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ABSTRACT
The Effects of Providing Mathematical Problem Posing Experiences for 

K-8 Pre-Service Teachers: Investigating Teachers’ Beliefs and 

Characteristics of Posed Problems

by

Todd A. Grundmeier 
University of New Hampshire, May, 2003

This study incorporated problem posing into a mathematics content course for pre

service elementary and middle school teachers by extending George Polya’s (1957) problem 

solving heuristic to include problem re-formulation and by having participants pose prob

lems from sets of given information. The course provided pre-service teachers with a new 

mathematical perspective and this research examined participants’ problem posing, beliefs 

about mathematics, and beliefs about the teaching and learning of mathematics.

Study participants were enrolled in a mathematics content course for pre-service teachers 

at the University of New Hampshire. There were twenty students in the course and nineteen 

agreed to be participants in the study by allowing all of their course work to be collected. 

Participants consisted of 4 sophomores, 7 juniors, 6 seniors, and 2 graduate students. All 

participants were working towards their teaching certification and most were mathematics 

education majors. Four of the nineteen participants agreed to be interviewed three times 

each during the semester.

Characteristics of participants’ posed problems, beliefs about mathematics, and beliefs 

about teaching and learning mathematics were explored using researcher developed ques

tionnaires that were given before and after the semester. Also, all student work, journal 

entries, and the interviews of four participants, which were focused on topics related to 

beliefs about problem posing, characteristics of posed problems, beliefs about mathematics,

x
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and beliefs about teaching and learning mathematics, were collected during the instructional 

treatment.

Problems posed by participants were organized and coded using a quantitative scale, 

while journal entries and interview data were analyzed qualitatively. Results showed an 

increase in participants’ problem posing efficiency and ability to pose multi-step problems. 

Also participants tended to utilize higher level problem re-formulation techniques as the 

instructional treatment progressed. Throughout the instructional treatment participants 

were reflecting on the role of problem posing in teaching and learning mathematics and 

considering both the pros and cons of including problem posing in their future classrooms 

and its possible effect on student learning. All participants suggested that they would 

incorporate student problem posing in their classrooms to help students develop ownership 

of mathematics and exhibit creativity.
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Chapter 1

Overview

Purpose

This research examined the effects of incorporating problem posing into a math

ematics content course for pre-service teachers. In particular, prospective teachers 

were given the opportunity to view mathematics from the perspective of a  problem 

poser. The purpose of this research was two-fold. The first purpose was to extend 

Polya’s problem solving heuristic to a fifth step, “Pose a related problem,” as an 

initial incorporation of problem posing, and then to have participants pose problems 

from sets of given information (Polya, 1957). The second purpose was to examine how 

this experience influenced these pre-service teachers’ problem posing, beliefs about 

mathematics and beliefs about the teaching and learning of mathematics.

A researcher developed, written assessment of participants’ problem posing and 

beliefs about mathematics was administered pre- and post-instructional treatment 

(see Appendix B). The researcher also developed a five-step problem solving heuris

tic, journal prompts, and sets of given information to be utilized in data collection. 

The problem posing measure was based on the work of Leung and Silver (1997) and 

to make the items relevant to the participants, they were related to situations that 

may occur in their everyday lives. The measure was utilized to document charac

teristics of participants’ problem posing pre- and post instructional treatment. The 

measure of beliefs included a word list, short answer questions about mathematics

1
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and mathematics teaching, and an item related to problem posing (Cope, 1988). 

The beliefs measure was also utilized to document participants’ beliefs both pre- and 

post-instructional treatment. A five-step problem solving heuristic, similar to Polya’s 

(1957) four-step heuristic, was developed by the researcher including the fifth step- 

“Pose a related problem.” The five-step heuristic was the participants’ first introduc

tion to problem posing during the instructional treatment. Participants responded to 

eight journal prompts throughout the semester by writing their mathematics autobi

ography, reflecting on class activities and assignments, and reflecting on their beliefs 

about problem posing. The researcher wrote sets of given information based on the 

mathematics content being covered in the course that were utilized on homework and 

in journal entries as problem posing exercises for participants.

Why Problem Posing?

Mathematicians develop the field of mathematics by making conjectures and pos

ing mathematical problems. Research mathematicians are “problem posers”. New 

mathematics research is typically generated as research mathematicians pose or con- 

ject a mathematics problem and attempt to solve that problem and problems asso

ciated to it (Kilpatrick, 1987; Silver, 1994). This process of mathematics research, 

including problem posing, is the basis for the continued development of mathemat

ics. Since problem posing is the basis for the future of mathematics, then it makes 

sense that mathematics students, including pre-service mathematics teachers, should 

experience the problem posing process early in their mathematics education. In or

der to provide this early experience, pre-service teachers must understand the role of 

problem posing in the development of mathematics and be better prepared to help 

their future students understand this process and to engage their future students in 

problem posing.

Influenced by the role problem posing plays in the development of mathematics
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the National Council of Teachers of Mathematics (NCTM), the National Research 

Council (NRC), and mathematics education researchers have suggested that posing 

mathematics problems should become a regular feature of mathematics classrooms 

and curricula (Silver, 1994; Lampert, 1990). Problem posing has the potential to 

allow students to exhibit creativity, and can free the student and the teacher from 

viewing the textbook as the sole authority in the mathematics classroom (Silver, 

1994). “Posing problems comes naturally to young children —  Teachers and par

ents can foster this inclination by helping students make mathematical problems from 

their worlds” (p.53 NCTM, 2000). Also, through work in his fifth grade classroom 

Winograd (1992,1997) showed that students are capable of posing mathematics prob

lems, judging the quality of posed mathematics problems, and posing problems that 

challenge themselves and their peers.

As is demonstrated above, educators have started to realize the importance of 

mathematical problem posing (NCTM, 2000; Kilpatrick, Swafford, k  Findell, 2001). 

Also mathematics education research has addressed student problem posing as well 

as instructional situations that utilize problem posing (Leung, 1993; Leung k  Sil

ver, 1997; Silver, Mamona-Downs, Leung, k  Kenney, 1996; Silver k  Mamona, 1989; 

Winograd, 1992; Median k  Santos, 1999; English, 1998a; Gonzales, 1994,1998; Perez, 

1985; Schloemer, 1994). Results from this research will be summarized here to help 

justify the necessity of problem posing in mathematics classrooms and curricula and 

hence with pre-service teachers. A complete literature review can be found in Chapter 

2. An introduction to research on individuals’ problem posing will be provided here, 

followed by an introduction to research and writing on incorporating problem posing 

in mathematics classrooms.

Several research studies into students’ problem posing have focused on pre-service 

and in-service mathematics teachers (Leung, 1993; Leung k  Silver, 1997; Silver et al.,
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4

1996; Silver & Mamona, 1989). Silver and Mamona (1989) and Silver et al. (1996) 

examined the problem posing of middle school teachers and pre-service elementary 

mathematics teachers using the Billiard Ball Mathematics (BBM) task format. These 

researchers asked in-service and pre-service teachers to pose problems related to the 

mathematics of billiards. In both studies participants were asked to generate prob

lems before and after solving a problem within the BBM task format. Both studies 

showed that participants were able to generate mathematics problems related to the 

task format before and after problem solving. Silver and Mamona (1989) showed 

that there were qualitative differences in the problems posed pre- and post-problem 

solving activity, while Silver et al. (1996) showed that posed problems did not al

ways have “nice” solutions and were not always solvable. Leung and Silver (1997) 

and Leung (1993) examined the problem posing of prospective elementary teachers 

and explored the role of task format, mathematics knowledge and creative thinking 

in problem posing. Leung and Silver (1997) found that most subjects were able to 

pose mathematics problems but performance was better when the problem posing 

situation contained numerical information. Leung (1993) showed that there was a re

lationship between mathematics knowledge and problem posing ability and that more 

creative students, as measured by the Torrance Test of Creative Thinking, tended to 

produce more problems with added information and story components. These re

search studies show that pre-service teachers are willing to, and have the ability to, 

pose mathematics problems and thus are a potential audience to benefit from having 

problem posing activities incorporated into their education.

This study incorporated problem posing by extending Polya’s (1957) problem solv

ing heuristic and having participants pose problems from sets of given information. 

Whereas past research and writing in mathematics education has explored the incor

poration of problem posing in mathematics classrooms and curricula, this study not
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only explored participants’ problem posing, but also explored pre-service teachers’ 

beliefs about mathematics and the relationship between problem posing and school 

mathematics.

Research into instructional situations utilizing problem posing has addressed au

diences from elementary school students to pre-service teachers (Winograd, 1992; 

Median &; Santos, 1999; English, 1998a; Gonzales, 1994, 1998; Perez, 1985; Schloe- 

mer, 1994). Winograd (1992) adapted student authored problems that reflected the 

students’ personal interests and experiences into his fifth grade curriculum. The re

sults suggested that students were capable of posing mathematical problems that 

challenged themselves and their classmates. Students in Winograd’s classroom also 

believed that posing challenging problems and working to solve and understand them 

defined a good mathematics student. English (1998b) reports on the results of a 

three year study implementing problem posing programs in third, fifth, and seventh 

grade. English (1998b) incorporated problem posing into mathematics instruction 

and showed that after instruction including problem posing students displayed im

provement in their abilities to pose problems from open-ended situations. Also the 

majority of students in English’s (1998b) study felt that their problem solving and 

problem posing abilities had improved after instruction rich in problem posing. In 

her dissertation Schloemer (1994) explored the integration of problem posing in high 

school advanced algebra. Schloemer (1994) found that it was feasible to incorpo

rate problem posing with this audience and grade level and that instruction went as 

planned. Schloemer’s study also showed that the students enrolled in the problem 

posing class had the same achievement level, as measured by pre- and post-test, as 

the students enrolled in the course without problem posing.

Medina and Santos (1999) integrated problem posing into a pre-calculus course 

by asking students to pose questions and re-formulate problems. The study showed

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
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that pre-calculus students were initially apprehensive about posing problems but that 

they eventually understood and felt comfortable with the concept. The authors report 

that problem posing allowed them to view their students’ strengths, weaknesses, and 

difficulties with mathematical resources and ideas. Perez(1985) incorporated problem 

posing into a community college algebra course. Perez (1985) provided students with 

models for generating problems and found that ninety percent of students were able 

to generate and solve problems following these models. Perez (1985) also showed that 

students’ attitudes toward word problems and problem solving improved during the 

course.

Gonzales (1994,1998) examined the incorporation of problem posing in instruction 

for pre-service teachers. Gonzales (1994) describes a scheme which included posing 

related problems and posing story problems to incorporate problem posing with pre

service elementary and middle school teachers. Gonzales (1994) found that pre-service 

teachers could be guided through a transition from problem solver to problem poser 

and based on this transition called for the increased use of problem posing with 

this audience. Gonzales (1988) describes a “blueprint” to help teachers and teacher 

educators include problem posing in their classrooms. The “blueprint” starts with 

posing related problems and after exposure to problem re-formulation asks students 

to generate problems from sets of given information.

The present study will incorporate some of the aspects of this blueprint and the 

prior work of Gonzales (1994,1997) but will extend this work by formally researching 

the effects of this incorporation of problem posing. The above introduction to research 

highlights two points,

1. Pre-service and in-service teachers are capable of posing mathematical problems.

2. The inclusion of problem posing into mathematics curricula and instruction is 

feasible and may have benefits for students.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
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In order for pre-service teachers to effectively incorporate problem posing in their 

future classrooms as suggested by Winograd (1992), English (1998b) and others, 

I believe it is necessary for these teachers to experience problem posing in their 

mathematics education.

Working Definitions

In this study problem posing took two forms: 1) the generation of new problems; 

and 2) the re-formulation of given problems (Silver, 1994). It is important to define 

a number of terms and how these ideas were utilized for the purpose of this research; 

statement, problem, problem re-formulation, problem generation, problem posing 

product, and pre-service teacher.

Statement: A statement will refer to the outcomes of participants problem posing 

tasks. Statements are all text that is produced as a response to a problem 

posing task and is not necessarily a mathematics problem or question.

Problem: A mathematical statement for which a valid solution exists.

Problem re-formulation: The process of posing a problem related to a problem 

that is or was the focus of problem solving. Re-formulation techniques include 

extending the original problem, changing the context of the original problem, 

switching the given and wanted information, changing the given, and changing 

the wanted.

Problem generation: The process of posing a problem based on a set of given infor

mation. Generated problems may include additional information to the original 

set but must be related to the original set of information.

Problem posing product: A mathematical statement posed through problem re

formulation or problem generation. The statement either relates to the original

Reproduced  with permission of the copyright owner. Further reproduction prohibited without permission.



8

problem or utilizes the information from the set of given information in prob

lem generation. Participants’ problem posing products will be the focus of data 

analyses related to problem posing.

Pre-service Teachers: Students who have not previously been middle or elemen

tary school teachers and are seeking certification to teach. In this study the 

participants were pre-service teachers enrolled in “Topics in Mathematics for 

Teachers” .

Instructional Treatment

The instructional treatment was decided upon by both the researcher and class

room instructor. The instructor provided a classroom setting that was rich in student- 

to-student interaction and whole class discussion. The researcher and instructor dis

cussed opportunities to incorporate problem posing within this environment. Prob

lem posing was incorporated through class projects, homework, and journal writing. 

Chapter 4 will discuss the instructional treatment in more detail and will provide 

examples of problem posing situations.

Questions

There are five questions that were the focus of data collection and analysis in this 

dissertation research.

1. What are the characteristics of pre-service teachers’ problem generation prod

ucts pre- and post- instructional treatment?

2. How do the characteristics of pre-service teachers’ problem re-formulation and 

problem generation change over the course of the instructional treatment?

3. How does participation in problem re-formulation and problem generation in

fluence pre-service teachers’ beliefs about mathematics?

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



4. How does participation in problem re-formulation and problem generation in

fluence pre-service teachers’ beliefs about the teaching and learning of mathe

matics?

5. How does participation in problem re-formulation and problem generation influ

ence pre-service teachers’ beliefs about the relationship between problem posing 

and school mathematics?

Insight into the first question was gained by student responses to the researcher- 

developed measure of problem posing. Qualitative analysis of posed problems will 

help address the second question including student problem re-formulation and prob

lem generation on homework assignments and in journal responses. The final three 

questions were addressed through qualitative analysis of student work throughout 

the semester, including all journal entries. The analyses of data helped determine the 

effects of this integration of problem posing and suggest future directions for research 

and the incorporation of problem posing in mathematics instruction.

Organization of Dissertation

Data was collected throughout the semester from the whole class and further from 

the four individuals who agreed to be interviewed three times during the semester. 

Data included all student assignments and interviews with the four volunteers. The 

remainder of the dissertation will be organized around the whole class data analyses 

and the analyses of the data from the four volunteers.

Chapter Two is an in-depth literature review related to problem posing, prob

lem solving, and students’ beliefs about mathematics and mathematics teaching and 

learning. Chapter Three focuses on the theoretical perspective from which the re

searcher approached this project. Chapter Four provides a detailed description of 

the research methodology utilized, including research design, methods, data coding
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and data analysis. Chapter Five focuses on the results of the data analysis related to 

participants’ problem posing. Chapter Six focuses on results related to participants’ 

beliefs about mathematics, beliefs about the teaching and learning of mathematics, 

and beliefs about the relationship between problem posing and mathematics educa

tion. Chapters Five and Six focus first on results related to the whole class and then 

on the individual results related to the four students who agreed to interviews. Fi

nally Chapter Seven concludes with a discussion of the results in Chapters Five and 

Six, suggestions of implications for classroom instruction, and possible directions for 

further research.
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Chapter 2

Literature Review

Literature is reviewed in three broad subject areas that helped shape this study: 

literature related to problem posing; literature related to teacher preparation and 

teachers’ beliefs; and literature related to the theoretical framework presented in 

Chapter 3. The review concludes with a specific discussion of the relationship of the 

literature to the study.

Problem Posing

Kilpatrick (1987) asked the question “Problem formulation: Where do good prob

lems come from?” in a chapter that he contributed to Schoenfeld’s book Cognitive 

Science and Mathematics Education. Kilpatrick (1987) opens his chapter with these 

statements:

If we change the question in the title to Where do good mathematics 

problems come from?, the answer ought to be readily apparent to any 

competent high school graduate. Mathematics problems obviously come 

from mathematics teachers and textbooks, so good mathematics prob

lems must come from good mathematics teachers and good mathematics 

textbooks. The idea that students themselves can be the source of good 

mathematics problems has probably not occurred to many students or to 

many of their teachers, (p. 123 Kilpatrick, 1987)

11
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Kilpatrick (1987) continued to discuss sources of mathematics problems, the struc

ture of mathematics problems, possible instruction in problem “formulation” , and 

how to understand and develop problem-formulation abilities. Kilpatrick (1987) also 

suggested that instruction that is rich in problem-formulating and requires students 

to become problem posers is a necessity throughout one’s mathematics education.

Following Kilpatrick’s (1987) work, mathematics educators have begun to  suggest 

the inclusion of problem posing in mathematics classrooms and curricula (NCTM, 

1991, 2000). Research within the mathematics education community also has started 

to focus on the importance of problem posing (Silver, 1994). This research has played 

a role in recent suggestions for incorporating problem posing in mathematics class

rooms and curriculums. In the 1991 document Professional Standards for Teaching 

Mathematics, it is stated that, “students should be given opportunities to formulate 

problems from given situations and create new problems by modifying the conditions 

of a given problem” (p.95 NCTM, 1991).

In his 1994 paper, “On mathematical problem posing,” Silver goes into detail 

about possible benefits of problem posing, the necessity of problem posing in the 

school mathematics curriculum, and possible future directions for problem posing re

search. Silver (1994) suggests that problem posing should be a key feature of inquiry- 

oriented mathematics classrooms and that “problem posing has figured prominently 

in some inquiry-oriented instruction that has freed students and teachers from the 

textbook as the main source of wisdom and problems in a school mathematics course” 

(p.21 Silver, 1994). Similarly, NCTM supports problem posing as a feature of inquiry- 

based mathematics classes in which students are given the opportunity to determine 

the validity of mathematics (NCTM, 1989, 2000).

In Principles and Standards for School Mathematics (2000), it is stated,

Posing problems comes naturally to young children: I wonder how long
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it would take to count to a million? How many soda cans would it take 

to fill the school building? Teachers and parents can foster this inclina

tion by helping students make mathematical problems from their worlds. 

Teachers play an important role in the development of students’ problem 

solving dispositions by creating and maintaining classroom environments, 

from pre-kindergarten on, in which students are encouraged to explore, 

take risks, share failures and successes, and question one another. In 

such supportive environments, students develop confidence in their abil

ities and a willingness to engage in and explore problems, and they will 

be more likely to pose problems and persist with challenging problems.

(p.53 NCTM, 2000)

As students are determining the validity of their mathematics, as suggested by NCTM, 

they are assuming the role of mathematics expert. Problem posing has the potential 

to encourage students to assume the role of expert when they are posing mathematics 

problems. “Problem posing requires that the subject perform the job of the expert 

in constructing a suitable problem, a job that entails combining a viable story line 

with the appropriate surface features in ways that embody specific concepts” (p.160 

Mestre, 2000). Assuming the role of expert allows students to view mathematics from 

the perspective of a mathematician while they are engaged in problem posing.

Silver (1994) also discusses possible benefits of problem posing for mathematics 

education researchers and suggests possible future problem posing research,

First, it is clear that problem posing tasks can provide researchers with 

both a window through which to view students’ mathematical thinking 

and a mirror in which to see a reflection of students’ mathematical ex

periences. Second, problem posing experiences provide a potentially rich 

arena in which to explore the interplay between the cognitive and affective
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dimensions of students’ mathematical learning. Finally, much more sys

tematic research is needed on the impact of problem posing experiences on 

students’ problem posing, problem solving, mathematical understanding 

and disposition towards mathematics, (p.25 Silver, 1994)

Marion Walter and Stephen Brown have written about many issues related to prob

lem posing and its inclusion in school mathematics and college mathematics (Brown k  

Walter, 1983, 1993). Brown and Walter have discussed the necessity of incorporat

ing problem posing in mathematics curricula, the relationship between problem pos

ing and problem solving, and situations which can foster problem posing (Walter k  

Brown, 1977; M.I.Walter, 1993b, 1993a). Walter (1993) wrote about the diverse sit

uations that could promote students involvement in mathematical problem posing 

including posing problems from scrap material, doing problems in multiple ways, 

posing problems from pictures, and extending given problems (M.I.Walter, 1993b). 

In her discussion, Walter (1993) gives examples of posed problems and specific sit

uations that educators could use to foster student problem posing. Out of these 

discussions by Brown and Walter have come suggestions that problem posing might 

allow students to better understand their style of thinking, attitude towards working 

with others, the purpose of studying mathematics, and the nature of mathematics 

(Brown k  Walter, 1993).

Brown and Walter discuss in detail their “What if not?” problem posing technique 

in The Art of Problem Posing (1983). Brown and Walter’s “What if not?” problem 

posing technique engages students in problem re-formulation and asks students to 

consider new problems based on changing the given information of a problem. While 

discussing “What if not?” Brown and Walter (1983) give examples of utilizing “What 

if not?” to generate new problems and help students develop a deeper understanding 

of mathematics.
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Based on Brown and Walter’s “What if not?” problem posing technique Friel 

and Gannon (1995) gave an example of the possible outcomes when students are 

engaged in problem re-formulation. Friel and Gannon (1995) gave their students a 

word problem that had an algebraic solution. Through class discussion and activity 

students were able to re-formulate the problem and engage in mathematics well be

yond the scope of the original problem (Friel k  Gannon, 1995). Friel and Gannon’s

(1995) example demonstrated that students are capable of re-formulating mathemat

ics problems.

The remainder of this section will focus on literature related to understanding 

students’ problem posing and literature related to implementing problem posing into 

mathematics classrooms and mathematics curricula. Literature will be presented 

related to the problem posing of both pre-college and college students. Literature 

that examined attempts to incorporate problem posing in mathematics classrooms 

and in the development of mathematics teachers also will be discussed.

Problem Posing in Mathematics Classrooms

English (1997) discusses possible situations in the mathematics classroom that 

can be transformed into problem posing situations. One of the main motivations for 

English (1997) to include problem posing in the classroom was that “. . .  it can em

power all children to explore problem situations and to pursue lines of inquiry that 

are personally satisfying. This atmosphere creates a context for more productive and 

enjoyable mathematical learning” (p.173 English, 1997). English (1997) suggests sit

uations that will allow students to engage in problem re-formulation including magic 

squares and game situations and concludes that students will acquire an inquisitive 

disposition and become empowered from their problem posing experiences. Many 

mathematics educators have implemented problem posing into school classrooms and 

explored students’ problem posing (Winograd, 1992; Winograd k  Higgins, 1994 and
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1995; Winograd, 1997; Silver & Cai, 1996; Schloemer, 1994; Perez, 1985; Median & 

Santos, 1999; English, 1998b; Grundmeier, 2002). This section will discuss litera

ture related to problem posing with K-12 students, followed by literature related to 

problem posing with college students.

Winograd (1992, 1997) has utilized problem posing in fifth grade classrooms. 

Winograd (1992) asked fifth grade students to write and solve their own original 

math story problems and then share the results in group interactions with their 

peers. These fifth graders were able to pose mathematics problems that challenged 

themselves and their classmates, as well as problems whose solutions required math

ematical content beyond fifth grade mathematics (Winograd, 1992). Student story 

problems fell into the following four categories, (1) problems containing new mathe

matical concepts, (2) problems that require knowledge of a particular mathematical 

procedure for solution, (3) problems that require problem solving skills that students 

do not possess yet, and (4) problems the students understand but tend make errors 

on during the solution process (Winograd, 1992). These problem posing activities 

also provided insight into students’ beliefs about mathematics,

According to students, the “good” math student was someone who wrote 

interesting and challenging problems and then worked diligently at under

standing and solving those problems. Students believed that the “good” 

story problem was challenging, included interesting content from everyday 

life, and contained non-routine characteristics, such as extra information.

(p.65 Winograd, 1992)

Winograd also showed that fifth graders are able to share their mathematics problems 

and are willing to solve problems posed by their peers (Winograd, 1997). Winograd

(1997) provides examples of students’ posed problems and gives suggestions to help 

teachers implement student problem posing in their classrooms. Winograd and Hig
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gins (1994/1995) also discuss the use of student authored story problems with ele

mentary school students. Students in this classroom seemed to use problem posing 

to reflect on their mathematical experiences and were more inclined to be patient 

solving problems that were their own or peers’ posed problems instead of textbook 

problems (Winograd & Higgins, 1994 and 1995).

English (1998b) reports the results of the final year of a three year study that im

plemented problem posing in third, fifth, and seventh grade classrooms. The goals of 

the research during the final year of the project were to explore the problem posing of 

seventh grade students, describe the development of students mathematics achieve

ment, identify connections between students’ problem solving and problem posing 

abilities, and monitor students’ metacognitive activity (English, 1998b). Students 

were involved in a three month problem posing program that was intended to foster 

an inquiry-oriented classroom community. English (1998b) conducted in-depth obser

vations of 23 students chosen because of their performance on pre-measures of problem 

solving ability and number sense. During the problem posing program students were 

asked to pose problems from sets of given information. Students showed improve

ment on this problem posing task. On the pre-program assessment several students 

could not pose mathematics problems and there were many non-solvable mathemat

ics problems posed. Post-program, every student was able to pose mathematical 

problems and the number of unsolvable problems decreased. Also the complexity of 

posed problems seemed to increase from pre-program to post-program problem pos

ing (English, 1998b). During the problem posing program, students also were shown 

sample mathematics problems and asked to pose problems related to them. There 

was also an increase in students’ ability to perform this task measured by the number 

of related problems they were able to pose (English, 1998b). Upon completion of 

the problem posing program, 68% of the students felt that they had become bet
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ter problem posers and problem solvers. English (1998b) believes that continuing to 

promote inquiry oriented classroom environments, that include problem posing, will 

cause .. genuine improvement in students’ dispositions towards, confidence in, and 

enjoyment of mathematics” (p. 17 English, 1998b).

Silver and Cai (1996) examined the results of 509 middle school students problem 

posing. Students posed problems from a set of given information and their posed 

problems were examined for solvability and complexity. (Silver & Cai, 1996). A goal 

of this study was to develop a scheme to be used to examine problems posed by 

middle school students. The researchers coded more than 70% of the responses as 

mathematical questions and more than 90% of the mathematical questions as solvable. 

The results suggest that even without prior experience with problem posing students 

have a capacity for posing mathematics problems (Silver k  Cai, 1996).

In her dissertation research Schloemer (1994) integrated problem posing into the 

UCSMP (University of Chicago School Mathematics Project) advanced algebra cur

riculum with tenth and eleventh grade students. The purpose of Schloemer’s (1994) 

work was to determine the feasibility of the integration of problem posing and to ex

amine changes in students’ mathematical dispositions, problem posing performance 

and mathematical achievement. Schloemer (1994) examined these variables using a 

pre-test, post-test design and compared results between a class that was introduced to 

problem posing and a class that was not introduced to problem posing. Schloemer’s 

(1994) results indicate that it was feasible to incorporate problem posing and that 

the design features were successfully incorporated into lesson plans and instruction. 

Comparisons found that students’ mathematics achievement was equivalent in the two 

classes and that in both classes, mathematical dispositions decreased, as measured by 

an assessment of disposition based on attitude scales (Schloemer, 1994). Schloemer 

(1984) concludes that in this situation the incorporation of problem posing did not
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hinder student achievement.

In his dissertation research Perez (1985) examined the effects of experience with 

problem posing on students’ problem solving performance with 52 students in a com

munity college remedial algebra course. Perez (1985) developed a set of activities 

based around the theme of “student-generated problems.” After completing these 

activities he utilized them to help teach participants to write and solve word prob

lems. Perez (1985) found that more than 90% of the students were able to write word 

problems based on the examples and activities that were provided. As a second con

clusion, it was noted that if students could write word problems they generally could 

solve a similar problem. Post instruction, the general feeling of participants was that 

writing word problems had increased their ability to solve problems. Perez (1986) 

presented an initial look at problem posing with the intent of advancing discussion 

and beginning research related to problem posing.

Medina and Santos (1999), in a pre-calculus class, explored the implementation 

of problem posing, through problem generation and problem re-formulation. They 

found that students did not fully engage in problem posing tasks initially, but that 

as they gained experience they became confident that they could pose problems. 

Student problems were initially of a procedural nature but throughout the semester 

became more complex and profound (Median & Santos, 1999). The authors were 

able to utilize students’ posed problems to determine their mathematical strengths 

and weaknesses and utilize this information to better understand student difficulties 

(Median & Santos, 1999).

Grundmeier (2002) examined university pre-calculus and mathematical proof stu

dents’ problem posing and attitudes towards mathematics. Students were asked to 

complete a measure of problem posing ability based on the work of Leung and Sil

ver (1997) and a measure of attitude towards mathematics based on Aiken’s (1974)
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attitude scales . Students enrolled in mathematical proof had statistically signifi

cantly more positive attitudes towards mathematics (p=.001) than the pre-calculus 

students, but there were no significant differences in their problem posing abilities 

(Grundmeier, 2002). On average, subjects were able to pose problems totalling six 

steps in twenty-five minutes of problem posing. Grundmeier (2002) suggested that 

the lack of difference in participants’ problem posing may have been due to both 

populations’ lack of problem posing experience.

Problem Posing and Problem Solving

Also vital to the development of mathematics and teaching and learning math

ematics is the exploration of the relationship between problem posing and problem 

solving. In “How to Solve It” Polya suggests problem posing as a tool to be used in 

problem solving. Polya suggests that students can shed light on problem solutions 

by posing and solving related problems and more general versions of the problem 

at hand. “Probably the most frequently cited motivation for curricular and instruc

tional interest in problem posing is its perceived potential value in assisting students 

to become better problem solvers” (p.23 Silver, 1994). Walter and Brown (1977) gave 

an example of the possible relationship between problem solving and problem posing 

through the following problem; Given two equilateral triangles, find a third whose area 

is the sum of the area of the other two (p.4 Walter k  Brown, 1977). This problem 

gives students many options for problem re-formulation. The student can re-pose the 

original problem (i.e., adding numbers) or can extend the given problem. Students 

may also need to pose related problems in order to shed light on the original question. 

Walter and Brown (1977) also give examples of how the problem can be extended 

to other shapes and to show a relationship to the Pythagorean theorem. Walter and 

Brown (1977) conclude with a discussion of the benefits of problem posing and state, 

“it is worthwhile for students to investigate all the different ways in which the “given”
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can be interpreted as well as how the analysis might depend on different allowable 

assumptions” (p.12 Walter & Brown, 1977).

Problem posing has the potential to influence students’ problem solving abilities. 

Although documenting this relationship is not a goal of this research it is important 

to mention because the majority of participants suggested that incorporating problem 

posing in their future classrooms may have positive effects on their students problem 

solving ability.

Problem Posing with Pre-service Teachers

Problem posing has been shown to have the potential to effect students’ prob

lem solving abilities and dispositions towards mathematics. In order for teachers to 

feel comfortable and effectively integrate problem posing into their classrooms, as 

suggested by the literature, it is important for them to experience problem posing 

during their pre-service education (Silver, 1994; Kilpatrick, 1987). Research has ex

amined the problem posing of pre-service and in-service elementary and middle school 

teachers, the relationship between problem posing and creativity with this audience, 

and the effects of problem posing workshops on perspective middle and elementary 

school teachers. (Silver & Mamona, 1989; Silver et al., 1996; Leung, 1993; Leung & 

Silver, 1997; Gonzales, 1994, 1998).

Silver and Mamona (1989) and Silver, Mamona-Downs, Leung and Kenney (1996) 

examined the problem posing abilities of middle school mathematics teachers in the 

Billiard Ball Mathematics (BBM) task format, which asked participants to solve and 

pose problems related to the geometry of billiards. Silver and Mamona (1989) asked 

participants to first pose problems related to BBM, then solve a problem within 

the task format, and finally to pose more problems. The researchers found that 

participants could pose reasonable problems within the task format but that there 

were differences in the problems they posed before and after solving a problem in the
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task format (Silver & Mamona, 1989). In particular on the post-solution problem 

posing task, subjects posed fewer problems that were related to the assumptions 

implicit in the BBM task format and posed more problems that included specific 

goals, such as the final pocket in which the ball would rest (Silver k  Mamona, 1989). 

In general Silver and Mamona (1989) showed that participants were capable of posing 

mathematics problems and that the characteristics of their posed problems differed 

before and after experience solving problems in the task format. Silver, et al. (1996) 

examined the problem posing ability of 53 middle school teachers and 28 pre-service 

secondary school teachers in the BBM task format. The research suggested that these 

teachers and pre-service teachers had some capacity to pose mathematics problems. 

Results of this study showed that participants posed many problems which could not 

be solved by other participants, posed fewer problems during the post-solving posing 

task, and had a tendency to chain or link posed problems (Silver et al., 1996). From 

their work the authors hypothesize that, “as teachers become more proficient in their 

own problem posing, it is reasonable to assume that they will become more willing 

to have their students engage in such activities” (p.305 Silver et al., 1996).

In her dissertation research Leung (1993) explored the relationship between math

ematical knowledge, creativity, and the the problem posing of pre-service elementary 

school teachers. Leung (1993) used the subjects’ scores on the Pre-Professional Skills 

Test (mathematics knowledge) and the Torrance Test of Creative Thinking (creativ

ity) to develop four groups of 16 subjects each with respect to high and low mathe

matics knowledge and high and low creativity. A test of arithmetic problem posing 

(TAPP) was then utilized to examine subjects’ problem posing. The problem posing 

task contained two problem situations, one in a format containing numerical con

tent and the other in a format not containing numerical content. Results suggest 

that “... high mathematics knowledge subjects produced sets of problems with more
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interrelated solution structures; whereas high creative thinking subjects tended to 

produce more problems with added story components” (p.v Leung, 1993). Based on 

her results Leung (1993) suggested that problem posing should be included in mathe

matics curricula. Problem posing will allow students to take a more active role in and 

be responsible for their learning (Leung, 1993). Leung and Silver (1997) report some 

results of Leung’s dissertation research and discuss in particular subjects’ abilities to 

pose more problems and more complex problems when sets of information contained 

numerical content instead of not containing numerical content.

Gonzales described her attempts to incorporate problem posing into content classes 

for pre-service elementary and middle school mathematics teachers (Gonzales, 1994). 

Gonzales suggested that it is feasible to incorporate problem posing with these au

diences and has accomplished this by extending Polya’s problem solving heuristic 

(Gonzales, 1994). Students in Gonzales’s classes were able to extend problems, pose 

related problems, and pose novel problems. Examples of observations from Gonzales’s 

paper follow;

Observations made ...appear to indicate that the pre-service teacher 

gains: (a) a perspective on the important role that language (choice of 

words) plays in the understanding and interpretation of a word problem;

(b) knowledge of mathematical levels appropriate for different grades (K- 

8) and types of students (remedial to accelerated); and (c) insight into 

the role of a teacher as a facilitator of knowledge rather than a deliverer 

of knowledge, (p.83 Gonzales, 1994)

Gonzales also suggested that research should be undertaken to examine the incorpo

ration of problem posing in content classes for pre-service teachers. Gonzales (1998) 

added to her previous work and presented, but did not formally research, what she 

called a “blueprint” for the implementation of problem posing in classes for pre-service
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teachers. Gonzales’s “blueprint” included utilizing a problem solving heuristic, pos

ing related problems, and then having pre-service teachers pose their own problems 

and tasks. Features of this “blueprint” will be seen in the instructional treatment 

designed for this study.

Teacher Preparation and Teachers’ Beliefs

Teacher Preparation

In their 1996 report, The Preparation of Teachers of Mathematics: Considerations 

and Challenges, the National Research Council (NRC) made suggestions for mathe

matics teacher preparation. This report suggested that teachers need more than just 

strong mathematics preparation, they also need “deeper mathematical understand

ing in order to promote mathematical sense making, problem solving, reasoning, and 

justification” (p.3 MSEB, 1996). It is necessary for future teachers to experience 

mathematical inquiry and the practice of mathematics and at the same time for re

searchers to begin to understand the connections “between how future teachers come 

to know mathematics and their own practice in the mathematics classroom” (p.6 

MSEB, 1996). For teachers and researchers to examine connections between pre

service teachers’ knowledge of mathematics and their future teaching it is imperative 

that pre-service teachers engage in situations that allow them to reflect on their math

ematics knowledge and future teaching (Ball, 1996; Goodlad, 1991; Brown k  Borko, 

1992; Ashton, 1996).

Suggestions made by the NRC in their 1996 report resonate in suggestions others 

had previously made for teacher education. Goodlad (1991) gives a description of the 

role of schools in our society and the roles of teachers in these schools,

Schools in our society are called upon to perform two distinctive functions:

(1) enculturate the young into a social and political democracy, and (2)
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introduce the young to those canons of reasoning central to intelligent, 

satisfying participation in the human conversation. If schools are to per

form these two functions well, teachers must be thoroughly grounded in 

the understanding and beliefs necessary for carrying them out. They must 

(3) learn the pedagogy essential to the enculturation and trait develop

ment of the young, and (4) possess the knowledge and skills necessary to 

participate in the continuous renewal of the schools for which they are 

stewards, (p.5 Goodlad, 1991)

In the same article on teacher education that is based on conversations with teacher 

education faculty Goodlad (1991) presents suggestions for redesigning teacher edu

cation and calls for a renewed relationship between teacher education classes and 

classroom practice. Teachers need to see the importance of their education for their 

future practice and be able to reflect on their practice throughout their preparation.

Brown and Borko (1992) added to the ideas presented by Goodlad (1991) related 

to the future of teacher education in their chapter from the Handbook of Research on 

Mathematics Teaching and Learning. Brown and Borko (1992) discussed the role of 

reflection in teacher education and suggested that teachers must reflect on their prac

tice and pre-service teachers must consider and reflect on their future practice. It is 

important to explore how both inservice and pre-service teachers translate their class

room knowledge into knowledge that is useful in their future classrooms (Brown & 

Borko, 1992). The authors concluded that “teacher education programs should pro

vide opportunities for growth in content knowledge, pedagogical content knowledge, 

and pedagogical reasoning” (p.235 Brown & Borko, 1992). Brown and Borko (1992) 

define “pedagogical reasoning” as the selection of strategies to represent content, 

and “pedagogical content knowledge” as knowledge about ways to introduce specific 

content appropriate for all abilities and learning styles.
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Based on past research, Ball (1996) suggested that changes in teacher education, 

especially toward promoting reflective activities, are necessary to help keep pace with 

the mathematics education reform movement. In particular, Ball (1996) suggests 

that pre-service and inservice teachers be given the opportunity to reflect on their 

teaching,

Reflection is seen as central to learning to teach. For the most part, pre

scriptions for reflection focus on structure and context, emphasizing that 

teachers need time, space, and encouragement to reflect on teaching in 

ways that facilitate their learning - by talking with others, keeping a jour

nal, by engaging in action research. Less attention is paid to what the 

specific objects and the nature of that reflection might be, leaving some

what up in the air the variety of learning that reflection might support.

(p.501 Ball, 1996)

Also based on past research Ashton (1996) suggested that reflection is necessary 

to prepare future teachers for their classrooms, but she also extended the idea of 

reflection and discussed the necessary outcomes of pre-service teachers’ reflections. 

Pre-service teachers must be granted opportunities to develop their ability to re

flect on research and practice and think about implications for their future students 

(Ashton, 1996). Also prospective teachers need dynamic environments “. . . to  de

velop sophisticated pedagogical content knowledge that will enable them to represent 

subject matter in multiple and powerful ways that connect with and challenge their 

students’ prior understandings” (p.22 Ashton, 1996).

The literature presented above suggests reflection as a necessity in teacher ed

ucation. Reflection is a possible tool to help teachers develop what Franke et al.

(1998) call “self-sustaining generative” change. “Self-sustaining generative” change 

“. . .  entails teachers making changes in their epistemological perspectives, their knowl
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edge of what it means to learn, as well as their conceptions of classroom practice” 

(p.67 Franke, Carpenter, Fennema, Ansell, & Behrend, 1998). Teachers must develop 

an understanding of their practices in relation to their students learning and they 

must take part in reflecting on and questioning their practice (Franke et al., 1998). 

Expanding on these ideas,

A teacher who examines his or her practices in relation to his or her own 

thinking and the thinking of his or her students engages in a different level 

of practical inquiry, where the focus is on detailed analysis. As teachers 

engage in this detailed analysis, they come to understand principled ideas 

that can then drive their practice and their continued practical inquiry.

We view the first level of practical inquiry as leading to self-sustained 

change but the second level of practical inquiry as necessary for generative 

change, (p.68 Franke et al., 1998)

Franke et al. (1998) highlight examples of teachers “self-sustaining generative” change 

through three cases studies of teacher professional development workshops related to 

Cognitively Guided Instruction (CGI). Through interviews, interactions and observa

tions they found that professional development with a focus on students’ mathemati

cal thinking allows a forum for teachers to develop practical inquiry skills and engage 

in “self-sustained generative” change.

In summary, teacher preparation literature in education and mathematics edu

cation suggests that reflection is a powerful tool for teacher development and is a 

necessary component of teacher preparation programs. Reflection fosters teachers’ 

understanding of their conceptions about teaching and learning mathematics.

Teachers’ Beliefs

Many researchers have examined teachers’ beliefs about teaching and teachers’ 

beliefs about mathematics (Corte, Greer, k  Verschaffel, 1996; Good, Grouws, k  Ma
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son, 1990; Schuck, 1997; Cooney, Wilson, Albright, & Chauvot, 1998; Battista, 1994; 

Thompson, 1984, 1992; Karp, 1991). De Corte, et al. (1996) summarize research on 

teachers beliefs and show that it is possible to “profoundly affect teachers’ cognitions 

and beliefs about mathematics learning and instruction, their classroom practices, 

and, most important, their students’ learning outcomes and beliefs.” Also, teachers’ 

beliefs about mathematics are not static. Teachers’ beliefs begin with their mathe

matics education, continue to be shaped throughout their pre-service education and 

continue to change during their practice (Corte et al., 1996). The remainder of this 

section will discuss teachers’ beliefs about mathematics followed by the relationship 

between teachers’ beliefs and their teaching practice.

Schuck (1997) used a research simulation with pre-service primary school teachers 

to develop an understanding of their beliefs about mathematics. Schuck (1997) asked 

subjects to play the role of both researcher and respondent by interviewing and being 

interviewed by a peer. This simulation allowed subjects’ beliefs about mathematics 

to become apparent. Schuck (1997) found that teachers’ beliefs about mathematics 

are likely to fit into one of the following three categories:

Problem-solving view: Mathematical thought is ever - expanding and fallible and 

the processes of mathematical thought are embodied in the search for solutions 

to new problems.

Platonist view: Mathematics is unchanging and learning mathematics is becoming 

familiar with mathematics that already exists.

Instrumentalist view: Mathematics is a set of rules and procedures that have a 

particular purpose. Mathematical thought is dominated by understanding al

gorithms.
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Cooney et al. (1998) also reported descriptions of pre-service teachers’ beliefs. 

Results of the Research and Development Initiatives Applied to Teacher Education 

(RADIATE) Project gave Cooney et al. (1998) insight into subjects’ beliefs and 

they found similarities in pre-service secondary teachers’ beliefs before they began 

a professional development program. Beliefs were reported with regard to  mathe

matical knowledge, teaching strategies, and teacher responsibilities. This sample of 

pre-service teachers believed that mathematics was a body of knowledge that built 

on previous knowledge and saw mathematics learning as a linear process. For them 

mathematics should be understood and not memorized even though these teachers 

sometimes lacked a deep understanding of concepts (Cooney et al., 1998). With re

gard to teaching strategies these pre-service teachers’ believed that students needed 

to be active in the learning process and that lecture was not sufficient for mean

ingful learning, but they did not discuss any ideas about connecting active learning 

to mathematical ideas. These pre-service teachers felt that it was their responsibil

ity to make mathematics interesting and to engage their students. While engaging 

their students they wanted to be sure their students were comfortable and avoided 

frustration (Cooney et al., 1998).

Good et al. (1990) also explored teachers’ beliefs about teaching strategies. They 

surveyed 1509 elementary school teachers with regard to their beliefs about using 

small groups during mathematics instruction. The study was aimed at describing 

how elementary teachers organize their classrooms for mathematics instruction and 

why they make the decisions they do with regard to classroom organization (Good 

et al., 1990). The results of the study showed that the most predominant classroom 

organization was whole-class instruction with some amount of time spent with stu

dents working alone on assigned work. The second, most frequent, organization of 

instruction was whole-class instruction followed by some time spent in small-group

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



30

work (Good et al,, 1990). The teachers most frequently cited reason for utilizing 

small group instruction was that it allowed the teacher to work with a diverse range 

of students’ needs and allowed the opportunity to present enrichment material.

There seems to be a relationship between teachers’ beliefs about mathematics, 

beliefs about mathematics teaching and learning, and their instructional practice. 

Karp(1991) documented the teaching behavior and instructional methods of elemen

tary school teachers. Teacher attitude surveys were collected along with tape record

ings, observations, field notes, interviews, and class assignments. The data suggested 

that there were substantial differences between the teaching styles of teachers with 

positive attitudes and teachers with negative attitudes towards mathematics (Karp, 

1991). Teachers with negative attitudes created teacher dependent learning environ

ments in which students were encouraged to be passive learners whereas teachers with 

positive attitudes created learning environments that promoted student independence 

(Karp, 1991). Therefore, it is a necessity for teacher education to “...develop pro

grams to help pre- and inservice elementary teachers to recognize and overcome the 

problem of negative attitudes toward mathematics and the instructional consequences 

of these attitudes” (p.269 Karp, 1991).

Research has also presented situations where teachers’ beliefs about the teaching 

and learning of mathematics have played a role in shaping their instructional behavior 

(Battista, 1994; Thompson, 1984). Thompson (1992) reflecting on a theoretical paper 

by Ernst (1988) states that research on teachers’ beliefs .. indicates that teachers’ 

approaches to mathematics teaching depend fundamentally on their systems of beliefs, 

in particular on their conceptions of the nature and meaning of mathematics, and on 

their mental models of teaching and learning mathematics” (p. 131 Thompson, 1992).

Thompson (1984) and Battista (1994) have shown in their research, that teachers’ 

beliefs about mathematics may play a significant role in shaping their classroom
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practice.

Teachers develop patterns of behavior that are characteristic of their in

structional practice. In some cases, these patterns may be manifestations 

of consciously held notions, beliefs, and preferences that act as ‘driving 

forces’ in shaping the teacher’s behavior. In other cases, the driving forces 

may be unconsciously held beliefs or intuitions that may have evolved out 

of the teacher’s experiences, (p. 105 Thompson, 1984)

Teachers are key to the implementation of the reform movement and,

. . .  many teachers’ beliefs about mathematics are incompatible with those 

underlying the reform effort. Because these beliefs play a critical role not 

only in what teachers teach but in how they teach it, this incompatibility 

blocks reform and prolongs the use of a mathematics curriculum that 

is seriously damaging the mathematical health of our children, (p.462 

Battista, 1994)

Battista (1994) gave two examples of teachers’ beliefs and how they affect practice. 

Mary is an elementary school teacher who believes that understanding a mathemat

ical idea means reducing it to a step-by-step procedure. This belief influences the 

mathematical activities she presents to her students and compels her to try to find 

activities in which she can provide students an algorithm. Similarly, Jack was trying 

to give his students an algorithm to compute mean, median, and mode of a data set. 

Jack’s students did not understand the process and simply memorized the procedure 

to achieve the “right” answer. Jack did not try to understand his students’ thoughts 

so that he could guide them to a deeper more conceptual understanding (Battista, 

1994). The examples provided by Battista show that these teachers’ beliefs may have 

caused them to implement classroom practices that did not promote their students
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conceptual learning and are not consistent with suggestions by the reform movement 

in mathematics education.

In summary, research has been able to categorize and describe teachers’ beliefs 

about mathematics and describe teachers’ beliefs about teaching mathematics. Re

search has also shown that teachers’ practice is not always consistent with their beliefs 

about mathematics instruction. These results suggest that both pre-service and in- 

service teachers need experiences that cause them to reflect on their beliefs.

Research Related to Theoretical Framework

The theoretical framework presented in Chapter 3 will focus on two theories of 

learning, metacognition and conceptual change. Broadly speaking, metacognition can 

be described as a learner’s regulation of their own cognitive activity while conceptual 

change describes the process by which learners accommodate new conceptions into 

their current knowledge structures. These two theories will be discussed in detail in 

Chapter 3, the remainder of this section of the literature review will focus on research 

that has helped shape these two theories.

Metacognition

This section will present research related to metacognition. Past research has 

shown that students may be at different levels of metacognitive activity and that 

there are possible techniques for promoting metacognitive activity in students. These 

two ideas will be presented here.

Hennessey (1999) presents the results of project META (Metacognitive Enhancing 

Teaching Activities), and provides possible levels of students metacognitive activity. 

Hennessey (1999) explored the metacognitive practices of 170 students in grades K-6 

in a three year case study of metacognition through individual and group discourse. 

For the study,
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. . .  content specific units were designed to explicitly stimulate classroom 

interactions that focused on the students’ conceptions of science content, 

the nature of science, the nature of knowledge production and learning, 

and the nature of explanatory models in science (p.8 Hennessey, 1999).

Student poster production, conceptual models, and technology were used to help pro

mote metacognition in students (Hennessey, 1999). Results suggested that students’ 

metacognitive activity and abilities range from a minimal level of awareness of their 

conceptions to more sophisticated metacognitive thought. Based on these results 

Hennessey (1999) provides two possible levels of metacognitive thought,

1. Representational level: a student’s awareness of their own unobservable con

structs (internal) which are articulated through verbal discourse, journal writ

ing, etc.

2. Evaluative level: a student’s ability to make inferences about their own un

observable constructs and consider implications for their personal knowledge 

claims.

Metacognition has come under the guise of other names in the literature (i.e. self

regulation, meaningful learning, reflection) and under these names researchers have 

discussed possible avenues for promoting metacognitive activity in students. Novak 

and Gowin (1984) discussed the benefits of having students construct concept maps 

for meaningful learning. They define a concept map as “a schematic device for rep

resenting a set of concept meanings embedded in a framework of propositions” (p.15 

Novak & Gowin, 1984). Concept maps may help foster students’ metacognition and 

“students and teachers constructing concept maps often remark that they recognize 

new relationships and hence new meanings” (p.17 Novak k  Gowin, 1984). Therefore 

concept maps become a tool to help understand what the learner already knows while 

at the same time providing them the opportunity for reflection on their conceptions.
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Related to Novak and Gowin (1984), Novak (1985) discussed the concepts of met

alearning and metaknowledge and explained research that has been done a t Purdue 

University to help students learn how to learn. This research has shown

...  significant promise for concept mapping and Vee mapping strategies to 

help students learn how to learn and to acquire knowledge about knowl

edge. We see these strategies as holding promise for helping students to 

understand both the nature and sources of valid as well as invalid con

ceptions of events or objects. They may in time permit students to gain 

facility in assessing the power and validity of their idiosyncratic conceptual 

frameworks, (p.206 Novak, 1985)

While discussing teachers’ self-evaluation and self-regulated learning Schunk (1996) 

also provided a suggestion for promoting metacognitive activity. Schunk (1996) de

fined self-evaluation as “a process comprising self-judgments of present performance 

and self-reactions to these judgements” (p.2-3 Schunk, 1996) and defines self-regulated 

learning as “self-generated thoughts, feelings, and actions, that are systematically de

signed to affect one’s learning of knowledge and sWlls” (p. 2 Schunk, 1996). Schunk 

(1996) explored the effects on fourth graders’ understanding of fractions, of assign

ing them, to one of four treatments, learning goal with self-evaluation, learning goal 

without self-evaluation, performance goal with self-evaluation, and performance goal 

without self-evaluation. Schunk’s hypothesis was that giving students the goal of 

learning to solve problems instead of a performance goal of a number of problems 

to solve would benefit their achievement (Schunk, 1996). Students assigned to the 

self-evaluation conditions were asked to judge their fraction capabilities at the end 

of each of the instructional sessions. The results of the study suggested that giving 

students a learning goal with or without evaluation and a performance goal with self- 

evaluation benefits their mathematical achievement (Schunk, 1996). Thus Schunk
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(1996) showed the benefits of self-evaluation and that learning goals are a  possible 

tool to promote metacognitive activity.

Mewborn and Wilson (1999) describe tasks that they have utilized with pre-service 

elementary teachers to help promote reflection. Data was collected with regard to 

four pre-service teachers who were observing a fourth grade classroom for two hours 

a week. The pre-service teachers were asked to solve a mathematics problem before 

watching students solve the same problem. This activity provided the teachers with 

better insight into the students’ thinking as they solved the problem because the 

teachers could refer back to their experience solving the same problem. The pre

service teachers were able to see differences between the children’s thinking and their 

thinking (Mewborn & Wilson, 1999). Mewborn and Wilson (1999) also gave the pre

service teachers the opportunity to observe a student teacher as well as an exemplary 

teacher.

Observing the student teacher was a powerful experience for the pre

service teachers because it helped them articulate aspects of the classroom 

teacher’s teaching that they were taking for granted. Watching the stu

dent teacher also forced them to put themselves in the role of the teacher 

and posit alternative ways of conducting a lesson. Observing the student 

teacher helped make teaching and learning mathematics problematic for 

the pre-service teachers, (p.9 Mewborn & Wilson, 1999)

Making teaching and learning problematic can cause pre-service teachers to begin 

reflecting on their future teaching practice. In this example, after they observed the 

student teacher, the pre-service teachers were able to articulate what attributes they 

felt made the teacher exemplary. After previous observations they had reported that 

she was a good teacher but could not articulate why.
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Conceptual Change

Posner, Strike, Hewson and Gertzog (1982) give a detailed description of the the

ory of conceptual change, which will be discussed further in Chapter 3. Broadly, 

conceptual change can be viewed as the process of assimilating concepts into one’s 

cognitive structures because the concepts settle contradictions caused by previously 

held concepts (Posner, Strike, Hewson, k  Gertzog, 1982). Posner et al. (1982) inter

viewed students with regard to their beliefs about special relativity. These students 

were in a self-study, self-paced introductory physics class. The first interview activity 

asked the students to consider the workings of a light clock and its implications for 

time and the second asked them to consider the synchronization of two clocks. Based 

on the results of these interviews Posner et al. (1982) suggested a process for con

ceptual change to occur. As part of their process of conceptual change Posner et al. 

(1982) suggest that students can only consider a conception that is plausible and that 

they have a meaningful representation of, they must find that there are difficulties 

with an old conception to consider replacing it, and they must see the possibilities 

for future study of the new conception (Posner et al., 1982).

Gunstone and Northfeld (1992) discussed the role of conceptual change and metacog

nition in teacher education. The researchers engaged pre-service teachers in situations 

that could provoke conceptual change, including modeling a bad lecture, modeling 

a lesson where material is presented through discussion, having the student teachers 

teach in a one-to-one situation, having pre-service teachers keep a journal of their 

experiences, and having pre-service teachers analyze an anecdotal teaching situation 

(Gunstone k  Northfield, 1992). Gunstone and Northfeld give examples of some of 

the results of their research. The actions of the pre-service teachers in schools as 

well as their journal writing helped the researchers document examples of conceptual 

change. One example in particular is given below.
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One student, for whom conceptual change was most obvious, came to the 

program with quite transmissive views of teaching. By the third week he 

was explicitly evaluating his views: after his own micro teaching he wrote 

“hit home later that I had presented an information presentation rather 

than a learning exercise” . By mid year he was offering thoughts such 

as his journal being “my learning rather than my lecture/seminar notes 

(which until recently contained only other people’s notes) and handouts 

which are others’ notes”, “our writing a critique of the teachers’ teaching 

is - in a way - an assessment of the strategies they have been helping 

us learn all year. They practice what they preach - any assessment by 

me is an evaluation of what they practice and what they preach.” In his 

end-of-year course written personal evaluation he wrote insightfuly and 

at length about his initial views, changes in views and courses of these 

changes, (p.27 Gunstone & Northfield, 1992)

In summary the research discussed above suggests that it is possible to promote 

both metacognitive thinking and conceptual change with regard to pre-service teach

ers’ beliefs. The research discussed also suggests that providing activities that call for 

reflection is a possible tool to promote metacognitive activity and conceptual change.

Relationship of Literature Review to Proposed Study

Past research in mathematics education has focused on problem posing with stu

dents, teachers, and prospective teachers. The literature presented above suggests 

that students and teachers are capable of posing mathematics problems and that 

problem posing should be incorporated in mathematics instruction at all levels of 

education. This study addressed the suggestion made in the literature to include 

problem posing in mathematics classrooms and curricula by incorporating problem 

posing into a mathematics content course for pre-service teachers. This study adds
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to the literature on characteristics of pre-service teachers’ posed problems and the lit

erature on how exposure to problem posing influences pre-service teachers’ problem 

posing.

Research also suggests that based on past experiences pre-service teachers will 

have developed beliefs about mathematics and mathematics teaching and learning 

and that it is important to understand these beliefs. It is also important for re

search to begin to document the evolution of and changes in teachers’ beliefs related 

to both mathematics and the teaching and learning of mathematics (Corte et al., 

1996). Having pre-service teachers reflect on their mathematics knowledge and its 

relationship to their future teaching as suggested by the literature above is one way 

to begin documenting pre-service teachers’ beliefs. Based on suggestions in the liter

ature this study presented problem posing and journal writing as tools to influence 

participants’ reflection, increase their metacognitive activity, and possibly begin the 

process of conceptual change with regard to their beliefs about mathematics and the 

teaching and learning of mathematics. The interaction of metacognition, conceptual 

change, and learning within the context of this study will be examined in detail in 

Chapter 3.
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Chapter 3

Theoretical Framework

This study provided participants the opportunity to view mathematics as both a 

problem solving and problem posing domain. To aide in describing participants’ 

problem posing, beliefs about mathematics, and beliefs about the teaching and learn

ing of mathematics it is important to consider how they acquire knowledge, and 

how they learn, within the context of this study. Researchers have suggested pre

service teachers are actively constructing views of mathematics teaching and learning 

from their past experiences (Gunstone & Northfield, 1992). In the context of this 

study the theory of conceptual change and the theory and process of metacognition 

will help describe participants’ acquisition of knowledge and developing views about 

mathematics. It is important to examine these two theories, their major tenets, how 

they relate to student learning and acquisition of knowledge, their relationship to 

each other, and their relationship to participants’ acquisition of knowledge related 

to problem posing, beliefs about mathematics, and beliefs about the teaching and 

learning of mathematics.

This chapter will focus on the implications of conceptual change and metacognition 

for individuals’ acquisition of knowledge and learning, and on the relationship between 

these two theories and the current study. It is these theories and relationships that 

will provide insight into the role of the instructional treatment in pre-service teachers’ 

acquisition of knowledge related to their problem posing, beliefs about mathematics, 

and beliefs about the teaching and learning of mathematics.

39
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A Conceptual Change View of Knowledge

The theory of conceptual change arose from within the domain of science and has 

been described by Kuhn as “scientific revolutions” and by Lakatos as “changing re

search programs” (Kuhn, 1970; Lakatos, 1970). Throughout history scientific theories 

have been replaced by new theories that account for flaws in the previous theory. For 

example the theory of phlogiston was replaced by the theory of oxygen. In the early 

1770’s German Scientist G.E. Stahl suggested that every flammable object contained 

a substance called phlogiston and that the object would burn until there was no more 

phlogiston remaining to be burned. This theory garnered wide spread acceptance 

until the late 1770’s. In the meantime Priestly and Lavoisier had done experiments 

related to combustion and these experiments led to Lavoisier’s doubt in the theory 

of phlogiston. After conversation with Priestly, Lavoisier was able to articulate the 

theory of oxygen and nitrogen. Therefore the theory of oxygen replaced the theory of 

phlogiston, within the scientific community, through the process of conceptual change.

Throughout history a scientific theory has only been considered invalid when an

other candidate is accepted and replaces the original theory (Kuhn, 1970).

To reject one paradigm without simultaneously substituting another is to 

reject science itself. That act reflects not on the paradigm but on the 

man. Inevitably he will be seen by his colleagues as “the carpenter who 

blames his tools.” (p.79 Kuhn, 1970)

Therefore, “scientific revolutions” or changes in “research programs” occur when part 

of the scientific community believes “that an existing paradigm has ceased to function 

adequately in the exploration of an aspect of nature to which that paradigm itself had 

previously led the way” (p.92 Kuhn, 1970). In other words, the theory or paradigm has 

led to conflict which has been discovered by some subset of the scientific community. 

The new theory that is suggested and then replaces the previous theory must resolve
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the conflict that has been discovered. Not only must the new theory resolve the 

conflict that has been caused by the existing theory but it must also permit predictions 

and research ideas that are different from the theory it is replacing (Kuhn, 1970).

When scientists are confronted with a crisis in an existing scientific theory the 

nature of their research changes (Kuhn, 1970). A scientific revolution or the assimi

lation of a new paradigm emerges first in the minds of one or a few individuals who 

have been examining the problems that were provoked by the existing theory (Kuhn, 

1970). Kuhn (1970) discussed examples of “scientific change” that resulted as the 

confrontation of crisis in an existing theory, including, as an example, Lavoisier’s 

work with regard to the theory of phlogiston.

The much-maligned phlogiston theory, for example, gave order to a large 

number of physical and chemical phenomena. It explained why bodies 

burned - they were rich in phlogiston - and why metals were all com

pounded from different elementary earths combined with phlogiston, and 

the latter, common to all metals, produced common properties. In addi

tion, the phlogiston theory accounted for a number of reactions in which 

acids were formed by the combustion of substances like carbon and sul

phur. Also, it explained the decrease of volume when combustion occurs in 

a confined volume of air - the phlogiston released by combustion “spoils” 

the elasticity of the air that absorbed it, just as fire “spoils” the elasticity 

of a steel spring. If these were the only phenomena that the phlogiston 

theorists had claimed for their theory, that theory could have never been 

challenged, (p.99 Kuhn, 1970)

Lavoisier recognized the problems (“crisis”) with phlogiston theory with regard to 

gas-identity and weight relations and hence felt that he could address these problems 

with his theory of combustion which included identifying oxygen (Kuhn, 1970).
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Conceptual change was first identified within the scientific community to  explain 

the changing nature of scientific phenomena and theories. Conceptual change has 

also been examined as a theory of knowledge and theory of individuals’ knowledge 

acquisition. Confrey (1981) discusses a progression of theories of knowledge and their 

implications for the development of conceptual change. First, absolutism, as a theory 

of knowledge, views knowledge as an accumulation of facts and new knowledge is 

simply added to the accumulation of previous knowledge. Second, as discussed by 

Confrey (1981) “progressive absolutism” is defined by the belief that knowledge is a 

work in progress as theories are replaced by more powerful theories. With regard to 

“progressive absolutism” Confrey (1981) stated,

A new theory accounts for all the data that a previous theory accounts 

for, but extends it further to include data which could not be explained 

by the previous theory. . . .  Underlying such a view of knowledge is a 

basic commitment to an absolute truth, toward which we are striving and 

forever approaching more closely. There is also the assumption that the 

two theories can be compared side by side and that one can determine 

objectively the superior theory by its increased potential for explanation.

(p.245 Confrey, 1981)

Confrey (1981) believes that the failure to determine the superiority of one theory over 

the other prompted the development of conceptual change as a view of knowledge.

How Conceptual Change is Viewed as a Theory Knowledge Acquisition

Confrey (1981) suggests that there are three basic tenets about knowledge that 

underlie theories of conceptual change:

1. Knowledge changes and develops; it is not static.
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2. The knowledge is not defined externally, but it progresses through a 

community of scholars who influence its values, its truth conditions, 

and standards of evidence.

3. Theories influence progress and are not comparable objectively in 

that they strive to explain different phenomena, involve different ev

idence, and interpret that evidence differently (p.245 Confrey, 1981).

The most important thing to understand about the conceptual change view of knowl

edge is that knowledge exists through its scholars. Knowledge is not independent 

of its scholars. Assuming that knowledge is not static and is continually progress

ing through the community of scholars, it is important to consider how individuals 

acquire knowledge and concepts within this community.

Developmental psychologists have argued against Piaget’s claims that learners 

move from preoperational thinking to concrete operations to formal operations and 

have argued that knowledge acquisition in individuals is better described by concep

tual change and theory replacement (Thagard, 1992). Many events in the evolution of 

scientific knowledge can be viewed as attempts to  resolve pre-existing inter-theoretic 

tensions (i.e. phlogiston to oxygen) (Kitcher, 1983). The parallel in individuals, of 

inter-theoretic tensions, are intra-personal conceptual tensions. Therefore conceptual 

change can be viewed as an individuals’ attempt to resolve these intra-personal con

ceptual tensions. The remainder of this section will present three descriptions of a 

conceptual change view of knowledge acquisition or individuals’ resolution of intra

personal conceptual tensions (Posner et al., 1982; Georghiades, 2000; Chi k  Roscoe, 

2002).

Posner, Strike, Hewson, and Gertzog (1982) give a detailed development of the ac

quisition of knowledge based on the theory of conceptual change. Conceptual change 

is described as the assimilation of ideas and as the accommodation (replacing or
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re-organizing) of concepts (Posner et al., 1982). Assimilation takes place when an 

individual can utilize existing concepts to deal with a new phenomena. Often current 

conceptions are not able to assimilate new phenomena and an individual must replace 

or re-organize their current conceptual structure (Posner et al., 1982). In other words, 

accommodation is often necessary as part of an individuals’ knowledge acquisition.

It is not likely that anyone will consider radical changes in their held conceptions 

until they believe that some sort of non-radical change will not work. Once settled 

on a radical change, Posner et al. (1982) suggest four stages for the accommodation 

of a new concept by an individual. The learner must first be dissatisfied or see 

conflict with an existing conception. Posner et al. (1982) discuss anomaly as one 

possible source of dissatisfaction with a current conception and, “if taken seriously by 

students, anomalies provide the sort of cognitive conflict that prepares the student’s 

...fo r an accommodation” (p.224 Posner et al., 1982). Before accommodation is 

even possible the individual must have collected a series of problems and lost faith 

in the ability of their current conceptions to solve these problems (Posner et al., 

1982). Once the conflict or dissatisfaction with a current conception has occurred 

the individual must understand a new conception and consider its possibilities to 

handle the conflict caused by the previous conception. “The individual must be able 

to grasp how experience can be structured by a new concept sufficiently to explore 

the possibilities inherent in it” (p.214 Posner et al., 1982). The new conception then 

must also seem plausible to the individual.

Only if the student can psychologically construct a coherent, meaningful 

representation of a theory can it become an object of assessment and a 

tool of thought. Only an intelligible theory can be a candidate for a new 

conception in a conceptual change, (p.217 Posner et al., 1982)

If the new conception does not seem to have the capacity to solve problems un-
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solvable by the old conception, then the individual will not see reason to consider 

adopting the new conception (Posner et al., 1982). Finally, for accommodation to 

occur, the new concept should suggest the possibility of future study. The learner 

should see potential for the concept to be extended and to open possibilities for new 

areas of study (Posner et al., 1982). “If the new conception not only resolves its 

predecessor’s anomalies but also leads to new insights and discoveries, then the new 

conception will appear fruitful and the accommodation of it will seem persuasive” 

(p.222 Posner et al., 1982).

An accommodation of a new concept seems like a radical change of an individual’s 

conceptions, but it is not an abrupt reaction to new conceptions or ideas. I t is plau

sible that an individuals’ accommodation of a new conception will be a gradual and 

piecemeal affair (Posner et al., 1982). For a novice it is best to think of conceptual 

change as a gradual layered adjustment of an individuals’ conceptions. Each new ad

justment is the foundation for further adjustments and the result of these layers is a 

replacement or re-organization of the individuals’ current conceptual structure (Pos

ner et al., 1982). Therefore, accommodation may be the product of failed attempts 

at assimilation.

Accommodation may, thus, have to wait until some unfruitful attempts at 

assimilation are worked through. It rarely seems characterized by either 

a flash of insight, in which old ideas fall away to be replaced by new 

visions, or a steady logical progression from one commitment to another. 

Rather, it involves much fumbling about, many false starts and mistakes, 

and frequent reversals of direction, (p.223 Posner et al., 1982)

Georghiades (2000) described the process of accommodation as discussed by Pos

ner et al. (1982) and also described conceptual change.

Conceptual change, by definition, requires the existence of conception A,
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in order to establish conception B by changing the former. In order to 

do so, it becomes apparent that conception A should have a long enough 

‘concept-life’, such that will allow conception B to be built upon it, or to 

evolve from it, given the appropriate CCL (conceptual change learning) 

interaction takes place, (p.124 Georghiades, 2000)

In this situation the new conception, B, is replacing the current conception, A. Con

ception B is able to answer the questions that the initial conception cannot and hence 

becomes part of an individuals’ conceptions. In this description conception B is being 

accommodated.

Recently cognitive psychologists have considered concepts as being linked to cat

egories. Concepts can be represented, understood and interpreted in the context of 

the category membership (Chi & Roscoe, 2002). As an example, Chi and Roscoe 

(2002) give a description of conceptual change that relies on the idea of “ontological 

categories”. Individuals’ conceptions are considered as stored in “ontological” cate

gories and a misconception is a concept that is stored in the incorrect category. Chi 

and Roscoe (2002) argue that conceptual change is the process of shifting or reassign

ing misconceptions across ontological boundaries and state, “. ..  conceptual change 

is merely the process of reassigning or ‘shifting’ a miscategorized concept from one 

‘ontological’ category to another ‘ontological’ category” (p.4 Chi & Roscoe, 2002). 

Students’ misconceptions must be addressed in their learning in order for a category 

shift to occur. If a textbook or instruction does not cause conflict for a student’s 

misconception, the concept is not likely to be shifted to the proper categories.

Although conceptual change is considered to consist of different processes (assim

ilation, accommodation, shifting between “ontological categories”, etc.), “most of the 

terms carry the implication that individuals’ particular conceptual structures are re

placed by more sophisticated ones that can account for phenomena where previous
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conceptions failed to do so” (p. 120 Georghiades, 2000). This quote describes all three 

views of conceptual change discussed above and can be considered a broad description 

of the conceptual change view of knowledge acquisition.

Conceptual Change as a View of Learning

Student learning in science education has been considered since as early as the 

1920’s. Dewey emphasized science as an inquiry-oriented domain, but it was not until 

the work of Bruner, Gagne and Piaget that science education caught up with Dewey’s 

beliefs that children should be at the center of the teaching of any subject (Bruner, 

1963,1967,1973,1979; Dewey, 1990; Archambault, 1966; Gagne, 1965; Piaget, 1969). 

Once established as a view of knowledge acquisition the implications of conceptual 

change for student learning were then explored by educators. Recently cognitive 

scientists have agreed with the work of Dewey and others that children’s knowledge 

and understanding change in many interesting ways. In particular, learners bring 

their personal experiences to learning situations and this has an affect on their ability 

to accept new views. One can argue that in any science, only reading and observing 

principles will not help clear up and shape the alternative ideas that learners bring 

into the classroom. Learners must be granted the opportunity to construct their own 

versions of scientific principles. If learners’ alternative views are not addressed in 

the classroom they can clash with classroom views and create conflict for students. 

Therefore conceptual change implies that student learning occurs as they compare 

new ideas or concepts to their own versions of scientific principles.

The implications of conceptual change for learning can be seen as an extension of 

the ideas presented above with regard to knowledge acquisition. The shift of concepts 

between “ontological” categories as described by Chi and Roscoe (2002) is comparable 

to linking or integrating new ideas with old, and can be applied to the learning of 

all concepts. Chi and Roscoe (2002) discuss two processes that aid in an individuals’
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understanding of concepts and learning:

At least two “ordinary” learning processes can be proposed as mechanisms 

that can remove incorrect beliefs and repair flawed mental models. These 

two processes, “assimilation” and “revision,” can result in significantly 

richer and more accurate knowledge about a domain, (p.9 Chi & Roscoe,

2002)

If they are viewed together, the sum of assimilation and revision processes have the 

potential to lead to a major change in a student’s understanding of a conception or 

system of knowledge (Chi & Roscoe, 2002).

Similarly, the processes of “assimilation” and “accommodation” as presented by 

Posner et al. (1982) have implications for individuals’ learning. These ideas im

ply that inquiry and learning occur against the background of the learners’ current 

concepts, so any new idea or phenomenon must be compared to the learners’ cur

rent concepts to decide on the necessity for study (Posner et al., 1982). “Learning

is fundamentally coming to comprehend and accept ideas because they are seen as 

intelligible and rational” (p.212 Posner et al., 1982).

As expressed by Strike and Posner (1985), conceptual change theory emphasizes 

the transformation of conceptions in the process of learning. This emphasis on trans

formation of conceptions makes it necessary to describe how learners incorporate new 

conceptions into their current cognitive structures. In trying to describe how learn

ers incorporate new conceptions it is beneficial to describe the process of conceptual 

change for learners. Strike and Posner (1985) give four conditions for conceptual 

change to occur,

1. The learner must be dissatisfied with an existing conception.

2. There must be some understanding of a new conception.
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3. The new conception must seem plausible to the learner.

4. A new conception should suggest possibilities for further study.

These conditions put forth by Strike and Posner (1985) reflect the ideas of Posner et 

al. (1982), and these conditions are viewed to be the catalyst in the accommodation 

of a new conception.

Finally, the ideas of status and conceptual ecology are important for understanding 

an individual’s conceptual change. Hewson and Thorley (1989) recognize the necessity 

of both components in the following:

There are two major components to the model of conceptual change, the 

(status) conditions that need to be satisfied in order for a person to ex

perience conceptual change and the person’s conceptual ecology that pro

vides the context in which the conceptual change occurs and has meaning.

(p.541 Hewson, Beeth, k  Thorley, 1998)

Hewson and Hewson (1992) discuss the status an idea has for the person who is 

holding it and have indicated that the holder’s conception of an idea’s intelligibility, 

plausibility, and fruitfulness, help to determine its status. The more useful a person 

views an idea the higher its status. The higher the status of a concept the more 

plausible the concept is to the individual and hence the possibility of conceptual 

change arises.

As suggested by Stephen Toulmin (1972), those concepts which govern a concep

tual change will be referred to as a “conceptual ecology.” Hewson, Beeth and Thorley 

(1998) have discussed conceptual ecology as,

.. .  all the knowledge a person holds, recognizes that it consists of different 

kinds, focuses attention on the interactions within this knowledge base, 

and identifies the role that these interactions play in defining niches that
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support some ideas (raise their status) and discourage others (reduce their 

status), (p.201 Hewson et al., 1998)

In essence an individual’s conceptual ecology can be seen as their current conceptions. 

Therefore, a person’s conceptual ecology will influence the selection of new concepts 

that may be accommodated (Posner et al., 1982). Again an individuals’ conceptual 

ecology provides the context in which conceptual change occurs. Posner et al.(1982) 

suggest five components of an individual’s conceptual ecology.

Anomalies: The character of the specific failure of a given idea.

Analogies and metaphors: Suggest new ideas to make a concept intelligible.

Epistemological commitments: Views of what is considered successful explanation 

in mathematics and other standards for successful knowledge (i.e. elegance, 

economy, parsimony, and not being ad hoc.)

Metaphysical beliefs and concepts: Including metaphysical beliefs about mathemat

ics and metaphysical concepts of mathematics.

Other knowledge: Knowledge in other fields and competing concepts.

The ideas of status and conceptual ecology help to describe how an individual ac

commodates new conceptions in conceptual change learning. In summary the learner 

must be dissatisfied with an existing conception, have an understanding of a new 

conception, believe that the new conception can solve the problems presented by the 

original, and finally believe that the new conception shows potential for further ex

ploration and study. These competing conceptions are elements of the individuals 

conceptual ecology and the raise in status of the second conception may cause a con

ceptual change to occur as the second concept overcomes the dissatisfaction with the 

initial concept. Being able to compare these conceptions within conceptual change 

implies some reflection on the part of the learner. As stated by Beeth (1995),
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. . .  observing a critical demonstration or event, by itself, is not enough 

to produce a change in conceptual understanding. Given that a learner 

finds some event dissatisfying, it is necessary to examine their thinking 

about this event - to be metacognitive about the situation. The learner 

needs to examine what it is they are dissatisfied with, and the status and 

conceptual ecology components of a conceptual change provide a means 

of thinking about dissatisfaction, (p.4 Beeth, 1995)

Based on Beeth’s comments the role of the learners metacognitive activity and its 

relationship to conceptual change are important.

Metacognition

Learning is not a product of teaching, learning is a responsibility of the individual 

and cannot be shared, it must be pursued intentionally by the learner (Novak, 1985). 

Although learning cannot be shared, meanings can be shared, discussed, negotiated 

and agreed upon (Novak k  Gowin, 1984). If learning is the responsibility of the 

learner then the learner must have some powers of reflection in order to learn and 

must be able to relate meanings of conceptions within their conceptual ecology. It is 

plausible that the human mind allows an individual to acquire meanings for concepts 

and relate these meanings in essentially an infinite number of ways (Novak, 1985). 

This relation of meanings and reflection by the learner is referred to as metacognition. 

Metacognition can be defined as “the capacity to reflect on one’s own thinking, and 

thereby to monitor and manage it” (p.17 Greeno, Collins, k  Resnick, 1996) and 

has been studied under many different labels (e.g. metacomponents, self-regulated 

learning, metalearning). Theories of metacognition and the role of metacognition 

have been studied explicitly since the the late 1970’s by psychologists and researchers 

(Flavell, 1979; Novak, 1985; Sternberg, 1985; Brown, 1987; Beeth, 1995; Crowley, 

Siegler, k  Siegler, 1997; Novak, 1998; Georghiades, 2000).
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Flavell (1979) introduced metacognition to the field of cognitive psychology. Flavell 

(1979) considered metacognition to be an individual’s knowledge and regulation of 

their cognition. According to Flavell knowledge about one’s cognition includes three 

variables; person variables, task variables, and strategy variables (Flavell, 1979). Per

son variables refer to knowledge about one’s self and about others’ thinking (e.g. in

dividuals learning style). Task variables refer to the fact that different types of tasks 

require different types of cognitive demands (i.e. addition and integration). Finally, 

strategy variables refer to knowledge about metacognitive strategies for developing 

learning (i.e. reflection, journal writing, conversation).

Brown (1987) described the difference between an individuals knowledge about 

cognition and knowledge about metacognition. Knowledge about cognition tends to 

be consistent within individuals whereas knowledge about metacognition can be un

stable, age dependent, and change from situation to situation (Brown, 1987). Brown 

(1987) suggested that metacognition is more context than age dependent. For exam

ple, a child and an adult may not show metacognitive behavior in the same situations 

and an individual may show metacognitive activity in one situation but not in an

other.

Sternberg (1985) discussed “metacomponents” of an individual’s intelligence. “Meta

components” allow an individual to monitor and manage their cognitive resources and 

are considered a key feature of intelligence (Sternberg, 1985). “Metacomponents” such 

as identifying the nature of a problem, planning, and monitoring are consistent with 

metacognition as described by Flavell (1979) and Brown (1987).

The relationship between cognition and metacognition is that “...  cognition is 

involved in doing, whereas metacognition is involved in choosing and planning what to 

do and monitoring what is being done” (p. 177 J.Garofalo & Lester, 1985). There are 

multiple roles of metacognition, the role of planning and the role of self - regulation.
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Hennessey (1999) expands on this and gives five characterizations of metacognition,

1. An awareness of one’s own thinking.

2. An awareness of the content of one’s conceptions.

3. An active monitoring of one’s cognitive processes.

4. An attempt to regulate one’s cognitive processes in relationship to 

further learning.

5. An application of a set of heuristics as an effective device for helping 

people organize their methods of attack on problems in general, (p.6 

Hennessey, 1999)

As stated above, metacognition has been discussed under different names. Schunk 

(1996) discussed the role of self-regulated learning and Novak (1998b) discussed the 

role of metalearning. Schunk described self-regulated learning as, “self-generated 

thoughts, feelings, and actions, that are systematically designed to affect one’s learn

ing of knowledge and skills” (p.3 Schunk, 1996). Self-regulatory actions include a stu

dents’ self-efficacy; holding positive beliefs about one’s capabilities, the value of learn

ing, the factors influencing learning, and the anticipated outcomes of actions (Schunk,

1996). Educators have recognized the importance of students’ development of self- 

regulatory skills along with content knowledge and procedural skills (Schunk, 1996). 

Through his research with fourth graders’ understanding of fractions Schunk found 

that “. . .  providing students with a learning goal enhances their self-efficacy, skill, 

motivation, and task goal orientation, and that these outcomes also are prompted by 

allowing students to evaluate their performance capabilities or progress in learning” 

(p.15 Schunk, 1996).

Novak (1998b) describes meaningful learning as the act of learning by relating new 

information to ideas that the learner already knows (Novak, 1998b). Novak (1998b) 

suggested that there are three requirements of meaningful learning:
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1. Relevant prior knowledge: That is, the learner must know some in

formation that relates to the new information to be learned in some 

nontrivial way.

2. Meaningful material: That is, the knowledge to be learned must be 

relevant to other knowledge and must contain significant concepts 

and propositions.

3. The learner must choose to learn meaningfully. That is, the learner 

must consciously and deliberately choose to relate new knowledge to 

knowledge the learner already knows in some nontrivial way. (p.19 

Novak, 1998b)

Research has also examined situations that cause students to take part in metacog

nitive processes. Crowley et. al. (1997) researched the implications of students’ 

automation of cognitive processes on their metacognitive ability. In research with 

kindergarten students Crowley et al. (1997) found that metacognitive thinking was 

most likely to take place when the student had automated a lower level cognitive skill. 

Automation of cognitive skill strategies or “associative mechanisms” allows students 

more mental processing space to utilize for metacognitive activity (Crowley et al., 

1997).

Students’ attitudes, beliefs and expectations are important for their performance 

within a domain. Research suggests that attitudes and beliefs about mathematics will 

govern a student’s metacognitive activity within the domain (Lucangeli, Coi, k  Bosco, 

1997). Lucangeli et al. (1997) examined the metacognitive beliefs in mathematics 

and their relation to problem-solving performance of 155 fifth grade students. Poor 

problem solvers tended to take part in less metacognitive activity (Lucangeli et al.,

1997). Other research also has shown that metacognitive ability seems to be a general 

skill that spans across content domains (Veenman, Elshout, k  Meijer, 1997). Veenman
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et al. (1997) examined the metacognitive ability of 14 freshman and found that not 

only does metacognitive ability span domains but it seems to be partly independent 

of intelligence.

The foundations of metacognition were set in the early eighties and nineties and 

recently research has started to focus on the relationship between conceptual change 

and metacognition (Georghiades, 2000). While discussing PEEL (Project to Enhance 

Effective Learning) Georghiades (2000) states, “. . .  metalearning can be promoted 

and will facilitate conceptual change, even if it remains fragile and artificial, until 

perceived by students as meeting their own short-term goals” (p. 127 Georghiades, 

2000). It seems that metacognitive activity will make an individual more respon

sible for their learning. Once an individual feels a sense of responsibility they will 

become more active in the learning process and being active in the learning process 

is believed to enhance student achievement. “The equation is as follows: by being 

reflective, revisiting the learning process, making comparisons between prior and cur

rent conceptions, and being aware of and analyzing difficulties, learners gradually 

maintain a deeper understanding of the learned material” (p.128 Georghiades, 2000).

The different descriptions above can all be grouped under the umbrella metacog

nitive strategies. In summary, utilizing metacognitive strategies can cause students 

to analyze their own conceptions. Therefore, it is important to develop teaching- 

learning situations that promote students’ participation in metacognitive activities. 

In summary “metacognitive strategies are strategies that empower the learner to take 

charge of her or his own learning in a highly meaningful fashion” (p.l Novak, 1998). 

Metacognitive activities involve students in the monitoring of their own learning and 

their own conceptions and hence can be the catalyst for conceptual change to occur 

(Gunstone k  Northfield, 1992).
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Learning in the Context of this Study

Human understanding has two dimensions. Humans acquire, possess and make 

use of their knowledge while at the same time they are aware of their activities as 

knowers (Toulmin, 1972). The learning theories that explain human understanding 

as described by Toulmin (1972) are conceptual change and metacognition. These 

two theories of learning will collectively provide the lens through which this study 

will view changes in participants’ conceptions. By focusing on conceptual change 

and metacognition, insight will be gained into characteristics of participants’ posed 

problems, beliefs about mathematics, and beliefs about teaching and learning math

ematics. As participants are introduced to new ways to think about mathematics, 

they have the opportunity to obtain new conceptions and change current concep

tions. This study will view learning as having occurred when new conceptions are 

incorporated into an individual’s cognitive structures by replacing or modifying cur

rent conceptions. As mentioned previously, Strike and Posner (1985) have called 

this replacement or modification of conceptions “accommodation.” This study will 

be interested in participants’ accommodation of conceptions related to their problem 

posing, beliefs about mathematics, and beliefs about teaching and learning mathe

matics.

As noted above conceptual change theory grew out of understanding changing 

scientific ideas and phenomena and science education research. It must be consid

ered whether mathematics is a candidate for the application of a conceptual change 

theory of knowledge and learning. In a discussion of the historical and evolutionary 

development of mathematics Toulmin (1972) states,

. . .  the development of mathematical disciplines exposes their concepts 

and methods to transformations as profound in their own way as the 

natural sciences. Such fundamental concepts as “validity” and “rigour” ,
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“elegance” and “proof’, and “mathematical necessity undergo the same 

sea-changes as their scientific counterparts “soundness,” “cogency,” and 

“simplicity,” “relevance,” and “physical necessity.” Even the basic stan

dards of “mathematical proof’ have themselves been reappraised more 

than once since Euclid’s time. The result is that concepts, methods, and 

intellectual ideals of mathematics are not more exempt from the “ravages 

of time” . . .  than those of any other intellectual discipline, (p.252 Toulmin,

1972)

“If Toulmin is correct, and if no objective and external standard exists to deter

mine the superiority of mathematical theories over each other, then mathematics 

becomes a candidate for the application of a conceptual change theory of knowledge” 

(p.248 Confrey, 1981). As discussed previously, Confrey (1981) gave three tenets of 

the theory of conceptual change. It is important to consider if mathematics follows 

these three tenets and hence, as a discipline, is a candidate for the theory of concep

tual change. First, Confrey (1981) says that knowledge is not static. Often people 

consider mathematics as an absolutist domain, the epitome of certainty, immutable 

truths, and irrefutable methods. On the contrary, as long as humans posses the abil

ity to reflect on what they believe is knowledge and what they believe it means to 

learn, mathematics will be changing. Second, mathematicians determine the values 

of mathematical knowledge, the truth conditions of mathematics knowledge and the 

standards of evidence. Mathematics knowledge is not defined externally, it is dis

covered by mathematicians who decide on its truth value. Finally, it is clear that 

mathematical theories influence the progress of the domain and explain different phe

nomena. Therefore it seems that mathematics is a candidate for the application of 

a conceptual change theory of learning. This theory in the context of this study will 

be described in more detail below.
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This framework will also describe outcomes of learning via conceptual change and 

metacognition and then how these outcomes influence pre-service teachers learning. 

Conceptual change involves both building conceptions of new ideas in relation to 

past understanding and modifying understanding which may be at odds with natural 

explanation (Hennessey, 1999). Metacognition involves an individuals’ reflection on 

their cognition and their building of conceptions. Novak’s conception of meaningful 

learning helps describe the interaction of conceptual change and metacognition. No

vak (1998b) discusses the outcomes of meaningful learning and discusses what this 

research views as the outcome of the interaction of conceptual change and metacogni

tion. Novak (1998b) wrote, meaningful learning includes the learner’s “non-arbitrary, 

non-verbatim, substantive incorporation of new knowledge into cognitive structure.” 

Also involved in meaningful learning is the learners’ effort to link new knowledge 

with higher order concepts in their cognitive structure, that learning is related to 

experiences with events, and that the learner has made a commitment to relate new 

knowledge to prior learning (Novak, 1998b). Since meaningful learning requires rele

vant prior knowledge, and we know that the quantity and quality of an individual’s 

prior knowledge varies dependent on the concept, any learner has limitations to the 

degree of meaningful learning that can occur related to a given concept (Novak, 

1998b).

Conceptual Change and Metacognition in Teacher Education

The research community has not utilized a single theory for describing change in 

teachers’ beliefs. This research takes the perspective that changes in teachers’ beliefs 

can be explained within the context of the theory of conceptual change (Gunstone k  

Northfield, 1992; Taylor, 1990). Taylor (1990) discussed the application of concep

tual change theory to teachers’ beliefs. Following the stages of conceptual change 

suggested by Posner et al. (1992) Taylor suggested that teachers should be made
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aware of their “subjectively reasonable beliefs” that shape their classroom practices 

and teachers should then have an alternative belief “made available” to them through 

pre-service of inservice education. Convincing reasons for “adopting” the new belief 

must be clear to teachers, and finally teachers need to experience success utilizing the 

“new perspective” in their practice. Pre-service teachers cannot immediately expe

rience success utilizing the “new perspective” in their practice but can consider the 

benefits of their “new perspective” for their practice and consider the possible student 

outcomes if they were to adopt their “new perspective” in their practice.

Gunstone and Northfield (1992) highlight the role of conceptual change and metacog

nition in pre-service teacher education,

Conceptual change in teacher education then occurs when the student 

teachers, in an informed and self-directed way, recognize, evaluate and 

decide whether or not to reconstruct existing ideas and beliefs. Conceptual 

change is necessary, variously for individual student teachers, in three 

areas:

1. ideas and beliefs about teaching and learning and roles appropriate 

for teachers and learners (this includes both the context of their own 

learning in the pre-service program and the context of their teaching 

of pupils in schools);

2. ideas and beliefs about the discipline content and skills students will 

teach, science in this case, and epistemological issues surrounding 

this content such as the nature and purpose of observation in science 

and science learning;

3. ideas and beliefs about themselves, (p. 10 Gunstone k  Northfield,

1992)
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Pre-service teachers must understand their relevant ideas and beliefs, evaluate these in 

terms of what learning is to be learned and then decide whether or not to reconstruct 

their ideas and beliefs (Gunstone k  Northfield, 1992). To make such a decision is to 

be appropriately metacognitive. In particular, conceptual change and metacognition 

may be appropriate theories to help describe pre-service teachers’ views of teaching 

and learning. Gunstone and Northfield (1992) suggested that it takes,

. . .  recognition that any such change is in the hands of the pupil/student 

teacher. It is the pupil/student teacher who must first recognize his/her 

relevant ideas and beliefs, then evaluate these ideas and beliefs in terms of 

what is to be learned and how this learning is intended to occur, and then 

him/herself decide whether or not to reconstruct their ideas and beliefs.

(p.8 Gunstone k  Northfield, 1992)

In this context metacognition is the learner’s self-directed approach to recognizing, 

evaluating and deciding whether they will reconstruct their conceptual ecology (Gun

stone k  Northfield, 1992).

Conceptual Change, Metacognition, and Problem Posing

Conceptual change, metacognition, and problem posing may interact in the con

text of this study. Problem posing experience and the instructional treatment are 

the vehicles that may influence characteristics of participants’ posed problems, be

liefs about mathematics, and beliefs about the teaching and learning of mathematics. 

In the context of this study participants were given the opportunity to take part 

in social learning situations through daily group activities that were related to both 

problem solving and problem posing. Beyond these daily activities students took part 

in problem posing activities both on homework assignments and in journal writing. 

It was not a goal of this research to explicitly promote or document metacognitive
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activity or conceptual change but it is the researcher’s belief that this introduction to 

problem posing and a new view of mathematics may help fill such gaps in curricula 

as mentioned by Novak (1985).

Whenever we.. .  assess curriculum, we find serious conceptual gaps or lack 

of explicit linkages between concepts, poor integration between events or 

objects presented and concepts, principles and theories needed to interpret 

observations of the events or objects, and little or no guidance to the 

student as to significant salient concepts versus peripheral or incidental 

concepts, (p.206 Novak, 1985)

It is this researcher’s belief that problem posing is one of the foundations of the 

development of mathematics as research mathematicians pose and solve mathematics 

problems. Recently mathematics educators have suggested the inclusion of problem 

posing in mathematics instruction (NCTM, 2000; Kilpatrick et al., 2001). Therefore 

it is not likely that pre-service teachers have experience posing mathematics problems 

or viewing mathematics from a problem posing perspective. The opportunity to view 

mathematics from a  problem posing perspective may cause pre-service teachers to 

reflect on the nature of mathematics and their future mathematics instruction. Un

derlying this study are three assumptions about participants’ interaction with problem 

posing that are based on the relationship between problem posing and mathematics, 

the two learning theories discussed previously, and the instructional treatment.

1. Problem posing will provide pre-service teachers a new perspective on mathe

matics, a perspective more in tune with mathematicians’ perspective of math

ematics, as mathematicians are problem posers.

2. Problem posing has the potential to trigger the necessary conditions for indi

vidual conceptual change to occur.
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3. Problem posing may provoke metacognitive activity in participants implying 

possible conceptual changes with respect to their beliefs about mathematics 

and beliefs about the teaching and learning of mathematics.

It is important to state that this research was entered with these three assumptions 

about problem posing and the possibilities for problem posing to influence metacog

nition and conceptual change, but this research was not entered into with any as

sumptions about the outcomes of participants interaction with problem posing.

Again documenting participants’ metacognitive activity was not a goal of this 

study, but it is important to understand that metacognitive activity related to par

ticipants’ beliefs about mathematics and beliefs about mathematics teaching and 

learning may have provoked conceptual change related to these beliefs. While engag

ing in problem posing activities prospective teachers may have been exposed to new 

conceptions about the teaching and learning of mathematics and problem posing. In 

turn, these new conceptions may gain status in their conceptual ecology. It was the 

goal of this study to document the changes, if any, in participants’ beliefs while at 

the same time exploring the characteristics of their problem posing.

A possible non-empirical example of the interaction of conceptual change and 

metacognition within the context of this study is as follows. A student may have en

tered this research with the conception that mathematics is solely a problem solving 

domain. As they are introduced to and experience problem posing the participant 

may begin to see problems with their view of mathematics as solely a problem solv

ing domain. The participant may ask themselves, “If mathematics is solely problem 

solving, who produces mathematics problems and how is the domain of mathematics 

furthered through research?” The new conception that mathematics is both a problem 

solving and problem posing domain may be considered by the participant. Through 

reflection this new conception may seem to the participant to answer the questions
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caused by their initial conception that mathematics is solely a problem solving do

main. Also their new conception suggests further research related to problem posing 

as they have limited experience posing mathematical problems. It is possible that 

through reflection the participant will see possible future study in the relationship 

between problem posing and the teaching and learning of mathematics. Thus the 

process of conceptual change has taken place and with the help of the participant’s 

metacognitive ability the new conception that mathematics is both a problem solving 

and problem posing domain has been accommodated.

This theoretical framework concludes with a concept map that shows the general 

interaction of the ideas presented previously. The concept map shows the interre

lationship between conceptual change and metacognition. As discussed previously 

the outcome of the the combination of conceptual change and metacognition is what 

Novak discussed as “metalearning” (Novak, 1998b). Also problem posing has been 

discussed as a possible catalyst for students’ metacognitive activity causing the ac

commodation of new conceptions related to problem posing, beliefs about teaching 

mathematics and beliefs about teaching and learning mathematics. Finally changes 

in either participants’ problem posing or beliefs may result in changes in the other.
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Chapter 4

Methodology

Research Design

This study incorporated problem posing in a mathematics content course for pre

service elementary and middle school teachers. This was an exploratory study that 

utilized some aspects of an instrumental case study (Stake, 1995). Stake (1995) 

describes an instrumental case study as a situation where studying the case is instru

mental in understanding a broader question and gives the following example,

... we will have a research question, a puzzlement, a need for general un

derstanding, and feel that we may get insight into the question by studying 

a particular case. For example, Swedish precollege teachers have a year to 

begin using a new student marking system passed by the Parliament. How 

will that work? . . .  We may choose a teacher to study, looking broadly at 

how she teaches but paying particular attention to how she marks student 

work and whether or not it affects her teaching, (p.3 Stake, 1995)

In the context of this study the instructional treatment was the incorporation of 

problem posing into the classroom instruction and curriculum and its effects on the 

whole class (n=19). The cases that were chosen by the researcher were the four 

students who volunteered to be interviewed throughout the semester.

There are four main components that play a role in this research; the instructional 

treatment, subjects, problem posing products, and participant outcomes. These com-
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ponents will be discussed below. Participants’ problem posing products and partici

pant outcomes related to their beliefs about mathematics and beliefs about teaching 

and learning mathematics are dependent on the instructional treatment and subjects. 

Problem posing products and participant outcomes will be discussed as part of the 

data analysis in Chapters 5 and 6.

Instructional Treatment

The semester long incorporation of problem posing into a mathematics content 

course for pre-service teachers was agreed upon by the classroom instructor and the 

researcher. The instructional treatment included three aspects, participant problem 

posing through problem re-formulation and problem generation, participant journal 

writing, and reading related to problem posing. All of the aspects of the instructional 

treatment discussed herein took place in conjunction with and as part of the expec

tations that the instructor set forth for the course. The course syllabus and weekly 

assignment sheets can be found in Appendix A.

Participants were asked to solve mathematics problems using a problem solving 

heuristic similar to Polya (1957). This was referred to as the four-step problem 

solving heuristic; understanding the problem, devising a plan, implementing the plan, 

and looking back. After solving problems using the four step heuristic on the first 

problem set, participants were then asked to use a five-step problem solving heuristic 

adding the fifth step, “pose a related problem”, on the remainder of the problem sets. 

Participants were asked to apply these heuristics to a subset of each problem set and 

in all cases were able to choose the problems to which they applied the heuristics. 

A time-line of problem sets and the utilization of these two heuristics are shown in 

table 4.1. The complete problem sets can be found in Appendix A.

Participants also were asked to generate problems from sets of given information. 

The researcher would suggest a set of given information to the instructor and after
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Set Due Date Task Topic

1 January 30th 

Week 2

2 problems using 4-step Problem solving

2 February l l t/l 

Week 4

2 problems using 5-step pos
ing 2 related problem for 
each

Problem solving and data 
analysis

3 February 20th 

Week 5

2 problems using 5-step pos
ing 2 related problem for 
each

Problem solving and mea
sures of central tendency

4 February 27th 

Week 6

2 problems using 5-step pos
ing 2 related problem for 
each

Data analysis

5 March 6th 

Week 7

1 problem using 5-step pos
ing 2 related problems and 
pose 1 related problem for 
every other problem

Probability

6 March 27th 

Week 9

Pose 1 related problem for 
each problem

Counting and probability

7 April 3rd 

Week 10

Pose 1 related problem for 
each problem

Graph theory and networks

9 May 8th 

Week 15

Pose 1 related problem for 2 
problems

Discrete mathematics

Table 4.1: Problem re-formulation tasks
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a dialogue between instructor and researcher a version would be adapted into home

work or journal writing. The sets of given information provided participants with the 

context of possible mathematics problems but did not include any questions. Partic

ipants were then asked to generate problems from the set of given information. The 

first problem generation task was presented in a prompted journal entry and included 

reflection on the problem posing process. The final two problem generation tasks were 

part of problem sets that were assigned for homework. Problem generation situations 

are shown in table 4.2.

Assignment Due Date Set of given information

Journal entry February 25th 

Week 6

Pose three to five problems from the following 
set of given information, Mrs. Smith’s and Mr. 
Jones’ fifth grade classes took the same mathe
matics test last week. You have been given all the 
graded exams and the answer key.

Problem Set #5 March 6th 

Week 7

Pose three problems from the following set of 
given information, You arrive at your friend’s 
home and they are sitting at a table with $20, 
a deck of cards, and red, white, and blue die.

Problem Set #6 March 27th 

Week 9

Pose two problems and provide a detailed solution 
for one, A roulette wheel has 18 red numbers, 18 
black numbers and 2 green numbers. A person 
bets on either an individual number or a color. A 
one dollar bet on an individual number pays $35, 
on black or red pays $1, and on green pays $12.

Table 4.2: Problem generation tasks

The problem re-formulation and problem generation aspects of the intervention 

provided participants the opportunity to pose mathematics problems. It was also a 

goal of the treatment to promote student reflection on the class activities, problem 

posing activities, and their beliefs about mathematics teaching and learning. Journal 

prompts and reading assignments were intended to be the catalyst for this reflection. 

Journal prompts, due dates, and the week of the semester the journal entry was due
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are shown in table 4.3.

As stated above, the researcher and instructor agreed on all aspects of the in

structional treatment. It is important to note that the final instructional treatment 

was not decided upon prior to the semester. The researcher and instructor developed 

a general instructional treatment prior to the semester and agreed on modifications 

throughout the course of the semester.

Participants and Course

Students enrolled in a mathematics content course for pre-service elementary and 

middle school teachers were the participants in this study. This audience was cho

sen because past research has shown that they have the ability to pose mathematics 

problems (Gonzales, 1994). Also if problem posing is going to become predominant 

in mathematics classrooms and curriculums as suggested by the NCTM (1989, 2000) 

and the NRC (2001) it is the researcher’s belief that pre-service teachers should have 

experience not only posing mathematics problems but reflecting on the role of prob

lem posing in the mathematics classroom. There were 20 students enrolled in the 

semester long course “Topics in Mathematics for Teachers” at the University of New 

Hampshire, 19 of those students agreed to serve as participants in this study. Four of 

the nineteen participants volunteered to be interviewed three times during the instruc

tional treatment and these four are the “cases” for this study. Participants included 

4 sophomores, 7 juniors, 6 seniors, and 2 graduate students working towards their 

masters degree in education. The 17 undergraduates were mathematics education or 

family studies majors who were seeking certification to teach at the elementary or 

middle school level. The four students who volunteered to be interviewed included one 

graduate student from the education department and three mathematics education 

majors within the mathematics department.

The course “Topics in Mathematics for Teachers” is the third in a sequence for
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Due Date Journal Prompt

January 30th 

Week 2

Compose and submit your mathematical autobiography.

February 11th 

Week 4

What did you learn about statistics from the paper clip game?

February 25th 

Week 6

Along with problem posing described in table 4.2 respond to the 
following questions, Describe the process you just went through 
to generate problems from this set of information? and Do you 
see any similarities between the problem solving and the problem 
posing process? Explain.

March 4th 

Week 7

Imagine that you are teaching and someone comes in to observe 
your classroom and a mathematics lesson that you are teaching. 
Write a description of your classroom and the lesson from the 
eyes of the observer. What would they see you doing during 
the lesson, what would they see the student’s doing, and what 
would they notice about your classroom? Also read and be ready 
to discuss “Promoting a problem posing classroom.” (English, 
1997)

March l l t/l 

Week 8

Write a brief reflection on how you think class is going this 
semester. Also read “Problem posing and critiquing: How it 
can happen in your classroom.” (English, Cudmore, & Tilley, 
1998c)

April 1st 

Week 10

Write a journal reflection about the exam.

April 15th 

Week 12

As you are posing related problems or posing problems from sets 
of given information who is your intended audience? Why? Does 
the audience change depending on the problem? Would you 
consider yourself better at posing problems as re-formulations 
or posing problems from sets of given information? Why?

May 6th 

Week 15

Do you think you will utilize problem posing in your future 
classroom? If so, in what ways? Please be as specific as possible.

May 13th 

Week 16

Write a reflection of your experience in the course this semester. 
The following questions may be helpful. What have I learned 
about myself as a learner of mathematics? What have I learned 
about myself as a prospective teacher of mathematics? How 
has my conception of mathematics or teaching changed? What 
questions do I still have?

Table 4.3: Journal prompts and readings
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elementary and middle school mathematics education majors and is offered in alter

nate years during the spring semester. The course is not offered for credit towards a 

B.S. in mathematics. The course included the following mathematics content; logic, 

statistics (graphs, measures of central tendency, measures of variation), probability 

(experimental, geometrical, and theoretical), problem solving using skills from statis

tics and probability, mathematical connections, and applications requiring calculators 

and computers. Appendix A includes the course syllabus, weekly assignment sheets, 

and problem sets that were assigned throughout the instructional treatment.

Data Collection

All of the nineteen participants agreed to have their course work analyzed for 

the study while four participants agreed to be interviewed three times during the in

structional treatment. The researcher collected pre- and post-assessments of problem 

posing and beliefs, classwork, homework, journal entries, interview transcripts, and 

classroom observations.

Pre- and Post-Assessments

As described in Chapter 1 a pre-assessment of participants’ problem posing and 

a pre-assessment of participants’ beliefs about mathematics were given on the first 

day of class, January 23, 2002. The assessment of problem posing was completed in 

class and the assessment of beliefs was completed outside of class and collected on 

January 28, 2002. Both post-assessments were completed in class on May 13, 2002. 

For all of the in-class assessments, the researcher read and explained the directions to 

participants and gave them 25 minutes to complete each assessment. It was explained 

to participants that information could be added in the problem posing assessment. 

The assessments of problem posing and beliefs can be found in Appendix B.
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Classwork, Homework and Journals

The researcher observed each class which included taking observation notes and 

collecting all materials for that class, including class activities, homework assignments 

and weekly assignment sheets in order to witness understand student interaction and 

have a sense of the everyday class activities. Homework and journals were collected 

as they were handed in by the participants. The researcher would immediately photo

copy homework and journal entries and forward the ungraded work to the instructor. 

The participant who declined participation in the study did not have any of their 

work examined by the researcher. The researcher did not examine any material after 

it had been graded or commented upon by the instructor.

Interviews

The participants who volunteered to be interviewed were each interviewed three 

times during the semester. The first round of interviews took place between January 

31, 2002 and February 13, 2002, the second, third and fourth week of classes and 

focused on participants’ beliefs about mathematics and initial beliefs about problem 

posing. All four subjects had been exposed to the four-step problem solving heuristic 

prior to the first interview. The interview dialogue revolved around the questions in 

table 4.4. The goal of the questions during the first interview was to help provide the 

researcher information to develop a description of participants’ beliefs about mathe

matics, beliefs about teaching and learning mathematics, and initial thoughts about 

problem posing.

The second round of interviews took place between March 27, 2002 and April 3, 

2002, the ninth and tenth weeks of the semester. At this time in the instructional 

treatment, all four participants had experience posing mathematics problems through 

both problem re-formulation and problem generation. After approximately one month
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Question

1 How do you define mathematics?

2 How do you define mathematical thought?

3 Is mathematics a static body of knowledge? Explain?

4 How do you view mathematics teaching?

5 What are the attributes of a good mathematics teacher?

6 What are the attributes of a good mathematics student?

7 What is problem posing?

8 Are there implications of problem posing for classroom instruction?

9 Describe a typical mathematics classroom teaching experience?

Table 4.4: Questions on interview 1

of experience posing problems, the second interview was utilized to try to understand 

characteristics of participants’ posed problems, participants’ problem posing process, 

and their beliefs about problem posing at this stage of the instructional treatment. 

During interview two, participants were asked to generate problems from two sets of 

given information. The sets of information can be found in table 4.5. Participants 

were given as much time as they needed to pose problems, they were asked to select 

the best problem they posed for each situation and to explain why that problem 

was chosen. To complete the second interview dialogue between the researcher and 

participants was related to the questions in table 4.6.

The third round of interviews took place between May 7, 2002 and May 10, 2002, 

the fifteenth week of the semester. The third interview focused on both problem 

posing and beliefs questions. To begin the interview participants were shown two 

examples of concept maps. The two concept maps were examples of student work 

in which they had mapped all concepts which they felt were related to oceans (No-
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Set

1 You have decided to do a survey about students spring break travel 
plans. With some help from your friends you have surveyed 300 stu
dents and collected the following information from each.

1. Whether or not they travelled for spring break? If so, where?

2. How much money they spent on travelling.

3. How they rate their spring break experience from 1 to 10.

2 Instead of working this summer you have decided to drive cross country 
with your best friend.

Table 4.5: Problem posing on interview 2

Question

1 Do you feel like the introduction to problem posing this semester has 
been beneficial? If so, why? If not, why not?

2 Do you think problem posing should be incorporated in all levels of 
mathematics education? Explain.

3 Will you utilize problem posing in your future classroom? Explain.

4 Can you give an example of a situation where you may find problem 
posing beneficial?

5 How do you think viewing mathematics from a problem posing perspec
tive differs from a problem solving perspective? Could students benefit 
from experiencing this difference?

6 How do you think students will benefit from being introduced to prob
lem posing?

7 Do you believe you are better at posing problems as extensions or from 
sets of given information? Explain.

8 How would you define a good mathematics problem? How do you judge 
whether you have posed a good problem?

Table 4.6: Questions on interview 2

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



75

vak, 1998). Participants were asked to create and explain their own concept map for 

problem posing. If participants did not explicitly define problem posing, while ex

plaining their concept maps, they were asked to do so. After discussing their concept 

maps, participants were asked to read and react to their pre-assessment of problem 

posing and their pre-assessment of beliefs about mathematics. The assessments had 

not been coded by the researcher prior to this reaction. Participants were asked to 

discuss anything that surprised them about their responses to the assessments and 

anything that they might change after looking back. Finally, if it had not been dis

cussed during the interview, participants were asked to explicitly define mathematics 

and describe a good mathematics teacher in order to compare their beliefs to the first 

interview. The third interview was utilized to try to describe any changes that may 

have occurred in these participants’ beliefs and to understand participants’ views of 

problem posing.

Data Coding and Analysis

Problem Posing Products

Problem posing products refer to mathematical statements posed by participants 

through problem re-formulation or problem generation during the instructional treat

ment. If the product was a result of a problem re-formulation task it was analyzed 

to determine its relation to the original problem. If the product was the result of a 

problem generation task it was analyzed to determine its plausibility, sufficiency of 

information, and the number of steps needed for solution.

Participant Outcomes

Participants outcomes related to their beliefs about problem posing, beliefs about 

mathematics and beliefs about teaching and learning mathematics were a product of
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journal writing and interviews. The goal of analyzing these outcomes was to  describe 

participants’ beliefs before, during, and after the instructional treatment. Journal 

writing (whole class) and interview transcripts (four cases) were analyzed qualitatively 

to determine participant outcomes related to their beliefs about mathematics and 

beliefs about teaching and learning mathematics.

Coding of Posed Problems

Participants were asked to complete five problem generation tasks and seven prob

lem re-formulation tasks during the course of the instructional treatment. Problem 

generation occurred on the pre- and post-assessment of problem posing and three 

times during the instructional treatment. Problem re-formulation occurred on seven 

homework assignments during the instructional treatment.

All statements on both problem generation and problem re-formulation tasks were 

first classified as either mathematical or non-mathematical. All non-mathematical 

statements were discarded and were not coded further. If a statement was mathe

matical, it was then determined which type of problem posing activity the statement 

came from, either problem generation or problem re-formulation. The researcher then 

determined if the statement was related to the activity, and if so it was deemed a prob

lem posing product. If not a problem posing product the statement was discarded and 

not coded further. Problem generation products were coded using a scheme adapted 

from Leung and Silver (1997) and problem re-formulation products were coded based 

on their relationship to the original problem. Finally, during coding, the researcher 

determined if the problem included information that was not in the original set of 

information and had been added, whether the problem asked for explanation, and 

whether the problem was open-ended. Figure 4.1 is a flowchart of the problem coding 

process and problem coding is discussed in more detail below.
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Pre- and Post-Assessment of Problem Posing. The pre- and post-assessment of 

problem posing contained two sets of given information, (see Appendix B). The first 

set of given information was in the context of the student needing to purchase a new 

computer. This set of information contained numerical information (e.g. price of the 

computer, interest rate, etc.). The second set of information was set in the context of 

a university building a parking garage and did not contain any numeric information. 

Participants received a score for numeric posing based on the problems they generated 

from the first set of information since it contained numeric information. Similarly, 

a score for non-numeric posing was based on the problems participants generated 

from the second set of information. These two scores were combined to determine a 

participant’s total posing score.

Problem Generation Products. A statement that was determined to be a prob

lem posing product from a problem generation activity was then coded along three 

dimensions, plausibility, sufficiency of information, and the number of steps needed 

for solution. An implausible problem is one that contains an invalid assumption and 

hence is not plausible to solve even with more information. Implausible problems 

were not coded further since the researcher was interested in problems that contained 

a possible plausible solution (Leung, 1993). If a problem generation product was 

plausible, it was then determined by the researcher whether there was sufficient in

formation to solve the problem. Problems with extraneous information were coded as 

having sufficient information since they were solvable. There were very few instances 

of problems with extraneous information. If a problem was both plausible and con

tained sufficient information, it was then determined if multiple steps were necessary 

for solution. Multiple arithmetic steps were not the determining characteristic of a 

multi-step problem. A multi-step problem asked the problem solver to perform at 

least two mathematical tasks in order to reach the solution of the given problem.
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Problem posing products from problem generation activities were assigned a score 

as shown in table 4.7 and empirical examples of the problem generation coding are 

shown in table 4.8.

Score Criteria

0 points Problem posing product but not plausible.

1 point Plausible problem posing product without sufficient information.

2 points Single step plausible problem posing product with sufficient informa
tion.

3 points Multi-step plausible problem posing product with sufficient informa
tion.

Table 4.7: Problem generation scoring

Problem Re-formulation Products. A statement that was determined to be a prob

lem posing product from a problem re-formulation activity was then classified as 

having been posed using one of the following strategies,

Switch the Given and the Wanted: A problem in the same context as the original 

problem with the given and wanted information switched.

Change the Context: A problem with the same structure but context changed.

Change the Given: Same problem context and structure but the given information 

is changed.

Change the Wanted: Same problem context and structure but what the question 

asks for is changed.

Extension: An extension of the given problem.

Add Information: Same problem context and structure with added information.
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Set of given information: Mrs. Smith’s and Mr. Jones’ fifth grade classes 

took the same mathematics test last week. You have been given all the graded 

exams and the answer key.

0 points: Do you feel by the overall grades, that it would be fair to scale the 

grades or should students get the grade they earned?

1 point: From above (test data provided) which of these statistical tools best 

represents an average score of the test for Mrs. Smith’s class? Mr. Jones’ 

class?

2 points: There are 15 students in Mrs. Smith’s class and 12 students in Mr. 

Jones’ class. The median of all the tests from both classes is an 82. How 

many students scored above the median? How many students scored below 

the median?

S points: Find the median for the scores of both classes. Is this a good way 

to represent the average? Why or why not?

Table 4.8: Empirical examples of problem generation
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Re-word: Same problem different wording.

In coding problem re-formulation products, the researcher began with four categories 

(switch the given and wanted, change the context, change the given, add information) 

to organize the posed problems. These categories were from examples of problem 

re-formulation given to the participants during the second week of the instructional 

treatment, see Appendix B. Additional categories were developed by the researcher as 

needed until all problems belonged in at least one of the categories. It is also important 

to note that a single problem re-formulation could span two or more categories. For 

instance a participant could change the given and change the wanted of the same 

problem to produce a  new related problem. Empirical examples of the coding of 

problem posing products from problem re-formulation tasks are shown in table 4.9.

Interrater Reliability

Two additional raters volunteered to code problem generation and problem re

formulation products based on the coding schemes discussed previously. Raters coded 

a sample of posed problems, 90 from problem generation tasks and 75 from problem 

re-formulation tasks, based on a description of the coding scheme provided by the 

researcher.

With regard to problem generation coding, the researcher asked the raters to fol

low the scheme from the research which examined whether the problem was plausible, 

contained sufficient information, and if the problem required a multi-step solution pro

cedure. The researcher and raters agreed on the plausibility of 87 (96.7%) of the 90 

problems. Two reasons for discrepancies in plausibility coding arose, first the prob

lem was based on a previous problem, which the researcher coded as plausible and 

the rater as not plausible. Second, the problem was based on terminology from class 

that the rater was not familiar with. Of the 87 problems the raters and researcher
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Original Problem: The mean of three test scores is 74. What must a fourth 

score be to increase the average to 78?

Switch given and wanted: The mean of 3 test scores is 72. If the fourth test 

score is 87, what does the mean become?

Change the context and add information: A boy and a girl are on the same 

baseball team. After playing 2 games, Susie has a mean of 2 hits per game 

while Carl has a mean of 1 hit per game. If Susie gets 2 hits in the third game, 

how many hits must Carl get to have the same mean hits per game as Susie 

after 3 games?

Change the given: If you have two test scores of 71 and 65 what must the 

third score be for the mean to be 75?

Change the wanted: If the mean of three test scores is 74, but no two test 

scores are alike, what are three possible test scores?

Original Problem: Consider the integers from 1 to 100, inclusive. What is the 

difference between the sum of all the even numbers and the sum of all the odd 

numbers?

Extend: Consider the integers from 1 - 500 inclusive. What is the difference 

between the sum of all the even numbers and all the odd numbers? Can you 

find a pattern as to make it possible to easily determine it for integers from 1 

-  1000?

Re-word: What is the difference between the sum of all the even numbers and 

the sum of odd numbers from 1 to 100 inclusive?

Table 4.9: Empirical examples of problem re-formulation
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agreed were plausible both parties agreed 76 (87.4%) contained sufficient informa

tion. The main reason for discrepancy in coding related to sufficiency of information 

was that problems contained sufficient information for a mathematical solution but 

also asked what could be considered an opinion question. In this case, the raters 

coded these problems as not including sufficient information. Of the 76 problems 

agreed upon as containing sufficient information the researcher and raters agreed on 

whether 61(80.3%) required a multi-step solution procedure. The 15 problems that 

were not agreed upon at this stage of the coding were discussed and agreed upon by 

the researcher and raters.

With regard to problem re-formulation tasks the researcher asked the raters to 

code problems based on the seven categories that had been developed during the 

initial coding and to report if they felt other categories were necessary. Neither rater 

suggested another category. Of the 75 problems the researcher and raters agreed on 

the coding of 56 (74.7%) of the problems. The main discrepancies in coding occurred 

when the raters coded problems into multiple categories and often considered changing 

the given as an extension of a problem. The 19 problems that were not agreed upon 

initially were discussed by the researcher and raters and the researcher’s coding was 

agreed upon.

Data Analyses

Statistical Analyses. Participants’ scores on the pre- and post-assessment of prob

lem posing were determined by summing their scores for each statement they wrote. 

Using a statistical software package (Jumpln), posing scores were compared using the 

Tukey-Kramer multiple comparisons paired test to determine if there was a change 

in the groups problem posing after the instructional treatment. The results of the 

statistical analysis are presented in Chapter 5.

All posed problems were coded and trends in problem generation and problem
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re-formulation were examined by exploring tables and graphs of the data generated 

through the coding process. Tables were utilized to analyze posed problems through

out the instructional treatment and to highlight trends in participants’ posed prob

lems.

Qualitative Coding Analysis. The remaining data, including journal entries and 

interviews was analyzed using qualitative methods. All journal entries including math 

autobiographies and pre- and post-assessments of beliefs about mathematics were 

read and data was organized by categories or the frequency of statements and ideas 

that were occurring throughout the class. For example, as the researcher read par

ticipants’ mathematical autobiographies statements related to five categories were 

occurring throughout the class. Statements were coded into the following categories: 

mathematics preparation, pivotal moments related to teaching mathematics, piv

otal moments related to learning mathematics, teachers, and miscellaneous. In this 

case, pivotal moments relate to participants articulation of situations that were vital 

in shaping their view of teaching mathematics and vital in their development as a 

learner of mathematics. Similarly, categories related to participants’ problem posing, 

beliefs about mathematics, and beliefs about the teaching and learning of mathe

matics were the product of the coding of each task from the instructional treatment. 

These categories generated from the individual tasks were then organized into five 

broader categories,

• Beliefs about problem posing

• Beliefs about mathematics

• Beliefs about teaching mathematics

• Beliefs about learning mathematics
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• Beliefs about the relationship between problem posing and mathematics teach

ing and learning.

This two stage categorization led to themes related to participants’ beliefs related 

to the categories listed above and allowed the researcher to develop a rich descrip

tion of participants’ beliefs about mathematics, beliefs about teaching and learning 

mathematics, and beliefs about the relationship between problem posing and school 

mathematics.

Interviews. All interviews were transcribed. Interviews were coded and analyzed 

with regard to the five major categories mentioned above. The researcher coded the 

interviews by determining which statements made by the participants during the in

terviews were related to the categories: beliefs about problem posing, beliefs about 

mathematics, beliefs about teaching mathematics, beliefs about learning mathemat

ics, beliefs about the relationship between problem posing and mathematics teaching 

and learning. Comments in these categories and across interviews were then compared 

by the researcher to examine any changes in participants’ beliefs about mathematics, 

beliefs about the teaching and learning of mathematics, beliefs about problem pos

ing, or characteristics of their problem posing. The interviews helped the researcher 

provide a detailed description of each participants’ beliefs within the context of the 

instructional treatment.

Summary

Participants were introduced to problem posing through the instructional treat

ment. During the instructional treatment participants were given the opportunity to 

reflect on the nature of mathematics and the role of problem posing in the school 

mathematics classroom. Data was collected related to the five research questions 

presented. This data was then coded and analyzed by the researcher. Results of this 

data analysis are discussed in Chapters 5 and 6. Chapter 5 presents results related
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to participants problem posing while Chapter 6 presents results related to  partici

pants beliefs about mathematics, beliefs about teaching and learning mathematics, 

and beliefs about the relationship between problem posing and school mathematics.
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Chapter 5

Problem Posing Results

This chapter will examine results from problem posing tasks that participants en

gaged in during the instructional treatment. Both problem generation and problem 

re-formulation tasks will be discussed. Whole class results related to participants’ 

problem posing during the instructional treatment will be presented first, followed by 

results from the four individuals who were interviewed during the semester. First, 

qualitative whole class results will be presented in order to provide description of the 

participants as problem posers. Qualitative results will be followed by quantitative 

results related to the characteristics of the participants’ posed problems.

Whole Class Problem Posing: Qualitative

Qualitative results related to problem posing provide insight into participants’ 

beliefs about problem posing, problem posing process, problem posing audience, and 

growth as problem posers. Data related to these ideas was collected from the pre- 

and post-assessment of beliefs about mathematics and journal entries.

Beliefs About Problem Posing

On the pre-assessment of beliefs, participants were asked to respond to a problem 

posing situation that asked them to consider the role of problem posing in elemen

tary school mathematics. Participants’ responses to this task indicate that they were 

thinking about and developing initial beliefs about problem posing. Sixteen partic

ipants responded that problem posing would be beneficial with elementary school

87
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students and three participants stated that they were unsure about the possibilities 

of problem posing. On the pre-assessment, participants made statements about ben

efits and drawbacks of problem posing with elementary students. Benefits of problem 

posing suggested by participants included that problem posing would allow students 

freedom and creativity with numbers and relationships, and help develop students 

problem solving skills. Participants suggested that problem posing would help stu

dents develop a better understanding of problem solving because problem posing will 

force students to recognize pertinent information in a problem situation. As stated 

by one participant, “if children are able to organize information fairly well, they will 

become better problem solvers from writing their own. They will be able to recognize 

pertinent information and recognize a strategy to help them tackle the problem.”

Recognizing pertinent information may also cause students to think beyond the 

problem solving process and begin to develop ownership of the mathematics they are 

learning. As suggested by a participant, “I think that the benefits to students creating 

their own problems is that they then have the ownership of the task, they don’t just 

have problems to do, they have to think on another level.” On the pre-assessment, 

participants also suggested possible drawbacks of student problem posing, including 

that students may be confused by the problem posing task and that students may 

pose unsolvable problems. One participant suggested that “some students may create 

problems that are unsolvable [based on their current knowledge base] although they 

may think they have come up with good ones.” Therefore, as participants engaged 

in the instructional treatment they were working with a set of beliefs about problem 

posing and its possible benefits and drawbacks for students.

On the post-assessment of beliefs, participants mentioned the same benefits of 

problem posing while going into more detail relating problem posing to their future 

classrooms. The relationship between problem posing and teaching and learning
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mathematics, as suggested by the participants, will be discussed in detail in Chapter 

6 .

Problem Posing Process

Participants’ process of problem generation can be described from responses to 

their journal entry collected on February 25, 2002. This prompted journal entry asked 

participants to pose problems from a set of information and then respond to questions 

about the problem posing process and about similarities between problem posing and 

problem solving (see tables 4.2 and 4.3). Responses to this journal entry suggest a 

predominant process utilized by participants to approach the problem posing task 

from the journal prompt. This problem posing process can be generalized as; analyze 

the given information for mathematical content, then assess everything they knew 

about data comparison and data analysis, and then try to write interesting problems 

that were not just calculations. For example one participant wrote,

When looking at the types of given information for the problems that had 

to be generated, I immediately related them to data analysis and statis

tical problems. I pictured two lines of data that included the individual 

test scores of the two classes. That is the perfect set up for statistical 

problems. . . .  I continued to think of problems that required knowledge in 

different areas of statistics.

In this journal entry participants also stated that their past experiences and knowl

edge shaped their problem posing, as suggested by one participant, “. .. [the problem 

posing process]is basically using my past knowledge of questions that were asked to me 

and the information we have started learning about data analysis and just visualizing 

what kinds of things I could do with these numbers.”

Also in this journal entry seven participants related the problem posing process to 

the four step problem solving heuristic they had been using as part of the instructional
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treatment. Participants said they would apply a similar heuristic that starts by 

reading and understanding the given, understanding possible assumptions and added 

information, posing a problem, and looking back to be sure the problem is solvable. 

One participant describes this process in four steps,

1. Understanding the given information. Drawing conclusions and mak

ing minor assumptions.

2. Apply my assumptions and the given information to material we have 

been discussing in class.

3. Combine all the knowledge and design a workable problem.

4. Look back and see if the problem makes sense and asks what I had 

originally intended to ask. If not start back at #1.

Based on responses to the journal entry collected on February 25, 2002 it was 

hypothesized that participants had developed a process for posing mathematics prob

lems as problem generation and had begun to relate the problem posing and problem 

solving process. No participants commented on the problem re-formulation process 

on this journal entry and there is no data that highlights this process for participants.

Problem Posing Audience

In their journal entry collected on April 15, 2002 participants were asked to discuss 

their intended audience as they are posing mathematics problems and whether they 

are better at posing problems as problem re-formulation or as problem generation. 

Four out of the 16 participants who responded said that they are posing problems for 

their peers and that would be the case in any class which they are given a problem 

posing task. Eleven participants stated that they were posing problems for their 

future students and the grade range of their intended audience was second to eighth 

grade. With regard to their intended audience one participant wrote,
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As I am posing related problems or posing problems from a given set of 

information, my intended audience is usually the grade that I plan to teach 

in the future, which is from second to fourth grade. As I pose problems,

I think to myself, ‘At what grade level would students have to be a t to 

solve this?’ or ‘What prior knowledge must one have to be able to solve 

this problem?’

Eleven participants also said that their posing audience changed depending on the 

difficulty of the information. For example one participant stated,

However depending on the problem, sometimes my audience changes. For 

example, when we were doing the unit on probability and statistics, there 

were several ways that the concepts of the problems could be dissected and 

explored. Also, there are a variety of different strategies in which proba

bility and statistics problems can be solved, such as tree diagrams, charts, 

and simulations. This opened up many options for posing problems. It 

was possible to reframe questions to go in many different directions with

out limiting my audience to using just one solving method.

Ten of these participants said that the audience changed between grade levels, while 

one participant said that they may go from posing for peers to posing for a fourth 

grade class if the level of the mathematics was appropriate.

Also in this journal entry twelve of the 16 participants who responded said that 

they are better posing problems from sets of given information because it allows for 

more creativity and because re-formulation seems to lead them to the same questions, 

as they get stuck in the mode of the original problem. A participant provided the 

following description,

I would consider myself better at posing problems from sets of given in

formation as opposed to re-formulations. I am capable of doing both, but
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I feel that the problems I pose from given information are more in depth 

and engaging, I have to stretch and think more to come up with an inter

esting problem. I feel when posing a problem as a re-formulation I tend 

to take an easier route to posing a new problem by simply changing the 

information around a little. When I have come up with the entire problem 

alone, I am more apt to have a more creative and interesting final result 

since I had to put more time and effort into it.

The three students that believed they were better at problem re-formulation believed 

the inherent structure helped them pose problems and that it is easier to solve a 

problem and then pose problems based on it because they have a frame of reference 

for their problem posing.

In summary the majority of participants were posing problems for their future 

students, and the grade their problems were intended for was dependant on the diffi

culty of the material. Also, most participants believed that they were more capable 

of posing problems as problem generation.

Growth as Problem Posers

Participants growth as problem posers will be highlighted through quantitative 

data related to the characteristics of their posed problems. Through interaction 

with the participants and classroom observations it is the researcher’s belief that 

participants grew as problem posers and became more comfortable posing problems 

during the instructional treatment. One student discusses her growth throughout the 

instructional treatment with clarity, in the final journal entry of the semester which 

was collected on May 13, 2002.

However the greatest thing that I will take from this class is my newly 

discovered talent of problem posing. I remember back to the first class
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this semester when we were asked to do some problem posing for Todd’s 

research project. I was stumped by this task. Posing a problem from the 

given information was like another language to me. As the problem sets 

were assigned throughout the semester, I truly dreaded problem posing.

But about half way through the semester, it was like a light turned on 

in my head and I was suddenly able to create problems without all that 

difficulty. This allowed me to focus on posing valid challenging problems.

It was great to have the same packet handed out once again the last day 

of class for Todd’s research project, and being asked to pose as many 

problems as I could. This was such a valuable task for me because I 

could literally see my growth as a problem poser first hand! I sat there 

and posed problems for minutes without even taking a breather! It was 

a great feeling to have actually seen how much I grew in this one area of 

math throughout the course of the semester.

The intention of the results presented above was to describe the study participants 

as problem posers. In general participants in this study believed there were benefits 

of student problem posing, had developed a process for posing problems as problem 

generation, were posing problems for their future students, believed they were better 

at posing problems as problem generation, and developed as problem posers during 

the instructional treatment.

Whole Class Problem Posing: Quantitative

Problem posing took place during the instructional treatment as problem re

formulation and problem generation. As described in Chapter 4 problem generation 

products were coded as plausible, plausible with sufficient information, and plausible 

with sufficient information requiring a multi-step solution process. Table 4.8 shows 

examples from the data of problems coded in each category. Problem re-formulation
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products were also coded as explained in Chapter 4 and categorized into the following 

categories; switch the given and the wanted, change the context, change the given, 

change the wanted, extend, add information, re-word. As stated in Chapter 4 indi

vidual problems can span more than one category and examples of this coding can 

be found in table 4.9. Results of participant problem posing will be presented first 

with respect to problem generation on the pre- and post-assessment of problem pos

ing, followed by the remainder of the problem generation products and the problem 

re-formulation products.

Pre- and Post-Assessment

The pre-assessment of problem posing was administered on January 23, 2002 and 

participants were given 25 minutes in class to complete the task. The measure con

sisted of a set of information with numeric content and a set of information without 

numeric content. See Appendix B for the problem posing assessment. Pre-assessments 

were coded as described in Chapter 4, and each participant received a score for nu

meric posing (based on the set of information with numeric content), non-numeric 

posing (based on the set of information without numeric content), and total posing 

(sum of numeric and non-numeric posing). Table 5.1 shows the individual results of 

the pre-assessment.

A score of 10 on numeric posing implies that the participant posed problems that 

totalled in value to 10. One possibility being that the participant posed 3 multi-step 

problems (3 points each) and a plausible problem without sufficient information (1 

point). A participant’s score is some combination of plausible problems without suffi

cient information (1 point), plausible problems with sufficient information that require 

a single step solution (2 points), and plausible problems with sufficient information 

that require a multi step solution (3 points).
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Student Numeric Posing Non-numeric Posing Total Posing

1 5 5 10

2 4 5 9

3 5 6 11

4 3 1 4

5 14 4 18

6 7 1 8

7 7 5 12

8 2 3 5

9 4 3 7

10 7 1 8

11 3 1 4

12 1 2 3

13 5 3 8

14 4 4 8

15 2 8 10

16 7 5 12

17 6 5 11

18 3 2 5

19 10 2 12

Table 5.1: Results of the pre-assessment of problem posing
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The post-assessment of problem posing was administered on May 13, 2002 and 

participants were given 25 minutes in class to complete the measure. The post

assessment was the same task as the pre-assessment and participants were given the 

same directions and amount of time to pose problems. Post-assessments were coded, 

as described in Chapter 4, and each participant received a score for numeric posing, 

non-numeric posing and total posing. Individual results of the post-assessment are in 

Table 5.2

The same scoring scheme as the pre-assessment was used to determine partici

pants scores for numeric posing, non-numeric posing and total posing on the post

assessment. As a note, scores are not represented in the same order in tables 5.1 

and 5.2 since the measures were coded separately and scores were not recorded by 

individual.

Results on the pre- and post-assessment of problem posing were compared us

ing statistical software (Jumpln 4). Since one subject did not complete the post

assessment of problem posing her score on the pre-assessment was not used. A Tukey- 

Kramer multiple comparison matched pairs test was used to compare the means of 

all possible comparisons of numeric posing on the pre- and post-assessment and non

numeric posing on the pre- and post-assessment at the alpha equals .05 level. The 

means of the total posing score were not compared because they are linearly de

pendent on the numeric and non-numeric scores. The means of numeric posing and 

non-numeric posing on both assessments as well as the results of the Tukey-Kramer 

test can be found in figure 5.1.

The statistical analysis shows that the means of the following comparisons are 

statistically significant, Numeric pre and Numeric post, as well as Numeric post and 

Non-numeric post. These results imply that there was a statistically significant change 

in participants numeric problem posing from pre- to post-assessment and that this
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Student Numeric Posing Non-numeric Posing Total Posing

1 3 3 6

2 5 3 8

3 9 3 12

4 10 5 15

5 9 4 13

6 8 4 12

7 15 4 19

8 11 5 16

9 5 7 12

10 5 5 10

11 5 3 8

12 11 5 16

13 12 5 17

14 9 5 14

15 4 2 6

16 12 10 22

17 14 6 20

18 10 9 19

Table 5.2: Results of the post-assessment of problem posing
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meansmultiple2

Oneway Analysis of Score By Test
1 6 - i --------------------------------------------------------------

14-

12-

2 -

non-numericpost numeric post numeric pre AI1 Pairs

Means and Std Deviations
Level Number Mean Std Dev Std Err Mean Lower 95% Upper 95%
non-numeric post 18 4.88889 2.08324 0.49102 3.9091 5.869
non-numeric pre 18 3.61111 1.94449 0.45832 2.6965 4.526
numeric post 18 8.72222 3.54477 0.83551 7.0550 10.389
numeric pre 18 5.33333 3.12485 0.73653 3.8636 6.803

Means Comparisons
Dif=Mean[i]-Mean[j]

numeric post numeric pre non-numeric post non-numeric pre 
numeric post 0.00000 3.38889 3.83333 5.11111
numeric pre -3.38889 0.00000 0.44444 1.72222
non-numeric post -3.83333 -0.44444 0.00000 1.27778
non-numeric pre -5.11111 -1.72222 -1.27778 0.00000

Alpha= 0.05

Comparisons for all pairs using Tukey-Kramer HSD
q*

2.63372
Abs(Dif)-LSD

numeric post numeric pre non-numeric post non-numeric pre 
numeric post -2.42225 0.96664 1.41109 2.68886
numeric pre 0.96664 -2.42225 -1.97780 -0.70003
non-numeric post 1.41109 -1.97780 -2.42225 -1.14447
non-numeric pre 2.68886 -0.70003 -1.14447 -2.42225

Positive values show pairs of means that are significantly different.

Figure 5-1: Means and comparisons of results on pre- and post-posing assessment.
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change caused there to be a statistically significant difference in their numeric and 

non-numeric posing post instructional treatment.

It is also important to examine the means from the assessments and relate them 

to the coding schemed used. With regard to numeric problem posing participants 

average changed from 5.33 to 8.72. Since a multi-step problem granted 3 points there 

are two possibilities to explain the difference in participants averages from pre- to 

post-assessment. Participants were either able to write at least two more problem 

situations in the same amount of time or generated the same amount of problems 

but wrote more problems that were plausible, contained sufficient information and 

required a multi-step solution process. For non-numeric posing participants average 

changed from 3.61 to 4.88 so they were able to either write at least one more problem 

situation or pose the same number of problems with one more being multi-step. Along 

with these results the total posing average changed from 8.94 to 13.61 so participants 

were generating more problem situations total in the allotted time or generating more 

multi-step problems.

It is important to consider if participants were just writing more situations or 

if they were generating more plausible problems with sufficient information that re

quired a multi-step solution. Table 5.3 shows the totals and percentages of all prob

lems on the pre- and post-assessments of problem posing.

Statements Plausible Sufficient Multi-Step

Pre 101 96(95%) 55(54%) 16(16%)

Post 133 122(92%) 87(65%) 37(28%)

Table 5.3: Percentages of total on pre- and post-posing
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Table 5.3 shows that participants’ efficiency in posing problems increased, as they 

posed 122 plausible problems on the post-assessment compared to 96 on the pre

assessment and they posed more problems with sufficient information that required 

a multi-step solution. This change is seen by the raise in percentage of plausible 

problems with sufficient information from 54% to 65% and by the raise in percentage 

of multi-step problems from 16% to 28%. In conclusion, post-instructional treatment, 

participants were more efficient at posing problems and were able to pose a higher 

percentage of multi-step problems during problem generation.

Problem Generation Products

Participants had three opportunities to generate problems from sets of given infor

mation in addition to the pre and post-assessments. The first opportunity to generate 

problems from a set of given information was February 25, 2002 as part of a prompted 

journal entry. The set of given information was,

Mrs. Smith’s and Mr. Jones’ fifth grade classes took the same mathe

matics test last week. You have been given all the graded exams and the 

answer key.

This journal entry was assigned on February 20, 2002 so participants had 5 days to 

complete the problem posing task. The task asked participants to pose three to five 

problems based on the set of given information.

Participants second opportunity to generate problems from a set of given infor

mation was on problem solving 5 which was assigned on February 27, 2002 and due 

March 6, 2002. The set of given information was,

You arrive at your friend’s home and they are sitting at a table with $20, 

a deck of cards, and red, white, and blue die.
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The task asked participants to pose three problems based on the set of given infor

mation.

Participants final opportunity to generate problems from a set of given information 

was on problem solving 6 which was assigned on March 11, 2002 and due March 27, 

2002. The set of given information was,

A roulette wheel has 18 red numbers, 18 black numbers and 2 green num

bers. A person bets on either an individual number or a color. A one 

dollar bet on an individual number pays $35, on black or red pays $1, and 

on green pays $12.

The task asked participants to pose two problems based on the set of given informa

tion.

Table 5.4 shows the results of problem generation on these three tasks,

Statements Plausible Sufficient Multi-Step Add info.

Journal 2-25 42 39(93%) 34(81%) 28(67%) 12(29%)

Problem Solving 5 48 48(100%) 42(88%) 27(56%) 0(0%)

Problem Solving 6 23 21(91%) 20(87%) 14(61%) 0(0%)

Table 5.4: Results of problem generation during instructional treatment.

Table 5.4 shows that the range, over the three problem generation tasks, of the 

percentages of plausible problems, problems containing sufficient information and 

problems requiring a multi-step solution procedure were small. Therefore, character

istics of participants’ problem generation during the instructional treatment did not 

parallel the results of the pre- and post-assessment of problem posing. The increase 

in participants posing efficiency and ability to pose multi-step problems is not appar

ent from their problem generation during the instructional treatment. One difference
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in participants problem posing that is apparent from table 5.4. is that participants 

added information to 12 problems on the first problem generation task and did not 

add information to any problems on the following two tasks. This may be accounted 

for by the lack of numeric information in the first problem generation task (see Table 

4.2). On the first problem generation task participants may have found it necessary 

to add numeric information to make their posed problems solvable.

To summarize, the information on participants’ problem generation products im

plies that participants became more efficient problem posers and were able to pose 

more multi-step problems under a time constraint post instructional treatment. Also, 

characteristics of participants’ problem generation did not differ on the three tasks 

that were collected as part of course work. As a final description of participants’ 

problem generation Table 5.5 shows the aggregate data for problems generated over 

the course of the instructional treatment.

Statements Plausible Sufficient Multi-Step Add info.

Semester 347 326(94%) 238(69%) 122(35%) 86(25%)

Table 5.5: Aggregate problem generation.

Problem Re-formulation Products

Participants engaged in problem re-formulation on seven problem sets during the 

instructional treatment and on each problem set participants were able to choose 

which problems they re-formulated (the problem sets can be found in Appendix A). 

After categorizing the problem re-formulation products by re-formulation technique 

the researcher felt that there were two distinct sets of problem re-formulation tech

niques. The first set of techniques; switching the given and wanted, changing the 

context, and extension will be referred to as level 1 re-formulation techniques. It is
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the researcher’s belief that level 1 re-formulation techniques require a higher level of 

understanding and creativity on the part of the problem poser, since they include 

changing the structure of the problem. The second set of techniques; adding infor

mation, changing the given, changing the wanted and re-wording will be referred 

to as level 2 re-formulation techniques. It is the researcher’s belief that level 2 re

formulation techniques are more basic and do not require the problem poser to change 

the structure of the problem, these techniques only require a change of the surface 

features of the problem (i.e. numbers, what is asked for). The utilization of these two 

levels of problem re-formulation techniques will be discussed throughout this section. 

Another important distinction is that for each problem on the individual problem sets, 

both how many problem re-formulation techniques were utilized during re-formulation 

of that problem and how many problems were posed as re-formulations are reported. 

This decision was made because some problems posed as re-formulations utilized more 

than one technique and reporting the data this way allows for a better sense of how 

often each technique was utilized. Figure 5.4 is the key related to tables 5.6 through 

5.12.

Participants first problem re-formulation task was on problem set 2 which was 

due on February 11, 2002. The mathematical content focus of the problem set was 

problem solving and data analysis and participants were asked to solve two problems 

using the five-step heuristic while writing two re-formulations for each problem. Table 

5.6 shows the results of problem re-formulation on this problem set, first by problem 

and then aggregate.

As seen in Table 5.6 re-formulation on problem set 2 was dominated by changing 

the given and changing the wanted and 10 problems were re-formulated using multiple 

techniques. Level 1 problem re-formulation techniques were utilized 22% of the time 

and level 2 techniques 78% of the time. Participants heavily favored level 2 techniques
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PI = Problem 1

#  Prob. = Number of problems posed

#  Tech. — Number of re-formulation techniques utilized

S.G.W. = Switch the given and wanted

Context = Change the context

Add — Add information

Ext. = Extend the original problem

Given = Change the given information

Wanted = Change the wanted information

Re = Re-word the original problem

Figure 5-2: Key for tables 5.6 through 5.12

#  Prob. #  Tech. S.G.W Context Add Ext. Given Want Re

PI 9 13 0 0 2 0 3 8 0

P2 22 27 3 2 1 0 16 5 0

P3 13 14 3 0 0 4 5 1 1

P4 5 5 1 0 0 0 3 1 0

Total 49 59 7 2 3 4 27 15 1

Table 5.6: Problem re-formulation on problem set 2
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for problem re-formulation on this problem set but when utilizing level 1 techniques 

they favored switching the given and the wanted. Examples of problem re-formulation 

on problem set 2 follow,

Problem 2: The mean of three test scores is 74. What must a fourth score 

be to increase the mean to 78?

Changing the given: Given that 3 tests have a score of 90 what would the 

fourth test have to be to raise the mean to 100?

Switching the given and wanted: The mean of 3 test scores is 72. If the 

fourth test score is 87, what does the mean become?

Participants second problem re-formulation task was on problem set 3 which was 

due on February 20, 2002. The mathematical content focus of the problem set was 

again problem solving and data analysis and participants were asked to solve two prob

lems using the five-step heuristic while writing two re-formulations for each problem. 

Table 5.7 shows the results of problem re-formulation on this problem set, first by 

problem and then aggregate.

#  Prob. #  Tech. S.G.W Context Add Ext. Given Want Re

PI 13 13 2 0 1 2 4 4 0

P2 8 10 0 1 0 2 5 2 0

P3 24 24 9 2 0 0 13 0 0

P4 4 5 0 1 0 0 2 2 0

P5 7 11 0 1 2 2 2 3 1

Total 56 63 11 5 3 6 26 10 1

Table 5.7: Problem re-formulation on problem set 3
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As seen in table 5.7 problem re-formulation on problem set 3 was dominated 

by changing the given information of the original problem and 7 problems were 

re-formulated using multiple techniques. Participants utilized level 1 problem re

formulation techniques 35% of the time and level 2 problem re-formulation techniques 

65% of the time. Compared to problem set 2 there was an increase in the use of level 

1 techniques and similarly switching the given and the wanted was the most popular 

level 1 technique. Examples follow of problem re-formulation on this problem set,

Problem 3: A special rubber ball is dropped from the top of a wall that is 

sixteen feet high. Each time the ball hits the ground it bounces back only 

half as high as the distance it fell. The ball is caught when it bounces 

back to a high point of one foot. How many times does the ball hit the 

ground?

Switch the given and the wanted: If a special rubber ball is dropped from 

a wall with an unknown height and bounces four times and is caught at 

the height of its fourth bounce at two feet. If we know that every time 

the ball bounces it only bounces back half the distance as the distance it 

fell. How high is the wall the ball dropped off of originally?

Change the given: A special rubber ball is dropped from the top of a wall 

that is 768 feet tall. Each time the ball hits the ground it bounces back 

only one-fourth as high as the distance it fell. The ball is caught when it 

bounces back to a high point of 3 feet. How many times does the ball hit 

the ground?

Participants third problem re-formulation task was on problem set 4 which was 

due on February 27, 2002. The mathematical content focus of the problem set was 

data representation and analysis and participants were asked to solve two problems 

using the five-step heuristic while writing two re-formulations for each problem. Table
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5.8 shows the results of problem re-formulation on this problem set, first by problem 

and then aggregate.

#  Prob. #  Tech. S.G.W Context Add Ext. Given Want Re

PI 12 13 1 1 0 0 7 4 0

P2 14 16 0 0 1 0 11 4 0

P3 1 1 0 1 0 0 0 0 0

P4 7 7 4 1 2 0 0 0 0

P5 8 8 1 0 0 0 7 0 0

Total 42 45 6 3 3 0 25 8 0

Table 5.8: Problem re-formulation on problem set 4

Table 5.8 shows that on problem set 4 participants are still relying on changing 

the given information as a problem re-formulation technique and that they only posed 

3 problems using multiple techniques. On this problem set level 1 techniques were 

only used to pose 20% of the problems and level 2 techniques were used to pose 80% 

of the problems. This is a decline from problem set 3 in the use of level 1 techniques, 

but is almost identical to problem set 2. As with problem sets 2 and 3 participants 

favor switching the given and the wanted as a level 1 technique. Examples of posed 

problems on this problem set follow,

Problem 5: The average of seven numbers is 49. If 1 is added to the first 

number, 2 is added to the second number, 3 is added to the third number,

4 is added to the fourth number, and so on up to the seventh number, 

what is the new average?

Changing the given: The average of 11 numbers is 121. If 1 is added to 

the first number, 2 to the second number, and so on up to the eleventh

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



108

number, what is the new average?

Switching the given and the wanted: The average of seven numbers is 49.

Each of the data points were increased by the same amount. The new 

average is 53, what value was each data point increased by to raise the 

mean?

Participants fourth problem re-formulation task was on problem set 5 which was 

due on March 6, 2002. The mathematical content focus of the problem set was chance 

and probability and participants were asked to solve one problem using the five-step 

heuristic while posing two re-formulations and to pose one re-formulation for each of 

the other three problems. Table 5.9 shows the results of problem re-formulation on 

this problem set, first by problem and then aggregate.

#  Prob. #  Tech. S.G.W Context Add Ext. Given Want Re

PI 10 10 0 0 1 2 5 0 2

P2 12 14 3 0 3 0 5 3 0

P3 7 7 0 0 0 0 0 7 0

P4 11 14 0 1 1 0 7 5 0

Total 40 45 3 1 5 2 17 15 2

Table 5.9: Problem re-formulation on problem set 5

Table 5.9 shows that like problem set 2 participants relied on changing the given 

and changing the wanted to re-formulate problems on this problem set and they used 

multiple techniques to re-formulate 5 problems. As with the previous problem sets 

switching the given and wanted was the most utilized level 1 re-formulation technique 

although level 1 techniques were used only 13% of the time. Level 2 techniques were 

utilized 87% of the time, the most of any problem set at this point in the instructional
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treatment. Examples of re-formulated problems from problem set 5 follow,

Problem 2: In a random drawing of one ticket from a set numbered 1 

through 1000, you have tickets 8775 through 8785. What is your proba

bility of winning?

Switch the given and the wanted: You have a probability of 3/20 of winning 

and received the following numbers from a drawing 122-136. What was 

the total number of tickets distributed for the event?

Change the given and change the wanted: If Beth has 19 tickets for a 

drawing with 100 total tickets and Veronica has 4 tickets for a drawing 

with 20 tickets, who has a better probability of winning?

The participants fifth problem re-formulation task was on problem set 6 which 

was due on March 27, 2002. The mathematical content focus of the problem set was 

counting and probability and participants were asked to pose one re-formulation for 

each problem. Table 5.10 shows the results of problem re-formulation on this problem 

set, first by problem and then aggregate.

#  Prob. #  Tech. S.G.W Context Add Ext. Given Want Re

PI 9 11 0 0 1 2 0 8 0

P2 9 11 3 2 0 1 3 2 0

P3 8 8 0 1 0 1 6 0 0

P4 11 12 0 1 1 1 7 1 1

Total 37 42 3 4 2 5 16 11 1

Table 5.10: Problem re-formulation on problem set 6
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Table 5.10 shows that as with problem sets 2 and 5, participants problem re

formulation on problem set 6 relied on changing the given and changing the wanted. 

Also participants posed 5 problems using multiple techniques. Level 1 techniques 

were 28.5% of the total number of techniques used and level 2 techniques were 71.5%. 

Compared to the previous problem sets, except problem set 3, there is an increase in 

students utilization of level 1 problem re-formulation techniques. Also participants 

utilized extension instead of switching the given and wanted most frequently of the 

level 1 techniques. Examples of problem re-formulation on problem set 6 follow,

Problem 4: Six people enter a tennis tournament. Each player played 

each other person one time. How many games were played?

Change the context: If there are 25 people invited to your house for a 

party and everyone shakes everyone elses hand at the party how many 

handshakes are there?

Extension: 3 different tournaments, one with 4 people, one with 5 people, 

one with 6 people. Each player played the other person one time. How 

many games were played in each tournament? Is there a pattern? Can 

you find a rule?

The participants sixth problem re-formulation task was on problem set 7 which 

was due on April 3, 2002. The mathematical content focus of the problem set was 

discrete mathematics and participants were asked to pose one re-formulation for each 

problem. Table 5.11 shows the results of problem re-formulation on this problem set, 

first by problem and then aggregate.

Table 5.11 shows that participants relied on the techniques of changing the given 

and extension for problem re-formulation on problem set 7. Also participants used 

multiple re-formulation techniques to pose 2 problems. Participants used level 1
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#  Prob. #  Tech. S.G.W Context Add Ext. Given Want Re

PI 13 13 0 1 3 5 4 0 0

P2 10 10 0 0 0 3 5 2 0

P3 12 14 0 2 0 5 4 3 0

Total 35 37 0 3 3 13 13 5 0

Table 5.11: Problem re-formulation on problem set 7

problem re-formulation techniques 43% of the time and level 2 techniques to re

formulate 57% of the time. Again, the trend of an increase in participants utilization 

of level 1 techniques continued and participants utilized extension as often as changing 

the given which has dominated the rest of their problem re-formulation. Examples of 

problem re-formulation on problem set 7 follow,

Problem 2: Consider networks with 0,1, 2, 3, and 4 odd vertices. Make a 

conjecture about the number of odd vertices that are possible in a network. 

Explain your thinking.

Change the given: Consider networks with 0, 1, 2, 3 and 4 even vertices.

Make a conjecture about the number of even vertices and the traverse 

ability of the network. Explain.

Extension: Knowing that you can create a network with an even number 

of odd vertices, is it possible for these types of networks to be traversable?

The participants final problem re-formulation task was on problem set 9 which was 

collected on May 8, 2002. The mathematical content focus of the problem set was 

algebraic thinking and participants were asked to re-formulate two problems. Table 

5.12 shows the results of problem re-formulation on this problem set, first by problem 

and then aggregate.
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#  Prob. #  Tech. S.G.W Context Add Ext. Given Want Re

PI 8 10 1 3 0 0 4 2 0

P2 7 8 0 0 3 0 4 1 0

P3 6 6 0 0 0 4 2 0 0

P4 5 6 0 2 0 0 4 0 0

P5 5 5 1 0 0 1 3 0 0

Total 32 35 2 5 3 5 17 3 0

Table 5.12: Problem re-formulation on problem set 9

As with earlier problem sets changing the given was the most utilized problem re

formulation technique on problem set 9. Also participants re-formulated 3 problems 

using multiple techniques. Level 1 re-formulation techniques were utilized to re

formulate 34% of problems and level 2 techniques to re-formulate 66% of the problems. 

The trend in participants utilizing more level 1 techniques continued on this problem 

set and participants utilized extension and changing the context more than switching 

the given and wanted. Examples of problem re-formulation on this problem set follow,

Problem 1: A whole brick is balanced with |  of a pound and |  of a brick.

What is the weight of the whole brick?

Change the context: If a bottle and a glass balance with a pitcher, a 

bottle balances with a glass and a plate, and two pitchers balance with 

three plates, can you figure out how many glasses will balance with a 

bottle?

Problem 5: Two different numbers are drawn from the set {2, 3, 4, 5,

6} without replacement. What is the probability that the product of the 

numbers selected is a multiple of 3?

Extension: Design the problem using the 5 numbers written on separate
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sheets of paper and box to hold them. Reach in and randomly pull out 2 

numbers. Record your sets 40 times. What is your experimental probabil

ity and how does it relate to the theoretical probability? For the purpose 

of this activity consider the sets with the same two numbers the same.

(For example 3,4 is the same as 4,3)

In summary, a trend developed in participants’ problem re-formulation during the 

instructional treatment. With the exception of problem set 3 participants utilized 

more level 1 re-formulation techniques as they gained more experience with problem 

re-formulation. Participants choice of level 1 techniques also became more diverse 

during the instructional treatment. Switching the given and wanted dominated the 

use of level 1 techniques early in the instructional treatment and this gave way to the 

use of both extension and changing the context later in the instructional treatment. 

By utilizing more level 1 re-formulation techniques, as participants gained experience 

with problem re-formulation, they demonstrated creativity and the ability to generate 

a more diverse set of problems from a previously solved problem.

Individual Problem Posing

This section will provide detailed description related to the problem posing of 

Bill, Carrie, Laura and Liz. Description will begin with each individual’s beliefs 

about problem posing and changes in these beliefs during the instructional treatment. 

Beliefs about problem posing will be followed by a description of the individual’s 

problem posing process. Finally, based on problem posing activities the individuals 

development as a problem poser during the instructional treatment will be described. 

It will be a goal of these descriptions to relate individual results to the whole class 

results described previously in this chapter.
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Bill

At the time of this research Bill was in his final semester as a mathematics ed

ucation major working towards certification to teach elementary and middle school 

mathematics. Bill began his college career as a business major and decided to  become 

a teacher after substitute teaching during his freshman year of college. Bill decided 

to become a mathematics teacher because he felt that a degree in mathematics was 

prestigious and a sign of intelligence.

Bill’s Beliefs About Problem Posing. Before looking at specific results related to 

characteristics of Bill’s posed problems, Bill’s beliefs about problem posing and the 

development of his beliefs during the instructional treatment will be examined. Ini

tially, Bill had a conception of problem posing as a tool to articulate real world 

applications in mathematics as seen from his definition of problem posing during 

his first interview on February 4, 2002, “.. .  putting words around applications.” Bill 

highlighted his definition with the following example, “yeah, like 67 minus 23 . . .  Sue 

has 67 dollars and the car cost $23. Does she have enough money to buy it? If so 

how much money does she have left? Could she get two cars?” Bill also stated during 

his first interview that problem posing did not always involve real world examples, 

but he was not able to give an example of such a situation. Although Bill held a 

conception of problem posing he did not see any necessity for it or any benefits of 

problem posing. Evidence of this comes from his second interview on March 27, 2002 

when Bill stated that he only took part in problem posing because it was required of 

him in class and not something that he thought was beneficial, “I do it because I am 

supposed to and I do it for extra points. ..  no I don’t think it is helpful.” After more 

experience with problem posing Bill changed his attitude towards problem posing and 

articulated this change during his final interview on May 8, 2002,

On a different note I also like the instruction and persistence of problem
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posing in the classroom although I am not sure how to implement it on a 

regular basis I feel I am better equipped to apply it in certain situations.

Thus, at the end of the instructional treatment Bill began to see benefits of problem 

posing and was not solely going through the motions of problem posing because it 

was a class requirement. As highlighted above, Bill’s beliefs about and attitudes 

towards problem posing developed during the instructional treatment from feeling 

that problem posing is just a process he is forced to take part in to beginning to 

believe that there are benefits of student problem posing.

Bill’s Problem Posing Process. It is also important to understand how Bill views 

the problem posing process before examining characteristics of his posed problems. 

Bill’s problem posing process includes considering the mathematical content he is 

posing problems related to, posing problems, then considering the difficulty of his 

posed problems and whether his future students will understand his posed problems. 

Evidence of Bill’s views of the problem posing process comes from journal entries and 

interviews.

Bill described his problem generation process on the February 25, 2002 journal 

entry which asked participants to pose problems related to Mrs. Smith’s and Mr. 

Jones’ classes test scores. Bill described the process as noticing that the data lent 

itself to probability and statistics, then realizing he could compare the data between 

the two classes. This description implies that Bill’s initial step in the problem posing 

process is to determine the mathematical content of the given information. During 

his second interview Bill commented that the problem posing process always included 

considering how difficult the problem he was posing would be for his future students 

and whether or not they would completely understand what the problem was asking 

for. “The process is, how difficult is this going to be for the students and are the 

students going to understand exactly what I’m posing here.” Therefore Bill’s problem
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posing process included reflection on the difficulty of his posed problems and the 

clarity with which he was writing problems.

Finally, Bill believes that he is better at posing problems as re-formulations be

cause it gives him structure, he stated on the second interview, .. the extensions 

give me a chance to really use higher thinking to you know maybe ask one ques

tion that is kind of is a little different than what has been asked before.” Therefore 

Bill has articulated a problem posing process during the instructional treatment and 

articulated that he is better at posing problem as re-formulations. With an under

standing of Bill’s beliefs about problem posing and problem posing process it is easier 

to understand his development as a problem poser.

Bill’s Development as a Problem Poser. Data was collected with regard to char

acteristics of Bill’s posed problems from all of problem posing tasks during the in

structional treatment described in Chapter 4 except the problem generation task on 

problem solving 6. Characteristics of Bill’s problem generation can be seen from 

looking at his problem generation on the pre-assessment of problem posing, journal 

entry due on February 25, 2002, problem set 5, interview 2 and the post-assessment 

of problem posing. This data shows that over the course of the instructional treat

ment Bill developed a better sense of problem generation, showed more creativity in 

his problem generation, and became more effective at posing multi-step mathematics 

problems.

Bill posed two problems on the pre-assessment of problem posing, one for each set 

of given information. Both problems consisted of re-writing the given in a different 

context and extending it to a problem. Bill did not write problems related to the 

given sets of information. The problem from the set of information with numeric 

content was plausible but did not contain sufficient information for solution. The 

problem from the set of information without numeric content was plausible, contained
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sufficient information for solution and required a multi-step solution process. This 

first attempt at problem generation shows that Bill didn’t have a full understanding 

of the problem generation task and that his initial instincts about problem posing 

were to re-formulate the given set of information and extend it to a problem.

A month later, on the journal entry that was collected on February 25, 2002, Bill 

demonstrated a better understanding of the problem generation process. Bill posed 

five problems; four of which meet all three criteria in problem generation coding. 

The fifth problem was plausible and contained sufficient information but was a yes 

or no question so it did not require a multi-step solution process. Bill’s multi-step 

problems in this situation were all coded as such because they ask the problem solver 

to perform two tasks, one each for Mrs. Smith’s class data and Mr. Jones’ class data. 

For example, Bill posed the following problem,

Given the two sets of data, whose median is higher, Mrs.Smith’s class or

Mr. Jones’ class?

The researcher feels that this set of given information lent itself to multi-step prob

lems that were written as the comparison, between the two classes, of a statistical 

representation of the data. Regardless of this, Bill demonstrated the ability to pose 

multi-step problems on this problem generation task.

On problem set 5, which was collected on March 6, 2002, Bill posed three problems 

from the set of given information. The three posed problems were all plausible, two 

contained sufficient information, and one required a multi-step solution process. The 

problem which did not contain sufficient information was because Bill did not define 

the word “similar” as it pertained to a group of people having a similar amount of 

cards. The problem which required a single step solution had all the information for 

a multi-step problem but a single step problem was asked, this problem follows,

Gary, Katie, Roby and Greg are rolling dice in the corner. Each person
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has five dollars. Each person has one die each. One game consists of each 

person rolling their die against the wall. Whoever has the highest die 

wins a dollar from each. In the case of a tie, the highest die rolls go again 

and again until someone wins. The game is over when someone wins. If 

Katie wins every game, how many games will it take for Katie to take all 

of Gary, Greg and Roby’s money?

This problem generation task shows more creativity in Bill’s problem generation com

pared to previous tasks and that Bill was developing the ability to create more multi- 

step problems even from sets of information that did not necessarily lend themselves 

to posing multi-step problems.

Bill’s development in posing multi-step problems can also be seen from his prob

lem generation during his second interview on March 27, 2002. Bill was asked to 

pose as many problems as possible in as much time as he wanted from two sets of 

information during this interview. Bill was able to pose six problems. All six of his 

posed problems were plausible with sufficient information for solution, four of the six 

problems required a  multi-step solution process and the other two required a single 

step solution. As part of the interview, the researcher asked Bill which problem he 

felt was the best he posed. Bill felt that he had developed a project for elementary 

school students based on the second set of information.

Given the distance from Portsmouth to L.A. and the price of gas. How 

many days of driving will it take to reach L.A. if you drive 800 miles a 

day? What will it cost in gas? What about food, hotels and laundry?

Bill also stated during the interview that his intention was to have his students treat 

this as a project in which they research the actual amount of money they would 

spend if they were driving cross-country. Again Bill was able to pose a majority of
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multi-step problems from these sets of information and was able to develop what he 

deemed a project problem.

Bill’s problem generation on the post-assessment of problem posing highlights 

his development in understanding the problem generation process. As with the pre

assessment, Bill only posed two problems on the assessment, but unlike the pre

assessment they were related to the sets of given information and were plausible with 

sufficient information and required a multi-step solution process. On the set of infor

mation without numeric content, Bill added all the necessary numeric information to 

make his problem solvable.

In summary, Bill’s development as a problem poser on problem generation tasks 

highlights the classes development on these same tasks. Bill did not necessarily show 

an increase in his efficiency posing problems as problem generation but he did show 

a developed ability to pose multi-step problems post-instructional treatment.

Bill’s problem re-formulation during the instructional treatment focused on chang

ing the given and changing the wanted of problems. Of the 16 problems that Bill wrote 

as re-formulation, 12 of them involved changing the given or changing the wanted. 

Bill did pose two problem re-formulations in which he changed the context one each 

on problem sets 4 and 9. He also twice extended the original problem on problem 

sets 5 and 6. Bill’s reformulation tended to look similar to the original problem. For 

example, on problem set 4 given the original problem,

The range of three numbers is 45. Both the mode and the median are 52.

Name two possible sets of three numbers.

Bill posed,

The range of three numbers is 12. Both the mode and the median are 20.

Name two possible sets of numbers.
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Bill’s problem re-formulation was similar throughout the instructional treatment, he 

occasionally utilized level 1 re-formulation techniques but tended to focus on the 

minimal change to the original problem.

Bill utilized level 1 problem re-formulation techniques 25% of the time during 

the instructional treatment and began using them on his third problem generation 

task. This utilization of level 1 posing techniques is not consistent with the class data 

presented previously as Bill did not utilize level 1 techniques more often on the final 

three problem sets. Bill’s reliance on the level 2 techniques of changing the given 

and changing the wanted was consistent with the whole class problem re-formulation 

during the majority of the instructional treatment.

Carrie

At the time of this research, Carrie was a second semester graduate student work

ing towards certification to teach at the elementary level. Carrie was a couple of 

years removed from her undergraduate degree and had decided to return to pursue 

her certification. She would like to teach elementary school so that she can instill 

confidence in her students early in the educational process.

Carrie’s Beliefs About Problem Posing. Carrie did not enter the instructional 

treatment with developed beliefs about problem posing, but developed beliefs during 

the instructional treatment. Carrie’s lack of a conception of problem posing at the 

beginning of the instructional treatment is highlighted by the definition of problem 

posing she articulated during her first interview on February 13, 2002,

. . .  it just seems like it’s more different ways to ask questions about a 

concept and encourage coming at it from all directions. So that basically 

seems to be the skill that you guys are looking for . .. Well what else can 

you tell me about that, you know what else does that mean?
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This quote suggests that Carrie was reflecting on the problem posing she had done 

in class to date, the reason that problem posing had been assigned, and describing 

problem posing as asking questions. Carrie began to articulate beliefs about problem 

posing during her second interview, on April 3, 2002, when responding to a question 

about the benefits of problem posing she stated, “so I can see how the very basic 

process is essential.” Carrie had begun to notice benefits of problem posing, but at 

this point in the instructional treatment she had not articulated beliefs about problem 

posing.

By her third interview on May 8, 2002 Carrie had developed a view of problem 

posing as being related to mathematical ideas that the poser has a concept of and 

being related to the posers past experience. Evidence of this view comes from Carrie’s 

description of her concept map of problem posing (see Appendix B). While describing 

her concept map Carrie explained that problem posing is related to, “. . .  prior knowl

edge and everything included in prior knowledge, your life experiences, academic 

work, and your personal successes, failures, and goals.” Carrie continued to argue 

that people will not pose a problem about mathematics or everyday experiences that 

they have no concept of. Thus, during the instructional treatment Carrie articulated 

the view that problem posing is related to the posers past experiences and current 

conceptions.

Carrie’s Problem Posing Process. The problem posing process Carrie utilized dur

ing the instructional treatment involved assessing the mathematical content of the 

given information, considering the appropriate audience to pose for, assessing the 

complexity of her posed problem, and being sure that her posed problem is solvable. 

Evidence of Carrie’s problem posing process can be found in her journal entry that 

was collected on February 25, 2002, her journal entry from April 15, 2002, and from 

her second interview on April 3, 2002.
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Carrie described the process she used to pose problems related to Mrs. Smith’s 

and Mr. Jones’s class exam scores in her February 2bih journal entry. Carrie noticed 

that the given information related to data analysis and comparison she then assessed 

everything she knew about data analysis and comparison and finally tried to  relate it 

to what would be most interesting to learn from the data set. Carrie then attempted 

to pose problems that were not just calculations. Carrie’s description shows that at 

this point of the instructional treatment, she had assessed the mathematical content 

of the set of information and the complexity of the problems that she had posed. 

There is more evidence of Carrie considering problem complexity during her problem 

posing process from her second interview. When she described why she liked one of 

the problems she posed during the interview Carrie stated, “. . .  you know, think things 

through all the way, that it is a multi-step process I like that idea, more complicated 

than just find the answer.” During her second interview Carrie mentioned for the first 

time that she always considers whether a problem she poses is solvable and states, 

“I would definitely feel like I was cheating almost if I was asking a problem that was 

impossible to solve or doesn’t have a correct answer or is like given this information 

you’d be wrong you couldn’t do that.”

Finally, Carrie considers herself better at posing problems from sets of given infor

mation. She feels that problem re-formulation limits her problem posing possibilities. 

She feels that posing problems from a set of given information allows her to pose the 

obvious problems in order to begin her problem posing, but when re-formulating she 

feels that she is just trying not to pose the same problem as the original. Thus, Carrie 

has articulated a problem posing process during the instructional treatment and has 

suggested that she is better at posing problems from sets of given information.

Carrie’s Development as a Problem Poser. Data was collected with regard to char

acteristics of Carrie’s posed problems from all of the problem posing tasks during
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the instructional treatment except for problem solving 6. Characteristics of Carrie’s 

problem generation can be seen from looking at her problem generation on the pre

assessment of problem posing, journal entry collected on February 25, 2002, problem 

set 5, interview 2 and the post-assessment of problem posing. This data shows that 

over the course of the instructional treatment Carrie became more effective at posing 

multi-step mathematics problems when she was not posing problems under a time 

constraint.

On the pre-assessment of problem posing Carrie generated three problems. Based 

on the set of information containing numerical content, Carrie generated two prob

lems, the first was plausible and contained sufficient information, but was solved using 

a single step solution process, the second was plausible, but did not contain sufficient 

information. The lone problem Carrie posed based on the set of information without 

numeric content was plausible, but did not contain sufficient information for solution. 

On the pre-assessment of problem generation Carrie seemed to understand the task 

but was not able to pose any problems that required multi-step solution processes 

and in fact only posed one problem that had sufficient information for solution.

Carrie’s journal entry collected on February 25, 2002 shows evidence that Carrie 

began to pose multi-step mathematics problems. Carrie posed three problems in this 

journal entry, all of which were plausible with sufficient information and required a 

multi-step solution process. Two of theses problems were comparisons of statistical 

analysis of the test data between Mrs. Smith’s and Mr. Jones’ class. The third 

problem was multi-step and did not involve a between class comparison. Carrie 

posed,

For each question on the exam calculate the frequency it was answered 

incorrectly for each individual class and both classes together. What can 

you tell from this data?
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This problem generation task shows that after a month of problem re-formulation 

experience and with more time Carrie was able to pose multi-step problems. In fact, 

she was able to pose a multi-step problem that did not rely on comparison between 

the classes to be multi-step.

More evidence of Carrie posing multi-step mathematics problems can be found on 

problem set 5 which was collected on March 5, 2002. Carrie generated three problems 

from the set of given information on this problem set and they all met the three criteria 

in problem generation coding. All three problems focused on probability and whether 

or not you had a good chance to win a certain bet. An example of Carrie’s problem 

generation on this task follows,

Your friend bets you that he can roll at least one 3 when rolling all 3 dice 

and pull a card equal or less than 3 on the first try. What are his chances? 

Would you bet him?

Carrie had started posing multi-step problems with regularity on this problem gen

eration task and this trend will continue in the rest of her problem generation.

During her second interview on April 3, 2002 Carrie posed seven problems based 

on the two sets of given information. All seven problems were plausible, contained 

sufficient information and required a multi-step solution process. During the interview 

Carrie was asked which of the problems she posed she thought was the best. She said 

that she was not impressed with any of the problems from the first set of information 

but that she liked the following problem,

Calculate how much more expensive it will be to travel 5000 miles with 

your Ford Explorer which gets 20 mpg versus your friends Ford Focus 

which gets 34 mpg and assume a $1.40 price per gas average. And then 

given that information could you save money by camping in the Explorer
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and sleeping in the Explorer instead of having to stay in hotels with the 

Focus?

Carrie stated that this problem required more information related to where you would 

be camping and what hotels you would be staying in and also said that she viewed 

this as a project problem. Thus Carrie was also able to go beyond posing multi-step 

problems and pose a “project problem”.

Carrie’s final problem generation task was under a time constraint on the post

assessment on May 13,2002. Carrie generated four problems on this task and only one 

required a multi-step solution process. Her problems from the set of information with 

numeric content included, one single step problem and two problems without sufficient 

information, which were both missing an interest rate for a credit card (see Appendix 

B). Carrie’s problem from the set of information without numeric content required 

a multi-step solution process and she was able to add all the numeric information 

necessary to make the problem solvable.

In summary, Carrie was capable of posing problems through problem generation 

and evidence from her problem generation on homework and journal entries implies 

that Carrie was able to pose more multi-step problems when she wasn’t working under 

a time constraint. Similar to the whole class, Carrie posed more problems on the post 

assessment of problem posing and posed more multi-step problems during the course 

of the instructional treatment.

Carrie’s problem re-formulation can be described from all of the problem re

formulation tasks during the instructional treatment, except problem set 6. Carrie’s 

problem re-formulation during the instructional treatment focused on changing the 

given and wanted information from the original problem and she often changed both 

to re-formulate a problem. For example, Carrie chose to re-formulate the following 

problem on problem set 9,
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Two different numbers are drawn from the set {2,3,4,5,6} without replace

ment. What is the probability that the product of the numbers selected 

is a multiple of 3?

and posed,

Given the even integers from 0 to 20 inclusive what is the probability that 

any two numbers selected will be a multiple of 4?

Carrie utilized level 1 problem re-formulation techniques. Of the 17 problems she 

posed as re-formulations, Carrie changed the context once on problem set 2, switched 

the given and wanted twice on problem set 3, and extended three problems on problem 

sets 2, 3 and 7.

Carrie’s problem re-formulation with regard to utilizing level 1 techniques is not 

consistent with the whole class results. Carrie utilized level 1 problem re-formulation 

techniques more often during the beginning of the instructional treatment and only 

once on the last five problem sets. Similar to the whole class’s results, Carrie favored 

changing the given and changing the wanted as problem re-formulation techniques.

Laura

At the time of this research Laura was a sophomore majoring in mathematics 

education and working towards certification to teach elementary and middle school 

mathematics. Laura began the semester with past experience teaching mathematics 

in a summer program called Summerbridge and had decided on teaching mathematics 

as a future career based on her high school mathematics experiences.

Laura’s Beliefs About Problem Posing. Laura entered the instructional treatment 

with a developed belief, based on past experiences, that problem posing is a process 

of generating problems that both students and teachers may engage in. Evidence
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of Laura’s belief comes from her first interview on February 4, 2002 when she de

fined problem posing as .. when students look or even teachers, would look at given 

information and write questions that can be answered based on the given informa

tion.” Laura did not change her conception of problem posing during the instructional 

treatment.

Laura’s Problem Posing Process. During the instructional treatment Laura relied 

on and developed a strategy for generating problems from sets of given informa

tion that included considering and applying her previous knowledge to the situation, 

considering the appropriate level of her posed problem, and considering her posed 

problems solvability. Evidence of Laura’s problem posing process comes from journal 

entries and interviews during the instructional treatment.

Laura referenced the role of her past knowledge in the problem posing process in 

her journal entry collected on February 25, 2002 and during her second interview on 

April 2, 2002. When she described her process of posing problems related to Mrs. 

Smith’s and Mr. Jones’ classes exam scores in her journal entry, Laura stated that 

when she looked at the given information she was considering all the different ways 

that someone could manipulate the given data to report on it and was trying to ask 

questions that were beyond just calculation and required thought. Thus, Laura was 

referring to her past knowledge about data analysis to guide her problem posing in 

this situation. Laura’s reference to her past knowledge surfaced again during her 

second interview when she discussed her problem posing process and stated, “so I 

kind of had that in mind, how can I manipulate what I’ve learned to ask a question.”

Evidence of Laura considering the appropriate level of her posed problems and 

their solvability comes from her April 15, 2002 journal entry and her second interview. 

In the second interview and in her journal entry for April 15, 2002 Laura discussed her 

posing audience as her future middle school students and discussed that she attempts
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to make the level of her posed problems appropriate for that audience. Also during 

her second interview, as Laura discussed the solvability of problems, she stated, “I 

was thinking of the solution as well. . .  but I was thinking someone was going to have 

to solve it so I didn’t want to make it crazy.”

Finally, Laura believed that she was better at posing problems from sets of given 

information because it allows for more creativity and as she suggested, doesn’t “blur” 

her thinking. In the third interview on May 10, 2002 Laura took it one step further 

and said that she believes she is better at posing problems from sets of information 

without numeric content because she can be more creative. Laura said,

I think also that whole numerical setting, um, changes the way I would 

pose a problem because you have to think about, you can’t  just create a 

situation in your head because it is already here and created and so if you 

do one thing to one side, you kind of have to know the outcome before 

you write the problem.

Thus Laura articulated a problem posing process during the instructional treat

ment and discussed in detail her belief that she is better at posing problems from sets 

of given information because it allows for more creativity. Laura’s problem posing 

process included relating the set of information to her prior knowledge, and examining 

the difficulty and solvability of her posed problems.

Laura’s Development as a Problem Poser. Data was collected with regard to char

acteristics of Laura’s problem posing from all of the problem posing tasks during the 

instructional treatment except for problem solving 5. Characteristics of Laura’s prob

lem generation can be seen by looking at her problem generation on the pre-assessment 

of problem posing, journal entry collected on February 25, 2002, problem set 6, in

terview 2, and the post-assessment of problem posing. This data shows Laura’s 

competency posing problems from sets of given information. Laura entered the in

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



129

structional treatment with an understanding of problem posing, was able to pose 

multi-step problems, and during the instructional treatment started to pose open- 

ended problems and problems that went beyond the surface features of the given. It 

is also apparent from the data that Laura is more comfortable posing problems from 

sets of information which do not contain numeric information.

On the pre-assessment of problem posing, Laura demonstrated her ability to pose 

multi-step problems and her preference for posing problems from sets of information 

without numeric content. Laura posed four problems on the pre-assessment, all were 

plausible and contained sufficient information for solution, one of the problems re

quired a multi-step solution process. Laura showed her preference for posing problems 

from sets of information without numeric content as three of her posed problems on 

the pre-assessment were related to the set of information without numeric content. 

Laura posed the following problem, which is evidence of her ability to pose multi-step 

problems, related to the set of information without numeric content,

If 10 students and 3 faculty arrive every 15 minutes between the hours of 

8am and 12 noon and 4 students and 1 faculty leaves every 30 minutes 

between the same time slot, how many total students and how many total 

faculty are at the lot at 12 noon?

In her journal entry collected on February 25, 2002, Laura demonstrated the ability 

to pose multi-step problems and to pose problems that go beyond the surface features 

of the given information. Laura posed five problems in this journal entry, all of her 

problems were plausible, contained sufficient information, and required a multi-step 

solution process. Also on this task, Laura’s posed problems went beyond asking for 

a comparison of statistics between the two classes. Laura posed a problem related to 

mean, median and mode but the other four were more in depth ways to look at and 

think about the data. For example Laura posed,
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If we compare the results of Mrs. Smith’s class scores with Mr. Jones’ 

class, can we say that one teacher is better than another if one class scored 

better than the other? What is wrong with that assumption? What could 

be possible lurking variables?

This example highlights that on this problem posing task Laura posed multi-step 

problems that look at the set of given information beyond the surface features.

Laura continued to pose multi-step problems and showed an ability to pose open- 

ended problems on problem set 6 which was collected on March 27, 2002. Laura 

generated two problems on this problem set, both of her problems were plausible, 

contained sufficient information and required a multi-step solution process. Laura 

continued to pose multi-step problems and on this task posed an open-ended problem, 

which follows,

Explain how a casino can stay in business with the game of roulette?

This problem is again evidence of Laura’s ability to pose problems that go beyond 

the surface features of the set of information and allow the solver some freedom with 

their solution process.

During Interview 2 on April 2, 2002, Laura continued to generate multi-step prob

lems and demonstrated that although she prefers to pose problems from sets of in

formation without numeric content she still requires some structure to help guide her 

problem posing. Laura generated eight problems from the two sets of given informa

tion, all eight of her problems were plausible and contained sufficient information for 

solution. Two of the eight posed problems show that Laura is still posing multi-step 

problems. Also both multi-step problems were related to the first set of information, 

these problems follow,

Make a stem and leaf plot representing how much money people spent on
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their break. Is the distribution normal or skewed? Are their outliers in 

the data?

On a scatterplot let the x-axis be # ’s 1-10 (rating of travel experience) 

and the y-axis be the amount of money spent on break. Plot points 

based on people’s rating and how much money they spent. Is there a 

correlation between the people’s rating and how much money they spent?

Is it statistically wise to say that the more you spend on vacation, the 

greater the experience is?

Laura discussed her ability to pose multi-step problems from the first set of informa

tion and suggested that the structure of the first set of information aided her problem 

posing when she stated “I didn’t have to create my own situation” because of the 

added structure.

On the post-assessment of problem posing Laura again showed an ability to pose 

multi-step and open ended problems. Laura generated seven problem situations on 

the post-assessment, all of which were plausible, six contained sufficient information 

for solution, and two required a multi-step solution. Laura posed an open-ended 

problem related to the set of information without numeric content.

The university wants to know how many students drive to campus. They 

also want to know how the number compares to the past years. Describe 

how you could find out this information and how you would write up /  

present this information to the driver’s board. (Hint: Use graphs, charts, 

etc.)

As she demonstrated during the instructional treatment the post-assessment high

lights Laura’s ability to pose multi-step problems and her preference for posing prob

lems from sets of information without numeric content.
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Throughout the instructional treatment Laura showed a proficiency for generating 

problems from sets of given information. She was able to generate problems that 

required a single step solution process and multi-step problems. Laura was also able 

to pose open ended problems from different sets of given information. Laura’s ability 

to generate multi-step problems is consistent with the results from the whole class. 

Laura was able to take her problem posing one-step further and pose problems that 

go beyond the surface features of the given information and are open-ended.

Data related to characteristics of Laura’s problem re-formulation was collected on 

all problem sets during the instructional treatment except for problem set 5. Laura 

re-formulated 21 problems during the instructional treatment and utilized level 1 

problem re-formulation techniques 8 times. Evidence of Laura’s use of level 1 re

formulation techniques comes from the following problem sets, she switched the given 

and wanted twice on problem sets 3 and 4, changed the context three times on prob

lem sets 6 and 7, and extended three problems on problem sets 2, 3, and 7. This 

data implies that Laura showed a proficiency for utilizing all forms of problem re

formulation throughout the instructional treatment but as was typical of the whole 

class, Bill, Carrie, and Liz, she relied on changing the given and changing the wanted.

Liz

At the time of this research, Liz was a sophomore majoring in mathematics ed

ucation and working towards certification to teach elementary and middle school 

mathematics. Liz decided to pursue a career as a mathematics teacher after her 

mathematics teacher her freshman year in high school suggested it as a possible fu

ture career.

Liz’s Beliefs About Problem Posing. Liz’s conception of problem posing devel

oped over the course of the instructional treatment. Liz began the instructional 

treatment without a well developed conception of problem posing, but after the in
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structional treatment she was able to articulate what problem posing is to  her and 

describes problem posing as a tool to aid in the problem solving process. Evidence 

of Liz’s lack of a conception of problem posing early in the instructional treatment 

comes from her first interview on January 31, 2002. During that interview Liz had a 

difficult time defining problem posing. When asked to define problem posing Liz first 

defined problem solving and then after being asked again gave the following definition 

of problem posing,

I would see it as. I don’t know kind of just like what you have been exposed 

to, like a lot of people pose problems or make up their own problems from 

maybe like the day before or pick something in a room and be like oh, 

there is chalk on the chalkboard, so how many, you know if I had this and 

so many were taken away you know. Some people just visually see it or 

some people an image comes in their mind.

Liz was explaining situations where problem posing may take place and may be 

relating problem posing to individuals past experiences as she stated, “. ..  what you 

have been exposed to.”

As Liz was explaining her concept map during her third interview on May 7, 2002, 

she demonstrated that late in the instructional treatment she was able to verbalize 

aspects of what she believes problem posing is and that problem posing aids the 

problem solving process. During the third interview Liz stated,

I thought of problem posing and then I thought of the different ways that 

we can come up with it, um, we’re just given data to make a question 

from it, or problem posing can help solve problems, or making a question 

from a given example.

Liz’s Problem Posing Process. During the instructional treatment Liz articulated 

a problem posing process that included assessing the mathematical content of the
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given information, assessing what aspects of that information she wanted to  convey 

to others through problems, and judging whether her posed problems were solvable. 

Liz demonstrated that she was considering the given information and how to  present 

it when she described the process she went through to pose problems related to the 

exam scores from Mrs. Smith’s and Mr. Jones’ classes. Liz said she went through 

the process of determining how she would like to show others about the given data 

without just giving it to them and then decided on questions comparing the two data 

sets. During her second interview on March 28, 2002 Liz commented on considering 

the solutions of problems that she is posing when she stated, “I am kind of thinking 

about how could solve, make sure they can be solvable I guess, or that they are actual 

like realistic, like there is no way from the data that you can’t  solve.” Liz continued to 

describe and articulate her problem posing process and ways she went about posing 

problems when she described her concept map during her third interview on May 7, 

2002. Liz stated,

.. .  making a question from a given example I said we are changing the 

problem, we can add information, change the given info, or change the 

topic of it. . . .  for the given the data to make questions I said that comes 

from collecting some data, which came from a hypothesis, which creates 

the question.

Finally, during her third interview Liz also stated that she believes that she is 

better at posing problems from sets of given information,

Because, um, you do have with a set way, extending um, you’re already 

given so much and like you can extend it a certain way. But I like just 

given any data lying around and see what you come up with.

During the instructional treatment Liz was able to articulate a problem posing 

process and discussed her belief that she is better at posing problems from sets of
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given information. The data suggests that Liz’s problem posing process included 

considering the given information and judging if her posed problems were realistic 

and solvable.

Liz’s Development as a Problem Poser. Data was collected with regard to char

acteristics of Liz’s problem posing from all of the problem posing tasks described in 

the instructional treatment. Characteristics of Liz’s problem generation can be seen 

from looking at her problem generation on the pre-assessment of problem posing, 

journal entry collected on February 25, 2002, problem set 5, problem set 6, interview 

2 and the post-assessment of problem posing. This data shows Liz’s development as 

a problem poser over the course of the instructional treatment. Liz’s problem posing 

changed depending on whether she was posing problems under a time constraint. Un

der a time constraint Liz had difficulty posing mathematics problems and especially 

multi-step problems. When she was not under a time constraint Liz was able to pose 

multi-step problems during the instructional treatment.

Liz demonstrated her difficulty posing problems under a time constraint on the 

pre-assessment of problem posing on January 23, 2002. On the pre-assessment Liz 

generated ten statements, four of her ten statements were not problem posing prod

ucts. Of the six problem posing products that Liz generated all were plausible, three 

contained sufficient information for solution, and one required a multi-step solution 

procedure. Liz’s statements which were not problem posing products tended to be 

yes or no questions. For example Liz posed,

Would a parking garage and more space for cars influence whether or not 

you bring your car to school?

Therefore on the pre-assessment Liz demonstrated efficiency writing statements but 

did not show proficiency for posing mathematics problems. Liz did show the ability 

to pose a multi-step problem on this pre-assessment and demonstrated this ability on
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other problem posing tasks.

Liz demonstrated development in posing multi-step problems and the ability to 

pose problems when she was not dealing with a time constraint in her journal entry 

collected on February 25,2002. Liz generated four problem posing products related to 

the exam scores for Mrs Smith’s and Mr. Jones’ classes. All of Liz’s posed problems 

in this journal were plausible and contained sufficient information for solution, and 

three required a multi-step solution procedure. Liz’s multi-step problems based on 

this set of given information all require the comparison of statistical analysis between 

the two classes. For example Liz posed,

From the exam scores given by Mrs. Smith’s class and Mr. Jones’ class 

make a bar and a box and whisker graph. From these two graphs which 

one works better for showing the data and why?

Liz did not pose problems related to this set of information that went beyond the 

surface features of data analysis between the two classes, however, she demonstrated 

the ability to pose more multi-step problems than on the pre-assessment.

Liz continued to demonstrate the ability to  pose multi-step problems when she 

was not posing problems under a time constraint and showed increased creativity 

in her problem posing on problem set 5, which was collected on March 5, 2002. Liz 

generated three problems from the set of given information on this problem set, all her 

problems were plausible, contained sufficient information and required a multi-step 

solution process. There is some evidence of more creativity in Liz’s posed problems 

on this problem set and an example follows,

You have $20 to use on a new game that your friends made up. If you 

pick a card out of the deck and it is a red card, then you’ll bet $5 and if 

it is a black card you’ll bet $3. After betting your money you’ll roll the 

two dice to get a number greater than 6 and if you do you win twice as
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much money and if you loose you loose it all. Is this in your favor to win

money for this game?

The trend of Liz posing multi-step problems continued on problem set 6, which 

was collected on March 27, 2002. Liz generated two problems on the problem set 

both of which required a multi-step solution process. One problem was just a basic 

probability problem with four parts and the other required the solver to calculate 

winnings after three spins of the roulette wheel. In the second problem Liz was able 

to add the necessary information to make the problem solvable.

Liz again demonstrated her difficulty posing problems under a time constraint 

during her second interview on March 28, 2002. Liz was able to. generate nineteen 

statements on the two problem generation tasks during her second interview, but only 

seven of the statements were problem posing products. Of Liz’s seven problem posing 

products all were plausible, five contained sufficient information for solution, and two 

required a multi-step solution. For example, related to the first set of information, 

Liz posed

Where was the most popular travel experience with the "best rating?

Liz felt that this was the best problem that she posed on this problem posing task 

because the information is useful, in her mind it would be useful to travel agents 

in the future. Liz wrote eleven questions related to the second set of information 

but none of them were problem posing products. They were all questions she might 

consider with a friend before traveling cross-country. For example she asked,

Where are we going?

This demonstrated again that under a time constraint Liz was able to ask questions 

efficiently but showed a lack of proficiency developing problem posing products and 

multi-step problems.
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Liz continued to demonstrate difficulty posing problems under a time constraint 

on the post-assessment of problem posing given on May 13, 2002. On the post

assessment Liz was able to generate nine statements, seven of which were problem 

posing products. Of Liz’s seven problem posing products, six were plausible, three 

contained sufficient information for solution and one required a multi-step solution. 

There was little difference from the pre-assessment to Liz’s post-assessment of problem 

posing.

Liz’s problem generation parallels the class in the fact that she became more 

efficient at posing multi-step problems during the instructional treatment as was 

shown through her posing on the tasks that did not include a time constraint. Liz 

struggled, however, during the instructional treatment posing problems under a time 

constraint. She was able to write more statements and pose more problems on the 

post-assessment, thus Liz’s efficiency had improved, but the likelihood of her posing 

multi-step problems under a time constraint did not change.

The characteristics of Liz’s problem re-formulation can be seen from all the prob

lem sets collected during the instructional treatment. Liz’s problem re-formulation 

was predictable throughout the instructional treatment. Liz posed 23 re-formulated 

problems and of these she changed the given information 16 times. Liz only uti

lized level 1 problem re-formulation techniques three times during the instructional 

treatment, Liz changed the context twice on problem sets 6 and 7, and extended one 

problem on problem set 2. A typical problem re-formulation for Liz was as follows,

Original problem: A special rubber ball is dropped from the top of a wall 

that is sixteen feet high. Each time the ball hits the ground it bounces 

back only half as high as the distance it fell. The ball is caught when it 

bounces back to a high point of one foot. How many times does the ball 

hit the ground?
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Liz posed

A special rubber ball is dropped from the top of a wall that is 64 feet high.

Each time the ball hits the ground it bounces back only \  of its height 

as the distance it fell. The ball is caught when it bounces back to a high 

point of one foot. How many times does the ball hit the ground?

Unlike Bill, Carrie and Laura, Liz did not focus on changing both the given and the 

wanted, she in fact only changed the wanted information twice during the instruc

tional treatment to re-formulate a problem. Also, Liz’s problem re-formulation was 

consistent with the rest of the class in that she relied on changing the given to re

formulate problems. Liz utilized level 1 problem re-formulation techniques, however, 

far less often than the class as a whole.

Summary of Individual Problem Posing

In summary, the characteristics of Bill, Carrie, Laura and Liz’s problem posing 

highlighted the results from the whole class data. The four individuals demonstrated 

the ability to pose multi-step problems and posed a greater frequency of multi-step 

problems as the instructional treatment progressed. Similar to the whole class Bill, 

Carrie, and Liz typically relied on level 2 problem re-formulation techniques. Laura 

utilized level 1 techniques more often than the other three individuals and with greater 

frequency than the whole class. While highlighting characteristics of posed problems 

these four cases also provide insight into participants’ beliefs about problem posing 

and their problem posing processes. A detailed description of beliefs about problem 

posing will be included in the results that follow in Chapter 6.
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Chapter 6

Beliefs Results

This chapter presents results related to participants’ beliefs about mathematics, be

liefs about teaching and learning mathematics, and beliefs about the relationship 

between problem posing and school mathematics. Results will be presented first with 

regard to the whole class, and will be followed by results related to the four individuals 

who agreed to interviews.

Beliefs About Mathematics

Pre-Instructional Treatment

Data related to participants’ beliefs about mathematics prior to the instructional 

treatment was collected on the pre-assessment of beliefs, which was assigned in class 

on January 23, 2002 and collected on January 28, 2002 (see appendix B). Two views 

of mathematics and two views of the practice of mathematics emerged from partic

ipants’ responses to the first and second item on the pre-assessment. The first item 

asked participants to list all the words they thought were related to mathematics 

and the second item asked participants to complete the phrase “Mathematics is . . .  ”. 

These views may be specific to this class of pre-service teachers and the goal was 

not to generalize them. In this context, views that were expressed by a majority 

of the class have been labeled predominant and the term secondary is used to help 

describe the views of the remainder of the participants. The labels pre and post were
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added to clarify whether the set of views emerged pre or post instructional treatment. 

The development of the views, mathematics predominant pre, the practice of mathe

matics predominant pre, mathematics secondary pre, and the practice of mathematics 

secondary pre will be discussed in the remainder of this section.

Participants’ word list responses were coded by organizing words based on the 

frequency with which they appeared on the collection of word lists. This frequency 

coding led to two distinct groups of words. Group 1 words appeared on 1, 2, 3, or 

4 participant word lists and group 2 words appeared on 5 or more of these word 

lists. The words in each group follow. Words presented in quotes are statements 

from participants, while words not presented in quotes are categories framed by the 

researcher.

Group 1: “related to school”, “answer”, “tests” , “relationships”, “definition”, “op

erations based”, “theory”, “proof, “thinking”, Other subjects (i.e. chemistry, 

physics), negative words (i.e. frustrating).

Group 2: “problem solving”, “word problems”, “challenging and time consuming”, 

“teacher and career”, Math words(number, division, etc.), positive words (fun, 

exciting, etc.).

Group 2 words, which occurred most frequently, imply that the participants in this 

study predominantly view mathematics as including problem solving and problem 

solving with word problems, have a positive attitude towards mathematics, and feel 

that being engaged in mathematics is time consuming but challenging. Group one 

words show a secondary belief that mathematics is about thinking or a way of thought 

that involves theory but can be frustrating, and that the practice of mathematics 

involves finding answers.

Responses from the second item on the pre-assessment were organized into two 

groups based on the frequency of responses. Group 1 responses appeared 1, 2, or 3
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times and group 2 responses appeared at least 5 times. The responses in each group 

follow,

Group 1: “Systems of rules”, “finding solutions”, “a way of thought”, “teaches 

people how to think”, “a part of life”.

Group 2: “Use and study of numbers, symbols, operations, and relationships”, 

“problem solving”, “interesting and challenging”.

Group 2 responses from this item support the group 2 responses from the first item 

as participants responses again suggested the belief that mathematics is problem 

solving. Participants responses also suggested that the practice of mathematics is 

interesting and challenging and involves using operations. Since group 2 responses 

on the two items appeared most frequently they led the researcher to the following 

descriptions of the mathematics predominant pre and the practice of mathematics 

predominant pre views.

Mathematics predominant pre: Mathematics is a problem solving domain that is 

characterized by the study of numbers, operations and relationships.

The practice of mathematics predominant pre: Practicing mathematics is fun, chal

lenging, time consuming, entails the use of numbers, symbols and relationships, 

and is related to a career as a teacher.

Similarly group 1 responses from the second item support the group 1 responses 

from the first item as participants suggested secondary beliefs that mathematics is a 

way of thought and that the practice of mathematics is related to finding solutions. 

Group 1 responses led the researcher to the following descriptions of the mathematics 

secondary pre and the practice of mathematics secondary pre views.

Mathematics secondary pre: Mathematics is a way of thought. It is a part of life 

and the study of mathematics makes people think.
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The practice of mathematics secondary pre: Practicing mathematics can be frustrat

ing at times, involves utilizing operations and finding answers, and is related to 

school.

The third item on the pre-assessment of beliefs asked participants if they agree with 

the following statement, “Mathematics is always changing.” Participants responses to 

this short answer question represent two distinct views of the nature of mathematics. 

The first view, which was shared by six participants and paraphrased here, was that 

mathematics is not changing but that the way we teach mathematics and the way 

we solve mathematics problems is always changing. An example of this first view 

of the nature of mathematics is seen in one participant’s response, “I believe that 

mathematics itself is a concrete idea, but the processes that we use to solve the 

math change along with the methods we use to teach it to our students.” The second 

view, which was the predominant view, was that mathematics as well as the way we 

teach mathematics is changing. Participants described multiple factors that influence 

the change in mathematics, including, because everything in the universe is changing, 

because of technology, and because of the discovery of new patterns and strategies. In 

the words of a participant’s pre-assessment response, “yes, I agree that mathematics 

is always changing because people are always studying and investigating processes 

and theories ”

In summary, pre-instructional treatment the participants as a group shared pre

dominant and secondary beliefs about mathematics, the practice of mathematics, and 

the nature of mathematics.

Post-Instructional Treatment

Participants were asked to complete the same beliefs assessment post instructional 

treatment. The post-assessment of beliefs was administered in class on May 13, 2002 

and participants were given 30 minutes to complete the assessment. Similar to the
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pre-assessment of beliefs, two views of mathematics and two views of the practice 

of mathematics emerged, based on the frequency of participants responses on the 

first two items of the post-assessment. The development of these views, mathematics 

predominant post, the practice of mathematics predominant post, mathematics sec

ondary post, and the practice of mathematics secondary post will be presented in the 

remainder of this section.

Word list responses on the post-assessment were organized into two groups based 

on the frequency of the word appearing in the participants’ lists. Group one words 

occurred on 1 or 2 word lists and group 2 words appeared on at least 4 word lists. 

The groups follow,

Group 1: “Word problems”, “shapes”, “proofs”, “theorems”, “intriguing” , “explo

ration”, “creativity” , “active minds”, “enthusiasm”, “satisfaction”, “projects”, 

“games” , “technology and logic”, “manipulatives” , “cooperative learning”.

Group 2: “problem posing” , “problemsolving”, “patterns”, “fun”, Math words (number, 

division, etc.).

Group 2 responses from the word lists imply that participants are viewing mathemat

ics as problem posing and problem solving and view practicing mathematics as fun 

and involving finding patterns. Group 1 words from this item on the post-assessment 

demonstrate that participants view mathematics as a way of thought that includes 

proof and exploration while practicing mathematics involves using manipulatives and 

having active minds.

Responses to the second item of the post-assessment were organized into two 

groups based on the frequency of the responses. Group 1 responses appeared once 

and group 2 responses appeared at least twice. The groups follow,

Group 1: “Recognizing patterns”, “using numbers to solve and pose problems”, “a 

foundation of knowledge”, “problem solving” , “a way of thinking”, “interest-
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tog".

Group 2: “Relationships between numbers and objects” , “the study of numbers and 

processes”, “fun”, “manipulation of numbers and symbols”, “ways to better 

understand the world”.

Group 2 responses on the second item of the post-assessment suggested that mathe

matics includes the study of numbers and attempts to better understand the world. 

Participants also suggested that practicing mathematics involves using numbers and 

symbols. The group 2 responses on the two items described led the researcher to 

the following descriptions of the mathematics predominant post and the practice of 

mathematics predominant post views.

Mathematics predominant post: Mathematics is a problem posing and problem solv

ing domain that is characterized by the study of numbers, relationships, patterns 

and processes.

The practice of mathematics predominant post: The practice of mathematics is fun, 

includes procedures with numbers and symbols, and attempts to better under

stand the world.

Group 1 responses on the second item of the post-assessment support the group 1 

words from the word lists as participants again suggested that mathematics is a way of 

thinking and that doing mathematics includes problem solving, problem posing, and 

finding patterns. The group 1 responses on the two items described led the researcher 

to the following descriptions of the mathematics secondary post and the practice of 

mathematics secondary post views.

Mathematics secondary post: Mathematics is a foundation of knowledge as well as 

an intriguing way of thinking that includes proof.
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The practice of mathematics secondary post: Practicing mathematics includes solv

ing and posing problems using creativity, active minds, manipulatives, cooper

ation, and technology.

On the final item of the post-assessment participants again responded to the state

ment “Mathematics is always changing.” Responses to this item represented two dis

tinct views of the nature of mathematics. The first view was represented by ten 

participants who believed that mathematics was changing. Half of these participants 

stated that mathematics is changing because “any science is changing.” The other 

participants gave reasons for mathematics changing that were similar to and included, 

“because individuals are constructing new understandings of mathematics.” The sec

ond view of the nature of mathematics which was suggested by eight participants 

is that mathematics is not changing but that mathematics teaching and learning is 

always changing.

In summary, similar to pre-instructional treatment, post instructional treatment 

the participants as a group shared predominant and secondary beliefs about mathe

matics, the practice of mathematics, and the nature of mathematics. Since the views 

suggested by the assessment post-instructional treatment are different than the views 

suggested by the assessment pre-instructional treatment it can be concluded, that 

as a group, the participants’ experiences during the semester influenced their beliefs 

about mathematics.

Changes in Beliefs About Mathematics

This section will discuss change related to participants’ beliefs about mathemat

ics, beliefs about doing mathematics, and beliefs about the nature of mathematics. 

First, participants’ views of mathematics underwent some qualitative change dur

ing the course of the instructional treatment. Examining participants’ mathematics 

predominant pre and mathematics predominant post views demonstrates that post
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instructional treatment participants consider mathematics as much a problem posing 

as problem solving domain and are relating mathematics to their worlds, since they 

suggested that mathematics attempts to describe the world. These changes are high

lighted by the fact that on the post-assessment word lists, ten participants included 

problem posing and nine included problem solving while no participants mentioned 

problem posing on the pre-assessment word list. The change of relating mathemat

ics to the world is highlighted by a participant’s completion of “Mathematics is... ” 

from the post-assessment of beliefs, “. . .  a way of looking at the relationships between 

numbers to solve problems, make predictions, and better understand our world.” 

Examining participants’ mathematics secondary pre and mathematics secondary 

post views demonstrates that post instructional treatment participants are viewing 

mathematics as a more open ended discipline. The fact that from pre- to post

assessment there was a decline in the number of times mathematics was mentioned 

as the manipulation of numbers and symbols and an increase in words that imply 

an open-ended nature of mathematics (i.e. exploration, creativity, active minds) is 

evidence of this change in participants’ views. Words such as intriguing, exploration, 

creativity and active minds became significant parts of participants’ word lists. A 

participants completion of “Mathematics is . . . ” also helps highlight this new view, 

“. . .  a fun and interesting way to explore properties . . .  that are around us everyday.” 

Examining participants views of the practice of mathematics from pre- to post in

structional treatment implies that participants transitioned from viewing practicing 

mathematics as a chore, pre-instructional treatment, to viewing practicing mathemat

ics as interesting, post-instructional treatment. This change is highlighted by partici

pants use of words such as creativity, exploration, and active minds post-instructional 

treatment. Also post-instructional treatment participants started to view the prac

tice of mathematics as both posing and solving problems. This change is again high
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lighted by a participant’s completion of “Mathematics is ... ” from the post-assessment 

of beliefs,“. . . a  variety of concepts that use numbers, formulas, graphs, charts, and 

manipulatives to solve or pose problems.”

Participants’ beliefs about the nature of mathematics include mathematics is 

changing, and mathematics teaching and problem solving are changing both pre- and 

post-assessment. One difference in participants’ views is that on the post-assessment 

two more participants mention teaching and learning mathematics as changing with

out discussing if the discipline of mathematics is changing. Otherwise there is not 

any noticeable change in participants’ views of the nature of mathematics post in

structional treatment.

In summary, post instructional treatment participants seem to be more positive 

about mathematics and open to the idea that mathematics is open ended, includes 

problem posing and allows for creativity. This hypothesis comes from analysis of par

ticipants’ pre- and post-assessment of beliefs and indicates a change over the course 

of the instructional treatment. This hypothesis is highlighted by a participant’s state

ment on their final journal entry of the semester collected on May 16, 2002, “I learned 

to think about math in a very open-ended way, because before I had an opinion of 

math that was very close minded.”

Beliefs About Teaching and Learning Mathematics

Beliefs About Teaching Mathematics

Before describing participants’ beliefs about teaching mathematics this section 

will describe why participants desire to be mathematics teachers. The goal of this 

description is to provide background to help understand participants’ beliefs about 

teaching mathematics. Participants’ mathematical autobiographies were collected on 

January 28, 2002 and the coding of them revealed pivotal experiences, from partic

ipants mathematical experience, related to becoming mathematics teachers. These
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pivotal experiences suggest two main motivations for participants to become teachers. 

The first motivation was because of a past mathematics teacher. A few participants 

had positive experiences that caused them to want to teach so they could directly 

model their past teachers, one participant wrote, “I want to teach like my algebra 

two teacher, make math enjoyable and destroy stereotypes that exist.” But not all 

participants wanted to model past teachers because of positive experiences. For in

stance, one participant wrote that after a bad experience in calculus she wanted to 

teach so she could be . a model of female confidence in math for my students.” 

Other participants looked up to their mathematics teachers and decided to follow 

their lead. For instance, one participant stated, “my high school geometry teacher 

was my role model and made me realize that I wanted to be a math teacher.” The 

second motivation for participants to choose teaching as a possible career path was 

experience teaching mathematics. Five participants said that either substitute experi

ence, summer teaching, or teaching younger siblings shaped their interest in teaching 

mathematics. For example, one participant decided to become a mathematics teacher 

based on her experience teaching her sister how to count to 20 in third grade and her 

experience teaching pre-schoolers while she was in high school. From these pivotal 

moments emerges a glimpse of participants’ beliefs about teaching, a fuller description 

follows.

The remainder of this section will describe the development of participants’ beliefs 

about teaching mathematics over the course of the instructional treatment. Data 

related to participants’ beliefs about teaching was collected from their pre-assessment 

of beliefs on January 28, 2002, the journal entry on March 4, 2002 which asked them to 

describe their classroom through the eyes of an observer, the post-assessment of beliefs 

collected on May 13, 2002, and the journal entry collected on May 16, 2002 which 

asked participants to complete a final reflection on the course. The data suggests

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



150

that over the course of the instructional treatment participants’ beliefs about teaching 

mathematics evolved, they became better able to describe a good mathematics teacher 

and a good mathematics classroom, and they began to see mathematics teaching as 

a more open-ended activity that fosters student autonomy.

A description of participants’ beliefs about teaching mathematics prior to the in

structional treatment comes from the pre-assessment of beliefs which was collected on 

January 28, 2002. The third item on the pre-assessment of beliefs asked participants 

to describe a good mathematics teacher. The most predominant response, which thir

teen participants shared, was that a good teacher appeals to all learning styles and 

is able to utilize multiple teaching approaches to do so. Besides this predominant be

lief participant responses were coded into two categories. The first category includes 

responses related to the attributes of a good mathematics teacher and the second 

category includes responses related to the practice of a good mathematics teacher. 

The categories, which are exhaustive, follow,

Attributes: “believes all students can learn”, “organized and focused”, “patient” , 

“has content knowledge needed to teach” , “enthusiastic”.

Practice: “available for help”, “relates math to real life” , “always evaluating and 

adjusting teaching” , “utilizes group work and discovery”, “capable of assessing 

student skills and abilities”, “helps students develop a desire to learn” .

Participants’ beliefs about the attributes a good teacher must possess and their beliefs 

about aspects of good mathematics instruction emerged from their responses on this 

item from the pre-assessment. The participants describe a good mathematics teacher 

as someone who has a positive attitude about learning mathematics, is prepared, 

patient, and enthusiastic. The participants also felt that a good mathematics teacher’s 

practice appeals to all learning styles and that they develop a classroom atmosphere
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that makes students want to learn. A good teacher’s practice also relates mathematics 

to the real world and includes appropriate assessment.

Participants were asked to describe their future classroom through the eyes of an 

observer in a journal entry collected on March 4, 2002. Participants were explicitly 

asked to discuss what their classroom would look like and what the observer would 

see in a typical lesson. Participants’ responses on this journal entry describe their 

beliefs about classroom arrangement and further support their views about a good 

mathematics teacher.

Participants’ responses describe a classroom that is arranged to be student cen

tered. All eighteen participants described students being arranged in groups, while 

fourteen of the eighteen said that the room would be full of manipulatives for students 

to utilize to aid in problem solving. Also, six participants said that their classroom 

would be completely decorated with student work. One of the participants wrote,

The room was decorated with many posters and illustrations of student’s 

work. Books, science equipment, and manipulatives were located through

out the classroom. There were no desks, the students sat at round tables 

in groups of four or five students. This set up allowed for group discussion 

and project work.

Participants’ main suggestion, in this journal entry, for incorporating group work was 

by introducing a new topic for the day to begin class and then having students work 

in groups on more problems or an activity related to the day’s lesson. Participants 

also said that while students were working in groups they would be playing the role 

of facilitator and would be walking around the room to be sure that students are on 

track. The following excerpt from a journal entry highlights these ideas,

The math lesson would start with me introducing a new topic or project 

that the students would be working with as a small group. I would give
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them an idea of what they needed to complete as a group and then allow 

time to solve their problem. The students in each group would help each 

other and work together to solve the problem. They would use each other 

as resources and try to figure things out before rushing up to me with 

many questions.

Participants also suggested that the observer would see a teacher who was able to 

adapt a lesson to accommodate many different learning styles, as they had suggested 

as their predominant belief about teaching on the pre-assessment. Participants also 

supported their view of the attributes of a good mathematics teacher when they 

suggested that the observer would notice a lesson that was well planned and well 

structured, and that they were well prepared and engaged students in the lesson.

Participants’ beliefs about teaching mathematics underwent little change from the 

pre-assessment of beliefs to the journal entry collected on March 4, 2002. The only 

change was an increased focus on utilizing groups in mathematics instruction. When 

asked to describe a good mathematics teacher on the pre-assessment of beliefs, only 

four participants mentioned group work and discovery learning. A month later, on the 

March 4th journal entry, all participants suggested that they would utilize group work 

and /  or discovery learning in their future classrooms. Participants were also able 

to describe how they would utilize group work. Participants’ belief in group work 

and discovery learning and description of their classroom arrangements imply the 

beginning of a shift towards believing in promoting a more open classroom atmosphere 

and allowing their students more autonomy in the classroom.

On the post-assessment of beliefs collected on May 13, 2002 participants were 

again asked to describe a good mathematics teacher. Participants’ responses from 

this task demonstrated that they are developing their conceptions of the attributes 

of a good mathematics teacher, are able to better verbalize their beliefs about the
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practice of a good mathematics teacher, and are describing in more depth an open- 

classroom atmosphere. The responses from this task were coded into three categories; 

classroom atmosphere and arrangement, attributes of a good mathematics teacher, and 

aspects of a good mathematics teacher’s practice. These exhaustive categories follow,

Atmosphere and arrangement: “student centered” , “risk free environment” .

Attributes: “has high expectations”, “patient” , “fun”, “enthusiastic”, “innovative 

and creative”, “engaging”, “willing to be wrong”, “in depth understanding of 

the fundamentals” , “understanding and available” , “understands each students’ 

capabilities”.

Practice: “good assessment” , “applies math to real world”, “using problem posing 

as inquiry”, “teaches with meaning and understanding”, “creates lessons that 

appeal to all learning styles” , “provides opportunities for students to construct 

their own knowledge”.

On the post-assessment participants described more specific attributes of a good 

mathematics teacher, as compared to the pre-assessment, which can be seen by the 

number of responses related to attributes on each assessment. Therefore, participants 

were able to better articulate their views of the attributes of a good mathematics 

teacher post instructional treatment. Also, attributes such as innovative and creative, 

willing to be wrong, and fun, which were not on the pre-assessment, begin to support 

participants’ shift to viewing the mathematics classroom atmosphere as more open. 

Evidence of participants considering more open classroom environments also comes 

from the fact that they mentioned mathematics classrooms being student centered and 

being a risk free environment, neither of which were mentioned on the pre-assessment.

Participants were also able to better articulate their beliefs about teacher’s prac

tice on the post-assessment as compared to the pre-assessment and March 4th journal
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entry. For example, on the pre-assessment and March 4th journal entry, participants 

discussed utilizing group work and discovery learning in the classroom, but on the 

post-assessment this was verbalized as presenting students with opportunities to con

struct their own knowledge. Also on the post-assessment participants suggested that 

teachers teach with meaning and understanding and utilize problem posing, which 

were not mentioned previously. A participants response on the post-assessment helps 

support these changes, “a good mathematics teacher is one who gives students op

portunities to inquire on their own, allows students to use manipulatives to  see con

nections, and uses problem posing as a method of inquiry.”

Evidence of participants’ beliefs about teaching mathematics is also found on their 

final journal entry which was collected on May 16, 2002. This journal entry asked 

participants to articulate their reaction to the semester long course. The responses on 

this journal entry support the notion that participants began viewing the mathematics 

classroom as a more open-ended entity and that this will become part of their teaching 

style. Participants’ responses discussed viewing the classroom as a place of exploration 

instead of just a place to do boring desk work and that they have shifted to wanting 

students to gain conceptual knowledge and not just procedural knowledge. This trend 

can be highlighted by a portion of a participant’s journal entry,

If I can teach mathematics to them with meaning and understanding and 

give them the opportunities to discover and communicate their ideas on 

their own, with each other, and with me, then I have no doubt that they 

will enjoy the subject just as much as I do.

In summary, over the course of the instructional treatment participants’ beliefs 

about teaching mathematics have become more developed. At the beginning of the 

instructional treatment participants envisioned a good mathematics lesson utilizing 

group work and manipulatives. At the end of the semester, they have not changed
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this belief but have described reasons why they hold this belief including, to pro

mote students construction of mathematics knowledge. Also, participants were able 

to describe more attributes of a good mathematics teacher at the end of the instruc

tional treatment and these descriptions suggested that mathematics teaching should 

promote an open classroom atmosphere and allow for student autonomy.

Beliefs About Learning Mathematics

Before describing participants’ beliefs about learning mathematics that emerged 

during the instructional treatment this section will describe experiences from par

ticipants past mathematics education related to their learning of mathematics. The 

goal of this description is to provide background to help understand participants’ 

beliefs about learning mathematics during the instructional treatment. Participants’ 

mathematical autobiographies were collected on January 28, 2002 and their coding 

revealed pivotal experiences, from participants mathematics education, related to 

learning mathematics. Fourteen participants described pivotal experiences related to 

learning mathematics, ten were positive and four were negative. Two of the nega

tive statements referred to participants not being able to take advanced classes. One 

participant was not able to take algebra in eighth grade and the other was not able 

to continue on the advanced track after geometry. These participants both described 

losing confidence in their mathematics ability because of these experiences. Another 

participant felt that not asking for help has slowed her learning process over the years. 

Four of the positive responses describe tracking and its impact on participants’ con

fidence in their mathematics ability. Three participants gained confidence in their 

mathematics ability because they were tracked into the advanced class from eighth 

grade on, the fourth student gained confidence by realizing that choosing to not take 

the advanced track helped her develop a stronger and deeper understanding of mathe

matics. The remainder of participants’ positive comments refer to experiences in high
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school mathematics and calculus. For example, one student said that her confidence 

increased significantly when she began to think about mathematics as a “game of 

cards”, you rarely understand it at first but after playing it starts to click.

There are few instances of participants discussing their beliefs about learning 

mathematics during the instructional treatment. Results discussed previously related 

to teaching mathematics imply that participants believe that students learn best when 

they are actively engaged in the learning process. This theme can be highlighted by a 

couple of situations during the instructional treatment. Participants’ responses to the 

journal entry collected on March 4, 2002 suggested that students should take part in 

self-guided discovery and should have control of the learning process. This discovery, 

student centered view of learning, was also represented by participants’ suggestions, 

on the post-assessment of beliefs, for providing students a chance to construct knowl

edge and is exemplified by this quote from the final journal entry, “I truly believe 

that children learn best when they are actively engaged in the classroom.”

Responses, presented previously, on the pre- and post-assessment of beliefs, also 

imply that participants believe that students in their classrooms will have many dif

ferent learning styles and that as teachers they need to be able to adapt to these 

different styles. Evidence of this belief comes from the pre-assessment, when 14 par

ticipants included that, a good teacher appeals to all learning styles and is able to 

utilize multiple teaching approaches to do so, in their descriptions of a good mathe

matics teacher. Further evidence that participants believe that students have different 

learning styles comes from the journal entry on March 4, 2002, as participants sug

gested that they would gear their lessons to many different learning styles, and from 

the post-assessment of beliefs, as participants described a good mathematics teacher 

gearing their lessons to many different learning styles.
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In summary, participants described their beliefs about how children learn math

ematics during the instructional treatment. Participants realized that students will 

enter their classroom with many different learning styles and there is a trend in their 

writing towards allowing their students more freedom and autonomy in the classroom.

Relationship Between Problem Posing and School Mathematics

Data related to participants’ beliefs about problem posing and its relationship 

to school mathematics was collected on the pre-assessment of beliefs, journal entries 

collected on March 4, 2002, March 11, 2002, April 15, 2002, May 6, 2002, May 16, 

2002, and on the post-assessment of beliefs. This data will be used to describe the 

development of participants’ views about the relationship between problem posing and 

school mathematics. The development of participants’ belief that problem posing is 

a beneficial task for their future students and belief that they will utilize problem 

posing in the their future classrooms will be highlighted. The data also provides 

evidence of how participants will utilize problem posing in their future classrooms 

and future teaching.

On the pre-assessment of beliefs, participants were asked to respond to a problem 

posing situation, see appendix B, and to respond to the question, “Do you believe 

that problem posing from sets of given information is a worthwhile task for ele

mentary school students?” Participants’ responses on this task came after they had 

completed the pre-assessment of problem posing, so they had that prior experience 

posing mathematics problems. Results from this item of the pre-assessment imply 

that participants see problem posing as a beneficial task to utilize with elementary 

school students and they see possible benefits related to students’ problem solving, 

mathematical understanding, and feelings about mathematics. Of the nineteen par

ticipants, sixteen said that they believed that problem posing would be beneficial with 

this audience and three were unsure about the possibilities for problem posing in el
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ementary mathematics. Participants’ descriptions of the possible benefits of problem 

posing can be organized into three categories based on their relationship to  problem 

solving, student understanding, and student feelings about mathematics. Participants 

also suggested possible negatives of student problem posing and these are reported in 

a fourth category. The categories follow,

Problem solving: “help students better understand word problems”, “students will 

understand designing problems”, “create problems that relate to them”, “de

velop a better understanding of problem solving”, “helps students think beyond 

problem solving”.

Understanding: “consider information on multiple levels”, “better understanding of 

material”, “help teachers assess student understanding”, “helps students recog

nize pertinent information”.

Feelings: “alleviate student fear of word problems”, “develop ownership of mathe

matics”, “freedom and creativity with numbers and relationships”.

Negatives: “students may be confused or frustrated at first”, “may pose unsolvable 

or non-mathematical questions”, “questions may take lessons off track”, “stu

dents may take easy way out and ask simple questions”, “not practicing math 

directly” .

These categories help describe participants’ beliefs about the relationship between 

problem posing and school mathematics at the beginning of the instructional treat

ment. Participants believe that problem posing has the potential to help students 

with their problem solving ability, including with their ability to understand word 

problems, and will allow students to think beyond problem solving. Participants also 

believe that problem posing will help develop student understanding of mathematics 

by allowing them to consider information on multiple levels and helping them develop
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the ability to recognize pertinent information in mathematics. Participants also view 

problem posing as having the potential to affect students feelings about mathematics, 

including the potential to foster creativity and to help students develop ownership 

of mathematics. Finally, participants suggest some possible drawbacks to  student 

problem posing on the pre-assessment. Ten participants, for example, described the 

potential for students to pose unsolvable or non-mathematical problems or that prob

lem posing may cause the class to get off track. Further, eleven participants said that 

students may get confused or frustrated at first and may have trouble with their 

initial introduction to problem posing.

The remainder of this section will show that although participants have beliefs 

about the relationship between problem posing and school mathematics at the begin

ning of the instructional treatment it is not until after they engage in problem posing 

that they begin to relate problem posing to mathematics classrooms and start to 

discuss possibilities for the utilization of problem posing in school mathematics. Ini

tially, participants described their future classrooms through the eyes of an observer 

in the journal entry collected on March 4, 2002, about five weeks into the instructional 

treatment. In this journal entry only two participants mentioned utilizing problem 

posing in their future classrooms. In the description of her lesson, one participant 

said that she would have students write word problems for division facts that she had 

on the chalkboard. Another participant said that she would give students a journal 

prompt that asked them to think of a division problem, solve it, and then write in 

their own words how they would explain the problem to a third grader. This journal 

entry shows that five weeks into the instructional treatment only two participants 

have begun the process of further reflecting on the role of problem posing in the 

mathematics classroom.
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Participants next journal entry was collected a week later on March 11, 2002 and 

asked them to reflect on the course to date. What things have they found beneficial 

and/or what things might they change? Responses to this journal entry showed 

some evidence of participants reflection on how the course will influence their future 

teaching and reflection on problem posing and its relationship to school mathematics. 

With respect to reflecting on class activities and how they will influence their future 

teaching, one participant stated that the readings were beneficial because they allow 

them to see how others teach and utilize manipulatives. Six participants responded 

that they like the group work and ten participants commented that they felt like they 

were gaining activities and ideas for their future classroom from class assignments and 

activities. With respect to problem posing, four participants commented that their 

problem re-formulation and problem generation experiences caused them to think 

beyond the activities and that they started to related problem posing to their future 

classrooms. Other responses related to problem posing included the idea that problem 

posing seems to be an effective and worthwhile teaching method and that students 

should want to pose and solve their own problems in and out of the classroom. Results 

from this journal entry show that students reflection about their future teaching and 

problem posing is progressing.

On April 15, 2002 participants submitted a journal entry that asked them to con

sider who their intended audience was as they were posing mathematics problems 

during the instructional treatment. Responses to this journal entry showed evidence 

that participants were continuing to reflect on the relationship between problem pos

ing and school mathematics. Eleven of the sixteen participants who responded stated 

that they were posing problems for their future students and indicated the appropri

ate grade level to range from second to eighth grade. Ten participants also said that 

the grade level that they pose problems for is dependent on the original problem or
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the original set of given information. This implies that participants were not only 

considering their future classrooms as they were posing problems, but they were also 

considering the appropriate grade level to pose problems for. Participant reflection is 

highlighted through the following quotes,

When I’m actually teaching, I will need to pose appropriate problems for 

all children in my class to best facilitate their growth in mathematics.

What I try to keep in mind most as I am problem posing is whether or 

not most students at a particular grade level will be able to find a solution 

with meaning and understanding.

On May 6, 2002, the participants were asked to consider if they would utilize prob

lem posing in their future classrooms. Participants responses on this journal entry 

implied that they all see problem posing as a resource for their future classrooms. 

Participants began to articulate ways they will utilize problem posing. In this jour

nal entry participants continued to articulate their beliefs about possible benefits of 

problem posing for student understanding and students feelings about mathematics. 

All nineteen participants stated that they would utilize problem posing in their class

rooms. Participants stated two roles of problem posing in their classrooms, having 

students pose mathematics problems, and teachers utilizing problem posing to aide 

in class preparation.

In this journal entry participants suggested many possibilities to promote student 

problem posing in their future classrooms including, as a whole class, as problem 

re-formulation, as an introduction to new material, on homework, and as an extra 

credit assignment, as a device to give quicker learning students something to do, and 

by using a problem posing box. Overwhelmingly participants suggested having the 

whole class re-formulate problems as an introduction to problem posing, followed by 

assigning problem generation tasks after students are comfortable with problem re
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formulation. Suggestions for problem posing as a tool to introduce new material to 

students, included students posing problems based on a new topic and then the class 

researching the answers to these problems in order to gain knowledge about the topic. 

Finally, one participant suggested creating a problem posing box. She suggested that 

students could pose problems for homework or during class activities and then put 

them in the problem posing box. When students had time in class they could take a 

problem from the problem posing box and try to solve it, this would give students a 

chance to solve their peers posed problems.

Participants also suggested that problem posing promotes student thinking and 

allows for deeper understanding of the material. One participant stated, “by the 

problem posing process, students begin to identify key terms and concepts that de

fine a topic, and by structuring problems around these topics, they begin to make 

connections, which enhances the learning process.” Participants also supported their 

ideas from the pre-assessment that problem posing would allow for student control 

and autonomy and can give students a sense of ownership over a problem. Two 

statements from participants help illustrate these ideas,

I think that when students inquire about topics they are taking learning 

into their own hands, and that is one of the best things that problem 

posing can bring to a classroom.

The questioning can help students determine their level of knowledge and 

helps students to develop metacognition.

Participants’ responses on this journal entry also suggested that teachers can uti

lize problem posing as a tool in their classrooms. Participants saw problem posing as 

a possible assessment tool, as a tool for teachers to take advantage of “teachable mo

ments” , as a tool to better accommodate all learning styles in their classroom, and as a 

tool to help develop activities, problems, tests and quizzes. One participant described
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how and why a teacher would utilize problem posing when she wrote, “a teacher must 

be able to predict what students will find easy and difficult to do, and know her stu

dents well enough to be able to pose problems that will be thought provoking and 

meaningful to them.” Responses to this journal entry show that participants’ beliefs 

about the relationship between problem posing and school mathematics have devel

oped as they have been exposed to problem posing in the instructional treatment. 

Results suggest that participants beliefs about utilizing problem posing with their 

future students and as a tool in their future teaching have evolved. Participants 

described similar benefits of problem posing in responses to this journal prompt as 

they did on the pre-assessment, but were also able to articulate ways to incorporate 

problem posing in their classrooms and reasons problem posing may influence student 

understanding and student feelings about mathematics.

Participants’ responses on the post-assessment of beliefs and on the final jour

nal entry, which asked them to reflect on the semester and was collected on May 

16, 2002 confirm that they have been reflecting on problem posing. On the post

assessment, when asked to respond to the problem posing activity, all participants 

stated that problem posing will be beneficial for elementary students. This assess

ment included more responses about the possible benefits of problem posing at this 

level and these responses were consistent with the benefits of student problem posing 

that were suggested on the May 6, 2002 journal entry, including, helps develop stu

dent understanding, promotes autonomy and ownership, improves problem solving, 

and helps develop student interest. On their final reflection collected on May 16, 

2002 a few participants’ quotes highlight the ideas about problem posing mentioned 

previously,

With problem posing, I as the architect developed the concepts that

should be incorporated into the problems and determined the age groups
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to be assessed, and as the carpenter I wrote the problems, determining 

what style would suit the students needs best, much like a carpenter must 

do when building a piece of furniture, or a house.

I also learned how beneficial it is to having children pose problems, some

thing I didn’t  like before this class. It is extremely important to give the 

students a sense of ownership over a problem and a better understanding 

of the problem.

Uses in the classroom and importance of problem posing are the biggest 

thing that I have learned.

I can also have students pose their own problems to be solved by their 

classmates. This allows more freedom and power for the students in own

ing their learning.

In summary, as a result of the instructional treatment, there is evidence that 

participants have developed detailed beliefs about the relationship between problem 

posing and school mathematics. Participants see problem posing as a beneficial task 

for their future students to engage in and as a tool that they will utilize in their future 

teaching. Participants were also able to justify why they saw benefits of problem 

posing. Data showed reflection throughout the course of the instructional treatment 

about problem posing, teaching, and learning. This reflection allowed participants to 

articulate these new beliefs they had developed.

Individual Beliefs

Discussion of individual results will focus on participants’ beliefs about mathemat

ics, beliefs about teaching mathematics, and beliefs about the relationship between 

problem posing and school mathematics.

Bill
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As stated in Chapter 5, at the time of this research Bill was a senior, majoring in 

mathematics education, with a focus on middle school mathematics education. Bill’s 

past mathematics experiences are discussed briefly prior to describing his beliefs that 

emerged during the instructional treatment. Bill’s mathematical autobiography was 

collected on January 30, 2002 and in his autobiography he described some pivotal 

experiences in his mathematics education. Bill took algebra I in the eighth grade and 

was in the advanced track of mathematics throughout high school. Bill’s first difficult 

times as a mathematics student were in college. Bill also described a pivotal experi

ence with regard to his desire to become a mathematics teacher. Bill said that after 

starting college as a business major he substitute taught during his first year and real

ized that he wanted to become a teacher. Bill chose to become a mathematics teacher 

because he feels that a mathematics degree is a sign of intelligence and prestige. The 

remainder of this section will focus on Bill’s beliefs about mathematics, beliefs about 

teaching mathematics, and Bill’s view of the relationship between problem posing 

and school mathematics, that emerged during the instructional treatment.

Bill’s Beliefs About Mathematics. Data related to Bill’s beliefs about mathemat

ics comes from his pre-assessment of beliefs, his first interview on February 4, 2002, 

a second interview on March 27, 2002, a third interview on May 8, 2002, and the 

post-assessment of beliefs. Bill’s beliefs about mathematics are consistent with the 

mathematics predominant pre view described previously and he believes that mathe

matics is a static body of knowledge. There was little change in Bill’s beliefs about 

mathematics during the instructional treatment, but he was better able to articulate 

what he believes mathematics is post instructional treatment.

The first situation where Bill described his beliefs about mathematics was the 

pre-assessment of beliefs collected on January 28, 2002. Bill’s responses on the pre

assessment indicate that his beliefs are similar to the mathematics predominant pre
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view and that he believes that mathematics is a static body of knowledge. Evidence 

of the mathematics predominant pre view comes from Bill’s word list and completion 

of “Mathematics is . . . Bill’s word list included math words (i.e. geometry, addi

tion), “proofs”, “anybody can do it”, “fun at times”, “intelligent” and “respected”. 

Bill also defined mathematics as “. . .  the study of relationships having to do with 

concrete information on numbers.” Bill discussed his beliefs further during his third 

interview and on the post-assessment. During his third interview, while reflecting on 

the pre-assessment, Bill suggested that he would change his definition of mathemat

ics. Bill felt that his definition of mathematics on the pre-assessment of beliefs was 

vague and in its place suggested, “. ..  the study of relationships having to do with a 

concrete foundation of definitions and stuff and applying the known to the unknown.” 

When asked about “applying the known to the unknown” Bill said that he means 

applying the known and developing upon that foundation. Five days later on the 

post-assessment of beliefs Bill defined mathematics as, “. . .  the study of relationships, 

based on a system of set beliefs.”

The combination of Bill’s three attempts to define mathematics imply that he 

believes mathematics is related to numbers and involves finding relationships, a view 

similar to the mathematic predominant pre view, with applying the known to the un

known suggesting problem solving in mathematics. Thus, Bill’s beliefs about mathe

matics have not changed but as is seen from his final definitions he is better able to 

articulate his views post instructional treatment.

Bill’s view of mathematics as static is supported by his statement on the third 

item of the pre-assessment that mathematics is not changing, is already determined, 

and that math is like a language and we are always learning new vocabulary. Bill 

reiterated his belief about the nature of mathematics during his first interview when 

he stated,
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I believe that there is like a big circle of mathematics information and I 

believe we know a part of that circle. Like a chunk of it, but I feel like all 

of it is already defined we just don’t know it yet.

Bill also expanded on his view of mathematics as static during his second interview. 

When asked if we will ever understand all of mathematics, Bill stated,

That is what I believe and we get to a point where we are still finding out, 

maybe one hundred, two hundred, three hundred thousand years down 

the road where we are really close, we have most of it down, we can travel 

across the universe, we understand those laws, and we can bend time and 

stuff like that, but there will still be little things that we haven’t  picked 

up yet.

Bill demonstrated that his belief that mathematics is a static body of knowledge 

remained constant throughout the instructional treatment during his third interview 

and on his post-assessment of beliefs. During Bill’s third interview, when asked to 

reflect on his pre-assessment of beliefs, he stated that he would not change his response 

to the item about mathematics being static. Also on the post-assessment of beliefs, 

Bill again described mathematics as a language for which vocabulary is still being 

learned.

Bill’s Beliefs About Teaching Mathematics. Data related to Bill’s beliefs about 

teaching mathematics comes from his pre-assessment of beliefs, first interview, March 

4, 2002 journal entry, third interview, and post-assessment of beliefs. Bill’s responses 

on these tasks suggest that he entered the instructional treatment with a traditional 

“drill and practice” view of mathematics teaching, but that post instructional treat

ment he started to think about an open-classroom atmosphere and allowing students 

autonomy in the classroom.
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Bill’s pre-assessment of beliefs and his description on the first interview of a good 

mathematics teacher help describe his beliefs about mathematics at the beginning of 

the instructional treatment. On the pre-assessment and during the first interview Bill 

suggested attributes of a good mathematics teacher to include, the teacher is able to 

tie a bunch of ideas together in different ways without confusion, makes students feel 

good about their accomplishments, and motivates students to do their homework. Bill 

also suggested aspects of the instruction of a good mathematics teacher to include, 

the teacher understands the proper pace for the class, offers extra work for students 

that excel, involves real life activities in the classroom, and includes traditional drill 

and practice of reading problems off a projector. Similar to the whole class, Bill has 

described attributes that suggest a teacher should have a positive disposition towards 

mathematics. Bill’s description of aspects of good mathematics instruction, however, 

are not consistent with the whole class’ views. Bill elaborated on his views during 

the first interview as he described a possible third grade class,

We’ll do a lot of counting, we’ll do flash card games with multiplication 

tables and division tables and I will do a lot of drill sheets. At that level I 

think that rote memorization is the way to go and that people in middle 

school who don’t  know their times tables, that is just ridiculous. So I’ll 

do a lot of drilling with those memorization skills, because those things, 

there is not a lot of, because the application process is forever. You’ll be 

using that stuff all that time and I just believe that is important. And 

word problems and real life situations are going to be nice and helpful but 

the core of my elementary math teaching will be memorizing how to do 

things.

Bill’s response in the journal entry collected on March 4, 2002 supported his beliefs 

outlined above, but he began to imply that he is thinking about promoting an open
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classroom atmosphere. Bill described a lesson where students are in groups of four 

working on memorizing their multiplication tables. The lesson is completed with a 

one-on-one game of flash cards. Bill also said that he will have students present 

problems at the board and that he feels like he is mixing up a traditional lesson with 

modern approaches by having students in groups and more involved in their own 

learning.

During both the final interview and post-assessment of beliefs, Bill added the fol

lowing to his description of a good mathematics teacher, the teacher will challenge 

students to the point where they feel challenged and not stupid, and the teacher 

should know the level of achievement of each student and be able to let their students 

struggle for the correct amount of time. This belief in letting students struggle seems 

to be a departure from Bill’s belief in drill and practice. If students are struggling, it 

seems that they have some autonomy in the learning process and are not just partic

ipating in drill and practice and rote memorization. Thus, during the instructional 

treatment, Bill started to consider promoting an open classroom atmosphere and stu

dent autonomy. Bill’s consideration of student autonomy will be seen again in his 

beliefs about problem posing in school mathematics.

Bill’s View of the Relationship Between Problem Posing and School Mathematics. 

Bill’s beliefs about the relationship between problem posing and school mathematics 

come through in his, second interview, journal entry collected on May 7, 2002 and 

his final interview. Results from this data suggest that Bill’s beliefs about problem 

posing in school mathematics evolved from not believing problem posing had a place 

in school mathematics to articulating roles of problem posing in the classroom and 

possible benefits for students learning.

Bill’s pre-assessment of beliefs and first interview do not provide information 

related to his beliefs about problem posing in school mathematics. On the pre-
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assessment of beliefs, Bill misunderstood the item that asked him to examine a prob

lem posing task and then describe whether he thought problem posing would be a 

beneficial task for elementary school students. Instead of commenting on problem 

posing Bill commented on solving word problems with elementary school students. 

Bill had this misunderstanding again during the first interview, when asked if he 

would utilize problem posing he said, “yeah but I don’t think as much” and then 

discussed his beliefs about utilizing word problems.

Bill’s second interview on March 27, 2002, however, provides a window into his 

beliefs about problem posing and its relationship to teaching and learning mathemat

ics. During this interview, Bill began to consider the possibility of problem posing 

having a role in school mathematics. At the beginning of the interview, Bill said 

that he does not see himself utilizing problem posing as a future teacher, but that 

he does believe that he will become a better problem poser through practice. Bill 

stated that there are a tremendous amount of resources out there with problems in 

them and if somebody has already done the problem posing why should he not utilize 

their work. After this statement Bill was asked to consider introducing his students 

to problem posing. Bill suggested that the only possible use he can see is as a tool to 

even out timing in his classroom and give accelerated students something to work on 

or a chance to gain extra credit. Later in the interview, though, Bill seemed to have 

reflected on the incorporation of problem posing further and stated that a possible 

benefit could be, “so they have a little more involvement, a little more responsibility, 

a little more participation in their learning.” Following this statement the researcher 

explained his views of mathematics as a problem posing domain. After this explana

tion, Bill started to reflect further on the idea of incorporating problem posing in the 

classroom and stated, “. ..  problem posing, it might work, like you say you see prob

lem posing as math. So I have to take that into account with other students, maybe
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half the class sees it that way.” The fact that Bill considered that his future students 

may see mathematics as problem posing implies that he was sincerely reflecting on 

problem posing during this interview and not just repeating the researcher’s beliefs.

Bill continued reflecting on problem posing in his journal entry collected on May 7, 

2002, which asked if he would utilize problem posing in his classroom. Bill began by 

saying that he would try to utilize problem posing in a elementary school classroom as 

an extra credit assignment and as a tool to even the pace of his class. Bill also stated 

that if he teaches middle or secondary school he hopes to utilize problem posing as 

a unit ending activity that allows his students to be in the teacher’s role. During his 

third interview on May 8, 2002 it was again clear that Bill had reflected on the roles 

of problem posing. His concept map of problem posing (see appendix B) is evidence 

of this reflection. While describing his concept map Bill stated,

Well there is teacher posing the problems, which you know they can focus 

more on what they want to teach the kids. There is the student posing the 

problems which gives them responsibility and ownership of the problem 

and they can discover their own math. You can use some of their problems 

as possible test problems and then it is also. It gives them maybe moti

vation for I think, what is it called, intrinsic learning, where they want 

to learn on their own. You can use projects and homework I think are 

the best places for using it across the curriculum, then on tests because 

you need more time. Students could slack on posing problems, that is 

the negative side of it, you know they could just be really like whatever 

and how do you assess that? How do you assess whether they are putting 

forth their effort? And then it helps develop problem solving strategies, I 

believe that.
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Bill’s concept map supports that his views of problem posing in mathematics teaching 

and learning evolved during the semester. Bill changed from not seeing any benefit 

of problem posing to being able to verbalize possible roles of problem posing in the 

classroom and the possible benefits of these roles for student learning. During the 

instructional treatment Bill reflected on problem posing and possibilities for its in

corporation into classrooms and curriculums. Post instructional treatment Bill was 

able to articulate possible benefits of problem posing for students and possible ways 

to utilize problem posing in his future classroom.

Carrie

As stated previously Carrie was a first year graduate student seeking her certifi

cation in elementary education at the time of this study. Carrie’s past mathematics 

experiences are discussed briefly prior to describing her beliefs that emerged during 

the instructional treatment. Carrie’s mathematical autobiography was collected on 

January 30, 2002 and in her autobiography Carrie described some pivotal experiences 

in her mathematics education. Carrie was in the highest track mathematics class 

through fourth grade and then worked independently on mathematics in fifth and 

sixth grade. Carrie’s first confusion in a mathematics classroom came in algebra II in 

ninth grade but she felt like she was back on track based on her success in geometry 

in the tenth grade. Carrie took honors pre-calculus in eleventh grade and asked to 

take the BC, AP calculus class her senior year in high school, more she admitted, be

cause of pride rather than an interest in mathematics. Carrie never fully understood 

calculus and is glad to have “put it behind [her]”. During her education Carrie was 

only frustrated by one mathematics teacher, her pre-calculus teacher never took ques

tions in class and Carrie described her as “ruthless”. The remainder of this section 

will focus on Carrie’s belief about mathematics, beliefs about teaching mathematics, 

and view of the relationship between problem posing and school mathematics, that
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emerged during the instructional treatment.

Carrie’s Beliefs About Mathematics. Data related to Carrie’s beliefs about math

ematics was collected on her pre-assessment of beliefs, a first interview on February 13, 

2002, a third interview on May 8, 2002, and the post-assessment of beliefs. Carrie’s 

beliefs about mathematics during the instructional treatment and post-instructional 

treatment changed. Carrie became better able to articulate her beliefs about mathe

matics. Evidence indicates that Carrie’s beliefs are consistent with the mathematics 

predominant pre view before the instructional treatment and that post-instructional 

treatment Carrie began to articulate the mathematics predominant post view. Carrie 

believed throughout the instructional treatment that mathematics is always changing 

and did not change this view.

Evidence of Carrie’s mathematics predominant pre view comes from her pre

assessment of beliefs and first interview. Carrie’s word list on the pre-assessment 

included, math words (i.e. geometry, addition), “theorems”, “definitions” , “challeng

ing”, and “math-minded” . Also, Carrie defined mathematics as “. . . the  science of 

numbers and their interrelationships, including combinations, generalizations, and 

configurations involving manipulations and definitions of space.” Carrie’s definition 

of mathematics on the pre-assessment implies a relationship to numbers and her ref

erence to the manipulation of numbers may imply a relationship to problem solving. 

During Carrie’s first interview she discussed in more detail her beliefs about math

ematics. During the interview Carrie again defined mathematics as having to deal 

with numbers, relationships and manipulations but when asked she said that math

ematics does not always have to deal with numbers. Carrie suggested calculus as a 

branch of mathematics that does not deal with numbers. This is more evidence of 

Carrie’s mathematics predominant pre view because she views mathematics as a dis

cipline that entails more than manipulating numbers but does not have a developed
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conception of mathematics besides working with numbers.

Carries beliefs about mathematics changed by the time of her final interview and 

post-assessment of beliefs. Carrie’s responses on these items begin to support that 

she has prescribed to the mathematics predominant post view. Carrie reflected on her 

responses to the pre-assessment of beliefs and said that she felt like with more time 

she could write a less ambiguous, more definite definition of mathematics but was not 

able to produce one during the interview. On the post-assessment of beliefs Carrie 

was able to expand her word lists and included words such as “problem posing” and 

“problem solving”. Carrie provided another definition of mathematics, “. . .  the study 

of relationships between expressions of numbers, units, time, and space. It includes 

studies of arithmetic, patterns, spatial relations, and rates of change.” These responses 

on the post-assessment support Carrie’s mathematics predominant post view as she 

articulated problem solving and problem posing as aspects of mathematics and refined 

and expanded on her definition of mathematics as relationships between numbers. 

These responses also demonstrate that Carrie is better able to articulate her views 

post instructional treatment as she wrote a clearer, more concise, and less ambiguous 

definition of mathematics.

On the pre-assessment Carrie explicitly stated her belief about the nature of math

ematics as one in which mathematics is changing but the fundamentals are very 

definitive and concrete. Carrie expounded on her belief that mathematics is changing 

during her first interview,

You could say it is ever expanding, I guess I would lean more towards that, 

than saying that it is already out there and say at some point everyone 

is going to know everything that there ever needs to be known about 

mathematics and we’ll close the book and say that it is done. I don’t think 

that will happen. There is always more connections and with any science
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really. There is no possible way you could say we’ve learned everything, 

so I think it is always expanding.

Carrie’s beliefs about the nature of mathematics do not change during the instruc

tional treatment and during her third interview and on the post-assessment of beliefs 

she stated that she still felt convinced that mathematics is changing.

Over the course of the instructional treatment Carrie’s beliefs about mathematics 

evolved from a mathematics predominant pre to mathematics predominant post view. 

Post-instructional treatment she was also able to better articulate what mathematics 

is to her. Carrie’s views of the nature of mathematics did not change during the 

instructional treatment and this may be result of her motivation for learning mathe

matics. As Carrie stated, “I personally do not have much interest in exploring math 

for the beauty of math itself.”

Carrie’s Beliefs About Teaching Mathematics. Data related to Carrie’s beliefs 

about teaching mathematics was collected on her pre-assessment of beliefs, a first 

interview, a March 4, 2002 journal entry, a May 16, 2002 journal entry, and the post

assessment of beliefs. During the instructional treatment Carrie became better able 

to articulate her vision of a good mathematics teacher and a good mathematics class

room. Carrie demonstrated a belief that teaching should encourage student discovery 

and by the end of the instructional treatment was able to articulate how and why she 

will promote discovery. Carrie’s beliefs about the attributes of a good mathematics 

teacher focus on teacher knowledge.

Evidence of Carrie’s beliefs about the attributes of a good mathematics teacher 

and the aspects of the practice of a good mathematics teacher are reflected in her 

responses on the pre-assessment of beliefs. On this assessment, Carrie stated that a 

good mathematics teacher should be knowledgeable in the fundamentals and higher 

levels of mathematics. She also believes that the teacher should be knowledgable
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to the point of being able to understand theory and applications. Thus, content 

knowledge is the most important attribute of a good mathematics teacher to  Carrie. 

With regard to aspects of good mathematics instruction on the pre-assessment, Carrie 

articulated the predominant view of the class that teachers should be able to teach 

by using multiple approaches and should be capable of authentically assessing their 

students’ skills.

Evidence of Carrie’s beliefs about discovery learning in mathematics instruction 

does not come until her first interview. Carrie stated, “I like the idea that a mathe

matics teacher would say how many different ways could we approach solving this and

encourage knowledge to build upon that ” The statement “encourage knowledge

to build upon that” implies the belief in student construction of knowledge. During 

her first interview Carrie described her classroom as including a lot of counting, mea

suring, and comparison but was not able to give a detailed example of what teaching 

would look like in her class. In the journal entry collected on March 4, 2002, Carrie 

stated that her classroom would include lessons that were conducted in exploratory 

ways with students in charge of self-guided discovery. I concluded that based on her 

difficulty describing a classroom experience Carrie had not done much reflection on 

the relationship between her beliefs and her future classroom, but that her statement 

on the journal entry was the beginning of such reflection.

Evidence of Carrie’s increase in ability to articulate her views comes from her 

post-assessment and May 16, 2002 journal entry, which asked her to reflect on the 

semester. On the post-assessment Carrie took her suggestion of group work and stu

dents construction of their own knowledge one step further by saying that a good 

mathematics teacher “. .. knows how to present students with opportunities to con

struct their own knowledge... ” Carrie then further articulated this view in her final 

journal entry,
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As a teacher of math I have realized that my main goal for my students will 

be confidence. I would like to make all math encounters in my classroom 

be as inviting and non-threatening as possible. I think many times it  is 

easy for students to be intimidated by math. When they are trying to sort 

out the solution to an arbitrary problem and the solution is not becoming 

clear students tend to react by saying, “what do I need this for” and 

“Pm never going to figure this out”. However if the problem posed in a 

context that is familiar and the question seems to have relevance to what 

the student thinks is important, or information worth knowing, then some 

of the intimidation and frustration can be avoided. Additionally, I would 

like to be the kind of teacher who can accurately assess what my students 

know, what they are still struggling with, and what teaching methods they 

will benefit from most.... Constructivist learning allows students freedom 

to apply their prior knowledge and use what they already know to enhance 

how they learn a  new concept.

During the instructional treatment, Carrie demonstrated the ability to better artic

ulate her view of mathematics teaching. As the above quote shows Carrie expanded 

her view from the pre-assessment and reflected on her views during the semester.

Carrie’s View of the Relationship Between Problem Posing and School Mathematics. 

Data related to Carrie’s view of the relationship between problem posing and school 

mathematics comes from her first interview, a second interview, a May 7, 2002 jour

nal entry, and the post-assessment of beliefs. There is no data from Carrie’s pre

assessment of beliefs because she misunderstood the question about implementing 

problem posing with elementary school students and commented on solving word 

problems with this audience. Carrie articulated a view of the relationship between 

problem posing and school mathematics during the instructional treatment that in-
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eludes problem posing as a tool that should be utilized in mathematics classrooms. 

Post-instructional treatment, however, Carrie is able to articulate ways to incorporate 

problem posing and the possible benefits of problem posing experience for students.

Carrie’s first interview supports the idea that she felt problem posing has a role 

in the mathematics classroom. During the interview Carrie said that she thought 

problem posing would be beneficial with elementary school students because it would 

allow them to look at sets of information from all different angles and see how many 

questions they can answer from a set of given information. Carrie also felt that prob

lem posing would allow students the chance to build a “toolbox of skills” . Carrie’s 

second interview also suggests that she believed problem posing in the classroom will 

help foster students construction of their own knowledge. In the second interview 

Carrie related the benefits she sees of problem posing to her beliefs about mathemat

ics teaching, as she had expressed that good mathematics teaching should promote 

students construction of their knowledge.

Carrie first mentioned ways to include problem posing in her classroom in her May 

7, 2002 journal entry. Carrie stated,

I definitely will use problem posing in my classroom. I plan to teach at the 

lower elementary grades, however using simple math concepts can make 

the problem posing activities more fun and meaningful. For example we 

can use the simple concept of favorite things. Students will ask common 

questions such as what is your favorite desert? From there they can take 

a survey of the class and use that data to pose problems about the in

formation they have (i.e. How many more people like ice cream more 

than cookies?). I would also encourage students to pose problems involv

ing what is in their environment. If problems are derived from their own 

questions and curiosities, then they will be much more motivated to find
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answers to them.

This quote is evidence that Carrie expanded her view of the relationship between 

problem posing and school mathematics during the instructional treatment to  include 

possible ways to incorporate problem posing in her future classroom. Carrie also 

expanded her views of the benefits of problem posing for students and connected them 

to her beliefs about teaching mathematics. Carrie further confirmed this expanded 

notion of her beliefs on the post-assessment, when she stated that students should have 

the chance to pose problems. On this assessment Carrie also gave similar suggestions 

for incorporating problem posing in classrooms to her May 7, 2002 journal entry.

Laura

At the time of this research, Laura was a sophomore majoring in mathematics 

education and seeking certification to teach middle school mathematics. Laura’s 

past mathematics experiences are discussed briefly prior to describing her beliefs that 

emerged during the instructional treatment. Laura’s mathematical autobiography 

was collected on January 30, 2002 and in her autobiography Laura described some 

pivotal experiences in her mathematics education. Laura remembered her first frus

tration in mathematics when she was not allowed to take Algebra in eighth grade 

because of her score on a qualifying exam. Laura remembered being disappointed 

but later realizing that this was the best possible path for her as she always under

stood mathematics and did not get frustrated with mathematics like many of her 

friends. While she was in secondary school Laura began to view mathematics and 

science classes as a card game. Laura realized that she may not always understand 

mathematics at first but that as she gained experience with mathematical ideas she 

was able to understand. The reason Laura chose to become a mathematics teacher 

was because of a calculus class her freshman year in college. Even though she was 

as competent as the boys in class, Laura’s instructor would often brush her off and

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



180

not allow her to answer questions. This experience motivated Laura to become a 

“model of female confidence” for her future students. The remainder of this section 

will focus on Laura’s belief about mathematics, beliefs about teaching mathematics, 

and her view of the relationship between problem posing and school mathematics, 

that emerged during the instructional treatment.

Laura’s Beliefs About Mathematics. Data was collected with regard to  Laura’s 

beliefs about mathematics on her pre-assessment of beliefs, a first interview on Febru

ary 4, 2002, a third interview on May 10, 2002, and the post-assessment of beliefs. 

Laura’s beliefs about mathematics can be characterized as a combination of the math

ematics predominant pre view and the mathematics secondary post view during the 

instructional treatment. She also included problem posing as an aspect of mathe

matics post instructional treatment. Laura’s beliefs about the nature of mathematics 

evolved from a belief that how people view mathematics is changing to a belief that 

not just peoples views but that mathematics as a domain of knowledge is being dis

covered.

Evidence of Laura’s beliefs about mathematics comes from her pre-assessment of 

beliefs. Laura’s word list on the pre-assessment included, math words (i.e. geometry 

addition), “proofs”, “theorems”, “axioms”, “definitions”, “logic”, and “time”. Laura 

also defined mathematics as “an invented system of numbers and a study of those 

numbers’ relationships with each other. Mathematics is also a way of concrete, logical 

thinking that uses one property to create another.” Laura’s definition on the pre

assessment is similar to the mathematics predominant pre view. In other words, she 

described mathematics as involving the study of numbers and problem solving, or 

as she put it “use one property to create another.” Laura also demonstrated beliefs 

similar to the mathematics secondary post view. She described mathematics as a 

way of thought and included proofs in her word list. Laura’s first interview provided
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more evidence of the mathematics secondary post view. She stated, .. mathematics

is a way of thinking in a logical w ay  ” Laura was able to articulate her beliefs

about mathematics and looks at mathematics beyond manipulations and procedures 

and believes that mathematics is a way of thought. On the post-assessment, Laura 

suggested a similar definition of mathematics to the pre-assessment which supported 

her view of mathematics as a combination of the two views mentioned previously and 

included problem posing in her word list.

When responding to whether mathematics is changing on the pre-assessment 

Laura wrote, “mathematics is not always changing but the way people look at mathe

matics is always changing.” But, Laura expanded her view on the nature of mathemat

ics during her first interview as she stated, “I think that if mathematics is changing it 

is only us kind of changing our perspective of mathematics.” Laura gave the following 

example,

So I mean its like kind of if you take the number systems, um, you know, 

mathematics didn’t change from when the Babylonians counted to when 

we counted, to when we are counting. But we changed how we look at 

counting and we changed what represents number in counting. So the fact 

that one and one is two didn’t change but how we represent that and how 

we do that algorithm changed.

During her first interview, Laura also stated, “so maybe it, maybe it is all there and 

we are discovering [mathematics]” which implies that Laura is unsure of her belief 

about whether mathematics is invented or discovered.

Laura’s evolving belief that mathematics is discovered was apparent during her fi

nal interview. When Laura was asked to reflect on her responses to the pre-assessment 

of beliefs she began a discussion about whether math is invented and came to the 

following conclusion,
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I think more and more I am coming to the idea that it’s out there and we 

are discovering it. In high school I was sure that we made it up, but the 

more I study it the more I am like, we discovered that, instead of making 

it up. Except there are things we did make up like order of operations, 

like, we base so many things on order of operations, if order of operations 

is wrong. Well, that doesn’t mean that the math isn’t still out there that 

just means that we look at it in a different way.

On the post-assessment, Laura reiterated the belief expressed during her final inter

view about the nature of mathematics.

Laura’s Beliefs About Teaching Mathematics. Data related to Laura’s beliefs about 

teaching mathematics was collected on her pre-assessment of beliefs, a first interview, 

a March 4, 2002 journal entry, a third interview, and the May 16, 2002 journal entry. 

Laura’s beliefs about teaching mathematics parallel those of the class as she believes 

that good lessons appeal to all learning styles and allow for discovery learning. Dur

ing the instructional treatment Laura not only demonstrated developed beliefs about 

teaching mathematics, but she also demonstrated that she had begun thinking about 

how to get her future students to engage in mathematics while not compromising 

her beliefs about teaching. Laura also described the qualities of patience, believing 

that every student can succeed, and a strong mathematics background as necessary 

attributes of a good mathematics teacher.

Laura’s beliefs about the attributes of a good mathematics teacher come from her 

description on the pre-assessment of beliefs. Laura described a good teacher as being 

patient and believing and promoting that every student is able to understand. Dur

ing her first interview, Laura mentioned the importance of a mathematics teachers’ 

preparation and suggested that a good mathematics teacher has a deep understanding 

of and passion for mathematics.
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Evidence of Laura’s beliefs about the aspects of good mathematics instruction also 

comes from her pre-assessment of beliefs. Laura described that a good mathematics 

teacher creates lesson plans that appeal to all learning styles and are a mix of group 

work, discovery, and direct instruction and is always evaluating and re-writing les

son plans. During her first interview, Laura discussed her beliefs about mathematics 

instruction further and provided a description of a possible lesson in her future class

room. During this interview Laura described a good mathematics teacher as being 

able to explain different things in many different ways and described a lesson in her 

future classroom as including an opening problem for students to work on as they 

enter the class, an introduction to new material, a group activity, and then a whole 

class activity to discuss the goals and the outcomes of the original group activity. 

Laura articulated this exact description of a lesson in her future classroom in her 

March 4, 2002 journal entry, which asked her to describe her classroom through the 

eyes of an observer, as well as during her third interview. Laura was able to think 

beyond the structure of her classroom and was able to think about how to engage her 

students. During her final interview Laura stated,

. . .  I am just talking about my experience from my class, their all in seventh 

grade math, but they are at a fifth grade math level, or fourth grade some 

of them. You know they have walls built and they are not going to go, 

oh yeah let’s engage in this, like I mean if Rebecca is throwing out her 

idea than Lydia is like, you know giving her the glare and is not paying 

attention to her.

Based on past teaching experience in a summer program called Summerbridge, Laura 

began the instructional treatment with the ability to articulate an understanding of 

what she believed good mathematics teaching is and what a good mathematics class

room looks like. During the instructional treatment Laura moved beyond reflecting
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on this and started to reflect on how to get her students to engage in lessons and 

want to learn mathematics. During the instructional treatment Laura reflected on 

how her beliefs about teaching will influence her classroom and how her beliefs will 

influence her future students motivation and engagement with mathematics.

Laura’s View of the Relationship Between Problem Posing and School Mathematics. 

Data related to Laura’s view of the relationship between problem posing and school 

mathematics was collected on her pre-assessment of beliefs, a first interview, a sec

ond interview, a May 7, 2002 journal entry, and the final interview. Laura entered 

the instructional treatment with beliefs about the benefits of problem posing for stu

dents. During the instructional treatment, as Laura began to have more experience 

with problem posing she was able to articulate ways to incorporate problem posing in 

school mathematics and reasons that pre-service teachers should engage with problem 

posing.

Laura’s belief that problem posing has benefits for student learning can be seen 

from her response to the problem posing item on the pre-assessment of beliefs. On 

the problem posing item Laura stated that problem posing in elementary classrooms 

is worthwhile and suggested benefits for student learning. Laura suggested that prob

lem posing would make students think more critically about given information, force 

students to decide what kinds of questions can be asked from given information, and 

cause students to look at problems in a different way. Laura also suggested that 

problem posing may help students alleviate their fear of word problems, because it is 

a less threatening way for students to look at problems and work with word problems.

More evidence of Laura’s beliefs about the importance of problem posing for stu

dent learning comes from her first and second interview. Laura expanded on possible 

benefits of problem posing for students during her first interview when she stated,

I think that it is important for kids to be able to do problem posing
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because I think it helps them analyze what they’re given for information 

and I think it is a less threatening way to introduce word problems because 

if you give a word problem without a question then it is a little less 

intimidating if they get to write their own question, because they know 

they can answer their own question and it helps them realize what given 

information there is and a lot of times if there is a question already there 

they look right at the question, they don’t think they can answer it, they 

get frustrated. But if there is no question then they have to analyze what 

is given to them.

During her second interview Laura continued to expand on students being able to 

better handle word problems because of problem posing when she stated,

I think it was like, students who really struggle interpreting word problems 

and understanding what they’re really asking and how to use the given 

information to answer that questions, I think problem posing, having them 

ask their own question is a good way to build up to being able to take a 

word problem and break it down.

During the second interview Laura also discussed other benefits of problem posing. 

Laura stated that problem posing requires utilizing prior knowledge and hence may 

help students organize and understand their knowledge base. By her second interview, 

Laura had articulated many benefits of problem posing for student learning but she 

had not mentioned problem posing in her future classroom or ways she would utilize 

problem posing with students.

Laura first mentioned teachers as problem posers during her second interview, and 

stated that they need to be problem posers because they have to write problems “all 

the time”. Laura did not mention problem posing in her classroom until her May 

7, 2002 journal entry when she stated that she will utilize it as a way to familiarize
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students with new material and to assess her students. To paraphrase Laura, if 

they can write mathematics problems ranging in difficulty students can show a good 

understanding of the material. Laura expanded on possibilities for incorporating 

problem posing in her classroom and her belief about teachers as problem posers 

when she discussed her concept map of problem posing (see Appendix B), which she 

generated during her third interview,

So I was thinking for the uses of teaching it in the math ed. classes is 

it helps teachers learn how to write, like, insightful mathematics prob

lem solving questions for students and it also helps them understand the 

learning benefits from actually posing the problems, understand we need 

to learn a lot here to right this question and that means our students will 

have to know a lot in order to write good questions. Therefore it could 

be a form of assessment because students would have to have some sort 

of grasp on a concept before they could actually write a question about 

it. And it would help the students kind of think like a teacher, um, which 

you kind of try to teach them so they can be prepared for exams and stuff 

like that. Um, and it helps students become more comfortable with word 

problems because their not threatened by the question itself because the 

questions not there and they know they can ask the question. And it 

teaches them to ask good questions rather than saying, I mean, I think 

if they started asking these questions I think later on in class when they 

didn’t  get something they’d be better, they’d be more likely to put what 

they didn’t get into a question.

Laura had developed beliefs about problem posing prior to the instructional treatment 

as was shown by her pre-assessment of beliefs. But these beliefs mainly referred to 

the possible benefits of having students pose mathematics problems in the classroom.
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Laura’s May 7, 2002 journal entry and final interview are evidence that, similar to the 

whole class, Laura started to think about ways to incorporate problem posing in her 

classroom after her experience posing mathematics problems during the instructional 

treatment.

Liz

At the time of this research, Liz was a sophomore majoring in mathematics ed

ucation and seeking certification to teach middle school mathematics. Liz’s past 

mathematics experiences are discussed briefly prior to describing her beliefs that 

emerged during the instructional treatment. Liz’s mathematical autobiography was 

collected on January 30, 2002 and in her autobiography Liz described some pivotal 

experiences in her mathematics education. Liz realized that math has always been a 

part of her life, and can remember her enjoyment of mathematics in first grade, which 

included being in a special math group throughout elementary school. Liz’s interest 

in and enjoyment of mathematics has stayed constant. Liz remembered her teacher’s 

styles all blending together after third grade with everyone teaching mathematics 

as memorizing numbers and equations until her freshman year in high school. Liz’s 

freshman mathematics teacher made her think about future careers in mathematics 

and in particular being a mathematics teacher. Liz is working towards becoming 

a mathematics teacher because she wants to repay her teachers by helping others. 

The remainder of this section will focus on Liz’s beliefs about mathematics, beliefs 

about teaching mathematics, and view of the relationship between problem posing 

and school mathematics, that emerged during the instructional treatment.

Liz’s Beliefs About Mathematics. Data related to Liz’s beliefs about mathematics 

was collected on her pre-assessment of beliefs, a first interview on January 31, 2002, 

a third interview on May 7, 2002, and the post-assessment of beliefs. Prior to the 

instructional treatment, Liz’s beliefs about mathematics cannot be characterized by
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one of the views presented previously, but she seems to understand that different 

views exist. Data suggests that following the instructional treatment Liz is starting 

to hold the mathematics predominant pre view. Liz’s views about the nature of 

mathematics evolved from believing that mathematics is always changing to believing 

that mathematics is changing for research mathematicians.

Evidence of Liz’s beliefs about mathematics can be gathered from her pre-assessment 

of beliefs. On the pre-assessment Liz’s word list, included math words (i.e. geometry, 

addition), “knowledge”, “games”, “strategies”, “boy’s world” and “teaching”. Liz 

also defined mathematics as “a joy to some and awful to others but it’s part of life 

and we need to understand how it works.” Liz continued to expand her beliefs about 

mathematics during her first interview when she suggested that math is different to 

different people and .. some people think of math as all theories and equations and 

stuff like that, when other people think of it as, you know like common everyday 

uses.” When asked to condense her ideas into a general definition of mathematics Liz 

states, “. . .  math is a common tool that we can use everyday to try to make our lives 

a little easier or harder depending on how you look at it.” These final quotes imply 

that Liz believes that multiple views of mathematics exist, including a theoretical 

view, but she has not developed a definition of mathematics that she is confident in. 

Liz’s inability to define what mathematics is to her implied that she did not have a 

strong conception of what mathematics means to her.

During her final interview on May 7, 2002, Liz reflected on her responses to the 

pre-assessment of beliefs and was better able to articulate a conception of what math

ematics is to her. Again, during this interview, Liz had a difficult time defining 

mathematics. When asked what came to mind when she thinks of mathematics Liz 

answered, “. ..  problem solving, using equations, numbers, my major. I don’t know I 

like it in general, it is easy for some and hard for others, it has been around for a while.
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I t’s like everyday life I guess, you can always use mathematics.” This statement sug

gests that Liz was beginning to adopt the mathematics predominant pre view, as she 

suggested that problem solving and using equations are part of mathematics. On the 

post-assessment of beliefs, Liz gave a similar definition of mathematics which seems 

to support that she believes in the mathematics predominant pre view. There were 

also changes in Liz’s word list as she added the phrases problem solving and problem 

posing.

Liz’s first discussion of her beliefs about the nature of mathematics as changing, 

came during her first interview. On the pre-assessment, Liz misunderstood the ques

tion about whether mathematics is changing and read and reacted to mathematics 

as always “challenging”. The following quote from her first interview, however, is 

evidence of Liz’s belief that mathematics is changing,

I think math is always moving and changing, I mean, we’re always coming 

up with different ways of thinking about things or even like coming up 

with new ideas and stuff like that. I think it is always, like anything else 

it’s always changing, it is always advancing, it’s getting better, you know 

it might be stuck for a little while but we always seem to kind of advance 

it more.

During her final interview, Liz articulated the distinction that mathematics edu

cation and mathematics teaching are always changing but that mathematics is not 

changing, it is the same as hundreds of years ago but that it may change again in 

the future. Liz had changed her beliefs about the nature of mathematics that were 

articulated during the first interview. Liz then described this distinction in more 

detail on the post-assessment of beliefs as she stated, “as of now math isn’t really 

changing so much to students but to professors and those who prove theorems math 

is changing — ”
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Although Liz still struggled to verbalize a definition of mathematics, her beliefs 

about mathematics have developed over the course of the instructional treatment and 

post instructional treatment she was beginning to verbalize the mathematics predom

inant pre view and saw problem solving and problem posing as part of mathematics. 

Based on her experiences during the instructional treatment, Liz’s beliefs about the 

nature of mathematics have changed from viewing mathematics as always changing 

to viewing mathematics as a discipline that is being furthered and changed by mathe

maticians. Liz evolved from believing that mathematics itself is changing to believing 

that people are furthering the field of mathematics through discovery.

Liz’s Beliefs About Teaching Mathematics. Data related to Liz’s beliefs about 

teaching mathematics comes from her pre-assessment of beliefs, a first interview, 

a March 4, 2002 journal entry, a third interview, and the post-assessment of beliefs. 

Liz described many attributes of a good mathematics teacher during the instructional 

treatment and was able to articulate more attributes as the semester progressed. Liz 

shares the predominant belief in the class that a good teacher needs to accommodate 

students with different learning styles and suggested that students should engage in 

group work and discovery learning. Data also suggests that during the instructional 

treatment, Liz began to consider how her beliefs about teaching will affect student 

understanding.

Evidence of Liz’s beliefs about the attributes of a good mathematics teacher was 

demonstrated throughout the instructional treatment. On the pre-assessment of be

liefs, Liz suggested that a good teacher should understand that students will have 

multiple learning styles and should have sufficient mathematics preparation. To para

phrase Liz, a good mathematics teacher realizes that there is more than one way to 

understand mathematics and has the knowledge to teach others what they might be

lieve is impossible. Liz continued to discuss attributes of a good mathematics teacher
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during her first interview when she described a good math teacher as calming, and 

as understanding that not all students learn the same, some may be visual learners 

while others are not. Again during the first interview, Liz mentioned the mathe

matical preparation of a teacher when she suggested that a teacher’s mathematical 

preparation should include understanding the historical development of mathematics. 

Liz expanded on the attributes of a good mathematics teacher during her third inter

view when she added that the teacher must be willing to help out and must have a well 

developed lesson plan. These statements imply that Liz related her desire to  become 

a mathematics teacher in order to help others, with her beliefs about the attributes of 

a good mathematics teacher. Liz was able to articulate this view of a good teacher on 

the post-assessment of beliefs, “a good math teacher is one who is understanding and 

always has time to help those who need it and should learn or know what works best 

for teaching their students how to understand math problems.” The data implies that 

during the instructional treatment, Liz became able to articulate her beliefs about 

the attributes of a good mathematics teacher and believes that content knowledge, 

preparation, and a willingness to help others are necessary attributes.

Evidence of Liz’s belief that good mathematics instruction accommodates for stu

dents different learning styles and considers the class as a whole and not just the 

individual students comes from her first interview. During her first interview, Liz 

described a day in her future classroom, having students working in small groups and 

utilizing manipulatives. When asked to expound on what a mathematics lesson might 

look like in her future classroom Liz stated,

I see it as like when they come in we learn a basic, not like a rule but your 

basic topic for the day. Like maybe like talk about it for like 20 minutes 

and make sure they all understand and then maybe get into small groups, 

you know, so then they can work on it all together and then so I can go
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around to each group, make sure they all understand maybe what’s going 

on and if you don’t  try to help out the group that doesn’t  or make sure 

that anyone in that group go up and figure out the problem. And then 

maybe if they finish early well do some fun math like related problems.

Or you know just to reward them be like you guys did well today.

In her March 4, 2002 journal entry Liz gave a similar description of her classroom 

and added that groups would be responsible for using teamwork to be sure all the 

members are understanding at all times. She feels like the group should be responsible 

for each others learning. This belief implies that Liz had started to reflect on how her 

beliefs about teaching are going to influence students learning of mathematics and 

how she is going to be sure they are learning.

Liz’s views of the attributes of a good mathematics teacher developed over the 

course of the instructional treatment as she became able to articulate well her desired 

attributes of a good mathematics teacher. It has been shown that Liz agrees with 

the predominant class view of teaching and had started to reflect on how this view 

will influence her students learning.

Liz’s View of the Relationship Between Problem Posing and School Mathematics. 

Data related to Liz’s views of the relationship between problem posing and school 

mathematics was collected on her pre-assessment of beliefs, a second interview, a May 

7, 2002 journal entry, and the post-assessment of beliefs. Liz entered the instructional 

treatment with the belief that problem posing is beneficial for students and was able 

to better articulate her views and consider ways to incorporate problem posing in her 

mathematics classroom as the instructional treatment progressed.

Evidence of Liz’s beliefs about the relationship between problem posing and school 

mathematics prior to the instructional treatment comes from her pre-assessment of 

beliefs. On the pre-assessment, Liz stated that she believes that problem posing
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would be beneficial for elementary students to take part in. To paraphrase Liz, 

problem posing will allow students to use their own minds and see that they can 

understand math if they just think about it. Liz also discussed possible drawbacks of 

problem posing similar to the responses of the entire class on the pre-assessment. She 

suggested, for example, that students may take the easy way out by writing simple 

problems or students may not be able to come up with questions.

Liz’s second interview and May 7, 2002 journal entry, which asked her to discuss 

if she would use problem posing in her classroom, demonstrate that she was able to 

better articulate her beliefs about possible benefits of problem posing for students 

and started to consider possible ways to include problem posing in the classroom. 

During her second interview, Liz suggested problem posing as a possible tool to help 

students with their problem solving. She believes that problem posing will help 

students become more interested in what they are doing. In her May 7, 2002 journal 

entry, Liz also elaborated on her beliefs about the possible benefits for incorporating 

problem posing in her classroom. Liz believes that students will be able to utilize 

problem posing to help with problem solving, but also,

Students should know how to make up their own problems because in real 

life you will be asked to make some problems up, like for an exam, or help 

make up questions for a job, or even find some problems you want to fix 

around your household.

This quote implies that Liz had started to relate problem posing to real life situations. 

Liz also described her beliefs about possibilities for implementing problem posing in 

her classroom in her May 7, 2002 journal entry. Liz suggested utilizing problem posing 

on homework assignments, and stated that she will give students a paragraph to read, 

pose, and solve problems related to. Liz supported these beliefs with her response 

to the problem posing item on the pre-assessment by suggesting similar benefits of
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student problem posing.

Therefore, during the instructional treatment Liz developed beliefs about why it 

will be beneficial for students to pose mathematics problems. Liz also developed 

a sense of how she will incorporate problem posing into her classroom. As with the 

whole class, Liz articulated more ideas about the relationship between problem posing 

and school mathematics as she gained experience posing mathematics problems.

Summary of Individual Beliefs

Carrie, Laura and Liz shared beliefs about teaching mathematics that included 

aiming lessons at all learning styles and promoting discovery learning while Bill began 

to develop such beliefs during the instructional treatment. In summary, Bill, Carrie, 

Laura, and Liz’s beliefs about mathematics, beliefs about teaching of mathematics 

and views of the relationship between problem posing and school mathematics are 

consistent with the results from the whole class data presented at the beginning of 

this chapter. Individuals’ beliefs about mathematics were shown to be related to the 

mathematics predominant pre, mathematics secondary pre, mathematics predominant 

post, and mathematics secondary post views. Finally, individuals’ views of the rela

tionship between problem posing and school mathematics are similar to the whole 

class. All four participants became better able to articulate their beliefs about the 

benefits of problem posing for students and possibilities for including problem posing 

in school mathematics.
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Chapter 7 

Discussion and Implications

It was the goal of this research to incorporate problem posing into a mathematics 

content course for pre-service elementary and middle school teachers and to describe 

the apparent effects of this incorporation. Data was collected and analyzed from jour

nal writing, class assignments, and interviews, to address the five research questions 

that were presented in Chapter one. These research questions were as follows,

1. What are the characteristics of pre-service teachers’ problem generation pre- 

and post- instructional treatment?

2. How do the characteristics of pre-service teachers’ problem re-formulation and 

problem generation change over the course of the instructional treatment?

3. How does participation in problem re-formulation and problem generation in

fluence pre-service teachers’ beliefs about mathematics?

4. How does participation in problem re-formulation and problem generation in

fluence pre-service teachers’ beliefs about the teaching and learning of mathe

matics?

5. How does participation in problem re-formulation and problem generation influ

ence pre-service teachers’ beliefs about the relationship between problem posing 

and school mathematics?

195
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The discussion that follows will be organized to highlight the results of this re

search in relation to the five questions above. The discussion will begin with the re

sults of the pre- and post-assessment of problem generation, followed by a discussion 

of any changes in participants’ problem posing during the instructional treatment. 

Participants’ beliefs about mathematics, beliefs about the teaching and learning of 

mathematics, and views of the relationship between problem posing and school math

ematics will then be explored. The section will conclude with a discussion of the four 

individual cases presented in this research. Following the discussion, implications 

of this research for teaching and learning mathematics and suggested directions for 

future research will be presented.

Problem Posing

Pre- and Post-Problem Generation

Participants’ results on the pre- and post-assessment of problem posing were an

alyzed using statistical software, and a Tukey-Kramer multiple comparison matched 

pairs test. Statistical analysis showed a statistically significant difference between 

the Numeric pre and Numeric post means, as well as the Numeric post and Non

numeric post means. The means of the statistical analysis of problem generation are 

summarized in table, 7.1.

Numeric Non-numeric Total

Pre-average 5.33 3.61 8.94

Post-average 8.72 4.88 13.61

Table 7.1: Problem generation results
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The results of the assessments of problem posing imply that there was a statis

tically significant difference between participants scores pre- and post- instructional 

treatment. It can be concluded from this result that participants became more ef

ficient at problem generation because of the instructional treatment. By the post

assessment participants were able to pose problems totalling almost four points more 

than the pre-assessment. This improvement implies that subjects were posing at least 

two more problems on average, since a multi-step problem received a score of 3 points. 

As discussed in Chapter 5, participants did not only become more efficient problem 

posers they were also posing more multi-step problems. On the pre-assessment 16% 

of the posed problems were multi-step, while on the post-assessment 28% of the posed 

problems required a multi-step solution process.

Therefore, in a timed problem generation activity, participants became more ef

ficient in their problem posing and were able to pose more multi-step mathematics 

problems after the instructional treatment. It is my hypotheses that the fact that 

these pre-service teachers are more efficient problem posers post instructional treat

ment will help them prepare their future lessons, classroom instruction, and write 

assessments. Having the ability to pose more multi-step problems will likely help 

these pre-service teachers challenge their future students as they pose problems for 

use in their classrooms.

The statistical analysis also indicates a statistically significant difference in par

ticipants’ abilities to pose problems from sets of information with numeric content 

than from sets of information without numeric content on the post-assessment. Two 

of three problem generation activities during the instructional treatment contained 

numeric information and the one which did not contain numeric information was the 

first problem generation activity. Therefore, participants had more experience with 

problem generation from a set of information with numeric content and this was their
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last problem generation activity prior to the post-assessment. These characteristics of 

the problem generation tasks may have influenced participants problem posing, but 

the difference in numeric and non-numeric problem posing shown here is consistent 

with the results of Leung’s (1993) dissertation work. It is possible that change in both 

forms of problem generation would have been seen if participants were given equal 

opportunities to pose problems from such sets of given information. Also, greater 

differences in post-assessment scores may have been seen if participants were given 

more than three opportunities to pose problems as problem generation during the 

instructional treatment.

Problem Generation During the Instructional Treatment

Participants had three opportunities to generate problems during the instruc

tional treatment. The changes in participants’ problem generation efficiency and in 

the number of multi-step problems they posed, that are evident from the pre- and 

post-assessment of problem posing, are not apparent from the three problem gener

ation activities. The characteristics of participants’ problem generation were similar 

on each task assigned during the instructional treatment. The number of plausible 

statements ranged from 91% to 100%, the number of problems with sufficient infor

mation ranged from 81% to 88% and the the number of multi-step problems ranged 

from 56% to 67% on the three problem generation tasks. There are a number of 

possible explanations for the consistency of the characteristics of participants’ prob

lem generation during the instructional treatment. First, there was not an extended 

length of time between problem generation activities. The first problem generation 

activity was assigned on February 25, 2002 and the third was collected on March 27, 

2002. Participants problem generation during the instructional treatment took place, 

then, in a one month period. Second, participants had at least five days to complete 

each of the problem generation activities and in each case were asked to pose a fixed
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number of problems. This differed from the pre- and post-assessment which included 

a time constraint and asked participants to pose as many problems as possible. These 

two factors may have shaped the problem generation outcomes of these pre-service 

teachers during the instructional treatment. I assumed that given ample time par

ticipants would try to pose the best problems that they could. The characteristics 

of participants posed problems during the instructional treatment imply that within 

the course of a month these pre-service teachers’ problem generation outcomes were 

consistent. Differences may have been seen if the problem generation activities were 

more spread out over the course of the instructional treatment. Again this will be 

considered in future research.

It is also interesting to note that participants added information to 12% of the 

problems that they posed on the first problem generation task during the instructional 

treatment and did not add information to problems on either of the other two tasks. 

The fact that participants use of added information changed during the instructional 

treatment may be explained by the fact that the first problem posing task did not 

provide participants with numeric information while the final two did. This may 

also be a result of participants becoming more comfortable posing problems within 

the constraints of the given information as they gained experience with problem 

generation during the instructional treatment.

Problem Re-formulation During the Instructional Treatment

Participants were given seven opportunities to engage in problem re-formulation 

activities during the instructional treatment. The first problem re-formulation activ

ity was collected on February 6, 2002 and the final problem re-formulation activity 

was collected on May 8, 2002. Participants completed seven assigned problem re

formulation activities and a summary of their problem re-formulation is provided in 

table 7.2,
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Problems S.G.W Context Add info. Extend Given Wanted Re-word

Set 2 50 7 2 3 4 27 15 1

Set 3 56 11 5 3 6 26 10 1

Set 4 42 6 3 3 0 25 8 0

Set 5 40 3 1 5 2 17 15 2

Set 6 37 3 4 2 5 16 11 1

Set 7 35 0 3 3 13 13 5 0

Set 9 32 2 5 3 5 17 3 0

Table 7.2: Aggregate problem re-formulation by set

The results in table 7.2 indicate that participants’ problem re-formulation was 

dominated during the the instructional treatment by the technique of changing the 

given. Participants use of what the researcher categorized as level 1 problem re

formulation techniques; switching the given and the wanted, changing the context, 

and extension was also explored. These techniques were considered higher level by 

the researcher because they required the poser to go beyond re-writing the original 

problem and changing information. It is also important to note that the researcher 

considered all problems equally accessible to higher level re-formulation since they 

were all of equal difficulty and all would have been coded as plausible multi-step 

problems with sufficient information for solution under the researcher coding scheme 

for problems generated in this research. As was shown in table 5.13, there was a trend 

on problem sets 6, 7, and 9 for participants to utilize more higher level re-formulation 

techniques than on the previous problem sets. For example, on problem set 5 only 

13% of the re-formulations utilized a higher level technique whereas on problem set 

6, 27.5%, on problem set 7, 43%, and on problem set 9, 34% of the re-formulations 

utilized a higher level technique.
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This trend in participants’ use of level 1 problem re-formulation techniques implies 

that as these pre-service teachers gained experience posing problems as problem re

formulation they began to utilize more advanced problem re-formulation techniques 

more regularly. I believe that the ability to utilize the three level 1 problem re

formulation techniques will benefit these future teachers as they are preparing to 

teach. These techniques will allow these future teachers to re-formulate activities and 

problems to make them more meaningful and beneficial for their students.

Problem Posing Summary

The above discussion implies that as a result of the instructional treatment there 

were some significant changes in the characteristics of these pre-service teachers prob

lem posing. First, all of the participants showed the ability to pose mathematics prob

lems as both problem generation and problem re-formulation during the instructional 

treatment and based on class observations and discussions with participants, it is 

the researcher’s belief that they became more comfortable posing mathematics prob

lems. Second, participants showed increased efficiency in their problem generation 

and the ability to pose more multi-step problems post instructional treatment. At the 

same time, participants utilization of higher level problem re-formulation techniques 

increased on the final problem re-formulation activities of the instructional treatment.

These changes in participants’ problem posing imply possible benefits for their 

future education and teaching. Leung (1993) showed a relationship between the 

mathematics achievement and problem posing ability of pre-service teachers. That 

relationship may be evident with these pre-service teachers as they continue their 

mathematical development. Participants may also continue to utilize their develop

ing skills as problem posers as they continue their preparation to become mathe

matics teachers and when they are preparing mathematics activities in their future 

classrooms. Finally, the inclusion of problem posing at all levels of mathematics edu
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cation has been suggested by mathematical organizations and mathematics education 

researchers (NCTM, 2000; Kilpatrick et al., 2001; Kilpatrick, 1987; Silver, 1994). This 

research represents an attempt to include problem posing with pre-service teachers 

and shows that they have the ability to generate and re-formulate mathematics prob

lems and that the characteristics of their posed problems change with experience.

Beliefs About Mathematics

In Chapter 6 participants’ beliefs about mathematics were characterized both 

pre- and post- instructional treatment. Participants’ beliefs about mathematics pre- 

instructional treatment were described by two views,

Mathematics predominant pre: Mathematics is a problem solving domain that is 

characterized by the study of numbers, operations and relationships.

Mathematics secondary pre: Mathematics is a way of thought. It is a part of life 

and the study of mathematics makes people think.

Changes in participants views of mathematics after the instructional treatment can be 

seen by examining the two views of mathematics that were evident post instructional 

treatment,

Mathematics predominant post: Mathematics is a problem posing and problem solv

ing domain that is characterized by the study of numbers, relationships, patterns 

and processes.

Mathematics secondary post: Mathematics is a foundation of knowledge as well as 

an intriguing way of thinking that includes proof.

The views above imply that there were some qualitative changes in the characteriza

tions of participants’ beliefs during the instructional treatment. These views imply

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



203

that after the instructional treatment participants had started to consider mathe

matics as much a problem posing as a problem solving domain, and participants had 

started to view mathematics as a more open-ended discipline. With regard to  the na

ture of mathematics it was shown that post instructional treatment, more participants 

believed that the teaching and learning of mathematics is changing.

Post-instructional treatment these pre-service teachers are transitioning towards 

what Schuck (1997) defined as a “problem solving” view (see pg.28) of mathematics. 

Since Schuck’s definition did not include problem posing the researcher would define 

these pre-service teachers’ view as a “problem solving and problem posing” view 

of mathematics. This change implies that during the course of the instructional 

treatment participants reflected on their beliefs about mathematics. This reflection 

has been suggested by the teacher preparation literature discussed in Chapter 2, and 

lead these pre-service teachers to articulate a view of mathematics as a problem posing 

domain. Participants also transitioned to viewing the practice of mathematics as an 

open-ended thought provoking activity which includes exploration with active minds.

Participants’ experience with problem posing during the instructional treatment 

may have played a role in these changes with regard to their beliefs about mathe

matics. Without some exposure to problem posing it would not be expected that 

participants would come to view mathematics as a problem posing domain since 

they need some motivation for viewing mathematics as more than a problem solving 

domain. Also, many mathematics educators view problem posing as an open-ended 

process that can lead to exploration of mathematical ideas and it has been shown to be 

related to and foster student creativity (Silver, 1994, 1997; Leung, 1993). Therefore, 

participants view of the practice of mathematics as an open-ended thought provoking 

activity which includes exploration with active minds also may be a product of their 

introduction to problem posing.
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There are implications of these new beliefs for these pre-service teachers future 

classroom instruction. The explorative and open-ended nature of doing mathemat

ics has been stressed in standards documents within the discipline (NCTM, 1991, 

2000). Also many standards-based mathematics curricula ask students to participate 

in mathematical explorations and to be active in the process of learning mathematics. 

This new problem posing view of mathematics and the new view of the practice of 

mathematics which have been adopted by these pre-service teachers may make them 

more willing and likely to adopt standards-based curricula and foster a classroom 

atmosphere that provides an active learning environment.

Beliefs About Teaching and Learning Mathematics

Beliefs About Teaching Mathematics

Based on their experiences in the instructional treatment participants became bet

ter able to articulate the attributes of a good mathematics teacher and a good math

ematics classroom. Participants also began to see mathematics teaching as a more 

open-ended activity that fosters student autonomy. Combining the data on partici

pants’ beliefs about the attributes of a good mathematics teacher and the aspects of 

good mathematics instruction participants’ beliefs about teaching mathematics pre- 

and post- instructional treatment can be summarized as follows,

Pre-instrudional treatment: Mathematics teaching involves utilizing manipulatives 

in group work and discovery while also being sure to relate teaching to multiple 

learning styles. A good mathematics teacher believes that all students can learn, 

is always evaluating their teaching, and is organized and focused.

Post-instructional treatment: Mathematics instruction must be delivered with mean

ing and understanding which is achieved by creating lessons that appeal to all
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learning styles and allow students to construct their own knowledge. A good 

mathematics teacher has an in depth understanding of the discipline, uses prob

lem posing as a form of inquiry, applies mathematics to the real world, has high 

expectations and is innovative and creative.

The differences in these two views of mathematics teaching suggest that these pre

service teachers reflected on their beliefs about teaching mathematics, as suggested 

in the teacher preparation literature discussed in Chapter 2, during the instructional 

treatment. This reflection has caused these pre-service teachers to become adept 

at articulating their views about teaching and their future classrooms. The views 

these pre-service teachers articulated are consistent with the reform movement in 

mathematics education and have also been articulated in standards documents in the 

discipline (NCTM, 1991, 2000). Similar to their beliefs about mathematics, partic

ipants’ beliefs about teaching mathematics may make them feel more comfortable 

adopting a standards-based mathematics curriculum. Further, if these pre-service 

teachers future practice is consistent with their beliefs, which research has shown is 

not always the case, they will provide their students with a learning environment 

consistent with suggestions in the mathematics education literature (Battista, 1994; 

NCTM, 1991, 2000).

There are several possible explanations for the change in participants’ beliefs about 

teaching mathematics. First, throughout the course of the instructional treatment 

these pre-service teachers were engaged in a classroom environment that resembled 

their post-instructional treatment view of mathematics teaching. Research on teach

ers’ beliefs have shown that teachers have a tendency to model their teaching af

ter their past classroom experiences (Thompson, 1992). Therefore, these pre-service 

teachers may have been articulating the view of teaching they saw from the class that 

they were engaged in. Also, in their post-instructional treatment description of a
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good mathematics teacher, many students mentioned the utilization of problem pos

ing as a tool for inquiry oriented learning. This belief is consistent with suggestions 

from mathematics education literature and may have led these pre-service teachers 

to reflect on their future mathematics teaching (Silver, 1994). I believe that more 

developed views about teaching mathematics will make it more likely that these pre

service teachers instruction will be consistent with their beliefs about mathematics 

teaching.

Beliefs About Learning Mathematics

In Chapter 6 the small amount of data related to participants’ beliefs about learn

ing mathematics is discussed. The main belief that emerged from this data was that 

students learn best when they are actively engaged in the learning process. This belief 

parallels participants’ beliefs about teaching mathematics and providing opportuni

ties for discovery learning. The relationship of these beliefs with respect to teaching 

and learning mathematics may help shape these pre-service teachers future practice. 

The introduction to problem posing did influence participants’ beliefs about student 

learning and this relationship will be discussed in detail in the next section.

Relationship Between Problem Posing and Teaching and Learning Mathematics

It was shown that participants’ beliefs about problem posing and its relationship 

to school mathematics evolved during the instructional treatment. This discussion 

will focus on the relationships between problem posing and teaching mathematics and 

between problem posing and learning mathematics. In each case, a summary of the 

results from data collection and data analyses will be presented and will be followed by 

a discussion of the results. It is important to mention that although the participants 

were asked to read two articles related to problem posing in the classroom, there was 

never an explicit classroom discussion during the instructional treatment about the 

benefits of problem posing for instruction and mathematics learning.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



207

Problem Posing and Teaching Mathematics

Participants reflection on the relationship between problem posing and teach

ing mathematics happened gradually during the instructional treatment. Only two 

participants had begun to reflect on the relationship between problem posing and 

teaching mathematics in their March 4, 2002 journal entry describing their future 

classroom and instruction. Further reflection was seen in the journal entry collected 

March 11, 2002 when four students commented on the relationship. This reflection 

continued throughout the instructional treatment and the result of the reflection was 

seen on the journal entry collected May 7, 2002, which asked participants to discuss 

whether they would utilize problem posing in their future classrooms. All nineteen 

participants stated that they would utilize problem posing in their future teaching 

and they suggested multiple ways to incorporate problem posing, including meth

ods similar to the instructional treatment, as a tool to introduce new material, on 

homework, and as extra credit. These beliefs about how best to incorporate problem 

posing into mathematics teaching were confirmed on the the post-assessment of beliefs 

and participants’ final journal entry, which asked them to reflect on the class with 

no specific mention of problem posing. These beliefs were confirmed by participants 

continued and consistent discussion of the relationship between problem posing and 

teaching mathematics on these two tasks.

After the instructional treatment, participants had reflected through their journal 

writing on the relationship between problem posing and teaching mathematics and 

had articulated possibilities for utilizing problem posing in their future classrooms. 

The reflection was a product of participants’ engagement with problem posing and 

journal prompts, since neither the researcher or instructor engaged in discussions 

with the participants related to their views about problem posing. Thus, partici

pants’ reflections lead them to articulate that problem posing should be utilized in
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mathematics instruction. Post instructional treatment, these pre-service teachers are 

armed with problem posing as a tool and they are poised to utilize it in their future 

classrooms. As shown in the literature discussed in Chapter 2, both professional or

ganizations and mathematics educators have suggested the incorporation of problem 

posing in mathematics classrooms (NCTM, 2000; Kilpatrick et al., 2001; Silver, 1994). 

These pre-service teachers are ready to begin this call to include problem posing, they 

have engaged in it, reflected on its benefits and stated that they would utilize it in 

their classrooms. This also implies that working with pre-service teachers is a pos

sible starting point for the inclusion of problem posing at all levels of mathematics 

education as these pre-service teachers intend to utilize problem posing with their 

future students.

Literature reviewed in Chapter 2 showed that it is feasible to incorporate problem 

posing in elementary education (Winograd, 1992,1997; Schloemer, 1994). Therefore, 

these pre-service teachers have articulated a belief that will be possible for them 

to integrate into their future teaching. Research has suggested the possibilities and 

writing has suggested the necessity (NCTM, 2000; Kilpatrick et al., 2001) and it seems 

that these pre-service teachers see both. These views become more evident when one 

examines their beliefs about problem posing and student learning.

Problem Posing and Learning Mathematics

Participants’ pre-assessment of beliefs about mathematics imply that pre instruc

tional treatment, participants saw benefits of student problem posing on learning, 

especially a benefit on students problem solving abilities and their ownership of math

ematics. After posing problems during the instructional treatment, participants were 

better able to articulate possible benefits of problem posing for student learning, 

which was evident on later journal entries and the post-assessment of beliefs. On a 

number of occasions participants articulated that problem posing has the potential
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to provide students with ownership of mathematics. These beliefs are summarized 

effectively through a few quotes that were presented in Chapter 6,

I think that when students inquire about topics they are taking learning 

into their own hands, and that is one of the best things that problem 

posing can bring to a classroom.

I also learned how beneficial it is to have children pose problems, some

thing I didn’t like before this class. It is extremely important to give the 

students a sense of ownership over a problem and a better understanding 

of the problem.

During the instructional treatment, these pre-service teachers reflected on the 

possible benefits of problem posing for their future students and better articulated 

their conceptions about problem posing and learning mathematics through this re

flection. The benefits that these pre-service teachers articulated are consistent with 

research and writing in mathematics education (Silver, 1994). Therefore these pre

service teachers not only suggested the implication of problem posing in their future 

classrooms but they saw the possible benefits of this incorporation for student learn

ing. I believe that this understanding of the benefits of problem posing will make 

these pre-service teachers more likely to have their practice mirror their beliefs and 

incorporate problem posing in their future classrooms, as suggested in mathematics 

education literature.

Individuals

Four individuals agreed to participate in this research by not only allowing their 

work to be collected but by also being interviewed three times during the instructional 

treatment. The following section will highlight some of the results presented with 

regard to these four individuals in chapters 5 and 6 and discuss the implications of 

these results.
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Bill

Recall that Bill was a senior mathematics education major seeking certification to 

teach elementary and middle school mathematics at the time of this research. This 

section will highlight the results related to characteristics of Bill’s problem posing, 

his beliefs about the relationship between problem posing and school mathematics, 

his beliefs about mathematics, and his beliefs about teaching mathematics. Finally 

this section will discuss implications of these results.

Problem Posing. The characteristics of Bill’s problem generation changed as he 

gained more experience posing mathematics problems during the instructional treat

ment. On the pre-assessment of problem posing, Bill did not understand the problem 

generation process. During the instructional treatment a gradual progression of Bill’s 

problem generation to posing more multi-step problems was shown. Bill’s problem 

re-formulation techniques were consistent throughout the instructional treatment and 

relied heavily on the techniques of changing the given and changing the wanted.

The apparent change in characteristics of Bill’s problem generation can be ex

plained by a better understanding of the problem generation process and experi

ence generating problems from sets of information during the instructional treatment. 

Bill’s lack of utilization of level 1 problem re-formulation techniques is a surprise since 

he made it clear during the instructional treatment that he felt that he was better at 

posing problems as re-formulation, because they gave him a frame of reference. Bill 

probably found it easier and felt more comfortable writing problems as re-formulation 

since he was relying on changing the given and changing the wanted and in Bill’s mind 

this comfort translated to ability. It was apparent from conversations with Bill that 

he was more comfortable posing problems after the instructional treatment and this 

comfort should aid his utilization of problem posing as a teacher.
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Beliefs. Bill’s beliefs about mathematics and the nature of mathematics underwent 

little change during the instructional treatment. He did, though, become better 

able to articulate his views of what he believes mathematics is post instructional 

treatment. Bill became better able to articulate a definition of mathematics during 

the instructional treatment but did not abandon his belief that mathematics is static 

and that mathematicians are figuring out mathematics that already exists.

Bill’s beliefs about teaching mathematics and the role of problem posing in school 

mathematics developed during the instructional treatment. During the first half of 

the instructional treatment, Bill could be described as a traditional mathematics 

teacher, believing in the role of drill and practice and procedural understanding. But 

there was a shift in Bill’s beliefs during his second interview and it is directly related 

to his reflection on the role of problem posing in school mathematics. During this 

interview, the researcher briefly presented to Bill his views of the role of problem 

posing in mathematics. Once Bill saw this connection between problem posing and 

mathematics, he began to reflect on his beliefs about teaching mathematics and the 

role of problem posing in school mathematics. This reflection led Bill to articulate 

a belief that problem posing should be incorporated into school mathematics and a 

belief in a more open approach to teaching that allows his students to “struggle” 

and develop ownership of the mathematics they are learning. After the instructional 

treatment, Bill again stated the belief that problem posing should be a feature of 

mathematics curricula and classrooms and was able to begin to verbalize possible 

ways in which to accomplish this incorporation. Bill also discussed problem posing 

as a tool to promote intrinsic motivation in his students and allow them to discover 

mathematics. Intrinsic motivation and discovering mathematics are vastly different 

ideas than Bill’s initial beliefs about rote learning and memorization because they 

imply some level of student autonomy.
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There are several possible reasons for the apparent changes in Bill’s beliefs during 

the instructional treatment. First, and as discussed above, Bill’s problem generation 

abilities were improving during the instructional treatment and he was becoming 

more comfortable posing mathematics problems. Bill’s comfort and experience with 

problem posing did not change his belief about the nature of mathematics, but it 

did make it possible for him to begin reflection on the relationship between problem 

posing and school mathematics. This new way to look at mathematics and the 

instructional treatment, by the second interview, caused Bill to begin thinking about 

the narrowness of his initial views of problem posing and teaching mathematics. 

Second, it was clear from class observations that during the course of the semester 

Bill was actively engaged in class activities, group work, and was trying to  develop 

a deeper understanding of mathematics. Bill was also experiencing difficulty with 

his other mathematics classes which were taught in a more traditional lecture style. 

Bill’s success in this class may have caused him to reflect on the new teaching style 

he was considering and its implications for student learning. These factors led Bill 

to change his beliefs about mathematics teaching and the role of problem posing in 

school mathematics.

Bill’s case implies that changes in pre-service teachers’ beliefs are possible when 

they are given the opportunity to reflect on their beliefs about problem posing and 

teaching mathematics. It also is a reasonable hypothesis that the instructional treat

ment played a role in developing Bill’s new beliefs. Similar to the whole class results, 

Bill has adapted beliefs about teaching mathematics and the role of problem pos

ing that are more in line with national recommendations in mathematics education 

and was also able to replace his belief that mathematics teaching must include rote 

learning and memorization to a more student centered view of mathematics teaching.
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Carrie

Recall that Carrie was a first year graduate student seeking certification to teach 

elementary school at the time of this research. This section will highlight the results 

related to characteristics of Carrie’s problem posing, her beliefs about the relationship 

between problem posing and school mathematics, her beliefs about mathematics, and 

her beliefs about teaching mathematics. Finally, this section, will discuss implications 

of these results.

Problem Posing. The characteristics of Carrie’s problem posing changed during 

the instructional treatment. On the pre-assessment of problem posing, Carrie was 

only able to pose one solvable mathematics problem and it required a single step 

solution process. During problem generation on journal entries and on homework, 

Carrie was able to pose multiple multi-step problems, but only posed one multi-step 

problem on the post-assessment of problem posing. Carrie’s problem re-formulation 

was dominated by utilizing the techniques of changing the given and changing the 

wanted but she occasionally, especially early in the instructional treatment, used level 

1 problem re-formulation techniques.

During the instructional treatment, Carrie showed the ability to pose multi-step 

mathematics problems on problem generation activities when she was not under a 

time constraint. Carrie’s inability to pose multi-step problems under a time con

straint, however, may be a product of her limited experience posing mathematics 

problems. The data suggests ,though, that Carrie will take a problem generation skill 

with her to her future teaching that, if utilized and developed, may become better 

under a time constraint. Carrie utilized level 1 problem re-formulation techniques on 

the first problem re-formulation activities but this did not last throughout the instruc

tional treatment. Carrie made it clear during interviews that she was not learning 

mathematics because she enjoyed it and this feeling may have caused her to become
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complacent in her problem re-formulation. Carrie may have realized that she was 

not rewarded for posing more difficult problems and hence opted to utilize the easier 

problem re-formulation techniques. Regardless, Carrie’s problem generation abilities 

became more developed during the instructional treatment.

Beliefs. There was a change in Carrie’s beliefs about mathematics during the in

structional treatment and post-instructional treatment Carrie was better able to artic

ulate her beliefs. In Chapter 6, evidence indicates that Carrie’s beliefs are consistent 

with the mathematics predominant pre view, but that post-instructional treatment, 

Carrie was beginning to consider the mathematics predominant post view. Carrie did 

maintain, however, her belief that mathematics is always changing and that there is 

not a definitive set of mathematics that already exists. Carrie’s views of mathematics 

teaching became better developed during the course of the instructional treatment 

and she was able to articulate why she believes in group work and student discovery 

learning. Similarly, Carrie believed that problem posing was beneficial in mathemat

ics education early in the instructional treatment, but was able to better articulate 

her view post instructional treatment as shown in Chapter 6.

Unlike Bill, there was not a turning point in the instructional treatment that high

lights the change in Carrie’s beliefs, but evidence suggests that she was able to develop 

her beliefs about mathematics, beliefs about mathematics teaching, and her beliefs 

about the incorporation of problem posing in mathematics education. There are pos

sible explanations for Carrie’s better articulation of her conceptions. Carrie showed 

evidence of reflecting on her beliefs throughout the instructional treatment, espe

cially during her journal writing. The development of Carrie’s beliefs about teaching 

mathematics can also be attributed to the fact that the style of the course matched 

her beliefs. Carrie entered the instructional treatment having already thought about 

discovery learning and group work in mathematics instruction. As these ideas were
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modeled during the instructional treatment, she became better able to articulate her 

pre-existing views of mathematics teaching. Carrie’s ability to articulate her views 

of the relationship between problem posing and school mathematics, the benefits of 

student problem posing for learning, and possibilities for incorporating problem pos

ing in her future classroom paralleled her increased experience posing mathematics 

problems. As with the whole class, Carrie’s problem posing experience seemed to 

cause her to increase her reflection about mathematics and mathematics teaching 

and learning.

Carrie’s case suggests that even though she professed not to love mathematics, 

her experiences during the instructional treatment caused her to reflect on problem 

posing, teaching mathematics, and her future classroom instruction. After the in

structional treatment Carrie was able to articulate her views about mathematics and 

teaching mathematics, ready to utilize problem posing in her future classroom, and 

armed with beliefs about the benefits of student problem posing.

Laura

Laura was a sophomore mathematics education major seeking certification to teach 

elementary and middle school mathematics at the time of this research. This section 

will highlight the results related to characteristics of Laura’s problem posing, her 

beliefs about the relationship between problem posing and school mathematics, her 

beliefs about mathematics, and her beliefs about teaching mathematics. Finally, this 

section will discuss implications of these results.

Problem Posing. Laura demonstrated a developed understanding of problem pos

ing from the beginning of the instructional treatment and her problem posing reflected 

this. Laura posed four problems on the pre-assessment of problem posing, one of 

which was multi-step. Laura’s problem generation was focused on posing multi-step 

problems throughout the remainder of the instructional treatment. However, dur-
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ing the second interview and on the post-assessment of problem posing, Laura only 

posed two multi-step problems. Finally, Laura’s problem re-formulation was consis

tent throughout the instructional treatment and she utilized the strategy of changing 

the given most often. Laura did show an ability to use level 1 problem re-formulation 

techniques and used them on 8 of the 21 problems she re-formulated.

The fact that Laura posed fewer multi-step problems on the pre- and post-assessment 

of problem posing and during the second interview may be a product of the time con

straint and her comfort generating problems. All three tasks were completed under a 

time constraint and the pre- and post-assessment included a set of information with 

numeric content. Laura made it clear during the course of the instructional treatment 

that she was more comfortable posing problems from sets of information that did not 

include numerical content because she felt that she was able to exhibit more creativ

ity in these situations. Also, on the problem generation tasks that did not include 

a time constraint, Laura consistently posed multi-step problems and problems that 

went beyond the surface features of the given information. Laura showed throughout 

the instructional treatment that she was an effective and reflective problem poser. 

Laura’s ability to use level 1 problem re-formulation techniques was surprising since 

she felt that during problem re-formulation she would generally get stuck in the mode 

of the original problem. Characteristics of Laura’s problem re-formulation are a result 

of her willingness to always reflect on her work and her understanding.

Beliefs During the instructional treatment, Laura became able to articulate her 

view of the nature of mathematics and her view of the role of problem posing in 

school mathematics evolved. Laura entered the instructional treatment with well 

defined beliefs about mathematics and was unsure of her beliefs about the nature 

of mathematics. During the instructional treatment, Laura demonstrated that she 

sees beyond mathematics as procedural knowledge and views mathematics as a way
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of thought. By the final interview, Laura had begun to develop a belief about the 

nature of mathematics and stated that mathematics exists and that mathematicians 

discover it. Laura also entered the instructional treatment with developed beliefs 

about teaching mathematics based on past teaching experience. Her beliefs did not 

change during the instructional treatment. Both before and after the instructional 

treatment, Laura believed that there are benefits of problem posing in classrooms for 

student learning. Also, after the instructional treatment, Laura was able to articulate 

possible ways to incorporate problem posing in her future classroom.

Unlike other participants, Laura entered the instructional treatment with past 

teaching experience at a summer program called Summerbridge. Also during her 

teaching, Laura had attempted to utilize problem posing in her classroom. These 

experiences may have influenced Laura’s beliefs, as they were being examined in 

this study. During the instructional treatment, Laura articulated the belief that 

mathematics exists and that mathematicians are discovering it. There is not a specific 

instance that describes Laura’s belief of this conception, but it was probably a product 

of her constant reflection on her mathematical understanding and her development 

as a future teacher. Also, post instructional treatment, Laura was better able to 

articulate possible avenues for incorporating problem posing in her classroom and 

expressed beliefs about possible benefits for teachers as problem posers. As with the 

whole class, Bill, and Carrie the ability to articulate her beliefs about problem posing 

paralleled Laura’s problem posing experience during the instructional treatment. At 

the same time as she was developing her beliefs about problem posing Laura moved 

beyond thinking about what her future classroom would look like and began thinking 

about how she was going to engage her future students in mathematics. Mathematics 

educators have suggested problem posing as a possible tool to engage students in 

mathematics and Laura understood the possibilities for engaging students through
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problem posing and began to think more globally about how to engage her students 

as she was reflecting on the role of problem posing (Silver, 1994).

Unlike Bill, Carrie, and Liz, Laura’s case describes the effects of the instructional 

treatment on someone who entered with previous experience posing mathematics 

problems. Laura’s experiences during the instructional treatment, however, suggest 

that she further developed her beliefs and began to think beyond her beliefs about 

teaching mathematics and start to consider how her beliefs would influence her stu

dents engagement with mathematics. Therefore in this case the exposure to problem 

posing was also of benefit to a subject with prior teaching experience and developed 

beliefs.

Liz

Liz was a sophomore mathematics education major seeking certification to teach 

elementary and middle school mathematics at the time of this research. This section 

will highlight the results related to characteristics of Liz’s problem posing, her beliefs 

about the relationship between problem posing and school mathematics, her beliefs 

about mathematics, and her beliefs about teaching mathematics. Finally, this section 

will discuss implications of these results.

Problem Posing. Throughout the instructional treatment Liz’s problem gener

ation was characterized by a lack of proficiency generating problems under a time 

constraint. When generating problems on her own time, however, Liz was able to 

generate multi-step mathematics problems and there seemed to be an increase in her 

creativity posing problems as she progressed through the instructional treatment. On 

the pre- and post-assessment of problem posing and during interview two, Liz was 

efficient in generating statements under a time constraint but showed little proficiency 

for having these statements be mathematical problems. Liz’s problem re-formulation 

was dominated by changing the given information. In fact, Liz only utilized level 1
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problem re-formulation techniques 3 times during the instructional treatment.

The characteristics of Liz’s problem posing can be explained by her limited ex

posure to problem posing and hence limited conception of what problem posing is. 

Liz was not able to define problem posing during the first interview and during the 

final interview her description only included descriptions of problem generation and 

problem re-formulation techniques. Liz did not describe the problem posing process 

during the instructional treatment. This may explain Liz’s willingness to write ques

tions such as “Where are we going?” during a problem posing task since she may 

not have had a conception that this was not a problem. Liz was more comfortable 

posing problems as problem generation and this was apparent from the problem gen

eration tasks that did not include a time constraint, as she was able to pose multi-step 

problems. I believe that Liz’s reliance on changing the given information in problem 

re-formulation demonstrates her lack of comfort re-formulating problems and inabil

ity to think beyond the problem she had just solved. This is also consistent with her 

belief that she is better at problem generation. Liz’s lack of a conception of what 

problem posing is to her and her problem posing process influenced her posed prob

lems, but she was able to pose multi-step problems when not posing under a time 

constraint.

Beliefs. Liz’s beliefs about mathematics changed little during the instructional 

treatment but she changed her view of the nature of mathematics. During the in

structional treatment, Liz began to relate her beliefs about teaching to her future 

students understanding. Liz’s view of the role of problem posing in school mathemat

ics also evolved. Throughout the instructional treatment Liz had difficulty defining 

mathematics and wasn’t confident in a definition. This implies that Liz did not have 

a strong conception of what mathematics is to her and hence there was not signifi

cant change in her beliefs about mathematics. There are some changes in Liz’s beliefs
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about whether mathematics is changing. During her first interview, Liz stated that 

mathematics is changing but had trouble verbalizing what she meant. On her final 

interview and post-assessment of beliefs, Liz was able to articulate that mathemat

ics is not changing to students but is changing to mathematicians who are doing 

mathematics research. Liz also stated that mathematics teaching and mathematics 

education are changing.

Liz became able to articulate her developing beliefs about the attributes of a 

good mathematics teacher during the instructional treatment. Liz’s vision of her 

future classroom did not change but by the post-assessment of beliefs Liz was able to 

better articulate her vision of a good mathematics teacher as someone who utilizes 

group work and manipulatives, is understanding, and realizes that her students have 

different learning styles. Liz also strengthened her beliefs about the benefits, for 

students, of problem posing in mathematics classrooms. Liz stated some initial beliefs 

on the pre-assessment but by the post-assessment Liz was able to better articulate 

these beliefs and has started to relate problem posing to real life situations.

During the instructional treatment, Liz became better at articulating her beliefs 

about both mathematics and the teaching and learning of mathematics. Liz’s personal 

reflection and reflection in journal writing during the instructional treatment allowed 

her to begin to develop her beliefs and start to consider connections between her beliefs 

and her future teaching. As suggested by the teacher preparation literature discussed 

in Chapter 2, reflection is necessary in developing teachers and Liz is an example 

of the outcome of pre-service teacher reflection. Liz also was able to understand 

the possible benefits of problem posing for her future students and was starting to 

develop a sense of how she would incorporate problem posing in her future classroom. 

Liz’s beliefs about problem posing also developed as she gained experience posing 

mathematics problems during the instructional treatment. Liz, however, did not
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verbalize any use of problem posing for herself as a future teacher and it is possible 

that this combined with her lack of comfort re-formulating problems could prevent 

Liz from incorporating problem posing in her future classroom. Liz evolved from 

a student unable to verbalize her beliefs to having developed beliefs that she could 

articulate.

Liz’s case highlights the benefits of reflection in pre-service teacher education. Liz 

was not able to articulate beliefs about mathematics or define problem posing at the 

beginning of the instructional treatment. After experience reflecting on her beliefs 

and future teaching, as well as the experience of posing mathematics problems, Liz 

was able to articulate beliefs about mathematics, beliefs about the role of problem 

posing in school mathematics, and relate her beliefs to her future teaching.

Implications

The results of this dissertation research demonstrate the importance of pre-service 

teacher education and the power of reflection by pre-service teachers. Further, con

ducting this research has forced the researcher to consider possible future directions 

for research related to problem posing in pre-service teacher education and with un

dergraduate mathematics majors.

Pre-Service Teacher Education

Mathematics educators and organizations dedicated to mathematics education 

have sounded the bell on the incorporation of problem posing at all levels of mathe

matics instruction, including teacher preparation programs and mathematics classes 

designed for pre-service teachers. This research is evidence that others must begin to 

consider the inclusion of problem posing in mathematics instruction. The pre-service 

teachers in this study were able to better articulate beliefs about mathematics and 

the teaching of mathematics, the incorporation of problem posing in their future
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classrooms, including possible ways to incorporate problem posing beyond what was 

modeled in the instructional treatment. Based on these and other results there are 

implications of this research for pre-service teacher education. This research serves 

as a guidepost to promote problem posing at all levels of mathematics education and 

to prepare future teachers to adopt standards based curricula while incorporating 

into their teaching practice the ideas which the reform movement in mathematics 

education has put forth.

These pre-service teachers reflected on and articulated beliefs about the role of 

problem posing in school mathematics as they gained experience posing problems dur

ing the instructional treatment. Participants articulated possible benefits of problem 

posing for their future students that are in-line with the suggestions of such groups as 

the National Council of Teachers of Mathematics and the National Research Coun

cil, as discussed in Chapter 2. Participants also discussed possible benefits of their 

ability to pose problems for preparing their future mathematics lessons. Arming pre

service teachers with knowledge about the benefits of problem posing makes them 

more likely to incorporate problem posing in their classrooms and to introduce their 

colleagues to the benefits of problem posing. This instructional treatment provided 

these pre-service teachers with experiences that will help them begin the inclusion of 

problem posing at all levels of mathematics education by incorporating problem pos

ing in their future classrooms. Also, based on these pre-service teachers limited beliefs 

about problem posing and lack of problem posing experience I believe it would have 

been difficult for them to include problem posing in a mathematics classroom prior 

to this instructional treatment. This experience prepared these pre-service teachers 

to utilize problem posing in their future classrooms.

Further, these pre-service teachers articulated their beliefs about the necessity for 

mathematics teaching to promote discovery learning and inquiry-oriented and student
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centered classroom atmospheres. These pre-service teachers articulated beliefs that 

are consistent with writing in mathematics education and instruction (NCTM, 2000; 

Kilpatrick et al., 2001). Therefore, these pre-service teachers might be more likely to 

adopt standards-based curricula that ask teachers to present students opportunities 

for discovery learning and provide a student centered classroom atmosphere. Arming 

teachers with these new ideas should be a goal of pre-service teacher education and 

one that can be accomplished by engaging them in an instructional treatment similar 

to the one described in this research.

Reflection in Teacher Preparation

The teacher preparation literature reviewed in Chapter 2 calls for reflection and 

metacognitive activity to be an integral part of pre-service teacher education. This 

research is an example of the power of reflection in pre-service teacher education and 

the possible changes in pre-service teachers’ beliefs because of the opportunity to re

flect on their beliefs and future practice. This research utilized problem posing and 

journal writing as a vehicle to promote reflection with these participants. These two 

constructs caused these pre-service elementary and middle school teachers to reflect 

on their future classroom practice, develop their views about mathematics teaching, 

and consider how their views of teaching will influence their future practice. Reflec

tion allowed these pre-service teachers to leave this mathematics content course with 

articulated beliefs about teaching and learning and with numerous thoughts about 

what their mathematics classes would look like, how they would teach, possible ac

tivities, and possible ways to effectively incorporate problem posing. These beliefs 

were a product of these pre-service teachers personal reflection and reflection during 

journal writing and class assignments. This research is an example of a possible situ

ation to promote pre-service teacher reflection, which is vital in teacher preparation 

programs, as suggested by the literature.
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Possible Future Research

The pre-service teachers in this dissertation research believed that problem posing 

was a tool they would utilize in their future classrooms. Because of this belief and 

reflection by the researcher, possible future directions for research related to  problem 

posing with pre-service teachers and in undergraduate mathematics will be presented.

First, participants suggested multiple ways to incorporate problem posing in their 

classrooms and considered the possible benefits of this incorporation for their stu

dents’ mathematical understanding. These suggestions have raised the question of 

whether these participants will apply what they have learned through this research 

and introduce problem posing in their classrooms? If so, in what ways do they in

troduce problem posing? If not, what factors cause them not to introduce problem 

posing? It seems that it is not only important to expose pre-service teachers to prob

lem posing but to try to understand if this exposure is something they will utilize 

in their classrooms. While exploring whether pre-service teachers will utilize their 

ideas in their future classroom it would be beneficial to explore the students reaction 

as well. Do students who are introduced to problem posing experience the possible 

benefits that were suggested by these pre-service teachers?

Second, these pre-service teachers also suggested that it is necessary for them to 

be good problem posers and that they will utilize their problem posing skills in their 

future teaching. As teachers, do participants in a similar instructional treatment uti

lize their problem posing skills? If so, how do they utilize these skills? Do participants 

utilize problem posing to generate class activities and problem sets? If not, why do 

they not utilize these skills? Do participants rely on the textbook as the authority 

in their classroom? These questions become important to understand if pre-service 

teachers’ experience with problem posing helps develop a sense of autonomy in their 

teaching.
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Finally the results of this research have lead the researcher to consider if  it would 

also be beneficial for mathematics majors to see mathematics from a problem pos

ing perspective, since as future mathematicians they will be posing mathematics 

problems. It seems feasible to develop a similar instructional treatment to introduce 

problem posing to an audience of mathematics majors at the University level that are 

not pre-service teachers. Documenting characteristics of participants’ posed problems 

and describing their beliefs about mathematics and any changes that may occur in 

their beliefs as they are introduced to problem posing would also seem possible based 

on the results of this research.
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Appendix A

Course Materials
This appendix includes the following materials from the course in which the instruc
tional treatment was adopted “Topics in Mathematics for Teachers” at the University 
of New Hampshire during the spring semester 2002. These materials include,

• Course Syllabus

• Weekly Course Agendas

• Problem Sets
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Course Information 
M ath  623/723: Topics in M athem atics for Teachers

Spring 2002

Instructor: Professor Karen Graham

Office: Kingsbury M321

Phone: 862-3621

e-mail: kjgraham@cisunix.unh.edu

Office Hours: M,W 1-2PM , F 10-11AM. Others by appointment.

Course D escription

This course is designed to involve students in the exploration and analysis of various 
mathematical topics including probability and statistics, algebra and functions, the 
mathematics of change, and discrete mathematical structures. Mathematics as 
problem solving and the role of technology in the teaching/learning of mathematics 
will be emphasized throughout the course.

Course R equirem ents

•  Students are expected to attend class regularly, participate in and complete all 
in-class activities. If circumstances arise that cause you to miss class, you will 
be responsible for making-up all work missed during your absence.

•  Completion of take-hom e assignm ents (these will involve problems sets and 
article critiques).

• Completion of a “replacem ent u n it” . More detail available by mid-semester.

•  Portfolio: Each student is required to keep a portfolio. This portfolio should 
be a record of your experience and progress in this course. It should serve 
several purposes, it should help you reflect on your work and share your efforts 
with me and your classmates. It will be useful to me as a way of 
understanding your thinking, how you are grappling with the material, and 
how I might better help you. Each portfolio will have two parts, a work 
portfolio and an assessm ent portfolio.
The work portfolio might include journal entries, homework solutions or 
attempts at solutions, evidence of how you assimilated/revised/made sense of 
material that has been introduced in class (your re-writing of class notes, for 
example with commentary, exposition about a particular concept, or a set of 
interrelated concepts, written discussion of the way you are thinking about the 
ideas in this course, a problem that you posed, material from another source 
that help you understand something better, along with your comments and 
notes, and required entries assigned in class).
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Periodically you will be asked to select and clip together work that you would 
like to have placed in the assessm ent portfolio. At this time you will be 
asked to write a paragraph about each item, explaining why you have chosen 
it and how your thinking has developed during or after doing the assignment.

• Exam inations: There will be a midterm and a final examination. The date 
of the midterm will be announces in class at least one week prior to the exam. 
The final examination will take place sometime between

Course G rade

Your course grade will be based on you total score for the assignments, portfolio, 
replacement unit, and exams. The breakdown will be as follows:

Assignments: 100 points

Replacement Unit: 100 points

Portfolio: 100 points

Exams (100 points each) 100 points

Total: 500 points

Your final course grade will be based on a percentage calculation from the above 
point total.

Special Events. P artic ipa tion  is encouraged!

M A TH CO U N TS C O M PET ITIO N : Saturday, February  9 th , K ingsbury 
H all, U N H , 9-Noon.

N H T M  ANNUAL SPR IN G  CO N FEREN CE:
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Weekly Assignment #1
Math 623/723
Spring 2002

W 1/23/02 Introduction to Problem Solving 

M 1/28/02 Problem Solving

W 1/30/02 Problem Solving and Problem Posing

For Monday 1/28

•  Complete Pre-assessment Tasks

•  Read article, “Constructivist Learning and Teaching”

•  Review “Four-Step Method for Solving Mathematics Problems”

For Wednesday 1/30

•  Read the section of the “Principles and Standards” distributed in class.

•  Complete Problem Solving #1 - Be sure to show all of your work for each
problem, even partial attempts. Choose 2 of the problems and write-up your 
solutions according to the 4-Step Method discussed in class. I will collect and 
evaluate these problems based on the rubric discussed in class.

•  Compose and submit your mathematical autobiography.
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Weekly Assignment #2
Math 623/723
Spring 2002

w 1/30/02 Problem Solving and Problem Posing

M 2/4/02 Introduction to Data Analysis

w 2/6/02 Gathering, Representing, and Interpreting Data

M 2/11/02 Measures of Central Tendency and Sampling Plans

For Monday 2/4

• Read article, “Young Children’s Emotional Acts While Engaged in 
Mathematical Problem Solving”.

• Read section of “NH State K-12 Mathematics Curriculum Frameworks” 
distributed in class.

For Wednesday 2/6

• Read article, “Collecting and Analyzing Real Data in the Elementary School 
Classroom”.

• Write 5 extensions of the raisin activity.

For Monday 2/11

• Complete Problem Solving #2. Be sure to show all of your work for each 
problem, even partial attempts. Choose 2 of the problems and write-up your 
solutions according to the 4-Step Method discussed in class. For each of these 
problems compose and write-up 2 related problems. I will collect and evaluate 
these problems based on the rubric discussed in class.

•  Write a journal entry for your portfolio about what you learned about 
statistics from The Paper Clip Game.
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Weekly Assignment #3
Math 623/723
Spring 2002

w 2/13/02 Data Representation and Analysis

M 2/18/02 Distributions and Standard Deviation

W 2/20/02 Sampling Plans and Bias

M 2/25/02 Introduction to Notions of Chance and Probability

For Monday 2/18

•  Read articles, “Statistics and Graphing” and “What do children understand 
about average?”. Be prepared to discuss your reactions and questions.

•  Complete assigned problems from “Comparing Data Sets” activity. Be 
prepared to discuss and share your results.

For Wednesday 2/20

• Read article, “Problem Solving: Dealing with Data in the Elementary 
Classroom”. Be prepared to discuss your reactions and questions.

•  Complete Problem Solving #3. Be sure to show all of your work and provide 
explanations/justifications for each problem. Choose 2 of the problems and 
write-up your solutions according to the 4-Step Method discussed in class. For 
each of these problems compose and write-up 2 related problems. I will collect 
and evaluate these problems based on the rubric discussed in class.

Note: Data Analysis Projects will be due on Monday March 4th - this will be a 
group project and details will be discussed in class on Monday 2/18.
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Weekly Assignment # 4
Math 623/723 
Spring 2002

M 2/25/02 Introduction to Notions of Chance and Probability

W 2/27/02 Fair and Unfair Games

M 3/4/02 Area Models for Probability

For Monday 2/25

•  Read parts of the NCTM Principles and Standards related to Data Analysis 
and Statistics. Be prepared to discuss your reactions and questions in class.

•  Journal entry on Problem Posing for Portfolio (this will be collected and 
returned to you).

From the following set of given information pose 3 to 5 problems 
(you do not need to solve your posed problems) and then answer the 
questions that follow.
Given Information: Mrs. Smith’s and Mr. Jones’ fifth grade classes 
took the same mathematics test last week. You have been given all 
the graded exams and the answer key.
Questions:

1. Describe the process you just went through to generate 
problems from this set of information.

2. Do you see any similarities between the problem solving and the 
problem posing process? Explain.

For Wednesday 2/27

•  Complete Problem Solving #4. Be sure to show all of your work for each 
problem, even partial attempts. Choose 2 of the problems and write-up your 
solutions according to the 5-Step Method discussed in class. Remember that 
Step 5 is posing a related problem. I will collect and evaluate these problems 
based on the rubric discussed in class.
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Weekly Assignment #5
Math 623/723
Spring 2002

M 2/25/02 Introduction to Notions of Chance and Probability

W 2/27/02 Independent and Dependent Events

M 3/4/02 Fair and Unfair Games

W 3/6/02 Simulations and Area Models

For Monday 3/4

• Be prepared with the other members of your group to present your data 
analysis poster to the rest of the class.

•  Read article, “Promoting a Problem Posing Classroom”. Be prepared to 
discuss your reactions and questions in class.

•  Journal Entry based on the prompt below for portfolio (this will be collected 
and returned to you).

Journal Prompt: Imagine that you are teaching and someone comes 
in to observe your classroom and a mathematics lesson that you are 
teaching. Write a description of your classroom and the lesson from 
the eyes of the observer. What would they see you doing during the 
lesson, what would they see the students doing, what would they 
notice about your classroom?

For Wednesday 3/6

•  Be prepared to hand-in your portfolio. Remember that you need to select and 
clip together 3 pieces of work that you would like placed in the assessment 
part of your portfolio. For each piece of work selected you need to write a 
paragraph about the item explaining why you selected it and how your 
thinking has developed during or after doing the assignment.

•  Complete Problem Solving #5. Be sure to show all of your work for each 
problem, even partial attempts. Choose 2 of the problems and write-up your 
solutions according to the 5-Step Method discussed in class. Write a related 
problem for each of the remaining problems numbered 1-4. You will notice 
that problem 5 is of a slightly different nature, follow the directions given on 
the problem solving set.
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Weekly Assignment #6
Math 623/723
Spring 2002

243

M 3/11/02 Simulations Continued

W 3/13/02 Exam

M/W 3/18 and 3/20 Spring Break - ENJOY!

M 3/25/02 Wrap-up Probability Unit and Introduction to Discrete Math

For Monday 3/11

•  Read follow up article on Problem Posing. Be prepared to discuss your 
reactions and questions.

•  Complete the “More Chips” problems. We will discuss your answ ers to  
# 1  and  2 in  class and I will collect th e  responses to  # 3 .

•  Journal Entry : Please write a brief reflection on how you think class is going 
so far this semester, what aspects have you found the most helpful, least 
helpful and why?, how is the workload?, what aspects would you change?, 
what additional topics would you like to see covered?

For Wednesday 3/13

•  Prepare for Exam 1.

Upcoming Events:

•  Problem Solving #6  will be due on March 27th. For this problem set you are 
required to complete the first 4 problems, showing all work, providing 
justifications for your responses, and writing a related problem. Problem 5 
provides you with a set of given information. You are to pose two problems 
and provide a solution for one of them.
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Weekly Assignment #7
Math 623/723
Spring 2002

w 3/27/02 Introduction to Discrete Math Activities

M 4/1/02 Discrete Math Activities Continued

W 4/3/02 Introduction to Algebraic Thinking

For Monday 4/1

•  Complete any leftover activities from Wednesday’s Class as appropriate.

•  Read the article: Strengthening a K-8 Mathematics Program with Discrete 
Mathematics

•  Write a journal reflection about the exam 

For Wednesday 4/3

•  Complete Problem Solving # 7  - Be sure to show all your work for each 
problem and provide explanations for each problem. For problems 1-3 state a 
related problem. I will collect and evaluate these problems based on the rubric 
discussed in class.
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Weekly Assignment #9
Math 623/723
Spring 2002

M 4/8/02 Introduction to Algebra and Algebraic Thinking.

W 4/10/02 Exam

For Monday 4/8

• Read Graph Chasing Across the Curriculum: Paths, Circuits, and 
Applications. Be prepared to discuss the major points and questions you had 
from the reading.

Read the introduction to the Algebra Standard (pp.37-40) from the Principles 
and Standards for School Mathematics distributed in class on Monday, 4/1. Be 
prepared to discuss the major points and questions you had from the reading.

Complete any leftover problems/activities from class as appropriate.

For Wednesday 4/10

• Read the Algebra Standards from the Principles and Standards for School 
Mathematics as distributed in class on Monday, 4/1. Be prepared to discuss 
the major points and questions you had from the reading

•  Read Promoting Algebraic Reasoning Using Student Thinking from the 
NCTM journal Mathematics Teaching in the Middle School. Be prepared to 
discuss the major points and questions you had from the reading.

• Complete any leftover problems/activities from class as appropriate.

NOTE: REMEMBER THAT A BRIEF WRITTEN REPORT (NO MORE THAN 1 
PAGE) UPDATING YOUR PROGRESS ON THE CURRICULUM PROJECT IS 
DUE ON WEDNESDAY, APRIL17™.
PORTFOLIOS WILL ALSO BE COLLECTED ON WEDNESDAY, APRIL 17t h . 
YOU SHOULD CHOOSE THREE ADDITIONAL ITEMS TO INCLUDE IN 
YQUR ‘ASSESSMENT PQBTK)Ll6’. THE PORTFOLIOS WILL BE 
EXCHANGED AND READ BY ONE OF YOUR CLASS COLLEAGUES. A 
FORM WILL BE PROVED FOR YOU TO PROVIDE FEEDBACK.
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Weekly Assignment #10
Math 623/723
Spring 2002

M 4/15/02 Algebraic Thinking

W 4/17/02 Variables and Equations

M 4/22/02 Problem Posing and Algebraic Thinking

M 4/24/02 No Class - Work on Curriculum Project

For Monday 4/15

•  Read article, Teaching Patterns, Relationships, and Multiplication as 
Worthwhile Mathematical Tasks. Come prepared to discuss questions and 
reactions.

•  Complete any class activities as assigned.

• Journal Entry: Please write a response to the following questions.
As you are posing related problems or posing problems from a given set of 
information who is your intended audience? Why? Does the audience change 
depending on the problem? Would you consider yourself better at posing 
problems as re-formulations or posing problems from sets of given information. 
Why?

For Wednesday 4/17

• Read the article, Algebraic Instruction for the Younger Children. Come 
prepared to discuss questions and reactions.

• Complete any class activities as assigned.

• Portfolios will be collected and shared with one of your colleagues. I will not 
be reading them again until the final collection but would be nappy to react to 
them individually if you wish. I will provide a form for you to use as you 
review the portfolio you have been assigned.

•  One-page project update/summary will be collected. This update should 
include a description of your mathematical focus, your targeted grade level, 
and any questions or concerns that you have and would like feedback on.

For Monday 4/22

• Your assessment of the portfolio that you evaluated will be collected and 
shared with the individual you evaluated.

For Wednesday 4/24

• No Class - use the time to work on your curriculum projects.
For Monday 4/29

• Problem Solving #8  will be due. Complete each of the problems showing work 
and providing explanations. Please pose a related problem for each of the 
problems.
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Weekly Assignment #  11 - The LAST “Weekly Assignment” Sheet
Math 623/723
Spring 2002

W 5/1/02 Exploring Algebra Lab Gear

M 5/6/02 Integers and Rates of Change

W 5/8/02 Rates of Change Continued

W 5/13/02 Last Class: Wrap-up and Curriculum Project Sharing

For Monday 5/6

•  Read Children’s Difficulties in Beginning Algebra from the 1988 NCTM 
Yearbook. Be prepared to discuss the major point and questions you had from 
the reading.

•  Complete “Signs, Sweet, Signs” pre-case worksheet distributed in class.

•  Journal Entry: Do you think you will utilize problem posing in your future 
classroom? If so, in what ways. Please try to be as specific as possible.

For Wednesday 5/8

•  Read Prealgebra: The Transition from Arithmetic to Algebra.

•  Portfolios are due today. Please choose three additional items to include in the 
assessment portion of your portfolios.

•  Problem Solving # 9  is due. Be sure to show all your work and provide 
explanations/justifications. Please write a related problem for 2 of the 
problems. In addition, please select what you consider your 2 best problems 
since the last time you selected them. Describe the problem and why you 
think it is a good problem.

• Complete any leftover problems/activities from the class as appropriate.

NOTE: The DUE date for the CURRICULUM UNITS HAS BEEN EXTENDED 
TO MONDAY, MAY 13rff. I will try to have them assessed so that you can pick 
them up when you come to take the final exam.

For Monday 5/13

• Curriculum “Replacement” Units are due.

• FINAL JOURNAL ENTRY: Please write a reflection on your experiences in 
this course this semester. The following questions might help to guide your 
reflection: 1) What have I learned about myself as a learner of mathematics?
2) What have I learned about myself as a prospective teacher of mathematics?
3) How has my conception of mathematics or teaching changed? 4) What 
questions do I still have?
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Problem Set #1

1. If an investment of $8000 increases by 15 percent at the end of each year, what 
is the fewest number of years until it doubles in value?

2. Keith’s secret pocket on the inside of his jacket measures 5.7 cm by 4.8 cm. 
He has an equal number of nickels, dimes, and quarters. The total value of his 
coins is $8.00. How many of each coin does he have?

Use patterns found by listing the values of smaller powers of each base to help 
find the units digit for each of the following problems:
2 ioo  3100 4100

2ioo 3100 4100

4. Friends go to a party. At the first doorbell ring, one guest arrives; at the second 
ring, two more guests arrive than on the first ring; at the third ring, two more 
guests arrive than on the second ring; and so on. How many guests are at the 
party after the fifth ring? The tenth ring? The nth ring?

5. Ten years ago, Americans were buying 50,000 new television sets a day. If the 
50,000 television sets were spread evenly along a road between New York City 
and Hollywood, California, they would be just over 300 feet, or less than one 
minute’s walk, apart. Television addicts could easily walk from one television 
set to the next during commercials and never miss the show. Determine if the 
last two statements are reasonable conclusions that follow from the first.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



249

Problem Set #2
1. Create a set of data that meets the following condition: the median is higher 

than the mode and the mean. Prove that your set of data meets the condition. 
Determine a situation that could be represented by the data.

2. The mean of three test scores is 74. What must a fourth score be to increase 
the mean to 78?

3. Consider the integers from 1 to 100, inclusive. What is the difference between 
the sum of all the even numbers and the sum of all the odd numbers?

4. What are the last two digits of 21100?

5. Do any numbers from the following set have a sum of 100? If not, explain. If 
so, which numbers sum to 100?
{3, 6, 12, 15, 21, 27, 42, 51}
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Problem Set #3
1. I have a “number machine” that always affects in the same way whatever num

ber I put in it. For example, when I put in 1, the machine gives me 6; when I 
put in 3, it gives me 10; when I put in 6, it gives me 16; and when i put in 9, 
it gives me 22. What will the number machine give me if I put in 100?

2. I purchased a new “number machine” . This one gives me 1 when I put in 1, 3 
when I put in 2; 6 when I put in 3, 10 when I put in 4, and 15 when I put in 5. 
What number will I get when I put in 10? 20? 1000?

3. A special rubber ball is dropped from the top of a wall that is sixteen feet high. 
Each time the ball hits the ground it bounces back only half as high as the 
distance it fell. The ball is caught when it bounces back to a high point of one 
foot. How many times does the ball hit the ground?

4. A student had the following scores on exams in her history class: 83,76, 92,76, 
93.

a. There is one more exam. What score must the student make to raise her 
average to 85 if using the median as average?

b. What score must the student make to raise the average to 85 if using the 
mean as the average score?

5. Babe Ruth’s home runs from 1920 to 1934 are shown below.
54 59 35 41 46 25 47 60 54 46 49 46 41 34 22

Organize the data in someway to see the shape of the data.
Which measure of central tendency (mean, mode, or median) best reflects a 
typical year? Explain your choice.
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Problem Set #4
1. Insert another number in the set 9, 12, 17, 15, 13 so that the mean of the 

resulting set is 14.

2. The range of three numbers is 45. Both the mode and the median are 52. Name 
two possible sets of three numbers.

3. Valerie was given three bags of fruit, one labeled “peaches”, one labeled “plums”, 
and one labeled “peaches and plums”. Each label was incorrectly placed. Va
lerie reached into one bag and pulled out one piece of fruit. She was then able 
to identify the fruit in each bag. Into which bag did Valerie reach? How was 
each bag of fruit labeled?

4. a) The total weight of all the students in a class is 2825 lbs. The mean is 113 
lbs. How many students are in the class?
b) The median weight is 125 lbs. How many student weigh more than 125 lbs.? 
How many weigh less?

5. The average of seven numbers is 49. If 1 is added to the first number, 2 is added 
to the second number, 3 is added to the third number, 4 is added to the fourth 
number, and so on up to the seventh number, what is the new average?
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Problem Set #5
1. Dan had three pennies in his hand and told Lee, “I’m going to toss these pennies. 

If they all come up heads, I’ll give you a dime. If they all come up tails, I’ll 
give you a dime. If anything else comes up, you have to give me a nickel.” Lee 
reasoned that two of the coins must always be the same (heads or tails) and so 
he has a 50-50 chance that the third one will match; he agreed to the bet. Did 
Lee use sound reasoning? Explain.

2. In a random drawing of one ticket from a set numbered 1 through 10000, you 
have tickets 8775 through 8785. What is your probability of winning?

3. From a standard deck of fifty-two cards, how many cards would you have to 
draw, without looking at them, to be absolutely certain (a probability of 1) that 
you have five spades?

4. Suppose you know that the ratio of red marbles to green marbles in a well-mixed 
container of marbles is 3 to 5.
a. If the mix contains 16 marbles altogether, what is the probability that you 
will randomly select a red marble?
b. How many red marbles should you add to the container so that the proba
bility of getting a red marble is |?

c. Could you ever add enough red marbles to the container so that the proba
bility of getting a red marble would be 1? Explain.

5. From the following set of given information pose 3 problems (you do not need 
to solve your posed problems).

Given Information. You arrive at your friend’s home and they are 
sitting at a table with $20, a deck of cards, and red, white, and blue 
die.
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Problem Set #6
1. Make a maze similar to the one for the Treasure Hunt Game, such that Zank 

is likely to loose the game. Justify your solution using two different models.

2. a. Initially, three digit codes were used to identify which long distance company 
you were using? How many codes were available?
b. Owing to a shortage of codes, in May 1995 a four-digit code system replaced 
the three-digit one. How many more competitors will this system accommodate 
that the three digit code?

3. How many different paths can be taken to spell ALGEBRA using the following 
arrangement, if you continue to move downward only?

A
L L

G G G
E E E E
B B B
R R
A

4. Six people enter a tennis tournament. Each player played each other person 
one time. How many games were played?

5. From the following set of given information pose 2 problems. Provide a detailed 
solution for one of the problems.

Given Information: A roulette wheel has 18 red numbers, 18 black 
numbers and 2 green numbers. A person bets on either an individual 
number or a color. A one dollar bet placed on an individual number 
pays $35, on black or red pays $1, and on green pays $12.
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Problem Set #7
1. Many years after Euler proved that it was impossible to take a walk in which 

each of the 7 bridges of Konigsberg is crossed exactly once, an eighth bridge 
was built. Sketch a network with four vertex points for the land areas A, B, C, 
and D and 8 arcs for the bridges. Is this network traversable? Explain.

2. Consider networks with 0, 1, 2, 3, and 4 odd vertices. Make a conjecture 
about the number of odd vertices that are possible in a network. Explain your 
thinking.

3. a. Rectangular grids such as the one below are not traversable. Explain why.

b. Determine the minimum number of squares that must be removed in order for 
the following grids to be traversable, 2x2, 4x4,5x5. Explain how you determined 
this

4. Think back to all of the problems that you have posed this semester either on 
a problem solving assignment or related to class activity. From this collection, 
select 2 of your BEST posed problems, state the problems and provide and 
explanation for why you think it is one of your BEST problems
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Problem Set #9

1. A whole brick is balanced with f of a pound and f of a brick. W hat is the 
weight of the whole brick?

2. John has $19 to spend at a carnival. After paying the entrance fee of $3, he 
finds that each ride costs $2. What are the possibilities for the number of rides 
he can take?

3. The digits in the number 2731 have been written below 4 times in cyclic order. 
That is, in each number the digits are in the same order if you move from left to 
right and then continue again with the leftmost digit. The sum of the 4 digits 
in 2731 is 13, and 13 divides 14,443, the sum of the 4 numbers.

2731 

7312 

3127 

+  1273 

14443

If any four digit number is written in cyclic order, will the sum of its digits 
divide the sum of the 4 numbers? Explain.

4. Two UNH students, Lisa and Becky, agree to a 12-kilometer race under the 
following conditions: Lisa is to run half the distance and walk half the distance, 
and Becky is to run half the time and walk the other half of the time. If they 
both run at 6 kilometers per hour and walk at 3 kilometers per hour, which 
person will win the race, and what will the winner’s time be?

5. Two different numbers are drawn from the set {2, 3, 4, 5, 6} without replace
ment. What is the probability that the product of the numbers selected is a 
multiple of 3?

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Appendix B

Assessment and Concept Maps

This appendix includes the pre- and post-assessments of problem posing ability and 
beliefs about mathematics and participants concept maps about problem posing. The 
materials are included in the following order,

•  Assessment of Problem Posing

• Assessment of Beliefs

•  Introduction to Problem Posing

•  Bill’s Concept Map

• Carrie’s Concept Map

•  Laura’s Concept Map

• Liz’s Concept Map

256
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Assessment of Problem Posing

Directions: Consider the possible combinations of pieces of information given 
below and pose as many mathematical problems as you can think of.

Item  1: You have decided to purchase a computer for college. The new top of the 
line laptop costs $2500. You have two options for purchasing the computer, you can 
use your credit card, which has an annual interest rate of 13.99% or you can finance 
it through the University computer store for 48 months at $70 a month. You have 
saved $500, but you need to be able to pay for your books next semester.

1.

2 .

3.

4.

5.

6 .
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Assessment of Problem Posing
Item  2: The University has decided to build a parking garage for the use of 

students and staff. The University has a maximum amount of land that they can 
use and also have a minimum number of faculty/staff spots and a minimum number 
of student spots that are needed at certain hours of the day. The university has 
done research that shows that a fixed number of faculty /staff and a fixed number 
of students arrive at 8am and 12 noon. Also the university is restricted by a fixed 
budget for paving and general construction.

1.

2 .

3.

4.

5.
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Assessment of beliefs about mathematics
Item  1: List all the words or short phrases that come to mind when you think of 

the word mathematics.

Item  2: Please respond to the following short answer questions.

1. Complete, “Mathematics is . . . ”

2. Do you agree with the following statement, “Mathematics is always changing.” 
Explain.

3. Describe a good mathematics teacher.

Item  3: A student is given the following set of information and asked to  pose as 
many problems as possible. The students posed problems are below. Please respond 
to the questions that follow.

Given: Mary has 17 apples and Jane 14 candy bars. There are 24 students in 
their first grade class.

The student posed the following problems.

1. How many more students are there than Mary has apples?

2. If Mary gives out all her apples in class how many candy bars will Jane have to 
give out so that every student gets something?

3. Who is older Mary or Jane?

4. If every student is to get an apple or candy bar and Jane gives out a few candy 
bars how many apples will Mary have to give out?

Questions:

1. Which of these four problems are solvable mathematical problems?

2. Do you believe that posing problems from such sets of information is a worth
while task for elementary school students? Explain.

3. What are the possible benefits and possible negatives of such problem posing 
tasks?
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Introduction to Problem Posing
Math 623
Spring 2002____________________________

Students are rarely given the opportunity to view mathematics from a problem 
posing perspective. As future teachers you will have to call upon problem posing in 
your classroom, to write exams and quizzes, and to help answer student inquires. It 
is important that you have some prior experience posing mathematics problems. 
The first form of problem posing we will explore is posing a related problem.

Posing a  R ela ted  P rob lem
Posing a related problem is the process of writing a mathematical problem related 
to one that you have solved or are in the process of solving.

Some possible techniques for posing a related problem are listed below.

•  Switch given and wanted information

•  Add information

•  Change values of the given data

•  Change the context or setting of the problem

•  Modify the conditions of the given problem

Exam ple: Posing a related problem
Problem: Jane has saved some money from her summer job and wants to divide it 
among her siblings. Jane has decided to give her oldest brother Tom 1/2 of her 
saved money and her other brother Dick 1/4 of the money. Jane will give her sister 
Mary 1/5 of the money and Sue will get the remaining 9 dollars. How much money 
has Jane saved?
Change the context: Jane is working on her monthly budget. Jane knows that each 
month 1/2 of her income goes to rent for her apartment, 1/6 pays her utilities, 1/5 
pays for food and she has $80 left over for any other expenses. What is Jane’s 
monthly income?

Switching given and wanted: Jim has 24 pieces of candy to share with is friends. If 
Jim is going to keep some for himself and he gives Mary 8 pieces and Jane 4 pieces 
what fraction of the whole amount of candy does each get?

Add information: Jane has saved money from her summer job and is going to divide 
it among her siblings and parents. Jane will give her brother Tom 1/3 of the money 
and her brother Dick 1/4 of the money. Jane’s sisters Mary and sue will each get 
1/5 of the money. If her parents get $8 how much money did Jane save?
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Figure B-l: Bill’s concept map.
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Figure B-2: Carrie’s concept map.
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Figure B-3: Laura’s concept map.
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Figure B-4: Liz’s concept map.
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Appendix C

IRB and Consent Forms
The final appendix includes permission from the Institutional Review Board for the 
use of human subjects, the research consent form, and background question students 
completed. Materials are included in the following order,

•  Consent Form

• Background Questionnaire

•  IRB Approval

265
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INFORMED CONSENT FORM

This dissertation research is designed to incorporate problem posing in a math
ematics content class for pre-service teachers and to understand how this influences 
their problem posing ability, beliefs about mathematics, and beliefs about the teach
ing and learning of mathematics. Problem posing will be included through a  five-step 
problem solving heuristic, journal writing, and in class activities

You may participate in this study in any, all, or none of the following ways:

•  by allowing copies of your written work, (i.e questionnaires, journals, and class- 
work) to be included as data; or

•  by participating in audiotaped interviews with the researcher periodically during 
the semester.

PLEASE READ THE FOLLOMNG STATEMENTS A I ^  RESPOND AS TO 
WHETHER OR NOT YOU ARE WILLING^TO PARTICIPATE.

1. I understand that the use of human subjects in this project has been approved 
by the UNH Institutional Review Board (IRB) for the Protection of Human 
Subjects in Research.

2. I understand the scope, aims, and purposes of this research project and the 
procedures to be followed and the expected duration of my participation.

3. I have received a description of any potential benefits that may be accrued from 
this research and understand how they may affect me or others.

4. I understand that my consent to participate in this research is entirely voluntary, 
and that my refusal to participate will have no effect on my grade in Math 623.

5. I further understand that if I consent to participate, I may discontinue or modify 
my participation at any time with no effect on my grade in Math 623.

6. I confirm that no coercion of any kind was used in seeking my participation in 
this research project.

7. I understand that if I have any questions pertaining to the research or my 
rights as a research subject, I have the right to contact Todd A Grundmeier at 
tag2@cisunix.unh.edu or 862-4142, or Dr. Karen Graham at kjgraham@cisunix.unh.edu 
or 862-3621. I may also contact Julie Simpson at the Office of Sponsored Re
search, 862-2003 to discuss such questions.

8. I understand that I will not be paid for participation in interviews to be con
ducted outside of classtime. I further understand that there will be no financial 
compensation for other participation.

9. The investigator seeks to maintain the confidentiality of all data and records 
associated with your participation in this research. You should understand, 
however, there are rare instances when the investigator is required to share 
personally-identifiable information (e.g., according to policy, contract, regula
tion). For example in response to a complaint about the research, officials at the
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University of New Hampshire, designees of the sponsor, and/or regulatory and 
oversight government agencies may access research data. You should also un
derstand that the investigator is required by law to report certain information 
to government and/or law enforcement officials (e.g., child abuse, threatened 
violence against self or others, communicable diseases).

10. I understand that data from this study may be used in presentations for audi
ences of researchers and teachers.

11. I agree to respect the confidentiality and anonymity of other participants.

12. I certify that I have read and fully understand the purpose of this research 
project and its risks and benefits for me as stated above.

I ,  , CONSENT to participate in this research project
in the following ways. (Initial all that apply.)

 by allowing copies of my written work, (i.e questionnaires, journals, and
classwork) to be included as data; or

 by participating in audiotaped interviews with the researcher periodically
during the semester.

I , _______________________ , DECLINE to participate in this research project.

Signature of Student . Date
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Background Questionnaire Math 623/723 Spring 2002

Name_________________________________________________________________

Campus Address and Phone___________________________!___________________

e-mail address__________________________________________________________

Please write a brief response to each of the following

1. Describe how you feel about most of your mathematical experiences prior to 
this semester. Have they been mainly formal or informal experiences? Have the 
experiences been positive or negative? Explain.

2. What are your expectations for this course?

3. Why do you want to teach at the elementary level?

4. Grade Level Preference: K 1 2 3 4 5 6 Other (Please specify)

Do you have access to an elementary classroom this semester? YES NO 
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Office of Sponsored Research 
Service BuQding 
91 College Rosa
Durham, New Hampshire 03824-3585 
((03) 862-3564 FAX

LAST NAME Qnrndmeler FIRST NAME Todd

DEPT Malhemeika end Statistics department. Kingsbury Hall APP'L DATE 6/25/2D01

2S51
OFF-CAMPUS 
ADDRESS 
(If applicable)

Mathematics and Statistics Department, Kingsbury Mai

REVIEW LEVEL EXE

DATE OF NOTICE 7/2/2001

PROJECT Plot Study: Integrating Problem Posing with Pre-Service Elementary Teachers 
TITLE

The Institutional Review Board (IRB) for the Protection o( Human Subjects in Research has reviewed end approved the protocol 
for your project as Exempt as described In Federal Regulations 45 CFR 46, Subsection 46.101 (b), category 1.

Approval Is granted to conduct your project a s described in your protocol. Prior to implementing any changee In your 
protocol, you m ust subm it them to  the IRB for review and gain written, unconditional approval. If you 
experience any unusual or unanticipated resu lts  with regard to  th e  participation of human subjects, 
plaaee report such events to  th is office promptly aa they occur. Upon completion of your pro|eot, please 
complete the enclosed pink Exempt Project Final Report form and return It to this office along wfch a  report of your tlndfogs.

The protection of human subjects In your study is an ongoing process lor which you hold primary respons&ilty. In receiving 
IRB approval for your protocol, you agree to conduct the project In accordance with the ethical principles and guidelines for the 

.proteolion of human subjects in research, a s  describedfo foe following three reports: Balmont Report; Title 46, Code o f Federal 
Regulations, Part 40: and UNtfa Multiple Project Assurance of Compliance. The lull text of these documents Is available on the 
Office ol Sponsored Research (OSR) website at htto^/www.unh.edu/oar/compllance/Ragulatarv Compllanoe.html and by 
request from OSR.

If you have questions or concerns about your project or this approval, pleese leal free to contact our offica at 662-2003.
Please refer to the IRQ 9 above in a l correspondence related to this project. The IRB wishes you success with your research.

I Jule F. Simpson j 
1 Regulatory Compliance Managerlegulatory Compliance Manager

cc: File

Dr. Karen Qraham, MathemaHca and Statistics
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