max }} / \mathrm{cm}^{-1}(\mathrm{MeOH}) 14900\left(\varepsilon / \mathrm{cm}^{-1} \mathrm{M}^{-1} 169.0\right), 10300$ shoulder $\left(\varepsilon / \mathrm{cm}^{-1} \mathrm{M}^{-1}\right.$ 105.7).

Chapter II Experimental

[Fe(tach-3-Mepyr-ox-4)]((%5Cleft.%5Cmathrm%7BPF%7D_%7B6%7D%5Cright)_{2}\) (9) A pale green solution of $\mathrm{FeCl}_{2} \cdot \mathbf{4 \mathrm { H } _ { 2 } \mathrm { O } (0 . 0 0 3 8}$ $\left.\mathrm{g}, 1.91 \times 10^{-5} \mathrm{~mol}\right)$ in $\mathrm{MeOD}-d_{4}(0.4 \mathrm{~mL})$ was added to a pale yellow solution of tach-3-Mepyr ($0.0083 \mathrm{~g}, 1.87 \times 10^{-5} \mathrm{~mol}$) in MeOD- $\mathrm{d}_{4}(0.4 \mathrm{~mL})$ producing a brown-yellow solution that immediately turned green-blue. After sitting for 60 hours the solution was a deep blue color. ${ }^{1} \mathrm{H}$ NMR confirmed the presence of solely the bisimine complex. $\mathrm{NH}_{4} \mathrm{PF}_{6}\left(0.0128 \mathrm{~g}, 7.85 \times 10^{-5} \mathrm{~mol}\right)$ was added to
the solution immediately producing dark blue microcrystals. Slow diffusion of $\mathrm{Et}_{2} \mathrm{O}(2 \mathrm{~mL})$ into the solution afforded more microcrystals. The dark blue microcrystals were isolated by decanting the supernatant and washed with cold methanol then dried under reduced pressure. The microcrystals were dissolved in $\mathrm{MeCN} / \mathrm{EtOH}(1: 1,0.4 \mathrm{~mL})$. Slow diffusion of $\mathrm{Et}_{2} \mathrm{O}(2 \mathrm{~mL})$ at $4^{\circ} \mathrm{C}$ produced dark blue plates that were isolated by decantation of the supernatant, and dried under reduced pressure resulting in a 60.3% yield $\left(0.0076 \mathrm{~g}, 1.13 \times 10^{-5} \mathrm{~mol}\right) .{ }^{1} \mathrm{H}$ NMR (400 MHz, DMSO-d $\left.\mathrm{d}_{6}, 25^{\circ} \mathrm{C}\right): \delta 9.38,9.32\left(\mathrm{~s}, \mathrm{~s}, 2 \mathrm{H}, \mathrm{N}=\mathrm{C} \underline{\mathrm{H}}-\mathrm{C}_{5} \mathrm{H}_{3} \mathrm{NCH}_{3}\right) ; 9$ peaks from $\delta 8.03$ to $\delta 5.89$ (9 aromatic $\mathrm{H}, \mathrm{C}_{5} \underline{H}_{3} \mathrm{NCH}_{3}$); numerous peaks from δ 4.93 to $\delta 3.12$ for (cyclohexyl methine H and $\mathrm{NH}-\mathrm{CH}_{2}$-py); numerous peaks from $\delta 2.76$ to $\delta 1.58$ for (methyl H's and cyclohexyl methylene H's). UVNis (MeCN): $26600 \mathrm{~cm}^{-1}\left(\varepsilon=4280 \mathrm{~cm}^{-1} \mathrm{M}^{-1}\right), 19400 \mathrm{sh}\left(\varepsilon=3580 \mathrm{~cm}^{-1} \mathrm{M}^{-1}\right), 16200(\varepsilon=8560$ $\mathrm{cm}^{-1} \mathrm{M}^{-1}$). UVNis (0.1 M MOPS, pH 7.4$): 26800 \mathrm{~cm}^{-1}\left(\varepsilon=4120 \mathrm{~cm}^{-1} \mathrm{M}^{-1}\right), 19300$ sh $\left(\varepsilon=3820 \mathrm{~cm}^{-1} \mathrm{M}^{-1}\right), 16300\left(\varepsilon=8240 \mathrm{~cm}^{-1} \mathrm{M}^{-1}\right) . \mathrm{MS}(E S I, \mathrm{MeOH}): 495.3(\mathrm{M}-$ 2PF6 $-\mathrm{H}^{+}$); $248.3\left(\mathrm{M}-2 \mathrm{PF}_{6}{ }^{-}\right)$. Anal. Calcd for $\mathrm{C}_{27} \mathrm{H}_{32} \mathrm{~F}_{12} \mathrm{FeN}_{6} \mathrm{P}_{2}: \mathrm{C}, 41.24 ; \mathrm{H}$, 4.10; N, 10.69. Found: C, 41.15; H, 4.27; N, 10.77.
[Fe(tach-3-Mepyr-ox-6)](CIO4) $)_{2} \cdot 3.5 \mathrm{H}_{2} \mathrm{O}\left(13 \cdot 3.5 \mathrm{H}_{2} \mathrm{O}\right)$ A yellow solution of $\mathrm{Fe}\left(\mathrm{ClO}_{4}\right)_{2} \cdot 6 \mathrm{H}_{2} \mathrm{O}\left(0.0127 \mathrm{~g}, 3.50 \times 10^{-5} \mathrm{~mol}\right)$ in $\mathrm{MeOH}(0.5 \mathrm{~mL})$ was added to a pale yellow solution of tach-3-Mepyr-trisimine $\left(0.0143 \mathrm{~g}, 3.26 \times 10^{-5} \mathrm{~mol}\right)$ in $\mathrm{MeOH}(0.5 \mathrm{~mL})$ producing a violet solution followed by immediate precipitation of violet microcrystals. Slow diffusion of $\mathrm{Et}_{2} \mathrm{O}(2 \mathrm{~mL})$ afforded more microcrystals. The crystals were isolated, washed with $\mathrm{Et}_{2} \mathrm{O}$ and dried under reduced pressure
affording the product as a violet solid in 86.3% yield $\left(0.0195 \mathrm{~g}, 2.81 \times 10^{-5} \mathrm{~mol}\right)$. ${ }^{1} \mathrm{H}$ NMR (400 MHz, DMSO- $\mathrm{d}_{6}, 25^{\circ} \mathrm{C}$): $\delta 9.44$ (s, $1 \mathrm{H}, \mathrm{N}-\mathrm{C} \underline{H}-\mathrm{py}$); 8.03, 7.52, 6.41 (d, dd, d, $3 \mathrm{H}, \mathrm{C}_{5} \underline{H}_{3} \mathrm{~N}\left(\mathrm{CH}_{3}\right)$); 4.87 (br s, 1H, cyclohexyl methine H); $2.68(\mathrm{~s}, 3 \mathrm{H}$, $\mathrm{C}_{5} \mathrm{H}_{3} \mathrm{~N}\left(\mathrm{CH}_{3}\right)$); 2.66 (obscured d, 1 H , equatorial cyclohexyl methylene H); 1.86 (br d, 1 H , axial cyclohexyl methylene H$)$. UVNis $\left(\mathrm{CH}_{3} \mathrm{CN}\right): 27600 \mathrm{~cm}^{-1}(\varepsilon=3540$ $\left.\mathrm{cm}^{-1} \mathrm{M}^{-1}\right), 18700 \mathrm{sh}\left(\varepsilon=5960 \mathrm{~cm}^{-1} \mathrm{M}^{-1}\right), 17100\left(\varepsilon=8540 \mathrm{~cm}^{-1} \mathrm{M}^{-1}\right)$. UVNis $(0.1$ M MOPS, pH 7.4$): 27800 \mathrm{~cm}^{-1}\left(\varepsilon=2160 \mathrm{~cm}^{-1} \mathrm{M}^{-1}\right), 18900 \mathrm{sh}\left(\varepsilon=3930 \mathrm{~cm}^{-1} \mathrm{M}^{-1}\right)$, $17100\left(\varepsilon=5940 \mathrm{~cm}^{-1} \mathrm{M}^{-1}\right)$. Anal. Calcd for $\mathrm{C}_{27} \mathrm{H}_{37} \mathrm{Cl}_{2} \mathrm{FeN}_{6} \mathrm{O}_{11.5}: \mathrm{C}, 42.87 ; \mathrm{H}$, 4.93; N, 11.11. Found: $\mathrm{C}, 42.41 ; H, 4.75 ; \mathrm{N}, 11.10$.

Disproportionation Reaction A mixture of $\left[\mathrm{Fe}(\text { tach-4-Mepyr) }]^{2+}\right.$ and $[\mathrm{Fe}($ tach-4-Mepyr-ox-2) $]^{2+}$ (ca. 1:1) was prepared by reaction of $\mathrm{FeCl}_{3} \bullet 6 \mathrm{H}_{2} \mathrm{O}(.0040 \mathrm{~g}, 1.48 \mathrm{x}$ $\left.10^{-5} \mathrm{~mol}\right)$ in $\mathrm{MeOD}-d_{4}(0.5 \mathrm{~mL})$ and tach-4-Mepyr $\left(0.0064 \mathrm{~g}, 1.44 \times 10^{-5} \mathrm{~mol}\right)$ in MeOD- $d_{4}(0.5 \mathrm{~mL})$ under N_{2}. The solution immediately turned green/blue. The composition was confirmed by ${ }^{1} \mathrm{H}$ NMR spectroscopy. UVNis (MeOH): 16530 $\mathrm{cm}^{-1}\left(\varepsilon=2650 \mathrm{~cm}^{-1} \mathrm{M}^{-1}\right), 24570\left(\varepsilon=4900 \mathrm{~cm}^{-1} \mathrm{M}^{-1}\right)$.

Competition Reactions To a mixture of $[\mathrm{Fe}(\text { tach-4-Mepyr })]^{2+}$ and $[\mathrm{Fe}$ (tach-4-Mepyr-ox-2) ${ }^{2+}$ (ca. 1:1), prepared as described above, was added 1.5 equivalents of either 1,10-phenanthroline (phen) or 2,2'-bipyridine (bipy) under N_{2}. With the addition of either reagent the solution respective solution immediately took on a deep red color. The compositions of the resulting solutions were analyzed by ${ }^{1} \mathrm{H}$ NMR spectroscopy.

Inertness of Fe (II)-bisimine and Fe (II)-trisimine complexes in aqueous pH

 7.4 medium Solutions of the complexes 9 and $13\left(5 \times 10^{-5} \mathrm{M}\right.$ in 0.1 M MOPS, $\mathrm{pH}=7.4$) were heated to $65^{\circ} \mathrm{C}$ in air while monitoring UV-vis spectra. After 24 h , the solution of 9 was unchanged while the UV-vis spectrum of 13 showed a decrease in intensity accompanied by formation of a pale-brown flocculent precipitate.
Chapter III Experimental

1,7-bis(2-pyridyl)-2,6-diazaheptane (bispicpn) (L ${ }^{6}$) Under a nitrogen atmosphere a solution of freshly distilled 2-pyridinecarboxaldehyde (0.256 g , $2.40 \times 10^{-3} \mathrm{~mol}$) in EtOH (2 mL) was added to a stirred solution of $1,3-$ diaminopropane ($0.0886 \mathrm{~g}, 1.2 \times 10^{-3} \mathrm{~mol}$) in EtOH (10 mL). The solution was refluxed for 1.5 hours. After cooling to room temperature the solution was diluted with $\mathrm{EtOH}(5 \mathrm{~mL})$. Excess $\mathrm{NaBH}_{4}\left(0.130 \mathrm{~g}, 3.40 \times 10^{-3} \mathrm{~mol}\right)$ was slowly added to the solution with stirring. The mixture was refluxed for 18 hours, allowed to cool to room temperature, and concentrated. $4 \mathrm{M} \mathrm{HCl}(15 \mathrm{~mL})$ was carefully added and the resulting solution was washed with $\mathrm{CHCl}_{3}(3 \times 10 \mathrm{~mL})$. The pH was raised to 12 with NaOH . The ligand was extracted with $\mathrm{CHCl}_{3}(3 \times 10 \mathrm{~mL})$. The organic phase was dried over MgSO_{4}, concentrated, and dried under reduced pressure affording the free ligand as a yellow oil ($0.259 \mathrm{~g}, 1.00 \times 10^{-3} \mathrm{~mol}, 85.0 \%$). ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl} 3,25^{\circ} \mathrm{C}\right.$): $\delta=8.53,7.64,7.32,7.16(\mathrm{~m}, \mathrm{t}, \mathrm{d}, \mathrm{m}, 4 \mathrm{H}$, $\mathrm{C}_{5} H_{4} \mathrm{~N}$), 3.94 ($\mathrm{s}, 2 \mathrm{H}, \mathrm{pyrCH} \mathrm{H}_{2} \mathrm{~N}$), $2.80\left(\mathrm{t}, 2 \mathrm{H}, \mathrm{NCH}_{2} \mathrm{CH}_{2}\right.$), 2.15 (br s, NH), 1.82 (p, $1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2}$).

1,7-bis(6-methyl-2-pyridyl)-2,6-diazaheptane (bis6Mepicpn) (L ${ }^{7}$) Under a nitrogen atmosphere a solution of 6-methylpyridine-2-aldehyde (0.437 g , $\left.3.60 \times 10^{-3} \mathrm{~mol}\right)$ in $\mathrm{EtOH}(6 \mathrm{~mL})$ was added to a stirred solution of $1,3-$ diaminnpropane ($0.133 \mathrm{~g}, 1.8 \times 10^{-3} \mathrm{~mol}$) in EtOH (6 mL). The solution was refluxed for one hour. After cooling to room temperature $\mathrm{EtOH}(6 \mathrm{~mL})$ was added to the solution. Excess $\mathrm{NaBH}_{4}\left(0.204 \mathrm{~g}, 5.40 \times 10^{-3} \mathrm{~mol}\right)$ was slowly added to the solution with stirring. The mixture was refluxed for 20 hours, allowed to cool to room temperature, and concentrated. $4 \mathrm{M} \mathrm{HCl}(10 \mathrm{~mL})$ was carefully added. The solution was washed with $\mathrm{CHCl}_{3}(3 \times 5 \mathrm{~mL}$). The pH was adjusted to 12 with NaOH . The ligand was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 10 \mathrm{~mL})$. The organic phase was dried over MgSO_{4}, concentrated, and dried under reduced pressure producing the free ligand as a yellow oil ($0.488 \mathrm{~g}, 1.70 \times 10^{-3} \mathrm{~mol}, 96.6 \%$). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}, 25^{\circ} \mathrm{C}$): $\delta=7.51,7.10,7.01\left(\mathrm{t}, \mathrm{d}, \mathrm{d}, 3 \mathrm{H}, 6-\mathrm{MeC}_{5} \mathrm{H}_{3} \mathrm{~N}\right)$, 3.87 (s, $2 \mathrm{H}, \mathrm{pyCH}_{2} \mathrm{~N}$), 2.76 (t, $2 \mathrm{H}, \mathrm{NCH}_{2} \mathrm{CH}_{2}$), $2.52\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3} \mathrm{C}_{5} \mathrm{H}_{3} \mathrm{~N}\right.$), 2.30 (br s, NH), $1.79\left(\mathrm{p}, 1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2}\right)$.

N -(2-(2-pyridyl)ethyl)-4-toluenesulfonamide A solution of p-toluenesulfonyl chloride ($0.800 \mathrm{~g}, 4.20 \times 10^{-3} \mathrm{~mol}$) in $\mathrm{Et}_{2} \mathrm{O}(25 \mathrm{~mL})$ was added to a stirred solution of 2-(2-aminoethyl)pyridine $\left(0.511 \mathrm{~g}, 4.18 \times 10^{-3} \mathrm{~mol}\right)$ and $\mathrm{NaOH}(0.261 \mathrm{~g}$, $6.53 \times 10^{-3} \mathrm{~mol}$) in water (5 mL). The biphasic system was stirred at room temperature for 18 hours. The $\mathrm{Et}_{2} \mathrm{O}$ was removed by rotary evaporation and the pH of the aqueous phase adjusted to 7 with 1 M HCl . The resulting white precipitate was collected on a glass frit (10-15 M), washed with cold water, and
recrystallized from hot EtOH to produce white cubes. The solid was dried under vacuum to afford white cubes ($1.0297 \mathrm{~g}, 89.2 \%$). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$, $25^{\circ} \mathrm{C}$): $\delta=8.47,7.58,7.14,7.07\left(\mathrm{~d}, \mathrm{td}, \mathrm{dd}, \mathrm{d}, 4 \mathrm{H}, \mathrm{C}_{5} \mathrm{H}_{4} \mathrm{~N}\right), 7.73,7.27(\mathrm{~d}, \mathrm{~d}, 4 \mathrm{H}$, $\mathrm{CH}_{3} \mathrm{C}_{6} \mathrm{H}_{4}$), 6.09 (br. t, $1 \mathrm{H}, \mathrm{CH}_{2}-\mathrm{NH}$), 3.36 (q, $2 \mathrm{H}, \mathrm{pyCH}_{2} \mathrm{CH}_{2} \mathrm{NH}$), $2.93(\mathrm{t}, 2 \mathrm{H}$,
 ring deformations), 1324.7, 1154.8 ($\mathrm{S}=\mathrm{O}$ symmetric and asymmetric stretches). \mathbf{N}-(2-(2-pyridyl)ethyl)-4-toluenesulfonamide sodium salt Under a nitrogen atmosphere $\mathrm{NaH}\left(0.156 \mathrm{~g}, 6.50 \times 10^{-3} \mathrm{~mol}\right)$ in a minimal amount of hexanes was added to a stirred solution of N -(2-(2-Pyridyl)ethyl)-4-toluenesulfonamide (0.901 $\mathrm{g}, 3.26 \times 10^{-3} \mathrm{~mol}$) in $\mathrm{MeCN}(75 \mathrm{~mL})$. The solution was slowly brought to a reflux over a 45 minute period. As solution stirred a fluffy white solid appeared. The reaction mixture was run through a glass frit ($10-15 \mathrm{M}$) to isolate white solid. The solid was dried under vacuum to produce a white, granular solid (0.9953 g, approx. quantitative). IR (KBr pellet): $\mathrm{v} / \mathrm{cm}^{-1}=1594.7,1567.8$ (py ring deformations), 1199.5, 1116.5 ($\mathrm{S}=\mathrm{O}$ symmetric and asymmetric stretches). 1,3-bis(4-toluenesulfonyloxy)propane A solution of 1,3-propanediol (0.300 g , $\left.3.94 \times 10^{-3} \mathrm{~mol}\right)$ in pyridine (0.7 mL) was slowly added to a cooled $\left(0^{\circ} \mathrm{C}\right)$ solution of p-toluenesulfonyl chloride $\left(1.807 \mathrm{~g}, 9.48 \times 10^{-3} \mathrm{~mol}\right)$ in pyridine $(3 \mathrm{~mL})$ with stirring. The solution was allowed to stir for 4 hours while keeping the temperature between $0-10^{\circ} \mathrm{C}$. Water (6 mL) was added to quench the reaction. The resulting white solid was collected on a glass frit ($10-15 \mathrm{M}$), washed with cold water, and recrystallized from hot EtOH to produce white sheets. The solid was
dried under vacuum to afford white flakes (1.055 g, 69.6\%). ${ }^{1} \mathrm{H}$ NMR (400 MHz , $\left.\mathrm{CDCl}_{3}, 25^{\circ} \mathrm{C}\right): \delta=7.75,7.35\left(\mathrm{~d}, \mathrm{~d}, 4 \mathrm{H}, \mathrm{CH}_{3} \mathrm{C}_{6} \mathrm{H}_{4}\right), 4.07\left(\mathrm{t}, 2 \mathrm{H}, \mathrm{NHCH}_{2} \mathrm{CH}_{2}\right), 2.46$ (s, $\left.3 \mathrm{H}, \mathrm{CH}_{3} \mathrm{C}_{6} \mathrm{H}_{4}\right), 2.00\left(\mathrm{p}, 1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2}\right.$).

1,9-bis(2-pyridyl)-3,7-bis(4-methylsulfonyl)-3,7-diazanonane Under a nitrogen atmosphere N -(2-(2-Pyridyl)ethyl)-4-toluenesulfonamide_sodium salt $\left(0.973 \mathrm{~g}, 3.26 \times 10^{-3} \mathrm{~mol}\right)$ was suspended in $\mathrm{MeCN}(50 \mathrm{~mL})$. The mixture was brought to reflux and a solution of 1,3-bis(4-toluenesulfonyloxy)propane (0.493 g , $\left.1.28 \times 10^{-3} \mathrm{~mol}\right)$ in $\mathrm{MeCN}(20 \mathrm{~mL})$ was added over the period of an hour. The solution was allowed to reflux 18 hours. After the mixture cooled, it was filtered through a glass frit ($10-15 \mathrm{M}$) and the MeCN removed under reduced pressure to afford an orange oil. Flash column chromatography was performed ($\mathrm{EtOAc} / \mathrm{CHCl}_{3} / \mathrm{MeOH}(10: 9: 1)$) to obtain desired product as an orange oil (0.1608 $\mathrm{g}, 21.2 \%) .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}, 25^{\circ} \mathrm{C}$): $\delta=8.49-8.47,7.57,7.16,7.12-$ 7.09 ($\mathrm{m}, \mathrm{td}, \mathrm{d}, \mathrm{m}, 4 \mathrm{H}, \mathrm{C}_{5} \mathrm{H}_{4} \mathrm{~N}$), $7.68,7.27\left(\mathrm{~d}, \mathrm{~d}, 4 \mathrm{H}, \mathrm{CH}_{3} \mathrm{C}_{5} \mathrm{H}_{4}\right), 3.50(\mathrm{t}, 2 \mathrm{H}$, pyCH CH_{2}), $3.14\left(\mathrm{t}, 2 \mathrm{H}, \mathrm{NCH}_{2} \mathrm{CH}_{2}\right), 3.03\left(\mathrm{t}, 2 \mathrm{H}, \mathrm{pyCH}_{2} \mathrm{CH}_{2}\right), 2.39(\mathrm{~s}, 3 \mathrm{H}$, $\left.\mathrm{CH}_{3} \mathrm{C}_{6} \mathrm{H}_{4}\right), 1.75\left(\mathrm{p}, 1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2}\right)$.

1,9-bis(2-pyridyl)-3,7-diazanonane (bpdan) (L^{8}) Under a nitrogen atmosphere a solution of 1,9-bis(2-pyridyl)-3,7-bis(4-methylsulfonyl)-3,7-diazanonane (0.130 $\left.\mathrm{g}, 2.19 \times 10^{-3} \mathrm{~mol}\right)$ in concentrated sulfuric acid $(10 \mathrm{~mL})$ was refluxed for 20 hours. After the solution cooled to room temperature, it was filtered through a glass frit (10 -15 M). The filtrate was carefully added to cold EtOH (80 mL) affording a fine white precipitate. The precipitate was isolated on a glass frit ($10-15 \mathrm{M}$) and
dried under vacuum. The solid was dissolved in water (15 mL) and the pH adjusted to 12 by slow addition of 6 M NaOH . The amine was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 10 \mathrm{~mL})$. The solvent was removed under reduced pressure affording the desired product as a yellow oil ($0.0205 \mathrm{~g}, 32.9 \%$). ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$, $25^{\circ} \mathrm{C}$): $\delta=8.50-8.49,7.56,7.14,7.08$ (m, td, d, dd, $4 \mathrm{H}, \mathrm{C}_{5} \mathrm{H}_{4} \mathrm{~N}$), $3.00-2.91$ (m, $4 \mathrm{H}, \mathrm{pyCH}_{2} \mathrm{CH}_{2}$), $2.68\left(\mathrm{t}, 2 \mathrm{H}, \mathrm{NHCH}_{2} \mathrm{CH}_{2}\right.$), 2.12 (br. s, $\mathrm{CH}_{2} \mathrm{NHCH}_{2}$), 1.66 (p, $1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2}$).
[$\mathrm{Ni}($ bispicpn $)]\left(\mathrm{ClO}_{4}\right)_{2}(17 \mathrm{a})$ A pale green solution of $\mathrm{Ni}\left(\mathrm{ClO}_{4}\right)_{2} \bullet 6 \mathrm{H}_{2} \mathrm{O}(0.0156 \mathrm{~g}$, $\left.4.27 \times 10^{-5} \mathrm{~mol}\right)$ in $\mathrm{MeOH}(350 \mu \mathrm{~L})$ was added to a pale yellow solution of bispicpn $\left(0.0110 \mathrm{~g}, 4.29^{-5} \mathrm{~mol}\right)$ in $\mathrm{MeOH}(350 \mu \mathrm{~L})$ producing a violet solution. Diffusion of $\mathrm{Et}_{2} \mathrm{O}$ overnight afforded a violet oil. Trituration of the oil produced violet powder. The powder was isolated and dried under vacuum affording a very fine lavender powder ($0.0172 \mathrm{~g}, 3.35 \times 10^{-5} \mathrm{~mol}, 78.2 \%$). UV/Nis/NIR (MeCN): $\lambda_{\max } / \mathrm{cm}^{-1}$ $\left(\varepsilon / \mathrm{cm}^{-1} \mathrm{M}^{-1}\right)=18900(9.7), 12800(\mathrm{sh})(5.4) 11900(6.7)$.
[$\mathrm{Ni}($ bis6Mepicpn $)]\left(\mathrm{ClO}_{4}\right)_{2}$ (17b) A pale green solution of $\mathrm{Ni}\left(\mathrm{ClO}_{4}\right)_{2} \bullet 6 \mathrm{H}_{2} \mathrm{O}$ $\left(0.0322 \mathrm{~g}, 8.81 \times 10^{-5} \mathrm{~mol}\right)$ in $\mathrm{MeOH}(500 \mu \mathrm{~L})$ was added to a pale yellow solution of bis6Mepicpn ($0.0242 \mathrm{~g}, 8.58 \times 10^{-5} \mathrm{~mol}$) in $\mathrm{MeOH}(500 \mu \mathrm{~L})$ producing a light blue suspension that quickly went back into solution. A bright blue solution resulted. Diffusion of $\mathrm{Et}_{2} \mathrm{O}$ overnight afforded pale lavender clusters along with a violet/blue oil. The crystals were manually separate from the oil. The oil was redissolved in $\mathrm{MeOH} / \mathrm{MeCN}$ (4:1) producing a violet solution. Slow diffusion of $\mathrm{Et}_{2} \mathrm{O}$ overnight produced more lavender crystals. The crystals were combined,
washed with $\mathrm{Et}_{2} \mathrm{O}$, and dried under vacuum ($0.0316 \mathrm{~g}, 68.0 \%$). UV/Vis/NIR (MeCN): $\lambda_{\max } / \mathrm{cm}^{-1}\left(\varepsilon / \mathrm{cm}^{-1} \mathrm{M}^{-1}\right)=10900(9.5), 12800(\mathrm{sh})(5.4), 17900(8.3)$, 28900 (13.1).
[$\mathrm{Ni}($ bpdan $)]\left(\mathrm{ClO}_{4}\right)_{2}$ (17c) A pale green solution of $\mathrm{Ni}\left(\mathrm{ClO}_{4}\right)_{2} \bullet 6 \mathrm{H}_{2} \mathrm{O}(0.0093 \mathrm{~g}$, $\left.2.54 \times 10^{-5} \mathrm{~mol}\right)$ in $\mathrm{MeOH}(400 \mu \mathrm{~L})$ was added to a pale yellow solution of bpdan $\left(0.0069 \mathrm{~g}, 2.43 \times 10^{-5} \mathrm{~mol}\right)$ in $\mathrm{MeOH}(400 \mu \mathrm{~L})$ resulting in a blue solution. Diffusion of $\mathrm{Et}_{2} \mathrm{O}$ overnight produced clusters of violet needles. The needles were isolated, washed with $\mathrm{Et}_{2} \mathrm{O}$, and dried under vacuum affording violet microcrystals $\left(.0109 \mathrm{~g}, 2.01 \times 10^{-5} \mathrm{~mol}, 83.8 \%\right)$. UVNis $/ \mathrm{NIR}\left(\mathrm{H}_{2} \mathrm{O}\right): \lambda_{\text {max }} / \mathrm{cm}^{-1}$ $\left(\varepsilon / \mathrm{cm}^{-1} \mathrm{M}^{-1}\right)=10700$ (7.3), $12900(\mathrm{sh})(2.1), 17100$ (10.6), 27500 (16.6). [Cu(bispicpn)]((%5Cleft.%5Cmathrm%7BClO%7D_%7B4%7D%5Cright)_{2}(18 \mathrm{a})\) A pale blue solution of $\mathrm{Cu}\left(\mathrm{ClO}_{4}\right)_{2} \bullet 6 \mathrm{H}_{2} \mathrm{O}(0.0418 \mathrm{~g}$, $\left.1.13 \times 10^{-4} \mathrm{~mol}\right)$ in $\mathrm{MeOH}(500 \mu \mathrm{~L})$ was added to a pale yellow solution of bispicpn $\left(0.0285 \mathrm{~g}, 1.12 \times 10^{-4} \mathrm{~mol}\right)$ in $\mathrm{MeOH}(500 \mu \mathrm{~L})$ producing a deep violet solution. After standing for approximately one minute violet microcrystals began to fall out of solution. Slow diffusion of $\mathrm{Et}_{2} \mathrm{O}$ overnight afforded more violet microcrystals. The crystals were isolated, washed with $\mathrm{Et}_{2} \mathrm{O}$, and dried under vacuum producing violet microcrystals $(0.0466 \mathrm{~g}, 80.2 \%)$. UVNis/NIR $\left(\mathrm{H}_{2} \mathrm{O}\right): \lambda_{\max } / \mathrm{cm}^{-1}$ $\left(\varepsilon / \mathrm{cm}^{-1} \mathrm{M}^{-1}\right)=16500(134.7)$.
[Cu(bis6Mepicpn)] $\left(\mathrm{ClO}_{4}\right)_{2}$ (18b) A pale blue solution of $\mathrm{Cu}\left(\mathrm{ClO}_{4}\right)_{2} \bullet 6 \mathrm{H}_{2} \mathrm{O}$ $\left(0.0306 \mathrm{~g}, 8.26 \times 10^{-5} \mathrm{~mol}\right)$ in $\mathrm{MeOH}(500 \mu \mathrm{~L})$ was added to a pale yellow solution of bis6Mepicpn ($0.0228 \mathrm{~g}, 8.08 \times 10^{-5} \mathrm{~mol}$) in $\mathrm{MeOH}(500 \mu \mathrm{~L})$ producing a royal
blue solution. Slow diffusion of $\mathrm{Et}_{2} \mathrm{O}$ in to the solution produces deep blue clusters of microcrystals within 5 minutes. The crystals were isolated, washed with $\mathrm{Et}_{2} \mathrm{O}$, and dried under vacuum affording blue microcrystals (0.0353 g , $79.8 \%)$. UVNis/NIR $\left(\mathrm{H}_{2} \mathrm{O}\right): \lambda_{\max } / \mathrm{cm}^{-1}\left(\varepsilon / \mathrm{cm}^{-1} \mathrm{M}^{-1}\right)=14000$ (139).
[Cu(bpdan)] $\left(\mathrm{NO}_{3}\right)_{2}(18 \mathrm{c})$ A pale blue solution of $\mathrm{Cu}\left(\mathrm{ClO}_{4}\right)_{2} \cdot 6 \mathrm{H}_{2} \mathrm{O}(0.0123 \mathrm{~g}$, $\left.3.32 \times 10^{-5} \mathrm{~mol}\right)$ in $\mathrm{MeOH}(500 \mu \mathrm{~L})$ was added to a pale yellow solution of bpdan $\left(0.0076 \mathrm{~g}, 2.67 \times 10^{-5} \mathrm{~mol}\right)$ in $\mathrm{MeOH}(500 \mu \mathrm{~L})$ producing a bright blue solution. Diffusion of $\mathrm{Et}_{2} \mathrm{O}$ overnight produced clusters of bright blue sheets. The sheets were isolated, washed with $\mathrm{Et}_{2} \mathrm{O}$, and dried under vacuum affording blue sheets $\left(0.0133 \mathrm{~g}, 2.43 \times 10^{-5} \mathrm{~mol}, 91.0 \%\right)$. UVNis/NIR $\left(\mathrm{H}_{2} \mathrm{O}\right): \lambda_{\max } / \mathrm{cm}^{-1}\left(\varepsilon / \mathrm{cm}^{-1} \mathrm{M}^{-1}\right)=$ 14900 (159.3).
[Zn (bispicpn)] $\left(\mathrm{NO}_{3}\right)_{2}$ (19a) A colorless solution of $\mathrm{Zn}\left(\mathrm{NO}_{3}\right)_{2} \bullet 6 \mathrm{H}_{2} \mathrm{O}(0.0255 \mathrm{~g}$, $\left.8.57 \times 10^{-5} \mathrm{~mol}\right)$ in $\mathrm{MeOH}(400 \mu \mathrm{~L})$ was added to a pale yellow solution of bispicpn $\left(0.0220 \mathrm{~g}, 8.58 \times 10^{-5} \mathrm{~mol}\right)$ in $\mathrm{MeOH}(400 \mu \mathrm{~L})$. Upon addition of the metal solution a suspension formed and redissolved in less than thirty seconds. Slow diffusion of $\mathrm{Et}_{2} \mathrm{O}$ into the solution resulted in a mixture of small off-white crystals and a pale yellow oil. Triturating the mixture with $\mathrm{Et}_{2} \mathrm{O}$ produced an off-white powder. The powder was isolated by decanting the supernatant and dried under reduced pressure. Suspending the powder in $\mathrm{MeCN}(750 \mu \mathrm{~L})$ and adding DMSO dropwise until all the powder dissolved produced a colorless solution. Slow diffusion of $\mathrm{Et}_{2} \mathrm{O}$ into the solution overnight produced colorless cubes. The product was isolated, washed with MeOH , and dried under reduced pressure
affording white cubes $\left(0.0254 \mathrm{~g}, 5.70 \times 10^{-5} \mathrm{~mol}, 66.4 \%\right) . \mathrm{MS}(\mathrm{ESI}, \mathrm{MeOH}): \mathrm{m} / \mathrm{z}=$ $319\left[\mathrm{M}-2 \mathrm{NO}_{3}{ }^{-}-\mathrm{H}^{+}\right], 382\left[\mathrm{M}-\mathrm{NO}_{3}{ }^{-}\right] . \mathrm{C}_{15} \mathrm{H}_{20} \mathrm{~N}_{6} \mathrm{O}_{6} \mathrm{Zn}(445.7):$ calcd. C 40.42, H 4.52, N 18.85; found C 40.41, H 4.55, N 18.84.
[Zn (bis6Mepicpn)] $\left(\mathrm{NO}_{3}\right)_{2} \bullet 0.75 \mathrm{H}_{2} \mathrm{O}$ (19b) A colorless solution of $\mathrm{Zn}\left(\mathrm{NO}_{3}\right)_{2} \cdot 6 \mathrm{H}_{2} \mathrm{O}$ ($0.0293 \mathrm{~g}, 9.85 \times 10^{-5} \mathrm{~mol}$) in $\mathrm{MeOH}(500 \mu \mathrm{~L})$ was added to a pale yellow solution of bis6Mepicpn ($0.0264 \mathrm{~g}, 9.36 \times 10^{-5} \mathrm{~mol}$) in $\mathrm{MeOH}(500 \mu \mathrm{~L})$. Slow diffusion of $\mathrm{Et}_{2} \mathrm{O}$ into the solution over an 18 hour period resulted in a colorless oil. Trituration of the oil with $\mathrm{Et}_{2} \mathrm{O}$ produced a white powder. After isolation of the powder under reduced pressure it was suspended in MeCN. DMSO was added dropwise until the powder dissolved. Slow diffusion of $\mathrm{Et}_{2} \mathrm{O}$ overnight produced colorless prisms. Decanting the supernatant and drying under reduced pressure affords white prisms $\left(0.0340 \mathrm{~g}, 7.18 \times 10^{-5} \mathrm{~mol}, 76.7 \%\right) .{ }^{1} \mathrm{H}$ NMR (400 MHz , $\left.\left[\mathrm{D}_{6}\right] \mathrm{DMSO}, 65^{\circ} \mathrm{C}\right): \delta=8.02,7.49\left(\mathrm{t}, \mathrm{t}, 3 \mathrm{H}, 6-\mathrm{MeC}_{5} \mathrm{H}_{3} \mathrm{~N}\right), 5.08\left(\mathrm{br} \mathrm{s}, 1 \mathrm{H}, \mathrm{NHCH} \mathrm{H}_{2}\right)$, 4.16 (br s, 2 H, MepyrCH2 N), 2.84 (br s, $2 \mathrm{H} \mathrm{NCH}_{2} \mathrm{CH}_{2}$), 2.34 (s, $3 \mathrm{H} \mathrm{CH}_{3} \mathrm{pyr}$), 1.74 (brt, $1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2}$). ${ }^{13} \mathrm{C}$ NMR ($400 \mathrm{MHz},\left[\mathrm{D}_{6}\right] \mathrm{DMSO}, 65^{\circ} \mathrm{C}$): $\delta=158.6$, 156.7, 141.6, 126.1, 122.4, 53.1, 50.1, 26.8, 24.0. $\mathrm{MS}(\mathrm{ESI}, \mathrm{MeOH}): \mathrm{m} / \mathrm{z}=347$ $\left[\mathrm{M}-2 \mathrm{NO}_{3}{ }^{-}-\mathrm{H}^{+}\right], 410\left[\mathrm{M}-\mathrm{NO}_{3}{ }^{-}\right] . \mathrm{C}_{17} \mathrm{H}_{25.5} \mathrm{~N}_{6} \mathrm{O}_{6.75} \mathrm{Zn}(487.31):$ calcd. C $41.90, \mathrm{H}$ 5.27, N 17.25; found C 42.05, H 5.28, N 17.24.
[Zn (bpdan) $\left.\left(\mathrm{NO}_{3}\right)\right] \mathrm{NO}_{3}$ (19c) A colorless solution of $\mathrm{Zn}\left(\mathrm{NO}_{3}\right)_{2} \cdot 6 \mathrm{H}_{2} \mathrm{O}(0.0067 \mathrm{~g}$, $\left.2.25 \times 10^{-5} \mathrm{~mol}\right)$ in $\mathrm{MeOH}(400 \mu \mathrm{~L})$ was added to a pale yellow solution of bpdan ($\left.0.0061 \mathrm{~g}, 2.14 \times 10^{-5} \mathrm{~mol}\right)$ in $\mathrm{MeOH}(400 \mu \mathrm{~L})$. Slow diffusion of $\mathrm{Et}_{2} \mathrm{O}$ into the solution over an 18 hour period resulted in a colorless oil. Trituration of the oil
with $\mathrm{Et}_{2} \mathrm{O}$ produced a white powder. After isolation of the powder under reduced pressure it was suspended in MeCN. DMSO was added dropwise until the powder dissolved. Slow diffusion of $\mathrm{Et}_{2} \mathrm{O}$ overnight produced colorless prisms of X-ray quality. For analysis the solid was washed with $\mathrm{Et}_{2} \mathrm{O}$ and dried under vacuum affording white cubes ($0.0092 \mathrm{~g}, 1.95 \times 10^{-5} \mathrm{~mol}, 91.0 \%$). ${ }^{1} \mathrm{H}$ NMR (400 $\left.\mathrm{MHz},\left[\mathrm{D}_{3}\right] \mathrm{MeCN} /\left[\mathrm{D}_{6}\right] \mathrm{DMSO}, 25^{\circ} \mathrm{C}\right): \delta=8.08,7.98,7.53,7.36$ (dd, td, d, td, 4 H , $\mathrm{C}_{5} \mathrm{H}_{4} \mathrm{~N}$), 3.30-2.70 (multiple broad peaks and a large singlet, $\mathrm{CH}_{2} \mathrm{NHCH}_{2} \mathrm{CH}_{2} \mathrm{py}$), 1.82 (p, $1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2}$). $\mathrm{C}_{17} \mathrm{H}_{24} \mathrm{~N}_{6} \mathrm{O}_{6} \mathrm{Zn}$ (473.87): calcd. C 43.10, H 5.10, N 17.74; found C 43.14, H 5.15, N 17.71.

LIST OF REFERENCES

(1) Busch, D. H. Chem. Rev. (Washington, DC, U. S.) 1993, 93, 847-60.
(2) Hancock, R. D.; Martell, A. E. Chem. Rev. (Washington, DC, U. S.) 1989, 89, 1875-914.
(3) Hou, Z.; Stack, T. D. P.; Sunderland, C. J.; Raymond, K. N. Inorg. Chim. Acta 1997, 263, 341-355.
(4) de Angelis, S.; Batsanov, A.; Norman, T. J.; Parker, D.; Senanayake, K.; Vepsalainen, J. J. Chem. Soc., Chem. Commun. 1995, 2361-3.
(5) Park, G.; Przyborowska, A. M.; Ye, N.; Tsoupas, N. M.; Bauer, C. B.; Broker, G. A.; Rogers, R. D.; Brechbiel, M. W.; Planalp, R. P. Dalton Trans. 2003, 318-324.
(6) Park, G.; Lu, F. H.; Ye, N.; Brechbiel, M. W.; Torti, S. V.; Torti, F. M.; Planalp, R. P. JBIC, J. Biol. Inorg. Chem. 1998, 3, 449-457.
(7) Park, G.; Dadachova, E.; Przyborowska, A.; Lai, S.-j.; Ma, D.; Broker, G.; Rogers, R. D.; Planalp, R. P.; Brechbiel, M. W. Polyhedron 2001, 20, 3155-3163.
(8) Park, G.; Ye, N.; Rogers, R. D.; Brechbiel, M. W.; Planalp, R. P. Polyhedron 2000, 19, 1155-1161.
(9) Shannon, R. D.; Prewitt, C. T. Acta Crystallographica, Section B: Structural Crystallography and Crystal Chemistry 1969, 25, 925-46.
(10) Shannon, R. D. Acta Crystallographica, Section A: Crystal Physics, Diffraction, Theoretical and General Crystallography 1976, A32, 751-67.
(11) Bowen, T.; Planalp, R. P.; Brechbiel, M. W. Bioorg. Med. Chem. Lett. 1996, 6, 807-10.
(12) Hilfiker, K. A.; Brechbiel, M. W.; Rogers, R. D.; Planalp, R. P. Inorg. Chem. 1997, 36, 4600-4603.
(13) Torti, S. V.; Planalp, R. P.; Brechbiel, M. W.; Park, G.; Torti, F. M. Molecular Biology of Hematopoiesis 6, [Proceedings of the Symposium on the Molecular Biology of Hematopoiesis], 11th, Bormio, Italy, June 25-29, 1998 1999, 381-389.
(14) Le, N. T. V.; Richardson, D. R. Biochimica et Biophysica Acta, Reviews on Cancer 2002, 1603, 31-46.
(15) Easmon, J. Expert Opin. Ther. Pat. 2002, 12, 789-818.
(16) Zhao, R.; Planalp, R. P.; Ma, R.; Greene, B. T.; Jones, B. T.; Brechbiel, M. W.; Torti, F. M.; Torti, S. V. Biochem. Pharmacol. 2004, 67, 1677-1688.
(17) Chum, H. L.; Vanin, J. A.; Holanda, M. I. D. Inorg. Chem. 1982, 21, 114652.
(18) Toftlund, H.; Yde-Andersen, S. Acta Chemica Scandinavica, Series A: Physical and Inorganic Chemistry 1981, A35, 575-85.
(19) Wieghardt, K.; Schoeffmann, E.; Nuber, B.; Weiss, J. Inorg. Chem. 1986, 25, 4877-83.
(20) Wilson, L. J.; Georges, D.; Hoselton, M. A. Inorg. Chem. 1975, 14, 296875.
(21) Hancock, R. D.; McDougall, G. J. Journal of the Chemical Society, Dalton Transactions: Inorganic Chemistry (1972-1999) 1977, 67-70.
(22) Zhang, D.; Busch, D. H. Inorg. Chem. 1994, 33, 5138-43.
(23) Banci, L.; Bencini, A.; Benelli, C.; Gatteschi, D.; Zanchini, C. Structure and Bonding (Berlin, Germany) 1982, 52, 37-86.
(24) Sacconi, L.; Mani, F.; Bencini, A. Nickel; Pergamon: New York, 1987.
(25) Hathaway, B. J. Copper, Pergamon: New York, 1987.
(26) Karlin, K. D.; Hayes, J. C.; Juen, S.; Hutchinson, J. P.; Zubieta, J. Inorg. Chem. 1982, 21, 4106-4108.
(27) Duggan, M.; Hathaway, B. J.; Mullane, J. Journal of the Chemical Society, Dalton Transactions: Inorganic Chemistry (1972-1999) 1980, 690-8.
(28) Park, G.; Shao, J.; Lu, F. H.; Rogers, R. D.; Chasteen, N. D.; Brechbiel, M. W.; Planalp, R. P. Inorg. Chem. 2001, 40, 4167-4175.
(29) Duggan, M.; Ray, N.; Hathaway, B.; Tomlinson, G.; Brint, P.; Pelin, K. Journal of the Chemical Society, Dalton Transactions: Inorganic Chemistry (1972-1999) 1980, 1342-8.
(30) Christiansen, L.; Hendrickson, D. N.; Toftlund, H.; Wilson, S. R.; Xie, C. L. Inorg. Chem. 1986, 25, 2813-18.
(31) Greenaway, A. M.; Sinn, E. J. Am. Chem. Soc. 1978, 100, 8080-4.
(32) Alcock, N. W.; Zhang, D.; Busch, D. H. Acta Crystallogr., Sect. C: Cryst. Struct. Commun. 1999, C55, 886-889.
(33) Childers, M. L.; Su, F.; Przyborowska, A. M.; Bishwokarma, B.; Park, G.; Brechbiel, M. W.; Torti, S. V.; Torti, F. M.; Broker, G.; Alexander, J. S.; Rogers, R. D.; Ruhlandt-Senge, K.; Planalp, R. P. Eur. J. Inorg. Chem. 2005, 3971-3982.
(34) Bernal, I.; Jensen, I. M.; Jensen, K. B.; McKenzie, C. J.; Toftlund, H.; Tuchagues, J.-P. J. Chem. Soc., Dalton Trans. 1995, 3667-75.
(35) Koikawa, M.; Jensen, K. B.; Matsushima, H.; Tokii, T.; Toftlund, H. J. Chem. Soc., Dalton Trans. 1998, 1085-1086.
(36) Tomlinson, A. A. G.; Hathaway, B. J. Journal of the Chemical Society [Section] A: Inorganic, Physical, Theoretical 1968, 1685-8.
(37) Butcher, R. J.; Addison, A. W. Inorg. Chim. Acta 1989, 158, 211-15.
(38) Planalp, R. P.; Przyborowska, A. M.; Park, G.; Ye, N.; Lu, F. H.; Rogers, R. D.; Broker, G. A.; Torti, S. V.; Brechbiel, M. W. Biochem. Soc. Trans. 2002, 30, 758-762.
(39) Goedken, V. L.; Busch, D. H. J. Am. Chem. Soc. 1972, 94, 7355.
(40) Toma, H.; Ferreira, A.; Iha, N. New J. Chem. 1985, 9, 473-478.
(41) Goto, M.; Koga, N.; Ohse, Y.; Kurosaki, H.; Komatsu, T.; Kuroda, Y. J. Chem. Soc., Chem. Commun. 1994, 2015-2016.
(42) Kuroda, Y.; Tanaka, N.; Goto, M.; Sakai, T. Inorg. Chem. 1989, 28, 2163 2169.
(43) Morgenstern-Badarau, I.; Lambert, F.; Philippe Renault, J.; Cesario, M.; Marechal, J. D.; Maseras, F. Inorg. Chim. Acta 2000, 297, 338-350.
(44) Krumholz, P. Struct. Bonding (Berlin) 1971, 9, 139-174.
(45) Torti, S. V.; Torti, F. M.; Whitman, S. P.; Brechbiel, M. W.; Park, G.; Planalp, R. P. Blood 1998, 92, 1384-1389.
(46) Lions, F.; Martin, K. V. J. Am. Chem. Soc. 1957, 79, 1572-1575.
(47) Gillum, W. O.; Wentworth, R. A. D.; Childers, R. F. Inorg. Chem. 1970, 9, 1825-1832.
(48) Krumholz, P.; Serra, O. A.; De Paoli, M. A. Inorg. Chim. Acta 1975, 15, 25 - 32.
(49) Park, G. Doctoral Dissertation, University of New Hampshire, 2000.
(50) Wentworth, R. A. D. Coord. Chem. Rev. 1972/73, 9, 171-187.
(51) Childers, R. F.; Wentworth, R. A. D. Inorg. Chem. 1973, 12, 2778-2782.
(52) Boubedeur, K.; Deroche, A.; Lambert, F.; Morgenstern-Badarau, I. Acta Crystallogr., Sect. C: Cryst. Struct. Commun. 1995, C51, 2244-2246.
(53) Wentworth, R. A. D.; Dahl, P. S.; Huffman, C. J.; Gillum, W. O.; Streib, W. E.; Huffman, J. C. Inorg. Chem. 1982, 21, 3060-3063.
(54) Fahrni, C. J.; O'Halloran, T. V. J. Am. Chem. Soc. 1999, 121, 1144811458.
(55) Reany, O.; Gunnlaugsson, T.; Parker, D. Perkin 2 2000, 1819-1831.
(56) Walkup, G. K.; Burdette, S. C.; Lippard, S. J.; Tsien, R. Y. J. Am. Chem. Soc. 2000, 122, 5644-5645.
(57) Farkas, E.; Katz, Y.; Bhusare, S.; Reich, R.; Roeschenthaler, G.-V.; Koenigsmann, M.; Breuer, E. JBIC, J. Biol. Inorg. Chem. 2004, 9, 307315.
(58) Bates, G. B.; Parker, D.; Tasker, P. A. J. Chem. Soc., Perkin Trans. 2 1996, 1117-1125.
(59) Edlin, C. D.; Parker, D.; Perry, J. J. B.; Chartroux, C.; Gloe, K. New J. Chem. 1999, 23, 819-826.
(60) Congreve, A.; Kataky, R.; Knell, M.; Parker, D.; Puschmann, H.; Senanayake, K.; Wylie, L. New J. Chem. 2003, 27, 98-106.
(61) Irving, H.; Williams, R. J. P. Nature (London, U. K.) 1948, 162, 746-7.
(62) Irving, H. M.; Williams, R. J. P. J. Chem. Soc. 1953, 3192-3210.
(63) Miessler, G. L.; Tarr, D. A. Inorganic Chemistry; Prentice Hall: Upper Saddle River, New Jersey, 2000.
(64) Bates, G. B.; Parker, D. J. Chem. Soc., Perkin Trans. 2 1996, 1109-1115.
(65) Bates, G. B.; Parker, D. Tetrahedron Lett. 1996, 37, 267-70.
(66) Koike, T.; Kimura, E.; Nakamura, I.; Hashimoto, Y.; Shiro, M. J. Am. Chem. Soc. 1992, 114, 7338-45.
(67) Alcock, N. W.; Benniston, A. C.; Moore, P.; Pike, G. A.; Rawle, S. C. J. Chem. Soc., Chem. Commun. 1991, 706-8.
(68) Rawle, S. C.; Clarke, A. J.; Moore, P.; Alcock, N. W. Journal of the Chemical Society, Dalton Transactions: Inorganic Chemistry (1972-1999) 1992, 2755-7.
(69) Xu, X.; Allen, C. S.; Chuang, C.-L.; Canary, J. W. Acta Crystallogr., Sect. C: Cryst. Struct. Commun. 1998, C54, 600-601.
(70) Yu, Y.; Smith, J. M.; Flaschenriem, C. J.; Holland, P. L. Inorg. Chem. 2006, 45, 5742-5751.
(71) Gan, W.; Jones, S. B.; Reibenspies, J. H.; Hancock, R. D. Inorg. Chim. Acta 2005, 358, 3958-3966.
(72) Hernandez, H. J. G.; Pandiyan, T.; Bernes, S. Inorg. Chim. Acta 2006, 359, 1-12.
(73) McKenzie, E. D.; Stephens, F. S. Inorg. Chim. Acta 1980, 42, 1-10.
(74) Newkome, G. R.; Frere, Y. A.; Fronczek, F. R.; Gupta, V. K. Inorg. Chem. 1985, 24, 1001-6.
(75) Pandiyan, T.; Consuelo-Estrada, V. M.; Moreno-Esparza, R.; RuizRamirez, L. Inorg. Chim. Acta 2003, 343, 79-89.
(76) Phillip, A. T.; Casey, A. T.; Thompson, C. R. Aust. J. Chem. 1970, 23, 491-9.
(77) Nikles, D. E.; Powers, M. J.; Urbach, F. L. Inorg. Chim. Acta 1979, 37, L499-L501.
(78) Rybak-Akimova, E. V.; Nazarenko, A. Y.; Chen, L.; Krieger, P. W.; Herrera, A. M.; Tarasov, V. V.; Robinson, P. D. Inorg. Chim. Acta 2001, 324, 1-15.
(79) Nikles, D. E.; Powers, M. J.; Urbach, F. L. Inorg. Chem. 1983, 22, 321017.
(80) McKenzie, E. D.; Gibson, J. G. Journal of the Chemical Society [Section] A: Inorganic, Physical, Theoretical 1971, 1666-83.
(81) Hancock, R. D. J. Chem. Educ. 1992, 69, 615-621.
(82) Cukrowski, I.; Cukrowska, E.; Hancock, R. D.; Anderegg, G. Anal. Chim. Acta 1995, 312, 307-321.
(83) Hathaway, B. J. Struct. Bonding (Berlin) 1984, 57, 55-118.
(84) Hathaway, B. J.; Billing, D. E. Coord. Chem. Rev. 1970, 5, 143-207.
(85) Hartman, J. A. R.; Kammier, A. L.; Spracklin, R. J.; Pearson, W. H.; Combariza, M. Y.; Vachet, R. W. Inorg. Chim. Acta 2004, 357, 1141-1151.
(86) McLachlan, G. A.; Fallon, G. D.; Martin, R. L.; Spiccia, L. Inorg. Chem. 1995, 34, 254-261.
(87) Anderegg, G.; Podder, N. G.; Blaeuenstein, P.; Hangartner, M.; Stuenzi, H. J. Coord. Chem. 1975, 4, 267-75.
(88) Brown, H. C. J. Chem. Soc. 1956, 1248-68.
(89) Beck, M. T.; Nagypal, I. Chemistry of Complex Equilibria; Ellis Horwood Limited: New York, 1990.
(90) Alcock, N. W.; Rybak-Akimova, E. V.; Busch, D. H. Acta Crystallogr., Sect. C: Cryst. Struct. Commun. 1997, C53, 1385-1387.
(91) Arulsamy, N.; Goodson, P. A.; Hodgson, D. J. Inorg. Chim. Acta 1994, 216, 21-29.
(92) Yu, Z. Doctoral Dissertation, University of Mainz Institut fur Anorganische Chemie und Analytische Chemie, 1994.

APPENDICES

APPENDIX A: Electronic Absorption Spectra

Deconvolution of [Cu(tach-6-Mepyr)] ${ }^{2+}$ Electronic Absorption Spectrum; red dashed line is the sum of the calculated peaks

APPENDIX B: NMR Spectra

$\mathrm{Zn}\left(\mathrm{ClO}_{4}\right)_{2}+$ bpdan

APPENDIX C: X-Ray Data Tables

	[Fe(tach-3Mepyr) $] \mathrm{Cl}_{2} \cdot 1.5 \mathrm{H}_{2} \mathrm{O}$	$\begin{aligned} & {[\mathrm{Fe}(\text { tach-6- }} \\ & \text { Mepyr })]\left(\mathrm{ClO}_{4}\right)_{2} \cdot \mathrm{H}_{2} \mathrm{O} \cdot \mathrm{MeOH} \end{aligned}$
Formula	$\mathrm{C}_{29.50} \mathrm{H}_{46} \mathrm{Cl}_{2} \mathrm{FeN}_{6} \mathrm{O}_{2.50}$	$\mathrm{C}_{55} \mathrm{H}_{75} \mathrm{Cl}_{4} \mathrm{Fe}_{2} \mathrm{~N}_{12} \mathrm{O}_{18}$
M_{w}	651.47	1445.77
Crystal system	monoclinic	triclinic
Space group	$P 2_{1} / \mathrm{n}$	$P-1$
$a[\AA]$	10.9853(7)	9.5245(9)
$b[\AA]$	13.5083(8)	17.4908(17)
$c[\AA]$	21.1005(13)	19.0395(19)
$\alpha\left[{ }^{\circ}\right]$	90	96.239(2)
$\beta\left[{ }^{\circ}\right]$	91.1420(10)	95.334(2)
$\gamma\left[{ }^{\circ}\right]$	90	95.093(2)
$V\left[\AA^{3}\right]$	3130.5(3)	3123.7(5)
Z	4	4
Color	amber	dichroic/red plates
Crystal shape	block	plate
Crystal dimensions [mm^{3}]	$0.25 \times 0.25 \times 0.20$	$0.40 \times 0.30 \times 0.08$
$\mathrm{D}_{\text {calcd. }}\left[\mathrm{gcm}^{-3}\right]$	1.382	1.924
$\mu\left[\mathrm{mm}^{-1}\right]$	0.692	1.383
$\lambda[\AA$]	0.71073	0.71073
Refl. collected/unique	19145/704.3	20964/12159
θ range [${ }^{\circ}$]	1.79-28.19	1.69-26.00
Parameters	337	821
GOF	1.101	1.202
Final R indicies $[1>2 \sigma(l)]$	$R=0.0368$	$\mathrm{R}=0.0607$
	$R_{\text {w }}=0.0970$	$\mathrm{R}_{\mathrm{w}}=0.1648$
$\Delta \rho_{\text {max. }}\left[\mathrm{e} \AA^{-3}\right]$	0.661	1.051

	[Fetach-3-Mepyr-ox4)] $\left(\mathrm{PF}_{6}\right)_{2}$	[Zn (bispicpn)(NO_{3}) NO_{3}
Formula	$\mathrm{C}_{27} \mathrm{H}_{32} \mathrm{~F}_{12} \mathrm{FeN}_{6} \mathrm{P}_{2}$	$\mathrm{C}_{15} \mathrm{H}_{20} \mathrm{~N}_{6} \mathrm{O}_{6} \mathrm{Zn}$
M_{w}	786.38	445.74
Crystal system	orthorhombic	monoclinic
Space group	Pca2(1)	P2(1)/c
$a[\AA]$	14.003(6)	8.5671(6)
$b[\AA]$	14.302(6)	26.0444(19)
$c[\AA]$	15.046(6)	16.1609(12)
$\alpha\left[{ }^{\circ}\right]$	90	90
$\beta\left[{ }^{\circ}\right]$	90	91.8990(10)
$\gamma\left[{ }^{\circ}\right]$	90	90
$\checkmark\left[\AA^{3}\right]$	3013(2)	3603.9(5)
Z	4	8
Color	dark blue	colorless
Crystal shape	plate	cube
Crystal dimensions [mm^{3}]	$0.15 \times 0.15 \times 0.07$	$0.30 \times 0.30 \times 0.20$
D calcd. $\left[\mathrm{gcm}^{-3}\right]$	1.733	1.643
$\mu\left[\mathrm{mm}^{-1}\right]$	0.714	1.411
$\lambda[\AA]$	0.71073	0.71073
Refl. collected/unique	6881/6881	30804/8384
θ range [${ }^{\circ}$]	2.44-28.22	1.48-28.20
Parameters	436	521
GOF	1.095	1.036
Final R indicies [$/>2 \sigma(I)]$	$R=0.0443$ $R_{w}=0.0894$	$R=0.0328$ $R_{w}=0.0809$
$\Delta \rho_{\text {max. }}\left[\mathrm{e} \AA^{-3}\right]$	0.452	1.299

	[Zn(bis- 6Mepicpn)(NO_{3}) NO_{3}	[Zn (bpdan) $\left.\left(\mathrm{NO}_{3}\right)\right] \mathrm{NO}_{3}$
Formula	$\mathrm{C}_{17} \mathrm{H}_{24} \mathrm{~N}_{6} \mathrm{O}_{6} \mathrm{Zn}$	$\mathrm{C}_{17} \mathrm{H}_{24} \mathrm{~N}_{6} \mathrm{O}_{6} \mathrm{Zn}$
M ${ }_{\text {w }}$	473.81	473.79
Crystal system	monoclinic	triclinic
Space group	C2/c	P-1
$a[\AA]$	23.758(4)	7.8064(7)
$b[\AA]$	10.8160(18)	8.1160(7)
$c[\AA]$	16.651(3)	15.8402(14)
$\alpha\left[{ }^{\circ}\right]$	90	94.172(2)
$\beta\left[{ }^{\circ}\right]$	100.664(3)	100.8670(10)
$\gamma\left[{ }^{[0}\right]$	90	94.383(2)
$V\left[\AA^{3}\right]$	4182.1(12)	978.80(15)
Z	8	2
Color	colorless	colorless
Crystal shape	prism	prism
Crystal dimensions [mm^{3}]	$0.20 \times 0.20 \times 0.20$	$0.10 \times 0.10 \times 0.10$
$\mathrm{D}_{\text {calcd. }}\left[\mathrm{gcm}^{-3}\right]$	1.505	1.608
$\mu\left[\mathrm{mm}^{-1}\right]$	1.221	1.304
$\lambda[\AA]$	0.71073	0.71073
Refl. collected/unique	14313/4950	11845/4424
θ range [${ }^{\circ}$]	2.08-28.28	2.53-27.97
Parameters	273	271
GOF	1.032	1.066
Final R indicies [$l>2 \sigma(l)$]	$R=0.0381$ $R_{w}=0.1002$	$R=0.0409$ $R_{w}=0.1085$
$\Delta \rho_{\text {max. }}\left[\mathrm{e} \AA^{-3}\right]$	0.772	1.984

