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ABSTRACT

INVESTIGATION OF A SUBMERGED FOUR-BAY 

MOORING SYSTEM FOR AQUACULTURE

by

Glen Rice

University o f New Hampshire, December, 2006 

The August 2003 deployment o f a second generation mooring system for fish 

cages at the University o f New Hampshire (UNH) open ocean aquaculture site, south of 

the Isles o f Shoals, NH, is described and evaluated. The new system, a submerged four- 

bay grid similar to those used in inshore aquaculture, uses submerged flotation to 

maintain its depth and tension. The system’s depth and line tensions are sensitive to the 

deployed anchor locations. Anchors that are not positioned correctly can have reduced 

holding power or result in problem snap loads.

The mooring system deployment process and its resulting geometry was 

examined through numerical modeling and field measurements using custom 

instrumentation, revealing the deployed tension and how it is distributed throughout the 

grid system. Though discrepancies between measured and designed tensions exist, the 

differences do not compromise the functionality or safety o f the system. Suggestions for 

improved deployment methods result from these findings.

xiii

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



CHAPTER I

INTRODUCTION

Background

Since ancient times, aquaculture has been employed to provide food for human 

consumption (Ling (1977)). Small ponds and protected bays have been used to grow 

various species o f algae, shellfish and finfish. Historically, successful aquaculture has 

been dependent on providing a suitable habitat in which the species can develop for 

harvest. In the modem world additional factors, such as competing user groups and 

discharge restrictions coupled with animal health, have created the need for aquaculture 

to move into more exposed locations in the open ocean. While moving aquaculture 

operations to the open ocean is inconvenient, difficult and costly, the demand for 

supplemental sources o f edible wild marine species makes Open Ocean Aquaculture 

(OOA) a future possibility. Among the many components needed to support 

aquaculture, the move to the open ocean necessitates adaptations in fish containment 

systems to compensate for environmental conditions. Fundamental to containment 

systems are the mooring systems and, as such, so is the understanding o f mooring 

systems for the open ocean.

In 1999, the University o f New Hampshire (UNH) deployed its first finfish 

cages and moorings at a 30 acre test site 10 km from the coast o f NH in 52 meters of 

water (Fredriksson et al. (1999)). To create a suitable habitat for finfish species,

1
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containment cages and feed buoys were secured to two separate single-bay mooring 

systems. In 2003 the original mooring systems were removed, and at the site a new 

mooring was deployed which was capable o f maintaining four cages. The intention in 

deploying the new mooring was to provide a platform to which cages and small feed 

buoys could be readily attached or removed as part o f cage evaluation studies, without 

having to re-deploy large anchors with every change. The mooring, deployed in 2003, 

was a submerged four-bay grid with underwater flotation and twelve anchors.

Mooring Design

As the initial UNH Open Ocean Aquaculture mooring system was being 

developed, environmental conditions were assessed. For design purposes a storm 

condition was selected by evaluating past oceanographic data and determining the 

statistical wave characteristics o f a fifty year storm event (Fredriksson (2001)). The data 

included for this determination was not inclusive o f an anomalous event, such as a large 

hurricane. The storm condition consists o f a nine meter wave with an 8.8 second period. 

In addition a collinear lm/s current is applied uniformly with depth.

With environmental conditions and the particular cage characteristics o f the Sea 

Station™ predetermined, a submerged four-bay grid mooring was designed and tested 

using a numerical model developed at UNH called AquaFE (Tsukrov et al. (2000)). 

AquaFE  was developed as a tool to determine mooring loads given particular objects 

and geometries in a user-defined wave and current field. AquaFE was used to determine 

the mooring equipment sizes as a result o f the loads modeled.

2
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The two single-bay grid systems deployed in 1999 at the UNH 0 0 A site could 

each hold a single surface or submerged cage, as shown in Figure 1-1.

r  Crown Line and Buoy 

Lower Bridle Line

Upper Bridle Line

/ — Grid Comer Buoy

Grid Line

Anchor Line

Anchor Chain
Anchor

Figure 1-1 An isometric drawing of the submerged single grid mooring with a Sea Station™ cage in
surface mode.

Each single-bay grid had four anchors, one attached diagonally at each comer, and 

could hold a 600m3 Sea Station™ cage. Each grid comer was supported by a buoy 

providing 3.33 kN of buoyancy. This design was robust and successfully moored cages 

through several winter ‘northeaster’ storms. Each single grid, however, used 15 acres 

o f space, which was very inefficient given the cage volume o f 600m3. Also, biofouling 

on the grid and anchor lines over the course o f a year added too much weight for the 

grid flotation to support. As a result, the grid would sink deeper than desired and pull 

down on the cages and surface buoys.

Much o f the equipment and knowledge used in the first grid systems were also 

used in 2003 in the updated four-bay grid mooring. The carried-over equipment and 

knowledge included the use o f Sea Station™ cages, the anchor system, the deployment 

techniques, and the design environmental conditions. To increase efficiency, a four grid 

system was designed (Fredriksson et al. (2004)) to provide for twice as many cages to 

fit in the same amount o f site acreage with a similar anchor line scope (Figure 1-2).

3

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Fish C ag es

\

Anchor Anchor line
Anchor chain Grid line

Figure 1-2. An isometric view of the submerged four-bay grid system is shown with part labels.

In addition more flotation was added to the grid so that it could support more

biofouling.

Based on AquaFe modeling, the updated grid consisted o f twelve one-ton 

anchors with 57mm chain capable o f holding two 600m3 Sea Stations™ and two 

3000m3 Sea Stations™ during a fifty year storm condition. Gael Force rope rings were 

used in the comers in conjunction with lm  diameter steel flotation balls and 1.4m 

diameter composite urethane foam balls for flotation. Forty-eight mm, eight plait 

polysteel lines were used throughout the grid, anchor and bridle lines. The designed line 

lengths remained the same as those in the original grid with each side o f a grid being 

65m and an anchor line being 78m long. Figure 1-3 shows a cross section o f the grid 

with these lengths.

4
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Composet floatation ball

y  Steel floatation ballf
' Grid line k J

Anchor line.
65m 65m

78m78m

37m37m

Figure 1-3 A cross-section of the grid along one of the sides. A cross section through the center 
would show the location of the steel and composite flotation reversed, and the anchor chain is 27m.

The Four-bay Grid

During July o f 2003 the original two single-bay grids were removed, and the 

four-bay grid system was deployed. The original two 600 m Sea Station™ cages were 

installed in the new mooring system immediately, and a 3000m3 Sea Station™ cage 

was added a month later. Several cages and feed buoys have been added and removed 

from the grid since it was deployed, but the system has not been used to its full capacity 

with four cages in the grid at one time. Future plans to add larger capacity surface cages 

to the grid could push the grid to, and possibly beyond, its designed limits. Each 

proposed change to the grid loading will be analyzed using AquaFe to predict whether 

anchor and line capabilities would be exceeded during storm conditions. The AquaFe 

analysis, however, critically depends on the anchors being exactly in their designed 

positions.

Deviations from the designed geometry in the actual deployment o f the system 

can significantly affect the grid’s capacity for holding fish cages in place. Anchors 

deployed closer to the grid than designed can result in slack lines that cause excessive

5
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system wear and snap loading. Anchors deployed further from the grid than their 

designed locations can over-tension the grid. Anchors that are under a much larger static 

tension will be more likely to drag once storm loads are reached, upsetting the deployed 

geometry. Once the geometry is altered, the anchors would need to be reset, at great 

cost operationally, to sink the grid back to the preferred depth. Since the mooring gear 

was deployed from a surface vessel in 52m of water using only indicator floats, lines 

from the grid comers to surface buoys, as position aids, some error in placement was 

inevitable. Given the implications o f anchor misplacement, it is important to know how 

well the grid was originally deployed.

Objectives

The objectives o f this study were to:

1) Calculate the sensitivity o f the grid to changes in anchor positioning,

2) Measure actual grid tensions,

3) Compare measured grid tensions with calculated tensions based on ideal 

geometry in order to evaluate the accuracy o f model inputs,

4) Estimate possible errors in anchor deployment location.

The deployment process is detailed in Chapter Two, including use o f the Global 

Positioning System (GPS) and marker buoys to optimize deployment for a mooring 

system such as this. Chapter Three investigates the sensitivity o f a submerged four bay 

grid mooring to the repositioning o f a single anchor in order to assess what changes in 

grid tensions will result for a given position discrepancy. The sensitivity o f grid

6
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component tensions is calculated using AquaFe. In Chapter Four efforts to measure grid 

tensions three years after deployment are detailed. A final chapter includes an 

assessment o f the present grid system, expected limitations on installation o f similar 

moorings and recommendations for improvement.

7
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CHAPTER II

GRID DEPLOYMENT

Preparation

Mooring gear. In anticipation of a need for expanded cage space at the UNH OOA site, 

a submerged four bay grid mooring system was designed during the early spring o f 

2003 (see Figure II-1).

Crown lines

Grid Com er

Anchor Line \
(76m) Anchor Chain

Grid Line 
(65m)Middle Joint

Anchor

Figure II-l The submerged four-bay grid system. Major parts are labeled.

Details o f this design can be found in Fredriksson et al. (2004). Shortly thereafter, in

preparation for deploying the new mooring system, rope, rope rings, shackles, anchors 

and chain were ordered from Gael Force Marine, Inverness Scotland, and delivered to 

facilities at the Woods Hole Oceanographic Institution (WHOI),Woods Hole, MA. Steel 

and Syntactic foam balls were ordered from Buoy Tech and Flotation Technologies 

respectively.

8

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Upon arrival at Woods Hole, MA, all mooring gear was removed from its 

shipping container and inventoried. All parts were labeled to allow for proper storage 

during transport to the OOA site, as well as to allow for an organized deployment. 

Preparatory work for grid deployment included splicing additional lines, measuring and 

labeling all lines, and preparing a deployment plan. The pendant line for maintaining 

the depth o f the center o f the grid was spliced onto its weight. Although the main lines 

had been measured, cut and spliced by Gael Force Marine, they were re-measured. It 

was discovered that they were two meters shorter than their designed length. It was 

speculated that each line had been cut to length but the splicing process had shortened 

the line. All local mooring parts were loaded onto the F/V Nobska for transport and 

deployment.

In order to allow in-line load cells to measure anchor and grid line tensions, 

additional one-meter lines with eye thimbles and shackles were spliced into the grid and 

anchor lines attached to the northeast comer o f the grid, as shown in Figure II-2.

( ||g )  « Float

Grid Comer

Shackle

Load Cell Pendant

Figure II-2 The load cell pendant arrangement for later deployment of the load cells to a grid line.

9
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These lines were attached on the grid line approximately three meters from where the 

float connected the grid and anchor lines. These load cells were shackled to the grid 

comer and attached to the shackle on the load cell pendants, which would then shift the 

tension to the load cell. The load cell, now “in-line”, would measure the load in all lines 

connected to the northeast comer o f the grid.

Deployment plan. A procedure for deployment, including the best order for tensioning 

the anchors for the grid system, was established in advance based on a scale model 

which was built pre-deployment at UNH. The scale model was built to a physical scale 

of approximately 1:25 to fit the dimensions o f the engineering tank at the Jere Chase 

Ocean Engineering Laboratory. No attempt was made to match the scaled Young’s 

modulus, buoyancy, or mass o f the grid components. Indicator floats were used to 

gauge how level the model grid was during trial deployments.

In all scenarios the grid itself was spread out loosely on the surface and 

supported by comer buoyancy balls (also at the surface). The anchors were lowered to 

‘relaxed’ positions closer to the grid center than their final design locations, and anchor 

lines were attached to their respective grid points. From repeated tests it was determined 

that the best deployment method to gain proper final geometry and even tension 

throughout the grid was as follows (see Figure II-3):

10
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2 5 2

C c

3 5 3

Figure 11-3 The order in which the anchors were planned to be tensioned. Each number 
corresponds to the closest anchor and the steps outlined for deployment.

1) Tension two opposing comer anchors (labeled 1) by pulling outwards on crown lines 

to the surface. This would set the depth o f the grid between these anchors at the 

approximate correct depth.

2) Place the two anchors (labeled 2) attached at the same comers as the already 

tensioned anchors (labeled 1) in the correct predetermined Global Positioning System 

(GPS) locations. This would effectively set the entire side o f the grid.

3) The anchors (labeled 3) across from those placed in step 2 would be tensioned, 

setting the two opposing sides o f the grid.

4) The final side o f the grid would be tensioned by pulling out anchors labeled 4.

5) The anchors, labeled 5, running across the middle o f the grid are tensioned.

11
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This method used both predetermined anchor locations and indicator floats for proper 

grid deployment. While the above method was adequate for getting the grid close to the 

correct level with even tension, final adjustments were necessary based on the location 

of the indicator floats to the surface.

Deployment

On August 6th, 2003 the F/V Nobska dismantled the single-bay grid systems 

which had been at the site since 1999, and began deploying the four-bay grid. The first 

step in deploying the four-bay grid was placing all anchors in predetermined “relaxed” 

positions. The anchors were lowered into position with the anchor chain, line, and 

crown line assembly attached. With the anchors in these ‘relaxed’ locations, the grid 

comer flotation was at the surface attached to the other end of each then slack line. The 

lines and comers were pulled on board the vessel via a winch, and were connected 

together with the comer shackles then welded closed.

The grid segments were next attached to the grid comer flotation. Starting in the 

northwest comer, the anchor lines were connected by grid line segments in a clockwise 

fashion. The grid segment connecting the northwest comer joint to the western side 

joint was initially left disconnected. The northern side joint was then connected to the 

center joint, which was kept on board the vessel. The eastern side joint was then 

connected to the center joint. At this point there was not enough line slack in the grid to 

allow the remaining lines to be pulled on board and welded. The southern side joint was 

connected to the center joint with the connection at the center being welded, but the 

south side joint was connected using a small inflatable and only moused. The same 

method was used to connect the grid segment between the center joint and west side
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joint, and finally the northwest comer to west side joint. Once completed, the grid was 

tensioned.

Since the center joint was held laterally by the grid lines, and held at depth by a 

weight below it, the center joint needed to be in the grid during deployment but not 

positioned independently. To this end, the weight was tied directly under the center 

joint, and the center joint was suspended at the correct depth by a temporary surface 

float. In that way, the center could be in place during tensioning without interfering with 

horizontal movements as the anchors were pulled out. Once the anchors were in place 

the weight could be dropped from the center and the surface float cut free.

In order to accurately place the anchors, a Trimble differential GPS was placed 

on the A-frame o f the F/V Nobska. This was connected to a computer running HYP AC 

software to graphically show the real-time position o f the stem o f the vessel graphically 

relative to the desired position o f the anchors. Indicator floats were added to all grid 

joint flotation except the center joint. These lines were set with trawl floats (having 2N 

buoyancy) at 12m (40ft), 15m (50ft), and 18m (60ft) from the top o f the comer and side 

joint floats. By bracketing the desired depth to the submerged floats, a visual 

assessment of the grid depth was gained onboard the deployment vessel.

Following the planned tensioning algorithm (see Deployment plant, initial 

anchor placement was simple since the anchor lines had very little tension. But as the 

anchors were placed it became apparent from observing the indicator floats that the grid 

was not at the desired depth. As the grid was tensioned, more crown line scope was 

needed to pull out on the anchors while keeping them close to the bottom. This scope 

meant the anchors were an unknown distance behind the boat during tensioning, making
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it difficult to accurately place them. If less crown line was used, then the anchor would 

have lifted well off the bottom and the vessel would have been pulled back significantly 

before the anchor touched down and dug in. Instead, anchors were placed with 

consideration to both the desired location for the anchors and the desired depth o f the 

grid using the indicator floats for grid depth. After setting each anchor the position was 

checked by making the crown line as vertical as possible (without re-lifting the anchors) 

and using the GPS. The indicator floats were the easiest way to check the success o f the 

grid deployment. Through their use, the grid was made level, though the anchors were 

pulled further apart than their designed position in order to achieve the desired depth.

Although the grid was level, the grid shape was not square. While attempting to 

put cages into the grid some months later, the grid quadrants themselves were 

discovered to have become more diamond shaped, and the grid lines were found to have 

been stretched in deployment to be longer than designed. Segment lengths were 

measured (by surveyor’s tape) to be approximately 69m. This was greater than their 

design length o f 65m and was likely due to the loose construction o f the lines. The grid 

lines which appeared to be short pre-deployment were now found to be long. While this 

had repercussions in attaching cage bridle lines, similar stretching o f anchor lines also 

had an effect on the grid tensions. Longer anchor lines with the same grid depth results 

in higher tensions in all lines as shown in Figure II-4.

14
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Figure II-4 The dependency of anchor and grid line tensions on the corner ball buoyancy and the
angle of anchor line.

The implications o f these higher line tensions were not understood until initial attempts 

were made in 2005 to install load cells into the north east comer o f the grid system.

Initial Deployment Assessment

After deployment the anchor positions were plotted relative to their designed 

locations, as shown in Figure II-5. While the accuracy o f these positions was not 

quantified, it was clear that the anchors had been deployed in positions further from the 

grid than designed.

15
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Figure II-5 The designed anchor locations (black diamonds) relative to the deployed positions (pink 
diamonds). Numbers indicate the distance between these positions. Grid corner positions are shown

as pink triangles.

In 2005 first attempts were made to install in-line load cells into the grid. The 

process was anticipated to be simple, since designed tensions were only 2,500 lbs. The 

plan was to use only a two-ton come-a-long over two work days to pull the load cell 

auxiliary line close enough to the north east grid comer to attach a load cell. This 

expectation proved overly optimistic. After employing a combination o f techniques and 

7-8 days o f diving, only three load cells were in place. After preliminary measurements 

from the 3 load cells gave wildly varying tension readings, the load cells were deemed 

to be working improperly, and this approach for getting grid tension measurements was 

abandoned. At the same time, difficulty getting the load cells in-line indicated that the 

actual line tensions were likely to be above the designed line tensions. Concerns were 

raised that if  the grid tensions were too high, then the holding power o f the grid itself

16

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



could be compromised. Since future plans for the site included pushing the mooring to 

its designed limit, further attempts to measure deployed grid tensions were prudent.

17
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CHAPTER III

GRID TENSION SENSITIVITY MODELING

Background

Since anchor placement on the deployed submerged four-bay grid system was 

not exact and line lengths were variable, equilibrium line tensions were expected to 

vary, possibly compromising reserve anchor capability to cope with storm conditions. 

To quantify tension changes and assess the sensitivity o f line tensions to anchor 

placement, the finite element program AquaFe was applied to the grid/anchor system 

under modeled equilibrium conditions.

AquaFE is a finite element modeling program that uses a modified Morison’s 

equation to estimate the drag on cylindrical truss elements which simulate nets and 

structures in a dynamic fluid environment (Tsukrov, 2003). MSC.Mentat, from MSC 

Software Corporation, is used as a graphic user interface for constructing three- 

dimensional arrangements o f these elements, and for viewing their dynamic 

displacement as determined by AquaFE. Output files from AquaFE also provide the 

stress and displacement for user defined nodes and elements. By manipulating the 

submerged four-bay grid system geometry with AquaFE, the variability o f  grid and 

anchor line tensions could be predicted.
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Modeling Approach

To gauge the sensitivity o f the submerged four-bay grid system to changes in 

geometry, several models were built in AquaFE. Each model varied only the placement 

of the same anchor, and the predicted corresponding changes in grid depth and line 

tensions were monitored. Initially 25 models were built with a single comer anchor 

assigned to different locations, as shown in Figure III-l.

B

/ \
'N

c  h

D

A n ch o r
P o s itio n s

Figure III-l. The grid system with the modified anchor locations. Mooring system lines are labeled 
for reference. The a4 anchor line led to an anchor located at one of the 25 position mesh intersection

points shown.

Only one anchor was assigned to various locations in order to minimize variables. A 

comer anchor was chosen to be relocated because comer anchors comprise the majority 

o f all anchors and symmetry allows the effect o f moving this one anchor to be applied 

to seven o f the other locations. Therefore, comer anchors are more likely to have an
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impact throughout the grid system. By monitoring the relative change in grid system 

tensions and depths as a function of one anchor’s location, a working understanding o f  

the relationship between anchor placement and line tensions was developed. Individual 

lines and cross sections are labeled in Figure III-l for later reference. The single anchor 

modified was moved in a 12m by 12m pattern in 3m increments, as illustrated in Figure 

III-2.

1 2 3 4  5

6 7 8 9 10

11 12 13 14t 15

16 17

* /  

18

K x

19 20

21 22 23 24 25

| "—  3 m e te rs  
— 12 m e te rs

Figure III-2 The pattern for anchor placement modification. Position thirteen is the designed
location of the anchor.

The size o f this anchor position grid was based on an estimate o f error in the positioning 

of an anchor, which had not previously been quantified. In addition to the error in 

deployment positioning, the actual deployed anchors were thought to be even further 

from designed locations in part due to stretching o f the grid and anchor lines.

After the initial 25 models had been studied, eight additional models were built 

to more closely examine the effect o f moving the anchor only toward or away from the 

grid, as is discussed further in the discussion o f the model results. Figure III-3 shows 

the mesh as built in AquaFE, although there were some variations in the mesh to
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accommodate small changes in geometry between different models. In all cases the grid 

was built with the characteristics as shown in Table III-l.

In c : 3000
Time: 3.000e+01

Figure III-3 The mesh used in AquaFE simulations of the grid system. 

Table III-l The properties used for the grid model

Element length 

(m)

Cross section 

(m2)

Young’s Modulus 

(N/m2)

Density

(kg/m3)

Mooring line 

Grid line 

Anchor line

65

78

2.026*1 O'3 1.830* 109 1.026*103

Anchor Chain 

Comer 

Side

37.5

27.5

7.024*1 O'3 2.000* 1011 6.610*103

Buoy Chain 2 2.027* 10‘3 2.000* 10u 6.314* 103

Buoy (small) 1 1.301*10° 2.000* 10u 1.537* 10̂

Buoy (large) 1 4.672*10'1 2.000* 1011 3.210*10^

Grid comer .25 7.290*10^ 2.000* 10u 1.243*103
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Model Results

Since AquaFe is a dynamic model, the equilibrium state was not calculated 

directly. Instead, each run began with the grid below design level and the anchor lines 

slack. The grid then rose due to the flotation’s buoyancy and the system tensioned until 

an equilibrium state was achieved. Thus placed, the grid system could be built without 

any pre-tensioning. In cases where the anchor was further away than the designed 

position (column locations 4 through 24 and 5 through 25 in Figure III-2) the grid was 

built 16m from the bottom. In all other cases the grid was built 34m from the bottom for 

ease o f construction. As the model was run, the grid rose closer to the surface over time 

and the lines came under tension. Each o f the models produced a time series for line 

tension and grid depth. A typical sequence of line tension is illustrated in Figure III-4.
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Figure III-4 The tension in line fj as the grid settles to equilibrium.
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Tension and depth data for each line and grid comer, similar to that in Figure III-4, was 

averaged over the interval between 25 and 30 seconds after the start o f the simulation to 

remove small instabilities in the results. The resulting equilibrium tensions for anchor 

line a4 as a function o f anchor displacement are plotted in Figure III-5. The complete 

series o f plots for all grid segments and anchor lines identified in Figure III-l are 

provided in Appendix A.

................. ...............

 ------- ' - J . . .  I

0)o

North/South

W est/E ast
Distance (m)

Figure III-5 The tensions in line a4 as a function of anchor displacement.

The tension in anchor line a* is representative o f tensions along cross-section A. Cross-

sections C, D and F also show similar trends in lines within each cross-section. Depth 

results for the intersection o f cross-sections A and F are shown in Figure III-6.
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North/South

West/East Distance (m)

Figure III-6 Northeast grid corner vertical displacement as a function of the horizontal 
displacement of the northeast anchor.

These cross sections have a very pronounced pattern o f changing tension and depth as a 

result of an anchor being placed relatively closer to or further from the grid, in the 

east/west direction. Moving the anchor north or south produced very little change in 

tensions as the resulting change in angle o f pull is only ± 3 degrees. The tensions in 

cross sections B and E did not show a monotonic pattern, as demonstrated, for example, 

in Figure III-7.
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North/South

West/East

Figure III-7 The tension in line ei as a function of anchor displacement.

Grid depths as a function o f anchor displacement, typified in Figure III-6, largely 

showed a monotonic pattern. Plots for all grid comers are in Appendix A. The non­

linear behavior o f cross-sections B and E (the two perpendicular central cross-sections) 

in Figure III-7 prompted an additional eight models to be built with the displaced 

anchor in between positions 11 to 15 in lm  increments (toward/away in an east/west 

direction). This allowed for closer examination o f unexpected results. Figure III-8 

shows the results for line e4 with the smaller lm  distances between anchor movements.
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Figure III-8 et line tension as a function of the a4 anchor movement from positions 11 to 15. The 
discontinuous section is where the grid was built at a different depth.

Figure III-9 shows the tensions o f the individual lines in cross section A.
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Figure III-9 Tensions of the individual lines in cross section A as anchor is moved east/west.
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A plot with the tensions o f all the anchor lines from position 11 through 15 in lm  

increments is shown in Figure III-10.
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Figure 111-10 Anchor line tensions as a function of anchor displacement east/west.

Discussion of Model Results

While this study was conducted by re-locating a particular anchor, it is 

important to keep in mind that the results are symmetric. Although one anchor was 

moved, all the grid and anchor lines exhibited changes in tensions. Cross-section A in 

Figure III-9 increased in tension relatively linearly between approximately 1.3 kN 

/meter and 2.2 kN /meter. Since cross-section A is pulled downward as the anchor is
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displaced further away, it relieves tension in the perpendicular lines, in this case cross- 

section D and F. Because cross-sections D and F have less tension, cross-section C 

takes up tension from the buoyancy o f submerged flotation on the southern side. In this 

way cross-sections that run parallel and along the side o f the grid have correlating 

tensions. The cross-sections that run through the center o f the grid, lines B and E, did 

not change substantially as a comer anchor was moved within this range. The described 

patterns are most clearly illustrated by the anchor line tensions graphed in Figure III-10.

The first set o f models produced a higher order pattern for the tensions o f lines 

B and E. For this reason the second set o f 8 models was built to resolve any more 

complex effect. The results, shown between 2m and 3m in Figure III-8 for the anchor 

line e4, show that the evident higher order effect is a consequence o f the different model 

initial conditions. In initial models the grid was released 34 meters from the bottom. 

Models that had the anchor moved further away from the grid than the designed 

location required the grid to be released at a depth o f 16 meters. The effect o f the grid 

starting deeper resulted in a small shift in the data for all lines, but is most evident in the 

lines that run through the middle since they have such a small change in tension. While 

this artifact is not useful in itself, the result that changes in initial conditions can affect 

the equilibrium tensions is interesting. Since the disparity between the two data sets is 

likely due to very small difference in model properties, such as line lengths or number 

of elements, this provides a context for the sensitivity o f the system when modeled.

The depth o f the grid also changes symmetrically with anchor movement. 

Generally, the comer connected to the shifted anchor gets deeper as the anchor moves 

away from the grid, as shown in Figure III-7. The opposing (southwest) comer rises as
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the anchor is placed further away from the grid. This is because cross-section D has less 

tension and allows the comer to rise until cross-section C holds it. The overall effect is a 

general sloping o f the grid platform toward the comer with the anchor being moved 

outward.

Overall, discrepancies in positioning an anchor by ± 3m result in tension 

changes on the order o f ± 7kN (see Figure III-4). Such tension changes could easily 

arise if the anchors were simply placed using a surface GPS. However, this sort o f error 

also leads to depth changes o f ± 3m (see Figure III-5) which can easily be detected by 

indication floats (in the absence o f strong current). Thus the expected range o f grid 

tension variability should be less than ± 7kN using the grid deployment method 

described in Chapter 2.
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CHAPTER IV

MOBILE TENSION METER

Impetus

Although the sensitivity analysis suggests that variation in actual tension from 

the design value should be no more than ± 7kN, the divers’ experience while installing 

the load cells provided some evidence that as-deployed tensions exceeded the design by 

an amount that was much greater than 7kN. Unfortunately, the in-line load cells were 

not functioning properly, and the data was inconclusive. Thus there was a pressing need 

to measure tensions in the grid system and anchor line directly.

One measurement approach would have been to re-deploy the four in-line load 

cells in the Northeast comer o f the grid after refurbishing the instruments. Arguments 

against this approach include difficulties in the first deployment and lack o f reliability. 

Furthermore, placing a load cell in-line always decreases segment length to some 

extent. The sensitivity analysis (interpreted symmetrically) revealed that moving any 

one o f the twelve anchors could significantly alter the grid tensions such that there 

could be large variations in the grid system tensions that could not be measured from 

just the northeast comer. In order to measure tensions without altering the system and to 

measure the tensions (sequentially) in multiple places, a mobile tension meter that could 

be used on all o f the lines in the grid mooring was designed.
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Concept Development

The main criterion for the mobile tension meter design was ease o f deployment 

on the submerged grid. Therefore, the instrument needed to be deployable by diver, 

ideally with the ability to move the instrument from point to point to obtain multiple 

measurements during a single dive. Multiple same-day measurements could provide 

near-synoptic grid tension measurements. Criteria for being diver deployable also meant 

the mobile tension meter should be simple to use and neutrally buoyant. The target 

maximum measurable load was 89kN, half the holding power o f the anchors, with an 

accuracy o f 1.5 kN.

The design approach to measure line tension consisted of deflecting the line a 

small amount and measuring the load required to deflect it (see Figure IV-1). If the line 

was deflected with a known geometry, then the load required to deflect the line could be 

related to the in-line tension.

Wheels

Rope
Inline

Tension

Theta
Fairlead Force

Figure IV-1 A conceptual drawing of rope deflection. Theta is the angle of deflection.

As a target, the line would be deflected 14.5 degrees from straight (0 in Figure IV-1).

The resulting force needed to deflect the line would then be approximately half the load 

in the line as demonstrated in Figure IV-2.
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theta 
L= 2*T* Sin (theta) 

If theta =14.5deg, L=~.5T

Figure IV-2 The relationship between line tension(T) and the force to displace it orthogonally(L).

This ratio provides a reasonable compromise between measurement resolution and the

force and distance needed to deflect the line. Having theta as a small angle minimizes 

the stress differential in the cross-section o f the line without requiring large fairleads to 

handle the bending radius o f the rope. Unfortunately, a small angle also means that 

small errors in displacement may result in unacceptably large errors in measurement.

A crucial part o f the tension meter was the selection of a mechanical apparatus 

to deflect the line. The component needed to be able to provide the force to deflect the 

line several centimeters while providing up to 44.5kN (5 tons) o f force. The apparatus 

also needed to work underwater and be easy to operate. A hydraulic bottle jack was 

chosen for its compact size and availability. In addition, a bottle jack will work on its 

side, enabling the tension meter to operate on vertical lines such as buoy moorings. 

Finally, the jack has a pressure valve such that were the jack to be jacked on a line with 

tensions higher than 89kN, there would be no risk o f apparatus failure or danger to 

divers. The only modifications that needed to be made to the bottle jack were to seal the 

hydraulic fluid fill to keep water out.
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Another crucial component that effected the size and geometry o f the tension 

meter was the mechanism for measuring the force o f deflection. Load cells are 

commonly used for these types o f tasks. A pancake style load cell from Sensing 

Systems Corporation in New Bedford, MA was used at UNH for the in-line load cells, 

and was readily available. This sensor also takes up minimal vertical space in the 

tension meter design, minimizing the size o f the frame required. Another benefit was 

the availability o f recorders used for interfacing with these load cells.

Preliminary Testing

Since a diver-deployable tension meter was untested for this application, an 

approximate half-scale test was devised. The wheels, fairlead and rope were all set up at 

half the size o f the expected full size components as shown in Figure IV-3.

Loadcell 

Pipe chock 

Hydraulic jack

Figure IV-3 The half-scale tension meter trail setup.

The half-scale test consisted of measuring the tension in a line that was suspending

various known weights. The fairlead/loadcell assembly was jacked against the rope to a

measured displacement, and load measurements were taken from the load cell. Initial
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trials showed a downward trend in the tension data with time. Initially the 25mm (lin) 

rope o f three strand construction was thought to be getting longer as a result of 

reorientation and compaction of the rope fibers. After being replaced with a 19mm 

(%in) twelve plaited rope, it became apparent that the aged hydraulic ram was leaking 

and slowly retracting. This slow retracting resulted in a decrease in load cell force with 

time. To get consistent measurements, a pipe, halved along its axis, was placed around 

the ram, and the jack was relaxed so the pipe supported the load cell. Chocked in this 

way, the line was displaced the same amount in every trial.

Preliminary Trial Data

Five different weights were used to tension the line during half-scale tests. The 

line tension with each weight was measured three times, for four minutes each time. 

Each trial included starting with the load cell under no load, and then jacking it into 

position and subsequently relaxing the jack so the load cell was supported by the pipe 

chock. A sample data file is shown in Figure IV-4.
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Figure IV-4 Measured ram load cell force during a half-scale trial.

In Figure IV-4, each stage o f the trial is apparent. Section A in Figure IV-4 shows the

load cell under no load (zero offset o f 93 N); then in section B the jack pushes the load 

cell to deflect the line, and in section C the jack is relaxed onto the pipe chock and the 

measured load drops to the equilibrium value. The noise in the load values had a 

standard deviation o f less than 40N, and was partly due to unavoidable swinging o f the 

weight as the ram was jacked into position.

The measured load for the last 167 seconds o f each test was time averaged to 

represent that trial. Figure IV-5 shows each test with a linear regression.
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Inline rope tension (N)

Figure IV-5 The results of the averaged half-scale data. Black ‘x’ is the average from each test with 
the error bars representing the one standard deviation for each trial. The green line is a linear

regression.

Figure IV-5 represents the results o f testing with the half-scale mobile load cell. The 

equation for the linear regression was:

Measured (loadcell) ram force = 0.3568 * In-line rope tension +159  (N) (I)

The slope o f the line in Equation 1 is related to the amount o f displacement o f the line 

as shown in the geometry o f Figure IV-2. Since the trial rope diameter (19mm) was 

smaller than initially planned (25mm) and the displacement o f the line was not 

increased, the geometry of line in the apparatus was changed. As a result, the ratio o f  

measured (load cell) force to rope tension was smaller than desired due to a smaller
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displacement angle. The regressed line slope was 0.3568, while the intended slope was 

closer to 0.5.

Assuming the ratio o f measured (load cell) load to rope tension accurately 

reflects the geometry o f deflection, then the angle that the rope was deflected was only 

10.28 degrees. At this angle, and for the small geometry used, an additional 0.25mm of 

displacement would increase the measured (load cell) force by 27 N  corresponding to a 

76 N increase in rope tension for the largest weight used. A small misplacement o f the 

pipe chock could account for this error. For the full-scale setup these errors would be 

small compared to the larger displacement needed at full-scale.

Full-scale Design

With the proof o f concept in the half-scale trial completed, the final design for 

the tension meter was initiated, including the design of the frame and selection o f the 

final components. The tension meter needed to be built in a cost-effective manner since 

no budget existed for its construction. This meant using as many off-the-shelf parts as 

possible, together with easy-to-fabricate pieces. Marithane wheels, commonly used as 

fairleads for anchor rode on small vessels, were employed as fairleads for the tension 

meter. An off-the-shelf 5-ton bottle jack was selected, and was slightly modified by 

welding a threaded coupling over the hole in order to prevent water from entering the 

fluid fill cap. An adaptor was fabricated to clamp to the end o f  the jack and allow the 

load cell to be threaded onto the jack (see Figure IV-6). A 50mm (2in) thimble was 

welded to a plate which would distribute the load to the outside o f  load cell. A pipe 

chock, similar to the one used in preliminary tests, was made using 32mm (1.25in) pipe
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to go around the hydraulic ram to prevent any variation in the length o f displacement. 

The frame itself was fabricated from A36 %-inch steel. The complete assembly is 

shown in Figure IV-6, with the individual parts shown in Appendix B.

Data reco rder

W heel

Frame

Flotation

Figure IV-6 A Pro/Engineer solid model of the assembled tension meter.

Design o f the tension meter frame for holding all the parts together in the correct

orientation was primarily completed using Pro/Engineer from PTC. The major parts 

were drawn and assembled in the program to ensure fit. Drawings for the frame parts 

are in Appendix C. The framing was modeled in Pro/Mechanica, also from PTC, to 

optimize proper structural integrity (Figure IV-7). The maximum von Mises stress was 

192MPa (27,850 psi) while the minimum yield strength is 248MPa (36000 psi), so that 

the factor o f safety with respect to yielding is 1.3 .
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Figure IV-7 The Results from Pro/Mechanica for stress on the frame for the maximum designed
load.

Once final dimensions were determined, PRO/Engineer was used to calculate the mass 

and center o f gravity for the assembly. This helped in establishing the amount and 

location o f flotation that was required for the instrument to float properly. The flotation 

was made primarily from 15cm (6in) PVC pipe, with an additional 10cm (4in) PVC 

section. Buoyancy was tested in the Chase Ocean Engineering Laboratory engineering 

tank. The final design erred on buoyancy and added a small amount o f extra flotation in 

case o f miscalculation, since it is easier to compensate for by simply adding weight to 

the frame in the form o f lead dive weights.

The load cell used was a Sensing Systems pancake-style load cell. Details can be 

found in the Irish et al. (2001). The load cell recorder was modified in the UNH 

Monitoring and Control Laboratory from an existing load cell recorder based on a 

Persistor computer, from Persistor Instruments Inc in Bourne, MA. The Persistor was
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placed inside an Iklite underwater housing and powered by a 7Ah, 12v battery. 

Magnetic switches were used to turn the computer on and off underwater, while a 

second switch was used to set an amplifier depending on which o f the UNH load cells 

was in use. In this way the recorder could be used to get data from any UNH load cell, 

not just the mobile tension meter. Upon activation the computer would run a program 

written at Woods Hole Oceanographic Institution (WHOI) to measure the load cell 

force. The program was preset to sample at two hertz for one minute, although this 

could be adjusted. A parts list for the entire assembly is shown in Table IV-1.

Table IV-1 The parts and their weights as measured as well as predicted by Pro/E.

Part Dry Weight (N) Pro/E Dry Weight (N) 
(predicted or defined)

Frame 279 258

Bottle Jack 67 76

Load cell adaptor 
+

Load cell
+

Fair Lead

56 56

Wheels 18 18

Axel assembly 4 4

Recorder 44 44

6” x 23” PVC 48 48

6” x 32.25” PVC 56 56

6” x 32.5” PVC 58 60

4”x 25.75” PVC 25 25

Total 654 641
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Calibration

In order to best calibrate the mobile tension meter, calibration conditions, 

including tensions and rope properties, should be similar to those in the field. The 

calibration scheme was similar to that in the scale trials. An in-line load cell was used 

for comparison while the mobile tension meter took measurements. The in-line load cell 

was calibrated to ± 50N. Because the desired range o f tensions for calibration was up to 

80kN, a weight could not simply be hung from a crane as in the scale model trials.

To provide tensions in the range the instrument was designed for, an 

arrangement o f blocks and tackle was stretched between trees. A schematic o f the 

calibration setup is shown in Figure IV-8.

Direction of Pull

Block ^

Two
Shieve
Block

25m x 48mm eight plait polysteel

48mm eight plait polysteel with
Strap

Figure IV-8 The calibration setup.

The arrangement o f blocks provided 10:1 ratio o f line tension to pulling force. A

combination o f a single part tackle with 48mm eight plait polysteel was attached to the

end o f the calibration line, providing a 2:1 ratio for tension. On one end o f the rope

through the first block another two part tackle was utilized with 9.5mm (3/8 inch) wire
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rope, providing a 5:1 ratio. Pulling power was provided by a combination o f a 2.5-ton 

capacity come-a-long and a small tractor.

Since the mobile tension meter shortens the rope by 9.5mm (3/8 inch), the 

calibration rope should be relatively long to minimize the effect, preferably similar to 

the length of the deployed lines. An old cage bridle line, 25m in length, that had been in 

use at the open ocean site for two and a half years was used for calibration. This line 

was ordered at the same time and was o f the same material and construction as the 

anchor and grid lines that were then currently in the grid at the OOA site. Other than 

immersion in salt water during testing, it was expected that this rope was a good 

approximation o f the rope that would be measured in the field using the mobile tension 

meter.

The process during each calibration test included increasing line tension 

incrementally by ~2.5kN, installing the mobile tension meter, taking measurements, and 

then removing the tension meter. Also, after the tension meter was removed, the amount 

o f elongation over a 3.65m (12ft) section of the line was measured, as was the 

maximum diameter o f the line in the area o f the line next to the tension meter. The 

tension was then stepped up another ~2.5kN and the process repeated.

The in-line load cell, on the opposite end o f the calibration line from the block 

and tackle, sampled the tension at 5 hertz. During the first calibration, the tension meter 

data was recorded in minute-long increments on its custom recorder at 1 hertz. During 

the second test the ram load measurements were recorded on a laptop at 5 hertz for 

consistency in the data acquisition process. During the first calibration, at each increase 

a single tension measurement was taken with the mobile tension meter. During the
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second calibration, three measurements were taken at each tension to provide more data 

points and reduce uncertainty. Figure IV-9 shows the data from the second calibration.

S am ple  num ber vs Force

-10

S am ple  num ber x104

Figure IV-9 The calibration time series from the second test. Blue is the load measured in the in­
line load cell, while red is the load measured in tension meter (ram) load cell.

Spikes in the red line shows when measurements were taken. In post processing, 

the data was sectioned manually using time stamps to synchronize in-line load cell and 

mobile load cell (ram) data. The data for each o f the two load cells was averaged within 

the chosen range and plotted against each other. Figure IV-10 shows the results for a 

linear fit, and Figure IV-11 for a second order fit. Although the data sections chosen are 

stable over time, the tension in the calibration line had a constant downward trend 

overall. This trend is assumed to be stretching o f the line and o f the other components

43

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



used for maintaining the tension, for example compression o f the wheels, flexing of 

steel.

Y=0.2978*X+1.45
R =0.988

+  Calibration 1
O Calibration 2

Linear fit 
Upper bound 
Lower bound

30 40 50
Line tension (kN)

b

z  1

S 0.5C<Di_ - GO40<D
T 3
01O
OU_

-0.5

Line tension (kN)

Figure IV-10 The (a) calibration with a linear fit and (b) the difference between measured force 
and the linear fit. Data from the separate calibration tests are displayed with different symbols. The 

“best fit” formula is given on graph (a). Bounds denote one standard deviation of ±0.8kN.
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Y—0.001375*X-K].4029*X+0.20288 

R2=0.995 j

+  Calibration 1
O Calibration 2
 Second order fit
 Upper bound
 Lower bound

0  .71.________i____________ i____________ i____________ i____________ i____  ■ ■ . i i
0 10 20 30 40 50 60 70 80

Line tension (kN)

b

0.5 G—

^ 8 °
-0.5

Line tension (kN)

Figure IV-11 The (a) calibration with a second order fit, and (b) the difference between measured 
force and the linear fit. Data from the separate calibration tests are displayed with different 

symbols. The “best fit” formula is given on graph (a). Bounds denote one standard deviation of
±0.5kN.

The linear regression data was used to process mobile load cell data during field 

measurements. Standard deviation o f the difference between the linear regression and 

measured force at the ram was 0.8kN. This is considered the uncertainty in 

measurement.

Field Measurements

On the sixth of April, 2006, the tension meter was taken out to the UNH OOA 

site to take measurements. A pre-deployment picture is shown in Figure IV-12.
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Figure IV-12 The mobile tension meter fully assembled pre-deployment.

Because o f its 654N dry weight, the tension meter was lowered into the water using the

crane on the R/V Meriel B. Once in the water, the instrument with an additional 22N (5 

lbs) o f dive weight proved to be slightly buoyant. A 27m line with flotation was also 

attached to the instrument frame in case o f flotation failure. Divers descended down a 

line to the northeast comer for the first measurement. Both the grid and anchor lines had 

been cleaned o f biofouling in the area 4 meters from the grid comer to insure that 

biofouling would not interfere with the instrument. Tension measurements for each of  

these lines were taken by installing the instrument, switching on the computer and 

allowing it to record for 1 minute at 1 hertz sampling rate. Once the program stopped 

and the computer was shut off, the tension meter was removed and reinstalled on the 

next line. Installation was not difficult even for a single operator. An additional handle 

on the frame was used to hold the frame in the correct location while the jack was 

operated. Once the jack began to pinch on the line the instrument held itself in place. 

Removal was equally as simple, and even faster than anticipated, as both the vacuum
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inside the jack and the increased external pressure caused the ram to retract quickly. 

The dive time for measuring these four lines totaled 25 min at a depth o f 24m (80ft) 

feet. Figure IV-13 shows the tension meter during deployment.

Figure IV-13 The mobile tension meter during deployment.

For the second set o f measurements also taken on April 6,2006, divers were dropped at

the surface marker at the southern side grid joint, closest to the southwestern grid joint 

where measurements were to be taken. Divers swam with the tension meter to the 

southwest joint, and the measurement process was repeated. In addition to the four 

measurements taken at this comer, a measurement was taken at the same depth while 

not connected to the line. This measurement provided the zero offset for the load cell. 

The dive for the measurement o f four lines and swimming the grid line (twice) took 28 

minutes at a depth o f 17m (57ft).

Conditions at the site during the field measurements were considered 

comparable to those for the modeled static grid. In one o f the mooring bays was a 

submerged 600 m3 Sea Station with no net. Only small surface buoys were present to
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possibly couple the sea surface with the mooring. Environmental conditions were calm, 

with the UNH environment monitoring buoy at the UNH OOA site, measuring a 

significant wave height o f 0.8m and a current profile as shown in Figure IV-14.

0
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-25
.e

1 - -30 o
-35

-40

-45

-50

-55
0 0.01 0 .02 0 .03  0 .04 0 .05 0 .06  0 .07 0 .08  0 .09  0.1

Speed - m/s

Figure IV-14 The current profile as measured from a bottom mounted ADCP at the UNH OOA
site.

Post-processing o f the data was performed using the linear regression from 

calibration. The final field measurement for zero offset was averaged and applied. The 

grid tension measurements taken on April 6,2006 are shown in Figure IV-15.

48

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



CO

16.8 kN 15.1 kN
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Figure IV-15 A schematic of the grid with the measured tensions next to the lines where they were 
measured. For reference, grid segment design tensions were llk N  while design anchor line tensions

were 14kN. Error is considered to be ± 0.8kN.

These measurements were lower than expected given the difficulty experienced in 

deploying the in-line load cells in the northeast grid joint. These tensions suggest the 

grid is tensioned more in an east-west direction, particularly in the southern-most cross 

section.

The direct measurements o f tension provided an opportunity to evaluate an 

AquaFE application to the as-deployed equilibrium configuration based on field 

estimates o f anchor geometry. An overview of the methods and results are presented 

here, while details are provided in Appendix C. Anchor positions were inferred using 

two methods, shipboard GPS over vertical crown lines at the time o f deployment, and 

an acoustic survey which was conducted later. Replicate measurements using both 

approaches exhibited standard deviations ranging from 1.6m to 3.5m. Grid segment and 

anchor line lengths (under no-load conditions) were estimated using measured final
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lengths and tensions, as well as rope elastic properties obtained during the tension meter 

calibration process.

Predicted equilibrium grid tensions, shown in Figure IV-16, are extreme 

compared to both designed and measured tensions. Given the uncertainties in actual 

anchor position and rope parameters, the observed lack o f agreement is probably to be 

expected. This exercise, however, is another confirmation o f how sensitive tensions are 

to as-deployed geometry.
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Figure IV-16 The tensions in the deployed grid as model in AquaFE.
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CHAPTER V

CONCLUSIONS

Deployment Success

Evaluation: In evaluating the success o f the deployment o f the UNH OOA submerged 

four-bay grid, several deployment outcomes were taken into account. Field 

measurements indicate that the grid was not over tensioned during deployment. The 

standard deviation o f measured tensions from the designed tensions is 6.5kN. Grid 

tensions are not compromising the holding power o f the anchors, although some 

anchors, namely those on the east and west sides, are providing most o f the pre-tension. 

While there are some variations in tensions throughout the grid, the grid is relatively 

level due to the use o f indicator floats during deployment. Stretch in the rope created 

some irregularities in the shape o f the system and position of the anchors. The standard 

deviation in measured radial anchor placement from the designed location is 1 lm, 

although the error in these measurements is ± 3.5m. Stretch in the rope also made the 

pre-designated anchor positions inadequate for deploying the grid at the correct depth. 

Standard deviation o f the observed grid depths compared to the designed depth is 2.7m. 

While the grid, as deployed, has functioned well for three years, below are detailed 

improvements that could be made for the future deployment o f a similar system.
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Recommendations: Tensions throughout the grid system should be symmetrical; an 

outcome achievable in large part by controlling anchor positions during deployment. In 

order to place the anchors more precisely, acoustic transponders could be placed on the 

anchors themselves. Transponder gathered knowledge o f  the anchor position could help 

ensure that anchors are not placed significantly further away from the grid than other 

anchors, and, secondarily, that anchors are placed in-line with their corresponding 

cross-section. Transponders could be attached to the anchors before deployment and 

released acoustically after the anchors are placed. In addition, multibeam sonar could be 

used during deployment to obtain anchor locations; however, the need for data 

processing from such a system could prove logistically unrealistic for providing 

feedback into an active deployment process.

To establish useful target deployment positions, line lengths and rope properties 

should be well known. Correct line lengths and rope properties allow target anchor 

positions to be computed more accurately and take some uncertainty out o f deployment. 

This would be particularly important in areas where anchors need to be placed so as to 

avoid particular bathymetric obstacles (such as a rock outcropping). One way to 

establish rope lengths is to pre-stretch the rope to remove the constructional stretch, a 

process outlined in the Cordage Institute’s Test Methods For Fiber Rope (Cl 1500-02). 

Pre-stretching rope could be a time consuming process, however, as the line would need 

to be cycled to 20% percentage of its breaking load ten times as outlined in the 

referenced manual. For systems that do not have a large pre-tension, but expect large 

peak tensions, a benefit o f pre-stretching the line is the stability o f  the system after
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deployment. Once the constructional stretch is removed, large tensions are less likely to 

permanently deform the system into a different geometry.

Pre-stretching the rope and using transponders on the anchors can help insure a 

successful deployment. In addition, while indicator floats should still be used as a visual 

reference for grid depth and levelness, reliable modeling o f the static system would 

assist planning o f deployment positions. Also, the ability to measure tensions anywhere 

in the system, through use o f the mobile load cell, significantly benefits future 

operations as changes in tensions over time, or after a large storm event, can indicate 

anchor movement, which is particularly significant as the anchor location itself cannot 

be tracked without transponders or a multibeam system.

Another approach to gaining the approximate target tensions in the grid during 

deployment would be to specify a crown line length during deployment using the 

scheme shown in Figure V -l.

Figure V -l The relationship between the anchor line tension and the crown line angle needed to 
pick up the anchor. TA is the anchor line tension, and WA is the weight of the anchor.

If the anchors are dragged out and placed slowly, then the horizontal component o f the 

designed tension in the anchor line can be calculated as if  static. When dragging out the 

anchor, the horizontal component o f tension in the crown line is equal to that in the
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tensioned anchor line. As an anchor is dragged out and the tension in the anchor line 

increases, so does the crown line tension. Since the crown line length does not change 

during towing, the vertical force crown line picks the anchor off the bottom. To make 

use o f this and the correlation o f the anchor and crown lines, the crown line length can 

be set to such that the anchor is picked off the bottom by the crown line when the 

anchor line tension is too high. To do this, the vertical component o f the crown line 

tension is assumed to be equal to the weight o f the anchor when the tension in the 

anchor line is correct. The relationship in Figure V -l defines an angle that the crown 

line would pull on the anchor at the design anchor line tension. For a given depth only a 

particular crown line length can achieve this angle. The deploying vessel could then pull 

the anchor out slowly with the specified crown line length and then drift backward until 

the anchor set in the correct position. While this method does not take into account the 

friction o f the chain on the bottom, with some experience this method could prove 

useful.

Future Work

Present information on the UNH OOA submerged four-bay grid mooring is 

insufficient to accurately specify input parameters needed to predict equilibrium 

tensions. While line lengths and properties can be estimated, the sensitivity o f the grid 

system results in discrepancies between field measured line tensions and AquaFE 

predictions. Further work identifying the root cause that is specifically creating this 

difference would enhance AquaFE’s usefulness. Despite this disparity, AquaFE is still 

useful for understanding how equilibrium tensions are achieved. A basic understanding 

o f how the grid reacts to a misplaced anchor or a shortened line has been outlined. This

54

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



information applies to operations regarding both line replacement and repositioning a 

dragged anchor. With further work quantifying input parameters, AquaFE could more 

accurately reflect the field measurements and become a more useful tool for enhancing 

the understanding o f changes in line tension as a function o f anchor placement.

It is likely that mooring platforms in an open ocean grid, similar to the UNH 

submerged four bay grid, will be designed to increase site efficiency and availability by 

maximizing fish cage volume and by moving to deeper water. Given the complexity o f 

a large system with multiple bays and the difficulty o f deploying anchors accurately in 

deeper water while under tension, it would be operationally sound to utilize more 

complex technology in order to place anchors with precision. In addition, line tensions 

and grid depth should also be monitored during deployment to ensure the proper 

geometry o f the system.
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APPENDICES
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APPENDIX A

Appendix A consists o f the data from Chapter 3. This is broken down into three 

sections; 1) the grid tensions by line as a function o f the position o f the anchor in a 

boxed area, 2) the grid depth by comer as a function o f the position o f the anchor in the 

in a boxed area, 3) the grid tensions by as a function o f the position o f the anchor along 

a straight line parallel to the anchor line.

Section 1

This section contains the tensions for each line in the grid as a function o f the 

placement o f a single comer anchor. They are grouped by cross section and labeled as 

in figure III-1.
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Figure A-l Cross-section A tensions by line as a function of the northern east anchor displacement.
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Figure A-2 Cross-section B tensions by line as a function of the northern east anchor displacement.
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Figure A-3 Cross-section C tensions by line as a function of the northern east anchor displacement.
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Figure A-4 Cross-section D tensions by line as a function of the northern east anchor displacement.
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Figure A-5 Cross-section E tensions by line as a function of the northern east anchor displacement.
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Figure A-6 Cross-section F tensions by line as a function of the northern east anchor displacement.
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Section 2

The grid comer and side joint displacement from the designed position as a function of  

the northern east anchor displacement are shown in this section.

Northwest ocmer Northern side joint

NorttVSouth

Nort heas t  oom er Eastern side joint

2 o -2 .4 _g NattVScuth °  -2 ^  
\Atest/East

(sbrttVSouth

Figure A-7 Grid corner displacement as a function of the northern east anchor displacement.
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Figure A-8 Grid corner displacement as a function of the northern east anchor displacement.

Section 3

Included in this section are the plots for the second set o f AquaFE models.

These graphs are for anchor positions from position 11 to 15 as shown Figure III-2. The 

graph is discontinuous in the area between the models built at different depths.
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Figure A-9 The tensions for cross-section A.
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Figure A-10 The tensions for cross-section B. 
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Figure A -ll The tensions for cross-section C.
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Figure A-12 The tensions for cross-section D.
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Figure A-13 The tensions for cross-section E.
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Figure A-14 The tensions for cross-section F. 

67

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



APPENDIX B

Appendix B consists o f pictures o f the major parts for the tensions meter.

Figure B-l The tension meter frame.
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Figure B-2 The axel assembly for the wheels.
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Figure B-3 The marithane wheels.
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Figure B-4 The bottle jack.

Figure B-5 The bottle jack to load cell adaptor.
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Figure B-6 The pancake style load cell.

Figure B-7 The fairlead for the rope over the load cell.
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Figure B-8 The pipe chock used for holding the load cell at the correct displacement.

Figure B-9 The load cell recorder.
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APPENDIX C

Appendix C consists o f drawing for the parts o f the frame that was constructed for the 

tension meter.
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APPENDIX D

AN AQUAFE MODEL OF THE AS-DEPLOYED CONDITION

Numerical Model Parameters

The actual anchor locations were deduced based on data collected in 2004 when 

the Joint Hydrographic Center Summer Hydrographic class surveyed the UNH OOA 

site using a Simrad EM 3000 multibeam sonar. The presence o f anchors was inferred by 

analysis o f the backscatter data, an example o f which is illustrated in Figure D -l.
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Figure D -l The backscatter data from the 2004 survey of the OOA site. The dark lines are thought 
to reflect anchor chain and anchor positions. The labeled locations are deployed anchor locations as 
measured from the surface. WNA is the western north anchor. NNA is the northern center anchor.

ENA is the eastern north anchor.

While the anchors themselves cannot be distinguished, the anchor chain is evident. The 

deployed anchor locations are shown as black squares. Nine o f the eleven anchors in the 

grid system can be located from this data. Locations o f the same anchor in multiple 

transects indicates a standard deviation in the detected anchor locations o f 1.6m. For the 

remaining anchor locations the deployed position (from GPS) was used. The standard 

deviation for the deployed position relative to the backscatter positions for the nine 

detected anchors was 3.5m. This is assumed to represent the uncertainty in the actual 

anchor positions compared the presumed deployed positions o f the anchors. Table D -l 

lists the anchor positions used in the modeling o f the deployed grid.
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Table D -l The anchor positions used to model the deployed grid. Easting and Northing positions 
are for the UTM Northern Hemisphere zone 19, (WGS84) convention.

Anchor Line Latitude(N) Longitude(W) Easting (m) Northing (m)

Northern East 34 42°56.610’ 70°37.821’ 366989 4755830

Center East b4 42°56.567’ 70°37.850’ 366948 4755750

Southern East c4 42°56.536’ 70°37.825’ 366981 4755694

Eastern South U 42°56.463’ 70°37.907’ 366867 4755561

Center South e4 42°56.475’ 70°37.949’ 366810 4755582

Western South d4 42°56.469’ 70°37.997’ 366745 4755574

Southern West Cl 42°56.522’ 70°37.110’ 366593 4755674

Center West bi 42°56.559’ 70°37.094’ 366617 4755744

Northern West ai 42°56.603’ 70°37.106’ 366602 4755824

Western North di 42°56.665’ 70°37.017’ 366725 4755937

Center North ei 42°56.660’ 70°37.956’ 366808 4755927

Eastern North fi 42°56.670’ 70°37.910’ 366871 4755944

Two rope properties, the rope diameter and the Young’s modulus, are important 

in AquaFE. The specified rope diameter for the rope in use at the site was 48mm (2in). 

For previous models in AquaFE the Young’s modulus is approximated using published 

information for this type o f line as 1.83*109N/m2. Different line from different 

manufacturers can have different properties. The Young’s modulus was not available 

from the particular manufacturer o f the rope purchased for use in the grid system. Given 

the amount o f constructional and elastic stretch in the line during deployment, it is more
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accurate to use a Young’s modulus calculated from the elongation data gathered during 

the tension meter calibration. Figure D-2 shows the calibration curve.

+  Calibration 1
O Calibration 2

linear fit
—  Upper bound 

Lower bound

0.01 0.015 0.02 0.025 0.03 0.035 0.04 0.045 0.05 0.055 0.06
%Elongation/100

x 10
4

2

0

■2

-4
0.01 0.015 0.02 0.025 0.03 0.035 0.04 0.045 0.05 0.055 0.06

5
a)

%Elongation/100

Figure D-2 (a)The linear regression to find the value for the Young’s Modulus from tension meter 
calibration data, (b) Data to linear fit difference. Bounds denote one standard deviation.

The in situ measurement indicated that the Young’s modulus o f the rope in the deployed
o

grid model was 9*10 N/m. Over the range o f tensions this estimate used a constant rope 

diameter o f 48mm (2in), which was deemed appropriate as AquaFE does not account 

for changes in the rope diameter. As a result, the model actually reflects the ratio o f  

measured stretch to force.
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Since the numerical model is built in a relaxed state and then released to come to 

equilibrium, the line length with zero tension after constructional stretch needs to be 

known. Constructional stretch, also known as permanent elongation, is the change in 

length of a line after it has been under tension due to the settling and compaction of 

rope fibers. To account for the constructional stretch already in the grid, the deployed 

line lengths were measured, and using the relationship in equation 2 with the measured 

Young’s modulus and line tension, the zero tension length is derived. From the 

relationship o f stress verses strain it can be shown that:

L0 = LmYA/(T+YA) 2

where L0 is the zero tension length, Lm is the measured length, Y is the Young’s 

modulus, A is the cross-sectional area o f the rope, and T is the measured tension on the 

line.

The grid lines have been measured by diver to be between 68m and 69m. These 

measurements were taken using a surveyor’s tape. Using the calculated Young’s 

modulus, the line lengths without tension (but with construction stretch) can be 

estimated from the field measurements. Using a line length of 69m with a known 

measured tension o f 12kN, the grid line with zero tension should be 68.5m long. Line 

lengths used for the grid lines were 70m to account for shackles and rope rings as part 

o f the grid lengths. The anchor lines were modeled at 84m, keeping the ratio o f rope 

length to construction stretch the same as for grid lines. The lines that included an in­

line load cell were shortened by lm  to account for the change in length o f these lines.
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Modeling the Deployed Geometry

To model the grid in its deployed geometry the grid system had to be 

constructed at a depth much closer to the bottom than the depth used during the 

sensitivity study. To allow sufficient proximity between the grid comers and their 

respective anchor points such that the anchor lines would reach, the grid was built lm  

from the bottom. Even with rearranging the grid itself to a non-symmetric starting 

position, the anchor on line Ci, in Figure III-1, (southern east anchor) needed to be 

moved 7m closer to allow all anchor lines to reach. The resulting tensions are shown in 

Figure D-3.
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Zido
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ido idCO
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ido idco
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idO
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id
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Figure D-3 The tensions in the deployed grid as model in AquaFE.

It is apparent from the tensions shown in Figure D-3 that the range of tensions (OkN to

43kN) is much higher than the range measured in the field, as shown in Figure IV-14
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(4kN to 23kN). The modeled tensions in the side cross-sections running east/west are 

more than double the tensions that were measured in situ. These lines are holding the 

grid flotation down so the lines running north/south are not under much tension. All the 

modeled grid depths are presented in Figure D-4. The lack o f tension in the modeled 

north/south lines is reflected in the depth o f the western grid joint where the north/south 

grid tensions is very low.

From Bottom 
Relative to design 

Relative to deployed

28.4m 29.5m 25.9m
-7.2 -5.3 —  -SU7
-8.2

1
-3.1

j
-2.2

43m 34 .Vm 33.3m
+8.2 _  +0.6 _  -1.4
+8.0

1
-1.0

f
-0.2

i

28 .Lm 29.4m
1

25.0m
-6.7 —  -5.3  -__ -10.3
-6.5 -4.2 -8.5

Figure D-4 The deployed grid depths as modeled by AquaFE. The depth relative to the designed 
locations and the measured depths at the site are also given.

Discrepancies between the modeled deployed grid and in situ field 

measurements stem from errors in the information provided to the model, an 

unaccounted for variable, or by the time between the multibeam survey and the tension 

measurements. The uncertainties in the buoyancy o f the grid flotation, line lengths and 

properties, and anchor positions could be too large to allow accurate modeling o f such a 

sensitive system. There are also parameters that have not been accounted for, such as
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the weight and distribution o f biofouling or o f the in-line load cells. This extra weight 

reduces the buoyancy in the grid, effectively reducing the tensions as the grid sinks. 

While this might be a contributor to error, it seems unlikely that this would be a cause 

for the higher than measured tensions in the model since the effect is opposite to those 

expected. In the time between the multibeam survey and field measurements anchors 

could have changed position. This seems to be an unlikely source o f error since the grid 

depth has remained stationary.

That the modeled results do not correspond with field measurements possibly 

reflects shortcomings in the modeler’s ability to input sufficiently accurate parameters. 

The numerical model shows patterns useful for studying grid reaction to different 

deployment configurations; however, actual numbers generated from modeling may not 

accurately represent reality for such a sensitive system. Small errors in many variables 

may result in large differences between model and physical results. Although AquaFE 

has been validated for large storm events (Fredriksson, 2001) and provides a relative 

scale with which to consider field measurements, this study reveals the usefulness o f  

revising models to incorporate real as-built geometries.
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