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ABSTRACT 

TOWARDS MORE EFFICIENT SOLUTION OF 

CONDITIONAL CONSTRAINT SATISFACTION 

PROBLEMS
by

MIHAELA SABIN 

University of New Hampshire, May, 2003

The focus of the thesis is on improving solving constraint satisfaction problems (CSPs) 

that change with certain conditions. This special class of problems, which we call conditional 

CSPs, has proved very useful in modeling important applications, such product configura­

tion and design, and distributed software diagnosis and network management. The problem 

conditions model choices customers make to configure a product, or they are installation 

settings or actual observations of a  running system that is monitored for diagnosis purpose.

The key, novel contribution of this thesis are two approaches for improving solving 

methods and the use of random conditional CSPs to evaluate the performance of these 

methods. With the first approach we propose new algorithms for solving conditional CSPs. 

These algorithms propagate problem constraints and conditions. The second approach 

explores the feasibility of reformulating the problem into a  standard CSP and introduces 

new reformulation algorithms.

The implementation results have been evaluated experimentally. The experimental de­

sign has extensive test suites of randomly generated standard and conditional CSPs for 

which general problem parameters, such as density and satisfiability, were varied, as well as 

specialized parameters that characterize the representation of problem conditions.

The significance of the work lies in the advance of problem resolution for the class of

xiv
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X V

conditional CSPs and the experimental analysis for the proposed new algorithms. The 

limited solving developments known in the literature of the class of conditional CSPs, a 

backtrack search algorithm tested on a  handful of small problem examples, have been taken 

an important step further and aligned with efforts reported for standard and other special 

classes of CSPs.
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CHAPTER 1

INTRODUCTION

The main topic of this dissertation is improving the solving of conditional CSPs. In this 

chapter we present the underlying motivation for pursuing this research, and list the con­

tributions made. We conclude with an outline of the dissertation chapters.

1.1 Motivation

1.1.1 Conditional Change in Constraint Satisfaction

There are many important and complex tasks to which constraint satisfaction has been 

successfully applied. Among these tasks are action p lanning and task scheduling, design 

and configuration, verification and diagnosis. The constraint satisfaction paradigm provides 

a natural, simple, yet generic modeling language, and employs well-established and efficient 

solving algorithms. At the center of the paradigm lies the concept of constraint satisfaction 

problem (CSP), defined simply by its three components: a set of variables, their associated 

domains of values, and a set of constraints which restrict the allowed value combinations 

variables can take. A solution to a  CSP is a value assignment to all its variables such that 

all constraints are satisfied.

Important, specialized CSP classes have been defined to cope more directly with specific 

characteristics of various application domains. Qualifiers such as partial, optimization, dy­

namic, hierarchical, composite, interval, continuous, mixed, fixed-point, and others charac­

terize CSP specializations that have been studied in the last decade. Conditional constraint 

satisfaction problem is another example of adapting constraint technology to better apply 

to diagnosis and configuration domains.

1
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2

Conditional CSP extends standard CSP with a  condition-based component that models 

dynamic changes of the problem with predefined conditions. Known as dynamic constraint 

satisfaction problem (DCSP), the formalism was introduced by Mittal and Falkenhainer 

in 1990 (Mittal & Falkenhainer 1990) to integrate classical constraint satisfaction with a  

special type of constraint, activity constraint, responsible for selecting variables that could 

participate in solutions. The formalism was originally motivated by synthesis tasks such as 

product configuration, in which not all cataloged components have to be present in every 

configured product.

We renamed this class of dynamic CSPs conditional constraint satisfaction problems 

(Sabin, M. & Freuder 1998) to:

• capture the nature of the control component that conditionally changes the initial 

model of the problem, and to

• distinguish this class of problems from another class of dynamic CSPs for which at­

tention is focused on reusing problem solutions when the problem changes over time 

(Dechter & Dechter 1988), (Bessiere 1991), and (Verfaillie & Schiex 1994).

In general, conditional constraint satisfaction adds to the standard paradigm the follow­

ing distinctive capabilities:

• representation of problem changes by conditioning what variables and constraints 

define the problem while searching for solutions,

• seamless integration of the control mechanism for dynamic model change into the 

problem formulation, and

• run-time selection of model components tha t supports user interaction or monitored 

observations.

In the following, we give examples of some representative applications for which condi­

tional CSP capabilities have proved very useful.
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1.1.2 Representative Applications

The application domain that originally motivated conditional CSP is equipment configura­

tion (Frayman & Mittal 1987), (Mittal & Frayman 1989), (Mittal & Falkenhainer 1990). 

ILOG and Trilogy1 are two examples of companies that incorporate conditional CSP fea­

tures in their technologies to provide business solutions for equipment, sales, and service 

configuration in domains that range from aerospace and automotive to computers, electron­

ics, and telecommunications.

In essence, a product configuration task is about configuring an extremely large number 

of variants, on the order of hundred of thousands, from one encompassing description. That 

description specifies the parts participating in all variants, along with customer selections 

and conditions under which certain variants can be configured. The conditions capture 

product assembly knowledge and promotional sales strategies. The task is to find variants 

that satisfy all conditions and customer requests. A successful series of Configuration Work­

shops, which started in 1996 as a AAAI Fall Symposium2, has captured the attention of 

both academia and industry every year since 1999. The IJCAI 2003 Configuration Work­

shop (Mailharro 2003) continues to promote a strong synergy between research and major 

configurator vendors. We direct the reader to the workshop proceedings for a  comprehensive 

view on the state-of-the-art in this application domain.

Since its first formalization in 1990, the conditional constraint satisfaction paradigm 

has been used for modeling application problems in other domains, such as diagnosis of 

distributed software systems (Sabin, D. et al. 1995), (Sabin, M. & Freuder 1996), conceptual 

design of bridges (Gelle 1998), network management of domain name service (Sabin, M., 

Russell, & Freuder 1997), groupware services (Sabin, M. et al. 1999), and LAN configuration 

(Sabin, M., Russell, & Miftode 2001).

1 ©ILOG, Inc. and Trilogy are registered trademarks.

2Information available at http://www.aaai.org/SjTnposia/Fall/1996/.
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1.1.3 Opportunities and Challenges

Despite increasing interest in the area of representing application problems as conditional 

CSPs, little progress has been made in the area of improving solving methods for conditional 

CSPs. In contrast with other CSP specializations, no standard CSP solving method, except 

for backtracking search (Gelle 1998), has been adapted to the conditional domain. The 

standard domain teaches us tha t enforcing local consistency, such as forward checking and 

maintaining arc consistency, can be embedded into backtrack search to reduce the search 

space (Gaschnig 1974), (Mackworth 1977), (Haraiick & Elliott 1980), (Sabin, D. & Freuder 

1994), (Bessiere & Regin 1996). The first topic of this thesis is the design of new algorithms 

for solving conditional CSPs that combine backtracking with local consistency.

The lack of specialized, direct solving methods is compounded by the fact that a bench­

mark test base for this type of problems is extremely limited (Soininen, Gelle, & Niemela 

1999), although very much needed in experimental evaluations of such methods. The reality 

of many application domains, such as configuration or diagnosis, is that either real-life prob­

lem data is not publicly available or problem examples are too simple. The opportunity of 

importing efficient standard algorithms, whose behavior has been extensively tested, raises 

new challenges for the conditional CSP class. Are there available similarly comprehensive 

experimental studies for evaluating conditional CSPs? What topological features make con­

ditional CSPs hard? What metrics are suitable for evaluating the relative performance of 

the new methods?

A practical approach that overcomes these drawbacks and has been proved very success­

ful for benchmarking standard solving algorithms is randomly generated CSPs (MacIntyre 

et al. 1998), (Achlioptas et al. 2001). Wallace extends his random standard CSP genera­

tion model (Wallace 1996) to produce random activity constraints, and uses the model to 

implement a random conditional CSP generator. The generator has new parameters for 

controlling problem activity, in addition to typical parameters for specifying problem size 

and topological features, such as density and satisfiability. The second topic of this thesis 

is to evaluate empirically the proposed algorithms using random conditional CSPs.
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An alternative approach to specialized solving methods is to reformulate conditional 

CSPs into their standard analogs. The approach has the advantage of bringing to bear a 

mature constraint technology that has the means to match problem representation with the 

most adequate reasoning methods. A first reformulation of conditional CSP into standard 

CSP was mentioned by Mittal and Falkenhainer (Mittal & Falkenhainer 1990), although an 

exact transformation was not provided. They consider the addition of a special value, called 

“null7’, to the domains of all variables which are not initially active. A variable instanti­

ation with “null” indicates that the variable does not participate in the problem solution. 

Haselbock proposes a  partial reformulation of a conditional CSP that transforms into reg­

ular constraints only activity constraints that exclude variables from solutions (Haselbock 

1993).

The feasibility of obtaining a  null-based CSP formulation from a conditional CSP is 

examined in-depth by Gelle (Gelle 1998). She proposes a reformulation algorithm for con­

ditional CSPs whose variables are activated by single activity constraints. The case of 

multiple activity constraints that condition the inclusion of the same variable into the prob­

lem is recognized as not straightforward. Gelle gives the idea that multiple activations be 

clustered into a single activity constraint. She also warns that problems with cluster activa­

tions do not allow for an incremental reformulation: a  local change of adding a new activity 

constraint in the original problem does not entail a local change of adding a reformulated 

constraint. The third topic of the dissertation is a study of the feasibility of reformulating 

conditional CSPs into standard CSPs, and the design of reformulation algorithms.

1.2 Contributions

Topic 1: New algorithms for solving conditional CSPs 

Contribution

In this thesis we present two original solving methods for conditional CSPs that extend 

local consistency methods of forward checking and maintaining arc consistency to process

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
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the new constraints of activity. With the checking of the activity constraints, the initial 

set of variables that axe assigned values in every solution changes with additional variables 

that are either included in the solution space (or made active) or explicitly excluded from 

it. The problem considered by the new algorithms, a t any point in time during search, is 

given by the set of active variable. Thus, forward checking propagates the current instantia­

tion over standard constraints to all the active, non-instantiated variables. Maintaining arc 

consistency uses the current instantiation to make all active variables arc consistent. Stan­

dard arc consistency, over standard, compatibility constraints, is enhanced with enforcing 

consistency over activity constraints. We also define a  new type of local consistency, over 

activity constraints, and use it to further improve the efficiency of the new maintaining arc 

consistency algorithm.

Topic 2: Empirical evaluation of solving methods 

Contribution

The proposed algorithms are tested in experiments covering large and topologically diverse 

populations of random conditional CSPs. In the experimental studies, algorithm effort 

is measured by timing algorithm execution, and by counting search operations specific to 

standard and conditional CSP solving. We show that maintaining arc consistency outper­

forms forward checking, which, in turn, outperforms backtracking. We observe that the 

improvement in performance is strongly dependent on the size of the solution space even 

when algorithms search for solutions of m inim um  size rather than for all solutions.

Topic 3: Reformulation feasibility and algorithms 

Contribution

We present a formal definition for reformulating conditional CSPs into standard CSPs. We 

use the theoretical framework of null-based reformulation to develop an original algorithm 

of reformulation that addresses the problem of multiple activations of the same variable. 

We discover that multiple activations might introduce activity cycles whose transformations
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add new constraints to the reformulated problem. Under a  less restrictive notion of local 

change, that allows both local addition and removal of constraints, we develop a null-based 

reformulation algorithm that localizes change in the original problem. Local transforma­

tions, however, are possible only in the absence of activity cycles. A new, more general 

reformulation algorithm is presented that transforms conditional CSPs which have activity 

cycles. This algorithm has the limitation of not preserving locality of change. We evaluate 

experimentally the performance of solving the reformulated problem obtained from run­

ning the general reformulation algorithm. Performance results are compared with results 

obtained from applying the direct solving methods we developed to the original problem.

1.3 Thesis Outline

• Chapter 2, Definitions and Tools, presents a  formal definition of the conditional CSP 

and reviews a model for random generation of CSPs.

• Chapter 3, Solving Methods, introduces two new solving methods for conditional 

CSP that use local consistency in the presence of the condition-based component that 

is specific to conditional CSPs. Local consistency is extended with a new type of 

consistency over activity constraints.

• Chapter 4, Experimental Evaluation, reports performance results of the solving meth­

ods introduced in Chapter 3. Experimental studies use a special class of random con­

ditional CSPs. Computational cost of the studied algorithms is measured by counting 

representative search operations and by t iming algorithm execution.

• Chapter 5, On Reformulating Conditional CSPs, proposes three new reformulation 

algorithms that produce standard CSP representations of conditional CSPs. Two al­

gorithms address the difficulties with transforming multiple activations and preserving 

locality of change in the absence of activity cycles. The third algorithm provides a 

general null-based reformulation that handles activity cycles. Experimental analysis 

shows that solving the reformulated problem with standard CSP algorithms is less
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effective than directly solving the original problem.

• Chapter 6, Conclusion and Future Work, reviews the thesis contributions and discusses 

open research topics these contributions entail.
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CHAPTER 2

DEFINITIONS AND TOOLS

In this chapter we recall the theoretical framework of conditional CSP, and present Wallace’s 

model of generating random CSPs, standard and conditional. We start with an example of 

a simple product configuration task for which we develop a conditional CSP representation. 

The insights of the modeling exercise facilitate the introduction of a formal definition of the 

conditional CSP class. The description of Wallace’s model for generating random standard 

and conditional CSPs comes next. The problem generation tools are essential to the design 

and analysis of the experimental studies we conduct to measure the computational cost of 

the proposed solving methods.

2.1 Conditional Constraint Satisfaction Problems

2.1.1 Example: Simple Car Configuration

Before we give a formal definition of the class of conditional constraint satisfaction problems, 

we introduce an example of a car configuration task that can be modeled as a conditional 

CSP. The example is a  simplified version of an example introduced by (Mittal & Falken- 

hainer 1990).

Exam ple 1. We start with specifying a car configuration task. (Figure 2-i).

The specifications include:

• Required components, that participate in all final car configurations, such as frame 

and engine;

•  Optional components, such as air conditioner and sunroof, that can be optionally 

selected according to certain configuration requirements,

9
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Required components and their values
• comfort package has luxury, deluxe, and standard values
• frame has convertible, sedan, and hatch back values
• engine has small, medium, and large
• battery has small, medium, and large value 

Optional components and their values
• sunroof has srl and sr2  values
• sunroof glass has tinted and not-tinted values
• sunroof opener has manual and automatic values
• air conditioner has acl and ac2  values

Configuration requirements of compatibility among component values
1 . standard comfort package is not compatible with ac2  air conditioner
2 . luxury comfort package is not compatible with acl air conditioner
3. standard comfort package is not compatible with convertible frame
4. automatic sunroof opener and acl air conditioner are compatible only with medium battery
5. automatic opener and ac2 air conditioner are compatible only with large battery
6 . srl sunroof and ac2  air conditioner are not compatible with tinted glass 

Configuration requirements for selecting optional components
1 . luxury comfort package includes sunroof option
2 . luxury comfort package includes air conditioner option
3. deluxe comfort package includes sunroof option
4. sr2 sunroof includes opener option
5. srl sunroof includes air conditioner option
6 . sunroof always includes sunroof glass
7. convertible frame excludes sunroof option
8 . small battery and small engine excludes air conditioner option

Figure 2-i: A car configuration task example

• Values for each component, such as convertible, sedan, and hatch back for the frame 

component,

• Configuration requirements of compatibility, that restrict the values of the selected 

components to ensure the correct functionality of the resulting configuration. For 

example, an automatic sunroof opener and a certain type of air conditioner work only
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with a medium size battery.

•  Configuration requirements for selecting optional components, that express customer 

specifications or additional functional requirements. A customer might request, for 

example, a luxury comfort package in order to include two options to the configuration: 

sunroof and air conditioner. Another example is a  configuration requirement imposed 

on considering optional components, such as the functional restriction that a  small 

battery and small engine selection exclude the air conditioner option.

Given the specified components and requirements, the task of configuration is to assign 

values assigned to selected components in such a  way that requirements pertaining to what 

is selected axe satisfied. An example of a valid configuration is a  car whose comfort package 

is deluxe, has a sedan frame, a medium engine, a srl sunroof, ac2  air conditioner, and a 

tinted sunroof.

A

The car configuration example is used here to introduce the basic concepts of the con­

ditional CSP formalism. To model the car configuration task as a conditional CSP, one 

should:

• Identify the problem’s variables, which correspond to required and optional car com­

ponents.

• Delimit the variables corresponding to required components, which are part of any 

configuration solution. We call these variables initial or start variables.

• Identify the values in each variable domain.

• Express two types of constraints to model requirements of component compatibility 

and selection:

-  compatibility constraints, which restrict the combinations of allowed values to 

the selected components, and
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— activity constraints, which change the initial variable set according to certain 

conditions. These conditions control what optional components get selected in 

a configuration. Selected components correspond to active variables. Note that 

initia l variables are always active since they are automatically selected in any 

solution.

By following these general modeling guidelines, we obtain a  conditional CSP represen­

tation of the car configuration task, whose variables, domains of values, and constraints are 

shown in Example 2. We recall that a standard CSP can be represented as a constraint 

network. Variables with their domains are represented as labeled nodes that list domain 

values. Constraints are represented as edges or hyper-edges that connect the variables on 

which constraints are defined. The representation of a  conditional CSP adds to the rep­

resentation of the standard constraint network the activity constraints, and delimits those 

nodes that correspond to the initial variable subset. The activity constraints are repre­

sented as directed edges or hyper-edges that point to non-initial variable that are included 

or excluded from the active variable set.

Exam ple 2 . The conditional CSP model of the car configuration task in Example 1 

has eight variables {Package, Frame, Engine, Sunroof, AirConditioner, Battery, Glass, 

Opener}, each of which has a domain of values, eight activity constraints { a i,. . . ,  as}, and 

six compatibility constraints {0 9 , . . . ,  C14}. Four of the problem variables, {Package, Frame, 

Engine, Battery}, are initial variables and, therefore, active. They describe the initial prob­

lem with which the solving process starts. It does so by checking whether the combinations 

of values chosen for these variables comply with configuration requirements formulated as 

constraints.

The activity constraints change the set of active variables when certain conditions be­

come true during search. New variables are dynamically included in the set of active vari­

ables and become candidates to problem solutions. Other new variables are dynamically
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Frame ^—>. Battery
small'  

medium

.\<T5je>

nvembl
medium

Initial variables

nditioner' a
Include variable 

Exclude variable 

Always include variable 

Opener Compatibility constraint

not-un

Activity Constraints 
ai : Package = luxury 
a2 : Package = luxury 
0 3  : Package = deluxe
0 4  : Sunroof = sr2 ^ 4  Opener

Sunroof 
■̂ 4 AirCond 
incl Sunroof

0 5  : Sunroof = srl ^ 4  AirCond 
Oe : Sunroof ^ 4  Glass 
0 7  : Frame = convertible — > Sunroof 
as : Battery = smaZZ A Engine = small ^ 4  AirCond

Compatibility Constraints
eg : Package = standard - a - Air Conditioner ^  ac2
Cio : Package — luxury -*■ Air Conditioner acl
cn : Package = standard -» Frame ^  convertible
Ci o : (Opener = auto, Air Conditioner = acl) Battery = medium
C13 : (Opener = auto, Air Conditioner = ac2) —>■ Battery = Zarge
C1 4  : (Sunroof = srl, Air Conditioner = ac2) —> GZoss ^  tinted

Figure 2 -ii: Conditional CSP representation of the car configuration example

excluded from problem solutions. For example, activity constraint ax:

ai : Package = luxury -^4 Sunroof

involves variables Package and Sunroof, has the activation condition Package =  luxury , 

and may include target variable Sunroof into the set of active variable if Package is 

successfully assigned or instantiated with value luxury and Sunroof's activity status is 

undefined. The same activation condition is used in the activity constraint 0 2  to add 

Sunroof to the problem search space. Another form of activity control is exemplified by 

ay.

ay : Frame = convertible ^ 4  Sunroof.
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If a  configuration solution has convertible value for Frame, then that configuration excludes 

the Sunroof component altogether, as is another example of exclusion activity constraint. 

Finally, activity constraints can extend the set of active variable, that is, include or exclude 

variables, based solely on the activation status of some variables. One example is as:

0 6  : Sunroof Glass.

The Sunroof variable, if active, regardless of the value it takes on, always adds Glass to the 

set of active variables, This means that if Sunroof participates in a configuration solution, 

Glass must participate too.

The compatibility constraints restrict the allowed value combinations for the variables 

on which the constraints are defined. One example is c u :

c 11 : Package = standard —> Frame convertible

is a  binary constraint defined on two variables: Package and Frame. It disallows the value 

convertible for Frame if Package takes on the value standard.

A

2.1.2 Definitions and N otations

The extension to the standard CSP paradigm we formalize in this section was originally 

called dynamic constraint satisfaction problem (DCSP), and was introduced by Mittal and 

Falkenhainer (Mittal & Falkenhainer 1990). They observed that configuration and model 

synthesis tasks render subsets rather than the entire set of problem variables relevant to 

final solutions. It means that not all variables need be assigned values in the course of 

problem solving. This type of dynamicity contrasts with another situation that bears the 

same name in the literature but refers to changing the set of variables independently of the 

solving process and, thus, assigning values to different sets of variables that correspond to 

changing the problem over time (Dechter & Dechter 1988), (Bessiere 1991), (Verfaillie & 

Schiex 1994). To distinguish between these two types of dynamic CSPs we
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• rename Mittal and Falkenhainer’s DCSP to Conditional Constraint Satisfaction Prob­

lem to

• capture the nature of the condition-based mechanism that controls change.

Central to conditional CSP is the notion of variable activity. Only active variables take 

on values and may make up solutions if value assignments axe consistent over all problem 

constraints.

Definition 1 (Active variable). A variable v is active iff v mvst be part o f a solution1.

To arrive at the definitions of consistent value assignments and problem solutions for 

conditional CSP class, we recall four basic definitions and some related notations that axe 

common place in standard CSP class: definition of a  standard CSP, variable instantiation 

(or value assignment), consistent instantiation, and solution to a  CSP. For a  comprehensive 

overview of the foundations of constraint satisfaction that consolidates the major results of 

CSP research and introduces terminologies, otherwise extremely diverse, used throughout 

constraint satisfaction community, we recommend the reader Tsang’s book, Foundations 

of Constraint Satisfaction (Tsang 1993). The definitions below use Freuder’s formalization 

(Freuder 1978).

Definition 2 (Constraint satisfaction problem). A constraint satisfaction problem 

(CSP), V  =  (V,V ,C ), involves a finite set of variables, V =  { u i, . . . ,u n}, which take on 

discrete values from their corresponding finite domains, V  =  {DVl, . . . ,  DVrt}, and a finite 

set of constraints, C =  {ci,. . . , Cm}, which limit the value combinations that variables are 

allowed to take. Each constraint Ci € C is defined on a subset of k variables, var(a) =  

{uij, . . . ,  Vik } C V, and specifies allowed k-tuples or combinations of values that are a subset 

of the Cartesian product of the domains of constraint variables var(ci), that is, Cj C DVii x 

. . .  x DVi. .

‘Note that in a standard CSP all variables are active.
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Definition 3 (Variable instantiation or value assignment). An instantiation of a 

variable v is the assignment to v of a value d from the variable domain of values Dv , 

that is, v  =  d, d € Dv We denote a variable instantiation or value assignment by the 

assignment v =  d or the variable-value pair (v, d). An instantiation of a set of variables 

V =  {vi,.. -, v*} is the simultaneous instantiation of all variables in the set V with values 

from their associated domains, that is,

{ui =  d \ , . . . , Vfc — dfc}, Vi 6  V, di € Dv,i 1 <  i ^  fc.

We denote an instantiation of a set of variables by the set of ordered pairs {(^i dy) . . .  (vf. dk)} 

or, more simply, by the k-tuple of assigned values (d\ , . . . ,dk) .

D efinition 4 (C onsisten t in s tan tia tio n  o r satisfied constrain t). An instantiation T y  

of a set variables V  is consistent with or satisfies a constraint c defined on the same set o f 

variables, var(c) =  V, i f  and only i f  Ty  € c. An instantiation Ty  =  {dVl, . . . ,  dun) satisfies 

a constraint eg defined on a subset U C V , \U\ = m  < |F | =  n, if  Xu =  (du1? ••• ,<2um) € 

eg and {dUl, . .  -, dum} C {dVl,. ■ ■ dun}. We call Tg the instantiation Ty restricted to U. 

An instantiation Ty  =  {dVl, . . . , dyn) satisfies a constraint cw defined on a superset W  D 

V, \ W \ = p >  |F | =  n, if  there is Iw  = {dw ^... ,du,p) € cw and {dWl, . . . , d Wp} D 

{dVl, . . . , dr„}- We call Ty the instantiation I w  extended to V.

Definition 5 (Solution to a CSP). A solution to a constraint satisfaction problem V is 

a consistent instantiation of all variables in V.

A conditional CSP delimits from the entire set of problem variables a non-empty subset 

of initial variables. By definition these variables are active, i.e. they must participate in all 

solutions. A solving algorithm instantiates initial variables and checks the constraints that 

involve these variables. Some of the constraints are the traditional constraints in standard 

CSP and restrict variable instantiations. To differentiate them from the other type of 

constraints that model problem change in a  conditional CSP, Mittal and Falkenhainer call 

these regular constraints compatibility constraints.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



17

Definition 6 (Consistent instantiation of a  compatibility constraint). A compat­

ibility constraint, c, defined on the set of variables, var(c) = Vc, is consistent with an 

instantiation of these variables, X of Vc, iff

• not all constraint variables are active, in which case we say that c is trivially satisfied 

by X. Or,

• all constraint variables are active and X is consistent with c.

Soecific to conditional CSP are activity constraints. These constraints control the set of
X  V

active variables, initialized with the set of initial variables. Activity constraints condition 

variables to either extend or restrict the set of active variables. Inclusion activity constraints 

condition variables to become active and be included or added to the set of active variables, 

and thus to the problem search space. Exclusion activity constraints condition variables 

to be not active and exclude them from being considered for activation by other activity 

constraints.

Definition 7 (Inclusion activity constraint). An inclusion activity constraint

incl
O - Q-cond Vt

is composed of an activation condition, Ocond, which is a regular constraint defined on a set 

of condition variables V ^ d , and target variable, vt £ Vumd, which is made active if and 

only i f  all condition variables are active and the instantiation of is consistent with

a cond-

Definition 8 (Consistent instantiation of an inclusion activity constraint). Given 

the inclusion activity constraint a : acond -^4 vt, which involves condition variables 

and target variable Vt, an instantiation X of is consistent with a  iff

• not all condition variables are active or I  is inconsistent with We say that a is

trivially satisfied by X. Or

• all condition variables are active, X satisfies ac^d, and Vt is active.
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Definition 9 (Exclusion activity constraint). An exclusion activity constraint

excl
a : Gcond ^  vt

is composed of an activation condition, acond? which is a regular constraint defined on a set 

of condition variables Vc^d, and target variable, vt Vend, which is made not active i f  and 

only i f  all condition variables are active and the instantiation of V c ^  is consistent with 

actmd-

Definition 10 (Consistent instantiation of an exclusion activity constraint). Given 

the exclusion activity constraint a : 0 ^  vt, which involves condition variables Famd 

and target variable Vt, an instantiation X  of Vend *s consistent with a iff

• not all condition variables are active orX  is inconsistent with aĉ 4 . We say that a is 

trivially satisfied by X. Or

• all condition variables are active, X  satisfies Oc^d, and vt is not active.

Definition 11 (Activity constraint). An activity constraint is either an inclusion activity 

constraint or an exclusion activity constraint.

Given an activity constraint a : a^nd — * vt, in the rest of the thesis we will use the following 

notations:

• cond(a) denotes the set of condition variables, Vend

• target(a) denotes vt, the target variable associated with a.

Definition 12 (Conditional constraint satisfaction problem [Mittal and Falken­

hainer2]). A conditional constraint satisfaction problem, V  =  {V,V, Vz,Cc,Ca), involves a 

finite set of variables, V =  { v i,... ,v n}> which, if  active, can take on discrete values from 

their corresponding finite domains X> =  {DVl, . . . , DVn }, a non-empty set of initially active

2Name changed from original dynamic CSP to avoid confusion with another dynamic CSP class where 

dynamic changes occur independently of problem formulation.
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variables, called initial variables, Vj, Vr C V, a set of compatibility constraints Cc, and a 

set of activity constraints Cj\..

D efinition 13 (Solution to  a  conditional C SP). A solution, sol, to a conditional 

constraint satisfaction problem, V , is an instantiation of a set of active variables, Vsoi, such 

that sol is consistent with all compatibility constraints that involve Vsoi, and is consistent 

with d l activity constraints whose activation conditions involve Vsoi-

We observe that, in the course of solving a conditional CSP with V  variables, some in­

stantiation X  of active variables partitions V  according to the activity constraints X satisfies. 

Activity constraints of inclusion consistent with X construct the set of included variables, 

Vind• Included variables are active and must participate in problem solutions. Activity 

constraints of exclusion consistent with X construct the set of exduded variables, Vexd-, 

Vexci H Vinci = 0. Excluded variables are not active and cannot be made active by subse­

quent inclusion activity constraints that are consistent with X. This means that X cannot 

be extended with variables in V ^d  to form complete solutions. Similarly, included variables 

are active and cannot be excluded by subsequent exclusion activity constraints that are 

consistent with X. The remaining variables Vrem = V  — (Vinci U V^d) are not active and 

their participation in problem solutions that extend X  has not been determined.

We represent this information by associating an activity status property with each vari­

able. Accordingly, a variable can be in one of the following states:

1 . initial, if the variable is part of the initial variable set,

2 . included, if the variable has been added to the set of active variables by an inclusion 

activity constraint,

3. excluded, if the variable has been excluded from the set of active variables by an 

exclusion activity constraint, and

4. undefined, if the variable does not fit in any of the above three categories.

D efinition 14 (A ctiv ity  g raph ). Given a conditional CSP V  =  (V ,V,Vx,Cc,Cj), an 

activation graph is a directed graph Q =  (V, £) where the vertex set is the set of variables V
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and the edge set, £, is the set o f edges {vi,vt) with Vi,vt € V such that there is an activity 

constraint a € Ca  with Vi € var(a) and vt = target(a). An inclusion activation  g rap h  

is an activity graph which considers only the inclusion activity constraints.

D efinition 15 (P a th ) . A path of length kfrom a vertex u to a vertex u' in the activity graph 

Q =  (V,£) for a conditional C SPV = (V ,P ,V j,Cc,Ca) is a sequence {vq,Vi,V2 ,...,V k ) of 

vertices such that u =  vo> u' =  vk> and € £ , for a lii = 1 ,2 , . . . ,A:. The leng th  of

the path is the number of edges in the path. The path contains the vertices vq, v\, V2 , • • ■, Vfc 

and the edges (vo,vi), (vi,v2 ),...,(v*:-i,v*:)- If there is a path p  from u to u' we say that 

u' is reachable from u via p. A path (vq,vi,V2 , ■ - - ,Vk) forms a cycle if  vq =  Vk and the 

path contains at least one edge. The cycle is sim ple if, in addition, vq,vi,V2 ,...,V k  are 

distinct. An activity graph with no cycles is acyclic.

D efinition 16 (A ctiv ity  cycle). An activity cycle in a conditional CSP V  is a cycle in 

V ’s incl'usion activity graph.

D efinition 17 (A ctivation pa th ). Given a conditional CSP problem V  =  (V ,V ,V z ,Cc,Ca ), 

an activation  p a th  of length k is a path in the activity graph such that:

• vo € Vx-

• p forms no cycles, and

• p is maximal, i.e. p cannot be extended to an activation path p1 of length k' > k.

2.2 Random Problem Generation

2.2.1 Introduction

The simplicity of the constraint satisfaction model has led to relevant quantitative charac­

terizations of CSP instances that can be used as parameters for automatic generation of 

random CSPs. In the case of standard binary CSPs, relevant measures of problem properties 

axe the number of variables, number of constraints, domain size, and number of value pairs
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included in a constraint. By systematically varying these parameters using some random 

methods, large sets of standard binary CSPs can be generated for the purpose of conducting 

useful experimental analyzes.

In this thesis we present extensive empirical evaluations of the proposed solving methods. 

The reformulation algorithm is also evaluated experimentally. The evaluations make use 

of randomly generated conditional CSPs. This section describes the model of problem 

generation for binary standard CSPs and its adaptation to generate the specialized class of 

random conditioned CSPs.

2.2.2 Random Standard CSPs

In our experiments we used Preuder and Wallace’s model of constant probability of inclusion 

for generating random CSPs (Preuder & Wallace 1992). In this model, the number of 

variables, n, and maximum domain size, are fixed. These two parameters allow for

delimiting the range within which we can vary the actual number of elements included into 

variable domain, constraint set, and allowed value pairs set of a constraint. Thus, for a 

binary CSP problem instance, the actual number of domain values can vary between 1 and 

dmax- The actual number of constraints can range from n  — 1 to (n*(n  —1 ) ) / 2  constraints. 

There is a minimum number of n —1 constraints in a constraint graph that is reduced to a line 

connecting all variable nodes. The maximum number of constraints in a complete constraint 

graph is (n* (n — l))/2 . Finally, the actual number of allowed pairs in a binary constraint 

can vary between none and all possible value combinations between the two domains on 

which the constraint is defined, that is, from 0 to the cardinality of the Cartesian product 

of the constraint variable domains. However, the generator has initialization options for 

removing empty and full-product constraints.

The actual number of domain values, constraints, and allowed value pairs are varied 

using probabilities. Thus, there are three probabilities for generating these problem ele­

ments. The probability of constraint inclusion is also known as characterizing the density 

of the problem, while the probability of including value pairs in a  constraint determines the
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problem satisfiability.

We axe presenting the same example given in (Preuder & Wallace 1992) to explain 

how the method works for the choice of number of constraints. If the set of problems is 

characterized by n  =  1 0  variables, which already are connected such that the constraint 

graph is a  line (there should be at least 9 binary constraints), the maximum number of 

constraints that can be added to this initial problem instance is (10 * 9)/2 — 9 =  36. Assume 

that the probability of inclusion of a single constraint is fixed at 0.3. The set of problems 

of size 10 has an expected value for the number of constraints of (36 * 0.3) +  9 w 20. The 

generator builds at random a constraint graph that has 20 constraints. A spanning tree 

phase is added to insure that the generated graph is connected. The constant probability 

of inclusion model uses the same method to determine the domain size and the number of 

value pairs included in a constraint.

For full instructions on the use of the random CSP generator and a  description of other 

underlying models, we direct the user to the technical manual posted on the web site of the 

Constraint Computation Center at University of New Hampshire, with which Wallace was 

affiliated at the time he developed these tools (Wallace 1996).

2.2.3 Random  Conditional CSPs

Random conditional CSP inherits from random standard CSP all five parameters described 

in the model of constant probability of inclusion: number of variables, maximum domain 

size, probability of domain value inclusion, probability of constraint inclusion, or density d, 

and probability of constraint value pair inclusion, or satisfiability s. New parameters are 

needed, however, to characterize problem activity and to measure:

• the amount of activity condition constraints induce,

•  how “active” a variable domain is,

• the type of activity that takes place, i.e., whether variables are included or excluded 

from a problem instance,
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•  activation redundancy, i.e., the number of activations that target the same variable 

and whether these activations involve different sets of condition variables,

•  the size of the initial variable set,

•  whether activated variables, in turn, trigger more activation.

To control these parameters, Richard Wallace has extended the model of constant proba­

bility of inclusion for standard binary CSPs with nine additional parameters that collect 

activity information for a specialized class of conditional binary CSP. The class restricts 

both compatibility and activity constraints constraints to binary constraints. Binary ac­

tivity constraints are defined on a  single condition variable and the usual target variable. 

Since condition constraints are reduced to single value assignments, we call these values 

condition values.

The activity parameters, similarly to standard parameters, set maximum limits on sizes 

of problem component sets, indicate probabilities of inclusion of certain activity elements, 

and answer true/false questions about combining the effect of activity parameters. The 

definitions and notational abbreviations of these parameters are:

•  Maximum number of condition values per domain, maxCondPerDom , sets the max­

imum number of conditional values per domain;

•  Total number of condition values per problem instance, totalCond, may set a stricter 

limit than the total derived from multiplying maxCondPerDom  and the number of 

domains. As soon as the imposed totalCond is reached, the problem generator leaves 

the remaining non-initial variables with no condition values. Thus, condition values 

are not uniformly distributed throughout the entire problem;

•  Maximum number of target variables per condition value, maxTargetPerCond, sets 

the maximum number of target variables one condition value can include or exclude 

from a problem;
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• Probability of generating a non-initial variable as a target variable. The number of 

target variables is a  basic indicator of the density of the activity constraint graph, 

although it does not produce the actual number of activity constraints. Even if it is 

not the direct counterpart of the density of the compatibility constraint graph, we 

call it density of activity and denote it by da. We rename the standard density dc to 

signal its relationship with compatibility constraints.

• Probability of generating a  value in a  domain as a  condition value. The number 

of condition values measure the satisfiability of the activation condition, a unary 

constraint defined on that domain. We call this probability satisfiability of activation 

and denote it by stt. We rename its standard counterpart sc since it refers more 

specifically to the satisfiability of the compatibility constraints.

• Probability of generating an activity constraint as activity constraint of inclusion, pa. 

The probability of generating an activity constraint of exclusion is given by 1 —pa.

•  No condition value in the domain of target variables, noCondlnTarget, is enforced 

when true; otherwise, active variables trigger more activations via their condition 

values;

• No activation redundancy produced by condition values in different domains, noRd- 

ntDiffDom, is enforced when true; otherwise, condition values assigned in different 

condition variables can target the same variable for activity status change;

• No activation redundancy produced by condition values in the same domain, noRd- 

ntSameDom, is enforced when true; otherwise, condition values in the same domain 

can target the same variable.

In all experimental analyses throughout this thesis we use the random problem generator 

for conditional binary CSPs written by Richard Wallace. The generator collects two sets 

of parameters. The first set contains five standard parameters used to generate random 

standard CSPs and the number of problem instances with these characteristics. The second
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set has nine  dynamic parameters based on which the preliminary, underlying standard C S P  

is transformed into a  conditional binary C SP.

As a general practice, the most prevalent experimental design for studying algorithm 

performance using random standard CSPs involves varying density and satisfiability. For 

conditional CSPs we refer to these parameters as density of compatibility, dc, and satisfia­

bility of compatibility, sc.

Specific to a  conditional CSP, we are interested in generating combinations of parameter 

values for those dynamic parameters that control the amount of activity produced. The 

most salient parameters of problem activity are density of activity, da, and satisfiability of 

activation, sa.

Moreover, there is no restriction on problem activity as controlled by the three boolean 

parameters:

• noCondlnTarget is set to false to allow active variables to have activating values,

•  noRdntD iffD om  and noRdntSameDom  are set to false to permit redundant activ­

ity constraints: activity status of the same variable can be determined by condition 

values assigned in domains of either different condition variables or the same condition 

variables.

With the probability of generating inclusion vs. exclusion activity constraints, pa, we 

control the problem activity’s expansionist character, when more variables are made active, 

versus the problem activity’s conservative character, when more variables are restricted 

from being active. This parameter also measures the intrinsic tension between the two 

opposing types of activity constraints. If  pa is set to 0.5, it is more likely that the problem 

has conflicting activations. This situation occurs when the same variable is both included 

into and excluded from the problem. As the number of inclusion and exclusion activity 

constraints is the same, it is more likely that such conflicts occur.

There are three more parameters required by conditional CSP generation: maxCondPerDom, 

totalCond, and maxTargetPerCond set m axim um  limits  for condition values per domain
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and whole problem, and maximum target variables per condition value. They are used to  

fix the range of variability for the probability parameters.
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CHAPTER 3

SOLVING METHODS

3.1 Introduction

The standard constraint satisfaction domain benefits from a rich collection of field-tested 

solving methods. In contrast, solving conditional CSP is still in its infancy with very 

little research directed to specialized solving methods. Following the model of other CSP 

specializations, we developed adaptations of the most representative standard CSP methods 

for the conditional domain:

1. a  modified backtracking (BT) search algorithm that handles both types of activity 

constraints,

2 . a new forward checking (FC) algorithm that propagates compatibility constraints over 

active variables,

3. a new maintaining arc-consistency (MAC) algorithm that propagates both compati­

bility and activity constraints.

In the next chapter, the relative performance of the proposed methods is analyzed 

experimentally by using random conditional CSPs. We show that the run-time complexity 

order in the standard domain, BT < FC < MAC, holds in the conditional domain. The 

advantage that maintaining arc-consistency has over forward checking is due in part to the 

propagation of the activity constraints.

Backtrack search is the only algorithm that has been previously adapted for conditional 

constraint satisfaction (Gelle 1998). Its implementation handles directly only activity con­

straints of inclusion. Activity constraints of exclusion are reformulated as compatibility

27
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constraints based on Haselbock’s transformation introduced in (Haselbock 1993). We mod­

ify the algorithm to handle both types of activity constraints as given in the original prob­

lem representation. The forward checking and maintaining arc consistency algorithms for 

conditional CSPs that are presented in this chapter axe new. Reference to “extending a 

conventional backtrack search CSP” with “forward checking to propagate all constraints” 

has been made in (Mittal & Davis 1989). However, no description is given of either the 

backtrack search or forward checking algorithm, and no explanation is provided as to what 

this propagation means for each type of constraints.

The chapter’s organization has three sections that present the proposed solving methods, 

followed by a chapter summary section. For each method we first show an execution trace of 

the algorithm on a sample problem. We then proceed with the description of the algorithm 

and its procedures in pseudocode. The sample problem we use in this chapter (Example 3) 

is a  subproblem of the CSP model of the car configuration in Example 1 in the previous 

chapter.

Example 3.

FramePackage Initial variables

ranvertibfeluxury^ el l

sedandeluxe

standard

rad

acl

AirConditioner Sunroof

Oi : Package = luxury -^4 Sunroof

mcl' AirConditioner 
excl

0 2  : Package = luxury 

0 7  : Frame = convertible Sunroof
'd isa llow ed . { ( l u x u r y  a c l )}

cdtsaiiowed . ^standard convertible)}

Figure 3-i: Conditional CSP subproblem from the car configuration in Example 1

The example has four variables: Package, Frame, Sunroof, and AirConditioner, 

with their associated domains of values. Package and Frame initialize the search space, 

while Sunroof and AirConditioner might be included or excluded from the search space. 

Variable AirConditioner is conditionally included in the search space through the activity
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constraint a2 . Variable Sunroof’s inclusion is conditioned by ai activity constraint, while 

its exclusion is conditioned by 0 7  activity constraint. The two compatibility constraints 

further restrict the combinations of allowed values.

A

3.2 Backtrack Search

Backtrack search for conditional constraint satisfaction is a  natural extension of backtrack 

search for standard constraint satisfaction. After it was first mentioned in (Mittal & Falken­

hainer 1990), a  full description of a backtrack solving algorithm for conditional CSPs was 

presented in (Gelle 1998). The algorithm, however, solves a partially reformulated condi­

tional CSP, which has only activity constraints of inclusion. We present a modified version 

of the algorithm that handles both types of activity constraints. In comparison with its 

standard analogue, backtrack search in the context of conditioning portions of the search 

space through activity constraints adds to compatibility checking the consistency checking 

of the activity constraints.

3.2.1 Exam ple

We examine first an example of how the backtrack search method works. Figure 3-ii shows 

the depth-first search traversal of the search tree for finding all solutions to the sample 

problem in Example 3.

Exam ple 4. The search starts with the initial variable Frame, for which it tries value 

convertible. This assignment is relevant only to the activity constraint 0 7 , whose condition 

involves Frame and targets variable Sunroof. All the other constraints are trivially sat­

isfied or irrelevant since they involve variables which are not instantiated yet. Thus, there 

is only one constraint check, for 0 7 . Its condition is satisfied, that is, Frame is allowed 

to take convertible, and causes the exclusion of Sunroof variable from the search subtree 

rooted at instantiation Frame =  convertible. We move on to the other initial variable and
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try  luxury  for Package. Again, no compatibility constraint is relevant to this instantiation. 

The assignment is relevant to a i, which includes Sunroof, but this variable has already 

been excluded by assigning convertible to Frame and satisfying a?. Thus, ai fails, renders 

luxury  inconsistent, so we have to try the next value, deluxe, for Package. This one holds, 

the search space is not extended further, and we have the first solution to the problem: 

(convertible, deluxe).

Sunroof

AirConditioner

convertible

luxury deluxe standard 

> <  X
luxury deluxe standard

UNDEFINED acl ac2 acl ac2 UNDEFINED 
X  X

Figure 3-ii: Backtrack search trace on the sample problem in Example 3

To find all solutions, we continue and try value standard for Package. The assignment 

violates the compatibility constraint cn, so we back up one level to the top of the search tree, 

we reset the activity status of Sunroof to undefined, and instantiate Frame with sedan. 

There is no relevant compatibility constraint or activity constraint for this assignment, so we 

continue with trying luxury for Package. Again activity constraints ai and 0 2  are checked, 

both hold, so Sunroof and AirConditioner are activated. We try s r l  for Sunroof, no 

constraint needs to be checked, so we proceed with trying acl for AirConditioner. The 

assignment violates cio, and we have to try the other value, ac2 , next. No constraint restricts 

this assignment and no activity is defined for this value. Thus we obtain the solution, 

(sedan, luxury, sr\, 0 0 2 ). Similarly, by assigning sr2  to Sunroof, we obtain the solution
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(sedan,luxury,sr2 ,ac2 )• We back up two levels, deactivate Sunroof and AirConditioner, 

try the other values for Package, which are not constrained by any compatibility or activity 

constraint, and determine the last two solutions: (sedan, deluxe) and (sedan, standard).

A

3.2.2 Algorithm

Checking constraint consistency in a  conditional context entails checking consistency for 

both types of constraints: compatibility and activity constraints. When a new value is 

tried for a  variable var during search, the backtrack search algorithm determines whether 

the constraints involving var are satisfied. The algorithm we propose delegates consistency 

checking at the time of instantiating var to two different procedures, corresponding to the 

two types of constraints.

Checking compatibility constraints

A compatibility constraint that involves the currently instantiated variable, var, is checked 

only if all the other variables on which that constraint is defined are already instantiated. 

We call the problem’s instantiated variables past variables. Otherwise, no compatibility 

constraint check is performed as the constraint is considered trivially satisfied.

Algorithm 3.1, BtCompatibility, implements the compatibility constraint check per­

formed when value is tried for some active variable var. The compatibility constraint check 

holds for a  given constraint if value is consistent with the value assignments of the past 

variables that the constraint involves. Without restricting this check to binary constraints, 

value assignment is consistent over a compatibility constraint if value participates in at 

least one allowed value tuple of that constraint.

Checking activity constraints

An activity constraint that involves the currently instantiated variable var is checked for 

consistency only if the constraint condition is defined on var and past variables, and the
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A lgorithm  3.1. Consistency check for compatibility constraints used in backtrack search.

boolean BtCompatibility(var, value) {
C c- compatibility constraints which involve variable var 
for each (c 6  C) {

let Vc be c’s variables other than var 
if (Vc are not all past variables)

return  true //c  is trivially satisfied; no check is done 
if (value is consistent with value assignments of Vc) 

return true 
return  false //var’s instantiation with value fails 

}//end for 
}//end BtCompatibility()

condition holds. Otherwise, the activity constraint is disregarded as trivially satisfied. If 

value is consistent with the value assignments of the other condition variables, then the 

activity constraint may change the search space by either including or excluding target 

variables. The search path leading to var has only past variables. The search tree rooted 

at var has only included variables that are not instantiated yet. We call the problem’s 

included but not instantiated variables future variables.

To keep track of how the search space changes when activity constraints of inclusion 

are found consistent, we maintain a list of future variables, Agenda. The list is initialized 

with the problem’s initial variables, the only future variables that the problem has initially. 

During search, one variable at a time is removed from the Agenda and instantiated.

If the type of action triggered when an activity constraint is satisfied is contradicted by 

the activity status of the target variable, then the activity constraint check fails. That is the 

case when the constraint action either includes a target variable, but that target variable is 

already excluded, or excludes a target variable, but that target variable is already included 

in the search space.

Algorithm 3.2, BtActivity, describes the checking of activity constraints. The imple­

mentation has two cases, controlled by the type of action that activity constraints perform. 

The two possible actions are to either include or exclude a target variable. In each case, if 

action matches the activity status of the target variable, the activity constraint is redun-
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Algorithm 3.2. Consistency check for activity constraints used in backtrack search.

boolean BtActivity(yar,value, Agenda, UndoActivity) {
A activity constraints whose conditions involve variable var 
for each (a € A) {

let Vcond be a’s condition variables except var 
if (Vcond are not all past variables)

return true / /a  is trivially satisfied; no check is done; successful termination 
if (value is not consistent with value assignments of Vcon<i)

return true //activation condition fails; no effect on variables’ activity status 
/  /successful termination

else {
target <- target variable of a 
action <- activity performed by a 
if ( action includes target) {

if ( target has already been excluded )
return false //conflicting activity constraints 

else if ( target is newly included )
Agenda ■<— Agenda U target / /target becomes future variable

}
else { / /  action excludes target

if ( target has already been included )
return false / /conflicting activity constraints

}
UndoActivity <- UndoActivity U {a}

}//end else 
}//end for 
return true 

}//end BtActivityQ

dant and has no effect on the search space. Otherwise, the activity constraint 

conflict and fails. The third possibility is when targef  s status is undefined, 

of enforcing the activity constraint, the target is newly included or excluded, 

included, it is added to the search space. B tA ctivity  procedure adds target to the Agenda 

and changes the variable status from undefined to included. If target is excluded from the 

search space, Agenda remains unchanged, but the variable status changes to excluded. In 

both cases, UndoActivity remembers the activity constraint that modified the search space. 

The search space is restored based on this information when variable instantiation fails.

generates a 

As a result 

If target is
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Algorithm 3.3. Backtrack algorithm for solving conditional CSPs.

boolean CCSPSclveBt( ) {
Agenda initially included variables 
if ( Agenda is empty ) 

return false 
numberSolutions <— 0
oneSolutionOnly «- whether one or all solutions are searched for 
return CCSP-Bt(Agenda, oneSolutionOnly)

}/ /end CCSP-SolveBt

boolean CCSP-Bt(Agenda, oneSolutionOnly) { 
if ( Agenda is empty ) {

numberSolutions <— numberSolutions + 1 
return true

}
var <— select variable and remove from Agenda
value •<— select value from domain of var and instantiate var
UndoActivity <— 0
UndoVolues 0
if ( BtCompatibility(var, value) and BtActivity(var, value, Agenda, UndoActivity) ) { 

if ( CCSPJ3t(Agenda, oneSolutionOnly) and oneSolutionOnly ) { 
reset variable activity status as saved in UndoActivity 
uninstantiate var and put it back into the Agenda 
return true

}
}
reset variable activity status as saved in UndoActivity 
uninstantiate var and put it back into the Agenda 
UndoVolues <- {(var, value)} 
remove value from domain of var 
if ( domain of var is empty ) 

backtracks ear ch <— false 
else

backtracksearch <— CCSP-Bt (Agenda, oneSolutionOnly) 
reset variable activity status as saved in UndoActivity 
restore all removed values saved in UndoValues 
return backtracks earch 

}//end CCSP-BtQ

C C SP -B t a lgorithm

The Algorithm 3.3 shows the implementation of the procedure C C SP So lveB t for solving 

conditional CSPs using backtrack search. After initializing the Agenda with all initially 

included variables, and determining whether one or all solutions are wanted, the algorithm 

calls the recursive procedure C C SP -B t, which implements backtrack search. C CSP-Bt 

traverses the search tree in a depth-first search fashion: going deeper in the tree by recursing
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through the variables in the Agenda if both compatibility and activity constraints hold for 

the current instantiation. Recursion is also used to do a sideways traversal of the search 

tree when different values are, in turn, assigned to a  given variable. More than one value 

is tried for a  variable if previous instantiations failed- It is also the case that all domain 

values are checked when the algorithm seeks all solutions.

BtCompatibility and BtActivity  procedures are called with each variable instantiation. 

If compatibility and activity constraint checks hold, the assignment of the current variable 

is kept and the search goes deeper in the tree by recursing through the next future variable 

in the Agenda. If a compatibility or activity constraint relevant to the current instantiation 

fails, the search goes sideways in the tree by recursing through the next value in the domain 

of the variable selected from the Agenda with the second recursive call. Prior to making that 

recursive call, the inconsistent value is removed from its domain and removal information 

is saved in UndoValues.

When recursion unwinds (either Agenda is empty or there is no value left in a domain), 

the traversal backs up in the tree, UndoV olues is used to restore domains, and activity 

status changes are undone by processing UndoActivity. These bookkeeping operations are 

necessary especially when the algorithm searches for all solutions. Note that in the case of 

finding only one solution, when a solution is found the two bookkeeping statements that 

precede the successful return statement have no effect on the search result. They merely 

leave the problem as it was before search started.

BtActivity  maintains undo information, UndoActivity, with regard to variables’ ac­

tivity statuses. This information has to be restored if the procedure fails. The order in 

which constraint checking is done has BtCcompatibility before BtActivity , in order to avoid 

modifying activity status and the content of the Agenda unnecessarily if a compatibility 

constraint fails. We will see that for the solving algorithms that we present next checking 

compatibility constraints still requires less bookkeeping than checking activity constraints.
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3.3 Forward Checking

Standard forward checking combines backtracking with some form of local consistency, or 

“look ahead”, that prunes values from variables which have not been assigned values in 

the search tree. (Haralick & Elliott 1980). The version of forward checking in conditional 

context enforces look-ahead consistency along compatibility constraints. Checking activity 

constraints might add new variables to the set of variables that await to be assigned values. 

Local consistency is propagated to these variables as well.

3.3 .1  E x am p le

We use the same sample problem as in the previous section to show an execution trace of 

the forward checking method applied to conditional CSPs (Figure 3-iii).

Exam ple 5. We observe that when Frame is the only instantiated variable and has been 

assigned the value convertible, forward checking examines all the other active, but not 

instantiated variables which share compatibility constraints with Frame. Variable Package 

is such a variable since it participates in the constraint c\\ along with Frame, and it 

is the only variable in the search tree that is not currently instantiated. As a result, 

forward checking removes from the domain (luxury, deluxe, standard) of Package the value 

standard, which is inconsistent with the assignment convertible for Frame.

Analogous to backtrack search for conditional CSPs, the presence of activity control 

in addition to compatibility control, extends forward checking to the activity constraints. 

The only applicable activity constraint when Frame takes convertible is 0 7 , which excludes 

Sunroof from the search tree. Since Sunroof is not added to the agenda of search variables, 

no filtering of its domain takes place at this point. The algorithm continues in a depth-first 

search manner and instantiates variable Package with value luxury. There is no other 

variable in the search tree to look ahead to, so we continue with checking the activity 

constraints. The applicable activity constraints to the current instantiation of Package 

are ai and 0 2 - ai attempts to include Sunroof, conflicts with <17, and thus fails. This 

means that luxury is not a valid choice, 0 2  is not checked anymore, and the algorithms
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tries the only left value for Package, that is, deluxe. Within this configuration, there is 

no compatibility constraint or activity constraint that triggers any forward checking for 

the fully instantiated search path Frame =  convertible and Package = deluxe. Thus, we 

found the first solution to the problem: (convertible, deluxe).

To continue, we back up one level, restore the pruned value standard, as well as the 

activity status of Sunroof to undefined, and try sedan for Frame. We continue in a similar 

fashion and try first luxury for Package. Again no forward checking pruning occurs for this 

instantiation. There are two applicable activity constraints: ai includes Sunroof and ai 

includes AirConditioner. Both constraints hold and the search space grows with these two 

variables. Forward checking prunes acl from the domain of AirConditioner by propagating 

Cio- We go one level deeper and instantiate Sunroof with s r l ,  no constraint applies to the 

current search path, which we extend with the last active variable AirConditioner. Here, 

there is one value left in the domain, ac2 - This assignment is consistent with the previous 

choices, otherwise forward checking would have pruned it. No more active variables are left, 

and we end up with the second solution: (sedan, luxury,sri,ac 2 ). To continue, we back up 

one level and try sr^ for Sunroof. Similar to sri assignment, sr2  is trivially satisfied and 

leads immediately to the third solution (sedan, luxury, sr2 , 0 0 2 ). Ultimately, we find two

Initial search space

Frame convertible
If luxury deluxe standard)

sedan
c N f luxury deluxe standard

Package luxury _ _ deluxe luxury_ deluxe _ standard
X

Sunroof EXCLUDED srl sr2 UNDEFINED

AirConditioner undefined ac2 ac2 undefined

Figure 3-iii: Forward checking search trace on the sample problem in Example 3
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more solutions, unrestricted by any constraint: (sedan, deluxe), and (sedan, standard).

A

3.3.2 Algorithm

Forw ard checking com patibility  constra in ts

Forward checking of compatibility constraints is done when a  new value is tried for a  vari­

able var. Compatibility constraints are trivially forward-checked if they are defined on past 

variables and thus have already been instantiated. The actual forward checking takes place 

when variables other than var are future variables and thus have not yet been instanti­

ated. The procedure FcCompatibility implements forward checking along compatibility 

constraints (Algorithm 3.4). If value for var is inconsistent with values in the domains of 

future variables, the inconsistent values are removed from their domains. Forward checking 

fails if one of those domains becomes empty. Otherwise, information about the removed 

values and their variables is saved in UndoValues. The undo information is needed to re­

store the domains affected by forward checking when search backs up and undoes the work 

it had performed up to that point in the search.

A lgorithm  3.4. Forward checking for compatibility constraints.

boolean FcCompatibility(var,value, UndoValues) {
C <— compatibility constraints which involve variable var 
for each (c G C) {

let Vc be c’s variables other than var 
if (Vc are not all future variable)

re tu rn  true //c  is trivially satisfied; no check is done 
for each (v € Vc) {/ /v is a future variable 

let d be the domain of v
if ( (d has inconsistent values Id with value) and (d -  Id is empty) ) 

return false
remove Id from d and save (v, Id) information in UndoValues 

}//end for each v 
}//end for each c 
return true 

}//end FcCompatibility()
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Note that, similar to BtCompatibility, FcCompatibility procedure is not restricted to 

rVipricing binary constraints. The propagation of the value assignment var = value to future 

variables along compatibility constraints that involve var results in the removal of those 

values in the future variable domains that are not part of the tuples that have value for 

var. We assume that compatibility constraints are represented as enumerations of allowed 

tuples.

Forward checking ac tiv ity  constra in ts

Forward checking of activity constraints performs activity constraint checks under the same 

circumstances as backtrack search:

•  compatibility constraints have been forward checked, and

•  activity constraint conditions are defined on past variables and current variable, var, 

and hold for current instantiation, var = value.

Forward checking of activity constraints differs from its backtrack search counterpart when 

activity constraints extend the search tree with new active variables. In the presence of 

newly included variables, forward checking consistency filters from the new domains those 

values which are inconsistent with the current partial solution. If activity constraints exclude 

new variables, or introduce redundant activity, forward checking does not have any effect 

on the future variable set.

To implement forward checking for activity constraints, we slightly modify BtActivity 

we used in backtrack search such that it collects the newly added variables in a list 

NewVariables. If the current instantiation, var =  value, does not introduce conflicts 

with regard to these variables’ activity statuses, then the domains of the variables in 

NewVariables are possibly pruned of values inconsistent with the current search path.

The implementation of forward checking for activity constraints is shown in Algo­

rithm 3.5. The algorithmic additions to BtActivity  used in backtrack search are shown 

in boxes in the implementation of FcActivity. The procedure FcActivity defines a local
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Algorithm 3-5. Forward checking for activity constraints. The code enclosed in boxes 
shows how FcActivity implementation differs from BtActivity in Algorithm 3.2.

boolean FcActivity {var, value. Agenda, UndoValues, UndoActivity) {
A «— activity constraints whose conditions involve variable var 
for each (a € A) {

let Vcond be o’s condition variables except var 
if  (Vcond are not all past variables)

return  true / /a  is trivially satisfied; no check is done 
if {value is not consistent with value assignments of Veond)

return  true / /activation condition fails; no effect on variables’ activity status 
else {

target <- target variable of a 
action <- activity performed by a 
if ( action includes target) {

if ( target has already been excluded )
return false / /conflicting activity constraints 

else if ( target is newly included ) {
Agenda <- Agenda U target //target becomes future variable 
NewVariables «— NewVariables U target

}
}
else { / /  action excludes target

if ( target has already been included )
return false //conflicting activity constraints

}
UndoActivity •<— UndoActivity U {a}

}//end else 
}//end for
for each {newvar € NewVariables)

if  {FcNewvar{newvar, UndoValues) is false) 
return false

return  true
}//end FcActivity{)

list, NewVariables, which saves the newly included variables. If all activity constraints 

processed in the first loop axe satisfied, then FcNewvar procedure (Algorithm 3.6) is called 

to propagate value assignments of past variables (including the current instantiation) to 

variables in NewVariables. The propagation takes place over compatibility constraints 

that connect the current search path with newvar. This is necessary because forward 

checking of activity constraints (FcActivity) may modify the future variable set that has 

been forward-checked along compatibility constraints with FcCompatibility, prior to exe­

cuting FcActivity. FcNewvar is a restricted form of FcCompatibility which deals with
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NewVariables only and their consistency with the current search path.

A lgorithm  3.6. Filter the domain of newvar along compatibility constraints for which 
newvar is a future variable.

boolean FcNewvar {newvar, UndoV alues) {
C «— compatibility constraints that involve newvar

and connect newvar to past variables (including current instantiation) 
for each (c € C) {

let be c’s variables except newvar
let Ac be the value assignments of variables Vc
let d be the domain of newvar

t  ( U n c  vmvUiAC T . A ^ J  _  T , »C A t w )
X X  ^  ( u  U O J  U l c U i W i d b C i l U  f c t b l k t C O  *« A b l l  + *>C )  J. a  M  y  J

return false 
else

remove Id from d and save (newvar, Id) in UndoValues 
}//end for 
return true 

}//end FcNewvarQ

An alternative to the use of FcNewvar is to apply FcActivity first and generate the set 

of future variables on which we then run FcCompatibility. The drawback of this approach 

is that in case FcCompatibility fails, not only do remove values have to be put back, but 

also the future variable space has to be restored: the content of the Agenda and variables’ 

activity status.

CCSP-Fc  algorithm

The recursive forward checking algorithm for solving conditional CSPs, CCSPJFc (Algo­

rithm 3.7) is very similar to CCSPJBt backtrack algorithm. The main difference is in 

the way compatibility and activity constraints are used to check the consistency of the 

current instantiation. Instead of looking back along compatibility constraints to values 

already assigned and checking if the current value assignment satisfies these constraints, 

FcCompatibility looks ahead to variables not yet instantiated. It checks that domain val­

ues of future variables satisfy compatibility constraints these future variables share with the 

currently assigned variable. If FcCompatibility is successful, the algorithm checks the activ­
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ity constraints by running FcActivity and filters the domains of the newly included variables 

such that they are consistent with the search path. In addition to calling the new constraint 

checking algorithms, FcCompatibility and FcActivity (shown in boxes in the CCSPJFc 

algorithm (Algorithm 3.7), the algorithm differs from the backtrack search when it restores 

removed values saved in UndoValues. That is necessary because both FcCompatibility 

and FcActivity prune future variables and save undo information in UndoValues list.

We notice that both types of constraint checks, FcCompatibility and FcActivity, might 

prune future domains and hence have to maintain information about removed values in 

UndoValues. As a result, when a current instantiation var =  value violates either a 

compatibility or activity constraint, future variable domains have to be restored before 

search continues with trying a new value for var.

3.4 Maintaining Arc and Activation Consistency

Local consistency enforced by forward checking filters the domains of future variables di­

rectly connected through compatibility constraints to the currently instantiated variable. 

This level of consistency can be extended to arc consistency over all future variables, that 

is, both directly and indirectly connected via constraints to the current instantiation node 

in the search tree.

Combining backtrack search with arc consistency has resulted in the most effective 

solving algorithm for standard binary CSPs, Maintaining Arc Consistency (MAC) (Sabin, 

D. & Freuder 1994), (Grant & Smith 1995), (Bessiere & Regin 1996). The idea of MAC 

is that with each variable instantiation, all the other values left in that variable’s domain 

are eliminated, and all future variables are made arc consistent. If value v is assigned to 

variable V , removing all the other values in the domain of V  may leave without support 

values in future variables which are directly connected via constraints with V. The removal 

of not supported values in future variables may determine a “domino effect” of further value 

elimination through constraint propagation in the future variable space. If arc consistency 

checking leads to wiping out some future variable domain, then assigning v to V  fails and
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Algorithm 3.7. Forward checking algorithm for solving conditional CSPs. The code en­
closed in boxes shows the differences between forward checking search and backtrack search 
as described in Algorithm 3.3.

boolean CCSP-SdveFc() {
Agenda 4— initially included variables 
if ( Agenda is empty ) 

re tu rn  false 
number Solutions 4-  0
oneSolutionOnly 4-  whether one or all solutions axe searched for 
re turn  CCSPJFc, oneSolutionOnly)

}//end CCSPJSdveFcQ

boolean -F'ĉ A.gznd.o.. ori€Solv.tioriOpAy') {
if ( Agenda is empty ) {

numberSolutions 4-  numberSolutions + 1 
re tu rn  true

}
var 4-  select variable and remove from Agenda
value 4- select value from domain of var and instantiate var
UndoActivity 4-  0
UndoValues 4-  0
if ( FcCompatibility (var, value, UndoValues) and

FcActivity(var, value, Agenda, UndoValues, UndoActivity) ) { 
if ( CCSP-Fc(Agenda, oneSolutionOnly ) and oneSolutionOnly ) { 

restore all removed values saved in UndoValues

reset variable activity status as saved in UndoActivity 
uninstantiate var and put it back into the Agenda; 
return  true

}
}_________________________________________
restore all removed values saved in UndoValues 

reset variable activity status as saved in UndoActivity 
uninstantiate var and put back it back into the Agenda 
UndoValues 4— {(var, value)} 
remove value from domain of var 
if ( domain of var is empty ) 

backtrackSearch 4-  false 
else

backtrackSearch 4-  CCSP-Fc(Agenda, oneSolutionOnly) 
reset variable activity status as saved in UndoActivity 
restore all removed values saved in UndoValues 
re turn  backtrackSearch 

}//end CCSP-FcQ

MAC lias to undo all value removals, remove v from V, reestablish arc consistency, and 

continue the search.
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MAC algorithm for conditional CSPs has a  preliminary arc consistency processing over 

all initial variables before the actual search starts. Arc consistency processing has received 

constant attention in the research community over the past 15 years, during which seven 

algorithms, AC-1 to AC-7, have been developed. A useful review of the latest developments 

can be found in (Bessiere & Regin 1997; 2001).

It is important to note that although research has addressed the issue of generalizing 

arc consistency to n-ary constraints (Bessiere & Regin 1997; Bessiere 1999; Bessiere et al. 

2002), no implementation of MAC for standard non-binary constraints has been presented 

yet. In developing a  MAC algorithm for conditional CSPs we restrict the problem to 

a conditional binary CSP, where both compatibility and activity constraints are binary. 

Under this assumption, activity constraints have unary condition constraints. In the rest 

of this section, the term constraints refers to binary constraints.

3.4.1 Exam ple

The implementation of MAC we propose for conditional CSPs is based on AC-4 algorithm 

for enforcing arc consistency. The underlying mechanism of ACM uses support counters to 

keep track of the amount of support a  value has along a constraint from other participating 

domains. Each constraint has support counters for each value in the constraint’s variables. 

Given a binary constraint defined on variables X  and Y, there is a support counter for each 

value x  in domain of X  such that it shows how many values in domain of Y  are consistent 

with x. To understand the support counter concept and how it is applied to maintaining 

arc consistency we give two examples. The first example introduces the concept and shows 

how support counters are computed and then used to make a problem arc consistent. The 

second example is used to trace the search algorithm, and it shows how support counters 

are updated in the process of maintaining compatibility and activation consistency.

Exam ple 6 . The sample problem for which we traced backtrack and forward checking 

search is modified by adding a third value, hatchback, in the domain of variable Frame 

(Figure 3-iv). modifies the original cn to show that Package has no support for the
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Initial variables p raTTM> 
c’U

AirConditioner

ai : Package = luxury Sunroof

a2 : Package =  luxury AirConditioner

0 7  : Frame = convertible Sunroof

Sunroof

cfo°wed : {(luxury ac2 )(deluxe acl)(deluxe ac2 )(std acl)(std oc2 )}

fallowed.. {(luxury convertible)(luxury sedan)(deluxe convertible)(deluxe sedan)(standard sedan)}

Figure 3-iv: New value, hatchback, is added to the sample problem in Example 3. du 
is modified to show that Package has no support for hatchback. Values participating in 
compatibility constraints have associated support counters.

newly added value hatchback. Compatibility constraints cio and dn  are expressed as sets 

of allowed value pairs. This representation facilitates the computation of support counters 

for all values participating in these two compatibility constraints.

For example, du , defined on Package and Frame, has exactly two allowed value com­

binations in which value luxury  participates : (luxury, convertible) and (luxury, sedan). 

Therefore, on ^1 1 1 luxury  has a  support counter of 2. Similarly, we compute all support 

counters for the domains of variables Package and Frame, as constrained by dxl. The 

support value of 0  for hatchback on constraint shows that hatchback is not consistent 

with any other value a t Package and can be removed from the domain of Frame. Only 

dn  imposes restrictions on the value combinations of the initial variables in our sample 

problem.

A

The preliminary arc consistency for the example problem produces the support counters 

shown in Figure 3-iv. When applied to conditional CSPs, the arc consistency preprocessing 

phase for making the problem arc consistent considers only initial variables (the only ones 

that are active) and is carried out along compatibility constraints on these variables. During
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search, active variables continue to be maintained arc consistent with regard to compat­

ibility constraints. We also refer to this type of consistency as compatibility consistency. 

In addition, a  special local consistency is enforced among active variables along activity 

constraints. We call it activation consistency.

The following example shows how local consistency, in its two forms, arc or compatibility 

consistency and activation consistency, is combined with backtrack search in a  new MAC 

algorithm for solving conditional CSPs.

E xam ple 7. We start by assigning convertible to Frame and eliminating the other value 

left in the domain, sedan (as shown a t the top of the Figure 3-v). Value hatchback was 

already eliminated by the preliminary arc-consistency over the initial variables. Along the 

compatibility constraint ^li , sedan supports all three values at Package (Figure 3-iv). The 

elimination of sedan is propagated through and support counters of luxury, deluxe, 

and standard are decremented. Consequently, standard’s support counter becomes 0. T his  

indicates that standard value is inconsistent, cannot extend Frame = convertible to a 

partial solution, and must be removed. No more propagation takes place at this point, 

since no other compatibility constraints are defined on present search variables, Frame and 

Package.

Following the checking of compatibility constraints, we consider the activity constraints 

whose condition variables are active. 0 7  is the only such activity constraint. It is satisfied 

by Frame = convertible, and Sunroof, a variable new to the current search, is marked 

as excluded from the search tree rooted at convertible. However, there is another activity 

constraint, ai, whose condition involves future variable Package, and which conflicts with 

<2 7 . Therefore, o i’s condition value luxury  is inconsistent with convertible, so it gets re­

moved too from the domain of Package. This removal propagates on ^11 and decrements 

convertible's counter to 1. With this level of local consistency achieved, we continue the 

search and instantiate Package with the only value left in its domain, deluxe. There is a 

single constraint to be checked, du . It holds and we obtain the first solution to the problem: 

(convertible, deluxe).
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Frame convertible

tSC ^(convertible sedaff hatphback)fliurtfiy deluxe s^adard)) 
>  1 3 0 >  1 >-1 > -0

a 7 : convertible excludes Sunroof

Package

Sunroof

AirConditioner

Initial search space

a! : luxury includes Sunroof and becomes inconstetetjtwith convertible

deluxe

c’u s c  ={(convertible js d d if  haicMSkJOOjywrf deluxe strtwtdrd));

EXCLUDED

UNDEFINED

Frame sedan
c\i sc={(copvtfrnble sedan hajetlfiack) (luxury deluxe standard)] 

2 3" 1 ^ 0  _ >  1 >  1 _  I

deluxe

Initial search space

standardPackage luxury ______
'c’, ,sc={(coBvtifSble sedan hatchtiack)(luxury dfkfiie"standard)] ^ '^convertiblesedan hatehback) °"{(convertible sedan hatphbSck) 
: 2 > 1  Q, \  1 1 1 2 Jr\  0  ' l  Jr\  " 0  :

(Jujrtfry deluxe standard)) (Tjurtlry rjeMrcstandard))
1 1 ' ' I  1 1 1c i0 SC={ (luxu ry ) ( j e f  ac2)} 

1 0 / I

Sunroof srl

AirConditioner ac2
v /

UNDEFINED

Figure 3-v: MAC search trace of the sample problem in Example 6 . ciosc and dn sc list the 
support counters computed for cio and constraints.

To find all solutions, we back up one level and try sedan for Frame (as shown at the 

bottom of the Figure 3-v), remove convertible from Frame’s domain, and propagate this 

value removal along c'n  by decrementing accordingly the support counters for Package’s 

values: all become 1. There is no other constraint participating in maintaining arc consis­

tency for Frame =  sedan assignment, and we proceed by trying luxury for Package. The 

other two values, deluxe and standard, are removed, but no more counter updates or value 

removals take place along the only applicable compatibility constraint c'n-

Activity constraints are checked next, a l and a2 have Package =  luxury as condi­

tion. The search path satisfies both, and two new variables, Sunroof and AirConditioner 

are added to the search. To make the new variables arc consistent with the active vari-

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



48

ables Frame and Package, we consider compatibility constraints between new variables 

and active variables. There is one such compatibility constraint, cio, between the new 

variable Sunroof and active variable Package. We first compute cio’s support counters. 

At this point during search, Package has one value left, luxury, with a single support 

at AirConditioner, from ac2. The support counters of acl and ac2 are 0 and 1: acl 

has no support because both deluxe and standard are removed, and ac2  has one support 

from luxury. With the removal of acl value, AirConditioner is made arc consistent with 

the rest of the variables, and no further propagation takes place. The instantiations of 

Sunroof and AirConditioner produce two more solutions, (sedan, luxury, srl, ac2) and 

(sedan, luxury, sr2 , ac2 ). We complete the search in a similar fashion by backing up one 

level and trying, in turn, deluxe and standard for Package. Each assignment extends 

Frame =  sedan with a solution: (sedan, deluxe) and (sedan, standard).

A

3.4.2 A lg o rith m

The conditional analogue of standard MAC interleaves backtrack search with maintain­

ing consistency for compatibility constraints and activity constraints. In the following, 

as in forward checking for conditional CSPs, we first examine propagation of compatibil­

ity constraints to achieve arc consistency, as described in MacCompatibility procedure. 

We then extend this level of local consistency with the propagation of activity constraints 

(MacActivity procedure). The order in which constraints are checked in the conditional 

MAC algorithm is the same as in backtrack search and forward checking: compatibility con­

straints are checked first, followed by activity constraints. This order reduces the amount 

of undo operations caused by restoring removed values and variable activity status in case 

a constraint check fails. During activity constraint checking, newly included and excluded 

variables are listed in a  new structure that is used for enforcing local consistency along 

activity constraints (MacNewvar procedure). All these procedures are put together in 

C C SPSolveM ac  algorithm, which describes conditional MAC search.
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Maintaining arc consistency over com patibility constraints

M  acCompatibility procedure (Algorithm 3.8) takes a list of pairs of variables with their 

associated values, which have been removed from the variable domains, (V, removedValue). 

We denote this list UndoValues.

Algorithm  3.8. Maintain are consistency over compatibility constraints: future variables 
in the Agenda are pruned of values that are not arc consistent.

boolean MacCompatibility {UndoValues, Agenda) {
for each ( {V,removedValue) pair saved in UndoValues ) {

C «- (binary) compatibility constraints define on V  and othervar, othervar € Agenda 
for each ( c 6  C ) {

SupportValues «- values in othervar supported by removedV alue of V 
for each ( sv € SupportV alues ) {

counter <— sv’s support counter along c 
save counter information in UndoValues
counter «— counter — 1 / /  sv lost support from removedV alue along c 
if ( counter is 0  ) {

if sv is the only value left in the domain of othervar) 
return false 

remove sv from the domain of othervar 
UndoValues «— UndoValues U {othervar, sv)

}
} / /  end of SupportValues list 

} / /end for each c 
} / /  end of UndoValues list 
return true 

}//end MacCompatibility{)

Arc consistency over compatibility constraints is done for each constraint c that involves 

a  variable V  in the pair {V, removedV alue). Constraints are binary and connect V  with a 

second variable, othervar, which is a future variable managed by the Agenda data struc­

ture. The procedure determines all sv values at othervar which support removedV alue at 

V. Each sv value has a support counter, called counter, that indicates how many values 

support sv along c. Because removedV alue was removed from V, each sv value loses one 

support value and its counter is decremented. If counter becomes 0, sv is left with no 

support at V, violates c, so it is, in turn, removed. If sv removal wipes out the domain of 

othervar, MacCompatibility fails and returns false. Otherwise, we safely remove sv and
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add (othervar, sv) pair to the UndoValues list. Arc consistency processing continues until 

the end of the list UndoValues is reached. That is when MacCompatibility succeeds.

Anytime in the process, if MacCompatibility fails, variable domains modified by arc con­

sistency are restored based on undo information saved in UndoValues. To avoid the recom­

putation of counters, for each removed value processed, MacCompatibility saves counter 

references to counters that are decremented. If the removed value is to be restored, so axe 

the counters that that removed value has modified.

The new algorithm, C C SP Solve Mac, uses MacCompatibility in several situations, all 

of which have in common some value removals. One situation is when the initial variables are 

made arc consistent, by calling Make AC  procedure, prior to launching backtrack search (see 

Algorithm 3.9). Before MacCompatibility is called, each compatibility constraint on active 

variables is processed so that values with no support in the domains of constraint variables 

are eliminated. The procedure MakeOneAC  removes arc inconsistent values and saves them 

in the UndoValues structure. The value removals axe propagated with MacCompatibility 

in order to make the initial problem arc consistent.

Another situation in which MacCompatibility is called by the solving method is when a 

variable var is instantiated with some value during search. All the values in the domain of 

var except value are removed and saved in the UndoValues list. This initial UndoValues 

list triggers arc consistency by propagating compatibility constraints that involve var and 

future variables. In the process, values at future variables might get removed and informa­

tion about those variables and their removed values is added to the UndoValues list. The 

propagation continues over compatibility constraints that involve future variables until no 

value removal takes place and the end of UndoValues is reached.

If the current instantiation, var =  value, fails, value is removed from the domain of 

var. This removal is another case in which MacCompatibility is called to establish arc 

consistency.

Finally, we will see next that maintaining local consistency over activity constraints 

causes value removals and, consequently, requires MacCompatibility propagation.
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A lgorithm  3.9. Make initial variables arc consistent. Call MakeOneAC procedure to 
remove arc inconsistent values from the domains of all compatibility constraint variables. 
Call MacCompatibility to propagate value removal and achieve arc consistency.

boolean Make AC {Agenda) {
UndoValues <- 0
for each (constraint c defined on X  and Y  variables in the Agenda) 

if ( MakeOneAC {c,X,Y, UndoValues) is false ) 
return false 

return MacCompatibility {UndoValues, Agenda)
}//end MakeAC()

boolean MakeOneAC{c,Xvar,Yvar, UndoValues) { 
set up AC-4 counters on constraint c
for each ( xval in domain of Xvar with no support in domain of Yvar on c ) 

if {removeValue{xval, Xvar, UndoValues) is false ) 
return false

for each ( yval in domain of Yvar with no support in domain of Yvar on c ) 
if {removeValue{yval, Yvar, UndoV alues) is false ) 

return false 
return true 

}//end MakeOneAC{)

boolean removeValue{value, var, UndoValues) {
Dvar domain of var 
if ( {DVar ~ value) is empty ) 

return false 
remove value from Dvar 
UndoValues <- UndoValues U {var, value) 
return true 

}//end removeValue{)

Maintaining activation consistency over activity constraints

Activity constraints are checked and propagated with MacActivity procedure. This proce­

dure is called by C C SPSolveM ac  following the propagation of compatibility constraints, 

which leaves the problem arc consistent when a new value is tried for current variable var. 

The procedure MacActivity in Algorithm 3.10 shows the implementation of checking the 

activity constraints relevant to variable assignment var — value. If these activity con­

straints are satisfied, variables new to the search are made consistent over compatibility 

and activity constraints by calling MacNewvar for each such variable.

MacActivity implementation (Algorithm 3.10) is similar to FcActivity implementation
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A lgorithm  3.10. Maintaining condition consistency over activity constraints. The code 
enclosed in boxes differentiates MacActivity from BtActivity, Algorithm 3.2. It differs 
from FcActivity in two ways (see nested boxes): newly excluded targets are added too to the 
NewVariables list, and MacNewvar is called to make NewVariables arc and condition 
consistent.

boolean MacActivity (var, value, Agenda, UndoValues, UndoActivity) {
A <- (binary) activity constraints whose (unary) conditions involve variable var 
for each (a € A) {

if (value is not consistent with a’s condition
return true //activation condition fails; no effect on variables’ activity status 

else {
target «— target variable of a 
action <— activity performed by a 
if ( action includes target ) {

if ( target has already been excluded )
return false //conflicting activity constraints 

if ( target is newly included ) {
Agenda <- Agenda U target / /target becomes future (active) variable
NewVariables NewVariables U target

}
}
else -{[ / /  action excludes target

if ( target has already been included )
return false / /conflicting activity constraints

if ( target is newly excluded ) 
NewVariables NewVariables U target

}
UndoActivity <- UndoActivity U a 

}//end else 
}//end for

for each (newvar € NewVariables) {
LocalUndoValues 0
macNewResult <— MacNewvar (newvar, LocalUndoValues) 
UndoValues UndoValues U LocalUndoValues 
if ( macNewResult is false ) 

return  false

return true
}//end MacActivity()

(Algorithm 3.5). One important difference, which is true of MacCompatibility too, is the 

assumption that constraints are binary. Thus, activity constraints have unary conditions 

of the form V  =  v. To facilitate the comparison among MacActivity, FcActivity, and
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B tActivity , we boxed that portion of the code that distinguishes simply checking the activity 

constraints, as shown in BtActivity  (Algorithm 3.2) and used in the backtrack algorithm, 

C C SP -B t, from com bining it with some form of local consistency initiated over the newly 

activated variables, NewVariables, as shown in FcActivity (Algorithm 3.5). A nested set 

of boxes mark updates and additions specific to MacActivity.

We note that MacActivity, unlike FcActivity, collects in NewVariables, along with the 

newly included targets, the target variables which have been excluded for the first time. Sec­

ond, while FcActivity uses FcNewvar to filter the domains of the newly included variables. 

MacActivity calls MacNewvar to make the new problem, extended with new variables, 

consistent over both compatibility and activity constraints. No value is removed when ac­

tivity constraints are checked in MacActivity. That is why MacNewvar is called with an 

empty list of removed values. During its execution, MacNewvar propagates activity con­

straints and eliminates condition values that contradict activity status of problem variables. 

Next, we present the implementation of the MacNewvar procedure in Algorithm 3.11.

The MacNewvar procedure has two cases, depending on the activity status of newvar 

as either excluded or included. The first case is when newvar is excluded from the search 

space. This activity status makes inconsistent values at future condition variables of in­

clusion activity constraints, which have not been processed yet, but which target newvar. 

Propagation on those activity constraints leads to condition value removal. UndoValues 

collects these removed values.

The second case is when newvar is included, that is, made active. Local consistency 

in this case regards both compatibility and activity constraints, newvar has to be arc 

consistent with all the other active variables with which it shares compatibility constraints. 

Therefore, MakeOneAC  procedure is called on each such compatibility constraint to remove 

values with no support in newvar and its neighboring variables. The removed values axe 

added to  the UndoValues list.

As an active variable, newvar might participate in two different roles in activity con­

straints which have not been processed yet: as condition variable and/or target variable.
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A lgorithm  3.11. Maintain arc consistency with a newly included or excluded variable 
newvar over both compatibility and activity constraints defined on active variables.

boolean MacNewvar {newvar, Agenda, UndoValues) { 
if ( newvar is newly excluded ) {

InclTarget 4— activity constraints that include newvar as target
for each ( it € InclTarget, where i t : CondVar = val -^4 newvar 

and CondV ar is on the Agenda) 
if {removeValue{val, CondV ar, UndoValues) is false) 

return false
}
else { / /  newvar is newly included

C 4-  compatibility constraints involving newvar and othervar, with othervar active
(  ( f* c /°r\

makeOneAC (c, newvar, othervar, UndoV alues)
ExclTarget 4-  activity constraints which exclude target newvar
for each ( et € ExclTarget, where e t : CondV ar = val ^ 4  newvar 

and CondV ar is on the Agenda) 
if {removeValue{val,CondVar,UndoValues) is false) 

return  false
Source Act 4— activity constraints whose source is newvar 
for each ( sa € SourceAct, such that

either sa includes some target variable which is already excluded 
or sa excludes some target variables which is already included in the Agenda) 

if (removeValue(condition, newvar, UndoValues) is false) 
return  false

}
return MacCompatibility {UndoValues, Agenda)

}//end MacNewvarQ

As a condition variable, newvar can participate in either (1 ) an inclusion activity con­

straint that targets an excluded variable, (2 ) or in an exclusion activity constraint that 

targets an included variable. In either situation, newvar''s condition value is inconsistent 

with these activity constraints. As a target variable, since newvar status is included, it can 

render inconsistent condition values of exclusion activity constraints. Inconsistent values 

are removed and saved in the UndoValues list.

The last step in MacNewvar is when all value removals saved in the UndoValues 

due to the elimination of inconsistent values over activity and compatibility constraints 

are propagated with MacCompatibility. If the propagation is successful, newvar is made 

consistent with the problem variables on both types of constraints.
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CCSP-M ac  algorithm

CCSP-SolveMac in Algorithm 3.12 uses the recursive function CCSP-Mac, which im­

plements MAC for solving conditional CSPs. Unlike CGSP-SolveBt (Algorithm 3.3), 

CCSP-SolveMac makes arc consistent compatibility constraints on all initial variables, 

by calling Make AC  procedure.

When CCSP-M ac instantiates a variable var with some value in its domain, all the 

other values are removed from the domain and saved in the UndoValues list. With this list, 

MacCompaiibiiiiy initiates the arc consistency processing, during which possibly more val­

ues axe removed and added to the UndoValues list. After all arc inconsistent values are re­

moved from the Agenda’s variables, without wiping out any of their domains, MacActivity 

is called to check the activity constraints and eliminate those condition values which intro­

duce inconsistency among activity constraints. When this checking succeeds, CCSP-Mac 

is called recursively to find either one or all solutions to the problem.

Algorithm 3.12 has a  very similar design to CCSP-SolveFc algorithm in Algorithm 3.7. 

The differences are shown in a the nested set of boxes that contain algorithmic descriptions 

specific to CCSP-SolveMac. Thus, CCSP-SolveMac calls MakeAC  prior to starting 

search to make the initial variables arc consistent. The recursive procedure CCSP-Mac 

selects a variable var and instantiates it with a value as C C SP -B t and CCSP-Fc do, but 

removes all the other values from the domain of var and adds pairs of var and removed value 

to UndoValues list. Compatibility constraints are propagated with MacCompatibility to 

reestablish arc consistency among var and future variables. Upon successful return of 

this procedure, MacActivity is called to check activity constraints and make possibly new 

variables added to the search space consistent with regard to compatibility and activity 

constraints. If no activity constraint fails and the new variables do not cause the elimina­

tion of all values at some future variables, CCSP-M ac is called recursively to find value 

assignments to the rest of the problem variables.

In case there is a failure in trying value for var, or all solutions are sought, the search 

space and variables status have to be restored and all changes recorded in UndoValues and
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UndoActivity have to be undone. The current instantiation value is marked as tried and 

removed from the domain of var. If other values are left in var’s domain, value removal 

is propagated first with MacCompatibility to check whether future variables remain arc 

consistent with the rest of values at var. If that is the case, a  recursive call to CCSP-M ac 

continues the search.
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A lgorithm  3.12. Maintaining arc consistency algorithm for solving conditional CSPs. The 
code in the nested boxes show the differences between maintaining arc consistency search and 
forward checking search as described in Algorithm 3.7.

boolean C CSP£dveM ac() {
Agenda 4— initial variables 
if  ( Agenda is empty ) 

return  false

if ( MakeAC( Agenda ) is false ) 
re turn  false

numberSolutions 4— 0
oneSolutionOnly 4— whether one or all solutions are searched for 

re turn  CCSP-Mac{Agenda,oneSolutionOnly)

}//end CCSP-SolveMacQ

boolean CCSP-Mac{Agenda, oneSolutionOnly) { 
if  ( Agenda is empty ) {

numberSolutions 4— numberSolutions + 1 
re turn  true

}
var 4— select variable and remove from Agenda
value 4- select value from domain of var and instantiate var
UndoActivity 4-  0

remove all values from domain of var except value 
UndoValues 4- pairs (var,v), where v is var's removed value 
if ( MacCompatibility{UndoValues, Agenda) and

MacActivity {var, value, Agenda,UndoValues,UndoActivity)) { 
if ( CCSP-Mac(Agenda, oneSolutionOnly ) and oneSolutionOnly ) {

restore all removed values saved in UndoValues
reset variable activity status as saved in UndoActivity 
uninstantiate var and put it back into the Agenda 
return true

}
}_________________________________________
restore all removed values saved in UndoValues

reset variable activity status as saved in UndoActivity 
uninstantiate var and put it back into the Agenda 
UndoValues 4— {(uor, value)} 
remove value from domain of var 
if ( domain of var is empty ) 

backtrackSearch 4-  false

else if ( not {MacCompatibility{UndoValues, Agenda) ) ) 
backtrackSearch 4-  false 

else
backtrackSearch 4— CCSP-Mac{Agenda, oneSolutionOnly)

reset variable activity status as saved in UndoActivity 
restore all removed values saved in UndoValues 
re turn  backtrackSearch 

}//end CCSP-Mac{)
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3.5 Summary

In this chapter we presented new algorithms for directly solving conditional CSPs. They 

adapt standard local consistency of forward checking and maintaining arc consistency to 

the conditional domain.

We started with a  modified version of the backtrack search algorithm, CCSPJSolveBt, 

that handles directly both types of activity constraints. Two new algorithms were derived 

from it:

•  Forward checking, CCSPSolveFc, propagates compatibility constraints to the prob­

lem active variables.

• Maintaining arc consistency, CCSP-SolveMac, propagates compatibility constraints 

to achieve arc consistency. This level of consistency is extended with the propagation 

of activity constraints to achieve activation consistency.

In the next chapter these algorithms are evaluated experimentally on large and diverse 

testbeds of random conditional CSPs. The experimental studies show that maintaining arc 

consistency outperforms forward checking, which, in turn, outperforms backtrack search. In 

addition, the experimental analysis allows for comparing the numbers of solutions reported 

by the three algorithms when run on the same problem instances. These comparisons show 

that all algorithms produce the same number of solutions for the same problems.
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CHAPTER 4

EXPERIMENTAL EVALUATION 

4.1 Introduction

The three algorithms for solving conditional CSPs, plain backtracking, forward checking, 

and maintaining arc consistency, were tested in experiments covering diverse populations 

of randomly generated problems. The experimental analysis has two objectives:

•  Provides evidence about the relative efficiency of the algorithms,

• Provides some level of reassurance as to the algorithms’ correctness.

Two types of studies made up the experimental evaluation. In the first category of 

experimental studies we measured execution time. We ran experiments for each of the 

three algorithms to find minimal solutions, that is, solutions that include the minimum 

number of active variables.

In the second category we focus on probing counters that axe typically representative 

of algorithm effort: number of backtracks and compatibility checks for standard CSPs, and 

some new measurements specific to conditional CSP, such as number of condition checks, 

included and excluded variables, and redundant and conflicting activations. In this study 

the algorithms were run to find all solutions, not only the minimal sets of active variables 

that satisfy all constraints. The total number of solutions was reported for each of the three 

algorithms. We checked that the number of solutions was the same for all three algorithms 

when run on the same problem instances.

The algorithms were implemented in C + +  on a Red Hat 8.0 distribution of the Linux 

platform. The experiments were run on a PC with an AMD processor at 1,200 MHz and 

512MB of RAM.

59

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



4.2 Design

4.2.1 M easurem ents and Problem  Topologies

The two basic measurements we used in our experiments are: the overall execution time 

and number of backtracks. In the case of backtrack search and forward checking we also 

counted the number of compatibility checks. The overall execution time is computed from 

time stamps obtained through operating system calls to obtain the current time that are 

placed before and after the program statement that calls the search algorithm.

The backtracks counter is incremented each time the search procedure exhausts all value 

assignments for the current variable, that is, its domain becomes empty. Compatibility con­

straints are checked for consistency in backtrack search and forward checking algorithm s 

each time a  partial solution is extended with the current variable instantiation. The compat­

ibility check counter is incremented in the for loop of the BtCompatibility( )  (Algorithm 3.1) 

and FcCompatibUity( )  (Algorithm 3.4) procedures.

The effort counting measurements were enhanced with other evaluation devices that 

measure algorithm performance with regard to problem conditional characteristics. Before 

we enumerate the measurements that gauge this type of algorithm effort, we recall from 

Chapter 2 the parameters required to generate random binary conditional CSPs. Five 

standard parameters describe standard CSP characteristics: (1 ) problem size as the number 

of variables, n, (2 ) maximum domain size, dmax, (3) compatibility density or actual number 

of compatibility constraints, (4) compatibility satisfiability or actual number of value pairs 

in a binary compatibility constraint, and (5) actual domain size.

In all experiments the problem size was fixed at 10. Maximum domain size was set 

to 5, 8 , and 10, depending on the experimental study. The actual number of values in a 

domain was fixed to the maximum domain size by setting the probability of generating a 

value domain to 1. In all experiments we varied the topology of the underlying standard 

CSP (compatibility constraint graph) through two probabilities for generating: compati­

bility constraint elements, or density, dc, and value pairs in a compatibility constraint, or
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satisfiability, sc

Nine conditional parameters describe the characteristics of random binary conditional 

CSPs. We recall that this class of problems uses unary condition constraints to form binary 

activity constraints. Compatibility constraints are binary too. Basically, what controls 

problem activity are the actual number of condition values in a domain and the actual 

number of target or non-initial variables in a problem. The problem generator controls the 

amount of activity through two probabilities, analogs of standard parameters that determine 

compatibility density and satisfiability. The conditional counterparts are probabilities for 

generating target variables in a problem and condition values in a variable domain. The 

actual number of target variables indicates the density of the activity graph, da. The actual 

number of condition values per domain indicates the satisfiability of the activation condition,

The actual number of included versus excluded target variables is determined by the 

probability of generating inclusion activity constraints, pa. To compute the actual number 

of condition values per domain and target variables per problem (included and excluded 

targets), the random problem generator uses da, sa, and pa probabilities along with three 

maximum limits parameters. Limit parameters cap condition values and target variables 

per condition variable domain, maxCondPerDom  and maxTargetPerCond, and total con­

dition values per problem, totalCond. The last category of dynamic parameters affects ac­

tivity “propagation” through already activated variables, noCondlnTarget, and activation 

redundancy, noRdntD if fD om  and noRdntSameDom. If noCondlnTarget is set to true, 

target variables axe not condition variables and do not contain condition values. If we want 

target variables to disseminate problem activity, this parameter is set to false. Activation 

redundancy is caused by activity constraints that target the same variable and have either 

the same condition variable or different condition variables. It can be controlled by set­

ting the boolean parameters noRdntSameDom and noRdntDiSDom. If both parameters 

are false, the generated problem will exhibit a larger degree of activation redundancy.

We measure algorithm effort spent with checking activity constraints and m anag ing
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included and excluded variables by counting condition constraint checks, and included and 

excluded variables generated during search. The procedures BtActivity, FcActivity, and 

M acAdivity  in Algorithm 3.2, 3.5, and 3.10 increment these counters each time a condition 

constraint is checked or a target variable is included or excluded.

Another important aspect specific to solving conditional CSPs is the effect redundant 

and conflicting activity constraints have on the overall algorithm’s effort. During search, we 

measure and report the number of redundant constraints and conflicting constraints that 

an algorithm examines. These counters are computed when activity constraints are checked 

for consistency and they either redundantly generate activity or invalidate variable activity 

status.

4.2.2 E xperim ental Studies

For all the problem sets used in our experiments, activity maximum limits were set to:

maxCondPerDom = sa * dmax 
totalCond = sa * dmax * n 
maxTargetPerCond = n/2

where n  is the number of variables, dmax is the number of values per domain (domain size), 

and sa is the activity satisfiability.

All boolean dynamic parameters were set to false. The probability that an activity 

constraint is an inclusion, as opposed to exclusion, activity constraint, pa, was set to 0.5.

Execution time and counting algorithm effort are the two types of studies we designed 

for our experiments. In the first category we had the following two studies:

S tudy  1: B T  an d  FC execution tim e for finding m inim al solutions. We compared 

the execution time, in number of seconds, for backtrack search (BT) and forward checking 

(FC), when looking for all solutions of minimum size. The relative performance of these 

two algorithms was not studied for finding all solutions for two reasons. The restriction to 

finding minimal solutions rather than all solutions (1 ) provided very conclusive results in 

support of FC’s efficiency over BT, and (2) reduced significantly the time spent for running 

this experimental study.
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All problems used for this experiment were the same size: n =  10 variables and dmax =  8  val­

ues per domain. The compatibility density, dc, varied in the range [0.1... 0.4] in increments 

of 0.02, while the compatibility satisfiability was fixed at sc = 0.25. These two parameters 

characterize the topology of the underlying standard CSP of all variables, including non­

initial variables, and all compatibility constraints they involve. These parameters do not, 

however, control the density or satisfiability of the derived conditional CSP, in which the set 

of active variables and, consequently, the set of compatibility constraints vary dynamically 

with the activity constraints. The activity satisfiability and the activity density were also 

fixed, sa = 0.3, da =  0.3. For each of the 16 (dc, sc, da, sa) problem classes we randomly 

generated 1 0 0  problems.

S tudy 2: FC and  M A C execution tim e for finding m inim al solutions. We com­

pared the execution time, in number of seconds, for FC and maintaining arc consistency 

(MAC), when looking for the solutions of minimum size.

All problems used for this experiment were the same size: n  =  10 variables and dmax ~  10 

values per domain. The compatibility density and compatibility satisfiability were fixed, 

dc = 0.2, sc = 0.2. The activity satisfiability, sa, and the activity density, da. varied in the 

range [0.1...0.9] in 0.1 increments. For each of the 81 (dc,s c,da,s a) problem classes we 

randomly generated 100 problems. Because the efficiency gain MAC shows over FC is more 

limited than the FC’s gain over BT (as demonstrated in Study 1 ), we are interested in a  

more extensive study that (1 ) considers many more topological classes and (2 ) examines 

how problem conditionality influences the solving time.

Counting algorithm performance is the objective of the second type of experimental 

studies. They are:

S tudy 3: B T  and  F C  relative perform ance for finding all solutions. We studied 

the relative efficiency of BT and forward checking FC algorithms when searching for all 

solutions. The classes of random problems on which we ran these algorithms have the same 

size, that is, the number of variables n  =  1 0  and domain size is dmax =  5 .

Problem topologies were generated by varying compatibility density dc and compatibility
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satisfiability sc in steps of 0.1 in the range of [0.4... 0.8] and [0.1... 0.5], respectively. For 

each problem class that corresponds to a  (dc, sc) value combination we varied conditional 

parameters of density and satisfiability, da and sa, in steps of 0.1 in the range [0.1... 0.9], 

and generated 81 subclasses of 10 problem instances each. The number of inclusion activity 

constraints was set to the number of exclusion activity constraints, that is, pa =  0.5.

We measured the number of backtracks, compatibility checks, and condition checks.

S tudy  4: M AC and  F C  rela tive perform ance for finding all solutions. We stud­

ied the relative efficiency of FC and MAC algorithms when searching for all solutions. 

The classes of random problems on which we ran these algorithms have size and activity 

m axim um  lim its  set to the same values as in Study 3. Problem topologies were gener­

ated by varying compatibility density and satisfiability in steps of 0 .1 , usually in the range 

[0 .1 .. .  0.9]. For sparse underlying compatibility constraint graphs characterized by low 

density values of 0 .1  and 0 .2 , compatibility satisfiability was varied in shorter ranges of 

[0 .1 .. .  0.5] and [0 .1 .. .  0.6], respectively, to reduce the solution space and, consequently, 

the running time. For all the other compatibility density values in the range [0 .3 .. .  0.9], 

compatibility satisfiability was chosen in the range [0 .1 . . .  0 .8 ], except for dc =  0 . 3  whose 

corresponding sc range was [0 .1 .. .  0.9]. As in Study 1, da and sa were varied in steps of 0.1 

in the range [0 .1 ... 0.9]. For each (dc, sc, da, sa) problem class we generated 10 problems. 

We measured the number of backtracks, condition checks, number of included and excluded 

variables, and number of checks for redundant and conflicting activations.

4.3 Analysis

4.3.1 E xecution T im e

Study 1: BT and FC execution tim e for finding minimal solutions

Test Suite. We ran multiple sets of experiments, on problems of various sizes and 

with different value ranges for compatibility and activity parameters. The following is one 

snapshot which we found, based on our results, to be representative of the relation between
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sc = 0.25 
da =  0.3 
Sa =  0.3

\
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0.1 0.15 0.2 0.25 0.3 0.35 0.4

Compatibility density, dc

Figure 4-i: Execution time for running BT and FC as function of compatibility density, dc, 
in the range [0.1... 0.4] in increments of 0.02. The other three problem topology parameters 
are fixed: sc =  0.25, da =  0.3, and sa =  0.3.

the execution times for BT and FC across the entire topological problem space we explored.

The problem sets for this experiment have the compatibility density, dc, varied in the 

range [0.1... 0.4] in increments of 0.02. Values larger that 0.4 yielded problems with exe­

cution times practically 0 .

To maintain the execution time per problem within an acceptable range, usually under 

10 minutes on average, we generated problems with 10 variables, each with 8 values per 

domain, and tried to avoid problems with very large solution sets by fixing the compatibility 

satisfiability sc =  0.25.

The activity satisfiability and the activity density were also fixed, sa =  0.3, da =  0.3. 

For each of the 16 (dc, sc, dQ, sa) problem classes we generated 100 problems.

Results. The main observation on the data presented in Figure 4-i is that FC always 

outperforms BT in execution time by one order of magnitude (note the logarithmic scale).

Study 2: FC and MAC execution tim e for finding minimal solutions

Test Suite. We explored a larger problem space than the one presented in the previ­

ous study. We conducted multiple experiments on problem sets of various sizes and with 

different value ranges for compatibility and activity parameters, and found the following
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snapshot to be representative of the relation between execution times for FC and MAC 

across the entire problem space.

The test suite for this experiment consists of 81 problem classes for all (da,sa) control 

parameter combinations, with da varying in [0.1... 0.9] range in 0.1 increments and sa 

varying in [0.1... 0.9] range in 0.1 increments. In each class we generated 100 problems.

All the problems were the same size, 10 variables, each with 10 values per domain. The 

choice of low values for the compatibility density and compatibility satisfiability, dc =  0 .2 , 

sc =  0 .2 0 , was made to avoid large solutions sets.

Results. The main result supported by the data presented in Figure 4-ii is that MAC 

consistently outperforms FC in execution time. Notice that the most significant gain of 

MAC over FC happens on the most difficult problems in the set.

4.3.2 C ounting Effort

S tudy 3: B T  and  FC  relative perform ance for finding a ll solutions

The test suite of this study consists of 25 problem classes for all (dc, sc) control parameter 

combinations, with dc varying in the [0.4...0.8] range and sc varying in the [0.1...0.5] 

range. In each class we generated 81 subclasses of 10 problems by varying da and sa in 

the [0.1... 0.9] range. We counted the number of backtracks, bkts, compatibility checks, 

compCks, and condition checks, condCks, performed on each problem, and averaged them 

over 10 problems in the same (dc,s c,da,s a) topological point. There are 5 x 5 x 9 x 9  =  

2,025 classes of problems for all combinations of (dc, sc, da, sa) we studied. We ran the two 

algorithms, BT and FC, measured the three effort counters, bkts, compCks, and condCks, 

and produced (2,025/9) x 2 x 3 =  1,350 graphs that show effort variation with sa.

Exam ple 8 . An example of this type of results is shown in Figure 4-iii. The problem topol­

ogy that identifies the random problem class in this example has a compatibility density of 

0.4, compatibility satisfiability of 0.1, and activity density of 0.1. We examine the variation 

of backtracks, compatibility checks, and condition checks counters with sa for BT and FC 

(top of Figure 4-iii), and report on relative performance by computing the ratio between
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Figure 4-ii: Execution for running FC and MAC as function of activity satisfiability, sa, in 
the range [0.1... 0.9], in 0.1 steps. Each graph corresponds to a different density of activity, 
da, varied in the range [0.1... 0.9] in 0.1 increments. The compatibility topology is fixed: 
compatibility density, dc, and compatibility satisfiability, sc are set at 0 .2 .

BT and FC effort for each counter1 (bottom of the figure).

The main observation is that FC outperforms BT on all three measures, most signifi­

cantly with regard to the condition checks. The BT/FC-condCks graph, in the lower right 

comer of Figure 4-iii, shows a ratio of 900 to 1 in some cases. In the case of BT, we notice 

that the number of backtracks and compatibility checks decreases with higher sa values. 

This is caused by the tension between a low da and high sa values. A da of 0.1 indicates 

that one variable out of 10 has its activity status determined by activity constraints. High 

sa values designate most of the domain values as condition values which activate the same 

variable. That is why the number of condition checks sharply increases. The activity sta-

xTo avoid division by 0, values of 0 recorded for FC performance were adjusted to 1’s.
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Figure 4-iii: BT and FC performance measured by number of backtracks, compatibility 
checks, and condition checks done by each algorithm as functions of sa for fixed dc =  
0.4, sc = 0.1, and da = 0.1 (top - both BT and FC; middle - only FC). Ratios between 
corresponding counters show the factor by which FC outperforms BT (bottom).

tus is determined with a pa probability of 0.5 of being included or excluded. As the same 

target variable is conditioned by several values to be included or excluded, more activity 

constraints turn to  be conflicting. It means that checking activity constraints fails earlier 

during search and fewer backtracks and compatibility checks are done.

This example is just a snapshot in a large and multidimensional topological problem 

space. We are interested in examining whether FC outperformance holds for the larger 

problem topology spectrum defined by varying all four control parameters dc, sc, da, and

Test Suite. We synthesize BT-FC comparison results in three figures that show how
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backtracks and the backtrack BT/FC ratio vary with dc and $a (Figure 4-iv), dc, and da 

(Figure 4-v), and da and sa (Figure 4-vi) for three compatibility satisfiability levels: sc =  0.1 

(left coliunn), sc = 0.3 (middle column), and sc =  0.5 (right column). The fourth control 

parameter in each figure was fixed at two levels, low and high, which are (0 .2 , 0 .6 ) for 

fixed da in Figure 4^iv and fixed sa in Figure 4-v, and (0.4, 0.8) for fixed dc in Figure 4-vi. 

The variation of compatibility checks, condition checks, and their corresponding BT/FC 

ratios is shown using a  logarithmic scale a t the bottom of each figure for one compatibility 

satisfiability level, .sc =  0.3 and low levels for either da = 0.2. -sc =  0.2, or dc =  —4 when 

the other two control parameters vary.

Results. The comprehensive picture depicted in these figures shows for this study that:

• FC outperforms BT on all measures and for all problem topologies that we studied.

• Backtrack effort for both FC and BT increases with larger compatibility satisfiability 

values (higher sc).

•  Backtrack effort decreases with larger problem activity characterized by more condi­

tion values per domain (higher sa) and more targeted variables per problem (higher

dc).

•  FC is better then BT by one to two orders of magnitude on the number of back­

track, bkts and compatibility checks, compCks, measures, and up to three orders of 

magnitude on the number of condition checks, condCks.

• Compatibility checks effort is larger than backtrack effort, and shows the same vari­

ability with problem activity as backtrack effort.

•  Contrary to backtrack effort variation with problem activity, condition checks effort 

increases when the problem exhibits more conditionality (higher da and sa).

• All effort measures decrease with the density of the compatibility constraints (higher

dc).
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Figure 4-iv: Comparison between BT and FC effort measured as the number of backtracks 
(rows 1 and 3), ratio of number of backtracks (rows 2 and 4), and number of compatibility 
and condition checks (row 5). Variation of effort with compatibility density, dc, and activity 
satisfiability, sa. Fixed activity density, da = 0.2 (rows 1, 2, and 5) and 0.6 (rows 3 and 
4). Each column corresponds to a different compatibility satisfiability value: 0.1 (left), 0.3 
(middle), and 0.5 (right).
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Figure 4-v: Comparison between BT and FC using the same effort measures as in Figure 4- 
iv. Variation of effort with compatibility density, dc, and activity density, da. Fixed activity 
satisfiability, sa, of 0.2 (rows 1, 2, and 5) and 0.6 (rows 3 and 4).
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Figure 4-vi: Comparison between BT and FC using effort measures as in Figure 4-iv and 
Figure 4-v. Variation of effort with da and sa. Fixed compatibility density of 0.4 (rows 1, 
2, and 5) and 0.8 (rows 3 and 4).
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Study 4: MAC and FC relative performance for finding all solutions

The test suite of this study consists of 60 problem classes of various value combinations 

for two parameters of the compatibility constraint graph: compatibility density, dc, and 

compatibility satisfiability, sc. In each (dc, sc) class, for each activity density, da, in the range 

[0.1... 0.9] we graphed algorithm average behavior over 10 random problems as a function 

of activity satisfiability, sa, in the range [0.1... 0.9]. Algorithm performance was measured 

by counting six search operations: backtracking, checking activity conditions, including 

and excluding variables, and checking redundant and conflicting activations. Search cost 

for MAC was compared with search cost for FC across all six counters. The two algorithms 

search for all solutions. As expected, the larger the solution space, the greater the effort to 

compute them. Therefore, we also reported the average number of solutions for every 10 

problems generated in a (dc, sc, da, sa) topological point, and the variation of the number 

of solutions with sa.

There were 6,480 graphs produced in this study that show the variation with sa of a 

given effort counter ( 6  in total) for both FC and MAC on random problems in a given 

(dc,s c,da) class (60 x 9 =  540 classes in total). That is, 6  x 2  x 540 =  6,480. We also 

plotted the variation of the number of solutions with sa for all 540 random problem classes, 

and came up with a  total of 7,020 graphs.

Exam ple 9. An example of the results obtained in this study is shown in Figure 4-vii. 

The graphs plot the number of backtracks performed by FC and MAC, and the number 

of solutions found when solving random conditional CSPs generated with dc=0.3, sc=0.3, 

da=0.6, and with sa varied in the range [0.1... 0.9]. Two observations stand out: (1) MAC 

outperforms forward checking, and (2 ) the variation of algorithm effort (MAC and FC 

graphs, Figure 4-vii left) is similar to the variation of the number of solutions (Solutions 

graph, Figure 4-vii right) for the population of random problems in the given class.

A

The main objective of this study is to verify that the experimental evidence in Example 9
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On the x-axis: satisfiability of activity, sa (probability of generating a domain value as condition
value)

Figure 4 -vii: Relative performance of FC and MAC measured by number of backtracks 
(left) and variation of number of solutions (right) as functions of sa. Algorithms are run on 
random problems in (dc, sc, da) =  (0.3,0.3,0.6) class. Performance and solution values axe 
averages over sets of 1 0  problems for each (dc, sc, da, s a) topological point.

can be obtained across a more comprehensive test suite:

•  On all counter measures of algorithm effort, MAC performs better than FC, and

• Search effort variation is significantly dependent on the size of the solution space.

The major empirical findings of this study are organized in four sub-studies that systemat­

ically cover all problem topologies and evaluate relative performance as follows:

• in terms of the number of backtracks on problems with

-  very large solutions sets, Study 2.1,

-  sim ilarly small solution sets, Study 2.2,

-  extended topological coverage, Study 2.3,

• in terms of activity counters (condition checks, included and excluded variables, and 

redundant and conflicting activations) on very diverse problem populations, Study 

2.4.

Study 2.1. Problems with very large solution sets. The largest number of solutions 

occurs for sparse compatibility and activity constraint graphs and high satisfiability of the 

compatibility constraints. Solving random problems with
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Figure 4 -viii: For problems with very large solution sets (top), MAC and FC perform very 
similarly in terms of number of backtracks (middle). The test suite uses random problems 
in three (dc, sc) classes: (0.1, 0.5), (0.2, 0.6), and (0.3, 0.9) for which da takes on low values 
of 0.1, 0.2, and 0.3.

• low density of both compatibility and activity constraint graphs, and

• higher satisfiability of compatibility constraints

shows that FC and MAC algorithm performance measured as number of backtracks is highly 

similar.

Test Suite. We compared the number of backtracks performed by MAC and FC when 

they run on problems in three (dc,s c) classes, (dc =  0.1, sc =  0.5), (dc =  0.2, sc = 0.6), 

and (dc = 0.3, sc =  0.9), of low compatibility density and relatively high compatibility 

satisfiability. In each class we restricted activity density da to low values of 0.1, 0.2, and 

0.3.
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Results. The results are plotted in Figure 4-viii. The top three graphs show the variation 

of the num ber of solutions of problems in each of the three classes. The notation sols-1-5-1, 

for example, is used to name a graph that plots the number of solutions of problems with 

compatibility density dc = 0.1, compatibility satisfiability sc =  0.5, and activity density 

da = 0.1. We observe that the lower da, the larger the solution space across the three 

classes, (0.1, 0.5), (0.2, 0.6), and (0.3, 0.8) classes.

The rest of the six graphs show how MAC and FC perform relative to each other. In the 

middle of the figure, we drew two graphs, MAC’s number of backtracks and FC’s number of 

backtracks, for each (dc, sc, da) problem class. Each graph pair is denoted by the same name, 

bkts — dc — Sc — da and plotted with the same line style, corresponding to the line style we 

used for sols — dc — Sc — da analogs. We observe that MAC and FC graphs of the number 

of backtracks follow closely the variation of their analogs that plot the number of solutions. 

To see how much better MAC does than FC, the bottom pictures have difference graphs, 

denoted by diffB, between FC’s number of backtracks and MAC’s number of backtracks. In 

general, MAC does fewer backtracks than FC, proportionally with the size of the solution 

space.

These results raise the question about MAC and FC relative performance when the 

solution space is significantly smaller. The answer to this question is the focus of the next 

experimental study.

S tudy  2 . 2  P roblem s w ith  sim ilarly  sm all solutions sets. The objective is to delimit 

problem topologies of random conditional problems with much smaller solution sets of 

similar sizes. We want to evaluate how a scaled down solution space affects algorithm 

performance. We will examine how relative performance of MAC and FC algorithms changes 

with smaller solution sets, and whether MAC still outperforms FC.

Test Suite. The populations of problems that form our test suite have the density of 

the compatibility constraint graph, dc, varied in steps of 0.1 in the range [0 .3 .. .  0.6]. To 

control the number of solutions such that it does not exceed 1 0 0 , we choose ranges of three 

compatibility satisfiability levels, sc, specific to each of the four density values, dc. and
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obtained the following 1 2  problem sets:
(dc = 0.3, sc = 0.2) (dc = 0.4, sc =  0.3) {dc = 0.5, sc = 0.4) (dc =  0.6, sc =  0.5)
(dc =  0.3, sc =  0.3) (dc =  0.4, sc = 0.4) (dc =  0.5, sc = 0.5) (dc =  0.6, sc =  0.6)
(dc = 0.3, sc = 0.4) (dc =  0.4, sc =  0.5) (dc = 0.5, sc = 0.6) (dc =  0.6, sc = 0.7)

Another control factor is the amount of activity these problems exhibit. We found that

for constant density of activity da =  0 . 6  and satisfiability of activity sa in the high range of 

[0.5... 0.9], we obtain a suite of problem topologies that meet the requirement for similarly 

small solution sets.

Results. As shown at the top of Figure 4-ix, the graphs of the number of solutions for 

all (dc, sc) value pairs, sols — dc — sc, do not exceed the 1 0 0  mark and are mainly in the in 

the [0 ... 20] range. On all these problems MAC does fewer backtracks than FC. In the four 

graphs in the middle of Figure 4-ix we have MAC — dc — sc and FC — dc — Sc graphs that 

show how MAC and FC perform on all (dc, sc) problem classes in the test suite. At the 

bottom of the figure we draw diffB — dc — sc graphs that show the variation of the difference 

between the number of backtracks done by FC and MAC. The larger the number of solutions 

(that is, on problems with compatibility constraints of higher satisfiability sc), the larger the 

gain of MAC over FC. When we examine FC backtracks over MAC backtracks, we obtain 

the FC/MAC — dc — sc graphs (bottom row in Figure 4-ix). They show the factor by which 

MAC is more cost-effective than FC. Note that a subunit factor shows FC over performing 

when compared with MAC. The FC/MAC — dc — sc graphs illustrate that the cost saving 

improves overall by a factor of 2 up to 3 in the region of problems with larger solution sets. 

For these problems, the improvement factor tends to increase with values for sa above 0.7 

level. In the region of problems with fewer solutions, where sc is set to the lowest levels for 

the four density groups, and again for high sa values, MAC can be 4 to even 9 times better 

than FC. For these problems, however, the difference in number of backtracks is under 20. 

S tu d y  2.3 E xtending  topological coverage. Guided by the variation of the solution 

space with compatibility density in the previous two sub-studies, we isolated a  density 

threshold of 0.3 that delimits very large solution sets from more manageable to very small 

sets in the presence of correlated compatibility satisfiability. The question that led to this
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Figure 4-ix: Fixing da at 0.6 and varying sa in the high range of [0.5... 0.9], we select 
(dc- sc) topologies for which the number of solutions is roughly the same (top). On all these 
problems MAC outperforms FC (rows 2  and 3). Cost effectiveness of MAC algorithm is 
measured by computing FC backtracks over MAC backtracks (bottom).

study is to find out how relative performance scales across a topological spectrum that is 

further extended but avoids very large solution sets.

Test Suite. Problem topologies in this study are defined by
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•  fixed activity density, da = 0.5,

•  three levels of compatibility satisfiability sc of 0.5, 0.6, and 0.7,

•  wider range of compatibility density dc of 0.3 to 0.8,

•  full range of activity satisfiability sa of 0.1 to 0.9.

The variation of the number of solutions to problems in this topological spectrum is shown 

in Figure 4-x on a normal scale (top left) and log scale (bottom left). The graphs show 

that higher compatibility satisfiability sc yields much larger solution sets for sparse compat­

ibility constraint graphs (lower dc) and little domain activity (low sa). The three surfaces 

controlled by the three satisfiability values collapse to nearly zero for higher compatibility 

density dc and activity satisfiability sa equal to or greater than 0 .6 .

The data set in the upper right table in Figure 4-x that corresponds to the highest 

sc — 0.7 and full range of sa draws attention to its lower right comer that has solution 

values of zero or close to zero. The same observation is shown in the second table below 

that has the same solution value distribution for all three satisfiability levels.

Results. Figure 4-xi (top) plots on a log scale the number of backtracks when MAC and 

FC run on the test suite problems. The graphs show that:

•  MAC always outperforms FC.

•  There is a strong dependency of algorithm effort on the size of the solution space:

— the decline of the number of backtracks with larger compatibility density dc and 

smaller activity satisfiability sa is similar to the decline of the number of solutions 

with the same parameter variation, and

— peak values of the number of solutions correlate with the corresponding peak 

values of the six effort surfaces (Table 4.1): with the exception of two entries, 

sc =  0.6 and sc =  0.7 for sa =  0.1, the number of solutions and number of 

backtracks performed by MAC and FC have the same order of magnitude.
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O  100000

100000
= 10000

Number of solutions for fixed da = 0.5 

For sc = 0.7: sols — dc — 7 — 5 — 5

Sa Compatibility density
0.3 0.4 0.5 0 .6 0.7 0 .8

0 .1 203217 16211 3170 2006 437 136
0 .2 44306 12165 2209 673 250 108
0.3 62114 4682 3694 545 225 44
0.4 16255 7286 1429 113 80 35
0.5 35271 701 262 38 2 2 18
0 .6 3180 495 48 45 1 1 2

0.7 659 115 15 12 1 2

0 .8 103 44 4 0 1 0

0.9 294 23 4 0 1 0

For all three sc values:
sols —dc- 5 - 5 sols -  dc - 6 --5 sols--d « - 7 — S

Sa se = 0 .5 Sc = 0 6 S = 0 .7
Id 0 .6 0.7 0 .8 0 .6 0.7 0 .8 0 .6 0.7 0 .8

0 .6 1 0 0 0 0 0 45 1 1 1

0.7 0 0 0 0 0 0 1 2 1 2

0 .8 0 0 0 0 0 0 0 1 0

0.9 0 0 0 0 0 0 0 1 0

Figure 4-x: (Left) Variation of number of solutions for fixed da =  0.5, three satisfiability 
levels of 0.5, 0.6, and 0.7, and variable dc in [0.3... 0.8] range and sa in [0.1... 0.9] range: 
linear scale (top) and log scale (bottom). (Right) Data sets for the number of solutions 
plotted by sols -  dc -  7 -  5 (top) and data sets over ranges of high dc in [0.6... 0.8], and 
high sa in [0.6... 0.9], for the number of solutions of all graphs categories (bottom).

Table 4.1: For sc in [0.5... 0.7], low sa in the range [0.1... 0.3] and low dc of 0.3, the number 
of solutions has values of an order of magnitude equal to or greater only by one than the 
number of backtracks performed by FC and MAC algorithms.

II O C
O sc = 0.5 .s!c =  0 .6 Co ft II O

s a sols #bkts sols #bkts sols #bkts
FC MAC FC MAC FC MAC

0 .1 2902 1649 1541 19785 7887 7379 203217 85601 81743
0 . 2 734 717 480 4721 2627 2266 44306 25865 22239
0.3 245 273 183 5753 4482 3560 62114 30112 26750

Figure 4-xi (middle) plots the difference in number of backtracks performed by the two 

algorithms. Peak difference values increase from 250 to 1000 to 4500 with compatibility 

satisfiability sc on problem populations of low compatibility density, dc, and low activity
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Figure 4-xi: Variation of number of backtracks on the problem set in Figure 4-x. with 
each column corresponding to different satisfiability value: 0.5 (left), 0.6 (middle), and 0.7 
(right). Comparison between MAC and FC performance using a log scale (top); difference in 
number of backtracks between FC and MAC (middle); performance factor of FC backtracks 
over MAC backtracks (bottom).

satisfiability, sa• As the dc and sa parameters increase, backtrack difference values decrease 

considerably for all compatibility satisfiability sc levels. A way of “zooming in” on algorithm 

performance for problem populations delimited by dc =  —sa and maxiTnrim values of dc =  

0.8 and sa =  0.9 (upper triangle above second diagonal of the (dc, sa) plane), is to look 

at backtrack ratio variation in that region (Figure 4-xi bottom). These cost effectiveness 

surfaces show that MAC is better than FC by a factor no greater than 2 on problems for
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which we reported the largest backtrack differences, and by a factor of 5 to 10 on problems 

for which backtrack differences reach a  very low plateau. The smaller the difference in the 

number of backtracks, the more rapidly the maximum gain is reached. However, MAC’s 

best performance is observed only on problems with very few or no solutions, whose solving 

requires the fewest backtracks, regardless of the solving method. The data sets for problems 

with dc and sa larger than 0.6, given in Table 4.2, list the average number of solutions, s, 

of FC backtracks, f, and MAC backtracks m, for each problem class. The backtracks values 

are small and, even if MAC is many times better than FC in this problem region, that 

happens on very easy problems.

Table 4.2: For dc and sa larger than 0.6, problems have very few or no solutions, and MAC 
and FC perform very few backtracks.

Sa
/ d e

sc = 0.5 S c = 0 .6 sc z= 0.7
0 .6 0.7 0 .8 0 .6 0.7 0 .8 0 .6 0.7 0 .8

s f m s f m s f m s f m s f m s f m s f m s f m s f m
0 .6 1 13 2 0 12 3 0 9 2 13 30 4 0 23 5 0 19 8 45 164 87 1 1 87 30 2 48 11
0.7 0 13 2 0 1 0 0 0 8 0 0 24 6 0 2 0 3 0 15 8 1 2 90 38 1 47 13 2 61 17
0 .8 0 11 1 0 9 1 0 9 1 3 2 0 4 0 17 4 0 14 6 0 49 9 1 57 1 2 0 34 5
0.9 0 12 3 0 7 0 0 7 1 1 18 2 0 13 3 0 12 8 0 51 9 1 45 11 0 31 5

S tudy  2.4 A ctivity  Effort. We conclude the result analysis of the experiments in 

Study 2 with probing counters that measure algorithm activity effort. These counters gauge 

algorithm effort of dynamically changing the initial problem as dictated by enforcing activity 

constraints. Algorithm activity effort associated with activity constraints is measured by 

counting:

• condition checks performed with the instantiation of condition variables,

• the number of variables successfully included or excluded as the result of satisfying 

activity constraints,

• redundant activations, which unnecessarily reset variable’s activity status to values
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that have been already set,

•  conflicting activations, which invalidate variables activity status.

The objective is to:

•  observe the correlation between solution set size and algorithm activity effort, and

•  compare MAC and FC performance in terms of activity counters.

Test Suite. The variation of activity counters was examined in two settings:

•  the control parameters of activity, density and satisfiability, are varied in the [0.1... 0.9] 

range, while their standard counterparts are fixed: dc =  0.3 and sc =  0.6;

•  the density of both compatibility and activity constraints are varied, dc in [0.3... 0 .8 ] 

and da in [0.1... 0.9], while satisfiability parameters are fixed: sc =  0.6 and sa =  0.4.

Results. The major findings of this experiments are:

•  the largest solution sets occur in problem regions of:

— lower conditionality, da and sa in the first half of their variation interval [0 .1 . . .  0 .5 ],

— opposite ranges of variability for density of both types of constraints: low com­

patibility density cc of 0.3 and 0.4, as opposed to high activity density da in 

[0.5... 0.9].

•  MAC counts less effort than FC on all activity tasks except for conflicting activations.

Experimental results for problems of variable conditionality axe plotted in Figure 4- 

xii and Figure 4-xiii. Experimental results for problems of variable density are plotted in 

Figure 4-xiv and Figure 4-xv. In both settings we show on a normal scale (left columns) and 

logarithmic scale (middle columns) the variation of the number of solutions and activity 

counters. The degree to which one algorithm outperforms the other is reported by the 

variation of the ratio between MAC and FC corresponding counters (right columns). In
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two instances we use the variation of difference between MAC and FC measured effort 

(Figure 4-xiii middle column).

We observe that experiments in which conditionality parameters, density and satisfi­

ability of activity constraints, da and sa, were varied within the full range, the solution 

sets are more than twice as large in comparison with solutions to problems where activity 

satisfiability, sa, was fixed at 0.4 and both density parameters, dc and da, were varied. Con­

sequently, in the first set of experiments MAC and FC performed more activity operations 

than in the second set. On average, MAC reduced the number of included variables by a 

factor of 2 and the number of excluded variables by a factor of 3. Overall, MAC did half 

as many condition checks as FC on problems of variable conditionality, da and sa. Similar 

improvement was maintained on problems of variable density with the exception of high 

the density region.

In both types of experiments, from all activity effort counters MAC recorded the largest 

improvement over FC for processing fewer redundant activations, by an average factor of 

5. The activity task that was more costly for MAC was processing conflicting activations. 

This is caused by MAC’s specialized activity arc-consistency, which finds activity constraints 

that invalidate the activity status of future variables. Condition values of those conflicting 

activity constraints are pruned from the domains of future variables whose activity status is 

invalidated. By processing more conflicting activations, MAC checks fewer condition values 

and, consequently, does fewer activity constraint checks.
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Figure 4-xii: Problems of variable conditionality: da and sa varied in [0.1... 0.9] and fixed 
dc =  0.3 and sc = 0.6. (First row) Number of solutions on normal scale (left) and logarithmic 
scale (middle); significantly smaller solution sets for da and sa in the second half of their 
interval (right). Variation of activity counters: condition checks (row 2), included variables 
(row 3), and excluded variables (row 4). Relative performance of FC and MAC is shown 
for each activity counter: both MAC and FC effort surfaces on normal scale (left) and 
logarithmic scale (middle), and ratio of MAC and FC corresponding counters (right).
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Figure 4-xiii: Continuation of Figure 4-xii. Activity counters: redundant activations (top) 
and conflicting activations (bottom). MAC checks fewer redundant activity constraints, but 
more conflicting activity constraints.
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Figure 4-xiv: Problems of variable densities, dc and da, and fixed satisfiability parameters, 
sa =  0.4 and sc =  0.6. (First row) Number of solutions on normal scale (left) and logarithmic 
scale (middle); largest solution sets controlled by low compatibility density, dc, of 0.3 and 
0.4. Variation of activity counters and relative performance of FC and MAC are reported 
in the same fashion as in previous experiment in Figure 4-xii.
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Figure 4-xv: Continuation of Figure 4-xiv. Variation of redundant (top) and conflicting
(bottom) activations. MAC checks fewer redundant activity constraints and more conflicting 
activity constraints .

\
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4.4 Summary

In this chapter we considered the practical approach of benchmarking solving methods by 

using random conditional CSPs. The algorithms developed in the previous chapter were 

tested in experiments covering diverse populations of randomly generated problems.

Like random standard CSPs, random conditional CSPs are characterized by problem size 

as well as density and satisfiability of compatibility constraints. Problem activity introduces 

new parameters with which Richard Wallace extended his random standard CSP generator 

(Wallace 1996) to produce random conditional CSPs.

We systematically varied the generator parameters to generate large problem sets with 

diverse topologies. Prom these problems we designed test suite on which we analyzed 

algorithm relative performance with regard to execution time and counters associated with 

representative search operations.

Experimental findings show that

• Forward checking always wins over backtrack search and, in terms of execution time, 

the gain is one to two orders of magnitude.

• Maintaining arc consistency significantly outperforms forward checking on hard prob­

lems.

• All three algorithms correctly produce the same number of solutions when run on iden­

tical problem instances to find all solutions. These results provide empirical evidence 

with regard to the algorithms’ correctness.
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CHAPTER 5

ON REFORMULATING CONDITIONAL CSPS

Conditional CSPs add a  special type of constraint, called an activity constraint, to stan­

dard CSP. The purpose of these constraints is to condition which variable sets participate 

in final solutions. These variables are called active variables. The representational means of 

problem activity in a conditional CSP are intuitive and easy to use for modeling conditional 

selection of active variables. The focus of this chapter is to examine how conditional CSP 

behavior can be reformulated using traditional components of standard CSPs: variables, 

values, and regular constraints (what we call compatibility constraints in the conditional 

CSP model). The motivation for moving the problem representation from conditional con­

straint satisfaction to the standard domain is given by the prominence and maturity of the 

constraint satisfaction classical paradigm and the effectiveness of its solving methods. The 

issues we address in this chapter are:

• the feasibility of transforming a conditional CSP into a standard CSP: what are the 

challenges and how they can be overcome, and

•  an experimental comparison between solving a reformulated standard CSP using clas­

sical algorithms and directly solving the original conditional CSP using the new algo­

rithms developed in the previous chapter.

5.1 Introduction

The reformulation of a  conditional CSP into an equivalent standard CSP was first reported 

by Mittal and Falkenhaimer, although they do not describe how exactly the transformation 

is done. They consider the addition of a special value, called “null”, to the domains of

90
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non-initial variables. A variable instantiation with a  “null” value indicates that the vari­

able is not used in problem solutions. Mittal and Falkenhainer mention that “appropriate 

transformations of all constraints” have to be made to take into account the new null value 

such that the transformed constraints be “trivially satisfied” for value combinations that 

include null values. No specific descriptions are given about these transformations. Mittal 

and Falkenhainer report that the comparison between solving a conditional CSP directly 

and solving a null-based reformulation on a set of examples shows significant gains in all 

performance metrics for the direct method1. However, no description of the direct method 

is given.

Mittal and Falkenhaimer’s formalization of dynamic constraint satisfaction is reviewed 

in (Haselbock 1993), where the definitions of dynamic constraint network, consistency, solu­

tion, and irreducible (or minimal) solutions are restated using a slightly different theoretical 

formalism. Relevant to reformulation, Haselbock claims that exclusion activity constraints 

axe not really necessary, and demonstrates how they can be expressed as conventional com­

patibility constraints. However, a  complete reformulation of conditional CSP into standard 

CSP is briefly qualified as “not very straightforward” and inefficient, since the addition of 

“dummy domain values (like inactive) for all possibly unused variables” increases the size 

of the problem and, consequently, the search effort.

The feasibility of obtaining a null-based CSP formulation from a conditional CSP is 

first examined in-depth in (Gelle 1998). Gelle proceeds with proposing first an algorithm 

(Algorithm A \, page 111) that automates this transformation and produces a solution set 

that contains supersets of the solution assignments obtained in the original problem. A 

superset assignment satisfies the compatibility constraints. However, it adds to the origi­

nal corresponding solution, let us call it s, values that instantiate variables which axe not 

included in the original problem by s. The reformulation algorithm uses a prelim inary

1The direct method implements a subset of the conditional CSP language (without activity constraints 

of exclusion) by “extending a conventional backtrack search CSP” with “forward checking to propagate all 

compatibility constraints” (Mittal & Davis 1989)
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transformation of the exclusion activity constraints into compatibility constraints accord­

ing to Haselbock’s procedure. Compatibility and inclusion activity constraints axe then 

transformed into regular constraints that handle null values.

Gelle modifies the algorithm to find the exact solution set under the assumption that 

each variable is activated by at most one activity constraint (Algorithm A 2 , page 111). If this 

assumption is relaxed, Gelle proposes and shows with an example that activity constraints 

that trigger the same activation can be collapsed into one activity constraint, and then the 

resulting activity constraint can be transformed into an equivalent compatibility constraint. 

The drawback of this transformation, Gelle observes, is that it violates the locality of change 

in the reformulated CSP when a  local change, such as the addition of an activity constraint, 

occurs in the original problem.

We will show in the next section that the idea of clustering multiple activations into 

one and then transform ing it as a  single activation can be used (1) to formalize the trans­

formation, and (2) to design a reformulation algorithm for a restricted class of conditional 

CSPs. A problem arises if cluster activations of the same variable form cycles. The cluster 

activation transformation we propose assumes that problems do not have activity cycles. 

Next, under the same assumption, we derive an algorithm that allows for preserving locality 

of transformation when the original problem changes locally. At the end of the section we 

present two examples to illustrate the issues introduced by activity cycles, and propose a 

solution.

In Section 5.3, the implementation of the algorithm is evaluated on CSP reformulations 

of random conditional CSPs and its performance is compared with the direct method, 

CCSPSolveM ac, applied to the original conditional CSPs. The chapter concludes with a 

summary section.

5.2 Reformulation Algorithms

A high-level description of the reformulation of a conditional CSP into a null-based standard 

CSP has three generic components:
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•  Reformulation of value domains. Null values, N , are added to the domains of all 

variables which are not initial variables.

•  Reformulation of compatibility constraints. Compatibility constraints are expanded 

with all possible tuples that contain at least one N  value.

• Reformulation of activity constraints. Inclusion and exclusion activity constraints are 

transformed into conventional constraints.

These components structure the design of a generic reformulation algorithm, NullBased- 

Reformulate (see Algorithm 5.1), which transforms a conditional CSP, V  =  (V, V, Vx, Cc, C4 ), 

into a null-based equivalent CSP, V z  =  (Vz,D z,C z)-

Algorithm 5.1. Null-based CSP reformulation, V z  =  {V z,D z,C z), of a conditional CSP, 
V = (V ,V ,Vx ,Cc ,CA).

NullBasedReformulate(V,Vz) {
V

refDomains(V, Vx, V, Vz) 
refCompatibilityiCc, V, Vz,C z) 
refIndusion[CA, V, V z, Cz) 
refExdusion(CA, V, V z, Cz)

}// end NvllBasedReformulate()

The reformulation leaves the set of variables unchanged, that is, V z  =  V. Reformu­

lations of domains, compatibility constraints, and inclusion and exclusion activity con­

straints are delegated to four procedures: r e f Domains, re f Compatibility, r e f  Inclusion, 

and r e f Exclusion.

In the rest of this section all the reformulation procedures axe exemplified on the sample 

problem (or slight variations of it) given in the following example.

Exam ple 10. The simple conditional CSP problem, V\ (Figure 5-i), is derived from an 

example originally given in (Mittal & Falkenhainer 1990) and used in (Gelle 1998).

Reformulation of variable domains is immediate. Compatibility constraint reformulation 

is straightforward too. To produce equivalent, ordinary constraints we add to the original 

allowed tuples new tuples to satisfy the constraint when at least one variable is not active

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



94

Pi = {Vi,T>i,VXl ,Cc i,Ca i )
Vi -  {vi,U2,t;3}
V\ =  {Di, D2,D3}

O i  =  { a , b } ,  D2  =  { c , d }, D3  =  { e , f }
Vll =  {Vl,V2}
^Cl =  { c i , c 2 }

C l =  C ( v ! , V 2 )  =  {(ad) ( b e ) }

c 2 = C ( v \ , v 2 , V 3 ) = {(6ce) (6c/) (a c f ) (6de) (ade) ( b d f )  ( a d f ) }

Cai =  {ai}
ax = A ( v i , v z )  : v i = b  u3 

sol ( P i ) {{vi =  a, v 2 =  d}, {i?i =b,V 2 = c ,v 3  =  e}, {vx = b , v 2 =  c ,  v 3  -  /}}

Figure 5-i: Simple conditional CSP example, "Pi

A

(undefined or excluded). The principle of this transformation originates from (Mittal & 

Falkenhainer 1990) and was first applied by Gelle in the transformation she proposes in 

Algorithm A \, (Gelle 1998). This transformation is also used to indirectly transform exclu­

sion activity constraints, which are first rewritten as compatibility constraints (Haselbock 

1993).

Difficulties arise with transforming inclusion activity constraints. Gelle’s transformation 

of inclusion activity constraints in Algorithm A\ generates extraneous solutions that are 

not produced by the original problem. To eliminate them, the transformation is refined 

in Algorithm A%, which requires that peer exclusion activity constraints be added to the 

original problem. These constraints have to be reformulated as compatibility constraints 

prior to conditional-to-standard transformation. Algorithm A 2  is correct, Gelle argues, as 

long as non-initial variables are made active by single activations.

The case of multiple activity constraints that independently activate the same variable, 

which we call cluster activations, needs a different treatment. Gelle proposes that cluster 

activations be first collapsed into one inclusion activity constraint and then be transformed 

into a  regular constraint. Although Gelle does not formalize the transformation, she gives 

an example to show that reformulating these activations individually by applying Algorithm 

A 2 , leads to a too restrictive constraint and an incomplete algorithm.
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There is an inherent disadvantage to the transformation of cluster activations by synthe­

sizing a  singular inclusion activity constraint prior to the actual reformulation. Gelle points 

out that this transformation imposes the restriction that all inclusion activity constraints 

be known before hand. Consequently, the transformation does not allow for incremental 

introduction of additional constraints.

Prompted by the reformulation challenges exposed in Gelle’s feasibility study, we develop 

a framework in which we:

•  Streamline the reformulation of conditional CSPs that are restricted to single acti­

vations, where active variables originate from single activations. We implement this 

transformation by the refSinglelnclusion  algorithm.

• Introduce a formalism for transforming cluster activations, where active variables are 

possibly targeted by a  cluster of inclusion activity constraints. We implement this 

formalism by the r e f  Cluster Inclusion algorithm.

•  Derive an incremental version for reformulating cluster activations that preserves lo­

cality of change, and implement the reflncrem entallnclusion  algorithm.

• Present the activity cycle problem and solve it.

The section is organized around the contributions listed above. We start with condi­

tional CSPs that have only single activations and present procedures for transforming all 

problem components: domains, compatibility constraints, and activity constraints. We re­

lax the assumption about variable activation and allow cluster activations. Thus, we extend 

the framework with a new algorithm for transforming cluster activations. This algorithm is 

then improved to process the original problem in an incremental fashion. For these trans­

formations we have enforced the assumption that activations do not exhibit the activity 

cycle problem. We conclude with a  description of the activity cycle problem, and a more 

general reformulation algorithm that solves it.
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5-2.1 Single Activations 

Reformulation of Value Domains

Assigning value N  to a variable v in a solution, s r ,  of a null-based CSP reformulation means 

that v does not participate in the corresponding solution, s, in the original conditional CSP. 

v,s non-participation in solution s is shown by u’s activity status as undefined or excluded, 

which occurs in one of the following cases:

1. None of the activity constraints that activates v is satisfied by s, or

2. There is at least one exclusion activation whose condition is satisfied by s.

The transformation of value domains is simple. Algorithm 5.2 describes the r e f  Domains 

procedure which produces a reformulated domain set, D r , from the original domain set, D, 

of all variables, V. First, D r  is initialized with the domains of the initial variables. Then 

variables which do not belong to the initial variable set, Vx, have their domains extended 

with a new value, called null and denoted by N .

A lgorithm  5.2. D-r  reformulation of the domains of values D in a conditional CSP with 
V variables and Vx initial variables.

re f D om ains(V,Vx,V,D r ) {
Vr  «— domains of Vx variables 
for each (v £ V — Vx) {

Dvr -t- Dv U {IV}
V r  «— D r  U Dvr

}
}// end refDomains( )

Reformulation of Compatibility Constraints

How do null-extended variable domains affect the transformation of the compatibility con­

straints? The idea behind this transformation is that compatibility constraints, Cc, are 

trivially satisfied if some of their variables are not active: their activity status is either 

undefined or excluded. In the allowed tuples of the corresponding reformulated constraints, 

Cr , participation of constraint variables as undefined or excluded is indicated by the value
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N . Adding N  values for some of the variables on which reformulated constraints are defined 

must leave unchanged the set of disallowed tuples of those constraints.

Let us denote the set of disallowed tuples of some constraint c, defined on variables 

var(c) =  vCl, . . . ,  vCk, by c, which is the complement of c with regard to the cross-product of 

the domains of the constraint variables, DV c i DVck. That is, c =  (A,CJ x . . .  x DVc)_) — 

c. The exact value combinations which are not allowed in the compatibility constraint c 

remain disallowed in the corresponding reformulated constraint cr. This means that, when 

expressing cr by enumerating its allowed value combinations, we have to add all tuples that 

have at least one N  value. The set of additional tuples is computed from the Cartesian 

product of the reformulated variable domains, DVc.r , from which we exclude the disallowed 

tuples of the original constraint, c.

Algorithm 5.3 describes the r e f  Compatibility procedure that transforms compatibility 

constraints Cc in a  conditional CSP V  into equivalent constraints C-r  in Vr , a null-based 

reformulation of V.

A lgorithm  5.3. Cr  reformulation of compatibility constraints Cc-

refCompatibility(Cc, V, V r ,  C r )  {
Cr  ■<— 0

for each (c € Cc) {
let {uCl, . . . ,  vCh} be var(c) 
c  ̂ DVci x .. .  VVck — c 
c r  < -  D Vcir  x . . . D VckR  — c  

C r  ■<- C r  U  { c r }
}// end for 

} // end refCompatibilityQ

The two procedures for transforming domains and compatibility constraints are exem­

plified as follows.

Exam ple 11. The transformation of variable domains in Example 10 affects only non- 

initial variables and, consequently, constraints involving non-initial variables. Thus, only 

one variable, vs, changes its domain with the addition of the value N . The domains of 

initial variables v\ and vs remain unchanged:

D ir  =  D\, D sr =  D2, D zr = Dz U {AT} =  {e, / ,  jV}
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The compatibility constraint c\ =  C(v 1 ,^ 2 ) does not change, thus c \r  = c\. The other 
compatibility constraint, ci =  C(vi,V2 ,v$), is transformed into

C2R =  ( D i r  x D 2R x D z r )  — <% =  (D \  x D 2 x (D3  U {N})) — ( (D 1 x D 2 x D3 ) — C2 )
=  C2 U (Di x £>2 x {JV}) =  C2 U {(aciV) (adN)  (bcN) (bdN)}
=  {(6ce) (6c /) (a c /)  (6de) (ade) (bdf )  (ad f ) }

A

Reformulation of Activity Constraints

Inclusion and exclusion activity constraints are reformulated, as regular constraints defined 

on variables that include the target variable and the variables on which activation conditions 

are defined. The approach we take to express this reformulation is to determine what values 

of the target variable go with what tuples of the activation condition constraint.

Given an activity constraint a with activation condition &nd target variable vt, 

reformulation o r  of a is defined on aeon’s variables, var(aCOTUi) =  Vc^d =  {vcn • • - 

and target variable vt- The construction of the reformulated constraint has two parts. They 

result from partitioning all possible value combinations of the condition variables into:

• Tcond-, the set of tuples that satisfy the condition constraint, that is, 

and

• Tcond, the set of tuples that invalidate the condition constraint, that is, the complement 

of Tcond with regard to the Cartesian product of the condition variable domains:

Tcond. =  DvclR x — * DVekR — Tcond-

The allowed tuples of the reformulation o r  are, consequently, partitioned into tuples 

tha t extend Tcond and tuples that extend Tcond with consistent values at vt depending on 

the type of activation, of inclusion or exclusion, imposed on vt. Next we present these two 

different reformulations separately.

Reformulation of exclusion activity constraints. If a is an exclusion activity 

constraint which is checked for some instantiation of its condition variables, then the target
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variable is excluded if the condition constraint holds. In the reformulation o r, we say that 

Tcond tuples are consistent with null values for vt, and the set Tcond x {N }  can be added to 

the allowed tuples of o r  =  •A(V'cond, vt). If an instantiation violates nd, that instantiation 

represents a  disallowed tuple that belongs to T ^ d  and has no effect on the activity status 

of the target variable. We say that Tcond tuples axe consistent with any value of vt. Note 

that vt cannot be an initial variable, whose status is predefined and never affected by 

activity constraints. Therefore, DVt in the original CSP becomes DVtn  =  DVt U {N }  in the 

reformulated problem (by algorithm 5.2). To express the consistency of Tcond tuples with

any value in DVtR we add Tcond x  DvtR t o  aR-

C om bining the contribution of Tcond and Tcond sets to the allowed tuples of a# we obtain:

Or — A (V co n d iv t)  — {Tcond x  C {Tcond x  D VtR.}

as shown in Algorithm 5.4 for reformulating exclusion activity constraints.
A lg o r ith m  5 -4 . Adds to C-jt the reformulation of exclusion activity constraints in C_4 .

refExclusion(Cjt,V,Vn,Cn) { 
for each (a € Ca) {

i f  (a is an exclusion activity constraint) {
let Vcond = {«ci, - - -, vCk } € V be a’s condition variables 
let vt € V be a’s target variable
let TCond be the allowed tuples of a’s activation condition
T COnd *- DVciR x . . .  x DVckR -  Tcond / /  disallowed tuples of a’s activation condition 
let o r  be an empty constraint defined on Vcond U {ut}
OR  ̂ (T Cond X { N } )  U (Tcond  X D v t R )
C-r  «— Cn U { o r }

}// end if 
} // end for 

}// end refExdusionQ

The same transformation can be obtained by stating the disallowed tuples in o r, that 

is, a(̂ stUlowed = Tcond x (DvtR ~ {-N}). In other words, the only value assignments that o r  

finds inconsistent are those which combine the allowed tuples of the activation condition 

with non-null values at vt-

The transformation is illustrated on the following example, derived from Example 10.

Exam ple 12. Since V\ in Example 10 has only inclusion activity constraints, we construct 

V2 , which modifies V\ by adding an exclusion activity constraint 0 2  as shown in Figure 5-ii.
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*P2  — (V2 , X>2, VX27 Cc2 i O .2) 
v2= Vx = {ui,V2,V3}
V2 =  T>i =

Vl2 = Vl! = {ui,U2}
Cc2 = Cci =  {ci,C2 }
C^2 = Cai u {0 2 } = {0 1 , 0 2 }

d i =  A(Vi,V3 ) : v i = b  “~ i  V3  

02 =  j4(U2, V3 ) :V2  = C V3  

sd{V2) { { 0 1  =a,V 2  = d}}

Figure 5-ii: Simple conditional CSP example V2  with 0 2  exclusion activity constraint

The reformulation a2R is defined on the condition variable v 2 and target variable V3 .

The activation condition constraint has the allowed value assignment v2  =  c. This con­

dition variable instantiation is consistent with V3  = N  and stands for excluding V3  from 

partial solutions which satisfy v2  =  c. The other value assignment which accounts for the 

complement of the activation condition, v2  = d, goes with all the domain values of variable 

V3 , {e, / ,  N }. The condition variable instantiation v2  =  d stands for not restricting in any 

way Vi's  participation to solutions. Thus,

a2* =  A(v2,u3) =  {(cN) (de) (df )  (d N )}

A

Reformulation of inclusion activity constraints. We consider now the case of 

reformulating inclusion activity constraints.

Given an inclusion activity constraint a, we first construct a^ ’s allowed tuples induced 

by Tcond- If all condition variables are active and the condition constraint holds, then 

the target variable is made active. In the reformulated constraint, the same behavior is 

obtained by making consistent the condition constraint allowed tuples, Tcondi with the non­

null values of the target variable. Since vt is not an initial variable, its domain in the 

original problem DVt becomes DVtR =  DVt U {N} in the transformed null-based problem. 

Combining Tcond with v ts  non-null values and adding the resulting tuples to a#, we obtain 

Tcond x (DvtR-{N})  C or. Note that another way to view this transformation is to disallow
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the combination between the condition constraint tuples and the null value of the target 

variable, in which case we say Tcond x {N } <£ o r .

Second, we examine the relationship between Tcond and vt's value domain D VtR . This 

relationship captures what happens with v ts  activity status if Tcond. does not hold, that is,

Tcond is true. There are two cases:

• Single activations, vt is uniquely activated by a. In this case, if Tcond does not hold, vt 

cannot be active. Its status remains undefined or excluded, and it cannot participate 

in solutions that do not satisfy Tcond-

• Cluster activations, vt has other inclusion activations besides a. In this case, if none of 

the cluster activation conditions holds, then vt is not active. In contrast to the single 

activation rule, cluster activation reformulation has to capture the interdependence of 

the cluster activation conditions. I t is their interplay, rather than their independent 

contributions, that defines the reformulation. We will see later in the section that the 

cluster activation case is amended by an important assumption, that is, activations 

in a cluster do not form activity cycles.

In the rest of this subsection we present the single activation transformation: it di­

rectly reformulates an inclusion activity constraint that uniquely activates a  target into an 

equivalent regular constraint. The algorithm refSinglelnclusion  implements this transfor­

mation. Its application to a  sample problem is shown in Example 13. Cluster activations 

are considered in the next section.

Given an inclusion activity constraint, a, which solely activates the target vt and has 

its condition constraint, Tcond-, satisfied by some instantiation, then vt is made active. In 

the reformulation o r, Tcond tuples are consistent with non-null values of vt. Thus, Tcond x 

(DvtR ~ {N})  axe the allowed tuples added to o r .  If Tcond does not hold, under the single 

activation assumption, Vt cannot be active and Tcond tuples are consistent with null value 

at vt. Thus, {Tcond x {N}}  are the allowed tuples that complete the reformulation of o r .

The algorithm r e f  Singlelndusion  (Algorithm 5.5) has a structure identical to r e f  Exclusion. 

It differs by the transformation rule that constructs o r.
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A lgorithm  5.5. Adds to Cr  the reformulation of single activations inC j,: inclusion activity 
constraints that solely activate target variables.

refSingleIndusion{Cj\,, V, V - r ,  C-r )  {  

for each (a € Ca) {
if (a is an inclusion activity constraint) {

let V c o n d  =  {uCl, . . . ,  v Ck } € V be a’s condition variables 
le t v t  € V be o’s target variable
let T c o n d  be the allowed tuples of a’s activation condition
Tcond * - D Vcir  x . . .  x D VckR — Tcond / /  disallowed tuples of a’s activation condition 
let o r  be an empty constraint defined on V COn d  U {ut}
O r  < -  { T COn d  X  ( D V tR  —  { I V } ) }  u  { T c o n d  *  { N } }

C-r  +- C r  U {a*}
\  /  /  o n i fj  f  f —

} // end for 
} //  end refSinglelndusionQ

Exam ple 13. We generate the null-based reformulated CSP V \ r  from the original condi­

tional CSP V\ given in Example 10. We include the transformation of variable domains 

and compatibility constraints as shown in Example 11.

"Pr  i  = { V r i , V r i , C r i )

Vfti = Vi =  {Ul,V2,U3}
V r 2 = R ,  & 2 R ,  D 3fi}

D i r  = D i  = {a, 6}, D 2 R  = D 2  =  { c , d }  , D 3r  =  { e , f , N }

C r  i = { C l R , C 2 R , a i R . }

C l R  = Cl = C ( v i , v 2 )  =  {(ad) (6c)}
C2J? = C { v  1 ,V2 ,V3) =
{(ac/) ( b e e )  ( b e f )  (a d e ) (a d f )  ( b d e ) ( b d f )  (a c N )  ( b c N )  ( a d N )  ( b d N ) }

a i R  =  C ( v u V 3 )  =  { ( b e )  ( b f )  ( a N ) }

soI{Vr  i) {{vi - a , v 3 -  d , v 3 =  N } ,  {ui - b , v 2 =  c , v 3  =  e}, {vi - b , v 2 =  c , v 3 =  /} }

Figure 5-iii: Reformulation Vr \ of the problem example V\ in Figure 5-i shows the refor­
mulation of single activation inclusion constraints.

The null-based reformulated CSP obtained from the conditional CSP in Example 10 is 

shown in Figure 5-iii.

The example has a single activity constraint a i =  A(v\,vz) - v\ =  6 vz- The 

activation condition v\ = b represents the unary constraint Tcond(^i) =  {(6)}. The target 

variable is vz with value domain Dzr =  {e , f , N} .  The reformulated constraint a\R allows 

value combinations between the condition constraint tuples and non-null values e and /  

for vz- {(6 e) (6/)} C a\R. Now we have to consider the allowed value pairs with which 

Tcond{v l) =  {(<*)} contributes to or. That is the pair (a N ), which says that vz cannot be
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active if the condition v\  =  b fails. Thus, a m =  {(he) (bf)  (a N )}.

A

5.2.2 (A cyclic) Cluster Activations

Gelle observes that cluster activations can be reformulated by combining them first into one 

activity constraint, which is then transformed using the transformation of a single activa­

tion. She indicates that this approach has the disadvantage of not allowing an incremental 

introduction of inclusion activity constraints during problem reformulation. The drawback 

occurs when a cluster of activity constraints, A. that target the same variable, has been re­

formulated as or. If a new inclusion activity constraint, a, is added to the original problem, 

the reformulation procedure has to: discard or, rebuild the cluster A  such that it contains 

a, and compute a new reformulation for A.

Although Gelle does not formally define how cluster activations are, in the general 

case, reformulated, she uses a simple example to illustrate how the single activation rule 

fails to correctly transform cluster activations. In the following, we use the same ex­

ample to introduce the formalism for cluster activation reformulation and the algorithm 

re f  C lusterlndusion  that we developed to implement this formalism.

We discover that the clustering idea does not work if cluster activations have activity 

cycles. We recall from Chapter 2 the definition of an activity cycle in an inclusion activity 

graph. The inclusion activity graph of a conditional CSP has as directed edges inclusion 

activity constraints. An activity cycle is then a directed graph path of variables vo,-..,Vk 

such that vq and Vf. axe the same variable and there are at least two directed edges (inclu­

sion activity constraints) in the path. The assumption under which the cluster activation 

transformation works is that the activity graph has no cycles. We postpone the presentation 

of the cycle activity problem for the next section, in which we give some examples and a 

reformulation algorithm that handles cycles.

We conclude this section with an incremental version, the reflncrem entallndusion  

algorithm, that updates the reformulation locally without knowing in advance the com­
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position of the acyclic activity constraint clusters. Note that all the other reformulation 

algorithms presented so far, re f  Domains, ref Compatibility, and r e f  Exclusion, are incre­

mental in nature and do not pose the problem of knowing beforehand the entire set of 

elements to be reformulated.

Exam ple 14. Gelle’s problem example Vz modifies problem V \ with the addition of the 

activity constraint 0 2  =  A(v$,vz) - v$ = i vz, which activates the same variable as a\. 

0 2 ’s condition variable, v$, is a new initial active variable, whose values are D$ =  {i, j}

y i* j

V3  = 
V3 = 
V3  =

Vz3 = 
Ccz =

Ca 3 —

(V3, T>3, V i 3 ,Cc3 , C a 3,) 
{V1 ,U2 ,V3 ,U5}
{D i, D2, D3,Ds}
Z?i =  {o, £>}, D2 =  {c,d},
D3 = {e,/},Z?5 = {*\i} 
{ U l ,V 2 ,V 5 }

{ci,c2}
C l =  C (v i,v 2 ) =  {(ad) (6c)}
C2 = C(Vi,V2,V3) =
{(a c f ) (bee) (b e f ) (a d e ) (a d f ) 
( bde)  ( b d f ) }
{ai,a2}
a i =  A (v i , v3) : v i =  b -» v3 
a2 = A (v3,v 3) : vs = i -*■ u3

V-R.3 '■ 
V-R3 '■ 
V-rz

C-R3 =

(Vr3 ,X>tc3 ,Ck3)
V3 =  {vi,U2 ,v3 ,vs}
{Di r , D2r , D3r , D s n }
D ir  =  Di =  {0 , 6}, D2r  = D2 = {c,d}, 
D3r  = {e,f ,N},  D5 R = D5 = {i,i} 
(bde) (bdf) (acN) (bcN) (adN) 
(bdN)}
{ClR,C2R,ai2 R}
CIR =  C l = C(vi,v2) = {(ad) (6 c)}
C2R =  C(V 1 ,V2 ,V3) =
{(ac/) (bee) (be f )  (ade) (adf)
(bde) (bdf) (acN) (bcN) (adN) 
(bdN)}
d \ 2  R =  C (v\,v 3 ,v3) =
{(6 ie) (bif) (bje) (bj f )  (ai f ) (aie) 
(aj N)}

sol(V3) = {{vi =  a, v2 = d}, {vx =b,v2 = c, v3 = e,v5 = i},
{i7i =  b,v2 = c, v3 = e,vs = j}, {vi =b,v2 = c,v3 = /}}

soI(V r  3) =  {{vi =  a, v2 = d,v3  = N,v5 = IV}, {ui =  b,v2  = c,v3  =e,v 5  = i},
{vi =  b,v2 -  c,v3 =e,v5 = j},  {ui = b,v2 = c,v3 = f , v 5 = N}}

Figure 5-iv: (Left) Conditional CSP example Vz with cluster activations. (Right) Refor­
mulation V-rz of Vz- (Bottom) Problem solution set.

If we independently reformulate ai and a2  using the single activation transformation for 

each of them, we obtain:

am  = C(vi,v3) = {(be) (bf) (aN)}  
a2R = C(v5 ,vz) =  {(i e) (i f )  (j  N)}
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This transformation is incorrect, since it invalidates value assignments that account for 

satisfying either the «i =  b or t?s =  i activation condition, but not both, and a non-null 

value for target variable vz- Indeed, if, for example, v\ = b and v$ =  j ,  the v$ activity 

status is set by oi to active, and it is not influenced in any way by 0 2 ’s failure to activate it. 

It means that { ^ 5  =  j ,  vz =  N }  € ozr violates the instantiations {ui = b, v$ = j, vz =  e} 

and {«i = b,V5 = j , vz =  /} . This suggests that ai and 0 2  are interdependent and can be 

combined in one constraint, 0 1 2 , as follows:

£*12 =  A [ v i ,  U5, Vz) : (t/'i =  b V v'5 =  2) -—> vz

The reformulation of a\2 R is the result of the single activation transformation as imple­

mented in the refSinglelndusion  algorithm. The constraint a\2 R allows that:

1. Either =  b or v$ =  i be consistent with vz’s non-null values, D V3r  — {IV} =  

{e, /} , regardless of the value assignment of the other condition variable: 0 5 , or t>i, 

respectively, and

2 . Only (vi =  aAv$ = j) , the complement of the 0 1 2  activation condition (vi = bVvs = j ), 

restricts the value assignment of 173 to N .

The computation of a^R  is:

012 R =C{v\,V5,Vz)
= {{&} x Dv5r  x (DV3r -  {N })} U {DVlR x {t} x (DV3r  -  {IV})} U {(aj  N)}
= {{bi e) (6i / )  (bj e) (bj f )  (a i e) (a i f )  (aj  N )}

A

In the general case where we do not restrict activation conditions to unary constraints, 

given two activity constraints of inclusion, Oj and aj, of arity I and m, respectively, that 

activate the same variable vt

Oi , . . .  , Ujj, Vt) . Tcojidi Vt
Oj A (v ji , . . . ,  Vjm, Vt) . T onuij ”  ̂ Vt
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with var(Tend;) =  =  Vi and var(Tcondj) = vjm} = Vj, we construct

an equivalent single activity constraint a^-:

&ij — A(vc, , . . . ,  Vcn 5 Vf) - Tcond ^
where

Tcond = Tcondi V Tcondj
var (Tcond) = { v i l , . . . , V i l } U { v j l , . . . ,  Vjm } =  Vj U ^  =  {cCl, . . . , » Cll} =  Vcond 

\Vctmd\ = n , 1 < n < l  + m  
an arity is n  +  1

The reformulation O ijR  of <Hj is defined on the same set of variables as a i j

& ijR  =  ^ {V con d  U { v t } )

and is made of two categories of allowed tuples.

In the first category we have tuples that are derived from Tcond and contribute to o ^ r  

by binding non-null values of vt when either Tcondi or Tcond, or both constraints are true, 

regardless of the values of the other variables in Vcond- We denote these tuples of n  + 1  arity 

by EVt. They enforce a necessary condition for activating vt.

Evt =  Tcond * (T^vtR

Tcond tuples are defined on Vcond =  Vi U Vj. The set Tcond is computed from the union of 

7i-ary tuples that extend Tcondi and Tcondj through the Cartesian product of the reformulated 

domains of variables in Vcond as follows: the extension of the Tcondi tuples to n-ary tuples 

has all values in the reformulated domains of variables Vj that are not in V^ similarity, the 

extension of the Tcondj tuples to n-ary tuples has all values in the reformulated domains of 

variables in Vj that are not in V,. Thus:

Tcond ~  Tcondi * n DvR U Tcondj * J_ J[ Dvr .
ve(Vj-Vi) ve(Vi-Vj)

The second category of tuples in the reformulation O ijR  represents tuples that extend 

T ^ d  and contribute to o ^ r  by making consistent the N  value for vt. We denote these
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tuples of n  4- 1 arity by PVt. They have the role of a  sufficient condition that limits v ts  

activation to a* and aj exclusively:

Pvt — Tcond *

The computation of Tcond from Tcond is immediate through a series of simple set opera­

tions that result in:

Tcond. =  Tcondi x  n D vr  n Tcondj * JJ D v R
v€(Vi-Vi) v<Z{Vi-Vj)

In order to generate correctly the tuples of the n-ary constraint Tcond and Tcond defined 

on Vcond, we consider the set Vcond to be ordered. That is, there is an indexing function 

ivcond ■ Vcond N , which introduces a total order on Vcond• Based on this function, we 

define an indexing product operator, A  (^ ) B, A  U B  = Vcond-, that transforms the set of
Vcond

tuples of the Cartesian product A  x B  by reordering each tuple according to the indexing

function on Vcond• The correct computation of Tcond and Tcond is given by:

Tcond =  Tcondi T iV£(Vj-V i) D v R  ^  Tcondj Y lv€(V i-V j) & vR  
V co n d  V cond

Tcond =  Tcondi (££) TltieCVj-V-) T>VR  H Tcondj (££) F L s ^ -V } )  & VR
V co n d  ^ e o n d

With these transformations completed, O j j R  is:

O j j R  —  EVt U PVt

Note that for all variables v € Vcond, the reformulation of their domains Dv is Dvr =  

Dv U {N }  if v is not an initial variable.

This reformulation can be generalized for a cluster of arbitrary size m of multiple activity 

constraints of inclusion. The cluster constraints activate the target variable vt- 

G iven

• A cluster A Vt = { a ^ , . . . , ^ } ,  with the activation conditions TCOndi1 ,-• • ,Tcondi  ̂

defined on var{Tamdil) = Vh , var{Tcondim) =  Vim,

W e com pute reformulation
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• amR =  CiVcond U {vt}): where Vcond =  VJj U . . .  and |Vcon<i| =  n  

as follows:

dmR = Emvt U Pmvt =  Tcond x  {DVtR  { -^ } )  U Tcond x  { -^ }

The representation of the 71 +  1-arity constraint amR includes EmVt constraints, which 

necessarily activate vt, and Pmvt constraints, which sufficiently activate vt by limiting v i s 

activation to existing Aot constraints only. The computation of Tcond and T ^ d  from m 

activation conditions TCOndij is:

Tcond =  Tcondi1 (^ ) AjK U . . .  U T c o n d im  (^ )  H v e ( V COTld- V i m )

Vcond ĉond

Tcond =  Tcondii (££) TlvefYconi-Vii) D vR n  . . .  n  T con&im (^ )  riu€(Vc£m<i-Virn) T>vR
ĉond I'cond

The algorithmic steps for reformulating cluster activations are described in the proce­

dure r e f  Cluster Inclusion (see Algorithm 5.6). The procedure builds clusters of activity 

constraints of inclusion, A Vt, that target the same variable Vt-

The two sets Tcond and Tcond are produced for each cluster AVt by calling the ORActivity 

procedure (Algorithm 5.7). These condition sets are then extended with non-null values and 

null values, respectively, for vt, to form the EVt and PVt sets. The sets are then combined 

into the reformulation cimR of the cluster AVt. This reformulation is added to the C-p 

reformulation and the process continues until all clusters AVt are exhausted.

The ORActivity procedure computes the Tcond and T ^ d  sets iteratively for each in­

clusion activity in the activation cluster AVt. In the loop, the procedure maintains two 

cumulative conditions:

•  A cumulative condition that enforces v is  activation if any of the cluster conditions, 

T i,  holds. We call it crnidp. It incorporates the contribution of the T{ sets and it is 

initialized with the activation condition T \  of the first inclusion activity.

•  A cumulative condition that prevents v is  activation if none of the cluster conditions 

holds. We call it condp. It incorporates the contribution of the T i  sets and it is 

initialized with T \ .
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A lgorithm  5.6. Adds to C-ji the reformulation of inclusion activity constraints. Cluster 
activations are handled by first (1 )  building clusters of activations, A^t corresponding to the 
same target variable vt, and then by (2 ) translating each cluster into a single reformulated 
constraint. The latter step calls ORActivity algorithm (Algorithm 5.7).

re f ClusterIndusian{Ca , V, V n, Cn)
{

/ /Build dusters of activations with the same target variable
A  «- 0 / /  the set of dusters
//Initialize dusters
for each {vt G V — V%) {

AVt <- 0 // duster of indusion constraints with target vt
Vcondv, ■<- 0 // set of all condition variables for all constraints in AVt
A  <— A  U {A„.}

}
/ /Populate clusters with their associated condition variable sets 
for each (a € Ca)

if (a is an indusion activity constraint) { 
let vt be a’s target variable 
AVt «- AVt U {o}
Vcondvt «- Vcond„t U {a’s condition variables}

}
/ /Build reformulated constraints from dusters 
for each AVt € A

ORActivity (AVt, T corUi ,  T cond, )
let OmR be an empty constraint defined on Vcondvc and vt
/  /Add contribution of allowed and disallowed tuples of activation condition
E v t T cond x  (D VtR — {IV})

P vt Tcond ^  {-^V}
OmR EVt U PVt
Cn<r-Cll U {Omjj}

} // end refClusterlndusionQ

Incremental reformulation

The compositional structure of cluster activation transformation exhibits an incremental 

pattern that can be exploited to localize changes in the reformulated problem when the 

original cluster changes. We observe that with each additional activation that is conditioned 

by some we add allowed tuples that make consistent with non-null values of vt

while with Tcond- we further restrict the set of tuples that are consistent with v ts  null value. 

The obstacle to using this type of incrementality when computing the amR reformulation 

constraint of an m-size cluster is that the set of condition variables has to be known in 

advance. We propose to overcome this obstacle and construct reformulations incrementally
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A lgorithm  5.7. Computes Tcond. and Tcond for a duster activation AVt.

ORAdivity(AVt 5 TCOndi TCondi Vcond, t)
{

let ai be the first activation of vt in AVt such that 
Vi are ox’s condition variables 
T \  are the condition’s allowed tuples 
Ti axe the condition’s disallowed tuples 

condv 4 -  Vi 
condE 4 - Ti 
condp 4- T \
for each (remaining a* 6 {

condE 4 -  con dE  (££) I I v€(Vi-condv ) D vR U T i ( ^ )  n » 6 (condv-Vi) ^ v R
condvOVi condv U VJ

condp 4- condp (^) II„€(Vi-condv) &vR n  T i  (^) Ilt;e(condv-V;) DvR
c o n d v U V i  c o n d v  U Vi

} / /  end for 
T c o n d  4 -  condB 
T c o n d  condp
Vcond,t <- condv 

} / /end ORActivity()

with each additional activation that is added to the problem.

We know from reformulating single and cluster activations that the reformulation has 

tuples consistent with non-null values for the target variable, called the EVt constraint, and 

tuples consistent with null values at vt, called the Pvt constraint. The question is whether 

EVt and Pvt can be constructed incrementally without knowing up front the set of condition 

variables from all activity constraints that activate vt-

To illustrate the idea of incremental transformation, we start with a single activity 

constraint:

<H =  M Vcondi,Vt) : Tcondk ^  v t

and its reformulation:

O i R  = C/{VcondiiVt) =  EVt U PVt — T^ondi x (P v t R  {-^}) U Tcondi x {X }

For the purpose of simplifying the notation of computational constructs that we will be using 

repeatedly in the rest of this section, we rewrite the reformulated constraint as follows:

CiYcondi^Vt) = Cxvt =  Exvt U Pxvt = X  N  U X  N
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where T c ^  = X , T<w.- =  X , and DVtR -  {N } = N.

Let us consider the addition of a new activity constraint:

aj = AiYccndjiVt) : Pcondj ~  ̂ vt

with Vcondi £  Vconij- We denote Tcondj by Y  and T^nd, by Y . The reformulation of a* and 

a.j, denoted by C(Vcondi UVcoruij U{vt}) =  CxYvt, combines the tuples in N  with either X  or 

Y  to compute the ExYvt constraint, and combines the value N  with X  and Y  to compute 

the PxYvt constraint, as follows2:

C xY vt =  E x vv t u PxyvM  ( X Y U X Y U X Y ) x N }  U { X Y N }

= X Y N  U X Y N U X Y N U X Y N

CxYvt can be computed from Cxvt ™ three steps:

1. Exv t ’s tuples in Cxvt-> X  W, are extended with Y  and Y  to obtain X Y  N  and X Y N

2. To complete the ExYvt constraint in CxYvti a new set of tuples is computed from X  

and y  to obtain X Y N

3. The Pxvt constraint in Cxvti X  N , is extended with Y  to obtain PxYvt hi CxYvt-> 

X Y N .

E xam ple 15. We use problem example V% in Example 14 and assume that the multiple 

activations of variable V3 , a\ and 0 2 , are reformulated incrementally. Thus, Vz\ has only 

the ai activity constraint in the original problem V3 , and is reformulated into Vn 3 i- We 

then add the 0 2  activity constraint to Vzi and obtain 'P32 =  V 3 , whose reformulation is 

P n  32 =  Pfi3-

The first reformulation is shown in Figure 5-v (top), and has the set of constraints, Cc3 i, 

composed of {ci#, C2 R, aiR}. <n is a single activity constraint that activates vz when the 

activation condition X  =  {vi =  b} holds. The reformulation ai#  combines non-null values

2 We assume that the notation A B, where A  and B  are two constraints defined on V a and Vb variables, 

uses the indexing product operator, i.e., X  (££) Y, where V  = Va  U Vb -
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ind

Vzi = (V3 , Vz, V1 3 , Cczt Ca z \  > )
Ca z i  =  { ° l}

ai =  A(vi,vz) :vi = b —*■ Vz 
X  = {Vl = b} , X  = {Vl =a}
N = {e, /}

'P-r .z i  —  ( V h z i 'D-r .z i Ck z i )

Cnzi = {cifl, C2fi, aifi}
am =C(vu v3) = X N U X { N }  
=  {5}x{e, /}U{a}x{JV>
= {(6e) (bf)(aN)}

'Pzi — Vz =  (V3,X>3, Vz3,Cc3 ,Ca3) 
C.A3 =  £431 U {02}

d2 = -A(u5,U3) : V5 = i u3 
r  = {i/5 =  i}, y  = {u5 =  j )

V-R.Z2 =  =  0̂ 72-3 5 V-JlZi C uz)

Cnz2 = C-R3 = {CW31 “  U {ai2fi}
= {Cl«,C2R,ai2H}

&12R — C(ui, JJ5 , 03)
= i ( y u y ) i v u l y i v u l y { ^ }

= W  x {*.?'} x {e/} u {a} x {i} x {ef}
U{a} x 0'} x {N}

= (bie) (bi f )  (bje) (bj f )  (aie) (ai f )  ( a jN )}

Figure 5-v: (Top) Reformulation of a single activity constraint of indusion. (Bottom) 
Incremental reformulation of an additional cluster activation from a previous reformulation.

of the target variable U3 ,  {e f }, with X  and {N}  with the complement of the activation 

condition, X , {ui =  a}.

The second reformulation V-jz32 °f V3 2  (Figure 5-v (bottom)) is obtained from the first 

reformulation Vtz%\ through a  series of incremental changes that account for the incremental 

change of adding 0 2  to V3 1 . Thus, am  is removed from the set C-r31 of reformulated 

constraints of the first reformulation, and replaced with a^R. The computation of 0 1 2 # takes 

into account o i’s activation condition X  =  {ui =  6} and its complement X  = {ui =  a}, 

as well as the activation condition Y  =  {us =  i} and its complement Y  = {us = j}  

of the additional activity constraint, 0 2 - The tuples consistent with N  =  { e f }  in a\2 R 

extend X  = {uj =  6} with Y  =  {us =  i} and Y  =  {us =  j},  and X  = {uj =  a} with 

Y  = {v5 =  i}. In this way, there is at least one activation condition that holds when the 

target variable takes a  non-null value. The tuples consistent with {N}  extend X  =  {ui =  0 } 

with Y  = {us =  j}.  Thus, neither ui nor U5 are responsible for activating the target variable, 

as they are both instantiated with non-activation values.
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A

In the general case,

Given

• a reformulated constraint Cmvt of m  activity constraints, m >  1, that include vt, and 

that is defined on v a ^ C ^ )  =  U {vt}, such that

= T m N  U {IV}, where 

N = DVtz  — {N \.  and Vm =  war )

• an additional activity constraint of inclusion, a, defined as 

a =  A(Va U vt) : Z  vu where Va =  var(Z)

We compute

• a reformulated constraint C(m+1)r£, from Cmvt and a, which is defined on Vm+i =  

Vm U Va as follows:

C(m+l)r, =  Im+1 N  U Tm+1 N

=  (Tm Z  U Tmz  U T ^ Z )  x N  U T ^ Z N  

= Tm Z N  U Tm Z N  U T ^ Z N  U T ^ Z N  

Algorithm 5.8 shows the procedure reflncrem enta llndusion  that implements the in­

cremental construction of reformulated constraints corresponding to cluster activations. For 

each non-initial variable, ut, the algorithm maintains a  reformulated constraint, CVtl that 

accounts for all inclusion activations of vt . With the processing of each inclusion activity 

constraint a that targets vt, the old reformulation C°ltd associated with ut, if empty, is reused 

to produce a  reformulation. This new reformulation replaces the old one in C-%. If 

C°ld is empty, the first reformulation of vtS  cluster is computed from a’s elements.

5.2.3 A ctiv ity  Cycles

The reformulation algorithms presented in the previous section work correctly for prob­

lems with acyclic activity graphs. In the following, we show on some examples why ac-
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A lgorithm  5.8. Adds to Cn the reformulation of indusion activity constraints. Cluster 
activations are handled by incrementally generating reformulated constraints for each addi­
tional activation a.

refIncrementalIndusion(Cj^, V, Vn,Cn) {
//Initialize with empty sets activation reformulations that might target non-null variables 
for each (ut € V — Vr) {

let CVt be the reformulated constraint for all the activations of vt 
CVc «- 0 

}//end for
//Build or incrementally update CVt by processing 
/ /each activity constraint of inclusion, a, that targets vt 

for each (a e Cj£) {
let vt be a’s target variable
let N  be the non-null values of vt s domain
let Z be the allowed tuples of a’s activation, and Va be var(Z)
let ~Z be the disallowed tuples of a’s activation condition
//save the reformulation of previous activations of vt
CZltd <- Cvt
let V be the variables involved in C°ld 
Ck ^ C k -  C°ld
let C”e“ be an empty constraint defined onVUVa U {ut} that 

reformulates a in the context of C°ld 
if (C°ld is empty) {_

Q n e w  Z N U Z N

} // end if 
else {

let T  be C°‘td,s tuple set consistent with vt’s non-null values 
let T  be C°ld,s tuple set consistentwith vt’s N  value 
C ™ w  <r -  T Z N  U T Z N  U T Z N  U T Z N  

}//end else
C n ^ C n U{C™ )

} 1 1  end for a 
}//end reflncrementallndusionQ

tivity cycles invalidate reformulation solutions produced with the r e f  Cluster Indusion  al­

gorithm. We then make changes that correct the reformulation rule of cluster activation. 

The result of this exercise is an idea worth exploring for a more general reformulation al­

gorithm, unrestricted by activity cycles. We conclude the section with a new algorithm, 

r e f  GeneralClusterIndusion, which produces a reformulation of inclusion activity con­

straints that might form activity cycles.

Exam ple 16. Consider the simple conditional CSP problem V4 , presented in Figure 5-vi 

(Left).
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activation path7*a = <V4, VA, Vi4, CC4,Ĉ 4)
V4 =  {U1,^,V3}
Va = {D i ,D 2,Dz}

Z?i =  {a,b}, D2 = {c}, Dz = {d}
Vz4 =  M  
Cc4 = 0
C.a4 =  {0 1 , 0 2 , 0 3 }

ai =  A(vi,v2) :vi = a -^4 v2  

0 2  =  A{v2 , 173) :v2 =c  -^4 vz 
a3  =  A(vz-,v2) :vz = d -^4 v2 

soi(P4) {{vx = o, Vz = c,u3 = d}, {*>1 = 6}}
Figure 5-vi: Simple conditional CSP example, V4. (Left) Problem description. (Right) V4S  
activity graph.

initial variable

TVs inclusion activation graph has three variables and two inclusion activity constraints 

that form a cycle between variables V2  and 173. If we reformulate the problem using the 

cluster activation algorithm, we obtain the problem V4 1 , presented in Figure 5-vii (Top).

7*41 = (V4 i,2?4 i,Cc4 i)
V41 = {l7l,172,173}
©41 = { D \ , D 2 r , D z r }

D x = {a, b}, D 2 R  =  { c,N }, D Zr  = {d,N}
CC41 = {0 1 , 0 2 }

ci = C(vi,vz,v2) = {(ado) (aNc) {bdc) (bN N)}
C2 = C(v2 ,v3) =  {(cd)(NN)}

so l(V 4 1) {{ui =a,v2 = c,v3 = d},{v 1 =  b,v2 =c,v3 = d},{i7i = b,v2 = N, 173 = N}}

V42 reformulates P4 by ignoring az
Cc 42 — {^Ij^ }

ci = C{v!,v2) = {(ac) (bN)}
d2 = C(v2 ,vz) = {(cd)(NN)}

so l(V 42) {{«i = a, v2 = c, U3 = d}, {ui =  b, v2 = N, vz =  IV}}

Figure 5-vii: (Top) Incorrect reformulation of V4. (Bottom) Correct reformulation of V4.

The second solution of the reformulated problem 7*4 \, {ui =  6,172 = c,vz =  d}, is not a 

valid solution in the original problem V4. Indeed, v\ is a  sole initial variable, which is the 

condition variable of only one activity constraint, ai. If V\ =  b, ai does not activate v2. 

The assignment v\ —b cannot be extended to the solution {ui =b,v 2  — c, v3 =  d}, even if

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



116

vz activates v? along another constraint, <13.

The reformulated constraints, Cc4 i, do not capture the implicit requirement that: a 

variable, such as U3, participate in the activation of another variable, such as if and only 

if vz is already active.

The extraneous solution occurs because the non-initial variables V2  and vz activate each 

other. To correct the problem, consider V4 S activity graph in Figure 5-vi (Right). It has 

only one activation path, (vi,V2 ,vz). Note that the activation path does not contain 03. 

Therefore, the only variable that can activate vz is vz- It means that 03 is redundant. If the 

reformulation algorithm ignored <23 it would generate the correct solution set in Figure 5-vii 

(Bottom).

A

We observe that inclusion activity constraints that are not part of any activation path 

are redundant. Their removal eliminates activity cycles and, consequently, the reformulation 

produces correct solutions.

E xam ple 17. The conditional CSP problem Vz in Figure 5-viii (Left), has an activity graph 

with one cycle, formed by two activity constraints. However, both constraints participate 

in some activation path, Figure 5-viii (Right).

The activity graph has one cycle between vz and V4 , which is given by 03, on the first 

activation path, and <14, on the second activation path. If we reformulate the problem using 

the cluster activation algorithm we obtain the problem Vzi in Figure 5-ix (Top).

The fourth solution of the reformulated problem Vzi, {ui =  6 ,u 2 =  d,v3 =  e.v^ =  /} , 

is not a  valid solution of the original problem Vz- Similar to the incorrect solution in the 

previous example, even though the non-initial variables vz and V4  activate each other, the 

initial variables v\ and vz are not assigned values that activate vz or V4 . The idea we used 

before to break the activity cycle does not apply anymore. Neither o3, nor a4 is a redundant 

activity constraint, since they are part of the two actuation paths (Figure 5-viii (Right)).

The example shows that cycles cannot be broken by simply discarding activity con­

straints. Again, the root of the problem is given by the observation that a  variable must
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V5  = 
V5  = 
V 5 =

Vx5 =
CC 5  =
Ca 5 ~

SoH'DAO J

Figure 5-viii: Simple conditional CSP example. 'P5 . (Left) Problem description. (Right) 
TVs activity graph.

Vbl = {Vs i ,Vs i ,Ccs i)
V5i = {Vl,Vo,V3,V4.}
v 51 = { D i , D 2 , D 3r , D a r }

D i  =  {a, 6 }, D2 =  {c, d}, D3R =  {e,jV}, DAR =  { f . N }

Ccsi = {ci,c2}
ci =  C { v i , v A,v 3) =  {(o/e) (a N e ) { b f c ) (b N N )} 
Co =  C(vo ,v3,vA) =  {(c e f ) { c N  f )  (d e f ) ( d N N ) }

s o l ( V si) {{ui = a , v  2 = c, v 3  =  e ,  v A = /} , {ui = a, v o  = d ,  v 3  = e ,  v A = /} , 
{ui =  b , v o =  c , v  3 =  e , v A = /} ,{ ri =  b , v o =  d , v 3  = e , v A = /} , 
{fi =  b,  v o  =  d ,  v 3  =  N ,  V4  =  N } }

Figure 5-ix: Incorrect reformulation of Vs

be active in order to trigger the activation of another variable. It is important, then, to 

determine what leads to the activation of each problem variable.

In  Vb v\ and v2 are part of the initial variable set, and therefore, always active. The 

activity of v% is controlled:

•  Directly by the value of the initial (active) variable ui, via a i : v\ =  a v3, or,

• Indirectly by the value of the initial (active) variable vo, via ai : v2 =  c ^4- U4 , as 

well as by the value of U4 via 0 4  : U4  =  /  vs. This is because vA must be active in 

order to trigger 0 4 .

(V5 , V>s, Vr5, Ccs, Ca  5)
{ V l , V 2 , V 3 , V 4 , }

{Di,D2 ,D3 ,D4}
D i  =  { a . b } ,  Do = {c,d } .  

D3 =  {e}, Da = {/} 
{V1,V2>
0
{01,02,03)04}

incl:v i  = a  — * ^3
: Vo = inclc — * V4

incl: v 3 = e ----t
- incl

: v 4 = / — *■V3
r p *>»« =  A

{ui = a, v 2 =  d , v 3 =  e,u4  =  /} , 
{ui =  b , v 3 =  c , v  3 =  e . v 4  =  /} , 
{ui = b ,  v 2 =  d}}

a c t i v a t i o n  p a t h  1

i n i t i a l  v a r ia b l e s
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To summarize, the activity status of vz is determined either by a\ or by and 0 4 . 

Similarly, the activity status of V4  is determined either by 0 2  or by ai and <13.

Let us first reformulate the activation of vz- We observe that the interplay among the 

activity constraints that control vz, that is, ai, 0 2 , and 0 4 , is not a  cluster activation of 

disjunctive single activations. Instead, it is a  disjunction between a\ and the conjunction 

of 0 2  and 0 4 .

Calculating a  reformulated constraint that corresponds to a conjunction of two acti­

vations, Tcondi A Tcondj, is done similarly to the way we use to calculate the disjunction, 

Tamdi v  Tcondj, of two cluster activations (Section 5.2.2). The reformulation of a conjunc­

tion of two activity constraints has

• Tcond tuples that are consistent with non-null values of the target variable when Tcond, 

and  Tcimd) are true, regardless of the values in the other variables in Vcond, and

• Tcond tuples that are consistent with null values of the target variable.

These tuple sets have values from Vcond =  Vi U Vj and are computed as follows:

Vcond = U Vj

Tcond = Tcondi (££) IIve(y;-Vs) &vR ^  Tcondj (££) II»€(VS-V5) ^vR
ĉond ĉond

Tcond =  Tcondi (££) IIt;€(y;-Vi) ̂ vR  U Tcondj (££) IIw€(Vi — VJ) ^vR
Vcond Vcond

To facilitate the representation of the reformulation of vz's activation, we find it useful

to use a  triplet notation that identifies three components for each activity constraint a,

that participates in a  variable activation. These components are: the activation condition, 

Tamdi-, its complement, Tcondi5 and the set of condition variables Vcond, on which Tcondi and 

Tcondi 3 1 6  defined. Thus, a\, a-z, and 04 inclusion activity constraints of vz are represented 

as activations Ti, T2 , and T4 as follows:

T l : (T c o n d i  =  { ° }>  T co n d i  =  Vcondi =  { ® l} )

T 2  : ( T c o n d j  =  T c o n d j  =  { d } ,  V c o n d 2 =  { ^ 2 } )

T 4 : (Tcond^  =  { / } i  T condj ~  1*cond4 =  { ^ 4 } )
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Before we derive the reformulation of t?3 5s activation, we give the implementation of the 

AN D  Activity procedure (Algorithm 5.9). It computes the reformulation {Tcond-, Tcond, Vcond) 

of a  conjunction over a  set 5  of activations S{ : {Ti,Ti,Vi). The algorithm design is similar 

to the one used in the implementation of the ORActivity procedure (Algorithm 5.7). The

A lgorithm  5.9. Computes {Tcond, Tcond, Vcond) from the conjunction of a set S  of activa­
tions (Ti,Ti,Vi).

AND Activity (S', Tcomi, Tcontj, VCond)
<

\
let Si be the first activation in S  such that 

Vi are Si’s condition variables 
Ti are the condition’s allowed tuples 
Ti are the condition’s disallowed tuples 

condv <— Vi 
condE Ti 
condp <— Ti
for each (remaining Si € 5) {

condp «- condE 0  EUw-eondv) D*R
condvWi

condp <- condp 0  I I .€(v4-e«u£v) DvR
condv UVj

} / /  end for 
T c o n d  condE 
T c o n d  condp 
V c o n d condv 

} / /end ANDActivityQ

expression of the two conjunctive activations 0 2  arid <24 that contribute to the activation of 

u 3 is given by Tcond24 Tcondi ^  Tcond.4 • T24 . {Tcondô , Tcond2^, Vcond2 4) ^  then computed as 

follows:

n T i  0  I I » e ( c o n d v - V i )  T > v R

c o n d v  W i

U  T {  0  IT»6(coiw£v—V j )  T ) v R

c o n d v  U  V i
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Vcond24 — Vccmd2 U VcontU — { 2̂?
'I'cond.u =  {c} ® (n d -«> n m <g> < n

{02,04} 0 €{o4} {®2 ,»4> 06(02}
=  {c} < 0  {f ,N}  n  { /}  0  fed }

{t>2 ,t>4 > {02,04}
= {(c , f) ,(c,N)}  n  { (c ,/),(d ,/)}

  = { (c ,/)}
Tcondu =  {d} <S> (II d vR) u  {IV}

{02,04} 06{o4} {02,04} «e{v2>
=  t o  ®  { / ,* }  U {.N } 0  {c,d}

{02,04} {02,04}
=  {(d,/),(d,7V)} U {(c,N),(d,N)}
= { (c ,N ) , (dJ ) , (d ,N )}

Next, we calculate T ^n d ^  =  Tcond1 V Tamd^, the activity condition which governs the 

activation of variable v%. Using the definition for calculating disjunction of two activity

constraints, we obtain Ti24 : ( T c o n d i, T c o n d i , ):

Kondi24 =  Vcondi U dl4 =  {vx } U { v 2, V4} =  { v U V2, V4}

-̂ condi24 — {®} ®  < n D vJt) U {(c,/)}  < 0  ( n
{01,02,04} 06(02,04} {oi,1)2,114} o6 {oi}

=  t o  ®  { (c ,/) ,(c ,lV ),(d ,/) ,(d ,lV )}U
{01,02,04}

{(cj/)}  ®  t o &}
{01,02,04}

=  { (a ,c ,/ ) ,  (a, c, N ), (a,d, / ) ,  (a, d, N )} U 
{ (a ,c ,/) ,( 6,c ,/ )}

=  {(a, c, / ) ,  (a, c, JV), (a, d, / ) ,  (a, d, IV), (6, c, /)}
T condi*  =  t o  ®  ( n  ^  n  {(c,iV ),(d,/),(d,lV )} < 0  ( n

{01,02,04} 06(02,04} {01,02,04} 06{01}
= t o  ®  {(c,/),(c,iv),(d,/),(d,iv)}n

{01,02,04}
{ (c ,JV ),(d ,/) ,(d ,^ )}  0  {a, 6}

{01,02,04}
= {{b,c,f), (b,c,N), (6,d,/), (b,d,N)} n

{(a, c, N),  (a, d, / ) ,  (a, d, IV), (6, c, IV), (6, d, / ) ,  (6, d, IV)}
= {(6,c,N),(b ,d ,f) ,  (b,d,N)}

Similarly, we calculate T am d213 =  T am d2 V Tcond13, the activity condition which governs

the activation of variable v4, and we obtain T2n ■ { T c o n d ^ T ^ d ^  3):
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V 44 = (V44,2?44,Cc44)
V 4 4  = { V l , V 2 , V 3 , V 4 }

P 4 4  = { D i , D 2, D 3R , D 4r }
D i  =  { a ,6}, I>2 = { c ,d } ,D 3R = {e,TV}, D 4r  = { / ,TV}

CC44 = { 0 1 , 0 2 }

Cl =  C(v I,v 2 ,v4 ,v3)
=  {(a, C, / ,  e), (a, c, TV, e), (a, d, / ,  e), (a, d, TV, e), (6,c, / ,  e), 

(6, c, TV, TV), (6, d, / ,  TV), (b, d, TV,TV)}
C2 = C(v2 , V l , V 3 , V 4 )

= {(c, 0 , e, /) , (c, a, TV, /) , (c, 6, e, /) , (c, 6, TV, /), (d, 0 , e, /) , 
(d, a, TV, TV), (d, 6, e, TV), (d, 6, TV, TV)}

SOl(V44) {{ui = a , V 2  = c ,v3 = e ,v 4 = f } , { v  1 = 6,u2 = c,n3 =  e,r4 = /},
{i/i =  a , V 2  = d ,v3 = e ,v 4 = /}, {vi = b,v2 = d ,v 3 = N , v 4 = TV}}

Figure 5-x: Correct reformulation for V4

Vcondnz {^2 5 ^ 15^3 }'
Tcondi 13 =  ®)> (®> (®> ̂ 5 (®7 7̂ -^Oi (^7 ®7 ®)}
T conduz =  { ( ^ 7  ®7 7 ( ^ 7  ̂ 7  ®)? ( ^ 7  ^ 7  -̂ 0 }

The co n ec t reformulation of V 4  is shown in Figure 5-x.

To provide the implementation of a general reformulation algorithm that handles activity 

cycles, we need a  labeling function to “order” problem variables according to their level of 

activation.

The function sets the activation level of the initial variables to 0. Variables that cannot 

be reached by an activation path axe labeled with -1. All the other variables axe target 

variables, v, which participate in some inclusion activity constraints, a € C4 , and whose 

activation levels are computed from the activation levels of their condition variables, c =  

cond(a), which have been already labeled, as follows:

A(u) =  ( m in ( m ax A(t) ) )  + 1
aeC-Alt«r9et(a)=r tSC0T«*(«)

D efinition 18 (labeling function). Given an activity graph Q = (V,£), we define a 

labeling function  A : V —> N ,  such that:

• X(v) is 0 , if v is an initial variable, or
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• A(u) is -1, ifv  is a non-initial variable and there is no inclusion activation path ending 

in v, or

• X(v) =  ( m in ( m ax  A (t) ) )  + l  if  v i s a  non-initial variable and there is
“ € C ^ l t a r 9't(a)=v *€C07Ki(a)

an inclusion activation path ending in v.

Using this definition, the LabelActivityGraph procedure computes the labels of the acti­

vation levels of all problem variables. Algorithm 5.10 shows the procedure LabelActivityGraph

A lgorithm  5.10. We denote by X(v) the label associated with variable v. The algorithm 
performs a breadth-first traversal of the inclusion activation graph and sequentially labels 
variables visited in each step.

LabelActivityGraph(V, Vj, Ca, A)
{

for each (v € Vz) \(v) <- 0
for each (v 6 V — V%) X(v) <--- 1
let agenda be Ca
let currLevel be an activation level set to 1 
while (agenda 0) {

let A  be agenda's activity constraints a s.t. Vu € cond(a), X(v) >  0 
if  (A = 0) break 
else {

for each (a € A)
if (X(target(a)) =  -1)

A(target(a)) <— currLevel 
agenda •<- agenda — A 
currLevel ■<— currLevel + 1

}
}//end while 
if (agenda ^  0) {

/  /  activity constraints left in the agenda will never trigger 
Ca  <- Ca — agenda //remove them from the problem 
/ / a l l  variables with label -1 are unreachable 
for each (v £ V — Vz)

if (A[u] = — 1) / /remove them from the problem 
V •<- V -  {t>}

}
}

which, given a conditional constraint satisfaction problem V  =  (V,£>, Vz,Cc,Ca), assigns 

each variable v € V of the activation graph a label equal to A(v). In addition, inclusion 

activity constraints whose condition variables are never made active are removed from V.
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Also, variables unreachable via activation paths are removed from the problem too. The 

LabelActivityGraph algorithm is run prior to reformulating the problem components.

The reformulation algorithm that handles cycles in the inclusion activity constraints is 

r e f  GeneralClusterIndusion (Algorithm 5.11). It is identical to the previous reformula­

tion, r e f  Cluster Indusion  (Algorithm 5.6), except for the call to refOneCluster (Algo­

rithm 5.12), which replaces the O RActivity  call and implements a more general cluster 

activation transformation.

A lg o r ith m  5 .1 1 . Generalizes refClusterlndxLsion (Algorithm 5.6), from which it differs 
by the boxed call. The transformation of each cluster into a single reformulated constraint 
is done by calling refOneCluster algorithm (Algorithm 5.12), which handles cydes in the 
inclusion activity constraints.

re f GeneralClusterIndusicn{Ca , V, “D-r , C-r )
{

//Build clusters of activations with the same target variable
A  *- 0 / /  the set of clusters
//Initialize clusters
for each (vt € V — Vj) {

AVt <—0// cluster of inclusion constraints with target vt
V c o n d , , <“ 0// set of all condition variables for all constraints in AVt
A  A  U {A„t}

}
//Populate clusters with their associated condition variable sets 
for each (a € C a )

if (a is an inclusion activity constraint) { 
le t vt be a’s target variable 
AVt «— AVt U {a}
V c o n d , ,  V c o n d , , U {a’s condition variables}

}
/ /Build reformulated constraints from clusters 
for each Av, € A_____________________

re f OneCluster (AVt, TCOTWf, TCond, VCond, t )
let amR be an empty constraint defined on Vcond,t and vt
I IAdd contribution of allowed and disallowed tuples of activation condition
E v t  T c o n d  x  { H v t R  ~  { A f } )

Pvt Tcond x {Af}
O m f t  ^  E v ,  U P v t

Cn Cn U {omfi}
} // end refGeneralClusterlndusionQ

The reformulation algorithm for an activation cluster that might, have cycles, refOneCluster,
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uses three procedures: ORActivity (Algorithm 5.7), AN D Activity  (Algorithm 5.9), and 

AltemateActivation (Algorithm 5.13).

A lgorithm  5.12. Computes the reformulation (Tcond, Tcond, Vcond) from a set of set activity 
constraints of inclusion, AVt, that target the same variable vt-

refOneCluster(AVt',Tcond,Tcond,Vco7ui) { __
le t vtCluster be an initially empty set of activations c : (cT, cT, cV) 
for each o e AVt {

let aSources be an initially empty set of activations s : (sT, sT, sV)
for each (v € V — Vz) visited(v) false
visited(vt) <- tru e
targetLevel -f— A(ut)
alsDiscarded «- false
for each (a’s condition variable it such that A(tt) > targetLevel) { 

if  (AltemateActivation(u, A(u*), sT, sT, sV) is false) { 
alsDiscarded «— true; break 

else
aSources <— aSources U (sT, sT, sV)

}//end for s
if (alsDiscarded is false) 

if  (aSources is empty)
vtCluster i vtCluster U (Tconda,  TConda, Vconda ) 

else {
aSources t aSources U (Tconffo 7 , ̂ 'conda)
AN D Activity (aSources, cT, cT, cV) 
vtCluster vtCluster U (cT, cT, cV)

}//end else
}//end for a ____
CRActivity (vtCluster, Tcondy Tcondi VcondVt )

}//end refOneCluster

ORActivity is called to reformulate an activation cluster, let us call it vtCluster, and

returns the final result of the refOneCluster, (Tcondi Tcond-, Vcond)-

The cluster activation vtCluster passed to ORActivity is obtained from the set of 

inclusion activity constraints that target the same variable vt, called AVt. To compute 

vtCluster, each inclusion activity constraint a € AVt has its condition variables checked. 

If for some a there is a t least one condition variable whose activation depends solely on 

the activation of a ’s target variable, then a is part of an activity cycle and is discarded. 

Otherwise, a’s participation in the vtCluster is determined based on the activation level of
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its condition variables. This leads to two cases.

In the first case, if all a’s condition variables have activation levels, as determined by the 

labeling function A, lower than v ts  activation level, then a participates in the construction 

of vtCluster directly, through its condition’s allowed tuples, and disallowed tuples,

Tconda'-

vtCluster <- vtC luster U ({Famd* s Tamdc., )

In the second case, some of the a’s condition variables, let us call them u, have activation 

levels higher than A (lit)- Therefore, the AlierTicieActivaiion procedure is called on each u 

to find an alternate activation, (sT, sT, sV), that does not pass through vt- These alternate 

activations or reformulations axe stored in the set aSources together with a’s activation con­

dition, {Tcond ,̂ Tconda, Vcond^). The conjunction of the activations in aSources ensures that 

all condition variables are made active independently of and prior to v^s activation. Thus 

aSources is reformulated by calling A N D  Activity procedure, which produces (cT, cT, cV) 

reformulation. This result is then added to vtCluster:

A N  D Activity (aSources, cT, cT, cV) 

vtCluster vtCluster U (cT, cT, cV)

AlternateActivation (Algorithm 5.13) operates on the condition variables of some in­

clusion activity constraint a. The procedure finds reformulations of activations of condition 

variables such that the activations do come through a’s target variable. If such alternate 

activations axe not found, AlternateActivation returns false, which means there is an ac­

tivity cycle between the condition variable and its target variable. The procedure works 

recursively and is similar to refO neCluster algorithm.

5.3 Empirical Evaluation

Test Suite. We ran multiple sets of experiments on problems of various sizes and 

with different value ranges for compatibility and activity parameters. The following is 

one snapshot across the entire topological problem space we explored, which we found,
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Algorithm 5.13.____________________________
boolean AltemateActivation(v, targetLevel', Tcond, Tcond, Vcond) { 

let vtCluster be an initially empty set of activations c : (cT, cT, cV) 
visited(v) <— true
for parli (inclusion activity constraint a € C* with v as target variable) 

let aSources be an initially empty set of activations s : (sT,sT,sV) 
alsDiscarded«- false
for each (a’s condition variable, it, s.t. ix has not been visited and X(u) > targetLevel) { 

if (AltemateActivation(u, targetLevel, sT, sT, sV) is false) 
alsDiscarded «- true; break

else { __
aSources <— aSources U {sT, sT, sV)

} //end for u
if  (alsDiscarded is false)

if (aSources is empty) _____
vtCluster <- vtCluster U {Tconda, Tconda, Vcond*)

else {_______________________ _____
aSources aSources U (Tcond*, Tcond*, Vcond„)
AND Activity (aSources, cT, cT,cV) 
vtCluster «— vtCluster U (cT, cT, cV)

}//end else 
} //end for a 
visited(v) -f- false 
if (vtCluster is empty) 

return false
else { ____

ORActivity(vtCluster, Tcond, Tcond, Vcond.,) 
return true

}
}//end AltemateActivationQ

based on our results, to be representative for the performance comparison between solving 

a conditional CSP and the equivalent reformulated CSP.

The test suite has random conditional CSPs of 8 variables with domains of 6 values. The 

problems are organized in nine classes, each corresponding to a compatibility satisfiability, 

sc, value in the [0.1... 0.9] range. To avoid problems with very large solutions sets and 

thus to keep the average running time per problem under three minutes, we fixed the 

compatibility density at a low level, dc = 0.15. The problem conditionality was given 

by da = sa =  0.3. For each of the nine (dc, sc, da, sa) problem classes we generated 100 

problems.

Conditional CSPs were solved with CCSP-M ac algorithm. Their null-based reformula­

tions, obtained with the reformulation algorithm that handles activity cycles, are non-binary
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standard CSPs. Therefore, these representations were transformed into binary constraint 

representations using the algorithm described in (Rossi, Petrie, & Dhar 1990). The bi­

nary null-based reformulations were solved with a standard maintaining arc consistency, 

R e f MAC,  algorithm. The two solving algorithms, CCSP-M ac and R e f M AC, whose 

running times were compared, searched for all solutions. The comparison does not take 

into account the time to reformulate the conditional CSP into the non-binary null-based 

representation, nor the time to transform the non-binary representation into an equivalent 

binary representation.

Results. The execution time results are shown in Figure 5-xi, on a  normal scale (left) 

and logscale (right). We observe that solving binary null-based reformulations is much 

slower, up to two orders of magnitude, than solving the original conditional CSP directly.
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Figure 5-xi: Execution time of CCSP-Mac, which solves the conditional CSP, and 
RefM A C,  which solves its binary null-based reformulation. The original conditional CSP 
has 8 variables and 6-value domains. 100 problem instances are generated in each topolog­
ical class: sc in[0.1. . .  0.9] and fixed dc = 0.15, da = sa = 0.3.

There are two other measures that we use to compare the original and reformulated 

representation: domain size and solution size (Figure 5-xii). In the case of the conditional 

CSP, the domain size is fixed at 6. However, the binary null-based reformulations in the 

test suite have domains of variable size. This is the result of transforming the non-binary 

reformulations into binary representations.

It is known that this transformation is not practical due to increased spatial requirements
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(Bacchus & van Beek 1998; Bessiere 1999). The idea of transforming non-binary CSPs into 

equivalent binary CSPs is to generate new variables tha t represent (and replace) the non­

binary constraints via the domain values of these variables. The values are the tuples of the 

non-binary constraints. New binary constraints are added between the new variable and 

all the variables on which the non-binary constraint is defined. Note that the arity of the 

non-binary constraints in the null-based reformulation determines the domain size of the 

new variables and the number of the additional binary constraints.

The Figure 5-xii shows domain size averages (left) and solution size averages (right) for 

the problems in the test suite described above.
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Figure 5-xii: Domain size averages (left) and solution size averages (right) of the binary 
null-based reformulations, dom-binary-ref and sol-binary-ref plots. These reformulations are 
obtained from the conditional CSPs in our test suite. The domain size of the conditional 
CSPs is 6 (not plotted), sol-conditional plot (right) shows the solution size averages for the 
original conditional CSPs.

The domain size average per 100 problem instances in a topological class in the case 

of the binary reformulation (see dom-binary-ref plot in Figure 5-xii left) is calculated by 

counting all values over all variables and by dividing the total by the number of variables. 

The solution size average per 100 problem instances in a  topological class for both the 

binary reformulation and original conditional CSP (see sol-binary-ref and sol-conditional in 

Figure 5-xii right) is calculated by counting all variables participating in all solutions and 

by dividing the total by the number of solutions.
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We observe that the domain size average reaches very large values, in the order of thou­

sands and tens of thousands, and increases with the compatibility satisfiability parameter. 

The solution size average for the binary reformulation is 2 to 3 times larger than the solution 

size average for the conditional CSP.

The experimental results suggest that unless we find an efficient way to solve non-binary 

CSPs that reformulate conditional CSPs, directly solving the conditional CSP is significantly 

faster than solving the equivalent null-based reformulated CSP.

5.4 Summary

An alternative approach to direct solving methods is to reformulate a  conditional CSP 

into its standard analog. The approach has the advantage of bringing to bear a mature 

constraint technology that has a  wealth of advanced resolution algorithms. In this chapter 

we studied whether reformulation leads to solving methods that are faster than the direct 

methods. The contributions in this chapter are:

• developed an original formalism that transforms acyclic conditional CSPs into stan­

dard CSPs,

• designed a new reformulation algorithm that implements this formalism,

• derived an incremental reformulation under the assumption that problems do not have 

activity cycles,

• identified the activity cycle problem and designed a general null-based reformulation 

algorithm that deals with cycles,

• evaluated algorithm performance on CSP reformulations of random conditional CSPs, 

and compared it with the direct method performance.

Our experimental results showed that directly solving the conditional CSP outperforms 

solving the equivalent reformulated problem.
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CHAPTER 6

CONCLUSION

Conditional constraint satisfaction problems are extensions to standard CSPs that have 

proved useful in representing configuration and diagnosis problems. In contrast with other 

CSP extensions, conditional CSP has not benefited from adaptations of efficient CSP solving 

algorithms to improve problem solution. Moreover, experimental analysis of the efficient 

of available conditional CSP solvers has been extremely limited. Reformulating conditional 

CSPs into standard CSPs has been proposed in order to bring the full arsenal of CSP 

algorithms to bear. One reformulation approach adds null values to variable domains and 

transforms conditional CSP constraints into CSP constraints. However, a complete null- 

based reformulation of conditional CSPs has not been available.

In this thesis we researched more efficient solvers for conditional CSPs. The research 

findings are the result of examining three topics:

1. Advanced algorithms for solving conditional CSPs,

2. Thorough empirical evaluation of the proposed solving methods, and

3. New reformulation algorithms and experimental analysis of their efficiency.

In the following we summarize the contributions produced for each topic.

We designed and developed two advanced algorithm s for conditional CSP that adapt 

local consistency methods of forward checking and maintaining arc consistency to condi­

tional CSP solving. The technical challenges encountered and overcome in designing these 

algorithms were:

• to monitor the activity status of problem variables as determined by consistency 

checking of activity constraints,
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• to enforce the chosen level of consistency when checking both compatibility and ac­

tivity constraints,

•  in the case of maintaining arc consistency, to extend arc consistency with activation 

consistency along activity constraints.

The opportunity of importing efficient standard algorithms, whose behavior has been 

extensively tested in the standard domain,has raised new challenges with regard to conduct­

ing similar testing in the conditional domain. The reality of many applications that use the 

conditional CSP framework is that either real-life problem data is not publicly available, or 

problem examples are too simple. A practical approach adopted in this thesis, which has 

proved very successful for benchmarking standard solving algorithms, was to use randomly 

generated conditional CSPs. To evaluate empirically the proposed algorithms:

• large and diverse problem populations were generated using a conditional CSP random 

generation model (Wallace 1996),

• relative performance of the new algorithms and a modified backtrack search version 

was measured by:

— comparing running times when algorithms produced solutions of minimum size,

— counting search operations, such as number of backtracks, compatibility checks, 

and condition checks, when algorithms found all solutions.

The testing showed that the performance of the advanced algorithms is up to two orders of 

magnitude better than plain backtrack search.

The reformulation studied in this thesis is based on adding a “null” value to the domains 

of those variables whose activity is conditioned by satisfying activity constraints during 

search. A null-based reformulation of conditional CSPs was presented and studied in depth 

in (Gelle 1998; Soininen, Gelle, & Niemela 1999). However, that transformation is limited 

in the following key respects:

• It does not transform multiple activations of the same variable,
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•  It does not preserve locality of change, i.e., the reformulated problem cannot be up­

dated locally when the original problem changes with the additional of another activity 

constraint to a multiple activation cluster, and

•  I t does not handle activity cycles.

We addressed these limitations of the null-based reformulation by developing two alterna­

tive transformations. One removes the first two limitations; the other removes the third. 

Both algorithms synthesize non-binary ordinary constraints whose arity increases with the 

number of activity constraints in a  multiple activation cluster or in an activity cycle. The 

second algorithm, which does not impose any restriction on the structure of the original 

conditional CSP, was used to evaluate experimentally whether reformulation offers a  more 

efficient solution. The testing showed that

• greater efficiency in solving conditional CSPs lies with algorithm s that operate directly 

on the original representation,

• much has to be learned about what is specific to null-based reformulations and how 

standard methods can more efficiently exploit these representations.

We envision three directions for our future work. In (Gelle 1998; Gelle & Faltings 2003) 

a  different reformulation method has been proposed that generates a set 5  of standard CSPs 

equivalent to the original conditional CSP. Conventional local consistency methods are then 

applied on intermediate problems generated along the way to producing S  in order to reduce 

the size of 5  and solve its members more efficiently with standard CSP solving algorithms. 

Gelle’s reformulation is a general formalism that handles a more general class of conditional 

CSP, which contain mixed constraints that involve both discrete and numeric variables. 

Its implementation together with local-consistency and standard search algorithms is in 

Common Lisp and Maple. The experimental analysis uses several real world problems from 

configuration and design which exhibit mixed constraints.

A very interesting fact is that Gelle’s CSP-generation reformulation, which is based 

on processing activity constraints one at a  time, has to consider a certain ordering of the
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activity constraints. This ordering ensures that an activity constraint is applied iff its 

condition variables are already active as a result of having previously processed activity 

constraints that target these condition variables. The ordering is possible if there is no 

cyclic dependency among activity constraints. Otherwise, cyclic activity constraints have 

to be detected and processed as a  group rather than individually.

We are interested in extending the evaluation of our algorithms by testing their perfor­

mance against a  solver that uses Gelle’s CSP-generation reformulation and applies standard 

methods to the resulting CSP set. The first step is to develop a  C ++ implementation of 

Gelle’s reformulation and integrate it in the software system that we used in our experi­

ments. This system has an object-oriented infrastructure that integrates the implementation 

of all the local-consistency and solving algorithms for both standard and conditional CSP, 

as well as the null-based reformulation algorithms. The new solver will be thoroughly tested 

using random conditional CSPs. New metrics will be determined since the reformulation 

algorithm of the new solver has a  preprocessing phase that (1) transforms exclusion activ­

ity constraints into compatibility constraints, (2) creates an inclusion activity graph, (3) 

transforms the graph such that cycles are eliminated, and (4) orders the inclusion activity 

constraints.

Another research direction of interest is to find better algorithms for solving null-based 

reformulations. In general, a  conditional CSP has extremely large solutions spaces. How­

ever, they are partitioned into sets that share the same variables (active variables which are 

assigned values). In the null-based reformulation, these sets are extended with null values 

for all the other problem variables (which do not participate in the solutions to the origi­

nal conditional CSP problem). These similarities among solution subspaces in a  null-based 

reformulated problem suggest that precompiling the null-based representation to condense 

its solution spaces is worth pursuing. This approach is based on the idea of interchange­

ability (Freuder 1991). More exactly, we are interested in the application of the structuring 

algorithm that produces CSP precompilations using meta interchangeability (Weigel 1998).

The third direction for future work is motivated by the fact that real-life configura­
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tion and diagnosis problems are formulated as non-binary conditional CSPs. We want to 

generalize the current implementations of the advanced direct solving methods to handle 

non-binary constraints and take advantage of efficient non-binary local consistency algo­

rithms (Bessiere & Regin 1997; 2001; Bessiere et al. 2002).
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