
University of Windsor University of Windsor 

Scholarship at UWindsor Scholarship at UWindsor 

Electronic Theses and Dissertations Theses, Dissertations, and Major Papers 

2019 

Smart Water: Short-Term Forecasting Application in Water Utilities Smart Water: Short-Term Forecasting Application in Water Utilities 

Mo'tamad Bata 
University of Windsor 

Follow this and additional works at: https://scholar.uwindsor.ca/etd 

Recommended Citation Recommended Citation 
Bata, Mo'tamad, "Smart Water: Short-Term Forecasting Application in Water Utilities" (2019). Electronic 
Theses and Dissertations. 7685. 
https://scholar.uwindsor.ca/etd/7685 

This online database contains the full-text of PhD dissertations and Masters’ theses of University of Windsor 
students from 1954 forward. These documents are made available for personal study and research purposes only, 
in accordance with the Canadian Copyright Act and the Creative Commons license—CC BY-NC-ND (Attribution, 
Non-Commercial, No Derivative Works). Under this license, works must always be attributed to the copyright holder 
(original author), cannot be used for any commercial purposes, and may not be altered. Any other use would 
require the permission of the copyright holder. Students may inquire about withdrawing their dissertation and/or 
thesis from this database. For additional inquiries, please contact the repository administrator via email 
(scholarship@uwindsor.ca) or by telephone at 519-253-3000ext. 3208. 

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Scholarship at UWindsor

https://core.ac.uk/display/215514899?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://scholar.uwindsor.ca/
https://scholar.uwindsor.ca/etd
https://scholar.uwindsor.ca/theses-dissertations-major-papers
https://scholar.uwindsor.ca/etd?utm_source=scholar.uwindsor.ca%2Fetd%2F7685&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholar.uwindsor.ca/etd/7685?utm_source=scholar.uwindsor.ca%2Fetd%2F7685&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarship@uwindsor.ca


 

Smart Water: Short-Term Forecasting Application in Water Utilities 

 

 

By 

 Mo’tamad H. Bata 

 

 

 

A Thesis 

Submitted to the Faculty of Graduate Studies 

through the Department of Civil and Environmental Engineering 

in Partial Fulfillment of the Requirements for 

the Degree of Master of Applied Science 

at the University of Windsor 

 

 

Windsor, Ontario, Canada 

 

2019 

 

© 2019 Mo’tamad H. Bata 

 



 

 

Smart Water: Short-Term Forecasting Application in Water Utilities 

 

By 

 Mo’tamad H. Bata 

 

 

APPROVED BY: 

 

___________________________________________________ 

J. Johrendt 

Department of Mechanical, Automotive & Materials Engineering 

___________________________________________________ 

T. Bolisetti 

Department of Civil and Environmental Engineering 

___________________________________________________ 

D. Ting, Co-Advisor 

Department of Mechanical, Automotive & Materials Engineering 

___________________________________________________ 

R. Carriveau, Advisor 

Department Civil and Environmental Engineering 

 

 

April 18, 2019 



iii 

DECLARATION OF CO-AUTORSHIP / PREVIOUS PUBLICATION 

 

I. Co-Authorship 

I hereby declare that this thesis incorporates material that is result of joint research. 

Chapters 3 & 4 of this thesis were completed under the supervision of Dr. Rupp Carriveau 

and Dr. David Ting. In all cases, the key ideas, primary contributions, experimental design, 

data analysis, interpretation, and writing were performed by the author. The contribution 

of co-authors was primarily through the provision of checking and comments on the 

literature review, methodology and modeling, results interpretation, providing feedback on 

refinement of ideas, editing of the manuscript, and advice on selecting peer reviewed 

journals for publication. 

I am aware of the University of Windsor Senate Policy on Authorship and I certify that I 

have properly acknowledged the contribution of other researchers to my thesis, and have 

obtained written permission from each of the co-authors to include the above materials in 

my thesis. 

I certify that, with the above qualification, this thesis, and the research to which it refers, 

is the product of my own work. 

II. Previous Publication 

This Thesis consists of three original papers that have been published / submitted or to be 

submitted for publication in peer-reviewed journals, as follows: 

Thesis 

Chapter 
Publication 

Publication 

Status 

Chapter 3 

Bata, Mo’tamad; Carriveau, Rupp; Ting, David S.-K. 

2018. “Short-term Water Demand Forecasting Using 

Nonlinear Autoregressive Artificial Neural Networks 

(ANN)”. Engineering Application of Artificial 

Intelligence. 

Under review 



iv 

Chapter 4 

Bata, Mo’tamad; Carriveau, Rupp; Ting, David S.-K. 

2018. “Hybrid Self Organizing Map and Regression Tree 

Short-term Water Demand Forecasting Model”. 

To be 

submitted 

I certify that I have obtained written permission from the copyright owner(s) to 

include the above published material(s) in my thesis. I certify that the above material 

describes work completed during my registration as a graduate student at the University of 

Windsor. 

III. I certify that, to the best of my knowledge, my thesis does not infringe upon anyone’s 

copyright nor violate any proprietary rights and that any ideas, techniques, quotations, or 

any other material from the work of other people included in my thesis, published or 

otherwise, are fully acknowledged in accordance with the standard referencing practices. 

Furthermore, to the extent that I have included copyrighted material that surpasses the 

bounds of fair dealing within the meaning of the Canada Copyright Act, I certify that I have 

obtained a written permission from the copyright owner(s) to include such material(s) in 

my thesis and have included copies of such copyright clearances to my appendix. 

I declare that this is a true copy of my thesis, including any final revisions, as 

approved by my thesis committee and the Graduate Studies office, and that this thesis has 

not been submitted for a higher degree to any other University or Institution. 

I hereby certify that the thesis I am submitting is entirely my own original work 

except where otherwise indicated. I am aware of the University's regulations concerning 

plagiarism, including those regulations concerning disciplinary actions that may result 

from plagiarism. Any use of the works of any other author, in any form, is properly 

acknowledged at their point of use. 

 

 

 

 



v 

ABSTRACT 

The unyielding interconnection between water and energy has made demand forecasting a necessity 

for water utilities. Electricity prices driven by the time of use has impelled water utilities towards 

short-term water demand forecasting. The progressive new Smart Water Grid platform has helped 

water utilities in utilizing their Water Distribution Networks. This two-way platform has provided 

developers and decision makers with robust models that rely on consumer feedback. Among these 

models is the water demand forecasting models. Multitudinous demand forecasting methods have 

been developed but none have utilized model implementation practicality. Utilities differ in size, 

capacity, and interest. While small size utilities focus on model simplicity, larger utilities prioritize 

model accuracy. This work focuses on a water utility located in Essex County, Ontario, Canada.  

This study presents three papers that focus on investigation and evaluation of short-term water 

demand forecasting techniques. The first paper compares water usage between two crops (tomatoes 

and bell peppers) in an effort to evaluate a crop to crop forecast technique that relies on one crops 

watering data in order to produce forecasts for another crop, The second paper examines the effect 

of model type, input type, and data size on model performance and computational load. The third 

paper proposes a new methodology where model performance is not sacrificed for model 

simplification.  
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CHAPTER 1 

INTRODUCTION 

Background  

Existing conventional water networks are aging. Conventional distribution systems operate in a 

one-direction supply process. Minimal feedback is provided from the demand side, i.e. the 

consumers. With their centralized one-directional flow characteristics (Newbold J., 2009), these 

systems are more prone to undetected failures and leaks. This can cause network disruptions and 

waste water, which is discouraging in solving the two major water issues, scarcity and 

security. Therefore, conventional water networks are unpredictable, economically 

infeasible, energy inefficient, and hard to maintain and manage.  

Over the past decade, the water security and scarcity issues have propelled governments, water 

supply systems, and researchers to upgrade current networks and develop preventive 

measures. These measures aim to avert the global population increases and the escalating global 

warming effects; including but not limited to, droughts, fires, floods, and climate change.  

New water management infrastructures have been successfully established to tackle the 

aforementioned challenges. The new platform of tools, technologies, and models is known as the 

Smart Water Grid (SWG). SWG is a two-way real time network with sensors and devices that 

continuously and remotely monitor the Water Distribution System (WDS). Smart water meters can 

monitor many different parameters such as pressure, quality, flow rate, temperature and 

others (Martyusheva O., 2014). The gathered data is then used in various tools, models, and 

decision make systems. For instance, data collected through pressure monitoring sensors can 

be utilized to detect and locate damaged pipelines or system leaks. Compared to the conventional 

water grid, SWG is more resilient, reliable, sustainable, and energy efficient.  

The SWG approach can help solve one of the most complicated challenges in the Water 

Distribution System (WDS), the imbalance between water supply and demand. Water supply, 

measured by system production capacity, is usually a constant rate. On the other hand, the water 

demand represented by water consumption varies throughout the day and from day to another. For 

example, water demand is higher during daylight business hours than during night-time (Leirens et 

al. 2010). Factors other than time of the day affect water demand, such as: number of consumers, 

type of consumer, consumption seasonality, new technologies, etc. With this 

dynamic fluctuation in the water demand side, it would be near impossible for the supply side to 
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keep the network in balance. The development of water demand forecasting models is essential in 

developing pumping schedules and operating the network in balance (Fodya & Harley, 2014).  

Researchers have extensively studied and proposed water demand forecasting models. A 

rich review of over 30 papers published between the years of 2000 and 2010 was presented 

by (Donkor et al. 2014). Models seemed to perform well on the studied data. However, one 

common issue was found for the vast majority of the models, model practicality. Models were 

deemed impractical due to: difficulty in acquiring input data, complexity in models architectures, 

and ineffective development cost. Most models have focused more on model accuracy without any 

consideration on how practical it would be for a specific utility to adapt such model. Here, 

practicality is defined as model suitability for a specific utility. Model suitability is governed by 

utility size, capacity, and interest to deploy a model. Small size utilities, for instance, may assign 

more weight to model simplicity over accuracy. While, bigger utilities prioritize model accuracy 

over model simplicity. 

Problem statement  

The Union Water Supply Systems (UWSS) located (see Figure 1) in Essex County, Ontario, 

Canada, operates their network on reactive mode. When water levels in main reservoir drop, 

operators turn pumps switches on. By doing that, operators respond to the demand in the past and 

select pumps according to their knowledge and experience. UWSS faces new challenges where the 

reactive mode is no longer efficient. UWSS receives continuous requests of additional water 

demand by consumers. UWSS can supply the extra requested water demand, however, their 

capability is constrained by the time of use. Moreover, UWSS is impacted by the energy time of 

use prices fluctuation and the evolving renewable energy market penetration and its pressure on 

big consumers. 

UWSS can tackle the aforementioned challenges by switching into proactive mode. The anticipated 

future demand is responded to within this mode instead of the past. Pumping schedules are prepared 

ahead, pumps are selected accordingly, time of the use prices can be benefited from. Also, demand 

peaks can be reduced which will result in less water and energy losses in the system. Proactive 

mode is based on pre-knowledge of the demand patterns and can be achieved through short-term 

water demand forecasting models. 

The objective of this study was to propose and investigate short-term water demand forecasting 

models while considering model practicality. The proposed models are designed to assist water 

utilities in developing their pumping schedules. To do this, multiple forecasting methodologies 
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were adapted for this purpose. Once the models were developed, the next step was to evaluate their 

performance and deployment practicality.  

 

Figure 1. Studied area location 

This study is made up of three research papers. The first paper (reviewed in chapter 2) has been 

published in the Agriculture journal; Evaluation of Crop to Crop Water Demand Forecasting: 

Tomatoes and Bell Peppers Grown in a Commercial Greenhouse (Rice et al. 2017) and proposed a 

simple model where an end-user of only 80% of the utility consumers (i.e. commercial 

greenhouses) are studied. This paper addresses the model complexity and practicality issue. The 

issue of model type, data size, and input selection are studied in Chapter 3. The second paper, which 

is under review at the Journal of Water Resources Planning and 

Management, investigates three model architectures with different levels of complexity in order to 

determine if complex models with more data instances and more data inputs perform significantly 

better than simple models with less data instances and less inputs. The third and final paper (chapter 

4), which will be submitted to the Journal of Water Resources Planning and 

Management, addresses the complexity issue in another way. A hybrid model is presented where 

model practicality is considered without sacrificing the forecast accuracy.  
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CHAPTER 2 

Forecasting Methodology  

Introduction 

This chapter provides an overview of an end-user previous study on short-term water demand 

forecasting models for the same water utility. The content here presents in depth the methodology 

used in the previous study. Also, a general introduction of the methodologies used in this study is 

presented. 

C2C Methodology 

Crop to crop is a water demand forecasting methodology presented by Rice et. Al. (2017). The 

study focused on the UWSS’s main consumer, the commercial greenhouses. UWSS services over 

720 hectares of greenhouse operations with more than 57% of the crops is tomato. The study 

proposed simplified methodology where one crop’s water demand is predicted based on another’s. 

The base model was suggested to be an Artificial Neural Network (ANN) model where the water 

demand for the targeted crop is forecasted with a simple linear model. Two simple linear models 

were proposed, Linear Regression (LR) and Quotient Method (QM). LR and QM were deployed 

to forecast 24 hours ahead pepper water demand based on tomato’s and vice versa.  

The results showed that both LR and QM had on average a NRMSE of 25% more than the base 

ANN model when predicted demand compared to the actual demand. The increase in the ANN 

model accuracy was due its capability of capturing nonlinearity in the actual data. The results also 

showed that when the ANN base model predicted data was used in LR and QM, an average increase 

of 12% and 22% in the NRMSE was noticed, respectively. This disparity in error can be attributed 

to the magnitude of error present in the base model. Although, C2C is dependent on the base model, 

C2C provided an improvement to the current fixed demand methods used in the region. Also, the 

study suggested that ANN models outperforms the simple proposed linear models. 

ANN Theory and Models 

ANN is a biologically inspired network of connected nodes called artificial neurons configured to 

perform specific tasks (Hagan et. al., 1995). ANN consists of a Multi-Layer Perceptron (MLP): 

input layer, one or more hidden layers, and output layer (see Figure 1). The input layer is where 

data is fed at the beginning of the training process and anytime the network is used to predict 

outputs (training, validation, and test phases). The hidden layer is where most of the computations 
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occur and it has neurons, connections of weights and biases, propagation function, and a learning 

rule. Neurons in the hidden layer are trained where only one neuron is activated for each input. This 

is achieved through forward or backward propagation where neurons are assigned weights after 

comparing the input to the output value and calculating the gradient of the loss function. The output 

layer contains the final form of the input data after it is processed. ANNs are widely used in 

different applications such as: pattern recognition, classification, regression, and clustering.  

 

Figure 1. Typical Artificial Neural Network structure. 

ANNs have advantages over the conventional models in demand forecasting applications. ANNs 

can generalize and model nonlinear complex relationships. That is important because most real-life 

problems have a nonlinear and complex relationship between inputs and outputs. In addition, ANNs 

have a high computational capacity, the ability to generalize, and infer unseen relationships on 

unseen data. Researchers (Adamowski & Karapataki 2010, Ghiassi et al. 2008; Jain & Ormsbee 

2002) have used ANNs in short-term water demand forecasting application and showed that ANNs 

outperforms traditional forecasting technique. In this study, four ANN models are deployed to 

forecast the water demand t-time steps ahead. Then, these models are compared to a traditional 

adequate forecasting model based on two criteria: model forecasting accuracy, and computational 

load.   

Forecasting methodology 

The focus of this study is on short-term water demand forecasting. Here, short-term refers to how 

many t-time steps are forecasted ahead. Proposed models produced 8-hour, 24-hour, and 7-day 

forecasts. These spans were selected to utilize the operations and working shifts at the water utility.  



7 

Two forecasting methodologies are presented in this study. The first methodology is the nonlinear 

autoregressive with and without exogenous parameters. This group of models is investigated in 

chapter 3. The second methodology, studied in chapter 4, is a hybrid model resulted from the fusion 

of regression trees and self-organizing maps. 

Nonlinear Autoregressive Models  

Because of the seemingly nonlinear relationship in the water demand data, this nonlinear 

ANN model was chosen for forecasting. Nonlinear Autoregressive (NAR) and Nonlinear 

Autoregressive with Exogenous inputs (NARX) are a supervised machine learning Multi-Layer 

Perceptron (MLP) feedforward ANN models. Theses two models use historical time series data to 

predict in the future. The difference between NAR and NARX is that NARX utilizes more than a 

single input time series to predict a target series. In this thesis, for example, NARX used the 

historical water demand and weather parameters to predict the future water demand. Meanwhile, 

NAR only used the historical water demand to predict the future water demand. Both models have 

a similar workflow of training, testing, and validating. Both models were also built using the same 

Guide User Interface (GUI) neural net time series package in MATLAB R2017b platform.   

Processed data is loaded to the workplace. Then, target data and input data are selected to be fed to 

the network input layer. At this step, the time series format is selected where data is converted into 

a standard neural network cell array form. The formatting function chosen in this study was 

“tonndata” because of its compatibility with neural networks. After conversion, data is divided up 

into three categories: training data, validation data, and testing data. Training data is the group 

presented to the network during training step and the network will adjust based on its errors and 

weights. Validation data is the portion that is used to measure the network generalization. Network 

will stop training when no generalization improvement is measured. Testing data is the last portion 

that is used to measure the network performance. In this study, default recommended data division 

of 70% training, 15% validation, and 15% testing was used. Ideally, datasets are divided into 

training dataset to build the model, and testing dataset to evaluate the model performance. However, 

a validation dataset is used in ANN models to avoid overfitting issue. Overfitting occurs when the 

model is excessively trained and its accuracy reaches 100%. Overfitted models are not preferred 

due to their poor performance on unseen data.  The validation held back dataset estimates the model 

parameters independently from the training dataset.  

At this step, the input layer is fully developed. Next, “narnet” or “narxnet” is used to define the 

NAR or NARX network architecture, respectively. These two functions define the feedback delays 
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number, the hidden neurons number, and the training algorithm. Both NAR and NARX models 

were first trained with the default feedback delays of 2, hidden neurons of 10, and Levenberg-

Marquardt “trainlm” as training algorithm. Levenberg-Marquardt is an iterative technique that 

locates the minimum of a multivariate function that is expressed as the sum of squares of nonlinear 

real-valued function (Levenberg, 1944). This regularization algorithm is developed to solve the 

overfitting problem in ANN models. The selection of this algorithm is based on obtaining the 

lowest mean squared error possible (Hagan et. al., 1995). The training algorithm, the number of 

delays, and hidden neurons were adjusted based on the network performance. After the network 

architecture is defined, performance measures are selected to evaluate the network. The Mean 

Absolute Percentage Error (MAPE) and Root Mean Squared Error (RMSE) were selected for 

performance evaluation (i.e. equations 1 & 2, respectively). In case the network performance was 

not satisfactory, parameters such as number of neurons, number of delays, training algorithm, and 

network retrain option, could be calibrated. After reaching a steady state, where performance does 

not change with changing parameters, the closed-loop network could be exported and used to 

forecast water demand. 

𝑀𝐴𝑃𝐸 =
1

𝑛
∑ |

Yi − Ŷi 

Yi
|

𝑛

𝑖=1

 
(1) 

𝑅𝑀𝑆𝐸 = √
1

𝑛
∑(

𝑛

𝑖=1

𝑌�̂�
2

− 𝑌𝑖
2) (2) 

Where, 

n = the number of data points; Yi and Ŷi represent and and water outflow 

i = the data point number (i.e. 1, 2, …, n) 

Yi = the actual water outflow 

Ŷi = the forecasted water outflow 

Hybrid Model 

A supervised machine learning technique is fused with an unsupervised machine learning 

model to perform short-term water demand forecasting. Supervised machine learning is a technique 

where a corresponding target output is known for each input instance, in contrast to unsupervised 
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machine learning where no target values are known. Regression Trees (RT) technique was selected 

for the supervised machine learning part. RT implicitly perform feature selection which reduces 

data dimension (Breiman et al., 1984). This feature is important in a predictive model because it 

minimizes irrelevant data noise, which improves the model performance and reduces time of 

training. Other advantages of the RT technique are the minimal effort in data preparation, and the 

ease of model interpretability. Self-Organizing Map (SOM) is a clustering unsupervised model 

fused with RT technique to further reduce the data space where forecasting is performed. SOM 

groups input data into a defined number of clusters based on specific similarities (Kohonen T., 

1982). In this study, the similarity criterion is set as the water demand intensity. This clustering 

technique is performed before data is fed to the forecasting model, RT model. Again, both models 

were built using the Guide User Interface (GUI) neural net time series package in MATLAB 

R2017b platform.  

First, the SOM model is built, trained, validated, and tested. Input data is selected in matrix form 

within the neural clustering tool (nctool). After input data is loaded, the SOM network architecture 

is defined where clustering function and number of neurons are selected. In this study, 

“selforgmap” function is used to define the: row vector dimension size, number of training steps, 

initial neighborhood size, layer topology function, and neuron distance function. Values of these 

parameters were initiated as the tool recommended default (i.e. 2 neurons, 100 training steps, 3 

neighborhood size, hexa-topology, “linkdist”). These parameters could be replaced by different 

values; however, the number of neurons was the dominant parameter that affected the SOM 

performance. Next, SOM is trained using the batch unsupervised weight/bias algorithm. Weights 

and biases are calculated and updated at the end of the entire pass of input data. The output of SOM 

is binary determining if an instance belongs to a specific cluster or it does not.  

Second, SOM cluster number is added to the input data and uploaded to the RT model workplace. 

RT model requires defining the parameters of: number of cross-validation folds, maximum number 

of splits and minimum leaf size, Principal Component Analysis (PCA) feature, and the fitting 

algorithm. 

• Cross-validation folds: It is important to define and include this feature to prevent the 

common training issue, overfitting. Number of folds was initially chosen to be 5 (default). 

• Maximum number of splits and Minimum leaf size: RT algorithms grow deep trees by 

default, determining the number of maximum splits and leaf size helps in reducing model 

complexity and training time. The number of maximum splits and minimum leaf size 

were initiated as default (10 and 4, respectively.) 
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• Principal Component Analysis (PCA): this feature was enabled to transform features and 

remove redundant dimensions. PCA prevents the model from learning a previous learnt 

information. PCA extracts a small number of variables that best explain variance in the 

dataset. 

• “fitrtree”: this was the algorithm used to fit the RT model. “fitrtree” returns a regression 

tree based on the input value contained in the predictor matrix and the output value in the 

response matrix.  

After defining and selecting the previous parameters, RT model is trained, and performance is 

calculated. Further modifications are applied if the performance is unsatisfactory. This includes: 

adding extra neurons in the SOM model, add folds, increase the maximum splits and minimum leaf 

size values in the RT model. 
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CHAPTER 3 

Short-term Water Demand Forecasting Using Nonlinear Autoregressive Artificial Neural 

Networks (ANN) 

Mo’tamad H. Bata, Rupp Carriveau, and David S.-K. Ting 

Turbulence and Energy Laboratory, Ed Lumley Centre for Engineering Innovation, University of Windsor, 

Windsor, ON N9B 3P4, Canada. 

Nomenclature 

The following symbols are used in this chapter: 

ANN = Artificial neural network 

NARX = Non-linear autoregressive with exogenous inputs model 

NAR = Non-linear autoregressive model 

SARIMA = Seasonal Autoregressive Integrated Moving Average 

MAPE = Mean absolute percentage error 

NRMSE = Normalized root mean squared error 

m3 = Cubic meter 

hr = Hour 

HD = Hot Deck 

oC = Degree Centigrade  

g = Gram 

W/m2 = Watt per squared meter 

kPa = Kilo Pascal  

PCC = Pearson Correlation Coefficient  

MLP = Multi-layer perceptron  

ARX = Autoregressive with exogenous inputs model 

𝑌𝑖 = Current observed value of time series 

Xi = Current value of exogenous time series 

t = Time  

n = Number of data point (i.e. 1, 2, 3, etc.) 

RMSE = Root mean squared error 

𝑌�̅� = Data set mean 

𝑌�̂� = Forecasted water outflow 
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Introduction 

Providing reliable, secure potable water to consumers is a vital core aspect of any water utility’s 

daily operations.  Short-term water demand forecasting can help a water utility to more efficiently 

manage many of their principal operations.  These include the distribution system, pumping 

schedule, and storage assets. Water demand is temporally and spatially dynamical, often in short 

time frames. Water demand profiles are very dependent on regional influences. Some of the main 

driving factors are consumer type, water prices, population growth, economic growth, 

technological practices, and management strategies. A forecasting model’s capacity to take into 

consideration the aforementioned variables is important; three main factors are deemed the main 

engine of a relatively accurate model. The first and most important factor is the input. Researchers 

(Guo et al., 2018; Arandia et al., 2016; Alvisi et al., 2007; Homwongs et al., 1994; Shvartser et al., 

1993; Jowitt and Chengchao, 1992) have used historical water demand as a single input in their 

forecasting models. Their models showed reasonably accurate forecasts. Others (Rice et al., 2017; 

Herrera et al., 2010; Ghiassi et al., 2008; Bougadis et al., 2005; Aly and Wankule, 2004; Jain and 

Ormsbee, 2001; Jain et al., 2001)  have used extra (Exogenous) inputs in addition to the historical 

water demand, weather and seasonality data, such as, temperature, rainfall, and evaporation, time 

of the day, and day of the week. The inputs used in this study are explained in the Methods section. 

 

The second driving factor is the time horizon, which contains two-time dimensions, one to 

determine how far back the historical data is needed, and one to set the length of the forecast. 

Previous studies have chosen the historical time span without clarifying the reasons for selection. 

In this paper, historical hourly data of the last 5 years (2013-2017), the most recent year of the 5 

years data (2017), and the 4 most recent months of the most recent year (September 2017-December 

2017) were used as inputs.  These were chosen to investigate the effects of historical data length 

on the forecast accuracy. The other time dimension is how far ahead the model will forecast, this 

horizon is governed by the model application (Bakker et al., 2003). Short-, medium-, and long-term 

forecast horizons have been extensively discussed by (Donkor et al., 2012; Billings and Jones 2008; 

Gardiner and Herrington 1990). For our purposes here, short-term forecast horizons of 24 hours 

and 1 week ahead were utilized for the purpose of daily operations and pumping schedule control. 

 

The third significant factor is the model method itself. Many studies have assumed the presence of 

a linear relationship between the predictors and the response in demand forecasting; however, 

nonlinearity oftentimes manifests itself in these variables (Ghiassi et al., 2008). ANN models have 

proven themselves in linear and non-linear applications.  This is evident in their ability to 
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progressively learn, self-train, and improve performance of demand forecasting systems. They have 

been broadly used in demand forecasting in various applications. Kandananond, 2011; Chang et 

al., 2011; Feilat & Bouzguenda, 2011; Amjady & Keynia, 2011; Azadeh et al., 2007 used ANN in 

electricity load forecasting. Guo et al., 2018; Bennet et al., 2013; Adamowski & Karapataki, 2010; 

Mitrea et al., 2009; Ghiassi et al., 2008; Jain & Ormsbee, 2002 used ANN in water demand 

forecasting and showed that it outperformed traditional water demand forecasting techniques. 

Although many ANN approaches have proven useful in modeling complex demand forecasting, a 

few undetermined parameters of the model architecture have made ANN models harder to elucidate 

and optimize. Theses architectural parameters include the training algorithm, and the optimal 

number of neurons and hidden layers.  

 Guo et al., 2018 broadly classified water demand forecasting methods into traditional methods and 

learning algorithms. Traditional statistical methods have used linear time series or linear regression 

to tackle this challenge and have proposed simple statistical models (Wong et al., 2010; Zhou et 

al., 2000) to tackle it. A popular model used extensively among this group is the Autoregressive 

Integrated Moving Average (ARIMA). These models have been widely used (Kofinas et al., 2014) 

because they have a simple structure, are easy to implement and interpret, and do not require a lot 

of input data. Learning algorithms identify water demand forecasting as a nonlinear problem. With 

the progressive advancements in machine learning and data analytics, these algorithms have 

achieved higher accuracy in prediction models. Support Vector Machine (SVM), Artificial Neural 

Networks (ANN) and Deep Learning models are the most studied within this group. More detailed 

description and the use of traditional methods and learning algorithms can be found in Arandia et 

al., 2016 and Guo et al., 2018. 

 

In this manuscript, two nonlinear ANN models and one linear ARIMA model were employed with 

a specific architecture to forecast water demand. Model nature and methodology (i.e. linear vs. 

nonlinear) was first investigated. Secondly, input type (single input vs. exogenous inputs) influence 

on the predicting model was studied. Lastly, data size was scrutinized in an attempt to determine 

how far back the data is required to be. 

Study Area and Data 

Union Water Supply System (UWSS) is a municipal water supply system owned by the Ontario 

municipalities of Leamington, Kingsville, Essex, and Lakeshore. UWSS supplies water to 

approximately 65,000 residents and in addition to commercial, industrial and agricultural 

customers. A consumer breakdown inspection reveals that on an annual average; 78% of the 
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utility’s outflow is consumed by commercial greenhouses. The rest, 22%, is consumed by the 

residential and industrial sectors. 

Five years (Jan 2013 – Dec 2017) of continuous hourly data was used to train the models. It was 

grouped into three main categories, the plant outflow measured in m3/hr (see Figure 1), the weather, 

and the seasonality. Outflow data had 3.75% of missing and erroneous (i.e. zero data) data, missing 

data was imputed using the Hot Deck (HD) method, and the imputation was based on the highest 

correlated factor, previous day same hour, shown in Table 1. Further description of the imputation 

is discussed in the Data Pre-processing section. 

 

Figure 1. Utility water outflow m3/hr 

The observed weather data at t=0 is used as an exogenous input in the proposed NARX models to 

predict at t=24 and t=168; hourly data of ambient temperature (0C) (see Figure 2), dew point (0C), 

absolute humidity (g H2O / m3 air), solar radiation (W/m2), and station pressure (kPa). A total of 

2.30% missing data, mainly solar radiation, was imputed similarly using the HD method. The last 

category is the seasonality and it contains the year (2013-2017), the month (1-12; 1 represents 

January and 12 represents December), the day of the month (1-28,29,30 or 31), the day of the week 

(1-7; 1 represents Saturday and 7 represents Friday), and hour of the day (1-24; 1 represents 12:00 

-1:00 am and 24 represents 11:00 pm – 12:00 am). 
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Figure 2. Ambient temperature (0C) 

 

In terms of input data, the Pearson Correlation Coefficient (PCC, also referred to as Pearson’s r) is 

evaluated for 14 different demand, weather, and seasonality predictors. The 14 input predictors 

were selected according to data availability and previous consideration in demand forecasting 

literature. In Table 1, the predictors PCC is shown in one column and the correlation strength is 

shown in the other column. The correlation strength is a description using the guide proposed by 

(Evans, 1996) for the absolute value of r. PCC ranges between 1 and -1, where 1 is the total positive 

linear correlation, 0 is no linear correlation, and −1 is the total negative linear correlation. While 

PCC is not robust in terms of measuring dependency (Wilcox, 2005), other robust estimators of 

correlation are not as interpretable as PCC. 

Table 1. PCC measured for the predictors 

Predictor Rank PCC Strength 

Previous day same hour 1 0.835 Very strong 

Previous week same hour 2 0.758 Strong 

Previous 24hrs average 3 0.569 Moderate 

Temperature 4 0.478 Moderate 

Absolute humidity 5 0.397 Weak 

Dew point 6 0.393 Weak 

Solar radiation 7 0.363 Weak 

Year 8 0.064 Very weak 
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Month 9 0.036 Very weak 

Hour of the year 10 0.035 Very weak 

Hour of the day 11 0.026 Very weak 

Day of the week 12 0.020 Very weak 

Station pressure 13 - 0.010 Very weak 

Day of the month 14 0.007 Very weak 

 

Data Pre-processing 

Missing data is an untold story of a record. Missing data is a common occurring issue that 

significantly affects the information that can be drawn from the data. The missingness could be a 

result of many reasons. Some of these common reasons are: incomplete data collection, faulty 

equipment, non-response in data, and impractical feature case. 

Handling missing data is essential prior to deploying it. Missing data could be discarded; this is the 

simplest technique of handling the missingness. However, it is not effective if the missingness rate 

is high. Also, missing data could be replaced, estimated, or filled based on domain knowledge 

(Salvador et al. 2015). In this paper, missing data is handled by imputation, where the missing 

values are filled to form a complete dataset. One used popular strategy of imputation is the Hot 

Deck.  

The term “Hot Deck” originally used as computer punch cards for data storage, and refers to the 

deck of cards for donors available for a non-respondent. The deck was “hot” since it was currently 

being processed, as opposed to the “cold deck” which refers to using pre-processed data as the 

donors, i.e. data from a previous data collection or a different data set (Andridge et al. 2010).   

Hot Deck is a common imputation technique and is considered in this paper. With HD imputation, 

the missing value is replaced by a similar responding unit. This method is extensively used in 

practice where a non-respondent missing value (called the recipient) is replaced by a respondent 

value (called the donor) with respect to characteristics observed by both cases (Andridge et al. 

2010). Selection of the donor leads to two versions of the Hot Deck imputation. The first version 

is the Random Hot Deck method where the donor is selected randomly from a donor pool. Whereas 

for the second version, the Deterministic Hot Deck, one single donor is selected; usually the nearest 

neighbor.  

In this paper, the Deterministic Hot Deck is applied to impute the missing data on provided dataset. 

The nearest neighbor donor is selected which is similar to the k-Nearest Neighbor (K-NN) where k 
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is equal one. The nearest neighbor is determined though a distance function, herein, the Euclidean 

Distance presented in equation 1. 

 

                                                        𝑑 = √∑ (𝑄𝑖 − 𝑃𝑖)2𝑛
𝑖=1                                                             (1) 

Where, 

d is the Euclidean Distance 

i is the record number  

n is the dimension number  

Q is the reference point  

P is the target point 

The methodology of the HD imputation is simple. If Y and X are two variables/features where Y is 

the target (i.e. the Donee) column that has the missing values and X is the covariant (i.e. the Donor). 

For the missing value Y4, the distance function (i.e. Euclidean Distance) determines the nearest 

neighbor to X4. Then, the corresponding Yn of that nearest Xn is replaced for the original missed 

value, Y. Figure 3 illustrates the process. 

 

Figure 3. Nearest Neighbour Hot Deck Imputation 

Methods and Model development  

SARIMA Model 

SARIMA is a simple statistical model that is used to analyze and predict a time series. 

SARIMA is a seasonal generalization of the Autoregressive Moving Average (ARMA) with the 

addition of seasonality and integration. SARIMA models consist of both seasonal and non-seasonal 



18 

parameters and are denoted by ARIMA (p, d, q) x (P, D, Q)S (Shumway and Stoffer, 2000). The (p, 

d, q) non-seasonal order of the model is the number of Autoregressive (AR) parameters, 

differences, and Moving Average (MA) parameters. The (P, D, Q)S order of the seasonal component 

of the model is the AR parameters, differences, MA parameters, and periodicity. These non-

seasonal and seasonal parameters are iteratively identified through plotting the Autocorrelation 

Function (ACF) and the Partial Autocorrelation Function (PACF). Regarding the data needed to 

properly fit a SARIMA model, Arandia et al., 2016, showed that a 7-day window is enough to 

forecast 24 hours ahead. In this paper, two SARIMA models with two different training windows 

were fitted to forecast water demand. The first model, ARIMA (0, 1, 1) X (0, 1, 1)24, used 7 day 

hourly water demand data to forecast 24 hours ahead. The second model, ARIMA (0, 1, 1) X (0, 1, 

1)168, used four recent months of hourly water demand data to forecast 7 days ahead.   

Nonlinear Autoregressive with Exogenous inputs (NARX)   

NARX models are recurrent dynamic networks with feedback connections that enclose 

several layers of the network. NARX is a Multi-Layer Perceptron (MLP) feedforward ANN. These 

models are based on the linear ARX model, which is commonly used in time-series modeling. 

(Pisoni et al., 2009) claimed that the nonlinear neural network models (NARX) have better 

performance than the polynomial NARX models. Later (Mustafaraj et al., 2011) validated that 

claim and showed that neural network NARX models outperform the linear ARX models. A NARX 

model delineates the current value of a time series (Yi) to both past values of the time series (Yi-1, 

Yi-2,…, Yi-n) and current (Xai, Xbi,…, Xni).  It also demarcates past values of the correlated 

(Exogenous) series (Xai-1, Xbi-1, …, Xni-1, Xai-2, Xbi-2, …, Xni-2, Xai-n, Xbi-n, …, Xni-n). Equation 2 

illustrates the defining equation by (Demuth et al., 1998) for the NARX model and the NAR model 

explained in the next section. 

 

                      Y(t) = f (Yt-1, Yt-2, …, Yt-n, Xt-1, Xt-2, …, Xt-n)                                 (2) 

 

Figure 4 (a) illustrates the algorithm used to develop NARX models in the MATLAB R2017b 

platform. First, data is divided into input data (Exogenous data) and its corresponding target data 

(water outflow data). Then, a training function is selected based on memory performance and 

problem type. Input delays, feedback delays, and hidden layer size are then estimated and the 

NARX net is created. After creating the net, input and feedback pre-/post-processing functions are 

chosen. Data is then prepared for training and simulation where inputs and delays are selected to 
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feed a new network design at each time step. Also, at each time step, data samples are divided 

randomly into training, testing, and validation. At this point, the network is ready to be trained, 

however, its performance is not yet evaluated. Therefore, one or more performance functions are 

selected to check whether the network performs as desired or the network parameters and structure 

need to be estimated again. If the desired performance is met, network parameters are returned, and 

the network is enclosed to forecast steps ahead. All NARX and NAR networks in this paper are 

MLP with the same training, processing, preparing functions (i.e. trainbr, proccessfncs, and 

preparets, respectively). 

     

Three NARX models were built to forecast the water demand 24 hours and one week ahead. The 

criterion that was considered to differentiate between the three models is the historical data span 

length (5 years, 1 recent year, and 4 recent months) for both water outflow and exogenous inputs. 

The selection of 5 years was based on the use of all available data. Meanwhile, 1 recent year and 4 

recent months were selected to investigate how using less data would impact model accuracy versus 

model complexity. Further selections could be made. However, the consumer activity periodicity 

must be acknowledged, here that’s commercial greenhouses. A researcher could have different data 

span length according to the utility consumer breakdown, for this specific utility, the division into 

three main seasons was assumed to accommodate the main consumer (Commercial greenhouses) 

seasons of planting.    

    

Figure 4. a) NARX network algorithm                                b) NAR network algorithm 

 

 



20 

Nonlinear Autoregressive (NAR)        

NAR models are recurrent dynamic networks with feedback connections enclosing several 

layers of network. NAR also is a Multi-Layer Perceptron (MLP) feedforward ANN. NAR models 

are used extensively in time series demand forecasting, a comprehensive literature review by 

(Moreno- Chaparro et al., 2011) lists different types of time series and methods that used NAR 

models for prediction in various applications. A NAR model predicts the current value of a time 

series (Yi) using past values (Yi-1, Yi-2,…, Yi-n), see Equation 3 for the defining equation. NAR 

models were developed with an algorithm (see Figure 4 (b)) similar to the NARX’s. However, 

NAR models are fed with only input data. Three NAR models were built in this study and used to 

forecast the water demand for 24 hours and one week ahead; the same criterion used to produce the 

three NARX models was used similarly in the NAR models. 

 

                         Y(t) = f (Yt-1, Yt-2, …, Yt-n)                                                            (3) 

 

Baseline comparison and model performance 

The actual measured water outflow is used as a basis for evaluation.  The forecasted target value 

(Ŷi) is compared to the target actual measured value (Yi) and overall model performance is 

measured by: (1) Mean Absolute Percentage Error (MAPE) and (2) Root Mean Squared Error 

(RMSE). However, the dataset that was used as an input for the models has different ranges and 

means, the Normalized Root Mean Squared Error (NRMSE) is included to syncretize those 

differences. Equations 4, 5 and 6 represent the MAPE, RMSE and NRMSE, respectively, where n 

represents the number of data points; Yi and Ŷi represent the actual and the forecasted and water 

outflow, respectively, and 𝑌�̅�  is the data set mean.  

 

𝑀𝐴𝑃𝐸 =
1

𝑛
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Yi − Ŷi 

Yi
|

𝑛

𝑖=1
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1
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𝑁𝑅𝑀𝑆𝐸 =
𝑅𝑀𝑆𝐸

𝑌�̅�

 (6) 

 

Results and Discussion  

Linear vs. Nonlinear 

The results for the seven proposed models forecasting 24 hours ahead and 1 week ahead 

are shown in Table 2. It can be observed that the forecast in both time horizons have a relatively 

better overall performance when nonlinear models (i.e. NAR and NARX) were employed 

compared to the linear models (i.e. SARIMA). On average, MAPE error for NAR models compared 

to the SARIMA models is 3% and 15% less, forecasting 24 hours ahead and 1 week ahead, 

respectively. Likewise, NARX models performed with 30% and 36% less error compared to 

SARIMA models, forecasting 24 hours ahead and 1 week ahead, respectively. That is because of: 

(1) nonlinear models are able to capture both linearity and nonlinearity in the time series; and (2) 

nonlinear models employed in this paper, ANN models, have a complex multi-layer structure that 

finds correlation between input, feedback, and output parameters. Regarding model stability, 

nonlinear models seem to perform with greater stability as the relative error values are lower 

compared to linear models.  

Table 2. Models overall performance 

    

MAPE 

(%) 

 

NRMSE 

(%) 

Relative Error 

Forecast ahead Historical data Model Standard 

deviation 

Percentile 

5% 95% 

2
4

 H
o

u
rs

  

7 days SARIMA-24 17.5 17.7 0.0821 ±0.86% ±9.65% 

5 years NAR-5y 18.6 18.9 0.0873 ±0.78% ±9.16% 

1 year NAR-1y 17.5 17.6 0.0816 ±0.75% ±8.48% 

4 recent months NAR-4m 14.8 15.2 0.0701 ±0.72% ±8.62% 

5 years NARX-5y 18.1 18.5 0.0864 ±0.64% ±7.95% 

1 year NARX-1y 13.4 13.6 0.0622 ±0.46% ±6.80% 

4 recent months NARX-4m 04.3 06.6 0.0438 ±0.23% ±5.78% 

7
 D

ay
s 

4 recent months SARIMA-168 19.7 22.6 0.0934 ±0.79% ±11.55% 

5 years NAR-5y 19.1 20.2 0.0898 ±0.74% ±10.84% 

1 year NAR-1y 18.7 19.2 0.0904 ±0.83% ±9.98% 

4 recent months NAR-4m 12.6 15.0 0.0735 ±0.52% ±8.32% 
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5 years NARX-5y 18.5 18.7 0.0868 ±0.69% ±10.45% 

1 year NARX-1y 13.6 13.9 0.0703 ±0.57% ±7.12% 

4 recent months NARX-4m 05.6 07.0 0.0486 ±0.16% ±6.14% 

 

Single Input vs. Exogenous inputs 

Another perspective that affected model performance was the input type. Here, the 

proposed models are grouped into single input models, and exogenous models (i.e. models that 

have X in their identifier name). SARIMA models and NAR models belong to the first group by 

feeding only the water outflow as a model input. Whereas, NARX models have been fed by extra 

correlated weather inputs. NARX average overall performance in terms of error, MAPE, decreased 

by 30% and 25% compared to NAR models forecasting 24 hours ahead and 1 week ahead, 

respectively. NARX average error also decreased, as mentioned before, by 30% and 36% compared 

to SARIMA models. Even though NAR and NARX models have a similar structure, the inclusion 

of exogenous parameters has advantaged the ANN model. Again, this is due to extra correlations 

drawn from the extra inputs. In addition, NARX models have lower relative error, which may 

suggest greater stability. 

Data span 

Data span here refers to how far back data is needed to adequately train a model. The data 

span focus in this research was on the ANN models. Results show that four months data was 

sufficient to train both NAR and NARX models. Comparing 4 months to 5 years and 1 year data 

models, error dropped by 20% and 15% in NAR model and by 76% and 68% in NARX model, 

respectively, forecasting 24 hours ahead. Further, there were reductions by 35% and 33% in NAR 

model and by 70% and 59% in NARX model, respectively, forecasting 1 week ahead. While it may 

be intuitive to expect that a time series model would improve with more historical data; this was 

not the case in this research. Both NAR and NARX models had a drastic error decrease when fed 

with less historical data. The reason is due to the data itself rather than the model structure. A major 

change in water consumption profiles had occurred in the region where the utility is located. 

Greenhouses, the main consumer, started to switch from growing vegetables to Marijuana after the 

new Canadian legalization act occurred in 2018. The change in agricultural activities in the studied 

area had affected water demand profiles and left the historical data with little information to add. 

Another important observation is the dramatic error decrease in NARX model compared to NAR 

model. Again, this emphasizes the importance of including correlated exogenous parameters in the 
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model. These exogenous parameters reinforced the model by adding more information when the 

studied parameter (i.e. water outflow) no longer had the same trend, seasonality, and consumption 

profiles.  

Computational Load 

As mentioned earlier, SARIMA models have a simple structure and do not require a large 

quantity of data for training. On the other hand, NAR models have a complex structure and use 

more parameters. Even more complicated, NARX models are fed with exogenous inputs. This 

increases the model complexity and number of parameters. Model performance indicators are a 

good measure for model accuracy. However, they do not necessarily embody the model complexity 

issue. Therefore, the computational load was evaluated to better reflect the model’s complexity and 

deployment practicality. Computational load, Table 3 was evaluated from two perspectives: (1) 

Akaike Information Criteria (AIC), which penalizes models that use more parameters; and (2) 

Computation time spent during data training steps.  The computational tool used in this research 

was HP Pavilion TS 14 Notebook PC with a 1.6 GHz Intel Core i5 processor and 8 GB memory. 

Table 3. Computation load of forecasting models on training data 

Model Historical data 

Mean (m3/hr) 

Standard deviation 

(m3/hr) 

Identifier 
Indicators 

AIC Time (s) 

SARIMA 
7 days 3858 1394 SARIMA-24 2,379 21 

4 recent months 6418 3251 SARIMA-168 9,481 39 

NAR 

5 years 6114 3407 NAR-5y 107,284 82 

1 year 6472 3669 NAR-1y 29,641 42 

4 recent months 6418 3251 NAR-4m 18,486 28 

NARX 

5 years 6114 3407 NARX-5y 228,652 346 

1 year 6472 3669 NARX-1y 103,829 187 

4 recent months 6418 3251 NARX-4m 41,451 138 

 

AIC and training time results reveal that the SARIMA model had the lowest and most preferred 

performance. SARIMA-24 has had a relatively low AIC due to the shortest data span, 7 days, used 

to feed the model. SARIMA-168 with a similar structure had a 4-fold higher AIC. This was because 

the model was trained with a longer data span, 4 recent months. Ranked second was the NAR 

model. The ANN single input model with complex structure had approximately twice the AIC over 

the SARIMA model. That is NAR-4m compared to SARIMA-168 where both models were trained 



24 

with the same four recent months data. Lastly, for the ANN model with exogenous inputs, the 

NARX-4m showed an AIC 4-times higher than the SARIMA-168, and 2-times higher than the 

NAR-4m. This ranking was anticipated because AIC consists of two terms, likelihood and number 

of parameters. Table 3 and Figure 5 show that the number of parameters was the dominant 

determinant in AIC values. Exogenous inputs along with longer data span added more parameters 

and errors to their associated models.   

 

Figure 5. Datasets distribution and outliers. 

Model Error Histogram 

The error histogram for one of the proposed models, specifically, NARX-4m, is shown in Figure 

6. For a forecast of 24 hours ahead with a mean of 5852m3/hr, the model predicted roughly 35.50% 

of the data with an overestimation average of 38.9 m3/hr. Also, 20.15% and 24.34% of the data 

were overestimated and underestimated by an average of 461m3/hr and 447m3/hr, respectively. In 

total, approximately 80% of the 2238 predicted hours were estimated with an error of less than 10% 

of the mean. That said, approximately 5%, 110 hours of the 2238 hours tested to forecast 24 hours 

ahead, had an overestimation or underestimation by 1000-2000 m3/hr. This relatively high error in 

forecasting is deemed to be due the dramatic peak during some random mid-day hours. This drastic 

change in the outflow was not tracked by the one-hour data models. A shorter time span dataset, 

e.g. 15 minutes, would have decreased the percentage and amount of overestimation or 

underestimation. 



25 

 

Figure 6. NARX-4m model error histogram 

Models application 

In this section, one week (12/02/2107 3:00pm – 12/09/2017 2:00pm) water outflow data 

was extracted from the utility daily operational data log and held back. SARIMA, NAR, and NARX 

models were deployed to forecast the water outflow for 24 hours ahead and 1 week ahead. The 

results of the performance in terms of MAPE are shown in Table 4. In addition, the forecasted 

patterns were compared to the actual held back water outflow for the targeted time horizon, Figures 

7 and 8 display the results for models forecasting 24 hours ahead and 1 week ahead, respectively. 

Both results forecasting 24 hours ahead and 1 week ahead show a better performance for nonlinear 

models (i.e. NAR and NARX) over linear (i.e. SARIMA) models. Also, the models with exogenous 

parameters have outperformed the models with single input. Furthermore, shorter data span models, 

4m, performed better than models with longer data span, 5y and 1y.     

Table 4. Deployed models performance 

Forecast ahead Model 
Error (%) 

MAPE NRMSE 

2
4

 H
o

u
rs

 

SARIMA-24 17.9 18.3 

NAR-5y 15.6 15.9 

NAR-1y 16.5 16.5 

NAR-4m 13.8 13.5 

NARX-5y 14.1 14.0 

NARX-1y 13.4 13.6 
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NARX-4m 12.3 12.7 

7
 D

ay
s 

SARIMA-168 19.7 19.4 

NAR-5y 16.1 16.3 

NAR-1y 15.7 15.4 

NAR-4m 14.4 14.6 

NARX-5y 16.5 16.1 

NARX-1y 13.1 13.3 

NARX-4m 10.6 11.0 

 

 

Figure 7. Models forecasting water demand 24 hours ahead (12/02/2107 3:00pm – 12/03/2017 

2:00pm) 
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Figure 8. Models forecasting water demand 1 week ahead (12/02/2107 3:00pm – 12/09/2017 

2:00pm) 

Conclusion 

Simulations with linear SARIMA and nonlinear autoregressive ANN models were employed to 

forecast water demand 24 hours ahead and 1 week ahead. The first objective of this study was to 

scrutinize the ability of nonlinear ANN models compared to an existing, adequate linear model. 

The results showed that both ANN models, NARX and NAR, have outperformed the linear 

SARIMA model. The second objective was to evaluate the efficacy of using exogenous data 

combined with historical demand. The results show that all models with exogenous inputs (NARX) 

outperformed those that used only the historical demand (SARIMA and NAR). The third objective 

was to investigate the influence of historical record length on prediction accuracy. The results 

showed that predictions based on the four most recent months of data outperformed those trained 

with five and one continuous years of data. NARX-4m model was shown to have the best 

performance with the lowest prediction error. However, this model may not be the best choice for 

all water utilities as the utility studied herein had a rather unique consumer breakdown. Abrupt 

changes in consumer breakdown and/or demand patterns throughout the year could challenge the 

NARX-4m model without recalibration.  

NARX-4m model has had the best performance amongst the proposed models forecasting 24 hours 

ahead and 1 week ahead. However, it had 5% of the data with a high over- and underestimated 

water outflow. This 5% can be further reduced if the change in the outflow could be tracked on a 

finer level. A 15 minutes or 5 minutes outflow dataset are highly recommended to be used in the 

NARX-4m model instead of the one hour used in this analysis. Further, the NARX model had a 
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moderate AIC value and training time, compared to SARIMA and NAR models. This was because 

of its complex structure its utilization of correlated exogenous parameters. It should be noted that 

AIC and training time values can be reduced through the utilization of a shorter data span. 

Considering the outcomes evidenced here, we believe this important multi-dimensional balance 

between model accuracy and model complexity can be optimized based on a water utility’s interest 

and resource capacity.   

Data Availability 

Some or all data, models, or code generated or used during the study are proprietary or confidential 

in nature and may only be provided with restrictions. 
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CHAPTER 4 

Hybrid Self Organizing Map and Regression Tree Short-term Water Demand Forecasting 

Model 

Mo’tamad H. Bata, Rupp Carriveau, and David S.-K. Ting 

Turbulence and Energy Laboratory, Ed Lumley Centre for Engineering Innovation, University of Windsor, 

Windsor, ON N9B 3P4, Canada. 

Nomenclature 

The following symbols are used in this chapter: 

RT = Regression tree 

SOM = Self-organizing map 

ANN = Artificial neural network 

NRMSE = Normalized root mean squared error 

WDS = Water distribution system 

ARIMA = Autoregressive integrated moving average 

SARIMA = Seasonal autoregressive integrated moving average 

MLP = Multi-layer perceptron   

RVM = Relevance vector machine 

N = Number of neurons 

In = Input number n 

n  = Data point number (i.e. 1, 2, 3 …etc.)  

RMSE = Root mean squared error 

AIC = Akaike information criterion  

m3/hr = Cubic meter per hour  

am  = Ante Meridiem (i.e. Before midday)  

ρ = Pearson correlation coefficient  

d = The difference between the ranks of the two columns in ρ calculations  

K = The cluster number  

2D = Two dimensional  

𝑌�̅� = Data set mean 

𝑌�̂� = Forecasted water outflow 

𝑌𝑖 = Actual water outflow 
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Introduction 

Forecasting water demand is essential for optimal operation of water supply systems. The accurate 

forecasts of the future demands can enable utilities to supply water at lower costs, with less energy, 

and lighter loads on the network infrastructure. Improved pressure management and leakage control 

can also be achieved. These positive outcomes also help water utilities move steps closer to true 

sustainability. Smart decision making in water distribution systems (WDS) is crucial for water 

utilities adapting  Smart Water Grid platform (Joong K., 2018). 

Short-term water demand forecasting can be used to schedule pumping operations, system 

maintenance, and infrastructure development (Zhou et al., 2002).  The accuracy of the forecast 

output controls the efficiency of the system response. This has been a topic of significant interest 

to researchers and developers alike.  The literature features a broad spectrum of forecasting models. 

An extensive review of the forecasting models has been presented by (Donkor et al., 2012; House-

Peters et al., 2011; Kozlowski et al., 2018). These models can be largely classified into two groups, 

linear and nonlinear (Zhang G., 2001). Table 1 highlights short-term load forecasting studies. The 

two groups can be further distinguished into two other groups: solo and hybrid. The solo models 

are standalone forecasters, where the hybrid ones are a combination of two or more forecasting 

techniques.  

Linear models are used extensively owing to their simplicity and the practicality of the required 

data acquisition.  The ease of implementation and ability to update make these models very 

attractive. A number of researchers (Hughes T., 1980; Maidment et al., 1986; Maidment et al., 

1985; Zhou et al., 2000) have proposed innovative Autoregressive Integrated Moving Average 

(ARIMA) and univariate time series analysis models to forecast daily urban water demand.  

 These linear models can be used to forecast water consumption; however, the accuracy of the 

forecast can be unsatisfactory (Kozlowski et al., 2018).   

Nonlinear models are complex to develop, implement, and update. However, their ability to analyze 

multiple parameters and concurrently find the nonlinearity relations between variables, have make 

them powerful prediction tools. Artificial Neural Networks (ANN), nonlinear regression models, 

fuzzy logic, and other nonlinear models are among the most popular for forecasting water demand 

(Adamowski et al., 2012; Adamowski J. & Karapataki C., 2010; Bennett et al., 2013; Boguadis et 

al., 2005; Cutore et al., 2008; Ghiassi et al., 2008; Ghiassi et al., 2005; Hippert et al., 2001; Jain et 

al., 2001; Mitrea et al., 2009; Nasseri et al., 2011; Tiwari M. & Adamowski J., 2015) 
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Beyond this, researchers have also combined two or more model types to accomplish the water 

forecasting. (Hiroyuki et al., 2001), presented a hybrid model that consists of fuzzy regression tree 

and a multi-layer perceptron (MLP) of ANN. The proposed fuzzy regression tree is here employed 

to reveal rules in the actual data and help to organize the input data into specific classes. The MLP 

then used to predict the load one step ahead. Fusing the simplified fuzzy method into the regression 

tree helped to determine the split values. The hybrid model was proven to effectively forecast one 

step ahead for a power system.  

Another hybrid model of Relevance Vector Machine (RVM) and Regression Tree (RT) was 

proposed by Mori et al., 2011. Based on some similarity of data characteristics, the RT model 

classified the data into clusters. Then, the RVM model was constructed to predict the load one step 

ahead in each cluster. The proposed model was used successfully to forecast the electric load in 

some Japanese utilities. 

Researchers have noticed a strong similarity between water and electricity demand patterns, it has 

also followed that forecasting approaches are similar (Perry P., 1981). 

In this paper, a nonlinear hybrid Self Organizing Maps (SOM) clustering model is co-developed 

with a Regression Tree (RT) forecasting model. This hybrid model was then deployed to forecast 

utility water outflow 8 hours into the future. A brief description on the two models can be found in 

Data and Models section. 

Table 1. Highlights of linear and nonlinear short-term forecasting models 

Model Category Performance Purpose Reference Number 

Linear Solo Forecasting 

daily urban 

water 

demand 

Hughes T., 1980; Maidment et al., 

1986; Maidment et al., 1985; Zhou et 

al., 2000 

Nonlinear Solo Short-term 

water 

demand 

forecast 

Adamowski et al., 2012; Adamowski J. 

& Karapataki C., 2010; Bennett et al., 

2013; Boguadis et al., 2005; Cutore et 

al., 2008; Ghiassi et al., 2008; Ghiassi 

et al., 2005; Hippert et al., 2001; Jain et 

al., 2001; Mitrea et al., 2009; Nasseri et 
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al., 2011; Tiwari M. & Adamowski J., 

2015 

Hybrid Forecast 

step-ahead 

for a power 

system 

Hiroyuki et al., 2001 

 

Forecast the 

electric 

load 

Mori et al., 2011 

 

Methodology 

Self Organizing Maps (SOM), also known as Kohonen Neural Networks (Kohonen T., 1982), are 

able to map input data into an N-dimensional grid of neurons. This mapping technique preserves 

the patterns (i.e. topology) of the input data space. Simply stated, the patterns that are close in the 

input space will be mapped to units that are close in the output space (i.e. grid) (Bação et al., 2005). 

Each data point will pass through the set of neurons and only one neuron can win the point. This 

competition between the neurons is based on how close the data point is to the center of the clusters. 

After all input data points are processed, a topological map will appear. Figure 1 illustrates the 

mechanism of a 2-dimentional grid of 2 neurons resulting in 4 clusters. The process begins by 

assigning the same initial weight to all connections between the inputs (I1, I2, …, In) and the neurons. 

Then, the Euclidean distance is computed between all neurons and the node (the input multiplied 

by the weight). Only one neuron with the shortest distance wins that data input. The rest of the 

neurons are arranged topologically based on a neighbourhood function. Before moving to the next 

input, the weights are adjusted according to the previous neighbourhood topology. By the end of 

the training, the input data is grouped in 4 clusters that have the same topology as the input space. 

In this paper, the SOM clustering model does not operate as a forecaster. Rather, it serves as an 

auxiliary component in the hybrid model by decreasing the dimensionality of the target data. 

Having the target data grouped into fewer clusters assists the forecasting (Regression Trees) model 

by locating the cluster before predicting the point. As a result, accuracy, speed, and performance 

of the forecasting model are improved.    
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Regression Trees (RT) are a supervised machine learning technique that uses neural networks. The 

models are obtained by repeatedly dividing the data space and fitting a simple prediction model 

within each division. As a result, the data division can be represented graphically as a decision tree 

(Loh W., 2011). Model development begins with feeding the input data to the tree root, then the 

data will be filtered and sent to a branch and then to another branch until it reaches the leaf. The 

leaf is where the final decision is made, it is called the Response. 

 

 

Figure 1. 2-dimentional (2D) SOM structure with number of neurons equal 2. 

The practice for the proposed hybrid model is to simply feed the output of the SOM clustering 

model, accompanied by other desired correlated inputs, to the RT forecasting model. Figure 2 

illustrates the hybrid model flowchart forecasting the response time t ahead. The process begins 

with gathering the required (as available) raw data. Raw data is then pre-processed.  Here, all 

missing, erroneous, and noisy data are imputed and smoothed. After the raw data is processed, the 

target is isolated and fed to the SOM clustering model. Within the SOM model, the response is 

grouped into an initial number of clusters. The output of the SOM model is then fed to the RT 

forecasting model along with the input data. Once all required data is fed to the RT model, the 

model is trained, tested, and validated. The performance of the model then is assessed.  Here the 

Root Mean Squared Error (RMSE) is calculated between the actual and predicted target values. If 

the RMSE is satisfactory, a future dataset excluding the target can be fed to the model to forecast 

t-time steps ahead. More often than not, the initial forecast iterations are not satisfactory. Where 
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this is the case, extra neurons can be added to the SOM clustering model. It is important to note 

that at some point model performance increases only marginally regardless of how many neurons 

are added to the model. A final modification, to the RT model, is to increase the cross-validation 

folds and/or the number of leaves in the RT architecture.  Increasing the cross-validation folds can 

protect the model from overfitting. While increasing the number of leaves will lead to a finer and 

more flexible tree. 

 

 

Figure 2. Hybrid model flowchart. 
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Data and Models 

Raw Data 

Preliminary study developed two ANN models to forecast the water outflow 24 hours and 

one week ahead using the same outflow data. Both models revealed that using one recent year of 

data, divided tri-annually, is easier to handle and more efficient for short-term forecasting; 

compared to the available five continuous years of data. Therefore, the data used to feed, train, test, 

and validate the models spans the last tri-annual portion (August – December) of 2017. The data 

consists of the water outflow in (m3/hr) (see Figure 3) and other seasonality data, such as, the month 

of the year (1-12; 1 represents January and 12 represents December), the day of the month, and 

hour of the day (1:24; 1 represents 12:00 am – 01:00 am). In Figure 3, water demand tends to drop 

gradually as you move from August (summer) to December (winter). This seasonality varies year 

to year and also from one season to the other.  In addition, there are no specific demand 

characteristics that can be outlined during the day/night or weekday/weekend. That is because most 

of the demand, about 80%, is consumed by commercial greenhouses. These commercial 

greenhouses grow different crops in different seasons and use different techniques in watering their 

crops.    

 

 

Figure 3. The utility hourly water outflow in m3/hr. 

The strength of the correlation between the water outflow and the predictors is calculated using a 

Spearman Correlation Coefficient (ρ). Equation 1 describes Spearman Correlation Coefficient, 
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where d is the difference between the ranks of the two columns and n is the number of data points. 

Here ρ, shown in Table 2, is a statistical parameter that determines the strength of the monotonic 

relationship between two variables. Inspection of the table reveals that same day previous hour K 

values have the strongest correlation with the water outflow. However, this predictor is unknown 

and thus useless if the intended forecasting is for more than one hour ahead. For this reason, other 

predictors, ranked 2-4, are used in training and could be used in forecasting 24 hours and one week 

ahead.  

 

ρ = 1 − ⌈
6 ∑ (𝑑2)𝑛=𝑛

𝑛=1

𝑛(𝑛2 − 1)
⌉ (1) 

Table 2. Spearman Correlation Coefficient ρ between the utility water 

outflow and the predictors used in forecasting 

Predictor ρ Rank 

Ka same day previous hour 0.868 1 

Outflow previous day same hour 0.855 2 

Outflow previous week same hour 0.820 3 

K previous week same hour 0.781 4 

Outflow average previous 24 hours 0.585 5 

Month of the year -0.563b 6 

Hour of the day 0.181 7 

Day of the month -0.076 8 

a K is the cluster number extracted from the SOM output 

b Negative ρ means inverse correlation 
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SOM Clustering Model 

Four of the abovementioned two-dimensional SOM (2D-SOM) were implemented to 

cluster the data. The four models change with the number (N) of neurons used in the 2D grid layer.  

For our purposes, N ranged between 2 and 5. For N equal to 3 in a 2D layer, the number of clusters 

is equal to 9 in total, which is 3 in each dimension.  This resulted from calculating the distance 

between each neuron and its own center. The positions of these neurons are randomly assigned at 

the outset. Then, based on the input data distribution, they are self-arranged in positions (see Figure 

4) that reflect the variance of the input data space. Lastly, each dataset point is entered through the 

layer of neurons and only one neuron is assigned as a winner for that point. Figure 5 illustrates the 

output of the SOM for N=2. Four clusters representing four different outflow ranges. For instance, 

Clusters 1, 2, 3, and 4 here represent, respectively, low, moderate, high, and very high water 

demand. This representation may change when N changes and it should still reflect a physical 

characteristic in the WDS. The output of the SOM clustering model is a binary form, 0 or 1. For 

each data point, one winning neuron receives 1 and the rest of the neurons receive a 0. All data 

points that were won by the same neuron are clustered together and labeled with the cluster number 

(i.e. 1, 2, 3, or 4). This pattern is then used as one of the inputs for the Regression Tree (RT) model 

presented in the RT Forecasting Model section. 

 

 

Figure 4. SOM Weight positions – Clusters positions. 
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Figure 5. Self-Organizing Maps output where 2 neurons (N) are used 

 

RT Forecasting Model 

Four Regression Tree (RT) models were developed to forecast 8 hours ahead. The first 

model (HYB-1hr) executes the forecast hourly; all predictors are fed to the model every time the 

model predicts the future outflow demand.  The second model (HYB-8hr) forecasts the 8 hours at 

once using all predictors excluding K same day previous hour. Meanwhile, the third and fourth 

models (RT-1hr and RT-8hr) do not use any of the SOM output (i.e. no K inputs). All models are 

identical in terms of the input data time span, the number of tree leaves, and the cross-validation 

folds. 

 

Model Performance 

The predicted outflow was compared to the actual outflow and the performance of the four 

models was measured with the Root Mean Squared Error (RMSE). However, the results are shown 

using the Normalized Root Mean Squared Error (NRMSE) because the datasets used in forecasting 

have different means. Equation 2 represents the NRMSE, where n represents the number of data 

points; 𝑌�̅�  is the data set mean, Ŷi and Yi represent the forecasted and the actual water outflow, 

respectively. 
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Results and Discussion  

Models Overall Performance 

Figure 6 displays all models performance in terms of NRMSE. The figure reveals that RT-

1hr has an NRMSE of 0.13 which is approximately double the NRMSE of HYB-1hr. Likewise, the 

RT-8hr has an NRMSE of 0.21 which is about double the NRMSE of HYB-8hr. Forecasting 8 

hours on 1 hour increments using the hybrid model (i.e. HYB-1hr) has outperformed HYB-8hr 

which forecasts 8 hours ahead on one increment. For all proposed numbers of neurons (N=2, N=3, 

N=4, and N=5) HYB-1hr showed less error than HYB-8hr. For N=2, the NRMSE for HYB-1hr is 

0.087 which is 45% less than 0.159 for HYB-8hr. Also, the NRMSE for HYB-1hr compared to 

HYB-8hr dropped from 0.141 to 0.067, 0.131 to 0.045, and 0.129 to 0.042 by 52%, 65%, and 67% 

for N equal to 3, 4, and 5, respectively. Moreover, increasing the number of neurons in SOM models 

did not significantly improve the performance of the hybrid model when 8 hours were forecasted 

in one increment. The NRMSE for HYB-8hr dropped only by (2% -11%) from 0.159 to 0.141 to 

0.131 to 0.129 for N equal to 2, 3, 4, and 5 respectively. Meanwhile, the NRMSE for HYB-1hr 

dropped from 0.087 to 0.067 to 0.045 to 0.042 by 23%, 33%, and 7% when N increased from 2 to 

3 to 4 to 5.  
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Figure 6. Models overall performance measured in NRMSE. 

Model Selection 

Relying only on model performance, the HYB model would be the accurate selection for 

forecasting water demand t-time steps ahead. However, the accuracy in the HYB was gained 

because of the fusion of two models (i.e. SOM and RT models). Essentially, this fusion has added 

more parameters and more computations to perform in the model. Therefore, the HYB model is 

expected to have a higher computational load and more complex architecture. Selecting the 

higher performance model is not accurate is this case. So, another measure is deemed to add more 

information in model selection decision. That is the Akaike Information Criterion (AIC). AIC 

penalizes models for using extra parameters. Hence, models that use more parameters, to gain 

additional information, have undesired high AIC. Table 3 summarizes the AIC values and time of 

model training using HP Pavilion TS 14 Notebook PC with a 1.6 GHz Intel Core i5 processor and 

8 GB memory. 

Table 3. Computation load of forecasting models on training data 

Model Identifier 
Indicators 

AIC Time (s) 

Regression Trees RT 26,738 41 

Hybrid HYB 29,643 57 
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Models Application   

After the models were trained, tested, and validated on the dataset that contains the water 

outflow parameter; the models were tested on a held back dataset for a random day on November 

2017. Figures 7, 8, 9, and 10 present the results for N equal to 2, 3, 4, and 5, respectively. Analogous 

to the overall performance, HYB-1hr has shown better fits over the tested time span. It can be 

proposed here again that when the number of clusters in SOM was increased, the NRMSE 

performance of HYB-1hr decreases significantly. The results for RT-1hr and RT-8hr were not 

shown because no SOM output was used for these models.  

 

 

Figure 7. Actual vs. predicted outflow for HYB-1hr and HYB-8hr for N=2. 
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Figure 8. Actual vs. predicted outflow for HYB-1hr and HYB-8hr for N=3. 

 

 

Figure 9. Actual vs. predicted outflow for HYB-1hr and HYB-8hr for N=4. 
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Figure 10. Actual vs. predicted outflow for HYB-1hr and HYB-8hr for N=5. 

Concluding Remarks  

Four models were presented to forecast a water utility outflow 8 hours into the future. The primary 

purpose of this paper was to study the influence of combining both supervised and unsupervised 

machine learning techniques on the performance of a short-term forecasting model. SOM as a 

cluster model and RT as a forecasting model were integrated to accomplish the forecast for HYB-

1hr and HYB-8hr model. Where the RT-1hr and the RT-8hr models were constructed as a 

standalone only RT supervised model.  

The first major takes away from this study was that both hybrid models (i.e. HYB-1hr and HYB-

8hr) have shown a better performance than the standalone (i.e. RT-1hr and RT-8hr). The 

Normalized Root Mean Squared Error (NRMSE) for HYB-1hr and HYB-8hr was shown to be 50% 

and 35%, respectively, less than the NRMSE for RT-1hr and RT-8hr. Secondly, a significant drop 

in the NRMSE was noted when more clusters were used in the SOM model. The NRMSE dropped 

by 50% when the number of clusters increased from 4 (for N=2) to 25 (for N=5). Thirdly, 

performing the 8 hours forecast on one-hour increments, HYB-1hr and RT-1hr, surpassed HYB-

8hr and RT-8hr which execute it in one increment. Finally, the increase in HYB models accuracy 

compared to RT models was because of the inclusion of SOM clustering model. That has led to a 

more complex model with an approximate increase of 12% and 35% in AIC value and time of 

training, respectively.  

To conclude, implementing HYB-1hr would be the best of the proposed models. With its unique 

water outflow, a water utility should prioritize the option of combining a SOM clustering model 
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with a RT forecasting model in order to obtain an accurate forecast. In terms of complexity of 

implementation, the hybrid model is as easy to develop and implement as any other standalone 

Artificial Neural Network (ANN) model. This significant increase in modeling accuracy could help 

the water utility improve operational efficiencies and infrastructure reliability. Specifically, sudden 

frequent peaks could be avoided, leading to energy, water, and maintenance conservancy. Energy 

conservation achieved through the reductions in friction and minor losses. The conservation of 

water would be attained where unnecessary higher pressures cause or exacerbate leaks leading to 

waste. This same flattening of pressure peaks will also contribute to lighter system mechanical 

loads, which should support a reduced maintenance requirement. 
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Chapter 5 

Conclusions and Recommendations 

Summary   

This study aimed to develop short-term water demand forecasting models for a water distribution 

network. These models were intuitively constructed to assist the water utility upgrading towards a 

2-way SWG. Models were selected to further investigate performance versus complexity and 

practicality. Previous work, C2C, have focused on the utility’s major end-user, the commercial 

greenhouses. C2C suggested forecasting one crop water demand based on another’s. The 

significance of C2C is that instead of developing a very complex and accurate model for all 

consumers, only one crop’s consumption is forecasted accurately, and other crops consumption 

could be forecasted based on that one crop. Two simple models, LR and QM, were deployed to 

forecast the tomatoes water consumption based on the pepper’s and vice versa. Again, the base 

model is required to be accurate regardless its complexity. So, ANN models were developed as 

optimal base models. With the similarities between the two crops, the results show an average 

increase in tomatoes forecast error of 29% and pepper forecast error of 12% when forecasting with 

base model data compared to real data. The disparity in the error increase is caused by a larger error 

in the tomatoes base model. The average increase of 12% might not seem significant. However, 

when compared to the base model, the increase in error ranged between 75% and 126%. This 

indicates that the ANN complex base model outperformed C2C simple models by a large margin.  

This study proposed two groups of models. The first group consists of SARIMA linear model, and 

NAR and NARX nonlinear models. This group was employed to study the effect of model 

architecture, historical data size, and exogenous parameters on forecasting performance. The 

forecast of 24 hours ahead and 1 week ahead revealed: (1) nonlinear models outperformed the linear 

SARIMA model. An average drop in overall performance of 3%, 15% and 33%, 36% when NAR 

and NARX were deployed to forecast both horizons, respectively. That is because nonlinear models 

can capture better the time series nonlinearity and have a complex multi-layer structure that finds 

correlation between input, feedback, and output parameters. (2) 4 months of historical data was 

adequate to train all models. Results show an error decease of 20% and 15% in NAR model and by 

76% and 68% in NARX model when compared to 5 years and 1-year data, respectively, forecasting 

24 hours ahead. And also, by 35% and 33% in NAR model and by 70% and 59% in NARX model, 

respectively, forecasting 1 week ahead. Although time series models seem to perform better with 

more historical data, however, this was not the case in this research. Both NAR and NARX models 



51 

had a drastic error decrease when fed with less historical data. The reason is due to the data itself 

instead of the model structure. A major change in water consumption profiles had occurred in the 

region where the utility is located. Greenhouses, the main consumer, started to switch from growing 

vegetables to Marijuana after the new Canadian legalization act occurred in 2018. The change in 

agricultural activities in the studied area had affected water demand profiles and left the historical 

data with little information to add. Another important observation is the dramatic error decrease in 

NARX model compared to NAR model.  (3) Adding exogenous parameters to the nonlinear model 

has improved overall forecasting performance. NARX average overall performance in terms of 

error, MAPE, decreased by 30% and 25% compared to NAR models forecasting 24 hours ahead 

and 1 week ahead, respectively. NARX average error also decreased, as mentioned before, by 30% 

and 36% compared to SARIMA models. Even though NAR and NARX models have a similar 

structure, the inclusion of exogenous parameters has advantaged the ANN model. Again, this is 

due to extra correlations drawn from the extra inputs.  

The second group comprises of RT model and a hybrid model. This group of models was employed 

to investigate the fusion of supervised and unsupervised machine learning models. The HYB model 

consisted of SOM classification model and RT forecasting model. The results show an error 

decrease of 50% when HYB model is compared to RT standalone model forecasting one hour and 

eight hours ahead. In addition, HYB model had an error drop in the range of 45% and 67% when 

forecasting 1 hour ahead compared to 8 hours ahead for different number of neurons in the SOM 

architecture. Moreover, increasing the number of neurons (from N=2 to N=5) in SOM fused model 

had decreased error by 25% to 50% forecasting 1 hour and 8 hours ahead. 

In regard to practicality, C2C models are simple to develop, train, and deploy. However, this group 

of models relies on a complex model as a base model, which indirectly increases the complexity of 

C2C. Also, the base model has forecasting error to begin with, which makes C2C more vulnerable 

and unstable.  

SARIMA models are also simple to develop, train, and deploy. SARIMA has a relatively low AIC 

values (ranges between 2,000 and 10,000) and short training time (less than 40 seconds). This set 

of models, however, has a moderate forecasting accuracy (15%-25% forecasting error).  

ANN models, specifically NAR and NARX, are complicated, and hard to develop and train. NAR 

and NARX models have high forecasting capacity (5%-15% forecasting error). However, these 

models have a high AIC values (ranges between 20,000 and 200,000) and longer training time (1-

3 minutes).  
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HYB model is moderately hard to develop, train, and deploy. HYB model has a moderate AIC 

value (10,000 – 30,000) and a moderate training time (40 - 60 seconds). And also, have a high 

forecasting accuracy (5% - 10% forecasting error).  

Conclusion 

The main conclusions that can be taken from this study are: 

• C2C forecasting methods are simple but have a high forecasting error  

o C2C methods are highly susceptible to base model error  

o No significant difference in performance between LR and QM methods 

• SARIMA models are simple and have a moderate forecasting error  

o 7 days of hourly data is enough to train SARIMA and forecast 24 hours ahead 

o SARIMA is a stable model for short-term water demand forecasting application 

o SARIMA has a low AIC values and short training time 

• NAR and NARX show a high forecasting capacity 

o Observed exogenous parameters can improve their forecasting accuracy 

o The model architecture is complicated 

o Four months of hourly data is enough to train a model 

o High AIC values and relatively long training time is expected 

• HYB model has a very high forecasting accuracy  

o The increase in model performance is due to adding the SOM unsupervised 

classification model.  

o HYB model performance can be improved by adding more neurons. However, the 

model reaches a steady point where adding more neuron would not improve 

performance. Rather, it will complicate its structure. 

o Four months of hourly data is enough to train the HYB model 

o Has moderate AIC values and relatively moderate training time. 
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• The use of any of the proposed short-term forecasting models will provide a significant 

improvement to the current reactive method at UWSS and other water utilities. 

Improvements will include: 

o Increase in operational efficiencies and system reliability 

o Avoiding sudden demand peaks 

o Reduce in system mechanical loads and maintenance requirements  

o Better utilization of system storage units; such as: reservoirs, towers, and elevated 

tanks. 

o Better assessment of the utility’s capacity of accepting additional demand. 

Overall, the proposed short-term water demand forecasting models will help utilities in water and 

energy conservancy, more reliable grid, and more sustainable system. This is attained though 

flattening of pressure peaks. Anticipating future demand helps in avoiding demand peaks which 

leads to less flow and pressure in the system. As a result, friction losses are reduced, and system 

leaks are minimized.  

Recommendations 

This work represents developing short-term water demand forecasting models. Models aimed to 

study both the end-user and the water utility. Data collected during this study was from a single 

end-user greenhouse operation and a single utility’s water distribution network. It would be 

sagacious to analyze other datasets from different end-users and water utilities to determine if the 

same methods and models can be used. It would also help if different scales were used to generalize 

the findings of this study. These scales include, but not limited to, different utility size, different 

consumer breakdown, different data span (i.e. 15 minutes or 5 minutes data).  

Since this study focused on investigating different models performance, applications in the 

MATLAB platform were used to develop the models. The architecture of these models allows 

further functionalities, different data pre-processing, and different data divisions that were not 

optimized. Further optimization would help in verifying the performance of these models. It is also 

recommended for water utilities to use more than one flow meter in their water distribution 

network. This would allow to granularly investigate the network and assign proper models for each 

main. In addition, post evaluation of model accuracy should be undertaken as it is difficult 

determine the reliability of the proposed methods when they are only being compared with the hold 

back data. 
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Finally, a water utility can determine which model to implement based on the utility’s interests and 

capacity. Small size utilities may focus more on model simplicity, where large size utilities should 

prioritize model accuracy. This model selection criterion should take in consideration the monetary 

aspect where savings through the model application is compared to implementation costs.   
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APPENDICES  

 

 Appendix A: Permissions for Previously Published Work 

 

CHAPTER 2: Evaluation of Crop to Crop Water Demand Forecasting: 

 Tomatoes and Bell Peppers Grown in a Commercial Greenhouse 

As specified by MDPI Publishing Rights and Permissions1, the author retains the right to include 

the article in a thesis if proper attribution and credit is given to the published work. 

 

CHAPTER 3: Short-term Water Demand Forecasting Using Nonlinear 

 Autoregressive Artificial Neural Networks (ANN)  

The article has not yet been accepted for publication, so no permission is required. Upon 

acceptance, the author retains rights to include the article in a thesis, as per American Society of 

Civil Engineers (ASCE) Reuse Authors Own Material2. 

 

CHAPTER 4: Hybrid Self Organizing Map and Regression Tree Short- 

term Water Demand Forecasting Model 

The article has not yet been accepted for publication, so no permission is required. Upon 

acceptance, the author retains rights to include the article in a thesis, as per American Society of 

Civil Engineers (ASCE) Reuse Authors Own Material2. 

 

 

 

 

 

____________________ 

1 https://www.mdpi.com/authors/rights  (Accessed Mar 19, 2019) 

2 https://ascelibrary.org/page/informationforasceauthorsreusingyourownmaterial  

  (Accessed Mar 19, 2019) 

https://www.mdpi.com/authors/rights
https://ascelibrary.org/page/informationforasceauthorsreusingyourownmaterial


56 

VITA AUCTORIS  

 

 

NAME:  Mo’tamad H. M. Bata 

PLACE OF BIRTH: 

 

Saudi Arabia 

YEAR OF BIRTH: 

 

1991 

EDUCATION: 

 

 

 

Hajjah Secondary School, Qalqiliah, Palestine, 2009 

 

An-Najah Nation University, B. A. Sc.,   Nablus, Palestine, 2013 

 

University of Windsor, Honor Certificate, Windsor, ON, 2016 

 

 

  

 


	Smart Water: Short-Term Forecasting Application in Water Utilities
	Recommended Citation

	tmp.1560992408.pdf.tskGG

