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ABSTRACT

ACTIVATION OF TOLL-LIKE RECEPTOR 2 (TLR2) THROUGH TLR2-LRR
BINDING SYNTHETIC PEPTIDES

By
Christopher Benton
University of New Hampshire, December 2006

Bacterial sepsis and systemic inflammatory immune responses continue to be
major causes of illness and death despite extensive research into the development of
antimicrobial agents. There is a need for novel therapeutic reagents designed to modulate
these responses. Toll-like receptor 2 plays a key role in the development of innate and
adaptive immune responses to microbial products that interact with the receptor’s
extracellular leucine-rich repeat ligand-binding domain. In a preliminary study, five
peptides were synthesized that bound to the leucine-rich repeat region of Toll-like
receptor 2 (TLR2). We tested the hypothesis that the novel TLR 2 leucine rich repeat
binding peptides affects TLR2-mediated immune function by examining the ability of
the five peptides to induce the maturation of bone marrow derived-dendritic cells in vitro.
The dendritic cells were cultured in the presence of the peptides and maturation was
determined through flow cytometry and cytokine analysis. We discovered that dendritic
cells produced interleukin-6 to the JT1 leucine-rich repeat binding peptide. Some
activation of the MHC class II dendritic cell maturation marker was observed in response
to peptide JT1. Our results indicate that the JT1 synthetic toll-like receptor 2 leucine rich
repeat binding peptide induces maturation of bone marrow derived dendritic cells in

vitro.

viii
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CHAPTER 1
INTRODUCTION

All healthy human beings possess both innate and adaptive immunity. The innate
immune system is the first defense against invading microbial pathogens and elicits a
generalized response through recognition of specific molecular patterns by effector cells.
The innate response is invariant however frequently exposure to the microbe occurs.
Innate immunity is essential for timely detection and containment of an infection
(Aderem and Smith, 2004).

Adaptive immunity prevents pathogen re-infection and often includes antibody
production. This response usually occurs no later than 96 hours after the start of infection
(Janeway 2005). Though the adaptive response is more complex than the innate response,
the two are strongly interrelated. Adaptive immunity involves clonal selection of a
repertoire of T and B-lymphocytes from an extremely diverse pool of cells bearing
antigen-specific receptors that mediate pathogen binding. In response to activation, T-
cells bearing receptors that bind to the cognate antigen undergo clonal selection; they also
up-regulate cell surface molecules that are co-stimulatory to B cells, including B7 and
CD40c. Antigen-specific lymphocytes proliferate and differentiate into effector cells
leading to pathogen destruction via a variety of mechanisms that include direct killing by
cytotoxic T-cells and phagocytosis (Janeway 2005, Paul, 1993). Clonal selection also
results in the production of differentiated memory lymphocytes, allowing a more rapid

and specific response in recurrent infections.
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Figure 1. Toll-like Receptor Activation of Adaptive Immunity

pathogens

TLRs § phagocytosis

mature
DC

(Figure adapted from Takeda and Akira, 2001)

Dendritic cell maturation occurs upon TLR-mediated pathogen recognition and
phagoctyosis. TLR activation leads to the production of co stimulatory molecules as well
as inflammatory cytokines that assist in antigen presentation to naive T cells and with T
cell maturation to Thl cells.
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The Role of Innate Immunity

Antigen-presenting cells (APCs), such as dendritic cells and macrophages, are key
effector cells of the innate immune response. These cells recognize pathogens via a
family of extracellular receptors known as Toll-like receptors (TLRs) (Aderem and
Smith, 2004, Satthaporn and Eremin, 2001). Toll-like receptor activation causes the
phagocytosis and subsequent degradation of a pathogen via proteolytic cleavage.
Intracellular processing results in the presentation of antigenic peptides on the cellular
surfacé within the context of the class I major histocompatiblity complex proteins
(MHC). Dendritic cells (DCS)‘ possess the ability to stimulate naive T cells (Satthaporn
and Eremin, 2001), upregulating the production of inflammatory cytokines such as
interleukins 6, 8, 10 (IL 6, 8, 10) and interferon gamma (IFN-y). The inflammatory
response results in blood vessel dilation and phagocyte migration, localizing the pathogen
and inhibiting the further spread of infection.

The inflammatory response can result in serious negative consequences such as
the release of reactive oxidizing compounds and lysosomal contents by effector cells
resulting in tissue damage and necrosis. Systemic bacterial infections result in a
widespread inflammatory response called sepsis. The consequences are high fever,
hypotension, severe tissue destruction, respiratory distress, shock, organ failure, and
eventual death (Janeway, 2005). The innate immune response has a critical role in the
Iﬁaintenance of human health. Therefore the ability to modulate or control this response
could save thousands of lives (Martin, 2003), or significantly improve the quality of life

for millions.
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Toll-Like Receptors

An inflammatory response is the result of phagocyte activation through
recognition of pathogen-associated molecular patterns (PAMPs), which are microbe-
associated lipoproteins, or of other cell wall components such as lipopolysaccharides and
peptidoglycan. Recognition occurs through a family of receptors on the surface of
leukocytes known as TLRs. TLRs are transmembrane proteins containing an
extracellular region consisting of a leucine-rich repeat domain (LRR) that mediates
binding to the PAMP. There are eleven human TLRs currently known. Each is thought
‘to recognize a specific PAMP associated with a wide variety of pathogens. Toll-like
receptor 4 (TLR4) produces an immune response when activated by lypopolysaccharide
(LPS), a major constituent of gram-negative bacteria cell walls. Toll-like receptor 5
(TLRS) recognizes flagellin protein; CpG DNA activates Toll-like receptor 9 (TLR9) and
peptiddglycan activates TLR2 (revieWed in Takeda and Akira, 2001). A single pathogen
can activate several different TLRs via its associated PAMPs. The activation of each
TLR brings about both an individual specific response, such as the production of tumor
necrosis factor a (TNF-a) by TLR2 and more generally the activation of NF-xB. Toll-
like receptors have an intracellular carboxy-terminus that contains a highly conserved
region called the Toll/interleukin-1 receptor (TIR) homology domain. Toll-like receptor
activation and subsequent pathway stem from heterodimerization of the TIR domain and
the MyD88 adaptor protein’s domain (figure 2). This results in the recruitment and
phosphorylation of the interleukin —1 (IL-1) receptor associated kinase (IRAK) a
serine/threonine kinase whose death domain interacts with the death domain of MyD88.

IRAK associates with the TNF receptor-associated factor 6 (TRAF6) adaptor protein,
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Figure 2. The Toll-like Receptor MyD88-dependent Signaling Pathway
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activating the TGF activated kinase and mitogen-activated protein (MAP) kinase kinase
(MKK6) which activates NF-«B, c-Jun N-terminal kinase (JNK) and AP-1 and the p38
MAP kinase signaling pathways (reviewed in Armant and Fenton, 2002). This results in
the production of pro-inflammatory cytokine production such as interleukins, TNF-alpha
and of inducible nitrogen oxide synthesis (NOS-2) (Hallman et al., 2001).

The recognition of microbial PAMPs by TLRs may occur via interactions of a
monomeric TLR with its ligand or via the homodimerization of the TLRs, as is seen with
TLR2. Ligand recognition may also occur through cooperative binding between
different TLRs forming heterodimers. This cooperative binding allows a greater
repertoire of PAMPs to be recognized (Ozinsky, 2000). Both TLR2 and TLR6 have been
shown to work cooperatively to bring about phagocyte activation through exposure to
peptidoglycan, phenol soluble modulin (PSM), Outer surface A lipoprotein (Osp-L.), and
Soluble Tuberculosis Factor (STF) (Bulut, 2001).

The PAMPs recognized by TLR2 may explain how a variety of pathogens can
interact with a single receptor, but does not explain the complex repertoire of TLR2
responses to pathogen-derived molecules, such as the activation of transcription factors,
pro-inflammatory responses, MyD88-dependent and independent pathways, as well as
modulation of Th1 and Th2 responses. How TLR-mediated immune responses are
specifically tailored to particular pathogens is a key question that needs to be answered.
One explanation is that TLRs can discriminate between complex molecular signatures
that characterize specific pathogen subsets, and that the specificity of this subset is

translated into an appropriate immune response. We have begun to explore this model by
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asking what specifically at the molecular level, is the repertoire of residues or epitopes
recognized by the TLR2-LRR.

Leucine Rich Repeat Proteins

TLRs are members of a growing super family of Leucine Rich Repeat (LRR)
proteins that participate in reversible high-affinity interactions with other peptides.
Leucine Rich Repeat proteins have been implicated in complex cellular processes such as
hormone binding and cell adhesion, as well as signal transduction pathways (Kajava,
1998). The LRR domains of these proteins are highly conserved and a typical motif is
characterized by 5-17 tandem arrays of a leucine-rich consensus sequence containing 20-
29 leucine residues. A single repeat is typically characterized by the sequence
LxxLxxLxLxxNxLxxLpxxoFxx, where X is any residue, p is any polar residue, and o is
any nonpolar residue. This sequence represents an N-terminal beta-strand, an asparagine
turn-region, and a C-terminal alpha helix (Kobe and Deisenhofer, 1994; Kajava, 1998).

The porcine ribonuclease inhibitor is a protein (Figure 3) consisting entire.ly of
LRRs. The crystal structure of this protein indicates that each LRR is a modular unit,
made up of a beta strand, an asparagine turn region, and an alpha helix. Tandem repeats
are parallely aligned on a mutual axis (Kobe and Deisnhofer, 1994; Kajava 1998)
resulting in a horseshoe shaped molecule consisting of parallel beta sheets along the inner
portion of the domain, with the helices flanking the outer surface (Kobe and Deisenhofer,
1994). Ligand binding to the LRR is mediated by the interstitial non-consensus residues,
occurring as areas on either surface of the LRR. The expansive solvent-exposed inner

and outer surfaces may accommodate the simultaneous binding of multiple ligands. The
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Figure 3. X-ray Crystallographic Structure of Porcine Ribonuclease
Inhibitor Protein.

Figure adapted from Chen and Shapiro, 1997
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conserved leucines within the LRRs are structural and not involved in ligand recognition.
(Kajava, 1998, Clark et al.).

The yeast CCR4 deadenylase protein contains one partial and five complete LRRs
(Malvar et al., 1992). A study determined that the LRR of CCR4 binds to its OWn
deadenylase domain and deletion of this LRR resulted in the loss of CCR4’s enzymatic
function. Mutations in the beta-sheet surface of the CCR4-LRR resulted in a significant
reduction in the proteins enzymatic activity (Clark et al., 2004, Meng et al. 2003). A
small number of residues modulate ligand binding to CCR4-LRR, with multiple ligands
able to bind simultaneously to the surface of a single LRR (Clark et al., 2004).

Toll-Like Receptor 2

TLR2 is expressed on monocytes, peripheral blood lymphocytes,
polymorphonuclear leukocytes, and dendritic cells (reviewed in Hallman et al., 2001) and
recognizes ligands from a wide variety of bacterial, fungal, and viral components. The
repertoire of known TLR2 ligands is expanding, but it is not known if these ligands
contain a common motif. Toll-like receptor 2 contains approximately 19 LRRs within its
extracellular domain (Kirschning and Schumann, 2002) that are responsible for ligand
recognition (Iwaki et al., Meng et al., 2004). The TLR2-LRR domain interacts with
Staphylococcus aureus peptidoglycan, as well as various lipoproteins (Fujita et al., 2003;
Mitsuzawa et al., 2001). It is not known if the TLR2-LRR alone is responsible for all
interactions between TLR2 and its respective ligands.

The utility of developing new TLR2 directed agonist/antagonists is that human
autoimmune diseases and antibiotic-resistant bacterial infections are on the rise, and a

critical need exists to characterize receptor-ligand interactions that play key roles in
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human health and develop novel therapeutic reagents designed to modulate these
interactions. Expanded knowledge of specific peptide sequences recognized by the
TLR2-LRR could reveal the existence of a common binding motif among PAMPs. Such
motifs could represent novel targets for development of therapeutic molecules.

Phenol soluble modulin (PSM) is a known TLR2 ligand and is produced by
Staphylococcus epidermidis (Hajjar, 2001) and other staphylococci species which have
been implicated in catﬁeter related sepsis. The development of a TLR2 antagonist could
prevent PSM from initiating an inflammatory response, lessening the likelihood of sepsis.

Mycobacterium tuberculosis is a TLR2 agonist and the most common of the
tuberculosis-causing pathogens. Tuberculosis affects more than 60 million individuals
world wide, and kills approximately 10 million annually (Janeway, 2005). M.
tuberculosis produces soluble tuberculosis factor (STF), a known TLR2 antagonist
(Bulut, 2001). This bacterium is an intracellular pathogen that evades innate immune
responses (Paul, 1993). Modulation of TLR2 via competitive inhibition by small
therapeutic peptides could allow individuals to mount a more effective immune response
against this pathogen. While this may not be a complete cure for the disease, peptide-

- based therapeutics could expand treatment options.

Atherosclerosis is another human disease in which TLR2 involvement contributes
to pathology. Peptidoglycan (PG), a known TLR2 agonist, has been discovered in
atherosclerotic plaques. One study found that arterial TLR2 when activated by the
peptidoglycan found in the plaques contributed to plaque formation (Schoneveld et al.,

2005). Therapeutically regulating TLR2 activation by PG could serve to prevent

10
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atherosclerosis.

Preliminary Studies

In a preliminary study, a yeast two-hybrid system was used to identify the specific
ligand residues that mediate binding to the CCR4-LRR. Twenty-one unique peptides
from a random peptide aptamer library of 2x10° possible clones were isolated based on
their ability to bind to the CCR4-LRR. Through sequencing, a highly conserved
consensus sequence consisting of }[G/P]-(3)[L/V /I/F) was found in the majority of the
peptides (Lisa Clark, personal communication). The findings suggested that a motif
consisting of four residues could play a key role in the interactions of the peptide
aptamers with the CCR4-LRR peptide-binding surface.

Based upon these results, a study was undertaken to determine whether a similar
conserved motif could be found among TLR2-LRR-peptide ligands. A FliTrx ™ random
peptide display library (Figure 4) was used as a tool to discover peptides that physically
bind to the TR2-LRR. The FliTrx"™ system contains approximately 1x10® unique clones
and functions by displaying random 12-mer peptides on the surface of E.coli flagella.
The peptides are inserted into the active loop of the thioredoxin scaffold protein. The
thioredoxin A peptide fusions are contained within the dispensable region of the major
bacterial flagellar gene (FliTrx™) (Figure 4). Working with this peptide library led to
the discovery of 17 peptides that bound to the TLR2-LRR. Sequence analysis showed
that 11 of the 17 peptides contained a common motif of [Gxx(V/L/I)] (Tierney, 2005
Master’s thesis). Five of these eleven peptides were designated JT1-JT5, synthesized,
and used in cellular activation assays to determine whether they were biologically active

(Table 1).

11
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Peptide Therapeutics

The development of novel peptide-based therapeutics has been under intensive
investigation in recent years. Peptide based drugs contain fewer than 100 amino acids
(Wieland, 1995) and are easily degraded and rapidly removed from the circulation by the
kidneys. The short life of these peptides can be advantageous, such as in peptide-based
cytotoxic cancer therapy (Boerman, et al., 2000). The half-life of small peptides can also
be extended using a variety of techniques, like glycosylation (Haubner et al., 2001) and
serum albumin association (Koehler et al., 2002). Small molecule mimics of peptide
ligaﬁds have been shown to compete and interfere with the binding of natural ligands of
receptor-mediated binding interactions of therapeutic interest; for instance, in receptor-
mediated binding that takes place in both the gastrointestinal and neuro-cranial systems
(Mizejewski, 2001). Synthetic peptides can also provide the basis for the development of
novel pharmaceuticals, such as drugs that are non-peptide in nature that mimic the actions
of the peptide ligand. The low molecular-weight TIR peptide mimic of the TIR domain
[(F/Y)-(V/L/M)-(P/G)] of the MyD88 adaptor protein involved in TLR signaling, has been
shown to have a significant effect upon EL4 thyoma cells and murine lymphocytes. The
TIR peptide mimic inhibited MAP kinase p38 phosphorylation by IL-1beta, and also led
to areduction in IL-1beta-induced fever responses in mice (Bartfai et al., 2003). The
ability of a three-residue peptide mimic to have a significant biological effect indicates
that it is possible to develop small peptide mimics from TLR ligands that have a
significant therapeutic effect.

Specific Aims
The aim of this thesis project was. to determine whether the five TLR2-LRR-binding

12
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Figure 4. The FliTrx™ Random Peptide Display System.
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peptides synthesized based on the previous FliTrx™ study can have a significant
biological effect on TLR2 activation in vitro. The biological effect of these peptides was
tested, by examining their ability to induce BMDC maturation and macrophage activation
in a series of in vitro assays.

The effect of the synthetic peptides on in vitro maturation of BMDCs was
evaluated by flow cytometry and cytokine analysis. In this study, we determined that
one synthetic peptide, JT1, significantly activated the BMDCs in vitro, as measured by
increased IL-6 production and upregulation of the MHC class II marker. In contrast, we
found that none of the peptides tested modulated the binding of Salmonella typhimurium
to human macrophages. Finally, a TLR screening assay performed by an outside
consultant (Invivogen Corp.) found that no significant upregulation of NF-xB occurred

by TLR2 in response to any of the synthetic peptides.

14
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Table 1. Synthetic Peptides and Their Sequences

Peptide

Sequence

JT1

C-WRFGAQIKGE-C

JT2

C-PRLPIVLAGA-C

JT3

C-MEGRGRVAE-C

JT4

C-LGVVSGRSYR-C

JTS

| C-SRRIGKLGGLV-C

Table represents the identities and specific sequences of the 5 peptides used in this study.

These peptides were chosen based on a preliminary study in which they were shown to

physically bind to the LRR of TLR2.
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CHAPTER 11

MATERIALS AND METHODS

Bone Marrow-Derived Dendritic Cells

Femurs removed from two adult C 57 Black 6 micewerewashed by briefly
soaking 15-ml of Roswell Park Memorial Institute (RPMI) 1640 medium. They were
then transferred transferred to a sterile petri dish and soaked in 70% ethanol for two to
three minutes, followed by two additional washes with RPMI 1640 medium. The femurs
were transferred to a sterile petri dish and placed in a laminar flow cell culture hood and
flushed with cold RPMI 1640 using a sterile 20-gauge needle attached to a 3cc syringe
and the bone marrow was strained through a 40-pm cell strainer. The cells were pelleted
at 1,000 x g for 10 minutes and resuspended in 10 mL of RPMI 1640 containing 5%
granulocyte macrophage colony-stimulating factor (GMCSF) as a conditioned
supernatant (GMCSF was a generous gift of the Brent Berwin laboratory. Dartmouth
Medical School), 1% penicillin streptomycin, and 10% fetal bovine serum (FBS). The
cells were again pelleted at 1,000 x gravity for ten minutes and resuspended in 5 mL of
supplemented RPMI 1640. We maintained Primary BMDC cultures were for a total of
cight days. On day zero the cells were seeded at approximately 0.5-1.0 x 10° cells/mL in

a 24-well plate. The cells were washed and new medium was added every two days, with

16

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



stimulationé occurring on day six.
U937 Culture

The U937 cells used in this study were purchased from the American Type
Culture Collection (ATCC, #CRL-1593.2)) and were grown in 5% CO; at 37°C. The
supplemented media used was RPMI 1640 with 1% Penicillin and Streptomycin and 5%
FBS. The cells were passaged every 4 to 5 days. The cells were fed every two days by
addition of 15 mL of media to each flask.

TLR2-LRR-Binding Peptides

Synthetic peptides JT1-JT5 (Table 1) were synthesized and HPLC purified by EZ
Biolab, Inc (Westfield, iN). Peptides were greater than 95% pure as determined by mass
spectrometry analysis. Peptide stock solutions for this study were made by dilutions with
endotoxin free water. All peptide dilutions were tested for endotoxin contamination
using a Cambrex Limulus amebocyte lysate (LAL) (Pyrogent Plus™) gelation assay kit.
Maximum levels of endotoxin contamination for peptides diluted to 100ug/mL were less
than 60 EU/mL. Because peptide JT1 was determined to activate BMDCs in our studies,
a follow up endotoxin test of JT1was conducted by the Associates of Cape Cod
commercial laboratory, using kinetic chromogenic characterization. JT1 endotoxin levels
as determined by the Associates of Cape Cod was .04-.06 EU/ug or 4-6 pg/mL. The
lowest reported stimulation level for antigen presenting cells is 15 pg/mL (Reed, Berwin,
Baker and Nicchitta, 2003).

Stimulation of Cells

The BMDCs were stimulated on the sixth day after explantation, using several

different stimuli that included the non-biotinylated synthetic peptides JT1-JT5,
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biotinylated versions of peptides JT1-JT5 with or without streptavidin cross-linking and
LPS as a positive control. Initial experiments were performed using a variety of cell
densities and peptide concentrations in an effort to determine optimal conditions for
stimulation.

Thereafter, sttmulations with the non-biotinylated peptides consisted of using
each peptide at a concentration of approximately 50 pg/mL. The individual peptides
were added to wells on the 24-well plate on day 6 after washing and feeding had been
performed. The cells were allowed to incubate with the peptides for 36-48 hours. After
incubation, the supernatants from each well were saved and the cells were harvested for -
analysis via flow cytometry. Cell harvesting consisted of repeated pipetting of the
medium to loosen cells, then transferring the suspended cells to flow cytometry tubes.
The tubes were centrifuged at 250x gravity for 10 minutes to allow the cells to pellet and
the supernatant was collected and saved for analysis, and the cells were resuspended in
1x PBS to be stained for flow cytometry.

Biotinylated Peptides

The five synthetic peptides were biotinylated using the Pierce EZ-link ™ Sulfo
NHS-LC Biotin kit according to the manufacturer’s directions. The biotinylated peptides
were separated from the biotinylating reagents using a 1-ml gel filtration column
(sephadex G-15 resin, Sigma Product #G-15-120).

Cross-Linked Peptides

The biotinylated peptides were cross-linked using Neutravidin™-coated beads

(Pierce) as follows. A packed volume of 250 pL of beads was placed in a sterile

microcentrifuge tube together with approximately 1 mL of the biotinylated peptides at a
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concentration of about 1mg/mL. Each protein-bead slurry was rocked at room
temperature for 30 minutes; the beads were then washed with sterile 1 x PBS and
resuspended in a 1:1 solution with cell culture medium. 250 pL from the final slurry
suspension was added to individual wells of a 24-well culture plate. The cells were
incubated for 36 to 48 hours and the supernatants were removed for cytokine analysis.
Invivogen NF-xB Study

The NF-xB activation study was performed by the Invivogen Corporation using a
secreted alkaline phosphatase reporter gene under the control of a promoter induced by
the activated NF-xB transcription factor. Details of the assay are available on the
Invivogen Corporation website (www.invivogen.com). The stimulation of TLRs was
assessed by measuring the NF-xB activation in HEK293 cells in response to each of the
JT peptides. A panel of HEK293 cells transfected with individual TLRs 2,3,4,5,7,8 and9
was used and involved testing each TLR against all five peptides. A 96 well plate was
seeded with 2.5-5.0 x 10* cells/ well with 20 pl (50pg/ml) of experimental peptide added
for a total volume of 200 pl. The cells were incubated for 16-20 hours at 37°C and ODgso
was determined using a Beckman Coulter AD 340C Absorbance Detector. The assay for
each peptide was performed in duplicate and data were compared against a panel of
positive control reagents specific for a panel of TLRs.

Salmonella Binding Assay

The U937 macrophage cells were activated by adding 1 x 10° M phorbol myristic
acid (PMA) to the culture. Cultures were then incubated for 24 hours, and the cells were
washed 3x with unsupplemented RPMI to remove the PMA. The cells were resuspended

to a final concentration of 3x 10° cells/ml and 300 pl of the solution was seeded into each
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well of an 8-chambered Lab-Tek ™ glass slide. One of the experimental peptides was
then added to each well at a concentration of approximately 100 pg/mL, with the
exception of péptide JT1, which was added at ~33 pg/mL due to limited quantities of
peptide. The slides incubated at 37°C for 2 hours to allow the U937 cells to attach. The
culture of Salmonella typhimurium was prepared by growing the cells aerobically for 8
hours, then inoculating 20 mL of media with 1 mL of the initial culture and incubating it
anaerobically for ~24 hours. The bacterial cells were washed 3x in 1x HBSS and
resuspended in 10 ml of 1x Hanks Buffered Salt Solution (HBSS), giving a concentration
~1x10° bacterial cells/ml. The U937 cells were incubated for two hours and the
Salmonella were added at a concentration of ~3x107 cells/ml in seven of the eight wells.
A chamber without bacteria was the negative control. The slides were incubated for 1
hour and stained differentially by the hemostat staining technique and viewed using a
light microscope at 1000x oil immersion.
Toxicity Test

Toxicity testing of the five synthetic JT peptides was done using the U937 cell
line. Approximately 2 ml of a 2.0x10° cells/ml solution was seeded into three sets of six
culture tubes (18 tubes total). We added each peptide to three tubes, at a concentration of
100ug/ml. We incubated the cells and determined viability at three intervals using one
set of ij tubes, (5 experimental and 1 control with no peptide) as one time point. Counts
were done at 24, 48 and 65 hours using trypan blue exclusion dye.

Cytokine Analysis

All cytokine analysis was performed by the Dartmouth Hitchcock Medical

Centers Immune Monitoring facility. Supernatant from stimulated BMDCs were loaded
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onto a 96 well plate and were analyzed for cytokine content through multiplex enzyme-

linked immunosorbant assays (ELISA) and quantified using a Luminex array reader at

OD65().
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CHAPTER 111

RESULTS

Toxicity Testing of TLR2-LRR binding peptides.

In vitro toxicity testing of the TLR2-LRR binding peptides was performed via
growth curve analysis using the U937 cell line. We did not observe a significant decline
in cell numbers in response to addition of the synthetic peptides at 100 ug/mL. The
viability of the cells growing in the presence of the peptides JT3 and JT4 was
approximately 30% lower than that of the other experimental groups after 48 hours.
However, since no significant decline in cell viability was observed after the 24 hour
incubation period relative to our experiments (Figure 5), we concluded that the peptides
were not toxic and that stimulation experiments could proceed. |

Flow Cytometry Analysis

Flow cytometry analysis revealed that newly explanted bone marrow cells (figure
6) were significantly smaller than the same cells after 6 days incubation with GMCSF,
and had lower percentage of BMDCs based on staining for the CD11c dendritic cell
marker. The day six cells were more consistent in their forward and side-scatter profiles,
which is typical of expansion BMDC’s in culture with GMCSF (Brent.Berwin, personal
communication). Low-level activation of the CD11c positive cells in response to peptide
JT1 was observed by flow cytometry staining for the MHC class II maturation marker in

several replicate experiments. No significant stimulation, as measured by increased
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Figure 5. Growth of U937 Cells in the Absence or Presence of TLR2-

LRR Binding Peptides
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Graphical representation of the growth of U937 cells (thousands) ir vitro with respect to
time (hours) in the presence or absence of the 5 experimental JT peptides and a control

(unstimulated) group. This graph represents a single trial of this experiment.
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Figure 6.Forward Scatter Versus Side Scatter Profiles of Day 0 and Day

6 BMDCs.
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This figure displays the forward versus side scatter flow cytometry profiles performed on
freshly explanted (day 0) or after 6 days in culture with GMCSF. Day 6 cells were
larger in size and exhibited increased granularity and were more positive for the CD11c
BMDC marker. The R1 region is the region containing the cell population of interest.
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Figure 7.MHC-Class II Upregulation of Day 6 BMDCs in Response to
stimulation with Peptide JT1.
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A comparison between stimulated (solid line) and unstimulated (broken line)
BMDC when stained with FITC conjugated MHC class II antibody. In this experiment,
day 6 BMDCs were cultured for 36 hours in the presence or absence of peptide JT1 @ 50
pg/ml. Flow cytometry profiles are for cells on region (R1, figure 7) positive for the
CD11c BMDC marker. In this experiment only 11.8 % of the unstimulated cells fell into
the MHC class II very bright population (indicated by marker M2), relative to 22.9 % of
the stimulated population. The median brightness of unstimulated cells positive for the
MHC class II BMDC maturation marker (as indicated by marker M1) was 172; compared
with the median brightness of stimulated cells which was 319.
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Table 2.Compilation of Flow Cytometry Data

JT1 JT2 JT3 JT4 JT5 No stim LPS
Cell Density M2%+ (M1 [M2%+[M1  |M2%+{M1  [M2%+ M1 [M2%+ M1 [M2%+ M1 [M2%+ (M1
5.00 ES / well 7.4] 116.0 11.0]173.0f 7.1{131.0] 12.0[179.0
50ug/ml : 7.6/ 141.0
1.00 E6 / well 10.6| 154.0 14.8{207.0] 13.0/178.0 7.3/146.0
50ug/mi 7.4 122.0 17.4{228.01 7.5/126.0] 17.6{225.0
15.9| 219.0 12.6/173.0
1.50 E6 / well 229 319.00 34| 45.7] 5.0 50.00 2.8 41.0f 13.4{188.0] 11.8/172.0{f 14.5{220.0
50ug/ml 152 183.00 29| 43.0f 8.0 52.3 7.5] 54.0 11.3{165.00 14.0/107.0
156.1] 80.6 2.0 435 7.0 63.2] 13.6[113.0
10.2] 64.4 7.4, 552
14| 36.2
2.00 E6 / well 66| 73.00 7.0{101.0] 6.4 820 12.2{143.0 4.8 84.3 5.7 88.2] 13.4/142.0
50ug/ml 25.31 161.0] 8.6[ 99.0] 10.3/115.0f 10.3/107.5 7.0 96.5] 11.0{121.9] 19.9/184.0
2.00 EG / well 55 813] 7.0 97.3 5.7] 84.3] 10.0{119.7] 4.5 82.0] 5.7/ 88.2] 13.4{142.0
10Qug/ml
1.00 E6 / well 6.5 453 64| 519 6.7] 50.74 8.0 615 8.4 470f 6.1) 52.8 23.5/191.0
10ug/ml

This chart represents a compilation of single peptide flow cytometry data. The data in the
far left column represents the approximate BMDC density used in each well of a 24-well
culture plate as well as the concentrations of the peptides used in the experiments. Each
row represents the data collected for that particular density and peptide concentration.
The data in each peptide column represent the percentage of gated cells that fell into the
M2 shoulder population (left), and the median brightness levels in the gated population
(right) for peptides JT1-5, unstimulated cells, and cells stimulated with LPS at 50 pug/mL.
Blank cells indicated no data. ’
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upregulation of MHC class II relative to non-stimulated controls was observed for the
other peptides tested, JT2,3 and 4. peptides and negative control group. Figure 6 shows
an increase in median brightness (FLI) of cells stimulated with peptide JT1 relative to
unstimulated controls. The unstimulated control group showed a greater percentage of
cells at a peak median brightness of 10 units (FLI) than the JT1 stimulated cells 10°-10*
units (FLI).

The stimulation data collected in multiple flow cytometry experiments exhibited a
great deal of variability largely correlated with BMDC density (Table 2). Our data
suggest that 1.5x10° cells/mL was the most appropriate cell density for these experiments
based upon observed greater sensitivity to LPS. Cells plated at this density showed the
most consistent activation in the presence of peptide JT1 (Table 2).

During 12 flow cytometry experiments, peptides JT2-5 showed no MHC class 11
activation, having data similar to that of the negative control. The flow cytometry
experiments staining for the upregulation of the B7 co-stimulatory marker were negative
for all peptides, including JT1 as well as the LPS positive control.

Cytokine Analysis

The supernatants from the BMDCs stimulated in vitro with TLR2-LRR-binding
peptides were analyzed for levels of IL-6, IL-8, IL-1B, IL-12 and TNF-a. The cytokine
analysis of the supernatants of cells stimulated with JT1 indicated showed significant
levels of IL-6 in comparison to the unstimulated control (Figures 8 and 9). Statistical
analysis of these data using a student’s t-test with 13 degrees of freedom resulted ina t

value of 1.42, suggesting that the difference between the JT1 values and the unstimulated
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~ Figure 8. Frequency of IL-6 Secretion in Response to Peptides JT1-JT5
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This is a graphical representation of the supernatant data collected for IL-6. Supernatants
derived from BMDCs cultured with LPS, no peptides, or peptides JT1-JT5 were analyzed
for IL6 as described. Bars represent the frequency of wells in each experimental group
for which the IL-6 level detected (pg/mL) was greater than 5x (blue) or greater than 20x
(red) the baseline detection level of 5 pg/mL. Number of replicate wells tested for each
experimental group is indicated above the bars. All peptides stimulated a low level
increase in IL-6 production, with the exception of JT5.
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Figure 9. IL-6 Secretion in Response to Peptides JT1-JTS.
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This graph is a log scale representation of the supernatant data collected for each of the 5
JT peptides as well as the two control groups in reference to IL-6 production. Values are
based on multiplex spectrophotometric assay at ODgsp. Based on these results, peptide
JT1 was determined to be stimulatory for IL-6 production in several replicate
experiments.
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Figure 10. Frequency of IL-8 Secretion in Response to Peptides JT1-JT5
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This is a graphical representation of the supernatant data collected for IL-8. Supernatants
derived from BMDCs cultured with LPS, no peptides, or peptides JT1-JT5 were analyzed
for IL-8 as described. Bars represent the frequency of wells in each experimental group
for which the IL-8 level detected (pg/mL) was greater than 5x (blue) or greater than 20x
(red) the baseline detection level of 5 pg/mL. Number of replicate wells tested for each
experimental group is indicated above the bars. Secretion of IL-8 did not occur in
response to peptides JT2, 3, 4 and 5.
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Figure 11. IL-8 Secretion in Response to Peptides JT1-JTS.
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This graph is a log scale representation of the supernatant data collected for each of the 5
JT peptides as well as the two control groups in reference to IL-8 production. Values are
based on multiplex spectrophotometric assay at OD gs.
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values are significantly different at a .179 confidence interval. The levels of IL-6
produced in response to JT1 were 5x and 20x times the lowest detection level limit at
frequencies of 0.36 and 0.29 respectively (n=14 experimental wells), in contrast to the
observed frequencies fbr the unstimulated control group at 5x and 20x which were .07
and .07 respectively (n=14), and 100% of all wells stimulated with LPS exhibited IL-6
levels greater than 20x the background detection level (n=13). Some increased IL-6
activation was also seen with peptides JT2, 3, and 4, but not with JTS (Figure 8).

The levels of IL-8 produced in response to JT1 had 5x and 20x the baseline
detection limit at frequencies of 0.21 and 0.14. In contrast no increased IL-8 production
was observed in response to J12,3,4 and 5 (figure 10).

No increased production of IL-12 or IL-1 for BMDCs cultured with any of the
JT peptides. Increased production of IL-12 (Figure 12) occurred only in response to LPS.
Production of IL-1 (Figure 13) was not detectable in response to any of the stimuli.

Cytokine results for TNF-a (figure 14) were positive in response to JT1 and JT2.
We found frequency stimulation values 5 and 20 times the baseline detection limit at
frequencies .21 and .21 for JT1, and .22 and .11 for JT2. The activation in response to
these peptides was not statistically significant.

Invivogen NF-kb Study

The Invivogen Corporation determined NF-xB activation did not occur at a

significant level in response to the TLR2-LRR-binding peptides. The assay used

individual HEK293 cell lines expressing seven different TLRs: TLR2,3,4,5,7,8 and 9
(Table 3; Figure 15). NF-xB Activity was monitored by measuring the ODgso of a

secreted alkaline phosphatase reporter, which was induced by NF-kB. This assay was
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Figure 12. IL-12 Secretion in Response to Peptides JT1-JTS5.
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This graph is a log scale representation of the supernatant data collected for each of the 5
JT peptides as well as the two control groups in reference to IL-12 production. Values
are based on multiplex spectrophotometric assay at ODgs.
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Figure 13. IL-1P Secretion in Response to Peptides JT1-JTS.
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This graph is a log scale representation of the supernatant data collected for each of the 5
JT peptides as well as the two control groups in reference to IL-1B production. Values

are based on multiplex spectrophotometric assay at ODgsy.
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Figure 14. TNF-a Secretion in Response to Peptides JT1-JTS.
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This graph is a log scale representation of the supernatant data collected for each of the 5

JT peptides as well as the two control groups in reference to TNF-o production. Values
are based on multiplex spectrophotometric assay at OD gs.

35

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Table 3. Results of Invivogen NF-xB Study

Results
Results are provided as OD (63Czm) values
Screening #F1

293/TLR Cell No

/Llne tigand | 111 2 173 T4 TS Control +
RTLRZ 0.001] 0.144] 0.186] _ 0.141] _ 0.093 0.097 2654
hTLR3 0.161] 0.154] 0.163]  0.142] _ 0.150 0.130 2.454
hTLR4(MD2-C014) 0,000] 0.003] o0.081] 0.079] 0.080 0.076 2.187
hTLRS 0.113] 0.133] 0.123] 0.163] _0.115 0.170 .86
hTLR? 0.075| _0.074] _0.070] _ 0.063] _ 0.071 0.065 2.356
hTLRS 0.160| _0.130] 0.144]  0.146| _ 0.145 0.136 2.165
hTLRS 0.150 ] 0.123 | 0.116 ]  ©0.109]  0.116 .18 2.612
Parent cells 0.080 0.078 0.080 0.077 0.0675 0.074 2.316

Scresning #2

293/TLR Coll No

e Ligand | JT1 m T3 T4 j15 | Control +
hTLRZ 0.106] 0174 0.110]  0.155] _ 0.111 0.105 2813
hTLR3 0137 0.115] 0.144] 0.128]  0.110 0.119 2.749
hTLR4(MDZ-CD14] 0.005| 0.000| 0.099] _0.08:] _ 0.081 0.075 2,837
hTLRS 0.183]  0.102] 0.02] _ 0.218] _ 0.166 0.190 2.973
hTLR? 0116] 0097] 0.100] _ 0.104]| _ 0.09 0.004 2,698
hTLRS 5.196] 0.146 ] 0.167] _0.158] _0.148 0.15: 5.003
hTLRS 0.1724]| _6.101] 0.106 | 0.103] __0.106 0.099 2.172
Parent cells 0.100] 0.0081 0.103] _ 0.101] _ 0.095 0.008 2,438

Final concentration of samles &3 SCpeiml

Tables represent two identical screenings measuring NF-kB activation at ODgso as
described in materials and methods. The activation of peptides JT1 through 5 and their
effecton hTLRs: 2,3,4,5,7, 8, and 9.
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Figure 15. Graphical Results of NF-xB Study
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Control ligands
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hTLR4: E. coli K12 LPS at 100 ng/ml
hTLRS: 8. typhinmugiuom flagellin at 1 pg/ml
hTLR7: Loxoribine at 1 mM
hTLRS: ssSRNA40 at 5 ug/ml.
hTLRY: CpG ODN 2006 at 1 ug/mil

hTLR2: HKILM (heat-killed Listeria monocytogenes) at 10° cells/mt

Parent cells: PMA 10ug/ml_ (parent cefls have no TLR and serve as control)
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marginally positive in response to JT1, 2 and 3 through TLR2, however this effect was
not statistically significant. The response to péptides JT4 and JTS was negative, with
values at or below the unstimulated control cells. Of the three peptides that did éhow
some low level activity in duplicate screenings, the most activity was observed in
response to JT1. There was no activation seen through TLRs 3,4,5,7,8, and 9 in response
to any of the peptides.

Salmonella Binding Assay

The Salmonella binding assay indicated that the JT peptides are not stimulatory to the
U937 cells, and that the JT peptides do not block the binding of a natural TLR2 ligand

(Table 5).
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Table 4. Summary of Salmonella Binding Assay

Experiment 1

Experimental Phagocytic Phagocytic
Activity Index

JT1 33ug/mL 26% 3

JT2 100pg/mL | 14% 2.7

JT3 100pg/mL | 10% 2

JT4 100pg/mL 8% 2

JTS 100pg/mL 8% 2

No Peptide 4% 2

No Peptide 16% 2

No Bacteria 0% 0

Experiment 2

Experimental Phagocytic Phagocytic
Activity Index

JT1 100 pg/mL. | 38% 4.4

JT1 67pg/mL S56% 4.2

JT1 33pug/mL 44% 3.1

JT1 17pg/mL S0% 4.

JT1 1mg/mL 54% 4.4

No Peptide 42% 3

No Peptide 42% 3

No Bacteria 12% 23

Experiment 1 summarizes data gathered from the Salmonella binding to U937 cells in
response to the five JT peptides. Experiment 2 summarizes the data gathered when U937
cells were stimulated with varying concentrations of peptide JT1. Percentages represent
the number of U937 cells positive for 2 or more bound Salmonella. The phagocytic
index represents the average number of bound Salmonella to positive U937 cells.
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CHAPTER1V

DISCUSSION

The objective of this thesis was to evaluate the biological effect of five synthetic
TLR2-LRR binding peptides through flow cytometry and cytokine profiling. We
hypothesized that the peptides may be able to either elicit, or down-regulate an innate
immune response, as has been seen with a small peptide TIR mimic (Bartfai et al 2003).
The ﬂow cytometry results showed variable BMDC activation in response to JT1 and the
cytokine analysié indicated that JT1 induces IL6 production. The assay performed by
the Invovogen Corporation determined that no significant NF-kB upregulation occurred
in response to the peptides.

Flow Cytometry

Although the results of the BMDC stimulation experiments were variable and
dependent on cellular density, peptide JT1 was found to induce BMDC maturation in
multiple experiments. At cell densities of 1.5x10° cells/well and peptide concentrations
of 50 ug/mL peptide JT1 was as effective as LPS in upregulation of MHC class II. The
MHC class II very bright population (indicated by M2 in Figure 6) averaged 15.8%
(Table2, n=4) for JT1, and 14.0% (n=3) for LPS, versus 7.7% (n=5) for unstimulated
controls. In contrast, BMDCs stimulated with peptides JT2-5 were not significantly
different from unstimulated controls in selected experiments. Some stimulation of

BMDCs plated at 1.00x10° and 2.00x10° cells/wellwas also observed.
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We observed an inconsistent stimulatory effect in response to peptide JT1at a
concentration of 50ug/mL. Cell counting was performed before seeding the cells, but
some variation in cell densities occurred, causing variability in BMDC activation
experiments. Variability of BMDC cultures has been observed in the Berwin lab
(personal communication) because of “over-handling” of cells, such as feeding and
washing, causing the BMDC:s in culture to activate. The peptides may have formed
multimeric complexes, varying activation resﬁlts. This would be difficult to control as
several independent dilutions of the peptides were used. In order for consistent activation
to be seen, it may be necessary to cross-link the peptides.

We performed most of our stimulations with peptide JT1, due to early success in
its activation of BMDCs. More assays with the other JT peptides may have shown
eventual BMDC activation. Future work would include further experimentations with the
other synthetic peptides and a repeated attempt to cross-link.

Stimulated BMDCs were also stained for flow cytometry using the B7 maturation
marker, but no activation was observed in response to the peptides or LPS. Upregulation
of the B7 co-stimulatory marker may require more optimal conditions, or may occur
through an independent pathway than through TLR2. Due to time constraints, we used
the MHC class II marker for BMDC maturation, as we had already seen activation of this
marker in response to the peptides and LPS control.

We designed several lab experiments to examine the effects of cross-linking of
the peptides on BMDC activation. One experiment was designed based on streptavidin’s
four biotin binding sites. Biotinylated peptides were added to BMDCs being cultured in

streptavidin coated wells. Flow cytometry data indicated that no activation had occurred
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in response to any of the peptides. This required using a 96 -well plate system instead of
24-well plates. This added variable changed the conditions of the cells being cultured,
and was not optimized due to time constraints. Any future efforts with these peptides
would involve more focus on cross-linking.

Attachment of the peptides to streptavidin-agarose beads was performed to cross-
link the peptides, such that the beads would represent a type of psuedo-bacterium. The
large size of the beads was inappropriate for flow cytometry analysis because of bead
auto-fluorescence (Alice Givan, personal communicatio). Cytokine-analysis of these
supernatants yielded no positive results. | The results do not necessarily indicate that
cross-linking of the peptides cannot activate the cells; it is more likely that the
preliminary cross-linking performed in lab were not optimal. Another variable is the
degree of biotinylation of the peptides. If these experiments were to be repeated, the
peptides would be commercially synthesized and biotinylated for consistency. Another
possibility would be to use smaller beads more appropriate for flow cytometry analysis.

Cytokine Analysis

The supernatants for all stimulation experiments underwent cytokine analysis at
the DHMC Immune Monitoring Facility. All supernatants were examined for a series of
cytokines, which included IL-6, IL-8, IL-1B, IL-12 and Tumor Necrosis Factor Alpha
(INF-o). Inthese assays, IL-6 was consistently and significantly upregulated when cells
were cultured in the presence of JT1. We evaluated this using a Students T-test and JT1
treatment proved to be statistically significant compared to the unstimulated control (t-
value of 1.42, n=13); the confidence interval was 0.179, indicating less than a 20%

chance that the observed difference was due to random sample error. These data
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represent two different screenings for IL-6 with 14 individual test wells where JT1 was
used to activate the BMDCs. We interpret these results as positively indicating that JT1
does play a biological role in the upregulation of IL-6 by BMDCs.

Some low level IL-6 production was observed in response to peptides JT2, 3, and
4. This indicates that activation of IL-6 was a specific effect of JT1 and not just due to
the presence of a foreign peptide in culture. More data points could have strengthened
the statistical analysis as several experiments of poor activation data in regards to the
positive control were included in the T-test.

The IL-8 cytokine analysis indicated marginal activation with JT1, but not with
any of the other peptides, however this effect was not found to be statistically significant.
Slight TNF-a production was also seen in response to JT1 and JT2. The analysis for IL-
12 and IL-1b was negative for all the peptides. The ability of some peptides to
upgregulate certain cytokines and not others indicates the specificity of the cytokine
profiles produced in response to particular PAMPs.

Invivogen Studies

Because the stimulation of all TLRs is known to result in upregulation of the NF-
kB transcription factor, making it was of interest to determine whether the JT peptides
could also activate NF-xB. In assays performed for this study by the Invivogen
Corporation, translocation of NF-xB was observed in cells expressing only TLR2, in
response to co-culture with peptides JT1, 2 and 3. The effect was only slight, with the
most activation observed in response to peptide JT1. When compared to the positive
control groups the degree of activation in response to these peptides was statistically

insignificant. However, in duplicate assays, the response was clearly greater than that
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seen with the negative control, therefore JT1 may have some minimal biological effect on
TLR2 activation. In future studies, it would be of great interest to determine whether
activation of NF-xB would be enhanced by biotinylated peptides if optimally cross-
linked. It is possible that the NF-kB results observed reflect lack of optimization of the
assay.

Salmonella Binding Assay

The Salmonella binding assay was performed to examine the ability of the
peptides to effect the binding of the human macrophage U937 cell line to Salmonella
typhimurium by using all five synthetic peptides, as well as a negative control containing
no peptide, and a control that contained only U937 cells. The only peptide that increased
increase both the phagocytic activity as well as the phagocytic index of the macrophages
was JT1. This peptide was added at a lower concentration (33pg/mL) due to low
amounts of stock JT1. An experiment with varying concentrations of JTI, did not
indicate an increase in binding of bacteria at a significant level. If this were repeated,
another attempt would be made to optimize the amount of peptide required to effect U937
binding. The peptides do not block the binding of a natural ligand and there was no
difference between the positive control cells and peptides JT2, 3, 4 and 5 in regards to
phagocytic activity or index.

More careful testing is needed, as the negative control cells that contained no
bacteria were positive for some binding. I was careful to maintain proper aseptic
technique but some contamination of the wells did occur. This was likely due to the
close proximity of the wells containing the bacteria with the negative control well and

that the same reagents were used for all wells.
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Future Directions

Based on the results of this study, we anticipate that cross-linking the peptides is
likely to be the most effective way to continue studying the biological role of the JT
peptides in BMDC activation. Experiments involving different functional endpoints,
such as cell division, or the up-regulation of other cell surface markers would also be
appropriate, as would flow cytometry experiments which focus on staining for the B7 co-
stimulatory markers.

Since only JT1 was observed to have a biological function and not JT2,3,4,0r 5,
the conclusion can be drawn that the motif '(GxxV/L/I) was not relevant. All of the
peptides had the same number of residues and only differed in the location of the motif
and the residues that surrounded it. If the motif allowed the peptides to interact with
TLR-2, all of the peptides should have caused BMDC maturation and cytokine secretion.
Future work with these peptides could determine why JT1 has a biological effect, while
the other peptides do not. This could be done by substitutions and deletions in the JT1
peptide sequence.

The IL-6 cytokine results and other data collected from stimulations with peptide
JT1 a significant biological role. Other published TLR studies have only determined the
ligands responsible for TLR activation at the macromolecular level (Bulut, 2001, Hajjar,
2001, reviewed in Takeda and Akira, 2001) and not the specific peptide sequences
involved. It is known that activation of the TLRs upregulates NF-xB production
(Hallman et alv., 2001), what is not known is how a ligand is able to shape cytokine

profiles.
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We have shown that IL-6 production occurs in response to peptide JT1, and not
the other peptides. Of the several cytokines we looked at, IL-6 was the only one
produced in response to JT1 at a significant level. IL-6 was initially thought to be only
be an inflammatory cytokine, however it has been shown to inhibit TNF-a production, as
well as T-lymphocyte and macrophage function. The presence of IL-6 has also been
shown to markedly reduce NF-kxB activity and augment immunoglobulins (Wheeler et.
al, 1999, Hegde et. al, 2004). Inhibition of inflammatory cytokines such as TNF-a has
been shown to improve both organ function and survival in animal sepsis models
V(Wheeler et. al, 1999). The role of TLR2 activation in an immune response could be to
downregulate an inflammatory immune response, while promoting an adaptive response
to occur.

This study has increased the current understanding of ligand recognition by
TLR2, as well as the ability of this receptor to shape an immune response through
production of IL-6. This knowledge will be beneficial in future studies with TLRs, as

well as in the development of novel peptide based therapeutics.
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