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ABSTRACT 

Research surrounding lake sturgeon (Acipenser fulvescens) feeding ecology in the 

Great Lakes is dated compared to other aspects of their ecology, despite their threatened 

status. Recent research has demonstrated migration polymorphisms in lake sturgeon from 

the Lake Huron-to-Lake Erie corridor (HEC), but dietary links are lacking in this system. 

This knowledge gap led to the question of whether or not lake sturgeon feeding ecology 

varies both temporally and spatially within the HEC. We found adult lake sturgeon were 

generalist feeders in this system. After the round goby (Neogobius melanostomus) 

invasion, differences in isotopic niches were observed across age-classes. Mean stable 

isotopes were similar across migration behaviours and location, however niche sizes 

ranged from 3.1‰ to 8.5‰. Findings suggest diet estimates of lake sturgeon are not 

transferable across study sites. This interdisciplinary approach of combining movement 

and feeding ecology can be applied to other species and other study systems.  
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GENERAL INTRODUCTION 
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Food Web Ecology 

 Food chains are a linear sequence of energy transferred to each organism as one 

consumes the other. Food chains are made up of producers and consumers; producers are 

heterotrophs that use solar radiation to produce their own food, and consumers gain their 

energy by feeding on either producers or other consumers. The higher up a consumer is 

on a food chain, the more energy is lost to the environment; this inefficiency limits the 

length of most food chains as well as explains why fewer organisms occupy each 

successive level. Most species feeding relationships are more complex than solely 

consuming one prey item (omnivory) and thus food webs are a more accurate 

representation of feeding relationships than food chains (Paine, 1988). 

 Food webs, comprised of several food chains, are a complex network of 

interactions among organisms within a community and were first described in Elton 

(1927). It was proposed that highly complex food webs consisting of few strong and 

many weak interactions are highly stable and thus less prone to species invasions and 

population oscillations (Elton, 1958; Paine, 1980; McCann et al., 1998). For example, 28 

million pathways were estimated in the food web connecting Cape fur seals 

(Arctocephalus pusillus pusillus) to Cape hakes (Merluccius spp.; Yodzis, 1998), a 

human harvested fish. Originally, Yodzis was asked if culling cape fur seals in South 

Africa would increase the hake harvest, but he ultimately found that controlling fur seal 

populations would increase numbers of other predators.  

Today, we live in the era of the Anthropocene, a period in which human activity 

has a dominating effect on climate and the environment. Within this era, and likely driven 

by humans, is the sixth largest extinction event in history (Stephen et al., 2004). 
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Overharvesting, habitat fragmentation, and the introduction of invasive species have all 

contributed to species extinction and are all pressures on food webs. In Daniel Pauly’s 

Fishing Down Marine Food Webs (1998), humans overharvested the top trophic levels of 

the marine food web (ie: tuna) and eventually had to look for other sources of food from 

lower trophic levels (anchovies). In contrast to removal, the addition of species into a 

community can impact food webs. For example, largemouth bass (Micropterus 

salmoides) was released into a system where lake trout (Salvelinus namaycush) was the 

top predator. Lake trout was subsequently shifted to a lower trophic level due to 

competition for prey resources with largemouth bass (Vander Zanden, 1999).  

The conditions surrounding the study of food webs make it difficult to quantify 

the entire set of feeding relations possible in a community. Observational methods to 

study feeding relationships are difficult in nature because feeding events are rare, time 

consuming, and environmental conditions can make studying problematic. Stomach 

content analysis of consumers and stable isotope analysis are two alternative methods to 

studying food webs, each with their own list of pros and cons. Additionally, while the 

“web” remains, new species can be added and old ones can disappear, making them even 

more difficult to study (Elton, 1927). However, it is important to study food webs to 

promote a better understanding of ecosystem dynamics and community infrastructure in 

midst of the Anthropocene.  

 

Feeding Ecology and Stable Isotopes 

 Feeding ecology is the study of consumer-resource relationships between 

different organisms in a food web. Joseph Grinnell (1917) first coined the term “niche”, 



 4 

defined as the sum of habitat requirements and behaviours that allow a species to persist. 

These niches can be modeled using the Hutchinsonian niche, which is made up of two 

parts: a fundamental niche and a realized niche (Hutchinson, 1957). The fundamental 

niche is the area where a species can survive and reproduce, while the realized niche is an 

area where fitness is higher and takes into consideration predation and competition. The 

X and Y axes of this model, which usually incorporates biotic and abiotic factors that 

affect a species’ survival, can be modified to incorporate factors that influence a species 

feeding ecology.  

Stable isotopes, most commonly carbon (δ13C) and nitrogen (δ15N), have been 

used in many ecological studies (Vander Zanden & Rasmussen, 2001; Bearhop et al., 

2004; Brush et al., 2012), are elements with an extra neutron that make it possible to 

compare the ratios from light to heavy isotopes in a mass spectrometer because they 

travel different distances through a magnetic field (Fry, 2007); these differences in 

isotopic composition are linked to food source. In freshwater lakes, δ13C is an indicator of 

whether an individual is feeding on more littoral or pelagic foods (Fry, 2007). These 

isotopic compositions will typically be higher the more near-shore (littoral) they feed, 

which comes from macrophytes and algae, whereas an offshore δ13C comes from the 

production of phytoplankton – both these groups having a different photosynthetic 

pathway (France, 1995). In comparison, δ15N is correlated with trophic level because an 

organism will use 14N more readily than 15N from its tissues and 15N will accumulate up 

the food chain (Hussey et al., 2012).  

Using stable isotope analysis (SIA) is beneficial over stomach content because it 

provides information on diet over a time scale of weeks to years depending on the tissue, 
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as compared to the species’ digestion time, usually < 24 hours. Stomach content analysis 

either requires sacrificing the subject or an invasive stomach pumping method (Hakala & 

Johnson 2004; Parra & Jedensjo, 2014), consequently making stable isotope method 

more practical when studying species at risk. However, baseline data is necessary to 

place individuals within a food web based on isotopic compositions due to the possible 

effects of spatial and temporal variation (Post, 2002).  

 

Lake Sturgeon Morphology, Ecology, and History 

Lake Sturgeon are a long-lived, cartilaginous fish that are native to the Laurentian 

Great Lakes (hereafter the Great Lakes). Historical records from Great Lakes fisheries 

report individuals captured were over 2m in length and weighed over 100 kg (Van 

Oosten, 1956). Lake sturgeon are potamodromous and migrate for both feeding and 

spawning purposes (Schueller & Hayes, 2010). They are intermittent spawners and 

usually reach sexual maturity between ages 12-15 for males and 18-27 for females 

(Peterson et al., 2007). Although mostly consisting of a cartilaginous skeleton, they are 

armored with bony plates called scutes and boney pectoral fins. Their pectoral fin spines 

grow in patterns consistent with tree rings, which have been used as a method for aging 

sturgeon for approximately 100 years (Bruch et al., 2009). These spines also record 

environmental conditions, such as changes in nitrogen and carbon stable isotopes, and are 

a non-lethal way of obtaining this data from lake sturgeon.  

Lake sturgeons primarily feed on benthic invertebrates that are found using a 

variety of sensory receptors (Auer, 2007). They forage by feeling along the bottom of 

lakes and rivers for prey using four barbels and sucking them up with a protractible 
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mouth (Vecsei & Peterson 2004). Prey sources are then crushed against a cartilaginous 

palate (Priegel & Wirth, 1974). Although benthic macroinvertebrates are the dominant 

prey source (Peterson et al., 2007), lake sturgeon diet varies temporally and spatially 

(Beamish et al., 1998, Guilbard et al., 2007). For example, adult lake sturgeon in Oneida 

Lake fed mainly on Zebra Mussels, while lake sturgeon from the Niagara River fed 

predominantly on round gobies (Jackson et al., 2002; Jacobs et al., 2017).  

Lake sturgeon, now protected in all U.S states and Canadian provinces bordering 

the Great Lakes, were once abundant throughout the Great Lakes but have since declined 

to historically low levels due to overfishing and habitat fragmentation (Auer, 1996). In 

the early 1800s, lake sturgeon were considered a bycatch species, however, it was not 

until they were commercially targeted for their caviar in the 1880s that their population 

drastically declined (Auer & Dempsey, 2013). Additionally, river habitats were being 

dredged and dammed to build cities and shipping channels and support the growing 

population, thus affecting lake sturgeon spawning sites and migration routes (Auer & 

Dempsey, 2013). Intermittent spawning and late maturity make lake sturgeon particularly 

sensitive to overfishing and habitat fragmentation (Auer, 1996; St. Pierre & Runstrom 

2004). Although fishing regulations have been implemented in Canada and the U.S, lake 

sturgeon have been slow to recover. In an effort to increase the lake sturgeon population, 

artificial spawning reefs were constructed in the Detroit River in 2004 and utilized by 

2009 (Roseman et al., 2011). At present, lake sturgeon are listed as vulnerable in 

Minnesota and Wisconsin; threatened in Ontario (Canada), Michigan and New York; 

endangered in Illinois, Ohio and Indiana; and critically imperiled in Pennsylvania (see 

Figure 1.1).  
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Invasive Species in the Laurentian Great Lakes 

 Invasive species are defined as an animal, plant, or fungus species introduced 

outside of its native range that has become widespread and dominant in that new range 

(Colautti & MacIsaac, 2004). In the Great Lakes, invasive species have caused a number 

of economic and ecologic effects. For example, in 2012 U.S Fish and Wildlife Service 

reported over 400 species are at risk due to competition with and predation by invasive 

species, and costs the region 200 million U.S dollars annually in management. The 

successful establishment of these invasive species is partly due to the similarities between 

the new habitat and their native range, the Ponto-Caspian region of Europe (Kornis et al., 

2012); many invaders were introduced through discharge of ballast water of transoceanic 

vessels (Reid & Orlova, 2002). However, these species can also have beneficial effects 

on native species in their environment, for instance small-bodied invasive species have 

become prey for larger-bodied native species (Vander Zanden et al., 1999). 

 Invasive species introduction and proliferation has resulted in their assimilation 

into local food webs through predator-prey interactions. As such, Dreissenid mussels and 

round goby have caused a multitude of ecological effects in the Great Lakes in part 

through alterations to the food web dynamics of native species (Ozersky et al., 2012).  

Dreissenid mussels were first discovered in Lake Erie in 1986 and became well-

established in the Great Lakes by 1989 (Griffiths et al., 1991). Round goby was first 

documented in the St. Clair River in 1990 and by 1999 were well-established in the Great 

Lakes (Walsh et al., 2007). Dreissenid mussels filter feed for plankton and thus pelagic 

carbon and round goby feed on Dreissenid mussels. Native benthic-feeding fish feed on 
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Dreissenid mussels and round goby, and in some instances, these species constitute a 

large proportion of their diets.  For example, adult lake sturgeon in Lake Ontario now 

feed primarily on Dreissenid mussels and round goby (Auer & Dempsey, 2013; Jacobs et 

al., 2017).  

 

Study System 

Research took place within the Lake Huron-to-Lake Erie Corridor (HEC) which is 

comprised of the St. Clair River, Lake St. Clair, and the Detroit River. The St. Clair River 

flows 64 km south from Lake Huron to Lake St. Clair. Lake St. Clair is a relatively 

shallow lake, averaging 3.4m deep and shipping channels 8.2m deep (Leach, 1991), with 

a highly urbanized shoreline (U.S Army Corps of Engineers, 2004). Finally, the Detroit 

River flows 44 km from Lake St. Clair to Lake Erie. The HEC is a known migration 

route of lake sturgeon and contains current spawning habitats (Roseman et al., 2011; 

Hondorp et al., 2014). This major connecting channel has remained unobstructed by 

barriers such as dams, allowing lake sturgeon to feed and move liberally and thrive as one 

of the healthiest populations (Thomas & Haas, 2002). Recent research found migration 

polymorphisms, different migration behaviours, exists among lake sturgeon within this 

connecting channel (Kessel et al., 2017) and was thus chosen for our research to 

determine potential sub-populations of lake sturgeon based on their foraging ecology.   

 

Chapters and Objectives 

The objective of my thesis is to quantify lake sturgeon feeding ecology, a largely 

overlooked aspect of lake sturgeon ecology, across migration behaviours categorized by 
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Kessel et al. (2017), age-classes, and through two major invasive species invasions 

(Dreissenids and round goby). The thesis consists of two research chapters, both used 

δ13C and δ15N in fin spines collected from 1991 to 2014. Of these samples, 56 were 

collected from Lake St. Clair, 90 from the Detroit River, and 56 from St. Clair River, for 

a total of 202 samples to quantify food ecology, in particular using isotopic niche, a 

measure of dietary niche. Lake sturgeon fin spines grow radially and were used to 

categorize them into age-classes. These spines are also a non-lethal way of gaining 

information about their relative environmental conditions through its chemical 

composition altered by their diet and this composition remains inert in the bone and thus 

was used for this study.  

Chapter 2 – Isotopic niches of lake sturgeon with different migration behaviours within 

and between rivers and lakes 

 The main objective of this chapter is to determine whether lake sturgeon feeding 

ecology varies on the spatial scale within the HEC, and examined the following 

hypotheses: 

H1: Isotopic niches of lake sturgeon within the HEC will show a high degree of 

niche overlap across capture locations.  

H2: Isotopic niches of lake sturgeon will vary both by migration behaviour and by 

location in which they migrated to, likely due to the variation in prey richness and 

abundance.  

H3: Diet estimates of lake sturgeon will show high preference towards benthic 

invasive species, possibly due to their high abundance in the HEC.  
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Chapter 3 – Isotopic Niches of Lake Sturgeon Pre- and Post- Dreissenid Mussel and 

Round Goby Invasions 

 The main objective of this chapter is to determine if lake sturgeon feeding 

ecology varies on the temporal scale, examining the following hypotheses: 

H1: Lake sturgeon isotopic niches will reflect their increased predation on the 

invasive round goby and Dreissenid mussels, increasing their trophic position and 

use of the pelagic energy pathways (Figure 1.2).  

H2: Isotopic niches of lake sturgeon will vary ontogenetically, likely due to size-

specific constraints.  
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Figure 1.1 Conservation status of lake sturgeon in each bordering U.S. state and 

Canadian province as of August 2016. Data was collected from U.S. Geological Survey, 

U.S Fish and Wildlife Service, and Ontario Ministry of Natural Resources and Forestry. 
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Figure 1.2 Conceptual model depicting the hypothesized effect Dreissenids and round 

gobies have on 𝛿13C and 𝛿15N in fin spines of lake sturgeon. The shaded areas represent 

the time in which the invasive species were first discovered to when they were considered 

widespread and dominant in the Huron Erie Corridor.  
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CHAPTER 2 

ISOTOPIC NICHES OF LAKE STURGEON WITH DIFFERENT MIGRATION 

BEHAVIOURS WITHIN AND BETWEEN RIVERS AND LAKES 
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Introduction 

Partial migration occurs when individuals in a population migrate while others 

remain residents and has been demonstrated across a variety of taxa (Grist et al., 2017; 

Quinn et al., 2017; Tshipa et al., 2017). Competitive release and trophic polymorphism, 

i.e., different feeding strategies, have both been shown in populations that have partial 

migration (Chapman et al., 2012). For example, Näslund (1991), demonstrated in a lab 

setting that some individuals of Arctic char (Salvelinus alpinus) migrate out of an area 

when fed smaller rations, thus reducing intraspecific competition. In the common roach 

(Rutilus rutilus), partial migration was related to resource, or trophic polymorphism, 

through intrapopulation variation in dietary preferences (Bolnick et al, 2003). 

Understanding feeding ecology across partially migrant fish populations is important for 

management and conservation, particularly for commercially important or threatened 

species. 

Lake sturgeon (Acipenser fulvescens) have been shown to exhibit partial 

migration (Rusak & Mosindy 1997, Boase et al., 2011, Kessel et al., 2017). Although 

lake sturgeon are intermittent spawners, long-term data analysis of their migration 

behaviour have only recently been analyzed. In the Lake Huron-Lake Erie corridor, that 

includes connecting rivers and a much smaller Lake St. Clair, lake sturgeon showed five 

distinct migratory behaviours that differed with respect to when and for how long river 

habitats were used (see Kessel et al., 2017). River resident were defined as lake sturgeon 

that spend all or the majority of years in rivers with short duration lake trips, while those 

that spent the majority of years in lakes with short duration river trips were classified as 

lake dominant migrants. The other migratory behaviours include two forms of seasonal 
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migrants, where every year lake sturgeon migrate into lakes in the winter and rivers in the 

summer, or visa versa, and lake skippers, where lake sturgeon consistently move between 

two lakes with the same pattern.  

Lake sturgeon were once abundant throughout the Great Lakes, but due to 

overfishing and habitat fragmentation in the late 1800s, their populations dropped to 1% 

of their historic numbers (Pollock et al., 2014). Today, lake sturgeon are considered 

vulnerable and endangered in U.S states and the Canadian province bordering the Great 

Lakes. Efforts to recover lake sturgeon populations include re-building spawning reefs, 

restrictions on catch-and-release recreational fishing, and stocking programs (Peterson et 

al., 2007). While lake sturgeon recovery and research increased over the past few 

decades, little is known about their foraging ecology, particularly the influence of varying 

migration behaviours among sub-populations. Foraging and habitat use are tightly linked 

aspects of ecology that should be considered together to inform conservation and 

restoration efforts of threatened species, including the lake sturgeon (Jackson et al., 2002; 

McCabe et al., 2006; Gerig et al., 2011).  

Lake sturgeon feeding ecology varies spatially, however is not as current 

compared to other aspects of their ecology (Pollock et al., 2014). Boase et al. (2011) 

found that mayfly (Ephemeroptera spp.) density was a predictor of lake sturgeon 

presence or absence in Lake St. Clair but a feeding link was not established; however, the 

feeding link from mayflies to crayfish to lake sturgeon was made in the Saskatchewan 

River (Phillips, unpublished data, In: Pollock et al., 2014). Lake sturgeon in Lake 

Winnebago fed mainly on Chironomids (Choudhury et al., 1996), round goby was their 

dominant prey in the Niagara River (Jacobs et al., 2017), and in general, Guilbard et al. 
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(2007) found their diet varied spatially in the St. Lawrence River. Given this variability, 

it is important to understand spatial variation in lake sturgeon diet to ensure future 

anthropogenic stressors do not impact vital prey resources (Pollock et al., 2014).  

The Lake Huron-to-Lake Erie Corridor (HEC) is a historically known spawning 

ground of lake sturgeon (Auer, 1996) and has remained unobstructed by barriers, such as 

dams, that can impede spawning. Although its rivers were dredged to create shipping 

channels, lake sturgeon are able to move and feed freely through the lake and river 

habitats of the HEC. Thomas & Hass (2002) have documented that lake sturgeon in this 

area are considered one of the healthiest populations within the Great Lakes. Within the 

HEC are many variable habitats like the eutrophic Lake Erie or the shallow Lake St. 

Clair, which vary chemically and physically (i.e. chlorophyll-a concentrations, spring rate 

of warming, flow, etc.) both within and across lakes (Wang et al., 2015).  Thus, the 

abundance and species composition of sturgeon prey varies spatially due to diversity in 

the physical habitat, and furthermore feeding opportunities may differ between migrant 

and river-resident individuals. Importantly, Smith and Baker (2005) noted that some 

systems may provide all resources needed for lake sturgeon to complete their lifecycle, 

consistent with a residency migration strategy. Additionally, residency may occur when 

individuals do not have enough energy accumulated to both invest in gonad/egg 

production and migrate out of the system (Chapman et al., 2012). 

Although diet in a species at risk is difficult to quantify because of concerns about 

collection, stable isotopic niche provides a non-lethal method to quantify relative habitat 

and resource partitioning among or within populations (Chapman et al., 2012). In 

freshwater lakes, δ13C is an indicator of littoral or pelagic location foraging and δ15N is 
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correlated with trophic position because it increases up the food chain (Cabana & 

Rasmussen, 1996; Fry, 2007). Using stable isotopes to quantify niche differences is 

beneficial over stomach content because it provides information over a time scale of 

weeks to years depending on the tissue. Stomach content only provides dietary data 

within the species’ digestion period and often requires sacrificing the subject or an 

invasive stomach pumping method to gain information (Brush et al., 2012; Hakala & 

Johnson 2004, Parra & Jedensjo, 2014). Lake sturgeon fin spines grow radially and its 

chemical composition remains inert, and are thus a non-lethal way of gaining dietary 

information through isotopes (Jacobs et al., 2017).  

The purpose of this study was to determine if capture location or migration 

behaviour are better predictors of lake sturgeon food habits, using the HEC population as 

a model. A combination of acoustic telemetry (Kessel et al., 2017) and stable isotope 

analyses in fin spines were used to test if adult lake sturgeon isotopic niche, a measure of 

dietary niche, varies 1) across capture location, 2) across locations in which they 

migrated, and 3) among migration strategies. We expect isotopic niches of lake sturgeon 

will vary depending on where they migrated and spend a majority of their time, given 

differences between river and lake habitats. An additional objective was to compare 

dietary proportions of lake sturgeon that remained within and between the St. Clair and 

Detroit Rivers. Common prey of lake sturgeon, determined using previous dietary studies 

on lake sturgeon, were thus also analyzed for stable isotopes.  

 

Methods 

Study Site and Lake Sturgeon Capture and Handling 
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Lake Sturgeon were captured from the Detroit River (n = 52) and the St. Clair 

River (n = 50) between years 2012 and 2014 (Figure 2.1) using six setlines constructed of 

a 91m diamond braid rope mother line with 50 snews (drop lines) joined at ~1.5m 

intervals. Each snew consisted of a 40cm number 36 tarred nylon twine, a net snap with 

swivel, and a Kirby size 4 hook, which was baited with previously frozen and thawed 

whole round gobies (Neogobius melanostomus). Setlines were set in the afternoon and 

recovered the next morning. Captured live lake sturgeon were hoisted aboard the research 

vessel using a landing net where total length, weight, and sex (when possible) were 

recorded. A sample of the leading-edge pectoral fin spine was removed, placed in a 

labelled paper envelope to be air-dried back at the lab for stable isotope and age analyses. 

As well, acoustic transmitters (VEMCO model V16-6L, 95mm in length, ~10-year 

battery life) were implanted into the peritoneal cavity as previously described by 

Hondorp et al. (2015). Following surgery and biopsy, sturgeon were released back to the 

river where they were caught.  

Stable Isotope Analysis 

 Pectoral fin spines of lake sturgeon were first cross-sectioned using a low speed 

IsoMet saw to approximately 3mm thickness. Cross-sections were then drilled using a 

5000 Sherline vertical milling machine at the edge of the spine, which is the location of 

most recent growth, and therefore reflects the most recent feeding history. To ensure 

isotopic niches were influenced by ontogenetic differences (Jacobs et al., 2017), drilled 

cross-sections were checked to confirm each drilled hole was a representation of the 

feeding history of individuals over the age of 15. Because aging fin spines become 

increasingly inaccurate over the age of 14 (Bruch et al., 2009), we accounted for this by 



 24 

grouping the drill points into a single age-class of ≥ 15. Powdered fin spine samples from 

drilling were weighed (600-800μg) into tin capsules, and 𝛿13C and 𝛿15N were determined 

using a Finnigan MAT Deltaplus mass spectrometer (Thermo Finnigan, San Jose, CA, 

USA) equipped with a 4010 elemental analyzer (Costech Instruments, Valencia, CA, 

USA). 

Common prey of lake sturgeon were analyzed for 𝛿15N and 𝛿13C; these included 

round gobies, logperch (Percina caprodes), zebra mussels (Dreissena polymorpha) and 

quagga mussels (Dreissena rostriformis bugensis), mud snails (Neotaenioglossa 

Hydrobiidae), two types of amphipods (Echinogammarus ischnus and Gammarus 

fasciatus), Chironomid larvae (Chironomidae spp.), and crayfish (Cambaridae spp.). 

These were chosen based on dietary studies conducted on lake sturgeon in other regions 

of the Great Lakes. Round gobies and all macroinvertebrates were collected between 

years 2011 and 2013 from five sites within the St. Clair and Detroit Rivers (Table 2.1, 

Figure 2.1). Round gobies were collected using a bag seine net, angling and minnow 

traps, and macroinvertebrates were collected using a ponar sampler (see Pettitt-Wade et 

al., 2016). Logperch were collected from the Detroit River by USFWS using minnow 

traps in Fall 2017.   

All fish muscle and invertebrate samples were freeze-dried for 48h and crushed 

into a fine powder using scissors. Invertebrates were lipid extracted by adding 2mL of 2:1 

chloroform:methanol to a subsample, vortexed for 30s, and left in a 30°C water bath for 

24h. The supernatant was carefully poured off, the vial with subsample refilled with 2mL 

of solvent, vortexed, poured off again, and left in the lab under a fume hood until dry 

(>24h) before weighing. Fish muscle and spine tissue were not lipid extracted due to low 
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lipid content (Post et al., 2007). Fish muscle and macroinvertebrates were weighed into 

tin cups at 400 – 600 and 600 – 800 μg, respectively, before being run for stable isotopes 

as per lake sturgeon samples described above.   

Stable isotope ratio values were expressed following the equation:  

δX ‰ = (RSAMPLE / RSTANDARD – 1) × 1000 

where X represents 13C or 15N and R represents the ratio of either 13C:12C or 15N:14N 

The mean analytical precision was 0.16‰ for 𝛿15N and 0.14‰ for 𝛿13C using four 

standards: NIST standard 1577c (bovine liver), an internal laboratory standard (tilapia 

muscle), certified USGS 41, and urea (n=88 for all); both values were under the 

acceptable 0.2‰. Equipment accuracy was checked throughout the sample analysis 

period based on NIST standards 8573, 8547, and 8574 for 𝛿15N and NIST standards 

8542, 8573, and 8574 for 𝛿13C (n = 79 for all except n = 65 for NIST 8573); the mean 

differences from certified values were -0.13, -0.17 and -0.05‰ for 𝛿15N and -0.09, -0.06 

and 0.05‰ for 𝛿13C. 

Acoustic telemetry  

 See Kessel et al. (2017) for details on acoustic telemetry. Briefly, acoustic 

receivers (Vemco 69kH, n=136) were strategically placed to monitor lake sturgeon 

movement within the HEC between 2012 and 2014; the array was altered slightly each 

year based on the previous year’s data to improve efficiency (Figure 2.1). A rationalized 

detection efficiency of 100% was assumed, and a total of 268 lake sturgeon were tagged 

with V16 transmitters. 

Individual lake sturgeon migratory or residence behaviours assessment methods 

were detailed in Kessel et al. (2017). In brief, lake sturgeon telemetry data were analyzed 
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using Vemco VUE software with false detections and acoustic tag ID collisions identified 

and removed using the White-Mihoff Filtering Tool in the GLATOS package. Lake 

sturgeon were categorized using a agglomerative hierarchical cluster analyses into five 

migration behaviours: 1) seasonal movement patterns from rivers in the summer to lakes 

in the winter, 2) majority of year spent in lakes with short duration river trips, 3) majority 

of year spent in rivers with short duration lake trips, 4) seasonal movement patterns from 

lakes in the summer to rivers in the winter, and 5) individuals that utilize two lakes and 

one river with a consistent pattern. For this study, these five migration behaviours were 

grouped into three: river-resident (migration behaviour 3), seasonal migrant (migration 

behaviours 1, 4, and 5) and lake dominant migrant (migration behaviour 2) to address this 

study’s objective. The three groups were combined into the single seasonal migrant group 

since our analysis of feeding ecology included an average across years, not seasons. 

Furthermore, we recognized a river-resident group, but residents of different rivers (e.g., 

Detroit vs. St. Clair) may or may not feed on the same prey. 

In addition to migration behaviours, the location in which each lake sturgeon 

migrated was also analyzed. For this study, we used three discrete migration locations: 1) 

Detroit River to Lake Erie, 2) Detroit River to St. Clair River, and 3) St. Clair River to 

Lake Huron. The first category included lake dominant and seasonal migrant lake 

sturgeon that moved from Detroit river to Lake Erie. The second category incorporated 

Detroit and St. Clair River residents, seasonal migrants that moved from these two rivers 

to Lake St. Clair, and lake dominant migrants that remained in Lake St. Clair. These two 

rivers were grouped together since stable isotopes were not statistically different between 
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rivers among sturgeon and prey. Finally, the third category contained lake dominant and 

seasonal migrant lake sturgeon that moved from the St. Clair River to Lake Huron.  

Statistical analysis  

Stable isotopes for lake sturgeon were separated in three ways: 1) based solely on 

capture location with no regard for migration behaviour, 2) migration location with no 

regard for capture or migration behaviour, and 3) migration behaviours with no regard for 

capture location; the latter two categorized by telemetry data in Kessel et al. (2017). 

Since the drilled point on each fin spine covered multiple years (multiple rings), we 

grouped three of Kessel’s migration behaviours into one; both seasonal migration 

behaviours were grouped together along with individuals that utilized two lakes and one 

river, thus making three distinct migration behaviours: lake dominant migrant, seasonal 

migrant, and river-resident. Seasonal migrants return to spawning rivers annually, 

whereas lake dominant migrants return to spawning rivers at frequencies less than once 

per year.  

A Shapiro-Wilk test for normality and a Levene’s test to verify homogeneity of 

variances were used to assess assumptions of parametric statistics, however they were not 

normally distributed, and a non-parametric Kruskal-Wallis test was used to compare 

stable isotopes between capture site, migration location, and migration behaviour.  

Diet proportion estimates of the lake sturgeon sub-population that migrated within 

and between the St. Clair and Detroit Rivers was calculated with a Bayesian modelling 

framework in the package SIMMR (Parnell et al., 2013); this package runs a MCMC 

model and provides a probability of diet proportions using a DTDF and the means and 

SDs of potential prey isotopes from the system. Prey data from the St. Clair and Detroit 
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Rivers were combined along with literature isotope values of key prey items of lake 

sturgeon in the HEC. Since there is no diet-tissue discrimination factors (DTDFs) for lake 

sturgeon fin spine, we calculated our own using stomach content and fin spine isotope 

results from Jacobs et al. (2017). They found round gobies made up 86% by weight of 

lake sturgeon stomach content in the Niagara River. We then calculated the difference 

between the stable isotope values of lake sturgeon fin spines and round goby muscle, for 

a DTDF of +1.4 and +2.1 for δ13C and δ15N, respectively.  

Isotopic niches were quantified using δ13C and δ15N data and the SIBER (Stable 

Isotope Bayesian Ellipses in R) analysis package in R. The Standard Ellipse Area (SEAB) 

are calculated through a set of 10 000 iterations from the Markov chain Monte Carlo 

(MCMC) simulation; the mean and covariance are used to construct the ellipse which 

represents 40% of the simulated data, a conservative realized niche (Jackson et al., 2011; 

Guzzo et al., 2013). Comparable to bootstrapping, SEAC Bayesian estimates adjust for 

differences in sample sizes and accounts for the influence of outliers. Area and overlap of 

each ellipse among lake sturgeon categories was calculated using SIBER. 

All statistical analyses were completed using R version 3.4.1.  

 

Results 

Comparing stable isotopes of lake sturgeon and prey 

Stable isotopes in lake sturgeon did not differ among capture and migration 

groups, and no significant differences were found between δ13C and δ15N across capture 

locations, migration locations, and migration behaviours (Table 2.1). Although not 

statistically different, the lake sturgeon population that remained within and between the 
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Detroit River and the St. Clair River had the highest 𝛿13C (-17.3 ± 1.2; mean ± SD) and 

the population that migrated from St. Clair River to Lake Huron had the lowest (-18.2 ± 

2.1; Table 2.1). The highest 𝛿15N was seen in the population of lake sturgeon that 

migrated from Detroit River to Lake Erie (12.3 ± 1.5) and the lowest was seen in the 

population of river-residents (10.8 ± 1.0; Table 2.1).  

 All prey sources showed an increase in 𝛿15N from a low in Lake Huron to a high 

in Lake Erie, except in G. fasciatus (Table 2.1). Zebra mussels from Lake Huron and 

Lake Erie had the lowest 𝛿15N value (2.8 ± 0.5) and the lowest 𝛿13C value (-24.7 ± 0.5), 

respectively (Table 2.1). The highest 𝛿15N value came from round gobies in Lake Erie 

(14.6 ± 1.5), and in three of the four locations had higher mean 𝛿15N than lake sturgeon 

from the St. Clair and Detroit Rivers.  

Diet proportions based on stable isotopes 

Based on stable isotopes in fin spine tissue, adult lake sturgeon that migrated 

within and between the Detroit River and St. Clair River fed across a large variety of prey 

(Figure 2.2). Adult lake sturgeon showed wide variation in stable isotopes among 

individuals, ranging from -22.1 to -14.3 for δ13C and 8.8 to 14.8 for δ15N (Figure 2.2). 

Diet estimate proportions ranged from 9.9% to 13.4% for individual items (Figure 2.3); 

the lowest contributor was crayfish and the highest was E.ishmus.  

Isotopic niche 

 Lake sturgeon categorized solely by capture location, regardless of migration 

behaviour, had high isotopic niche overlap; the St. Clair River population had 80% 

overlap with the Detroit River population, but only 60% of Detroit River overlapped with 

St. Clair (Table 2.2, Figure 2.4).  
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 Isotopic niche overlap varied among individuals with different migration patterns 

(Table 2.2, Figure 2.4). Both the St. Clair River to Lake Huron population and the 

population that remained within and between the Detroit River and the St. Clair River 

had 22% niche overlap with the population that migrated from Detroit River to Lake Erie. 

The population that remained within and between the Detroit River and the St. Clair 

River had high overlap (76%) with the population that migrated from St. Clair River to 

Lake Huron. River-resident population had complete isotope niche overlap (100%) with 

the lake dominant migrant population.  

Detroit River-collected lake sturgeon had a larger isotopic niche area than St. 

Clair River (Figure 2.5a). Isotopic niche area increased from the Lake Erie to HEC to 

Lake Huron sub-populations, when breaking data into migration location (Figure 2.5b). 

The lake dominant sub-population had the largest isotopic niche, followed by seasonal 

migrant and river resident, within the migration behaviour sub-populations (Figure 2.5c). 

 

Discussion 

 Lake sturgeon isotopic niches of fin spines had high overlap across migration 

locations and behaviours, however they were unique in size. This high overlap could be 

due to the low resolution in stable isotopes among prey sources, which contributed to the 

approximate equal proportions of prey sources found in this system in diet mixing 

models. But taken together, stable isotopes indicated a generalist feeding behaviour of 

lake sturgeon in the HEC. Disparity in niche sizes across migration locations and 

behaviours suggests trophic polymorphism may drive varying migration strategies, and 
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has implications for management and recovery strategies, but further fine scale 

assessment of diet and feeding are required. 

 Similar isotopic niches between St. Clair River and Detroit River lake sturgeon 

populations represent comparable resource use, foraging behaviour, or prey availability 

between the two sub-populations categorized by capture location. There was a slightly 

lower 𝛿13C in the Detroit River isotopic niche, which is similar to differences in prey 

from the Detroit River and Lake Erie. These categories do not incorporate the migratory 

polymorphism of lake sturgeon in this system described in Kessel et al. (2017), which 

could account for the larger niche sizes. Habitat use and foraging are related elements of 

an organism’s ecology (Jackson et al., 2002) and once considered together, show 

differences in niche sizes of lake sturgeon from the HEC.   

The isotopic niche of the Detroit River to Lake Erie migrant sub-population had 

higher 𝛿15N than the other two sub-populations, which corresponds with higher 𝛿15N in 

prey from Lake Erie, and indicates feeding at a higher trophic position. This niche was 

also smallest of the sub-populations, suggesting a more specialist behaviour (Bolnick et 

al., 2003), although it could indicate that the baseline isotope values in Lake Erie are 

more confined then the other locations. The sub-population of lake sturgeon that migrated 

between St. Clair River and Lake Huron had a larger niche area that pulled towards a 

lower 𝛿13C, which did not correspond with the prey sampled at that location. It is 

important to note however that Lake Huron only had three prey sources quantified for 

isotopes, likely masking the importance of other benthic prey to this sub-population. 

Nevertheless, Lake Huron was the only location where mean 𝛿15N of round gobies was 

lower than lake sturgeon, which may imply they are of greater importance to the lake 
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sturgeon population that migrates from St. Clair River to Lake Huron than the other sub-

populations analyzed, and similarly to Niagara River population (Jacobs et al., 2017). 

Thus, we recommend future studies analyze the abundance, diversity, and stable isotopes 

of benthic macroinvertebrate populations across Lake Huron in order to incorporate other 

potential prey sources into future lake sturgeon diet analyses. 

The population that migrated within and between the St. Clair and Detroit Rivers 

had a larger niche area than the river-resident population, potentially caused by the lake 

sturgeon feeding in Lake St. Clair. Lake sturgeon that forage in Lake St. Clair either 

consume different prey types or similar prey with different isotope values (Oviedo & 

Angerbjörn, 2005). Lake St. Clair is similar in both depth, climate, and anthropogenic 

stressors as its two connecting rivers (U.S Army Corps of Engineers, 2004), but has a 

larger surface area and provides overwintering habitat for species from other tributaries 

(ie: Thames River). Prey migrating from the other tributaries into Lake St. Clair may 

provide lake sturgeon with different prey resources or prey with different isotope values, 

likely causing the difference in niche size.   

The river-resident population had the smallest niche size, suggesting that lake 

sturgeon that remain within rivers year-round may be more selective for prey, have a 

smaller prey base, and/or stable isotopes in the prey base have a smaller range of values. 

With high abundance and diversity of both native and invasive invertebrates in the HEC 

and low lake sturgeon numbers (Pollock et al. 2014), higher selectiveness in river-

resident lake sturgeon is possible. In bluegill sunfish, individuals became increasingly 

selective for larger daphnia when prey abundance increased (Gibson, 1983). Our work 

can be further extended to include an analysis of prey species composition and abundance 
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in the HEC in order to understand the amount of selectiveness river-resident lake 

sturgeon may be performing. 

The lake dominant migrant population does not consider which lake they spend 

the majority of time, likely resulting in this sub-population’s large niche area. Both the 

large area in St. Clair River to Lake Huron population and the difference in 𝛿15N between 

them and the Detroit River to Lake Erie population accounts for this largest niche area of 

lake dominant migrants. Lake sturgeon inhabit both deep water and littoral zones of Lake 

Erie and Lake Huron (Bunnell et al., 2014), presumably causing the increased variation in 

isotopes.  

Discrete sizes in isotopic niches across migratory locations and behaviours 

suggests that trophic polymorphism may play a role in the HEC lake sturgeon 

population’s feeding ecology. Chapman et al. (2012) suggested that there are four main 

causes of the evolution of partial migration: body size and physiological tolerance, 

predation risk, competitive release, and trophic polymorphism. Since we solely used adult 

lake sturgeon categorized over 1000mm TL, both predation risk and physiological 

constraints causing the migration polymorphism is unlikely. The competitive release 

hypothesis is also unlikely since invasive species are abundantly high in the HEC and 

lake sturgeon are still vulnerable with low population numbers, making trophic 

polymorphism the likely driver of migratory polymorphisms in lake sturgeon. However, 

we also acknowledge that trophic polymorphism may not be the driver of migration 

polymorphisms, but alternatively a consequence from it.  

Our research is the first to use intraspecific variations in migration behaviours to 

study diet differences, however, stable isotopes have commonly been used in ecological 
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studies to identify migration behaviours (Hesslein et al., 1991; Cerling et al., 2006; 

Trueman et al., 2012). For example, Nelson et al. (1989) document migration patterns of 

common smelt (Retropinna retropinna) using 𝛿13C and 𝛿15N stable isotopes from 

otoliths. In our study, the use of 𝛿13C and 𝛿15N stable isotopes would not have been 

effective in determining the migration strategies of lake sturgeon in this system since 

there were no significant differences in isotopes across behaviours, only disparity in 

niche sizes. The HEC has an abundance of zebra mussels, which couple benthic and 

pelagic habitats (Ackerman et al., 2001), likely causing similarities in isotopes across 

migration locations and behaviours. Additionally, Lake St. Clair is similar in depth to the 

connecting rivers (U.S Army Corps of Engineers, 2004), which further explains the 

similarity among migration groups.   

Stable isotopes of lake sturgeon fin spines determined that both round gobies and 

zebra mussels were proportionally comparable to other prey sources analyzed to the diet 

of lake sturgeon. Still, it is important to note that lake sturgeon diet is spatially diverse, 

and our findings are unique compared to other recent research on lake sturgeon diet from 

other locations within the Great Lakes. In Guilbard et al. (2007), adult lake sturgeon from 

the St. Lawrence River fed mainly on Gammarids, but this varied by season and location. 

Additionally, Smith et al. (2016) found that fish-based protein was the main diet source 

of lake sturgeon from Rainy River, and the population from the Niagara River fed 

predominately on round gobies (Jacobs et al., 2017). Our efforts to quantify diet using 

isotopes are confounded because a diet tissue discrimination factor for lake sturgeon, or 

any sturgeon, fin spines generated through controlled lab studies is lacking. 



 35 

Within and between the Detroit River and St. Clair River, lake sturgeon fed 

equally across prey sources sampled within the system; this could be representative of a 

generalist foraging behaviour or individual generalists within an area with low resolution 

in δ13C and δ15N among species (Bolnick et al., 2011). We incorporated key prey items 

found in other studies (ie: Chironomids and amphipods) but they were not of high 

importance for lake sturgeon that migrated within and between the Detroit and St. Clair 

Rivers. These variations in diet further support the spatial diversity of lake sturgeon diet 

within the Great Lakes (Beamish et al. 1998; Guilbard et al. 2007). For example, in the 

Niagara River, 86% of the stomach content identified in adult lake sturgeon were round 

gobies (Jacobs et al., 2017), much higher than in our study.  

Lake sturgeon from the HEC exhibited high intraspecific variation in dietary 

preference, suggesting they are individual specialists in a generalist population. Since this 

analysis was conducted on lake sturgeon that remained within and between the St. Clair 

and Detroit Rivers, locational differences are unlikely the cause of the disparity. In being 

the healthiest population in the Great Lakes (Thomas & Haas, 2002), having resource use 

heterogeneity may reduce future intraspecific competition (Bolnick et al., 2003). 

Generalist populations are often more stable in a changing environment (Marvier et al., 

2004) and given that this system is highly urbanized and subjected to environmental 

stressors (U.S Army Corps of Engineers, 2004), this sub-population may be well adapted 

to survive. For example, Devictor et al. (2008) looked at multiple species across different 

degrees of fragmented and disturbed habitats and found that the more specialist a species 

was, the stronger it was affected by fragmented and disturbed habitats, likely due to the 
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loss of a key prey species. Although competition tends to be higher in generalists, 

generalist densities usually increase compared to specialists (Abrams, 2007).   

 Our study used literature values of 𝛿13C and 𝛿15N for some species in the diet 

models, but there were no values for other macroinvertebrates from Lake Huron. This 

was problematic since the largest isotopic niche was seen in lake sturgeon that migrate 

from St. Clair River to Lake Huron. This high intraspecific variation could mean two 

things: this population exhibits trophic polymorphism (i.e., feed on different items), or 

they feed on similar prey but in different habitats of Lake Huron. This further extends the 

need for a detailed stable isotope study to be conducted on macroinvertebrates in Lake 

Huron. 

Our use of stable isotopes to study diet and trophic niche is transferable to other 

lake sturgeon populations, other sturgeon species, and other sensitive species or species at 

risk, where analyzing gut content may be impractical. For example, the shortnose 

sturgeon (Acipenser brevirostrum) is another species at risk like the lake sturgeon 

(Kynard, 1997). SIA on non-lethal tissue samples would allow for diet estimates without 

harming a protected species. Additionally, smaller fish are more susceptible to mortality 

via stomach pump (Hartleb & Moring, 1995; Kamler & Pope, 2001), and thus stable 

isotope methods for dietary analyses is more appropriate.  

Our interdisciplinary approach can be used on other species that exhibit 

intrapopulation variations in migration behaviours. For example, male and female 

walleye (Sander vitreus) migrate to different locations of Lake Erie but the driver was 

unidentified (Raby et al.,2018). By combining Raby et al., (2018) telemetry data with 
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stable isotope analysis, variations in feeding ecology across migration locations can be 

explored in walleye. 

 In summary, our research supports the spatially diverse foraging ecology of lake 

sturgeon and the need for current dietary data to aid in the conservation of populations 

within the Great Lakes. By understanding vital prey resources of lake sturgeon, better 

management strategies can be implemented for each sub-population as well as prevent 

future anthropogenic stressors from impacting their important prey. Because of the 

generalist feeding behaviour of adult lake sturgeon in the HEC, it may be beneficial to 

restore other genetically similar populations with offspring from the HEC population 

since they may be more resilient to stressors. Furthermore, while invasive species 

outcompete native species, they also represent a new prey resource for local species. The 

generalist foraging behaviour of lake sturgeon may be the reason why they are the 

healthiest population in the Great Lakes.  
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Table 2.1 Stable isotopes of carbon (𝛿13C) and nitrogen (𝛿15N) in lake sturgeon fin spines (median) and potential prey species (mean  

1 SD) collected from the locations within the Lake Huron-to-Lake Erie corridor. Lake sturgeon isotopes were additionally separated 

into the location they migrated to and by their migration behaviour using telemetry data analyzed in Kessel et al. (2017). Species 

denoted with a superscript letter are isotope values from previous literature.  

Prey Source 
Lake Huron St. Clair River Detroit River Lake Erie 

n 𝛿13C 𝛿15N n 𝛿13C 𝛿15N n 𝛿13C 𝛿15N n 𝛿13C 𝛿15N 

Round Goby 30 -18.9  0.7 7.9  0.5 40 -18.1  1.8 11.6  0.6 63 -19.5  2.7 12.0  1.6 30 -20.6  1.1 14.6  1.5 

Logperch – – – 0 – – 4 -19.2  2.0 10.2  1.0 – – – 

Zebra Mussel 6 -21.3  0.3 2.8  0.5 30 -19.9  2.2 7.6  0.4 36 -24.4  3.6 9.5  2.3 20 -24.7  0.5 11.8  0.3 

Quagga Mussel 
24 -21.0  1.4 3.0  0.9 0 – – 11 -20.4  1.0 7.4  0.9 10 -21.8  1.1 10.8  0.8 

Chironomids 
– – – – – – 1a -20.5 8.5 18b -19.3  1.1 10.9  1.2 

E. ishmus 
– – – – – – 10a -17.6  0.6 8.8  0.3 4b -19.6  1.6 10.2  0.5 

Mud Snails 
– – – 2a -16.1  0.3 7.9  0.6 – – – – – – 

G. fasciatus 
– – – 3 -16.9  0.2 11.1  1.2e-2 – – – 5b -16.8  1.0 9.1  1.0 

Crayfish 
– – – 5 -16.2  0.5 6.8  1.2 – – – – – – 

Lake Sturgeon – – – 44 -17.4 11.1 47 -17.9 11.4 – – – 

Migration Location Combined Capture Locations 

Detroit R. to L. Erie  9 -17.8 12.4  

Detroit R. to St. Clair R. 54 -17.4 10.9  

St. Clair R. to L. Huron 28 -18.0 11.4  

Migration Behaviour Combined Capture Locations 

Lake Dom. Migrant 46 -18.0 11.2  

Seasonal Migrant 23 -17.7 11.6  

River-Resident 22 -17.4 10.9  

a Pettitt-Wade (2016)  
b Campbell et al. (2009)
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Table 2.2 Overlap in isotopic niche (%) based on niche size (‰2) and SEAC (‰2) for lake sturgeon collected from two locations in the 

Lake Huron-to-Lake Erie corridor for a) St. Clair River and Detroit River capture locations, b) St. Clair and Detroit River split into 

their migration location from analyzed telemetry data, and c) categorized into lake dominant migrant, seasonal migrant, and river-

resident migration behaviours. Groupings in the leftmost column are used to read percent overlap values; for example, the St. Clair 

River population niche overlaps 80% with the Detroit River population niche.  

a) 

Capture Location St. Clair R. Detroit R. Niche Size (‰2) SEAC (‰2) 

St. Clair R. – 80 5.4 5.3 

Detroit R. 60 – 7.2 7.1 

b) 

Migration Location 

Detroit R. to 

L. Erie 

Detroit R. to 

St. Clair R. 

St. Clair R. 

to L. Huron Niche Size (‰2) SEAC (‰2) 

Detroit R. to L. Erie  – 36 55 3.3 3.2 

Detroit R. to St. 

Clair R. 
22 – 76 5.3 5.2 

St. Clair R. to L. 

Huron 
22 49 – 8.3 8.1 

c) 

Migration 

Behaviour 

Lake Dom. 

Migrant 

Seasonal 

Migrant 

River-

Resident Niche Size (‰2) SEAC (‰2) 

Lake Dom. Migrant – 52 36 8.7 8.5 

Seasonal Migrant 77 – 37 5.9 5.7 

River-Resident 100 69 – 3.2 3.1 
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Figure 2.1 Sampling sites for lake sturgeon, round gobies, logperch, and other 

macroinvertabrates (circles) within the Lake Huron-to-Lake Erie corridor collected from 

2011 to 2017. Acoustic receivers (triangles) are also depicted on the map and were 

deployed during years 2012 to 2014. 
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Figure 2.2 Values of 𝛿13C and 𝛿15N in individual lake sturgeon fin spine tissue, round 

goby and logperch muscle, and common invertebrate whole body (mean +/- SD) from the 

St. Clair and Detroit Rivers. Lake sturgeon isotopes were corrected using the calculated 

DTDF of +1.4 and +2.1 for 𝛿13C and 𝛿15N, respectively. (*) denotes literature values 

from Pettitt-Wade (2016). 
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Figure 2.3 Diet proportion estimates (median and quartiles) of lake sturgeon using 𝛿13C 

and 𝛿15N that migrate within and between the St. Clair and Detroit Rivers determined by 

running an MCMC model in SIMMR. Error bars serve as the 10th and 90th percentiles. 

*Pettitt-Wade (2016).   
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Figure 2.4 Isotopic niche areas of lake sturgeon fin spine tissue, ellipses represent a 

conservative realized niche (40% of the data): a) St. Clair River and Detroit River capture 

locations, b) St. Clair and Detroit River split into their migration location from analyzed 

telemetry data, and c) categorized into lake dominant migrant, seasonal migrant, and 

river-resident migration behaviours. Both b and c migration categorizations are based on 

telemetry data analyzed by Kessel et al (2017).  
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Figure 2.5 Density plots of Bayesian credibility intervals (BCIs) for standard ellipses 

area (SEAB) of lake sturgeon stable isotopes. The black dots represent mean SEAB, the 

blue triangles represent SEAC, and the grey blocks represent BCIs of 50, 75 and 95%. a) 

St. Clair River and Detroit River capture locations. b) movement locations of lake 

sturgeon from St. Clair River and Detroit River. c) lake dominant migrant, seasonal 

migrant, and river-resident migration behaviours of lake sturgeon individuals. Both the 

middle and right panel migration categorizations are based on telemetry data analyzed by 

Kessel et al (2017). 
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CHAPTER 3 

ISOTOPIC NICHES OF LAKE STURGEON PRE- AND POST- DREISSENID 

MUSSEL AND ROUND GOBY INVASIONS 
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Introduction 

The introduction and proliferation of invasive species in aquatic ecosystems has 

resulted in their integration into local food webs through predator-prey interactions, both 

as small-bodied invasive species that can be consumed by larger predatory native species 

(Vander Zanden et al., 1999) or as invasive predators that consume native prey (Flecker 

& Townsend, 1994). Dreissenid mussels (Dreissena polymorpha D. rostriformis 

bugensis) and round gobies (Neogobius melanostomus) are important invaders of the 

Laurentian Great Lakes that have caused a multitude of ecological effects including 

alterations to the food webs and prey of native predators (Ozersky et al., 2012).  

The invasive round goby and zebra mussel were first documented in the Great 

Lakes in the Lake Huron-to-Lake Erie Corridor (HEC), which consists of St. Clair River, 

Lake St. Clair, and Detroit River. Zebra mussels were found in Lake Erie in 1986, 

becoming well established in the Great Lakes by 1989 (Griffiths et al., 1991; Carlton, 

2008). Round goby was first documented in the St. Clair River in 1990, and by 1999 

were well-established at many places throughout the Great Lakes (Walsh et al., 2007). 

Native benthic-feeding fish feed on Dreissenid mussels and round goby, and in some 

instances, these species constitute a large proportion of their diets (Jacobs et al., 2017).   

Lake sturgeon are benthic generalists capable of feeding on invasive species, and 

adult lake sturgeon appear to feed primarily on Dreissenid mussels and round goby 

(French, 1993; Auer & Dempsey, 2013; Jacobs et al., 2017). Despite lake sturgeon’s life 

history traits that make them sensitive to anthropogenic stressors (Auer, 1996; St. Pierre 

& Runstrom, 2004), their long lifespan (up to 150 years) make them an ideal study 

species when looking historic trends in benthic food web connectivity (Peterson et al., 
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2007). Although mostly consisting of a cartilaginous skeleton, lake sturgeon are armored 

with bony plates called scutes and boney pectoral fins. Lake sturgeon fins grow radially, 

and fin ray sections have been used as a method for aging sturgeon (Bruch et al., 2009). 

Because fin ray tissue incorporates chemicals from consumed prey, fin rays also provide 

a non-lethal way to quantify chronological changes in sturgeon feeding ecology. The 

rays’ radial growth makes it possible to determine a lake sturgeon’s isotopic niche, a 

measure of dietary niche, at specific ages and within specified time periods, such as 

before or after the introduction of invasive species. In other words, fin rays can be used to 

reconstruct the historical diet of lake sturgeon.  

An advantage of stable isotope analysis (SIA) over stomach content analysis for 

determining diet or feeding ecology is that SIA provides a picture of animal food habits 

integrated over time spans of weeks to months, which is more relevant to understanding 

invasive species impacts on food webs than the snap-shot view of animal diet provided 

by stomach content analysis.  For sturgeon, stomach content analysis also requires an 

invasive stomach pumping method or sacrificing the subject (Hakala & Johnson, 2004; 

Parra & Jedensjo, 2014), which is undesirable when studying species at risk, such as the 

lake sturgeon.  

Stable isotopes, commonly δ13C and δ15N, are used to assess feeding ecology of 

organisms, including Great Lakes fish (Bearhop et al., 2004; Brush et al., 2012; Colborne 

et al., 2013). In freshwater systems, δ13C provides insights on carbon sources or habitat 

used (e.g., pelagic vs littoral) and δ15N provides a quantitative measure of trophic 

position (Cabana & Rasmussen, 1996; Fry, 2007). Stable isotopes can also be used to 

calculate an isotopic niche, which have been used to understand the role a species plays 
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in communities or ecosystems (Vander Zanden et al., 1997; Parnell et al., 2013). 

However, baseline stable isotope data is necessary to place individuals within an isotopic 

niche due to the possible effects of spatial and temporal variation (Post, 2002); by having 

an appropriate baseline, trophic position and carbon source can be inferred. 

Invasive species can further impact ontogenetic, or size-specific diet shifts, both 

in invaded fish species and in native species through predation of invasive species. In 

Lake Ontario, lake sturgeon (Acipenser fulvescens) ontogenetic diet shifts to higher 

trophic levels increased at faster rate following the round goby invasion (Jacobs et al., 

2017).  Whether similar diet shifts have occurred in other Great Lakes populations, such 

as the one in the HEC, is unknown. The HEC population of lake sturgeon is of particular 

interest since it was the first exposed to round gobies and Dreissenid mussels, which are 

now an important food resource for many benthic predators, including lake sturgeon 

(Kornis et al., 2012; Jacobs et al., 2017). Lake sturgeon are benthic generalists, however 

their diet can vary both spatially and temporally and thus dietary information should be 

assessed in each population.  

The purpose of this study was to determine if and how feeding ecology of 

juvenile, sub-adult, and adult lake sturgeon in the HEC has changed following invasions 

of Dreissenid mussels and round goby. Quantifying lake sturgeon feeding ecology in this 

system will provide information about changes in distribution and abundance of prey for 

this population. Our study differs from Jacobs et al. (2016) in five distinct ways: Our 

analysis focuses on the HEC population of lake sturgeon, we analyzed dietary data from 

the pre- Dreissenid time period, we included lake sturgeon over 14 years old, we 

incorporated a baseline, and we studied population niche size and overlap. Since lake 
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sturgeon diet varies spatially (Pollock et al., 2014), it’s important to analyze feeding 

behaviour across populations. Dreissenids were included in our study since they couple 

benthic and pelagic carbon and have become a part of lake sturgeon diet (Jackson et al., 

2002). Lake sturgeon on average reach sexual maturity between ages 15 to 27 and by 

incorporating a third age-class that migrates to spawn and forage, different stable isotope 

values are likely to be seen. Adding a baseline to our study allows us to ensure that 

changes in isotopes over time are due to dietary shifts and not environmental changes 

(Post, 2002). Finally, niches can be used to understand adaptability and 

generalist/specialist behaviours (Broennimann et al., 2007; Quevedo et al., 2009).  

Given the proliferation of Dreissenid mussels and round goby in the HEC, and the 

Jacob et al. (2017) study in Lake Ontario, we hypothesize they have become the 

dominant prey of lake sturgeon and increased their use of the pelagic energy pathway via 

the mussels, and trophic position through consumption of round gobies (Figure 1.2). We 

predict that both juvenile and adult lake sturgeon fed on similar prey types before the 

Dreissenid and round goby invasions; after these invasions, we expect that lake sturgeon 

under age five (< 700mm TL) continue to feed on their historic prey as well as round 

goby, but not Dreissenids because they lessen the availability of juveniles’ preferred prey 

(McCabe et al., 2006), while invasive species became the dominant prey of lake sturgeon 

five years and older (≥ 700mm TL; see French, 1995; Auer & Dempsey, 2013; Jacobs et 

al. 2017). To address this, we measured δ13C and δ15N in lake sturgeon at three locations 

within the HEC (Detroit River, Lake St. Clair, and Detroit River). These sites were 

chosen to reflect the population and potential sub-population of lake sturgeon in the HEC. 

To put the sturgeon isotopes in perspective, δ13C and δ15N were measured in invasive 
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prey (round gobies, zebra mussels, and quagga mussels) and mayflies from the HEC as a 

baseline. The mayflies were historical samples, covering a time period from 1977 to 

2014, to provide a temporal baseline. 

 

Methods 

Study Site and Sample Collection 

 Lake sturgeon were captured via setlines from three sites within the HEC (Figure 

3.1) by United States Fish and Wildlife Services (USFWS) and Ontario Ministry of 

Natural Resources and Forestry (OMNRF) from years 1991 to 2014. Captured lake 

sturgeon were measured for total length, weight, and a section of the leading-edge 

pectoral fin ray was stored in a labelled paper envelope and archived for age and stable 

isotope analyses. Of these sections, 56 were collected from Lake St. Clair, 90 from the 

Detroit River, and 56 from St. Clair River, for a total of 202 samples.  

 Round gobies and Dreissenid mussels were captured from four sites within the 

HEC between 2011 and 2013 (Figure 3.1). Round gobies were collected using minnow 

traps, bag seine nets, and angling methods; Dreissenid mussels were collected via a ponar 

sampler per Pettit-Wade et al. (2016). Round gobies were euthanized, and both round 

gobies and Dreissenid mussels were bagged on ice until stored in the laboratory freezer. 

These samples were later thawed, and boneless, skinless muscle samples were dissected 

from the round gobies, and the soft tissue from the Dreissenid mussels were separated 

from the shells for stable isotope analysis.  

Mayfly nymphs (Hexagenia spp.) were collected as a baseline species, using 

ponar samplers from sites within Lake St. Clair and the Detroit River from 1977 to 2014 
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by USGS (Figure 3.1). They were washed through a 0.65mm mesh screen and preserved 

in either formaldehyde or ethanol per Krieger et al. (1996) and finally analyzed for 𝛿13C 

and 𝛿15N. This species was used for baseline isotope data because it has a known trophic 

position of 2 and has been collected since before the Dreissenid invasions from the HEC. 

A total of 31 samples were ran for SIA, each consisting of five homogenized whole-body 

mayfly nymphs from the same year and sample site. Long term preservation using 

ethanol had no effect on 𝛿15N in ants (Tillberg et al., 2006), and Sarakinos et al. (2002) 

found no significant difference when using samples preserved with 4% formaldehyde and 

90% ethanol on 𝛿13C and 𝛿15N in mud shrimp (Crangon septemspinosa), therefore 

preservation effects were assumed to be negligible.  

Stable Isotope Analysis 

The lake sturgeon fin rays were cross-sectioned and drilled using a 5000 Sherline 

vertical milling machine at three specific points on the spine, which represent three age-

classes of that individual’s life history (ages 1 to 4, 4 to 14, and 15+) for stable isotope 

analysis (δ13C and δ15N). Three experts from USFWS aged these drilled cross-sections to 

ensure each drilled hole was within the age-classes defined above and to determine the 

approximate year(s) of that drill hole. Round goby muscle tissue and Dreissenid mussel 

soft tissue were freeze-dried for 48h and crushed into a fine powder using scissors. 

Dreissenid mussel soft-tissue was lipid extracted using methods described in (Pettitt-

Wade et al., 2016); lipid extraction was not done on fish muscle and ray tissue since they 

have low lipid content. Drilled fin ray tissue, powdered round goby muscle, Dreissenid 

mussel soft tissue and baseline samples were weighed (400–800μg) into tin cups and 

𝛿13C and 𝛿15N were determined using a Finnigan MAT Deltaplus mass spectrometer 



 58 

(Thermo Finnigan, San Jose, CA, USA). Stable isotope ratio values were expressed using 

the following equations:  

δX ‰ = (RSAMPLE / RSTANDARD – 1) × 1000 

where X represents 13C or 15N and R represents the ratio of either 13C:12C or 15N:14N. 

Mean analytical precision was estimated using four standards: NIST standard 1577c 

(bovine liver), an internal laboratory standard (tilapia muscle), certified USGS 41, and 

urea (n=88 for all). Equipment accuracy mean differences from certified values were -

0.13, -0.17 and -0.05‰ for 𝛿15N and -0.09, -0.06 and 0.05‰ for 𝛿13C, which was 

checked throughout the sample analysis period using NIST standards 8542, 8573, and 

8574 for 𝛿13C and NIST standards 8573, 8547, and 8574 for 𝛿15N (n = 79 for all except n 

= 65 for NIST 8573). 

Statistical analyses 

Lake sturgeon stable isotope data was assigned to one of three size/age classes: 1) 

juvenile: 20 – 650 mm TL, ages 0 – 4; 2) sub-adult: 700 – 1150mm TL, ages 5 – 14; and 

3) adult: > 1000mm in TL at age 15 and up. These age-classes were also chosen because 

they represent distinct size ranges according to Michigan’s DNR and cover the age/size 

range over which ontogenetic changes in diet were expected (Boase et al., 2014).  

Sturgeon aged 15 and older were combined because aging fin rays becomes imprecise 

over the age of 14 (Bruch et al., 2009) and male sturgeon reach sexual maturity on 

average between ages 15 – 20 and females between 20 – 25. To assess the impact of 

Dreissenid and the round goby invasions, data from each age-class was separated into 

three time frames: 1) pre-invasion (<1988); 2) post-zebra mussel and pre-round goby 

(1990 – 1998); and 3) post-round goby (>1999). 
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Stable isotope Bayesian ellipses in R (SIBER) package was used to estimate the 

isotopic niche of lake sturgeon within each age-class and invasion time frame using δ13C 

and δ15N to generate standard ellipse areas (SEAC). SEAC displays the core 40% of the 

measured data as a conservative realized niche (Jackson et al., 2011; Guzzo et al., 2013). 

Size and overlap were estimated using Bayesian modelling that ran 10,000 iterations of 

the measured SEA (SEAB; Jackson et al., 2011).  

A Shapiro-Wilks and Levenes test was conducted on δ13C and δ15N and 

confirmed normal distribution and equal variance. Linear regressions were constructed 

for each stable isotope variable versus time in years. Because there were significant 

trends in δ13C and δ15N in mayfly over time, we corrected lake sturgeon values to reflect 

ecosystem changes in stable isotopes using the mayfly regressions. Davies’ tests were 

employed to test for a change in slope by year in the linear regression. The linear 

regressions were then segmented at the point of inflection using the segmented package 

in R. Differences in δ13C and δ15N were evaluated by MANOVA across year and age-

class, and a post-hoc Tukey Test was run if significant differences from the MANOVA 

existed. All statistic calculations were completed in R version 3.4.1 (R Core Team, 2017).  

 

Results 

Stable isotopes across age-classes 

Lake sturgeon variations in diet, depicted as mean δ13C and δ15N varied in 

significance across age-classes and invasion history time periods (Table 3.1). Values of 

δ13C did not differ across age-classes during the pre-invasions stage, but were lower in 

the post Dreissenid and pre- goby stage (Table 3.1). Differences in δ13C among age-
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classes were observed in the post- invasion stage, with adults having the lowest values. 

Adult δ15N was significantly lower than δ15N in juveniles and adults in the post-round 

goby time frame (Table 3.1). Of the invasive species, zebra mussels had the lowest δ13C 

(–22.2 ± 0.4) and round gobies had the highest (–19.0 ± 0.2; Table 3.1). Quagga mussels 

had the lowest δ15N (7.4 ± 0.2) and round gobies had the highest (11.8 ± 0.2; Table 3.1).  

Isotopic niche   

 The lake sturgeon populations within the pre-Dreissenid and post-Dreissenid Pre-

round goby invasion time periods had high overlap (Figure 3.2), but invasion time period 

2 had differences in variance (SEA; Table 3.2). The population from the post-round goby 

invasion time period displayed a decrease in δ15N from high in juveniles to low in adults, 

with a niche overlap of only 2% (Table 3.2). All three age-classes from this time period 

had relatively similar sizes (5.7‰2, 5.4‰2, and 5.9‰2; Figure 3.2).  

Temporal trends in stable isotopes 

Both δ13C and δ15N increased over time in the baseline species, mayfly nymphs 

(Figure 3.3). Raw values of δ13C and δ15N for lake sturgeon did not exhibit a similar 

increase over time as the baseline species (Figure 3.3), meaning there was a temporal 

trend in isotopes not seen in lake sturgeon.  All δ13C and δ15N linear regressions were 

significant across all age-classes of lake sturgeon after being corrected for mayfly nymph 

baseline (Table 3.3).  

Using the Davies’ test, juvenile and sub-adult lake sturgeon had a significant 

change in slope in δ13C at year 1988 (<0.05; p-value). Those same age-class populations 

had a significant change in slope in δ15N at year 1994 and 1991, respectively (<0.05; 

Figure 3.4). The second half of the δ13C segmented linear regressions shifted towards a 
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more littoral carbon source and the second half of the δ15N segmented linear regressions 

showed an increasing trend towards a higher trophic position over time.  

 

Discussion 

 Lake sturgeon isotopic niches had high overlap across age-classes before round 

goby invasion, including periods when Dreissenids had invaded, but much less overlap 

after the round goby invasion. Low overlap across age-class may have resulted from size-

dependant predation risk and foraging capability associated with smaller body size 

(Werner and Gilliam, 1984). The large and consistent niche sizes across size-classes and 

years, however, suggest an overall generalized foraging behaviour at every age-class, 

except the large size-class in the period after Dreissenid invasion and before round goby. 

Stable isotopes indicated a shift away from Dreissenid mussels, but towards round gobies 

in juvenile and sub-adult lake sturgeon after the goby invasion, likely making round goby 

an important prey item for younger age-classes.  

 We found evidence of similar resource use in lake sturgeon across age-classes 

before the Dreissenid invasion. Isotopic niches remained high in overlap after the 

Dreissenid and before the goby invasion, but the size of the adult age-class niche was 

smaller than juveniles and sub-adults. This high overlap suggests that either lake sturgeon 

are using the same resources across age-classes or they are feeding on prey that occupy a 

similar niche in different locations. Since lake sturgeon numbers were historically low a 

few decades ago (Hay-Chmielewski & Whelan, 1997), intraspecific competition is 

unlikely making similar resource use across age-classes possible.  
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After the round goby invasion, juvenile and subadult niches had little overlap with 

the adult age-class. Adult lake sturgeon had lower δ15N and δ13C, suggesting that adult 

lake sturgeon feed on a more pelagic carbon source, but on lower trophic level prey than 

juveniles and sub-adults, potentially the result of predating on zebra mussels more 

heavily than round gobies. While juveniles may not forage in areas with an abundance of 

zebra mussels (McCabe et al., 2006) and consequently feed more prevalently on round 

gobies, our findings suggest that zebra mussels and other benthic invertebrates are more 

exploited by adult lake sturgeon. Intraspecific competition is likely not a factor 

influencing their ontogenetic niche shifts since lake sturgeon in the HEC are still 

considered below historic population sizes (Pollock et al. 2014). Since lake sturgeon did 

not travel great distances within the HEC (Kessel et al., 2017), we assumed the 

abundance of benthic invasive species in the HEC based on other studies (Priegel & 

Wirth, 1971; Auer, 1999). This abundance further supports that intraspecific competition 

for prey resources in the HEC is unlikely.  

While mean δ13C and δ15N did not change in adults after the Dreissenid invasion, 

isotopic niches suggest Dreissenid mussels are contributing to adult lake sturgeon diet. 

Boase et al. (2014) found adult lake sturgeon inhabit areas with high zebra mussel 

densities, and while this is not a dietary link, it could mean that they are either feeding 

directly on zebra mussels or that they do not have higher preference for the 

macroinvertebrates that are less available in areas with abundant zebra mussels (McCabe 

et al., 2006). In Lake Oneida, Jackson et al. (2002) found large numbers of zebra mussels 

in the diet of lake sturgeon over 700mm TL, and similar sized lake sturgeon were in areas 

highly concentrated with zebra mussels in Lake St. Clair (Boase et al., 2014); while this 
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size-class is part of our sub-adult age-class, we saw a shift towards a pelagic carbon 

signature and lower trophic level in our adults (1000+ mm TL).  

Lake sturgeon showed large intraspecific ranges in δ13C and δ15N, resulting in a 

wide population isotopic niche. This could be due to intrapopulation diet preferences or 

intrapopulation variation in habitat use composed of different prey (Smith & Skulason, 

1996). Resource polymorphism in lake charr (Salvelinus namaycush) in Great Bear Lake 

was found, however morphological differences were associated with these varied feeding 

habits (Blackie et al., 2003). While lake sturgeon within the Huron-Erie Corridor do not 

exhibit morphological differences aside from length at different ages, resource 

polymorphism may be driven by other factors future projects could incorporate.  

Values of δ13C and δ15N showed a significant increase over time in mayfly 

nymphs, suggesting a temporal ecosystem shift. Mayfly nymphs are an ecologically 

related species to lake sturgeon which we used to estimate temporal trends within the 

ecosystem. This trend may be reflective of eutrophication. Eutrophic ecosystems are 

considered highly productive, usually enriched with nitrogen and aquatic plants and algae 

(Chislock et al., 2013). Mayfly nymphs, being primary consumers (Brittain, 1982), will 

demonstrate an increased dependence on littoral carbon sources since plants and algae 

dominate a eutrophic system. However, lake sturgeon used an increasingly pelagic 

carbon source and decreasing trophic level, suggesting temporal trends in isotopes reflect 

changes in the diet of lake sturgeon. Additionally, each age-class had similar shifts in diet 

over time since they each showed the same trends.  

 Juvenile and sub-adult lake sturgeon did not reflect stable isotope values of 

Dreissenid mussels, indicating they are not as important to their diet as previously 
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believed. Instead, an increase in δ13C was seen in both these age-classes after zebra 

mussels were first discovered in the HEC. Previous studies in other areas of the Great 

Lakes that lake sturgeon under 700mm TL avoid foraging on zebra mussels (Jackson et 

al., 2002; Boase et al., 2014); our study supports these findings and others that concluded 

juvenile and sub-adult lake sturgeon avoid feeding on zebra mussels (Beamish et al., 

1998; McCabe et al., 2006). Aside from zebra mussels lowering the availability of 

juveniles’ preferred prey, Dreissenid mussels have a lower energy density than non-

shelled macroinvertebrates (Johnson et al., 2005), likely driving avoidance in juvenile 

and sub-adult lake sturgeon since they have an increased energy cost for development. 

While invasive species outcompete many native species for resources, they 

represent a new prey source of many local species (Jacobs et al., 2017; Pothoven et al., 

2017; Happel et al., 2018). We found significant shifts toward a more fish-derived diet in 

juvenile and sub-adult lake sturgeon diet after round gobies were first discovered in the 

HEC. Evidence of lake sturgeon feeding on round gobies was similarly reported in in the 

Niagara River of Lake Ontario, where gut content revealed 86% of lake sturgeon total 

diet comprised of round gobies and stable isotopes of fin spines supported their diet 

results (Jacobs et al. 2017). In other species, walleye (Sander vitreus) captured from Lake 

Huron’s main basin were feeding more prevalently on round goby and rainbow smelt 

(Osmerus mordax) than other potential prey items (Pothoven et al., 2017). Additionally, 

lake trout caught on the eastern shoreline of Lake Michigan consumed more round goby 

than other prey items based on gut content and fatty acids analyses (Happel et al., 2018).  

It is important to study historic and present food web relationships in order to 

predict the impact of invasive species (Strayer et al., 2006) and better manage ecological 
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restoration. This study quantified the historic and present trophic position and carbon 

source and the effects Dreissenid mussel and round gobies had on lake sturgeon in the 

HEC. Juvenile and sub-adult lake sturgeon may not have fed on Dreissenid mussels, but 

they did forage on round goby, and adult lake sturgeon showed a significant trend 

towards a more pelagic carbon source over time, complementing the signature of 

Dreissenid mussels. Not only do these invasive species contribute to the diet of a species 

at risk, but lake sturgeon of all age-classes may contribute in part to the resilience of an 

ecosystem to invasions by being native predators and acting as a biotic resistance.  
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Table 3.1 Stable isotopes (‰, mean  1 SE) of lake sturgeon fin spines across age-classes and invasion time periods, round goby, 

Dreissenid mussels, and mayfly nymphs collected from the Lake Huron–to–Lake Erie corridor. Superscript letters denote significant 

differences (p<0.05) within δ13C or δ15N determined by MANOVA. 

  < 1988 1990 ⎯ 1998 > 1999 

Lake Sturgeon δ13C δ15N N δ13C δ15N n δ13C δ15N n 

   Juvenile –17.5 ± 0.1a 10.9 ± 0.1zw 88 –18.0 ± 0.2b 11.3 ± 0.2z 82 –17.3 ± 0.3ac 13.0 ± 0.4x 18 

   Sub⎯Adult –17.7 ± 0.2ab 11.9 ± 0.2y 42 –18.4 ± 0.2b 11.3 ± 0.2z 46 –16.9 ± 0.2c 12.3 ± 0.2y 52 

   Adult –17.2 ± 0.4ac 12.0 ± 0.3y 12 –18.2 ± 0.3b 10.9 ± 0.4zw 5 –18.0 ± 0.3b 10.8 ± 0.3w 33 

Zebra Mussel – – 0 – – 0 –22.4 ± 0.4 8.6 ± 0.3 72 

Quagga Mussel – – 0 – – 0 –20.4 ± 0.1 7.4 ± 0.2 35 

Round Goby – – 0 – – 0 –19.0 ± 0.2 11.8 ± 0.2 133 

Mayfly Nymph –25.2 ± 0.5 4.9 ± 0.7 7 –22.3 ± 0.3 6.1 ± 0.2 9 –23.0 ± 0.3 8.0 ± 0.4 15 
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Table 3.2 Overlap in isotopic niche (%) based on SEAC, niche size (‰2), and SEAC (‰2) for lake sturgeon collected from three 

sampling locations within the Lake Huron-to-Lake Erie corridor. Rows show how similar lake sturgeon from one age-class is to those 

from another within time frames; for example, the niche of juvenile lake overlaps 50% with the niche of sub-adult lake sturgeon from 

before 1988. Columns show how distinct lake sturgeon from an age-class is to another; for example, 55% of the niche of juvenile lake 

sturgeon overlaps with the niche of sub-adult lake sturgeon under age 5 from before 1988 and thus 45% of the niche of juvenile lake 

sturgeon is unique from sub-adult lake sturgeon from before 1988. 

 

 

  <1988 1990 ⎯ 1998 >1999 

Lake Sturgeon  Juvenile Sub-Adult Adult Juvenile Sub-Adult Adult Juvenile Sub-Adult Adult 

   Juvenile ⎯ 50 39 ⎯ 60 16 ⎯ 62 2 

   Sub⎯Adult 55 ⎯ 70 67 ⎯ 16 65 ⎯ 20 

   Adult 39 64 ⎯ 100 88 ⎯ 2 18 ⎯ 

SEAc (‰2) 4.3 3.9 4.3 4.9 4.4 0.8 5.7 5.4 5.9 

Niche Area (‰2) 4.4 4.0 4.4 5.0 4.5 0.8 5.8 5.5 6.0 
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Table 3.3 Linear regression statistics of 𝛿13C and 𝛿15N for juvenile, sub-adult, and adult lake sturgeon, and mayfly nymphs from the 

HEC over time. Y-intercept and slope are denoted as b and m, respectively. First break refers to the linear regression from the first 

data point to the year when a significant shift in slope occurred. The second break refers to the linear regression from the year in 

which the significant shift in slope occurred to the last data point. In juveniles and sub-adults, the significant shift happened in 1994 

and 1991 for 𝛿15N, respectively. In both those age-classes, the significant shift for 𝛿13C happened in 1988.  

𝛿13C                           

 Corrected Linear First Break Second Break 

 b m R2 p-value b m R2 p-value b m R2 p-value 

Lake Sturgeon             

   Juvenile 73.9 -4.7e-2 0.073 < 0.001 268 -0.11 0.31 < 0.001 -49.8 1.5e-2 2.5e-3 0.65 

   Sub⎯Adult 21.4 -2.0e-2 0.021 < 0.01 456 -0.24 0.37 < 0.001 -149 6.5e-2 0.1 < 0.001 

   Adult 175 -9.8e-2 0.26 < 0.001         

𝛿15N                         

Lake Sturgeon             

   Juvenile 149 -7.0e-2 0.11 < 0.001 281 -0.14 0.19 < 0.001 -448 0.23 0.13 < 0.001 

   Sub⎯Adult 236 -0.11 0.32 < 0.001 337 -0.16 0.13 < 0.05 121 -6.0e-2 5.1e-2 <0.05 

   Adult 383 -0.19 0.59 < 0.001         
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Figure 3.2 Sampling locations for lake sturgeon and mayfly nymphs from the Lake 

Huron-to-Lake Erie corridor. Lake sturgeon were collected from 1991 to 2014, mayfly 

nymphs from 1977 to 2014, and invasive species from 2011 to 2013.  
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Figure 3.3 Isotopic niche areas and density plots of Bayesian credibility intervals (BCIs) for standard ellipses area (SEAB) of lake 

sturgeon fin ray tissue collected from the HEC across times periods and age-classes. The black dots represent mean SEAB, the blue 

triangles represent SEAC, and the grey blocks represent BCIs of 50, 75 and 95%. 
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Figure 3.4 Temporal trends in raw 𝛿13C (a) and 𝛿15N (b) in fin spines of lake sturgeon by 

age-class from 1953 to 2009 in the HEC. Grey area represents 95% confidence region. 

Linear regressions were constructed for the mayfly nymph baseline as well as each age-

class where age-class 1 = age 4 and less, age-class 2 = 5 to 14, and age-class 3 = 15+. R2 

and p-values for 𝛿13C were 0.075 and <0.01 for age-class 1, 0.020 and 0.083 for age-class 

2, 0.082 and <0.05 for age-class 3, and 0.30 and <0.001 for mayfly baseline.  R2 and p-

values for 𝛿15N were 0.10 and <0.001 for age-class 1, 0.018 and 0.1 for age-class 2, 0.099 

and <0.05 for age class 3, and 0.63 and <0.001 for mayfly nymphs.
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Figure 3.5 Scatterplot of 𝛿13C (panels a, b, and c) and 𝛿15N (panels d, e, and f) of lake sturgeon from 1977 to 2009 with both linear 

and segmented linear regressions and a 95% confidence region in grey. Lake sturgeon data was corrected for temporal trends in 

ecosystem using the mayfly baseline. Panels a) and d) (age-class 1, 4 and less), b) and e) (age-class 2, 5 to 14), and panels c) and f) 

(age-class 3, 15+). The shaded areas signify the time range when the invasive species were first discovered to when they were 

considered widespread and dominant. 
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CHAPTER 4 

GENERAL DISCUSSION  
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 Lake sturgeon feeding behaviour varies both spatially and temporally and thus 

dietary data is not transferable across locations. The Lake Huron–to–Lake Erie Corridor 

(HEC) is a major migration route and spawning ground of lake sturgeon (Auer et al., 

1996; Roseman et al., 2011), but current dietary analyses are lacking for this species in 

this system. Our goal was to answer if lake sturgeon feeding ecology is impacted by 

partial migration, ontogeny, and species invasions within this system by quantifying 

stable isotopes of carbon (δ13C) and nitrogen (δ15N), trophic position (TP), and 

proportional diet estimates. Our findings provided information about intraspecific 

interactions across sub-populations of lake sturgeon categorized by migration behaviour, 

age-class, and invasion time period, adults’ preferential prey items in this system, as well 

as information regarding the complex role invasive species play as a new prey resource. 

 

Chapter Summaries 

 Chapter two analyzed isotopic niche size and overlap in adult lake sturgeon across 

different migration behaviours. It borrowed from the work of Kessel et al. (2017) to 

categorize lake sturgeon from two capture sites within the HEC into three distinct 

migratory behaviours and three discrete locations in which they migrated; the three 

migration behaviours are lake dominant migrant, seasonal migrant, and river-resident, 

and the three migration locations are St. Clair River to Lake Huron, within and between 

the St. Clair and Detroit Rivers, and Detroit River to Lake Erie. We further estimated 

proportional diet of lake sturgeon that migrated within and between the St. Clair and 

Detroit Rivers.  
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Isotopic niche size was largest in the lake dominant migrant sub-population, while 

river-residents were small in comparison. Upon separation into which lake they migrated 

to, the population that migrated from the Detroit River to Lake Erie had higher δ15N than 

the population that migrated from St. Clair River to Lake Huron, as did the prey captured 

within each lake. Lake sturgeon that migrated to Lake Erie also had a smaller isotopic 

niche in comparison to the population that migrated to Lake Huron. Diet estimate and 

niche results showed lake sturgeon diet varied spatially. Despite their abundance, 

invasive species were equal contributors to adult lake sturgeon diet as other prey sources, 

suggesting a generalist behaviour within this system. Stable isotopes revealed discrete 

sub-populations of lake sturgeon by migratory locations and behaviours.  

Chapter three examined temporal trends in juvenile, sub-adult, and adult lake 

sturgeon stable isotopes across three invasion time frames: pre-Dreissenid (<1988), post-

Dreissenid and pre-round goby (1990–1998), and post-round goby (>1999). Archived 

pectoral fin spines of HEC lake sturgeon collected from 1991 to 2015, which include sub-

populations, were sectioned across growth rings and analyzed for stable isotopes (δ15N 

and δ13C). These data, along with key invasive prey, Dreissenid mussels (Dreissena spp.) 

and round goby (Neogobius melanostomus), provided a temporal assessment of feeding 

ecology of lake sturgeon at the individual and population level. 

We observed differences in diet across age-classes after the round goby invasion 

and significant changes in slope of stable isotopes in juveniles and sub-adults after the 

Dreissenid and round goby invasions, suggesting juvenile and sub-adult lake sturgeon 

began feeding on round gobies, but avoided Dreissenid mussels. However, adult lake 

sturgeon isotopic signatures post-round goby suggests they are either feeding directly on 



 81 

zebra mussels or are not as restricted as their youth when foraging on other 

macroinvertebrates in high zebra mussel concentrated areas. While gobies may prey upon 

or outcompete small-bodied native fish, they potentially represent a new prey resource 

for native predators like lake sturgeon. 

 

Conclusions 

 Temporal and spatial variations in lake sturgeon diet appeared in many ecological 

studies within the Great Lakes (Guilbard et al., 2007; Smith et al., 2016; Jacobs et al., 

2017) and our research support these findings. Stable isotopes of lake sturgeon from the 

HEC conclude that dietary information is not transferable across populations. 

Furthermore, disparity in niche sizes across migration behaviour revealed discrete sub-

populations within the HEC. With increasing anthropogenic stressors, it is important to 

study food web relationships – both historic and present – in order to best implement 

ecological restoration plans. Differing isotopes and niches of lake sturgeon at different 

ages suggest that they may require different management approaches within the HEC. 

Furthermore, adult lake sturgeon of different migration strategies had discrete niche sizes 

that require consideration before stocking arrangements. 

 New questions and future research on lake sturgeon diet arose from this project. 

Our work can be further extended to include an analysis of prey species composition and 

abundance in the HEC in order to understand the amount of preference lake sturgeon may 

be performing and support the trophic polymorphism hypothesis. Values of δ15N and 

δ13C differed in prey resources across capture sites, while mean isotope values remained 

similar in lake sturgeon that exhibit different migration behaviours. This suggests that 
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certain prey (like the round goby) may be more abundant to lake sturgeon that migrate to 

Lake Huron, since it was the only location where δ15N was lower in round goby than lake 

sturgeon. Because there was low resolution in stable isotopes among prey species from 

within and between the St. Clair and Detroit Rivers, adding a third stable isotope, such as 

δ34S and collecting other non-lethal tissue samples, such as blood plasma and red blood 

cells, a more robust dietary analysis can be conducted.  

 Studies analyzing the diet tissue discrimination factor for lake sturgeon fin spines 

are lacking. In our study, we used values from Jacobs et al., (2017) to calculate the 

change in isotopes from round gobies to lake sturgeon fin spines since round gobies made 

up 86% of their stomach content. Stomach content only provides a “snapshot” of a 

species diet and tends to overestimate the importance of certain prey (Brush et al., 2012). 

Future projects could include a laboratory study where lake sturgeon are fed appropriate 

hatchery feed for a year and then analyze stable isotopes for that feed and the most recent 

age ring on lake sturgeon fin spines to calculate a more accurate DTDF.  

Studies surrounding changes in diet with ecological shifts, such as human-induced 

invasions, have been well-documented (Becker & Beissinger, 2006; Jacobs et al., 2017; 

Blanke et al., 2018). Because these ontogenetic diet shifts in lake sturgeon include recent 

introductions, it’s important to study the complex role invasive species play as a new 

prey resource for this species at risk and potentially other local species. While invasive 

species outcompete many native species for resources, they represent a new prey source 

of many local species (Jacobs et al., 2017; Pothoven et al., 2017; Happel et al., 2018). 

We provided information about the feeding ecology of a species for which 

standard gut content analysis is impractical. Our approach to studying diet composition 
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and foraging niche is transferable to other lake sturgeon populations in the Great Lakes 

and other sturgeon species, such as the shortnose sturgeon (Acipenser brevirostrum), 

which is also anadromous (Gilbert, 1989). The shortnose sturgeon has a similar history as 

lake sturgeon in that they were both endangered due to overharvesting, habitat dredging, 

and pollution (Kynard, 1997). Stable isotope analysis of pectoral fin spines allows for 

dietary analysis of species at risk without further harming their already decimated 

population numbers.  

Our approach is also transferable to other partially migratory species and species 

at risk. For example, Raby et al. (2018) found sex to be a determinant of when walleye 

migrated out, but why some individuals migrated further than others remained 

unexplained. Walleye are a long-lived species which are protected from anglers by 

length-limits on catch and spawning season closures. By implementing non-lethal stable 

isotope methods and utilizing Raby et al., (2018) telemetry data, a similar study could be 

done to answer if feeding opportunities are driving different migratory behaviours in 

walleye.    
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