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ABSTRACT

A TEST OF THE NUTRIENT-PRODUCTIVITY MODEL IN THE GULF OF MAINE 
USING THE INTERTIDAL MUSSEL MYTILUS EDULIS

By

Meredith A. Bailey 

University of New Hampshire, December, 2006

Historical concepts of top-down control (predator-prey interactions) on rocky intertidal 

community structure have transitioned to studies on bottom-up effects (nutrient supply 

and larval transport) as significant factors affecting rocky intertidal community 

structure. Studies performed on rocky intertidal locations along the Gulf of Maine 

(GOM) at multiple sites and seasons in 2004 and 2006 examined the ecology of Mytilus 

edulis populations by measuring size frequency distributions, diet quality (stable isotope 

composition) and physiological performance of individuals using condition indices and 

RNA/DNA ratios. Data were correlated to satellite imagery for sea surface temperature 

and chlorophyll a concentration and individuals were genetically tested to look for 

lineage sorting. Populations of M. edulis in the GOM were found to be genetically 

homogenous, consuming a mixed diet of phytoplankton and detritus, with shell size and 

physiological performance tied to chlorophyll a concentration and temperature, 

providing strong evidence for community structure being linked to environmental 

variability.

x
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CHAPTER I

INTRODUCTION

The Gulf o f Maine

The Gulf of Maine (GOM) in the Northwestern Atlantic is a broad body of water some 

600 km in length, partially enclosed to the west and north by the American states of 

Massachusetts, New Hampshire and Maine and the Canadian provinces of New 

Brunswick and Nova Scotia, and is characterized by a set of unique physical, 

climatological and biological features. Flanked by the Scotian Shelf on the east and 

Georges Bank to the south, the waters o f the GOM are situated entirely over the 

continental shelf, which is over 200 km wide in this region. Georges Bank, at roughly 

300 km long and 150 km wide, crests at a depth of 60 m, with several ridges extending to 

less than 5 m below the surface, forming a significant division between the open Atlantic 

over the North American continental slope and the interior gulf. The GOM contains 

three distinct basins, isolated from each other beneath the 200 m isobath, which are 

Wilkinson Basin to the west, Jordan Basin in the northeast, and Georges Basin in the 

southeast. The Northeast Channel, a glacially-carved channel over 250 m deep, cuts 

through the shelf at this point, giving the GOM a steep bathymetric profile and providing 

the only connection between the Northwest Atlantic Slope Water and the GOM, 

permitting deeper, nutrient-rich waters to mix closer to shore. Large volumes of

1
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terrestrial freshwater runoff, as well as freshwater delivered by the Labrador Current, are 

important factors in water chemistry and vertical mixing in the GOM (Townsend et al. 

2004). The cold waters brought by the Labrador Current, flowing south, meet the much 

warmer tropical Gulf Stream, generating a strong seasonal thermocline and pycnocline 

throughout the region of the Northwest Atlantic continental shelf although these layers 

generally diminish or disappear within shallower coastal regions, such as the GOM, due 

to tide- and wind-driven mixing (Townsend et al. 2004). Temperature changes, 

freshwater runoff, and Scotian Shelf influx all have a strong influence on the surface 

waters of the GOM, while the characteristics of the water in the basins are determined 

largely by Northwestern Atlantic Slope Water o f two types, a cold mass from the 

Labrador Sea and a relatively warmer mass from the central slope (Brown and Beardsley 

1978, Ramp et al. 1985).

Circulation and vertical mixing in the GOM is primarily cyclonic and driven by tides and 

density contrasts. There are a number of internal gyres in the GOM, the strength and 

appearance of which are seasonally variable (Xue et al. 2000). Hydrographic 

observations and drifter data collections in the spring of 2004 showed a strong cyclonic 

(counterclockwise) gyre present over Jordan Basin, a secondary cyclonic gyre over 

Georges Basin, a much lesser cyclonic circulation pattern in the western Gulf, and a 

stronger anticyclonic gyre on Georges Bank itself (Butman and Beardsley 1987, Xue et 

al. 2000). The two major surface general gyral patterns (Figure 1), counterclockwise in 

the Gulf and counterclockwise over the Bank, are present year round, and are strongest in 

spring (Butman et al. 1982). These gyres, in particular those situated over Jordan Basin

2
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and Georges Basin, are the product of, it has been suggested, density-driven gradients as 

well as coastal and shelf water currents. The major current dominating the eastern GOM 

in warmer months is the eastern Maine coastal current (EMCC) system, beginning as a 

pocket of cold (ca. 10°C), tidally-mixed and nutrient-rich Scotian Shelf water and which 

is driven across the mouth of the Bay of Fundy, along the coast of eastern Maine, and is 

pushed back into the central Gulf by the outflow of freshwater from the Penobscot River 

(Townsend et al. 1987, Townsend et al. 2004). Satellite imagery of sea surface 

temperature shows a distinct plume of colder water spreading into the central Gulf along 

the eastern side of the Penobscot Bay outflow. The EMCC tends to break down in winter 

months as vertical stratification lessens, and wind-driven surface currents are a significant 

factor in re-forming the gyre in the eastern Gulf during the spring (Xue et al. 2000). On 

the western side of the Penobscot outflow, this river combined with the discharges of the 

Kennebec, Androscoggin, and Merrimack drives the western Maine coastal current 

(WMCC), a current that flows along the southwestern perimeter of the GOM, in 

accordance with the general cyclonic gyre of the western Gulf and the Gulf as a whole 

(Geyer et al. 2004, Xue et al. 2000). These coastal currents are all significantly impacted 

by wind-driven circulation, barotropic motions and baroclinic shears (Geyer et al. 2004).

3

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Figure 1. General surface circulation pattern for the Gulf o f Maine. BB -  
Browns Bank, CpS -  Cape Sable, G -  Georges Basin, GB -  Georges Bank, GSC 
-  Great South Channel, J -  Jordan Basin, NEC -  Northeast Channel, NEP -  
Northeast Peak, W -  Wilkinson Basin. Figure redrawn with permission from 
Johnson et al.

4
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Studies in the Northeast Channel by Ramp et al. (1985) also support the importance of 

winter/spring wind in driving surface currents, but indicate that there is insufficient 

atmospheric force in summer to greatly affect currents during warmer months; this may 

apply to the GOM as a whole as well. Slope Water influx via the Northeast Channel is 

likewise seasonally variable, both in volume as well as in the degree of constancy of 

flow. Northeast Channel inflow to the GOM has two seasonal maxima, the primary 

occurring in August and a secondary event in the winter, which had a less consistent rate 

of flow in comparison to the summer; the lowest rate was found to occur in April and 

May, during the height of the vernal runoff period (Ramp et al. 1985). Flow rates tended 

to be less variable and more steady in summer, and stronger, although far more 

incidental, in winter. Seasonal heating and cooling cycles play an important role in 

summer vertical stratification and winter convection; in addition, Gulf-wide coastal 

circulation during winter months tends to be further offshore than during the summer 

(Xue et al. 2004). Coastal currents are weakest in mid- and late winter, when the gyre 

system is in general at its most incoherent. Butman and Beardsley (1987) found this to 

be true, as well, for the gyre over Georges Bank, which experienced strongest 

southwestward flow in September and weakest in March.

Seasonal cycling, coupled with tidal forces and the cold, dense fresher water brought by 

the Labrador Current, produces three distinct water masses and controls the majority of 

the hydrographic structure, nutrient circulation, and, subsequently, biological productivity 

of the GOM. These three water masses are known as Maine Surface Water, Maine 

Intermediate Water, and Maine Bottom Water, and are produced by seasonal heating;

5
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Intermediate Water is formed during winter (Hopkins and Garfield 1979). Maine Surface 

Water is a layer of warm, low-density water, extending through the upper surface layers 

with salinity between 31.6-33.2%o and which may be even less saline due to local runoff 

(Hopkins and Garfield 1979). Beneath the thermocline generated by MSW layer is the 

Maine Intermediate Water, a cold layer of less saline water residing between 

approximately 50 m and 150 m, formed coastally. The MIW and the MSW blend to one 

mass during the winter months, and the two diverge as the result of spring warming, with 

the MIW being the remains of the winter water mass (Hopkins and Garfield 1979). 

Maine Bottom Water, although warmer than the Intermediate Water, remains benthic due 

to an increased density from higher salinity and resides in the basins, flowing benthicly 

through the Northeast Channel to mix with Slope Water (Hopkins and Garfield 1979). 

While distinct over the basins, these water masses tend to be mixed along the coast and 

the division between them grows less pronounced throughout summer and autumn as the 

result of tidal mixing. Ramp et al (1985) found that water volume entering the GOM 

through the Northeast Channel tended to be a mix of both Warm Slope Water and 

Labrador Slope Water, while that which exited the Gulf through that same passage was 

mostly Maine Intermediate Water. The GOM has typically swift tidal currents as the 

result of its large tidal ranges; the southwestern Gulf has the most moderate range at 

roughly 2 to 3 m, which increases heading the northeast to 6 m, and finally to one of the 

most extreme tidal ranges in the world located in the Bay of Fundy at more than 10 m 

(Townsend et al. 1987, Townsend et al. 2004). Tidal currents in the Northeast Channel 

have been found to be accountable for over 50% of the variance in current velocity 

(Ramp et at. 1985). Tidal forces strongly affect circulation as well as mixing within the

6
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100 m isobath, particularly over the shallows of Georges Bank, within the Bay of Fundy,

and in coastal waters (Xue et al. 2000). Seasonal circulation, particularly coastal, is also

slightly affected by freshwater discharge from the local watersheds; although an 

• 1 1 1estimated 8 x 1 0  m of freshwater is emptied into the GOM yearly from the four largest 

rivers, the Merrimack, the Kennebec, the Penobscot, and the St. John, most o f the 

influence of this influx appears to be largely on the surface salinity (Xue et al. 2000). 

The overall cyclonic motion of GOM circulation as a whole produces a salinity gradient 

over the GOM that is the most pronounced in the late spring and early summer as the 

gyre causes the accumulation of spring freshwater runoff from these rivers in the western 

portion of the Gulf. Brown and Beardsley (1978) observe that explaining observed 

salinity variance on the continental shelf requires a significant amount of tidal mixing, a 

quality that has been recorded several times, as by Ramp et al. (1985). The Great South 

Channel, although a great deal shallower than the Northeast Channel at approximately 70 

m, and carrying a much lower volume of water, has been identified as a source of egress 

of intermediate salinity shelf water from the GOM to the Nantucket Shoals, possibly the 

product of the tidal mixing that occurs in the anticyclonic gyre on Georges Bank (Brown 

and Beardsley 1978). Seasonal mixing and winter convection, however, is most likely 

the mechanism that permits this vertical mixing to extend down to the depths of the 

Maine Intermediate Water.

The success of the commercial fisheries in the GOM is heavily dependent on primary 

productivity, in particular the annual plankton bloom that occurs every spring; the eastern 

Gulf has been identified as an important spawning ground for commercial fish stocks

7
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such as herring (Townsend et al. 1987). This primary productivity is, in turn, the result of 

nutrient cycling, upwelling and mixing; the same tidal mixing that is responsible for 

degrading the distinction between the three water masses in the GOM is also responsible 

for driving nutrient transport, particularly in the northeastern Gulf. As the EMCC moves 

southwest, stratification increases and nutrient concentrations decrease, with a 

corresponding increase in phytoplankton and zooplankton biomass. A noticeable off­

shore region of productivity coincides with the EMCC plume in the central Gulf, 

indicating the importance of the EMCC, and the cold, nutrient-rich Scotian Shelf water, 

in the ecology of the eastern GOM. Nutrients and nitrogen that originate in surface 

Scotian Shelf Water are as important to primary productivity in the GOM as those which 

have their source in the deep Slope Water and enter through the Northeast Channel 

(Townsend 1998). An estimated 44% of the inorganic nutrients used in primary 

productivity over Jordan Basin originate on the Scotian Shelf and are transported by 

EMCC-generated upwelling in the eastern Gulf (Townsend et al. 1987). Nutrient 

upwelling and fluxes driven by the EMCC and tidal mixing have combined to cause the 

GOM to be both historically and currently a region of high biological productivity; the 

least productive, offshore areas of the Gulf average some 270 gC m 2 yr' 1 (O’Reilly et al. 

1987). Thus, In winter, when the stratification produced by the thermocline, pycnocline, 

and the EMCC breaks down due to decreased temperature and increased storm activity, 

winter convection continues to draw these nutrients to the surface, making them available 

for the annual bloom each spring (Townsend et al. 2004). A second source of nutrients is 

from deep Slope Water flowing through the Northeast Channel; however, although the 

nutrient load in the deep Slope Water is much greater than that of the Scotian Shelf, less

8
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than an estimated quarter of that load is brought to the surface layers via upwelling, 

mixing and convection for use in primary productivity (Townsend 1998, Townsend et al. 

2004). Studies suggest that much of the deep Slope Water nutrient load exits the GOM 

through the Northeast Channel with the outflow of Maine Intermediate Water, without 

ever having reached the surface layer, a model in accordance with the circulation patterns 

observed in the Northeast Channel (Townsend et al. 2004, Ramp et al. 1985). Regardless 

of its upstream source either on the Scotian Shelf or from deep Slope Water, this nutrient- 

rich cold water is an important source of upwelling and nutrient turnover in the GOM, 

particularly over Jordan Basin, and ultimately is the cornerstone to biological 

productivity in the GOM (Townsend 1998). A study by Townsend et al (1987) found 

that dissolved nitrogen is significantly higher along coastal Maine from the mouth of the 

Bay of Fundy to the Penobscot Estuary, between 0.1 and 6.0 uM, while in the western 

Gulf, surface NO3 levels are frequently below 0.1 uM during summer months. Surface 

chlorophyll concentrations are similarly elevated in the eastern Gulf, as much as six times 

higher off western Nova Scotia than off the coast of New Hampshire, however, primary 

consumers, such as adult copepods and macrozooplankton, had a much greater summer 

biomass in the western Gulf (Townsend et al. 1987). These circulation and mixing 

patterns ultimately produce two distinct surface water regions in the GOM as 

characterized during the summer. To the east of the Penobscot outflow is a cyclonic gyre 

of colder (10 -  13°C), high-nutrient water with surface salinity measurements of 31.0 -

32.0 psu, while west of the Penobscot the waters are warmer (12 -  18°C), contain less 

dissolved nitrogen, and are slightly less saline, particularly along the coast, ranging from

30.0 -  31.5 psu (Townsend et al 1987).

9
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GOM Intertidal Habitats

Historically, the GOM was subject to the Pleistocene glacial period of approximately

20,000 years ago. The lack of a habitat refuge beyond the extent of glaciation, on 

account of the general lack of hard substrate south of the glacial limit in Long Island 

Sound, indicates that this period of time was particularly difficult for obligate rocky 

intertidal organisms. The disturbance effects of ice scour provided new substrate 

following the retreat of the glaciers for the recolonization of the intertidal species of the 

northwestern Atlantic coast, a consequence of migration from Iceland and Europe (Wares 

and Cunningham 2001).

Nearly the entirety of the coastal GOM is characterized by granitic rock that provides the 

substrate for a distinctive intertidal community structure throughout most of the GOM. 

Many of the organisms found in the GOM intertidal are sessile and dependent on the 

ambient water currents for their nutrients and food as well as for distributing their 

propagules. Additionally, the community structure lends itself to population and 

abundance estimates that can be easily made, a feature that is fairly unique among 

habitats (Connell 1972). A key characteristic of the intertidal is vertical zonation, a 

minute-scale regionality in the presence and distribution of organisms throughout the 

intertidal region that is determined by number of varied factors, including air exposure, 

temperature changes, resistance to desiccation, nutrient availability, vulnerability to 

predation, and competition with surrounding organisms.

These factors and patterns of vertical zonation, are largely a product of, and are

10

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



controlled directly by, tidal range and force (Connell 1972). Upper zone limits indicate 

that physical factors, such as desiccation, solar radiation, and temperature, highlighted in 

many studies as a critical abiotic influence affecting distribution and survival success of 

organisms of the rocky intertidal, are the limiting factors for species vertical distributions, 

and these are all largely a function of exposure during low tide (Helmuth and Hofmann 

2001). However, these limits can be extended in conditions that offset those physical 

factors: tide pools, moisture from spray, north-facing or shading rocks, or thick algal 

cover have all demonstrated an effect on vertical zonation patterns. Organisms may 

possess, as well, a certain degree of flexibility in their responses to stressors; that is, some 

may be capable of successfully handling an isolated instance of acute stress, such as a 

temperature extreme, by acclimating to a series of similar but less intense stressors for a 

period of time beforehand (Helmuth and Hofmann 2001). There exists a significant and 

strong correlation between tolerance to temperature extremes and tidal height, indicating 

that those species which are more frequently or regularly exposed to elevated 

temperatures may stand a better likelihood of surviving sudden temperature extremes 

(Somero 2002). Physiological adaptations of intertidal organisms and their tolerance 

limits, in conjunction with the various physical factors themselves, are critical in 

determining the vertical zonation and distribution of organisms throughout the intertidal 

zone. Some intertidal organisms have been shown to have altered plasma membranes as 

a result of acclimatization to temperature fluxes, and a few are even capable of regulating 

changes in response to tidal and temperature cycles (Somero 2002).

Lower limits for species habitat zones seem to be influenced more by biological factors,

11
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such as predation and competition, than direct physical factors. In competition studies, 

the barnacle Semibalanus balanoides consistently out-competed the barnacle Chthamalus 

stellatus by both higher growth rates and direct mortality by smothering or crushing the 

second species (Connell 1972). Thus, although C. stellatus could survive at a wide range 

of depths throughout the intertidal, it was restricted to high shore levels by interaction 

with S. balanoides. Similarly, zonation bands throughout the intertidal can provide 

refuges for organisms who would otherwise be consumed by predators at higher or lower 

regions. Vertical zonation may also be subject to organismal age; population distribution 

of the barnacle S. balanoides in Scotland showed 3-year-old individuals at the uppermost 

portion of its range with younger individuals living lower in this zone, and studies in 

California revealed a similar age-correlated distribution for the limpet Acmaea scabra, 

most likely due to an increased susceptibility to desiccation in younger individuals, a 

condition that may as well be correlated to organism size (Connell 1972). These 

biological limitations on species distribution and vertical zonation become increasingly 

more effective as environments become physically less demanding and less harsh. 

Horizontal distribution is largely a function of exposure, wave activity, and availability 

and angle of shelter.

Although this typifies the general habitat to be found in community structure on the coast 

of the GOM, the rocky intertidal frequently displays fine-scale variation as a result of the 

variability of exposure to physical and biological factors that is the result of the fractured 

surfaces and orientation presented by a rocky granite shore. Rather than presenting a 

coherent single surface, the rocky intertidal displays minute pockets of wide

12
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heterogeneity as the result of degree of substrate vertical position, positioning in relation 

to solar radiation, tide pools, and seclusion from wave activity. Range limits can be 

expanded through north-facing rock slopes, crevices, or wave spray. Experiments by 

Menge (1976) at Pemaquid Point, Maine, demonstrated that mean mussel cover at a site 

within 15 cm of a crevice was over 10% greater than a replicate at a site with no crevice 

refuges within a meter. Larger organisms may provide shelter for organisms beneath 

them; the vertical range of many intertidal sessile organisms is extended by the presence 

of heavy overhanging carpets of canopy algae such as Ascophyllum nodosum and Fucus 

vesiculosus, thus showing that frequently the range and distribution of some organisms is 

closely tied to the corresponding characteristics of another. The mussel Mytilus edulis is 

another such organism whose presence alters the community structure; these mussels trap 

detritus, reduce water flow, and create refuges for cryptic organisms (Connell 1972). 

Both intraspecfic competition and interspecific competition produce small-scale variation 

in organism distribution and cover, as can predation, however, Menge (1976) has found 

that predation and interspecific competition has a only low and unpredictable affect on 

the high intertidal community structure in the GOM.

The GOM, with its consistent granitic substrate throughout the region, and low species 

diversity, exhibits a simple trophic system which makes it an excellent choice for 

studying mechanisms driving the organization of intertidal community structure. The 

general structure of the GOM rocky intertidal, as reported by Menge (1976), is dominated 

by barnacles in the high intertidal, and a mid-intertidal zone inhabited mostly by mussels 

and some barnacles. The degree of unused space throughout the intertidal appears to be a
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function of wave activity and disturbance, with exposed mid-intertidal areas showing 

significantly more coverage by mussels and barnacles in comparison to areas subjected to 

less disturbance; this indicates that in the areas of less disturbance, biological factors such 

as predation and competition are exerting a greater pressure on organism survival, 

structure, and distribution (Menge 1976). Fucoid algae in the high intertidal are scarce at 

exposed shores, but can grow at this zone when protected from wave disturbance; they 

are dominate the mid-intertidal in general, but tend to be reduced in exposed areas and 

still non-existent in areas of the mid-intertidal that are severely exposed (Menge 1976). 

In the high and mid-intertidal, the dominant grazer is the common periwinkle, Littorina 

spp. and the dominant predator is the gastropod Thais lapillus, which primarily consumes 

barnacles, namely Semibalanus balanoides (Menge 1976). In the mid-tidal, interspecific 

competition between mussels and barnacles governs much of the distribution of both 

species throughout this zone, with mussels generally outcompeting and replacing 

barnacles in horizontal or inclined substrata; on vertical surfaces, however, barnacles 

routinely out-compete mussels for space (Menge 1976). This ability of barnacles to 

generally outcompete mussels on vertical substrata may be a function not only of a 

general deficiency of mussels to be effective competitors on a vertical surface, either as a 

result of inefficient settlement, feeding, or the necessity of devoting more energy to 

support by byssal thread attachment, but also a product of the nearly total lack of 

predation on organisms on vertical surfaces at exposed areas (Menge 1976). Predation 

occurring on vertical as well as horizontal surfaces is, however, far more significant in 

protected areas, and has some impact on percent of available space and thus the 

interspecific competition for this space in the mid-intertidal. This predation effect,
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however, is a fairly low influence, and Menge (1976) still identifies competition over 

predation as the primary biological factor driving intertidal community structure in the 

GOM.

Many studies of community ecology of the rocky intertidal habitat have been performed 

on the western coast of North America or in Europe, leaving the east coast and the GOM 

largely understudied, although there are significant differences between the 

environments. One such change, aside from the actual physical and structural 

differences, is the more complicated food web and broader trophic level system. On the 

Pacific coast of North America, the presence and density of limpets such as Acmaea spp 

and Patella spp, which are significant predators on barnacles, is vastly elevated over the 

coast of New England. Whereas the abundance of limpets on the west coast can be as 

high as over 300 individuals per m2, throughout the majority of the GOM, frequently less 

than 10 limpets per m2 are typically found; according to Menge (1976) the highest 

density of limpets in the GOM was at Grindstone Neck, located in Maine roughly 40 km 

east of Penobscot Bay. The fucoid canopy also has a tendency to be thicker in New 

England in comparison to those found on the west coast of North America which, 

although it protects both Mytilus and Balanus from desiccation, it seems to also inhibit 

juvenile settlement on the rock substrate as well as increase the effect of predation by 

Thais by increasing the foraging period for that gastropod (Menge 1976). These two 

conclusions are entirely contrary to results found in similar studies in the northeastern 

Pacific coast (Dayton 1971).
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General models of community ecological structure and organization set forth a number of 

major predictions (Connell 1975, Menge and Sutherland 1976). First, these models 

predict that in environments which are generally sheltered, predation is the primary force 

which forms community structure. Second, that as living conditions in a given habitat 

become increasingly more harsh, the effectiveness of predators, and their importance in 

community structure and organization, diminishes. With the decrease in the importance 

of predation, interspecific competition becomes the more critical biological factor 

influencing community structure. Finally, small-scale spatial heterogeneity of 

community structure is the product of isolated instances of escape from predation and 

disturbance. Older models, such as the Hairston, Smith and Slobodkin model, focused on 

trophic relationships and population regulators, tended to assume a terrestrial, trilevel 

trophic system of primary producers, herbivores, and carnivores, and failed to take into 

account spatial distribution, organization, and diversity (Menge and Sutherland 1987). 

Connell (1972) criticizes older models of community structure as being based primarily 

in hypotheticals and indirect evidence, and, as such, may be based on a number of 

incorrect assumptions, such as the importance of the idea of the ecological niche and its 

effects on competition. This would result in competition between similar species where 

their ranges overlap; Connell is, however, dubious concerning the importance of 

competition determining species abundance and distribution, with the exception of “a few 

examples, some taken from the rocky intertidal” (1972). Two new models emerged, 

suggesting two different methods of environmental influence on trophic structure. In the 

first, it was suggested that the physical environment affects primary productivity, while 

the second argued that primary productivity levels remained largely constant, and that the
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environment had a more significant impact on higher trophic levels, resulting in a simple, 

curtailed trophic system; trophic system interactions should decrease in complexity with 

increasing environmental stress (Menge and Sutherland 1976; Menge and Sutherland 

1987).

Menge and Sutherland (1976) argue that in systems with fewer trophic levels, as is 

typified by the GOM, the importance of competition is more important than predation, as 

there are fewer trophic levels. Competitively inferior species may be given an refuge by 

the results of combined predation and the environmental extremes found in the GOM 

rocky intertidal -  so much so that there have been assertions that the GOM rocky 

intertidal system is more directly under the control of physical factors than biological 

factors (Sanders 1968, Menge and Sutherland 1987). While Menge (1976) maintains the 

importance of biological factors over physical, it still remains that the physical stressors 

of the rocky intertidal environment in the GOM is a critical part of determining species 

diversity and abundance. The ultimate conclusion of Menge (1976) in regards to 

community structure patterns is that predation is of primary importance, except on 

exposed headlands, where interspecific competition is the foremost factor; biological and 

physical disturbance are considered important secondary mechanisms. Paine and Levin’s 

(1981) model applied to the northern Pacific coast of the United States places a fair 

amount of importance on physical disturbance and assumes a general consistency of other 

factors over the northern Pacific rocky intertidal. Consideration of this assumption in the 

context o f Menge’s (1976) findings intimates that Pacific coast models are inappropriate 

to apply to the GOM, not only because of the added competition and trophic complexity,
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but also as a function of the inherent supposition of the model itself. The GOM displays 

a range of environmental stress gradients, including exposure to wave action, wind, 

desiccation, and temperature. As a result, the GOM is somewhat unique in the apparent 

importance of both competition as well as predation in determining and governing its 

community structure. Community structure determination in the GOM is surprisingly 

complex for a system that is, on the surface, seemingly quite simple and straightforward.

The concepts of top-down and bottom-up processes, their interrelationship, and how 

these affect rocky intertidal community structure have received increasing attention over 

the past 15 years. Bottom-up ecological models focus on models of nutrient supply and 

larval recruitment, both of which are largely a function of circulation patterns, 

particularly upwelling. Upwelling is responsible not only for delivering cold, nutrient- 

rich water to the surface layers for use by primary producers, but is also a major factor in 

larval transport, thus playing a key role in determining locations for settlement and the 

distribution and abundance of adult organisms. The presence of an abundance of or 

diverse population of herbivores indicates bottom-up control (Menge 1992). Top-down 

processes encompass the historical focus of how trophic interactions, such as predation 

and competition, determine abundance, distribution, and diversity of populations. 

Keystone predators controlling populations of sessile organisms, such as limpets feeding 

on barnacles or sea stars on mussels on the Pacific Coast, demonstrates top-down control 

(Menge 1976, Menge 1992). Communities which might otherwise be virtually identical 

in structure may vary greatly as a result of near-shore oceanographic processes. This was 

shown to be true in a study conducted on the Oregon coast; at one study site, there was a
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high abundance of macrophytes and a low abundance of invertebrates, filter feeders, and 

predators, whereas at a site 83 km southward, there were few macrophytic algal species 

and a high abundance of barnacles, mussels, limpets, chitons, sea stars, and whelks 

(Menge et al. 1997). With respect to top-down controls, the southern site was found to 

have higher predation by sea stars and higher grazing by limpets and chitons than the 

northern site; mussel recruitment and growth of invertebrate prey, both bottom-up effects, 

were both found to be greater at the southern site as well. Although there was a higher 

flow rate at the northern site, the southern site showed a higher concentration of 

phytoplankton, an important food source of the invertebrate filter feeders found in higher 

abundance at that location. This generated larger and healthier larval recruits better 

suited for survival, in turn generating more prey for the southern site predators (Menge et 

al. 1997). The higher levels of chlorophyll a and phytoplankton at the southern site were 

correlated with a band of nutrient-rich, cold-water upwelling.

More recently, focus on community ecology of the rocky intertidal has shifted from 

biological factors or environmental factors to the concept of benthic-pelagic coupling, a 

more holistic method which incorporates climate, physical oceanography, cycling, 

seasonality, coastal topography, environmental stress, species composition, diversity, and 

distribution, trophic interactions, and larval settlement and recruitment altogether (Schiel 

2004). This novel approach is an attempt to construct a more encompassing view of how 

multiple biological, physical, and climatological factors function as a whole. The 

tendency of many community ecologists to fail to incorporate literature concerning wave- 

induced erosion and similar geophysical environmental influences in their predictions is
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sited by Thompson et al. (2002) as a distinct problem in intertidal community ecology. It 

is only within recent years that attention has been given to these effects and, furthermore, 

placed within a context that includes long-term or historical observations; a recent study 

monitoring beds of M. californianus on the wave-exposed Pacific Coast found marked 

declines in biomass and cover in respect to the past thirty years (Smith et al. 2006). With 

global climate predictions forecasting a warming trend and oceanic surface rise, 

understanding the climate and physical oceanography of coastal regions is critical to 

comprehend community dynamics. Currently, there is increasing focus on 

interrelationships between populations, important particularly in light of the necessity of 

establishing quota limits and stock reserves on commercially valuable or ecologically 

critical species, but equally vital for understanding community succession following 

disturbance, gene flow, and predicting systemic shifts caused by the introduction of an 

invasive species (Schiel 2004).

Another recent development in intertidal community ecology study is a more 

philosophical one: the consideration that ecological models that may be applicable for 

one locale may be entirely unfit for use in other regions, even when the species 

composition, general spatial characteristics, and temporal cycles are similar. While there 

is an incentive to join observations from many regional studies in an attempt to construct 

a more global image of intertidal ecology as a whole, there is likewise the caveat that 

every study site is subject to inherent, local variation which is, perhaps more likely than 

not, entirely unique to those circumstances and conditions; models developed from the 

data at one given site may require careful scrutiny or revision before they can be used to
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predict or explain the relationships of another. This is particularly true in view of the fact 

that most models, even those reviewed recently, are based on a small subset of the full 

complement of organisms found in a rocky intertidal habitat. The recent consideration 

now being given to benthic-pelagic coupling has had a secondary effect of highlighting 

areas of marine ecological study that show significant gaps in scrutiny and understanding; 

for example, the complete life histories of the majority of intertidal organisms have not 

been fully described, and in some cases, information concerning larval stages, critical for 

understanding settlement and recruitment, is all but nonexistent. Research frequently 

focuses on perceived keystone species, leaving other organisms underrepresented in 

research. Schiel (2004), for example, points out that although the rocky intertidal 

displays over 1000 described species, those that are the most studied are nearly entirely 

barnacles, mussels, and plankton: as many as 17 barnacle and mussel species out of 20 

observed organisms in one study, while the importance of many macroalgal species goes 

understudied. Until these data have been more comprehensively established, ecological 

models, particularly in respect to predictions of commercially-valuable stocks, effects of 

pollution or coastal development, adjustments following the introduction of a foreign 

species, and comparisons between spatially separated populations will continue to be 

highly tentative.

Biology and Ecology o f  Mytilus edulis

The blue mussel, Mytilus edulis, a cold-temperate habitat generalist, is known to have 

worldwide distribution, along with the morphologically-similar species M. 

galloprovincialis and M. trossulus; along the coastline of the western Atlantic, studies
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have shown that M. edulis has a range extending from Cape Hatteras, NC, north well into 

Canada. It was assumed for many years that the range of M. trossulus, stretching from 

southeastern Nova Scotia north to eastern Newfoundland, did not extend into the GOM, 

however work by Hennigar et al (1996) used allozyme electrophoresis of the mannose 

phosphate isomerase (Mpi) locus to demonstrate the presence of M. trossulus into the 

GOM and Bay of Fundy. A continuation and expansion of this study using mtl6S-F, 

Glu-5’, and ITS markers indicated the presence of M. trossulus in significant abundance 

in the eastern GOM as far west as Little Machias Bay, Maine, and minorly present from 

Machiasport, Maine, to Penobscot Bay, and even in the Damariscotta River estuary 

(Rawson et al 2001). Rawson et al. (2001) also show some limited hybridization between 

the two species based on the three alleles studied. In contrast, in the Baltic Sea, where M. 

edulis and M. trossulus also co-exist, there appears to be much more extensive, enough to 

consider the two as semispecies (Vainola and Hvilsom 1991). Likewise, the European 

coastline from England to Spain demonstrates a similar story of extensive hybridization 

between M. edulis and M. galloprovincialis, and significant hybridization is known to 

occur between M. galloprovincialis and M. trossulus species on the coast of Southern 

California (Innes and Bates 1999, Kijewski et al 2006). Hybridization between 

worldwide-distributed Mytilus species seems to be fairly common, more so than the 

limited amount found in the GOM by Rawson et al. (2001). Morphologically, M. edulis 

tends to be larger than M. trossulus; Innes and Bates (1999) found that M. edulis had a 

significantly greater mean shell length than M. trossulus in 16 populations collected off 

the coast of eastern Newfoundland. However, based on analysis of eight morphometric 

characteristics, a fifth o f each species had been misclassified, indicating that
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identification of M. edulis and M. trossulus based on morphological characters is 

somewhat unreliable.

M ytilus is the dominant competitor on substrata of all angles throughout the mid- 

intertidal, and overshadow barnacles significantly from midsummer to early winter 

(Menge 1976). Since, as a sessile filter feeder, Mytilus is dependant on surrounding 

water conditions and ambient nutrient concentrations, environmental conditions and 

bottom-up affects play as critical a role in the population structure of Mytilus as trophic 

interactions do. Food availability, upwelling, and primary productivity are important 

factors affecting mussel growth rates; in studies off of California, M. edulis growth rates 

were positively correlated with concentrations of chlorophyll a during spring and summer 

months, and that growth rate was most likely a function of food quality over food 

quantity (Page and Ricard 1990). The same study found that, in terms of the Pacific coast 

of North America, water temperature is not a significant influence on Mytilus growth, 

however, this same conclusion has not been conclusively demonstrated to be valid for the 

GOM (Page and Ricard 1990). As a sessile organism, M. edulis may be more likely to 

face mortality from physical environmental stress, making refuges and adaptations in 

response to stress more critical (Menge and Sutherland 1987). Studies on mussels in the 

northern Pacific coast of the United States show that the lower limit of mussel ranges is 

very distinct and is determined by predation by the starfish Pisaster ochraceus, however, 

the GOM has no such predatory echinoderms on Mytilus species (Paine and Levin 1981). 

Likewise, the western coast has the presence of a second Mytilus species, M. 

californianus, creating another level of interspecific competition, an interaction that is not
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present in the GOM.

Like most members of the class Bivalvia, Mytilus is a filter feeder, using ciliated gills to 

retain particulate matter from the surrounding environment for nutrient accumulation. 

Suspension-feeding bivalves use laterofrontal cirri or cilia to produce currents that 

redirect particles laterally onto ctenidial filaments, greatly increasing efficiency of 

particle capture (Ward and Shumway 2004). Although there has been found to be 

significant variation from individual to individual, M. edulis is capable of filtering and 

retaining particles as small as 7-8 pm (Griffiths and Griffiths 1987). Some of this filtered 

material is rejected and expelled as pseudofeces; however, during conditions of low 

particle concentrations, bivalves will ingest all filtered material. With increasing particle 

density, an increasing amount of filtered material is ejected as pseudofeces, suggesting 

that bivalves have the capacity to ascertain the value of in-siphoned particles and reject 

inorganic matter in favor of particles with more nutritive value. Kiorboe et al. (1980) 

demonstrated this, using M. edulis to show its ability to select algal cells from a mixture 

of organic and inorganic particles, and further, that as concentration of inorganic 

particulate matter increased, so did the efficiency of particle selection. Filtration rate for 

M. edulis remains largely constant for particle sizes up to 600 pm, but to compensate for 

the increased mass of total amount taken in, it rapidly increases pseudofeces production 

(Foster-Smith 1975). While there is a general tendency for some bivalves to increase 

filtration with temperature until a maximum efficiency around 20°C, in M. edulis, as 

temperature increases from 5° to 15°C, the efficiency of absorption declines (Griffiths and 

Griffiths 1987). Obtaining maximum efficiency in siphoning, filtration, digestion, and
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absorption, while beneficial to any organism, takes on a higher importance in a sessile 

intertidal organism such as M. edulis, where tidal cycles force several hours of non­

feeding behavior. It appears that M. edulis may have turned this apparent limitation 

around, for laboratory studies have shown higher growth rates for individuals grown in a 

discontinuous particle supply in comparison to those permitted to feed constantly (Winter 

1976). Several studies highlight the ability of a number of bivalves to adjust capture 

efficiency in response to surrounding particle concentration, particularly in response to 

tidal cycles, but M. edulis, in both laboratory and field experiments, demonstrated 

constantly high capture efficiency regardless of ambient particle concentration (Ward and 

Shumway 2004). M. edulis also shows some degree of phenotypic plasticity; mussels 

respond to increasing turbidity by enlarging palps and producing small ctenidia, but it is 

uncertain as to whether this plays a role in observed seasonal changes in capture 

efficiency (Ward and Shumway 2004, Bayne et al. 1977).

Another limitation due to the periodic exposure caused by tidal cycles is the effect it has 

on respiration. While intertidal bivalves are capable of extracting oxygen directly from 

the air, M. edulis oxygen consumption in the open air drops to 4-17% of the rate when 

submerged (Widdows et al 1979). M. edulis, during periods of low oxygen, regulates 

respiration by increasing efficiency of oxygen extraction from water rather than by 

increasing water flow across the gills (Griffiths and Griffiths 1987). Many bivalves, as 

well, are facultative anaerobes, and are able to induce some tissues to function 

anaerobically even in aerobic conditions, a balance which may be regulated by sensing 

partial pressures (Griffiths and Griffiths 1987).
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Temperature plays a significant effect on intertidal organisms. In addition to the decline 

in nutrient absorption in elevated temperatures, temperature also has an impact on 

respiration, both in instances of acute extremes and over a seasonal cycle. Oxygen 

consumption increases consistently with temperature, but only to a certain point. At 

temperatures above 20°C, oxygen consumption for bivalves becomes largely constant, an 

adaptation which certainly helps bivalves limit energy expenditure during periods of high 

temperature and exposure, such as during low tide, particularly in the summer months 

(Griffiths and Griffiths 1987). The 20°C mark also designates a threshold above which 

growth drops dramatically and morality increases greatly, particularly under conditions of 

low food abundance, as frequently occurs in portions of the GOM during summer months 

(Incze et al. 1980). Long-term, or seasonal-scale, changes are more variable; some 

species do not acclimate, while others, including M. edulis, generally respond by shifting 

their metabolism gradually to maintain as close to a constant metabolism rate as possible. 

The ability of M. edulis to regulate both its respiration and its filtration rates means that, 

given the opportunity to acclimate following a temperature change, M. edulis will return 

to and continue to maintain these as constants. Absorption, however, does not fall under 

the regulatory capacity of M. edulis, and declines as temperature increases; over 20°C, 

individuals, even following acclimation, are unable to maintain a positive scope for 

growth (Widdows and Bayne 1971). There is, as well, recent evidence that suggests that 

M. edulis is not as capable of maintaining a constant filtration rate over a wide range of 

temperatures as was previously believed, but that M. edulis, like many other bivalves, 

declines in filtration rate as temperature decreases (Kittner and Riisgard 2005). Even
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after allowing time for acclimation, Kittner and Riisgard (2005) found that groups of 

bivalves maintained within certain temperature environments did not approach a common 

filtration rate for all groups, but maintained a constant filtration rate proportional to the 

environmental temperature. Regardless of the effects o f temperature on filtration, 

temperature does impact metabolic costs for intertidal organisms, linking higher 

temperatures with increased costs and a reduction in surplus energy that may be used for 

growth (Widdows and Bayne 1971, Widdows and Johnson 1988).

Salinity, as well, has an affect on growth; the low salinity of the Baltic Sea is responsible 

for the small size and slow growth of M. edulis found there (Griffiths and Griffiths 1987). 

Temperature and food intake are considered the two major factors in determining growth 

rate, but an organism’s growth rate is also a function of exposure and submergence times, 

as well, which influence filtration and respiration. Organisms located higher in the 

intertidal have less time in which to feed. The warm temperatures and the ready 

availability of surface nutrients that occurs in the spring have a strong affect on growth 

rates: Shell growth is at a maximum during spring and summer, and next to no growth 

occurs during winter months.

Aside from both climatological and environmental influences on M. edulis growth, 

genetics plays a role as well, and may cause local variations for populations. After sexual 

maturity, which appears to be the result o f individual size rather than age, organisms 

devote increasingly more energy to reproduction, and somatic growth declines sharply, 

approaching zero (Griffiths and Griffiths 1987). On top of both the genetic factors and
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natural environmental conditions affecting growth potential in intertidal organisms, 

human activity plays a significant impact; there is a clear relationship between increasing 

environmental concentrations of copper, diesel oil, and contaminant hydrocarbons and 

decreasing scope for growth (Widdows and Johnson 1988). Consideration of human 

impact and pollution on the intertidal community of the GOM takes on heightened 

importance when viewed in conjunction with the large coastal human populations around 

the eastern Gulf as well as the issue that chronic exposure to pollution, as opposed to an 

acute event such as an oil spill, largely influences embayed coastlines (Thompson et al 

2002).

The critical position and abundance of Mytilus edulis in the simplified trophic structure of 

the GOM and its nature as an organism easily subject to both bottom-up affects as well as 

top-down controls makes it an ideal study subject for ecological studies. The circulation 

dynamics of the GOM composed of two gyres largely divided by the Penobscot River 

outflow, provides two rocky intertidal habitats which, although largely similar in physical 

structure, environment, and community populations, show marked differences as well. 

Focus on the physiological performance of individual organisms can be indicative of the 

characteristics of populations as a whole, which can then be compared spatially and 

temporally in order to investigate physiological, ecological, and oceanographic trends 

along a coastline. This work described here investigates differences in M. edulis 

populations in the GOM intertidal both east and west of the Penobscot River, and 

examines the apparent affects of benthic-pelagic coupling both spatially and temporally, 

and attempts to describe any observed differences within the context of the nutrient-
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productivity model. As a unique ecosystem, the GOM may exhibit marked differences to 

those community ecology models, such as the nutrient-productivity model, which have 

been built based on data from the Pacific Coast, New Zealand, and Europe.

As populations within a primarily contained and open ecosystem, we expect to find that:

H0: There will be no differences in the molecular genetics of M. edulis across populations 

in the GOM, both spatially and temporally.

H0: There will be no phenotypic variation in M. edulis in respect to metabolic state or 

trophic status as determined by RNA/DNA ratios and stable isotopes, or in respect to 

growth based on condition indices.

H0: Phenotypic variation in populations of M. edulis, if  observed, is the result of 

phenotypic plasticity and environmental impacts.
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CHAPTER II

MATERIALS AND METHODS

Specimen Collection

Specimens of M. edulis were collected haphazardly at two spatially distant sites in the 

Gulf of Maine on two dates, once during the late winter and once during the late spring. 

Samples of M. edulis for 2006 were collected haphazardly at four distinct sites (Figure 2) 

on the Gulf of Maine coast in mid-May 2006. Approximately 35 -  50 samples of varying 

size were taken from the lower rocky intertidal at each location, as summarized in Table 

1. Samples were identified based on morphological characteristics and were frozen at 

-80°C for future analysis.

Collection site Latitude/Longitude Collection date Nci NP
Black Duck Cove, 
Great Wass Island, ME

44° 28’ 45” N 
67°36’ 01” W 02 March 2004 50 5

Fort McClary, 
Kittery, ME

43° 04’ 59” N 
70° 42’ 34” W 04 March 2004 54 6

Black Duck Cove, 
Great Wass Island, ME

44°28’ 45” N 
67°36’ 01” W 05 May 2004 46 6

Fort McClary, 
Kittery, ME

43° 04’ 59” N 
70° 42’ 34” W 05 May 2004 49 11

Black Duck Cove, 
Great Wass Island, ME

44° 28’ 45” N 
67°36’ 01” W 12 May 2006 36 26

Clark Point,
Prospect Harbor, ME

44°23’ 49” N 
68° 01’ 11” W 12 May 2006 46 13

Pem aquid Point,
Bristol, ME

43° 4 9 ’ 53” N  
69° 30’ 56” W 14 May 2006 52 15

Fort McClary, 
Kittery, ME

43° 04’ 59” N 
70° 42’ 34” W 16 May 2006 52 16

Table 1. List o f mussel collections by location and date. Nci indicates the number of 
individual specimens used in condition indices calculation and analysis. Np indicates the 
number of individuals sequenced and used in population genetic analysis.
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Figure 2. Collection sites on the Gulf of Maine coast. Sampling locations 
are designated as 1: Black Duck Cove, 2: Clark Point, 3: Pemaquid Point, 
and 4: Fort McClary as described by latitude and longitude in Table 1. 
Other abbreviations are as Figure 1. Figure redrawn with permission from 
Johnson et al.

Frozen samples were measured for length, width and height, followed by measuring the 

wet weight of collected somatic and gonadal tissue and the weight of the shell separately 

to the nearest 0.1 g. Specimens were also sexed based on presence and development of 

gonadal tissue. Adductor muscle tissue was excised and stored at -80°C for future 

genetic, stable isotope, and DNA/RNA ratio analysis.
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Condition Indices

Condition indices (Cl) were calculated based on wet weight of combined somatic and 

gonadal tissue (W) expressed as a percentage of the shell weight (S) as by the formula Cl 

= W* 100/S (Crosby and Gale 1990). Locations with greater Cl indicate that more energy 

is being channeled into somatic/gonadal growth versus shell growth.

Stable Isotopes

The stable carbon (13C) and nitrogen (15N) isotope compositions of the total organic 

carbon and nitrogen in sample tissue for three randomly-selected individuals from each of 

the 2006 collection sites were determined using a Europa ANCA-SL elemental analyzer - 

gas chromatograph preparation system attached to a continuous-flow Europa 20-20 gas 

source isotope ratio mass spectrometer. Dried and pulverized M. edulis adductor muscle 

tissue samples were packed into tin capsules and weighed to +/- 0.01 mg. Aliquots 

contained 10 -  200 pmoles C and 5-10 pmoles N.

Samples and standards were loaded into the autosampler on the ANCA-SL elemental 

analyzer combustion system. During the run, the samples were sequentially dropped into 

a quartz combustion tube held to a temperature of 1000°C. The samples were then flash 

combusted at about 1800°C in the presence of the tin, oxygen gas, C^CL and CuO. The 

combustion products, principally CO2, N2 and NOx, and H2O, were transported by a 

helium carrier gas through a reduction tube, filled with Cu metal and held at 600°C, 

where any NOx was converted back to N2. The gases were then passed through an MgCL 

trap to remove H2O.
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Following separation by gas chromatography, the N2 and CO2, in this order, were passed 

into the mass spectrometer to the collectors where the masses of interest (28 and 29 for 

N2, 44, 45, and 46 for CO2) were continuously monitored. The mass peaks were plotted, 

the area under each mass peak then determined, and the isotope ratios calculated. These 

ratios were referenced to ratios determined on in-house (Marine Biological Laboratory, 

Woods Hole, MA) reference materials analyzed in the same analytical run.

The data were corrected for blank contributions, drift over the course of the run, linearity 

effects if present, and then normalized to the international standards. Stable isotope 

ratios were reported in the Delta (6) notation. Delta values are the difference in per mil 

(%o) between the sample isotope ratio and that of an international standard of known 

isotope composition. Positive 6 values are enriched in the rarer, heavy isotope relative to 

the international standard, whereas negative 5 values are depleted in the heavy isotope 

relative to the international standard. The carbon isotope results are reported relative to 

the international PDB standard. The nitrogen isotope results are reported relative to the 

international AIR standard. Analytical precisions on well-homogenized samples are 

usually better than +/- 0.2 %o for 613C and 815N.

RNA/DNA Ratios

Sub-sam ples o f  adductor m uscle tissue from six random ly-selected individuals were 

thawed on ice, weighed, and homogenized in 1.0% Sarcosil Tris-EDTA buffer at room 

temperature and nucleic acids were extracted using Tris-EDTA buffer. Samples were
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serially diluted and 75.0 (j.1 if supernatant were used for analysis in a Millipore Cytofluor 

2300 fluorometer using 96 well microplates. Concentrations of nucleic acids were 

determined by ethidium bromide (EB) fluoresecence with an EB concentration of 2.0 pg 

ml'1 (Dahlhoff et al. 2001). Fluorescence was recorded at 510 nm excitation and 595 nm 

emission, which was repeated following the addition of 7.5 pi RNAse. The concentration 

of DNA and RNA in mussel tissues were calculated based on a standard curve of known 

quantities of DNA and RNA.

Statistical Analysis

An analysis of variance (ANOVA) with location as a fixed factor was applied to all 

measured parameters as described above at a significance level of 5%. No unequal 

variances were detected using the Fmax test, and individual treatment differences were 

assessed using the Student-Newman-Keuls (SNK) multiple comparison test. Ratios and 

percentages were arcsine or log transformed for analysis and back transformed for 

presentation.

Remote Sensing

LI A SeaWiFS data from the 5.1 reprocessing collection was obtained from the NASA

Ocean Biology Processing Group (Feldman and Mcclain 2006) and processed to L2 data

with SEADAS (version 5.0.2) using standard atmospheric correction and chlorophyll a

algorithms (OC4v4, O'Reilly et al. 2000). The chlorophyll a data were then remapped

onto a common Lambertian conic projection centered at 40°N and 70°W with a mean 

# 2
pixel size of L25 km with SEADAS. Eight-day composites were generated as the
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arithmetic mean of daily data with pixels screened based on a select set of L2 flags 

including cloud and land masks. Visual checking of images was also used to remove 

images that contained spurious data. Chlorophyll concentrations less than 0.032 mg m‘ 

and greater than 50.0 mg m'3 were masked. Eight-day climatological averages were 

calculated as the arithmetic mean from the 9 years of 8-day composites.

Changes in climatological and yearly data at each of the four locations were investigated 

with data from an 11 by 11 box surrounding the central pixel (Table 1). Arithmetic 

means of pixels, which were 1.5 km x 1.5 km, with data within these windows were 

calculated for both sea-surface temperature and chlorophyll a concentration.

DNA Extraction, Amplification and Sequencing

Adductor muscle tissue DNA was extracted using CTAB/chloroform technique (France 

et al. 1996) and a 700+-bp region of the mitochondrial DNA gene cytochrome oxidase I 

was amplified using the universal invertebrate primers LCO1490 and HC02198 (Folmer 

et al. 1994).

LCO1490: 5 ’ -ggtcaacaaatcataaagatattgg-3 ’

H C02198: 5 ’ -taaacttcagggtgaccaaaaaatca-3 ’

As per Folmer’s designations, the L refers to the light DNA strand and H refers to the 

heavy DNA strand; CO designates the cytochrome oxidase gene, and the numbers 

describe the 5’ position on the Drosophila yakuba genome. Primers (Invitrogen, Inc.)

35

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



were produced by Invitrogen and used at 10.0 pM concentration and reaction volumes 

were 30.0 pi. Polymerase chain reactions (PCR) used AmpliTaq polymerase from 

Applied Biosystems with the manufacturer’s 10X PCR buffer containing 15.0 mM 

MgCb, and 10.0 pM dNTPs (Promega, Inc). All samples were sequenced in both 

directions using the PCR primers and were performed by DNA Sequencing Core, 

University of Michigan (Ann Arbor, MI). Sequences were edited using FinchTV 1.4.0 

(Geospiza Inc., www.geospiza.com/finchtv), 4Peaks 1.7.2, and LaserGene, and were 

trimmed to a 659-bp contig to remove ambiguous end regions and establish a consistent 

length for all sequences. Successful sequence results were compared to published 

sequence data using the BLAST function of the National Center for Biotechnology 

Information (NCBI, http://www.ncbi.nlm.nih.gOv/blast/L Those individuals that were 

determined to be M. trossulus were removed from all analyses.

Population Genetic Analysis

Sequences were aligned using the European Bioinformatics Institute ClustalW 

('http://www.ebi.ac.uk/clustalw/L Sequences for unique haplotypes were imported into 

Phylogenetic Analysis Using Parsimony 4.Ob 10 (PAUP) for phylogenetic analysis and 

analyzed by two methods, maximum parsimony and maximum likelihood as described by 

Wares and Cunningham (2001, Castelloe and Templeton 1994). Maximum parsimony 

analysis was performed via a heuristic search with stepwise random addition and tree- 

bisection reconnection branch swapping with 1000 replicates, and bootstrapped (50 

replicates) as per Curole and Kocher (2005). The Tamura-Nei model was used to 

estimate maximum likelihood with gamma correction (a  = 0.3, proportion of invariable
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sites = 0), without the assumption of a molecular clock, and bootstrapped at 10 replicates 

(Curole and Kocher 2005). Trees were rooted using a representative of M. trossulus as 

an outgroup, which was collected from Black Duck Cove, Maine, in 2004, and extracted, 

amplified, and sequenced as above.

Due to the volume of data, the multiple sampling-year tree was created by maximum 

parsimony via close neighbor interchange branch swapping and random addition of trees 

(10 replicates) at a search level of 2 using Molecular Evolutionary Genetics Analysis v. 

3.1 (MEGA) and bootstrapped at 100 replicates. Analysis in this instance was restricted 

to mutations in the third codon position, which assumes that these mutations are neutral 

and avoids the necessity of estimating among site variation via gamma correction (Wares 

and Cunningham 2001).
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CHAPTER III

RESULTS

2004 Sampling Data

Analysis of the winter sampling for Black Duck Cove (BDC) and Fort McClary (FMC) 

showed that Mytilus edulis at both locations had similar size ranges at both locations, 

with shell lengths between 15.0 mm and 65.0 mm (Fig. 3a). Only one individual at BDC 

fell outside this range, into the 70.0-75.0 mm size class, and the distribution for both sites 

is bimodal. At BDC, there are two clusters of mussels, one falling in the 20.0-40.0 mm 

range, and the other between 40.0 mm and 65.0 mm; at FMC, the distribution is similar, 

although within a smaller size range, with the first group at 15.0-35.0 mm and the second 

at 35.0-65.0 mm. In contrast, the spring sampling collection (Fig. 3b) revealed a very 

broad distribution of sizes at BDC, with samples in every size class from 10.0 mm to 80.0 

mm that produced a narrow unimodal distribution at FMC, with all samples falling 

between 15.0 mm and 50.0 mm. At FMC during the spring, over 85% of collected 

individuals had shell lengths between 20.0 and 40.0 mm. The size class in which the 

most individuals were collected at each site was also much higher at BDC (35.0-40.0 

mm) than at FMC (20.0-25.0) during the spring collection.

For the winter sampling date, M. edulis collected at BDC had a mean shell length of 43.2
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Figure 3. Mytilus edulis samples by size class for 2004. A. Samples 
collected during the winter collection dates. B. Samples collected on the 
spring collection date. Size classes are based on shell length in mm.
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mm, significantly greater than the mean shell length of 34.8 mm found in the FMC 

samples, and the mean Cl for BDC, at 33.4, was also higher than the mean Cl for FMC, 

at 28.0 (Fig. 4). There was a significant effect of location on shell lengths in both winter 

(ANOVA: P=0.0003) as well as spring (ANOVA: P=0.0007). However, in the spring, 

although the BDC samples had a larger mean shell length of 37.0 mm than the FMC 

spring mean shell length at 28.2 mm, the FMC samples had a much higher Cl, 50.6, than 

the samples from BDC, 35.8, which together suggest that more energy is going into tissue 

versus shell growth in FMC mussels. These population differences in Cl were also 

significant for both seasons (winter sampling ANOVA: P=0.0017, spring sampling 

ANOVA: P= <0.0001).

Analysis of stable isotope data (Fig. 5) showed a significant difference (ANOVA: P= 

<0.0001) in 613C between the two sites BDC and FMC over the collection dates. The 

mean S,3C for BDC in winter (-17.00%o) differed from the mean spring level (-16.73%o) 

by less than 0.3%o; mean 813C for FMC exhibited a seasonal difference of a comparable 

minor amount (winter mean=-18.40%o, spring mean=-18.73%o). Seasonal differences in 

513C were not significant (ANOVA: P=0.871), while differences between populations for 

each collection date were significantly different (ANOVA: P=<0.0001).

A significant (ANOVA: P=0.0488) difference in 8I5N between sites was also observed. 

Looking at each site based on season, the mean 815N for BDC in spring (mean 8 I5N 

=7.40%o) was 1.0%o higher than in winter (mean 815N=8.40%o), and the mean 8 15N for
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and spring, 2004, sampling at BDC and FMC.
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FMC in winter (mean 815N=7.43%o) was 0.3%o higher than in spring (mean 

8 15N=7.13% o). Differences between mussel populations based on location in winter and 

in spring were found to be significant (ANOVA: P=0.005), however, as with carbon, 

differences between season were not significant (ANOVA: P>0.05).

Samples from BDC had a mean RNA/DNA ratio of 2.66, and FMC samples had a mean 

RNA/DNA ratio of 1.83 in the winter. These population differences were found to be 

significant (ANOVA: P=0.038). Analysis of the spring samples showed RNA/DNA 

ratios for BDC of 2.32 and for FMC of 2.24, which were not significantly different from 

each other (ANOVA: P=0.748).

iO e -¥ !i® sr FMG-IMrttef B O M p i ig

Location

Figure 6. Mean (± SE) RNA/DNA ratio values for 2004 based on location 
and season.
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SeaWiFS satellite remote sensing of chlorophyll a (Fig. 7) shows a large increase in 

chlorophyll a between the winter and spring sampling periods at FMC, reaching levels 

between sampling times as high as 16.0 mg m"3 in early May, fourfold higher than levels 

observed during the winter. At the times of the two sampling dates, levels of chlorophyll 

a in the water column were nearly the same at FMC, approximately 4.0 mg m'3 in spite of 

the large rise in chlorophyll a that occurred in the interim. In contrast, there is no similar 

increase in chlorophyll a observed for BDC; chlorophyll a levels remain relatively 

constant at roughly 3.0 mg m'3 both at the time of both the winter and spring sampling 

and during the interim period.

Sea surface temperature measured by SeaWiFS was higher at FMC than at BMC for both 

winter and spring sampling dates (Fig. 8). During winter sampling, difference in sea 

surface temperature between the two sites was minor, with BDC at approximately 1.5°C 

and FMC approximately a degree warmer, at 2.5°C. During spring sampling, in contrast, 

sea surface temperature at BDC had warmed to about 5.0°C while FMC was over 3 

degrees warmer, at nearly 9.0°C. The temperature profile presented for 2004 is typical of 

recent annual patterns of sea surface temperature, as will be shown at the end of this 

section.
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Figure 7. SeaWiFS data for chlorophyll a for 2004. W indicates the dates 
of winter sampling (02 and 04 March) and S indicates the date of spring 
sampling (05 May).
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Figure 8. SeaWiFS data for sea surface temperature for 2004. W and S 
designations are as for Fig. 7.
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Population genetic analysis of COI via maximum parsimony methods for 2004 samples 

produced a tree with two significant haplotypes, one represented by only a single 

individual, and the other represented by a number of less-resolved haplotypes, many of 

which differ from each other by less than 5 base pair changes out of the 659 base pairs 

used in the analysis (Fig. 9). Although there are minor clusters of regionally unique 

haplotypes within this larger branch (e.g. Group E as exclusive to FMC; Group B and 

immediate neighbors as exclusive to BDC), these differences are minute enough to be 

insignificant; the entire major haplotype differs by less than 2%. The second haplotype, 

represented by a single individual from BDC, is very different from the other M. edulis, 

showing a deeper division between the two M. edulis clades than is observed even 

between the major clade and the M. trossulus included as an outgroup.

Maximum likelihood analysis methods produced a tree in which major divisions between 

haplotypes were conserved (Fig. 10). Most minor groups were also maintained; some 

reshuffling of branches was exhibited among individuals in which sequence difference 

was less than 2%. Such minor differences between the phylogenetic trees as well as the 

lack of distinct genetic groupings based on location indicate that the populations of M. 

edulis in the GOM are genetically homogenous.
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Figure 9. Maximum parsimony tree for Mytilus edulis collected in winter 
and spring of 2004. Numbers on branches indicate bootstrap values. 
Individuals within a group have identical haplotypes; individuals within 
each group are listed at right.
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2006 Sampling Data

Unlike 2004 where mussels were sampled during the winter and spring at the extremes of 

their distribution in the GOM, in 2006 mussels were collected only during the spring, and 

two additional populations, Pemaquid Point, Bristol (PPB) and Clark Point, Prospect 

Harbor (CPH) were added to examine finer scale latitudinal differences. The size 

frequency distribution data for Mytilus edulis for the four populations surveyed in spring 

2006 are presented in Fig. 11. Mussels collected from BDC grouped together in a 

narrow, unimodal size distribution with all collected individuals having shell lengths 

between 30.0 and 55.0 mm. Mussels collected from CPH were also unimodal in size 

distribution and were mostly 40.0-70.0 mm in length, with one outlying sample in the 

15.0-20.0 mm range. PPB samples showed a size distribution ranging from 15.0 mm to

50.0 mm, however, nearly 85% of the samples collected from this location are within 

three size categories between 30.0 mm and 45.0 mm. Samples from FMC were all within 

the range of 35.0 mm and 65.0 mm and were distributed, as the other sample sites, in a 

unimodal fashion.

There was a significant effect (ANOVA: P0.0001) of location on shell size with mean 

lengths of the mussels from the sampling collection, measured as 40.2 mm for BDC, 51.8 

mm for CPH, 37.6 mm for PPB, and 46.0 mm for FMC (Fig. 12). Post-hoc multiple 

comparison testing revealed that all populations were significantly different (SNK: 

P<0.05) from each other.

The Cl for these samples were 38.2 for BDC, 45.8 for CPH, 44.7 for PPB, and 32.5 for
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FMC. There was a significant effect of location (ANOVA: PO.OOOl) with BDC and 

FMC significantly different (SNK: P<0.05) from each other and both significantly 

different (SNK: P<0.05) than CPH and PPB. CPH and PPB were not different from each 

other (SNK: P>0.05).
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Figure 11. Mytilus edulis samples by size class for 2006. Size classes are 
based on shell length in mm.

Mean stable isotope results for 2006 are summarized in Figure 13; the mean S13C for 

BDC was -16.63%o, for CPH = -17.10%o, for PPB = -17.43%o and for FMC = -16.53%o.
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Figure 12. Mean (± SE) shell lengths, A, and mean condition indices, B, 
for 2006 collection sites.

51

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



A.

-s

m
5b

-to

-13

m e

Location

B.

CPU PPB

Location
fMC

Figure 13. Mean (± SE) 6 C, A, and mean 6 N, B, for 2006 by collection 
site.
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Differences in 513C were not significant with respect to location (ANOVA: P=0.325), 

however, location did produce significant differences in 8 15N analysis (ANOVA: 

P=0.042). The mean 815N for BDC was for BDC = 8.33%o, for CPH = 9.80 %o, for PPB 

= 9.43%o, and for FMC = 9.70%o. Multiple comparison testing revealed significant 

differences between BDC and all other populations (SNK: P<0.05) that are not 

significantly (SNK: P>0.05) different from each other.

Mean RNA/DNA ratios for 2006 sampling were as follows: BDC = 2.137, CPH = 2.318, 

PPB = 2.18, and FMC = 2.33 (Fig. 14); differences were found to be significant with 

respect to location (ANOVA: P=0.0034). BDC differed from CPH and FMC 

significantly (SNK: P<0.05), and PPB differed from both CPH and FMC significantly as
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¥
2E 1

0.5

FMC

Location

Figure 14. Mean (± SE) RNA/DNA ratio values for 2006 based on location.
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well (SNK: P<0.05), however there was no significant difference between BDC and PPB 

or between CPH and FMC (SNK: P>0.05).

The satellite remote sensing data for 2006 (Figure 15) show a period of elevated 

chlorophyll a for about 20-30 days prior to sampling at both PPB and FMC. There was 

no corresponding elevation of chlorophyll a at CPH or BDC, the two collection sites in 

the eastern GOM during the same time period.

Sea surface temperature during the 2006 sampling period showed a smaller variation in 

the temperatures between the sites in comparison to 2004 (Fig. 16). Both BDC and CPH 

had temperatures at about 7.5°C during the time of sampling, and PPB and FMC had 

temperatures of about 9.0°C, less than a 2°C difference between the sites.

Maximum parsimony population genetic analysis on 2006 samples (Fig. 17) 

demonstrated the presence of two distinct haplotypes, as was observed in the 2004 

sample and the larger sampling and analysis size allowed for the haplotypes to be more 

well-represented than in the 2004 samples. The majority of the individuals within the 

primary haplotype branch differ from each other by less than 5 bp, less than 1%, and the 

difference between the individuals in the secondary haplotype branch exhibit a similar 

minute level of difference. As with the 2004 samples, there is a deep difference between 

the two M. edulis major haplotype branches. The difference between the primary and 

secondary M. edulis haplotype branches is nearly 5.5%; this difference is higher than that 

found between either haplotype and the outgroup species M. trossulus (around 4% for the
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Figure 15. SeaWiFS data for chlorophyll a for 2006. R indicates the 4- 
day sampling range in 2006 (12,14, and 16 May).
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Figure 16. SeaWiFS data for sea surface temperature during 2006. R 
designation is as for Fig. 15.
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Figure 17. Maximum parsimony tree for Mytilus edulis collected in 2006. 
Numbers appearing on branches indicate bootstrap values. Individuals 
within a group have identical haplotypes; individuals within each group 
are listed right of tree. Grouped haplotype labels are independent of labels 
used in analysis of 2004 data. Known males and females are marked as M 
and F, respectively. Asterisks designate individuals that show evidence of 
possible doubly uniparental inheritance.
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Figure 18. Maximum likelihood tree for Mytilus edulis collected in 2006. 
Numbers on branches are bootstrap values; groups are as listed for Fig. 17.
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primary haplotype and 5% for the secondary haplotype), indicating that these two 

haplotypes are as divergent as sequences observed in fully recognized species.As with the 

2004 samples, major groupings were conserved in the maximum likelihood analysis as 

indicated by bootstrap values (Fig 18). Although fine-scale resolution of relationships 

within each branch is still obscure, the deep division between the two groups as well as 

between each group and the outgroup, is maintained.

Four individuals, indicated by asterisks in Fig. 17, exhibited sequences that seemed to be 

intermediates between examples of the two major haplotype groupings. The two samples 

from BDC were not successfully sexed; PPB 117-12 was sexed as male and PPB 117-05 

was sexed as female. Chromatograms for these four individuals frequently showed two 

co-occurring peaks at base-variable sites, with one base agreeing with the primary 

haplotype group sequence and the other possibility in consensus with the secondary 

haplotype group. This is possible evidence for doubly uniparental inheritance, a 

phenomenon of mitochondrial genome inheritance that occurs in male Mytilus', PPB 117- 

OS may have been miss-sexed.

Interannual Variation in the GOM

Patterns in chlorophyll a levels and sea surface temperature from SeaWiFS data (Fig. 19) 

show that there is a pattern o f slightly lower levels of chlorophyll a at BDC in 

comparison to the other three sites, with winter 2006 being an aberrant season in the 

context of the long-term climatology. 2004 shows elevated chlorophyll a levels for FMC 

during the spring in comparison to previous years. It is a consistent pattern, however,
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that BDC and CPH average around 5.0°C cooler during summer months than PPB and 

FMC, and that both sites have comparable temperatures during the winter.

There were 98 individuals sequenced for sampling done in 2004 and 2006 resulting in 

478 conserved sites and 181 variable sites for sequences 659 bp in length. Maximum 

parsimony tree-building (Fig. 20) produced a population tree with two major haplotype 

groups, as was seen in both 2004 and 2006 analyses. Individuals representative of the 

primary haplotype from each year of study were grouped together, and the one 

representative of the secondary haplotype group from 2004 was placed within the 

secondary haplotype group of 2006, confirming that this secondary haplotype group 

appears to be less abundant in the studied populations throughout the period of the study. 

There is as much as 16% difference between the two haplotype groups based on third 

codon position; the difference between the primary haplotype group and the outgroup M. 

trossulus is around 13% and the difference between the secondary haplotype and the 

outgroup is approximately 18%. The analysis gave no evidence for spatial or temporal 

lineage sorting.
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Figure 20: Maximum parsimony analysis of M. edulis sequence data for 
2004 and 2006. Bootstrap values higher than 50% are reported on 
associated branches.
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CHAPTER IV

DISCUSSION

Multiple analytical techniques were employed to study the environmental conditions that 

affect the physiological performance and therefore the growth of blue mussel populations 

in the GOM. Those measurements associated with the variability in the physical 

environment of mussels will be discussed for each year of sampling during the study, and 

then discussed in its entirety in the context of multiple year and long-term consideration 

of GOM near-shore ecology and benthic-pelagic coupling.

2004 Sampling Data

In the GOM, the surface circulation patterns responsible for the distribution of 

invertebrate and fish larvae also influence chlorophyll a concentrations and sea surface 

temperatures that in part drive the physiological differences observed between Mytilus 

edulis populations. During the winter, when the water column of the GOM is well- 

mixed, temperatures, both in magnitude and variability, at both collection sites in 2004 

and for the two months prior to sampling are similar, between 0.0°C and 2.5°C. 

Chlorophyll a concentration, while at the same concentration at both sites (approximately

3.0 mg m'3) at the time of winter sampling (2 and 4 March), is significantly higher 

throughout the winter at BDC (4.0 mg m"3) and declines throughout the spring to a low of
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2.0 mg m'3 at the end of May, while at FMC, chlorophyll a levels are beginning to rise 

with the advent of the spring phytoplankton bloom which stretches from approximately 

from 15 March to 04 May and achieves maximum chlorophyll a concentration of 16 mg 

m'3 in mid April. By the time of the spring sampling date (5 May), the sea surface 

temperature in the western GOM is significantly higher than that at BDC; the 

phytoplankton bloom and elevation of chlorophyll a in the western GOM is the product 

of the increasing stratification of the water column as flow progresses to the southwest 

(Townsend et al. 1987). This may or may not be dependent on water temperature in the 

GOM (Townsend and Cammen 1988) as production of a bloom in the western GOM 

depends largely on the stability of the water column, solar radiation, and availability of 

nutrients (Sverdrup 1953, Townsend and Spinrad 1986). The amount of food for M. 

edulis at specific locations, then, is not a direct function of temperature; temperature 

does, however, play a role in filtration rate of M. edulis both during sudden temperature 

changes and in terms of long-term acclimation (Kittner and Riisgard 2005), and in 

metabolic rate, which tends to increase with temperature (Dahlhoff et al. 2001, Whiteley 

and Faulkner 2005). If the change in temperature is too extreme, producing a stress 

response, more energy may be devoted to expression of heat shock proteins and 

responding to other temperature-induced stresses (Dahlhoff et al. 2002, Flalpin et al. 

2002) than to growth or reproduction. Energy budgets for mussels in the western GOM, 

which is consistently warmer at the surface than the eastern, may require dedicating more 

resources to standard rates of metabolism and heat-induced stress respons, and therefore 

less energy would be available for growth (e.g., scope for growth, Widdows and Johnson 

1988).
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In addition to the physical environment, the genetics of mussel populations are also 

known to play a role in their physiological performance and survival under stressful 

conditions (Koehn and Hilbish 1987, McDonald and Siebenaller 1988). The genetic 

structure of all mussel populations examined in this study was determined in order to 

assess the possibility of a genetic component in physiological performance. The 

cytochrome c oxidase subunit I (COI) gene, located on the mitochondrial genome, is 

frequently used in molecular genetic analyses of invertebrate populations, and has been 

used previously as a diagnostic molecular marker to distinguish other co-occuring bivalve 

populations (Caterino and Sperling 1998, Gaunt and Miles 2002, Baldwin et al. 1996). 

Using mtDNA for population genetics studies offers several advantages, such as a 

comparatively rapid mutation rate, and a single, maternally-inherited genome, which 

provides only one locus for any gene and greatly reduces the opportunity or likelihood of 

recombination in most species. Several mtDNA genes, including COI, have been reliably 

calibrated to molecular clock models for determining evolutionary branching times for a 

number of invertebrate species (Stillman and Reeb 2001, Wares and Cunningham 2001, 

Gaunt and Miles 2002).

Work by Wares and Cunningham (2001) using COI has demonstrated the presence of 

several unique lineages of M. edulis on New England and southeastern Canadian coasts, 

with only one shared allele, the root haplotype, and with lineages that are distributed 

between Iceland, Norway, Ireland, and France. Both the North American and the 

European populations show evidence of having long histories in both locations,
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indicating that the presence of M. edulis in the eastern Atlantic is unlikely to be the result 

of a recent, post-glacial founding population (Wares and Cunningham 2001). The 

populations on both coasts show wide genetic diversity and low instances of alleles 

derived from a founding population, both contrary to indications of recent founding 

events (Wares and Cunningham 2001), suggesting that M. edulis may not have been 

affected by the genetic bottleneck that characterizes some other North Atlantic 

invertebrate species (Bucklin and Wiebe 1998).

Complicating the issue of M. edulis genetics is the ability of M. edulis to inherit mtDNA 

paternally as well as maternally in a process known as doubly uniparental inheritance 

(DUI), providing a second locus for any given mitochondrial gene, such as COI (Zouros 

et al. 1992, Zouros et al. 1994, Curole and Kocher 2002). While both male and female 

Mytilus offspring inherit mtDNA maternally, referred to as the “F” type, male Mytilus 

individuals inherit a second mitochondrial genome, the “M” type, paternally, with as 

much as 20% divergence between the two genomes (Stewart et al 1996, Kijewski et al. 

2006). The hybridization found by Kijewski et al. (2006) indicated that in the Baltic Sea, 

a female M. edulis mitochondrial genome had usurped the paternal genome in male M. 

trossulus, introducing an additional level of complexity in the hybridization and DUI 

patterns of the Mytilus species complex. Both of the F- and M-specific lineages were 

present in the common ancestor to M. edulis, M. trossulus, and M. galloprovincialis prior 

to species divergence, and estimation for the divergence time between the F- and M-type 

lineages is between 5.3 and 5.7 MYA (Rawson and Hilbish 1995). M. edulis is also 

known to have an elevated mutation rate (Hoeh et al. 1996, Wares and Cunningham
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2001); this rate is not constant even between the F- and M-type lineages but has been 

estimated as 0.54% Myr'1 for the female lineage and as 0.96% Myr'1 for the male lineage 

(Rawson and Hilbish 1995). The difference in evolution rate may be the result of a 

relaxation of selective constraint on the M lineage in comparison to the F (Rawson and 

Hilbish 1995, Stewart et al. 1996).

Based on the analysis of haplotypes from the GOM mussel populations in this study for 

2004, there is no lineage sorting within the GOM; populations of M. edulis are 

homogenous with respect to location throughout the area encompassed by the study. 

With 30 individual sequences distributed across 20 different M. edulis haplotypes, even 

the small sampling sizes studied in 2004 show a wide range of haplotype diversity at each 

study site. The small number of samples studied during 2004 may account for the single 

representative of the second major haplotype group. Of the 8 total individuals sequenced 

from BDC in winter, 25% were found to be M. trossulus, and 29% of 7 individuals 

sequenced at BDC in spring; M. trossulus were not found at FMC. M. edulis has a long- 

dispersing planktonic larval form which may account not only for the absence of lineage 

sorting between the populations in the GOM, but may have played a role in generating 

the wide genetic diversity among broadly distributed populations (Wares and 

Cunningham 2001). The haplotype diversity exhibited at each site suggest that the 

surface currents of the GOM promotes larval dispersal and there are no barriers to larval 

dispersal in the GOM, maintaining the high haplotype diversity across several 

homogenous populations. Local retention of M. edulis larvae, as in other intertidal 

organisms with planktonic larval stages, requires recruitment and settlement mechanisms
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to prevent the dispersion of larvae downstream and the population becoming locally 

extinct; this mechanism, when it occurs, may involve exploitation of fluctuating minor 

currents, even to the extent as to allow upstream dispersal (Byers and Pringle 2006). 

Larval retention is lower in the eastern GOM, and the strong coastal current along the 

coast of eastern Maine may be responsible for distributing larvae further downstream into 

the western GOM (Incze and Naimie 2000) while other circulation patterns, perhaps from 

Nova Scotia, brought larvae to the eastern Gulf, which would establish allele flow 

throughout the GOM and create the genetic widespread diversity observed. A product of 

this homogeneity with respect to allele distribution is the consideration that differences in 

physiological performance observed between populations are the result of their 

phenotypically plastic response to the environment and ecological interactions rather than 

genetic differences between mussel populations.

Analysis of size frequency distributions, shell length, and condition indices provides a 

picture of the physiological performance of mussels that can then be related to 

differences in quality and quantity of food and shifts in energy allocation in mussels 

(Crosby and Gale 1990). The shift to observing smaller individuals from winter to spring 

indicates the occurrence of some recruitment event between these seasons, and the lack of 

larger individuals in the spring, especially at FMC, suggests the occurrence of removal of 

larger organisms. This may be via a biotic factor such as predation, disease, or 

disturbance. Like some other bivalves and species of Mytilus, M. edulis is susceptible to 

haemic neoplasia, or leukemia, the onset of which has been linked to abnormal 

temperatures, seasonality (Elston et al. 1992), viral transmission (McGladdery et al.
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2001), and genetics (Muttray et al. 2005), any of which may factor into mortality in wild 

populations of mussels. The consistent presence of larger M. edulis samples collected 

from BDC during both seasons, as assessed using size frequency distributions and mean 

shell length, than those collected from FMC suggests that mussels at BDC are devoting 

more energy to shell growth. This is not supported by the Cl data, which show a higher 

Cl in the winter, indicating greater energy diverted to tissue growth in the winter. This 

pattern is reversed in the spring where FMC mussels have a higher Cl than BDC mussels. 

The bimodal distribution of size classes seen at BDC and FMC during the winter 

collection may be an indication that individuals within each mode are of similar ages by 

year, however, in light of the absence of distinct bimodality in the spring collection, 

either of these patterns may be the result of other processes such as post-settlement 

survival, predation, or physical disturbance (e.g. dislodgment from wave action, Menge 

and Sutherland 1987). At least three significant severe weather events occurred on the 

coast of the GOM in February of 2004, prior to the winter sampling date, whereas only 

one occurred in the beginning of April, a month prior to the spring collection (National 

Weather Service), which would suggest that intertidal organisms were subjected to more 

storms, and thus more wave action, in winter than in spring. Interspecific competition 

may also be a factor in the size frequency distributions seen at each site, as a negative 

correlation exists between body size and density in many intertidal organisms, including 

mussels (Gaines and Roughgarden 1985, Petraitis 1995). Although no estimate of 

percent cover was made during this study, this principle of self-thinning may play a role 

in the distribution of size groups of M. edulis: many small mussels can dominate an 

intertidal landscape as effectively as fewer, larger mussels, and vice versa. One effect of
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this is the percentage of free space available in the habitat, which then, when coupled 

with recruitment, determines larval settlement rate and thus species abundance (Connell 

1985, Gaines and Roughgarden 1985). This may account for the shift to smaller-sized 

individuals at both locations between winter and spring, particularly in consideration of 

prior studies done by Mallet and Carver (1993), which indicate that an increase in water 

temperature had an immediate positive effect on shell growth in populations of Nova 

Scotian mussels. With larger mussels removed between winter and spring, smaller 

mussels would then be able to take advantage of the free space at the same time when 

warming ambient temperatures are increasing their shell growth rate.

Whereas gut content analyses provide discrete snapshots of short-term feeding patterns, 

stable isotope analyses can be used to trace macronutrient movements through 

individuals and populations, and then to estimate long-term food quality, reconstruct 

diets, or examine trophic interactions (Peterson and Fry 1987, Gannes et al. 1997, Dunton 

2001, West et al. 2006). Isotopic signatures in organisms above the primary trophic level 

are intrinsically linked to isotopic signatures found in their diet. Both carbon (b13C) and 

nitrogen (815N) were measured in this study; the first provides information on the sources 

of organic carbon obtained by herbivores and grazers, and the second provides 

information on sources of nitrogen and trophic interactions of consumers (West et al. 

2006). Although isotopic signatures are an indicator of food quality and not food 

quantity, some studies do suggest a correlation between nitrogen availability and both 

size and mass, and that 8 15N signatures increase with nutritional stress as existing 

nitrogen is recycled within the tissues (Adams and Sterner 2000). With a feeding mode
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that relies on ambient seston in the water column, M. edulis occupies a trophic position 

that potentially exposes it to a wide assortment of particulate carbon and nitrogen 

sources.

Typically, phytoplankton and particulate organic material has a carbon isotopic signature 

of -20  to -24%o and a nitrogen isotopic signature of +4 to +6%o (Kieckbusch et al. 2004, 

Dunton 2001). Periphyton and macrophytes have a typical carbon isotopic signature 

between -12 and -17%o and a nitrogen signature between +3 and +6%o (Kieckbusch et al. 

2004, Hill et al. 2006). Detritus generally has a carbon isotopic signature range between 

—11 %o and -15%o and a nitrogen isotope signature of +3%o to +5%o (Peterson and Fry 

1987, Kieckbusch et al. 2004). Mussels collected from FMC had more depleted 5 ,3C 

signatures than mussels from BDC. In 2004, both populations had depleted 613C relative 

to pure phytoplankton diets, but FMC populations appear to be consuming a diet with a 

higher percentage of phytoplankton than BDC samples, whose diet consists of a larger 

fraction of macrophytes or detritus.

For mussels collected from FMC, 615N was consistently less enriched than for mussels 

from BDC. Both populations of mussels had enriched 815N tissue values relative to pure 

phytoplankton diets that reflect the trophic enrichment of nitrogen (~3-4%o per trophic 

level, Kieckbusch et al. 2004) from a mixture of phytoplankton and detrital material, but 

BDC populations appear to be consuming a diet with a higher percentage of 

phytoplankton than FMC samples, whose diet is more reflective of a larger fraction of 

detritus. This is contrary to the indications given by the 813C signatures, and mussels at
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each site are most likely consuming a mixed diet, with possible enrichment of detritus by 

bacteria. The marine bacteria Vibrio harveyi has shown 6 15N enrichment as much as 

+22%o and depletion of up to -12%o relative to substrate when cultured under certain 

conditions (Adams and Sterner 2000, Macko and Estep 1984). The absence of significant 

differences for the 615N isotopic signatures between seasons indicates that regardless of 

the source of organic material within the water column at each site, and in spite of minor 

seasonal variations such as the 615N signature for BDC in the spring, the quality of diet 

over time for mussels at both sites was similar.

Biochemical indicators, such as RNA/DNA ratios, can be used to assess cellular activities 

and protein synthesis, providing indicators as to metabolic condition or level of 

physiological stress (Dahlhoff 2004). An RNA/DNA ratio is a biochemical condition 

index, calculated from total DNA amount, which is a function of cell number and rate of 

division, and the varying degree of transcription of RNA for expressed genes per 

individual, which is largely a function of protein synthesis (Dahlhoff 2004). Acute 

environmental changes (e.g. temperature) can result in a compensatory adjustment to 

protein and enzyme production in affected organisms, and organisms acclimated to 

different locations along an environmental gradient may display a range of RNA/DNA 

ratios that are correlated with their physical, food, and climatological conditions. 

Biochemical studies on a range of marine vertebrates and invertebrates have revealed that 

RNA/DNA ratios decline with decreasing food availability, indicating a drop in protein 

synthesis capacity in food-limited individuals; for sessile intertidal invertebrates, this 

food availability can also be correlated to primary productivity as measured by satellite
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remote sensing imagery (Dahlhoff 2004). However, when using RNA/DNA ratios, it is 

necessary to consider all environmental variables, such as stress caused by temperature, 

salinity, and desiccation that can influence the metabolic status of an organism.

The significant differences observed for RNA/DNA ratios between BDC and FMC 

mussel populations during the winter indicates a large difference in protein synthesis that 

disappeared by spring. This may be a function of both sea surface temperature and 

chlorophyll a; during the winter months, sea surface temperature was comparable 

between sites, however BDC mussels were exposed to twice as much chlorophyll a, 

which may account for the ability of M. edulis at BDC to synthesize more protein than 

those individuals at FMC during the same time period. By the spring, sea surface 

temperature at FMC was elevated as much as 3° C above the sea surface temperature 

observed at BDC, and a large phytoplankton bloom had created a chlorophyll a spike as 

high as 16.0 mg m'3 at FMC, which did not occur at BDC (3.0 -  4.0 mg m'3). This 

provided individuals at FMC with greater food, which was then reflected in enhanced 

protein synthesis post-bloom, while at BDC, the lack of similar concentrations of 

chlorophyll a and the persistence of the colder sea surface temperatures resulted in a 

decrease of protein synthesis. The increase in RNA/DNA at FMC in the presence of a 

bloom and the decrease at BDC in the absence of a bloom between winter and spring 

suggests that mussel metabolism responds seasonally to changes in coastal environmental 

conditions, which agrees with other reports on the plasticity of mussel physiology 

(Dahlhoff and Menge 1996). This RNA/DNA increase at FMC may be reflected in the 

higher Cl found at that site in the spring, and while there is an increase in Cl for mussels
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at BDC in the spring, the lack of a bloom may account for that increase being slight.

2006 Sampling Data

The environmental patterns of chlorophyll a and sea surface temperature observed in 

2006 exhibit similar patterns to those observed in 2004. Temperature profiles for all four 

sites are similar for the first 100+ days of the year, and it is only just before mussel 

sampling, which occurred between 12 and 16 May, that the surface temperatures in the 

western GOM (approximately 10.0°C) begin to rise above those observed in the eastern 

GOM (approximately 8.0°C). While the eastern GOM is enriched in chlorophyll a in 

comparison to the western GOM throughout the first 2 months of the year, chlorophyll a 

concentration in the western GOM increases sharply at mid-March. Since the 2006 

bloom begins, and by 5 May is nearly finished, before there is a significant difference in 

sea surface temperature between the eastern and western GOM, this demonstrates that 

temperature itself was not a direct factor for initiating a bloom as in 2004, and that other 

processes are affecting the timing of the spring phytoplankton bloom which provides M. 

edulis in the western GOM with a significant portion of its diet (Sverdrup 1953, 

Townsend and Spinrad 1986).

The lack of evidence for lineage sorting in the collected samples for 2006 again indicates 

the homogeneity of distribution of multiple haplotypes throughout the GOM; there were 

70 individuals distributed across 47 different haplotypes, which grouped into two major 

branches. While relationships within these two major groupings remain unclear, the 

major divisions are distinct and well-supported by bootstrap analysis with over 98% of
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constructed trees producing these same two major groups. With the larger sampling size, 

the secondary haplotype group contained many more individuals than seen in the 2004 

study, and these individuals comprised 20% of the total M. edulis sequenced in 2006. 

Based on the individuals that were successfully sexed, there appears to be no correlation 

between the two major lineage groups and gender, however this is an incomplete data set 

and some individuals may have been incorrectly sexed. Sequence chromatogram data 

from four individuals showed evidence for possible DUI; their positions in the 

phylogenetic trees may be at least partially the result of base pair confusion. There were 

29 total individuals sequenced from BDC in 2006, and 10% of these were classified as M. 

trossulus. Again, as with the 2004 sampling, no M. trossulus were found at other 

sampling locations.

The 2006 samples, like the spring 2004 samples, lacked the bimodality observed in the 

winter 2004 samples. The generally smaller size of individuals collected from BDC may 

be a function of the observed lack of a phytoplankton bloom in the eastern GOM in the 

months preceding the collection period, or may indicate the presence of a young cohort. 

Although winter mixing maintained a largely constant coastal sea surface temperature at 

all four collection sites for the approximately 100 days prior to the 2006 sampling, the 

lack of a spring phytoplankton bloom in nearshore waters in the eastern GOM indicates 

that the mixing responsible for bringing nutrients from the benthos to the surface is 

preventing the stratification necessary to initiate a bloom and is acting as a limiting factor 

on M. edulis growth in this region. The National Weather Service recorded six storm 

events that potentiall impacted the coast of the GOM during the five months prior to the
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collection dates of this study, however no storm events were recorded after mid-February, 

indicating a general lack of high wave disturbance at the time or, or immediately prior to, 

the period of 2006 collection.

The difference in mean length observed between individuals collected at BDC and at 

CPH may show the influence of the Penobscot River outflow, the freshwater runoff of 

which plays an important role in the development of coastal circulation and stratification 

of the water column, and hence phytoplankton blooms, each spring (Townsend 1991). In 

addition, chlorophyll a data for CPH indicated the presence of a summertime bloom, 

beginning at day 25 May, ten days after the time of sampling. This bloom may be the 

product of water stratification caused by the freshwater of the Penobscot River and, if 

present each year, may account for the increased size of mussels at CPH in comparison to 

BDC (Sverdrup 1953, Townsend and Spinrad 1986, Townsend 1991). This midsummer 

bloom may also be connected to the higher Cl observed in the CPH mussels, which are 

devoting more energy to tissue growth and exhibiting greater protein synthesis than those 

at BDC. Mussels from CPH also show a carbon isotopic signature that indicates a 

slightly better, although comparable, diet than those at BDC, which, in contrast to the 

2004 samples, have a signature which indicates a diet with a higher percentage of 

detritus. Both the increased depletion of 613C signature at CPH and the enrichment of 

615N in comparison to BDC supports the idea of a diet richer in phytoplankton for the 

CPH mussels, which correlates with the larger size, higher condition index; and higher 

level of protein synthesis as measured by RNA/DNA ratios. It is possible as well that the 

difference in size and condition index observed between the BDC and CPH M. edulis
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may be partly a function of the amount of food consumed, which currently cannot be 

estimated on the basis of isotopic signatures.

The larger elevation in chlorophyll a observed at FMC, in comparison to the other 

western GOM sampling location, PPB, coupled with the higher temperatures observed at 

this location, correlates with the larger individuals observed at FMC; the abundance of 

nutrients at FMC may account for some of the difference in mussel size between the 

populations. In addition, although no assessment of exposure at each location was 

estimated, PPB is an exposed site subject to heavy wave action, whereas FMC is more 

protected and is adjacent to an industrialized freshwater river; this increased waved action 

at PPB may play a role in the reduced size of the mussels found at that location. In 

contrast, however, while the PPB mussels were smaller than those at FMC, those found at 

PPB devoted significantly more energy to soft tissue growth than shell growth; this, 

coupled with the more depleted SI3C at PPB in comparison to FMC indicates that 

although more exposed, individuals at PPB may have a better diet, richer in 

phytoplankton, than those at FMC. Although 6 15N for PPB was slightly lower than the 

nitrogen signature for FMC, both are sufficiently high to suggest a phytoplankton-rich 

diet, particularly in comparison to the nitrogen signature seen at the easternmost site, 

BDC. FMC mussels were less depleted in 613C and, although slightly more enriched in 

615N than those at PPB, still suggests that the diet of M. edulis at FMC contains a higher 

percentage of detritus. Mussels from FMC may have the benefit of a more protected 

location, but are subject to a suite of influences that are the result of its proximity to an
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estuarine system, which may result in lower food quality. Variations in 8I5N signatures 

could be due to bacterial content as well (Adams and Sterner 2000).

CPH and FMC both exhibited higher RNA/DNA ratios, indicating a greater amount of 

protein synthesis, which may then have lead to their larger shell sizes, an increase in 

metabolic rate in response to rising temperatures and increased food supply, or energy 

budget adjustments necessary to compensate for the increase in ambient temperature (e.g. 

expression of heat shock proteins). Expression of HSP-70 proteins is positively 

correlated with seasonal temperature change and thermal tolerance in M. edulis, and has 

been observed in natural populations as early as March and increases throughout the 

spring into the summer (Chappie et al. 1998). The lack of a bloom at BDC prior to 

sampling, resulting in low food abundance for M. edulis at that location, accounts for the 

lower RNA/DNA ratio observed there. Mussels at PPB had a lower RNA/DNA ratio as 

well, in spite of the presence and consumption of chlorophyll a, as observed both by 

satellite imagery and 513C signature, and the warmer temperatures of the western GOM; 

when placed within the context of the high Cl and low length observed in the PPB 

mussels, the most likely answer for this apparent contradiction in condition and metabolic 

health may lie in efficiency. Post-bloom, at the time of sampling, mussels at PPB showed 

evidence of having a diet enriched in phytoplankton compared to the other study sites, 

and this increase in quality as well as supply may allow mussels at PPB more efficient 

feeding, metabolism, and growth. As slow-growers, in terms of size, mussels at PPB 

may require more energy allocation to maintenance, but reducing the costs of protein 

turnover (lower RNA/DNA ratios) helps to reduce maintenance cost, increasing potential
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for growth as reflected by the high Cl (Bayne 2004). Faster growth is achieved by 

decreasing energy requirements overall and increasing ingestion and absorption 

efficiency, and tends to be observed in more heterozygous individuals (Hawkins et al. 

1986), which, while not directly measured, may be reflected in the high genetic diversity 

observed. However, mtDNA, being maternally inherited, is not a reflection of hetero- or 

homozygosity. Additionally, when considering the DUI phenomenon, the genetic 

disposition towards faster growth in heterozygotes may provide an advantage in males 

only.

Recent Trends and Projections for the Future

While there is seasonal variation in both the timing and the intensity of the spring 

phytoplankton bloom, there are trends which demonstrate consistency over the five years 

prior to this study. BDC regularly shows little evidence for a spring bloom, or in years 

where one is seen to occur (2002) it is less intense than at other locations in the GOM. In 

the western GOM, FMC shows the occurrence of a fairly large bloom consistently, often 

earlier than at more eastern locations. The temperature profiles observed for 2004 and 

2006 show no deviance from patterns established by other recent years; sea surface 

temperatures and chlorophyll a observations for the years included in the study may be 

considered normal in the context of recent environmental trends.

The widespread genetic diversity found in GOM M. edulis populations throughout this 

study supports, precluding any genetic bottleneck as the result of a large-scale disaster, 

the long-term variation and presence of mussels on North Atlantic rocky coastlines.
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Health and condition of M. edulis populations, as products of phytoplankton blooms, is 

intrinsically linked to circulation patterns, temperature cycles, and stratification of the 

water column, and it is these factors driving the physical evidence of phenotypic 

plasticity in mussels. The west-running Maine Coastal Current plays a critical role in 

delivering nutrients, phytoplankton, and larvae to the western GOM where the spring 

bloom occurs in greatest magnitude.

Bottom-up effects are having a significant impact on the size and condition of mussel 

populations in the GOM, similar to recent Pacific Coast findings by Menge et al. (1997). 

Continual monitoring of the coastal GOM is necessary to determine if the patterns in size 

and health of M. edulis continue as observed or change. Not all aspects of mussel 

physiology were taken into account in this study; the role of reproductive costs in the 

energy budget for M. edulis was not considered, and differences in fecundity may factor 

heavily into physiology assessments made during the spring, when mussels are 

reproductively active. Mytilus loses a significant amount of tissue weight following 

spawning, which occurs in May and June, immediately after the time of spring sampling 

during both years of this study (Mallet and Carver 1993). In addition, this study made no 

assessment of the many biotic factors influencing intertidal habitats, such as assessing 

percent cover, intraspecific and interspecific competition, and predation. Although storm 

events during the seasons of sampling were noted, direct assessments of wave exposure 

and disturbance, two abiotic factors that also play a role in structuring communities and 

populations, were not encompassed in this study, nor were the effects of sampling bias or 

human activity; the proximity of FMC to an industrialized and populated estuary may
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have an influence on mussel physiology for those populations. Although no estimation of 

these top-down controls and secondary environmental effects was made in this study, 

between-site and temporal differences show significant influence of bottom-up effects on 

M. edulis populations. General health and metabolic indicators correlate to both 

chlorophyll a concentration and sea surface temperature, both of which are partially 

functions of the broad-scale circulation events and seasonal patterns of mixing and 

stratification, comparable to hypotheses of west coast upwelling patterns being a primary 

influence on phytoplankton and physiological status of mussels (Menge et al. 1997). 

Future investigations of predation and competition may reveal that, as observed by 

Menge et al. (1997), top-down processes vary positively with bottom-up processes; a 

study undertaking this aspect of M. edulis populations would be a logical next step in 

illustrating a full picture of mussel ecology in the GOM.

Although there is distinct interannual variability, physiological performance of 

populations of M. edulis in the GOM does correlate to environmental conditions, 

circulation patterns, and seasonal climatology, as found by Menge (1997) on the west 

coast. The broad genetic diversity found in mussel populations throughout the GOM 

does not support a genetic basis for differences in mussel performance, indicating that 

phenotypic plasticity linked with environmental conditions, controls the size and health 

of M. edulis individuals and, as a result, populations. Environment does not, however, 

explain all characteristics of M. edulis populations; mussels at CPH exhibit larger size 

and higher physiological performance than expected from environmental conditions as 

reported by satellite imagery, underscoring the need to make in situ estimates of local
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chlorophyll a conditions at the time of sampling at each location to provide better 

resolution. Focusing on local topography and eddies may provide clues to understanding 

differences seen between sampling sites. Future studies should incorporate physiology, 

ecology, and oceanography together, and should be continued for multiple years in order 

to truly ascertain trends and to investigate their causes.
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