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ABSTRACT

NUCLEAR AND CYTOPLASMIC GENETIC VARIATION IN PICEA: DNA 

MARKERS FOR EVALUATING PAST MIGRATION, INTROGRESSION AND

EVOLUTIONARY HISTORY 

by

Joselle Germano-Presby 

University of New Hampshire, May, 2003

Mitochondrial and chloroplast haplotypes were identified in range-wide 

populations of white {Picea glauca), black {P. mariana) and red spruce {P. rubens). The 

chloroplast genome exhibited more intraspecific variation than the mitochondrial 

genome. Red spruce displayed the most total chloroplast genetic diversity {Hj= 0.52). 

Neighbor-joining analysis arranged the chloroplast haplotypes into three monophyletic 

groups that were nearly 100% species-specific. These results strongly refute a previously 

proposed progenitor/derivative relationship of black/red spruce. Red and black spruce 

were estimated to have diverged from their common ancestor -0.6-3.5 million years ago. 

Mitochondrial diversity detected in black spruce was attributed to interspecific 

hybridization, estimated to have taken place during die Holocene epoch (>4000 years 

ago). White spruce mitochondrial haplotypes detected in multiple black spruce 

populations indicated that unidirectional introgressive hybridization has occurred 

between these two species. An east-west divide and opposing clines of chloroplast 

haplotypes in black spruce are consistent with leptokurtic dispersal out of either 1) a

x
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southeast glacial refugium of North America or 2) a small hypothetical northwestern 

refugium.

Some individual markers within cytoplasmic and nuclear genomes are species- 

specific. Some of these single nucleotide polymorphisms are appropriate to identify 

spruce macrofossils recovered from eastern North American lake cores. Since white, 

black and red spruce have differing climate tolerances, this would enable 

paleoclimatologists to track the migration routes of the individual spruce species during 

the last ice age and infer more precise climate estimates for eastern North America. 

Agarose gel electrophoresis, Southern blot and hybridization suggested that authentically 

ancient DNA survived in spruce macrofossils from 10-20,000 year old sediments of 

Browns Pond, Virginia.

A robust species phylogeny of the Picea is desirable to answer multiple questions 

about the history of the genus’ biogeography. A phylogenetic study of sixteen North 

American and Eurasian Picea species was conducted utilizing DNA sequences of the 

chloroplast tmK  intron and the mitochondrial nadl intron 2. The topologies of inferred 

trees varied significantly, in particular to the placement of P. omorika, P. mexicana and 

P. glauca. Inter-species hybridization and introgression are discussed as possible reasons 

behind such incongruencies.

xi
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INTRODUCTION

The organisms studied in this dissertation are species of the genus Picea (spruce). 

Most of the work deals with the three species native to eastern North America; Picea 

glauca (Moench) Voss (white spruce), P. mariana (Mill.) B.S.P. (black spruce) and P. 

rubens Sarg. (red spruce). In Chapter I, species-specific DNA markers in die nuclear and 

chloroplast genomes are identified that distinguish these three species. Population studies 

were conducted to assess die distribution o f these markers in the eastern portion of the 

black spruce range, and the entire ranges of white and red spruce. This chapter is a 

publication in Theoretical and Applied Genetics, die International Journal of Plant 

Breeding Research, volume 99,1999. The second chapter is a continuation of this work.

Iq Chapter II, the sampling of black spruce is extended to include the species7 

entire range, additional intra- and interspecific chloroplast variants are scored, and 

polymorphisms in the mitochondrial genome are identified. The focus of Chapter II is 

not on developing more species-specific markers to distinguish the species; however, 

many of the new markers can be used as such. Instead, the focus is drawn to the amount 

and distribution o f intraspecific variation, which provides insights into the history of 

introgression and migration o f these species since the last ice age.

Chapters I and II are a foundation for Chapter IV, which describes the application 

of species-specific single nucleotide polymorphisms to the identification of spruce 

macrofossils recovered from eastern North American lake cores dating 20,000-10,000 

years ago. This approach would enable paleontologists to directly track the migration 

routes of the individual spruce species. Since white, black and red spruce have varying

1
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climatic and environmental preferences, the information could be used to infer more 

precise climate estimates for eastern North America since the ice age.

Finally, Chapter ID deals with the more distant evolutionary history of Picea. It is 

a phylogenetic study o f spruce species representing North America and Eurasia. The 

evolutionary history o f the genus would aid in answering questions about the 

biogeography of the spruce species. In this study, sequence from the chloroplast and 

mitochondrial genomes are compared, and incongruencies between the phylogenetic trees 

inferred from the two data sets are discussed. Recommendations are made that would 

facilitate generating a robust molecular phylogeny of the Picea.

2
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J . Germano • A. S. Klein

Species-specific nuciear and chioropiast single nucleotide polymorphisms 
to distinguish Picea glauca, P. mariana and P. rubens

Received: 16 December 1998 / Accepted: 5 January 1999

Abstract Picea rubens (red spruce) and P. mariana 
(black spruce) are closely related species which are 
difficult to differentiate morphologically. They are sym- 
patric with P. glauca (white spruce) in the northern 
portion of their ranges. In order to identify potential 
interspecific polymorphisms, the chloroplast tm K  in­
tron and rpl33-psaJ-tmP region were sequenced, and 
the nuclear-encoded ITS region of the rDNA repeat 
was partially sequenced. Thirteen chloroplast and 12 
nuclear candidate interspecific single nucleotide poly­
morphisms (SNPs) were identified. The species-specifi- 
city of several SNPs was determined by surveying 
DNAs amplified from trees representing range-wide 
provenance tests; these included 46 red spruce from 11 
provenances, 84 black spruce from 30 provenances and 
90 white spruce from 22 provenances. Two SNPs (1 
chloroplast and 1 nuclear), which distinguish black 
spruce from red and white spruce, were consistent 
among 96-100% of the trees surveyed. Five SNPs (4 
chloroplast and 1 nuclear), which distinguish white 
spruce from red and black spruce, were consistent 
among 100% of surveyed trees. These spedes-specific 
SNPs were used to identify anonymous spruce samples 
in a blind test, and their utility for small amounts of 
tissue, as little as single needles, was demonstrated. 
Scoring these SNPs is much less labor intensive than 
previous molecular methods for taxa differentiation 
(restriction fragment length polymorphisms or random

This is scientific contribution 2002 of the New Hampshire Agricul­
tural Experiment Station, Durham, NJS.

Communicated by G. Wenzel
J. Germano - A. S. Klein ( 0 )
Department of Biochemistry and Molecular Biology, 
University of New Hampshire, 46 College Rd, Durham, 
NH 03824-2617, USA 
Fax: +16038624013 
E-mail: anitfl V1em@tinh .arin

amplifed polymorphic DNAs), therefore they can be 
applied to large population studies.

Key words Picea glauca • Picea mariana •
Picea rubens • Single nucleotide 
polymorphisms (SNPs) - Spruce

Introduction

Red spruce (Picea rubens Sarg.), black spruce [P. 
mariana (MilL) B.S.P.] and white spruce [P. glauca 
(Moench) Voss] are sympatric species of northeastern 
North America. Red spruce’s current range is from the 
Appalachians in North Carolina to the Maritimes in­
cluding New England, New York, southern Quebec 
and restricted areas of Ontario (Morgenstem and 
Farrar 1964; Little 1971). The ranges ofblack and white 
spruce extend west to Alaska and north to the tree-line, 
overlapping with red spruce primarily in northern New 
England and eastern Canada (Morgenstem and Farrar 
1964; Little 1971; Fowler et aL 1988). Although their 
ranges overelap, each of these species has a distinctive 
ecological niche (Morgenstem and Farrar 1964; 
Gordon 1976).

Morphological classification of the closely related 
red spruce and black spruce is difficult and controver­
sial (Morgenstem and Farrar 1964; Manley 1971; 
Gordon 1976; Fowler et al. 1988); many morpho­
logical characters are too variable within one species to 
reliably distinguish it from the other (Gordon 1976; 
Fowler et aL 1988). Some traits are phenotopically 
plastic, and other characteristics are only discemable 
during limited time periods (Morgenstem and Farrar 
1964; Gordon 1976; Donoghue and Sanderson 1992). 
Gordon (1976) conducted factor analysis of 24 mor­
phological characters to distinguish red and black 
spruce. White spruce is more distantly related to red 
and black spruce (Gordon 1976; Sigurgeirsson and

3
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38

Szmidt 1993) and can be easily identified with mor­
phological characters.

Attempts have been made to distinguish red and 
black spruce with molecular markers including iso­
zymes (Eckert 1989), random amplified polymorphic 
DNAs (RAPDs) (Perron et al. 1995) and restriction 
fragment length polymorphisms (RFLPs) (Bobola et al. 
1992a, b, 1996). Bobola et aL used Southern blot analy­
sis to identify polymorphisms between red and black 
spruce including five RFLPs of the nuclear ribosomal 
DNA (rDNA) repeat (1992a, b), two RFLPs in the 
chloroplast genome and three RFLPs in the mitochon­
drial genome (1996). None of these markers were 100% 
species-specific, however a three-character index, using 
the organelle markers together with one of the nuclear 
markers, reliably distinguished red and black spruce 
and their hybrids (Bobola et aL 1996). Although 
these markers are reliable, conventional RFLPs are 
tedious and costly both in their characterization and 
application.

Perron et al. (1995) identified seven RAPDs distin­
guishing red and black spruce in individual trees 
from six black spruce provenances and three red spruce 
provenances outside die sympatric zone. Four of these 
markers were 100% species-specific (Le. present in 
all surveyed trees of one species and absent in all 
surveyed trees of the other species). A disadvantage of 
RAPDs is that this type of polymerase chain reaction 
(PCR™) is very sensitive to varying reaction condi­
tions, temperature profiles and DNA quality (Ellsworth 
et a i  1993; Muralidharan and Wakeland 1993; Micheli 
et al. 1994; Vos et aL 1995). Hence, fingerprints may 
be difficult to reproduce, particularly in different 
laboratories.

Single nucleotide polymorphisms (SNPs) provide an 
alternative form of molecular markers for the discrim­
ination of spruce species. Unlike conventional RFLPs 
and RAPDs, SNPs are direct markers; the exact nature 
and location of the allelic variations are known. An­
other advantage of SNPs is that large numbers of 
samples can be screened for a marker using a variety of 
inexpensive, high-throughput techniques (reviewed by 
Landegren et aL 1998). These methods may include 
restriction digestion (Landegren et a l  1998), allele-spe­
cific PCR (ASPCR) (Okayama et al. 1989; Sommer 
et a l 1989; Wu et a l 1989), or single-strand conforma­
tion polymorphism (SSCP) (Sheffield et a l 1993). Since 
each of these screening methods is PCR-based, only 
a small amount of template DNA is required, allowing 
samples to be identified from DNA extracted from just 
a few needles.

SNPs are likely to occur at higher frequencies in 
variable, less conserved genes. Few gymnosperm genes 
have been sequenced, therefore the potential variability 
of candidate genes in spruce must be gauged according 
to (1) their variability within angiosperm genera and/or
(2) the predicted degree of variability based on func­
tional constraints of the gene.

The approximately 10530-bp matK gene, encoding 
an RNA maturase, is located within the approximately 
2500-bp chloroplast tm K  (UUU) intron (Sugjta et a l  
1985). MatK exhibits a relatively low percentage 
of amino add similarity (59% between tobacco 
and rice) compared to other chloroplast genes 
(Olmsted and Palmer 1994). It has been used to 
resolve phylogenetic relationships within families 
(Johnson and Soltis 1994, 1995; Steele and Vilgalys 
1994; U  et a l  1999), and it displays some variation at 
the intrageneric level (Johnson and Soltis 1995; Li et a l 
1997).

In gymnosperms, matK has an average of 3.4 times 
more nucleotide differences per site than rbcL (Johnson 
and Soltis 1995). Pirns is the sister genus to Picea 
(Chase et a l  1993; Chaw et a l 1997). Hilu and Liang 
(1997) reported 1.1% matK nucleotide variation be­
tween Pinus contorta (lodgepole pine) and P. tkunbergii 
(black pine).

Noncoding regions such as introns or intergenic 
spacers (IGS) of the chloroplast are expected to be 
more variable than coding regions (Taberlet et a l  1991; 
Gielly and Taberlet 1994; Demesure et a l  1995; Perez 
de la Rosa et al. 1995). Chloroplast gene order is rela­
tively conserved throghout land plants (Olmstead and 
Palmer 1994). Gene organization of Picea is similar to 
that of Pinus and Pseudotsuga (White et a l 1993). In 
addition, the entire chloroplast genome of black pine 
has been sequenced (Wakasugi et a l  1994). The conser­
vation of chloroplast gene order, and the knowledge of 
a complete conifer chloroplast sequence present an 
opportunity to design new PCR primers for the ampli­
fication of potentially variable noncoding regions in 
spruce.

In red and black spruce, the chloroplast is paternally 
inherited, and the mitochondria are maternally inher­
ited (Bobola et a l  1996). Nuclear interspecific markers 
would complement chloroplast markers since nuclear 
genes represent both the maternal and paternal lineage 
(Soltis et a l 1992). The nuclear ribosomal DNA repeat 
in plants contains the 18S, 5.8S and 26S genes separ­
ated by internal transcribed spacers 1 and 2 (ITS1 and 
ITS2) (reviewed by Hillis and Dixon 1991; Hamby and 
Zimmer 1992).

The ITS region (encompassing ITS1,5.8S and ITS2) 
evolves at a much faster rate than the 18S and 26S 
genes (Hamby and Zimmer 1992; Baldwin et a l  1995). 
Baldwin et a l  (1995) concluded that the ITS region is 
phylogenetically useful in angiosperms at intrafamilial 
levels, resolving relationships between genera, between 
species and even, to some extent, within species. Liston 
et a l  (1999) used the 3' ITS sequence (5.8S, ITS2 and 
approx. 200 bp of ITS1) to infer phylogenetic relation­
ships of 47 species of Pinus. ITS1 was more divergent 
than 5.8S and ITS2, therefore it was hypothesized that 
additional ITS sequences would be useful in resolving 
relationships between more closely related Pinus 
species (Liston et a l 1999).

4
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ITS1 is unusually large in some gymnosperms, mak­
ing the ITS region up to 4.S times as long as in angio- 
sperms. For example, the ITS regions, including 5.8S 
and ITS2, in red and black spruce (Bobola et aL 1996) 
and Picea abies (Liston et aL 1996) are approximately 
3.1 kb. The potential variability and large size of the 
ITS region make it a candidate gene in which to find 
polymorphisms between spruce species.

We have identified SNPs in nuclear and organelle 
genes which distinguish between white, red and black 
spruce. The species-specificity of each SNP was verified 
by screening samples representing range-wide prov­
enance tests. The species-specific SNPs were used 
to identify anonymous spruce samples in a blind test, 
and their utility for small amounts of tissue was 
demonstrated.

Materials and methods

Plant materials

Some of the tissue samples used in this study were from independent 
collections. Black spruce sample 63 was provided by Dr. Peter 
Garrett of the Northeastern Forest Experiment Station of the US 
Forest Service: White spruce sample 494 was provided by Dr. 
Gerald Rehfeldt of the Intermountain Research Station, US Forest 
Service. White spruce sample 64 was collected from a tree on 
the University of New Hampshire campus. DNA was extracted 
from foliage using a standard CTAB method (Doyle and Doyle 
1987).

Anonymous white, blade and red spruce samples were provided 
by Dr. Robert Eckert, Department of Natural Resources, University 
of New Hampshire. A scaled down version of the CTAB method 
(Doyle and Doyle 1987), employing a 1.5-ml micro-centrifuge tube 
and mini-pestle to grind and material, was used to extract DNA 
from one to seven needles (9-16 mg).

DNAs from samples representing provenance tests were utilized 
for population studies. Red spruce DNAs represent a range-wide 
provenance test located in Coleman State Forest, Stewartstown, 
New Hampshire (see Bobola et aL 1996). Blade spruce DNAs repres­
ent a provenance test corresponding to the eastern half of the black 
spruce range. This site is mgm.awd by the USDA Forest Service 
(Northeastern Forest Experiment Station) in the Massabesic Experi­
mental Forest, Alfred, Maine (see Bobola et aL 1996). White spruce 
DNAs representing a range-wide provenance test at Grand Rapids, 
Minnesota was provided by Dr. Glenn Fumier, Departments of 
Forest Resources and Plant Biology, University of Minnesota (see 
Fumier et aL 1991; Fumier and Stine 1995).

PCR methods

Taq DNA Polymerase (Promega, Madison, Wis.) was used in 
all reactions; Taq Extender™ PCR Additive (Stratagene, La Jolla, 
Calif) was added to reactions to amplify fragments longer than 
2 kb. Reactions contained l x  Magnesium Free Reaction Buffer 
B (Promega) or 1 x Taq Extender Reaction Buffer (Stratagene), 
0.2 mM  each dN I'P (Promega), 0.4 pM each primer (Fig. 1, Table 1) 
and 5-10 ng/pl whole genomic DNA. All amplifications were carried 
out in an MJ Research PTC-100 Programmable Thermal Control­
ler. The denaturation temperature was 94°C, and the extension 
temperature was 72°C Each profile had an initial denaturation step 
of 3 min and a final extension step of 10 min. The tmK. intron, the
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rpBZ-psaJ-trnP region and the TPS region (Fig. 1) were amplified as 
indicated in Table 2. Amplification of the ITS region was preceded 
by a hot start (D’Aquila et aL 1991). Primers rpl33 and tmP (Fig. lb, 
Table 1) were designed from a black pine chloroplast sequence 
(GenBank D17510; Wakasugj et al. 1994). Additional amplification 
and sequencing primers (Fig. 1, Table 1) were designed using the 
PrimerSdect algorithm, part of the Lasergene software package 
(DNASTAR, version 3.72, Madison, Wis.).

PCR products were purified via electrophoresis through low- 
melting-point agarose (Gibco BRL, Gaithersburg, Md.). Bands were 
excised and liquified by adding 5 U Agarase (Sigma81, S t Louis, Mo.) 
per 100 pi gel and incubating at 37°C for 1 h.

Cloning

Gel-purified ITS PCR product (approx. 3.1-kb fragment) was 
digested with SauSAI (New England Biolabs (NEB), Beverly, 
Mass. or Stratagene) according to the manufacturers’ specifications. 
The resulting fragments, ranging from 200 bp to 900 bp, were 
gel-purified as described above, precipitated and resuspended 
in water. pGEM®-3Z vector (Promega) was digested with 
BarriHI (Promega), dephosphorylated with Calf Intestinal Alkaline 
Phosphatase (Promega) and ligated with ITS fragments using 
T4DNA ligase (Promega). The recombinant plasmids were used 
to transform Epicurian Coli® XLl-Blue MRF’ supercompetent 
cells (Stratagene) according to the manufacturer’s directions. 
Transformants were grown up on LB medium containing SO pg/ml 
ampirillin. Plasmids were isolated using Wizard® Minipreps kit 
(Promega).

DNA sequencing

The ABI PRISM™ Dye Terminator Cyde Sequencing Ready Reac­
tion Kit with AmpliTaq® DNA Polymerase, FS (Perkin Elmer, 
Emeryville, Calif.) was used Plasmids were sequenced in separate 
reactions (20 pi) containing 32 pmol pUC/M13 forward or reverse 
primers (Promega), 250-500 ng DNA and 8 pi Ready Reaction Mix. 
PCR-ampHfied fragments were sequenced using 10 pmol primer 
(Fig. 1, Table 1) and 30-90 ng template. Cyde Sequencing was 
carried out, and extension products were purified using Ethanol 
Precipitation Protocol 1 as described by the manufacturer. Exten­
sion products were separated and analyzed on an ABI PRISM 373 
Automated Sequencer (UNH Sequencing Facility). Sequences were 
generated with ABI DNA Sequencing Software version 21.1, Base 
caller ABI50, and edited by eye using ABI SeqEd Software version 
1.03.

Both strands of DNA were sequenced for matK. and the rpB3- 
psdS-tniP region. One strand of DNA was sequenced for the ITS 
region and for the ITSI dotted fragment

Sequence analysis

Contiguous sequences were assembled and aligned using SeqMan II 
and MegAhgn (DNASTAR) algorithms. Percentage divergence be­
tween sequences was calculated with MegAlign (DNASTAR). Re­
striction maps of the sequences were generated using MapDraw 
(DNASTAR).

Population studies

In order to assess the distribution of SNPs across populations, we 
used several molecular screening methods. Restriction degests using 
DraL, SspT, BstUl, Bspl286L (NEB) and Mspl (or isosdnzomer HpcUL,
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Fig. la—c Gene regions showing the relative positions of coding 
regions (boxed areas) and PCR amplification and sequencing 
primers. Arrows point in the 5' -* 3' direction of primers. The relative 
positions of interspecific SNPs are shown Isners below SNPs 
indicate the species that each SNP distinguishes: W  distinguishes 
white spruce from red and black spruce, B distinguishes black spruce 
from white and red spruce, R  dikinguishes red spruce from white 
and black spruce, a tmK  intron, b rpBZ-psdJ-trriP region, c ITS 
region. Brackets indicate the doned 778-bp fragment of ITS1

Promega) were carried out according to the manufacturers* speci­
fications. Resulting fragments were separated on 1.4-3% agarose; 
fragments smaller than 200 bp were separated on 3-4% MetaPbor® 
agarose (FMC BioProdncts, Rockland, Me.). Single-strand confor­
mation polymorphism (SSCP) analysis was carried out according to 
the protocol for MDE™ Gel (FMC). Two microliters (3-6 ng) of 
PCR product (119-bp fragment) was mixed with 10 pi stop solution, 
and the entire denatured sample was loaded onto a 1 x geL The gel 
was stained in 1 pg/ml ethidium bromide for 15 min and visualized 
under UV light Allele-specific PCR (ASPCR) was carried out using 
primers which differentially amplify specific alleles (Tables 1 and 2). 
All reactions contained an additional primer set as a positive control 
(see Wu et aL 1989). PCR products were separated by electrophor­
esis through 1.4% agarose.

Results

Chloroplast gene sequences

In order to identify potential interspecific polymorphisms, 
we sequenced the chloroplast dtzK intron and the rpB3- 
psoJ-rrnP region from 4 individual trees representing geo­
graphically distant populations of each species (Table 3) 
as suggested by Baverstock and Moritz (1996). There was 
no intraspedfic variation among these individuals in the 
tmK. intron. Intraspedfic variation was limited in the 
rpJ33-psaS-trnP region, consisting of three rpB3-psaJ IGS 
nucleotide substitutions among 2 of the 4 bade spruce 
individuals, and one psaJ-miP IGS nucleotide substitu­
tion in 1 of the 4 white spruce individuals

Screening interspecific tm K  SNPs 
for spedes-specifidty

Ten candidate interspecific single nudeotide polymor­
phisms (SNPs) were identified in the tm K  intron: 4 in

6
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Table 1 PCR amplification 
and sequencing primers 
(Seq sequencing)

Primer name PCR/Seq* 5' Sequence 3'

trnK-3914Fb PCR and seq TGG GTT GCT AAC TCA ATG G
trnK-2Rb PCR and seq AAC TAG TCG GAT GGA GTA G
matKFl PCR and seq TCG AAT GAG TCA ATG GAG AAA G
matKF2 Seq CGC ACC ATG TAT TGT ATT ATC TCA
matKF3 Seq TGA ATC GGT ACT AGA AGG ACT GAC
matKF4 Seq AGA TTC TTC CTG TTC CTG TGG
matKF5 Seq CCA TCT TTG GAA CGA ACC
matKF6 Seq CCT TTG GTC GAG ATG GTT TAT
matKRI PCR and seq CTC GGA TGG CAA AAT AAA AAT G
matKR2 Seq GGA TCC ACT GTA GTA ATG AAA AAT
matKR3 Seq CTA TAA GGT TCG TTC CAA AGA TG
matKR4 Seq CCA CAG GAA CAG GAA GAA TC
matKRS Seq TCA GTC CTT CTA GTA CCG ATT CAG
matKR6 Seq CTC AGT TAT CGC CCT CGT TC
matKR7 Seq GGG AAT TCC TCG CTC GTT
R/BvsW SSCP-1 PCR ACA GCA TGT CGT TCC AAC A
R/BvsW SSCP-1A PCR ATA GAC ATT TCC CAC CCA T IT
red AS-1 PCR GGA TCC ACT GTA GTA ATG AAA AAG
blade AS-1 PCR GGA TCC ACT GTA GTA ATG AAA AAT
red AS-1A PCR TTG GTC AAG ACT AAA ATG CTA GA
rpl33 PCR and seq TGT TAC TCT TAT ATC TCC GCT CTT
tmP PCR and seq CAA AAC AAA CAC GCT ACC AA
rpl33-l Seq TGA CTT TAA GGG GAG GAC AAC
tmP-1 Seq CTG TGT TAG CTA TTT CAT CGT TCA
ITS5e PCR and seq GGA AGT AAA AGT CGT AAC AAG G
ITS4C PCR and seq TCC TCC GCT TAT TGA TAT GC
gymTTSlFal Seq TGT TGT CCT TGG CCT CCT
TTS4-2 Seq GAC AAT ATC ACC GCT CGC C
5SSgym Seq GAT GAT TCA CGG GAT TCT G
gymlTSlRa3 Seq CCA CAA GAC ATA TGC ACT C
ITS1 RvsB SSCP-2 PCR and seq TGC GGT AGG ATC ATT GTC AGT
ITS1 RvsB SSCP-2A PCR and seq CGA TCA ACC CTC CAA AAG TG
ITS1 R/B/W SNP-1 PCR and seq CTT CGT TTG AGT CTT TGT TTT TCG
ITS1 R/B/W SNP-1A PCR and seq GGG CCA CCG GAG CAT TG

‘Indicates whether a primer was used for PCR, sequencing, or both 
‘Johnson and Soltis (1994)
‘White et a l (1990)

the 5' noncoding region and 6 in matK (Fig. la, Table 
4). Among these candidate SNPs were eight transver­
sions and two transitions; 4 of the 6 SNPs in matK are 
non-synonymous. One of the SNPs (tmK SNP 10) 
distinguishes black spruce, while the remaining 9 
distinguish white spruce. TmK SNP 10 is located at 
the first position of codon 410 in matK, encoding 
isoleucine in black spruce and leucine in red and white 
spruce.

Five of the tm K  SNPs were tested for species-specifi­
city by screening for the presence or absence of the 
particular nucleotides (Table 4) in DNAs amplified 
from trees representing range-wide provenance tests. 
A total of 46 red spruce (3-5 from each of 11 provenan­
ces), 84 black spruce (1-4 from 30 provenances plus 
1 separate sample) and 90 white spruce (4 from 22 
provenances plus 2 separate samples) samples were 
screened. Several diagnostic methods were used, in­
cluding single-strand conformation polymorphism 
(SSCP), restriction analysis and allele-specific PCR 
(ASPCR).

SSCP was used to screen tmK SNPs 1, 2 and 3 
(Fig. la) simultaneously. At these positions, the se­
quence of the 4 white spruce individuals had nucleo­
tides G, A and T, whereas the red and black spruce had 
T, T and G (Table 4). TmK SNP 2 and 3 are adjacent, 
and SNP 1 is located 19 bp upstream. The primers 
R/BvsW SSCP-1 and R/BvsW SSCP-1A (Fig. la, 
Tables 1 and 2) were designed to amplify a  119-bp 
fragment in which tmK SNPs 1,2 and 3 are centrally 
located.

Upon denaturation of the amplified fragments 
and separation on 1 x MDE (FMC), the white spruce 
single-stranded DNAs travelled at different rates than 
those of red and black spruce. This difference in elec­
trophoretic mobility resulted in a distinct banding pat­
tern for white spruce and a different pattern for red and 
black spruce (Fig. 2a). All of the provenance test DNAs 
were surveyed for these banding patterns: 100% (90/90) 
white spruce displayed the “close” pattern, and 100% 
(46/46) red and 100% (84/84) black spruce displayed 
the “wide” pattern (Fig. 2a, Table 4).
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The restriction enzyme Dral was used to screen tmK 
SNP 4 (Fig. la), which distinguishes white spruce from 
red and black spruce. At this position, the white spruce 
sequences have a G, whereas red and black spruce have 
a T (Table 4), part of a Dral restriction site (ATI AAA). 
The 2072-bp fragment, amplified with primers matKFl 
and matKRI (Fig. la, Tables 1 and 2), also contains an 
invariant Dral site. Ib is restriction site acts as a posit­
ive control by generating an invariant 229-bp fragment 
Therefore, Dral was predicted to produce two frag­
ments (229 bp and 1843 bp) for white spruce and three 
fragments (229 bp, 466 bp and 1377 bp) for red and 
black spruce. One hundred percent (90/90) of white 
spruce, 96% (81/84) of black spruce and 85% (39/46) of 
red spruce provenance test sample DNAs displayed the 
predicted fragment size patterns following Dral diges­
tion (Table 4).

The restriction enzyme Sspl was used to screen tmK 
SNP 10 (Fig la), which distinguishes black spruce from 
white and red spruce. At this position, the red and 
white spruce sequences have a C, and black spruce has 
an A (Table 4), part of a Sspl restriction site (AATATT). 
The 2072-bp fragment, amplified with primers matKFl 
and matKRI (Fig la), also contains three invariant 
Sspl sites which generate three fragments (52 bp, 
358 bp and 812 bp). Therefore, Sspl was predicted to 
produce five fragments (52 bp, 358 bp, 376 bp, 474 bp 
and 812 bp) for black spruce and only four fragments 
(52 bp, 358 bp, 812 bp and 850 bp) for red and white 
spruce. Sspl restriction analysis was used to screen 
a subset of the white spruce provenance test samples; 
100% (43/43) of them displayed the predicted fragment 
size pattern (Table 4).

ASPCR was used to screen tmK SNP 10 (Fig la) 
in the red and black spruce provenance test DNAs 
and those white spruce DNAs not screened with SspL 
Allele-specific primers were designed whose 3' nucleo­
tide anneals at the position of tmK SNP 10. Primer 
black AS-1 (Fig la) contains a 3' T (Table 1), com­
plementary to the A (Table 4) at this site in black 
spruce. Primer red AS-1 (Fig la) contains a  3' 
G (Table 1) that is complementary to the C (Table 4) at 
this site is red and white spruce. The generic upstream 
primer red AS-1A (Fig la, Table 1) pairs with either 
allele-specific primer to amplify a 231-bp fragment 
(Table 2). An additional pair of primers, R/BvsW 
SSCP-1 and R/BvsW SSCP-1A (Fig la, Tables 1 and 
2), was added to every PCR to amplify a 119-bp frag­
ment as a positive control on the success of the reaction 
(see Wu et a l  1989). Two PCRs were done for each 
individual sample; one containing primer red AS-1, the 
other containing primer black AS-1, and both contain­
ing the generic primer and the control primer pair 
(Table 2). Scoring amplification of the 231-bp allele- 
specific fragment was carried out only if the 119-bp 
positive control fragment successfully amplified in both 
reactions (Fig 2b). In 100% (48/48) of white and 98% 
(45/46) of red spruce samples, the 231-bp fragment
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Table 3 Samples used for sequencing

Species Sample Geographic location GenBank accession

£77iK intron rpl33-tmP ITS1* rrsi” rrsi° ITS*

White 64 Durham, NH AF133923 AF133935 AF117916 AF140755 AF119377-AF119379 AF136610
spruce 494 Blade Hills, SD AF133924 AF133936 AF117917 AF140756 AF136611

S-A Saskatchewan AF133925 AF133937 AF117918 AF140757 AF136612
V-AorV-B Alaska AF133926 AF133938 AF117919 AF140758 AF136613

Black 63 Durham, NH AF133919 AF133931 AF117912 AF140751 AF119374-AF119376 AF136614
spruce 4274-1 New Hampshire AF133920 AF133932 AF117913 AF140752 AF136615

4962-1 Newfoundland AF133921 AF133933 AF117914 AF140753 AF136616
5004-1 New Brunswick AF133922 AF133934 AF117915 AF140754 AF136617

Red 2019 21-1 Indian Gap, NC AF133915 AF133927 AF117908 AF140747 AF119371-AF119373 AF136618
spruce 2027 29-4 Pillsbnry, NH AF133916 AF133928 AF117909 AF14074S AF136619

2032 8-1 Valcartier, Quebec AF133917 AF133929 AF117910 AF140749 AF136620
2505 38-5 Acadia Forest 

Experiment Station, NB
AF133918 AF133930 AF117911 AF1407S0 AF136621

* Sequence of PCR product amplified with primers ITS1 RvsB SSCP-2 and ITS1 RvsB SSCP-2A 
"Sequence of PCR product amplified with primers ITS1 R/B/W SNP-1 and ITS1 R/B/W SNP-1A 
‘Sequence of cloned fragment of PCR product amplified with primers ITS5 and ITS4
* Includes partial sequence of ITS1 (3' end) and complete 5.8S and ITS2 sequences

amplified with the red AS-1 primer but not with the 
black AS-1 primer. In 98% (82/84) of the black spruce 
samples, the 231-bp fragment amplified with the black 
AS-1 primer but not with the red AS-1 primer (Fig. 2b, 
Table 4).

Screening interspecific rpl33-psaJ-trtiP SNPs 
for species-specificity

Three candidate interspecific SNPs were identified in 
the rpl33-psaJ-trriP region: 2 in the rpl33-psaJ IGS and 
1 in the psaJ-trriP IGS (Fig. lb). All 3 SNPs in this 
region are transitions, and all distinguish white spruce 
from red and black spruce.

The restriction enzyme M spl was used to screen 
rpl33-tmP SNP 3 (Fig. lb). At this position, the white 
spruce sequences have an A, whereas red and black 
spruce have a G (Table 4), part of a AfspI restriction site 
(CCGG). The 809-bp fragment, amplified with primers 
rpl33 and tm P (Fig. lb, Tables 1 and 2), also contains 
an invariant M spl site, which generates a 407-bp frag­
m ent Therefore, M spl was predicted to generate two 
nearly equal-sized fragments (407 bp and 402 bp, seen 
as one bright band on an agarose gel) for white spruce 
and three fragments (407 bp, 227 bp and 175 bp) for red 
and black spruce (Fig. 2c). One hundred percent (90/90) 
of white spruce, 100% (84/84) of black spruce and 
100% (46/46) of red spruce provenance test sample 
DNAs displayed the predicted fragment size patterns 
following Mspl digestion (Table 4).

ITS sequences

An approximately 3.1-kb fragment encompassing the 
ITS region (ITS1, 5.8S and ITS2) was amplified and 
partially sequenced (Fig. lc, Tables 1 and 2). Sequences 
of 4 individual trees of each species (Table 3) were 
obtained, including complete sequences for 5.8S and 
ITS2 plus 300-550 bp from the S' end of ITS1 and 
300-650 bp from the 3' end of ITS1 (Fig. lc). The 5.8S 
gene is 162 bp and ITS2 is 236 bp in each of die species. 
The endpoints of spruce 5.8S and ITS2 were deter­
mined by comparison to the ITS region sequence of 
Pinus pinea (stone pine) (GenBank X87936; Marrocco 
et aL 1996).

The rDNA repeat is present in multiple copies in the 
nuclear genome; it is assumed that the PCR-amplified 
DNAs represent ratios similar to the genomic copies. 
The sequences were obtained using PCR product as 
template, and therefore they represent the main frac­
tion of the template DNAs. The sequence chromato­
grams, especially for ITS1, contained a  significant 
amount of background; in many locations, there were 
two distinct peaks of two different nucleotides, one on 
top of the other. This result can be explained by hetero­
geneity of the template DNAs. This background caused 
the sequence signals to deteriorate rapidly, sometimes 
limiting chromatogram analysis to only 150-200 bases 
per reaction.

Primers gymTTSlFal and gyxnITSlRa3, which an­
neal to opposite ends of ITS1 (Fig. lc), yielded limited 
sequence from PCR product as template. One explana­
tion for this sequencing difficulty is the heterogeneity of
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Fig. 2a—e Representative results from screening provenance test 
samples. Alphabetic labels represent white spruce samples, Numeric 
labels beginning with 2 represent red spruce samples and numeric 
labels beginning with 3 or 4 represent black spruce samples. The 
marker (M) is <pX 174DNA/iiiein with the sizes of some fragments 
labeled in base pairs, a SSCP analysis of tmK SNPs 1, 2 and 3. 
b ASPCR analysis of tmK SNP 10. In the left lane lot each sample 
are PCR products from primer red AS-1 plus the positive control 
primer pair. In the right lane for each sample are PCR products from 
primer black AS-1 plus the positive control primer pair. The 119-bp 
band (present in every lane) is the positive control PCR product The 
231-bp band is the product of the allele-specific primers, c Mspl 
analysis of rpl33-tmP SNP 3. d BsrUI analysis of ITS SNP 1. e Bsp 
12861 analysis of ITS SNP 7
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the rDNA copies. Another possible explanation is die 
presence of subrepeats within ITS such as those re­
ported in stone pine by Marrocco et aL (1996) and 
Pseudotsuga and Larix by Gemandt and Liston (1999). 
Preliminary results from sequencing multiple doned 
ITS S<zu3AI fragments of different lengths suggest that 
subrepeats also exist in red, black and white spruce 
ITS1 (data not shown). During cycle-sequencing using 
PCR product as template, if a primer anneals to sub­
repeats, then it would anneal to multiple locations of 
the template DNA. This would cause multiple sequences 
to be represented in the chromatograms, making the 
data increasingly difficult to analyze as the subrepeat 
sequences diverge.

There were no interspecific differences between 
white, black and red spruce in the 5.8S gene and ITS2, 
and in the final 300 bp of the 3' end of ITS1. The 5' end 
of ITS1 is more variable than its 3' end. Four candidate 
interspecific SNPs were identified in the initial 100 bp 
from the 5' end of ITS1 (Fig. lc). They are all tran­
sitions, including three that distinguish black spruce 
and one that distinguishes red spruce.

Screening interspecific ITS SNP 1 for species-specificity

The restriction enzyme BsrUl was used to screen ITS 
SNP 1, which distinguishes black spruce from red and 
white spruce. At this position, the black spruce se­
quences have an A, whereas red and white spruce have 
a G (Table 4X part of a BstUl restriction site (CGCG). 
This is the only BstUl site in the 121-bp fragment 
amplified with primers ITS1 RvsB SSCP-2 and ITS1 
RvsB SSCP-2A (Fig. lc, Tables 1 and 2). Therefore, 
BstUl was predicted to generate two fragments (44 bp 
and 77 bp) for red and white spruce but not to deave 
the 121-bp fragment amplified from black spruce. 
When the 121-bp fragment amplified from DNAs of 
provenance test trees was digested with BstUl how­
ever, a fraction (0-20%) of the PCR product was 
cleaved in many of the bade spruce samples, and a frac­
tion (10-30%) of the PCR product was not cleaved in 
the red and white spruce samples (Fig. 2d). These re­
sults suggest that the copies of the rDNA repeat within 
an individual are heterogeneous for this BstUl site. 
The observed heterogeneity was considered for 
individual amplified DNAs that were scored for 
ITS SNP 1. The majority ( ^  70%) of the PCR product 
was cleaved into two fragments in 99% (89/90) of white 
and 96% (44/46) of red spruce provenance test sample 
DNAs, and the majority ( ^  80%) of the PCR product 
was not deaved in 100% (84/84) of the black spruce 
provenance test sample DNAs (Fig. 2d, Table 4).

Sequences of cloned ITS fragments

In order to extend the sequence of ITS1, the approxim­
ately 3.1-kb PCR product encompassing ITS1, 5.8S
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and ITS2 was digested with Sau3AL Some of the 
Sau3AI fragments were doned and sequenced from 
1 individual of each spedes (Table 3). The longest clone, 
778 bp, is contiguous with the 5' ITS1 sequence 
obtained with primers ITS5 and gymlTSlFal (Fig. lc). 
Three 778-bp dones from each individual were 
sequenced. Alignment of these sequences revealed 
a significant amount of intra-individual variation, 
including single nudeotide transitions, transversions 
and insertion/deletions. There were 29 SNPs among 
the three clones from white spruce sample 64, 12 
SNPs among the three dones from black spruce sample 
63, and 16 SNPs among the three clones from 
red spruce sample 2019 21-1. These intra-individual 
polymorphisms further support the hypothesis that 
there is considerable heterogendty among copies of
rrsi.

Eight candidate interspecific SNPs were identified in 
the 778-bp Sau3AI clone, including  three transversions, 
four transitions and one insertion/deletion (Fig. lc). 
Two of the SNPs distinguish the red spruce sample, 
while the other 6 distinguish the white spruce sample. 
In order to confirm these candidate SNPs we se­
quenced a 609-bp fragment (amplified with primers 
ITS1 R/B/W SNP-1 and ITS1 R/B/W SNP-iA) from 
4 individuals of each spedes (Table 3) using PCR prod­
uct as template. This sequence confirmed the cloned 
fragment sequences at all positions for ITS SNPs 6-12.

Screening interspecific ITS SNP 7 for spedes-spedfidty

The restriction enzyme Bspl286I was used to screen 
ITS SNP 7 (Fig. lc), which distinguishes white spruce 
from red and blade spruce. At this position, the white 
spruce sequences have a  C, whereas the red and black 
spruce sequences have a G (Table 4), part of a Bspl286I 
restriction site (GDGCHQ. The 609-bp fragment, am­
plified with primers ITS1 R/B/W SNP-1 and ITS1 
R/B/W SNP-IA (Fig. lc, Tables 1 and 2), also contains 
another Bspl286I site, generating a 322-bp positive 
control fragment Therefore, Bspl286I was predicted to 
generate three fragments (322 bp, 168 bp and 119 bp) 
from red and black spruce amplified DNAs and only 
two fragments (322 bp and 287 bp) from white spruce 
DNAs. Interestingly, the positive control Bspl286I site 
coinrides with an intra-individual polymorphic site, as 
evidenced by the alignment of cloned 778-bp fragment 
sequences from 1 individual Hence, cleavage at the 
positive control site did not occur in a  fraction (up to 
35%) of the amplified DNAs from each individual 
sample. Therefore, some 609-bp fragments are observed 
in digests of white spruce DNAs, and some 441-bp 
fragments are observed in digests of red and black 
spruce DNAs (Fig. 2e). The nucleotide at the ITS SNP 7 
position, however, appeared to be homogeneous within 
each individual. One hundred percent (89/89) of white 
spruce provenance test sample DNAs were not cleaved
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at the ITS SNP 7 site; 100% (84/84) of black spruce and 
100% (46/46) of red spruce sample DNAs were cleaved 
at the ITS SNP 7 Bspl286I site (Table 4). Data for all of 
the SNPs listed in Table 4 from screening provenance 
test samples in population studies were analyzed with 
a x2 test of independence (P <  0.0001).

Testing species-specific SNPs as a tool 
to identify species from single needles

In order to use these molecular tools to identify species 
in a blind test, 45 anonymous white, black and red 
spruce samples were provided by Dr. Robert Eckert 
DNA was extracted from as little as one needle per 
sample. SSCP analysis of tmK SNPs 1,2 and 3, M spl 
analysis of rpl33-tmP SNP3 and Bspl286I analysis of 
ITS SNP 7 were carried out in order to identify the 
white spruce samples. Then ASPCR analysis of tmK 
SNP 10 and BsrtJI analysis of ITS SNP 1 was used to 
distinguish the black spruce samples from the red and 
white spruce. One hundred percent (45/45) of the 
anonymous samples were identified correctly.

Discussion

We sequenced (1) the chloroplast tm K  intron including 
matK, (2) the region between chloroplast rp/33 and tmP  
includ ing  psaJ and (3) nuclear rDNA 5.8S, ITS2, and 
portions of ITS1 in 4 individuals each of white, black 
and red spruce. We identified one nuclear and four 
chloroplast SNPs which distinguish white spruce from 
black and red spruce, plus one nuclear and one chloro­
plast SNP which distinguish black spruce from white 
and red spruce. These markers are strictly associated 
with species, as determined by surveying trees repres­
enting range-wide provenance tests of each species. In 
a blind test, the species-specific nuclear and chloroplast 
markers were used to correctly identify anonymous 
samples. These molecular markers can be used to ident­
ify the species of a white, black and red spruce tree from 
single needles.

Levels of sequence variation in spruce

The percentage divergence of all genes sequenced was 
remarkably low between the spruce species. For matK, 
there was only 0.1% divergence between red and black 
spruce, 03%  between white and red spruce and 0.4% 
between white and black spruce. This is markedly 
lower than the 1.1% matK variation between lodgepole 
pine and black pine (Hilu and Liang 1997).

Between 5% and 15% sequence divergence between 
the taxa in question is thought to provide a sufficient 
number of characters for phylogenetic analysis (Olm-

stead and Palmer 1994). The relatively high level of 
variation between some angiospenn species makes 
matK appropriate for resolving phylogenetic relation­
ships (Johnson and Soltis 1995). Lodgepole pine and 
blade pine are believed to be distantly related members 
of subgenus Pinus based on ITS sequences (Liston et al. 
1999). White and black spruce are also thought to be 
distantly related based on RFLPs of chloroplast DNA 
(Siguigeirsson and Szmidt 1993). The low levels of 
variation between distantly related spedes within these 
two genera suggest that matK may not be suffidently 
divergent to infer relationships among spedes of Pinus 
or among spedes of Picea.

The noncoding regions of the tm K  intron displayed 
no more variation than matK between spruce spedes. 
There was 0% divergence between red and black 
spruce, 0.4% between white and red spruce and 0.4% 
between white and black spruce. Pirns trriK intron 
noncoding regions also show slightly less variation 
than matK having 1% divergence between lodgepole 
pine (GenBank X57097; Lidholm and Gustafsson 1991) 
and black pine (GenBank D17510; Tsudzuki et aL 
1992). The combined noncoding intergenic spacers be­
tween rpl33 and trriP also had very low levels of vari­
ation between spruce spedes: 0% divergence between 
red and black spruce, 0.5% between white and red 
spruce and 0.5% between white and black spruce.

There was no variation in the nuclear rDNA ITS2, 
5.8S gene or the 3' end of ITS1 among these three 
spruce spedes. This is strikingly different than the level 
of 5.8S and ITS2 variation among spedes of Pinus 
(Liston et aL 1999).

Variation was present in the 5' end of ITS1 
(5'330 bp): approximately 0.9% divergence between 
red and black spruce, 2.2% between white and red 
spruce and 2.2% between white and black spruce. 
There was also variation in the cloned ITS1 fragment 
between spedes: as much as 1.4% divergence between 
red and black spruce, 24% between white and red 
spruce and 1.4% between white and black spruce. 
These values may be inflated, however, due to the 
observed heterogendty of ITS within an individual.

Heterogendty of ITS

Nuclear rDNA is present in multiple copies arranged in 
tandem repeats (Hamby and Zimmer 1992). Angio- 
sperms have thousands of copies located at one or a few 
chromosomal lod (nudeolus organizer regions, NORs) 
(Hamby and Zimmer 1992). Gymnosperms have been 
shown to possess many more copies; in red and black 
spruce there are as many as 106 copies rDNA per 
nudear genome (Bobola et aL 1992b). Using in situ 
hydridization Brown et al. (1993) identified 12-14 
rDNA chromosomal lod in white spruce.

There have been previous reports of heterogeneity 
among rDNA repeats in conifers (Bobola et aL 1992b;
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Beech and Strobeck 1993; Karvonen and Savolainen 
1993; Liston et a l  1996) in both ITS and IGS. Here we 
present further evidence that the copies of ITS1 are 
heterogeneous within a spruce individual (1) Sequence 
chromatograms from using PCR product as template 
showed multiple peaks at single positions. (2) Restric­
tion endonucleases BstUl and Bspl286I each cleaved 
PCR products differently within screened individuals.
(3) There was significant variability between sequences 
of cloned ITS1 fragments within an individual In fact, 
there was 0.8-1.7% divergence between the clones of 
a red spruce individual 0.6-1.2% divergence between 
the clones of a black spruce individual and 1.3-3.2% 
divergence between the clones of a white spruce indi­
vidual

This heterogeneity may be explained by the large 
number of rDNA chromosomal lod in spruce. Liston 
et a l  (1996,1999) pointed out that the large number of 
rDNA lod might slow the process of concerted evolu­
tion which tends to homogenize the rDNA repeats 
within an individual The high level of heterogeneity of 
ITS1 within an individual makes estimation of the 
levels of intra- and interspecific variation difficult It 
also complicates the process of identifying spedes-spe- 
dfic SNPs in the ITS region as markers to distinguish 
between spedes. Furthermore, such high levels of intra- 
individual variation would complicate phylogenetic 
analysis using ITS1 sequences.

Species-specific markers to distinguish 
between spruce spedes

Perron et a l  (1995) stressed the importance of identify­
ing molecular markers from trees whose spedes has 
been carefully identified a priori. They chose popula­
tions from outside the sympatric zone, where the extent 
of natural hydridization of red and blade spruce is 
probably low, and conducted a  five-character mor­
phological analysis on each tree. Only trees with a mor­
phological composite index specific to dther spedes 
were used in their study (Perron et a l  1995). In our 
study, each tree of the provenance tests was typed using 
six morphological characters (Gordon 1976; Eckert 
1990). Additionally, any suspected hybrids and/or re­
trogressed individuals from the provenance tests identi­
fied with nuclear and organelle RFLPs (Bobola et a l  
1996) were exduded from the population studies.

Perron et a l  (1995) identified RAPD markers which 
distinguish red and black spruce from only six black 
populations (12 trees) and three red spruce populations 
(12 trees), and verified them in ten black and nine red 
spruce F i progeny from interspecific crosses. They 
characterized four RAPD markers that were present in 
100% of surveyed red spruce (21 total provenance and 
F t progeny trees) and absent in 100% of the surveyed 
black spruce (22 total trees). The three black-distin­
guishing markers were absent in 100% of the red
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spruce surveyed but only present in 75-92% of sur­
veyed black spruce provenance trees and in 70-100% 
of black spruce F x progeny. Perron et a l (1995) referred 
to all of these markers as “species-spedfic”.

In this study, we used SNPs as molecular markers to 
distinguish between white, black and red spruce. A to­
tal of 25 candidate interspecific SNPs were identified in 
the three sequenced gene regions. Of these, 18 distin­
guished white spruce, 4 distinguished black spruce and 
3 distinguished red spruce. The abundance of white- 
distinguishing markers relative to the number of red- or 
black-distinguishing markers is not surprising because 
white spruce is not as closely related as red and black 
spruce (Sigurgeirsson and Szmidt 1993).

Eight of the candidate SNPs were screened in 11 red 
spruce populations (46 trees), 30 black spruce popula­
tions (84 trees) and 22 white spruce populations (90 
trees) in order to assess their degree of spedes-specifi- 
dty. These trees represent a considerable portion of the 
spedes’ ranges.

During the Pleistocene Epoch, spruce populations 
were displaced in response to glaciation events. Repeat­
ed alterations in the geographic distribution of these 
trees influenced the amounts of genetic variability 
throughout spedes (Critchfield 1984). Therefore, range- 
wide sampling is important for this type of population 
study in order to include samples from both current 
and previously disjunct populations that may be ex­
periencing or have undergone genetic bottlenecks.

The nuclear (ITS SNP 7) and chloroplast (tmK 
SNPs 1,2 and 3, and rpl33-tmP SNP 3) SNPs which 
distinguish white spruce are 100% spedes-spedfic. The 
results of the indirect screening methods suggested that 
all of the white spruce trees surveyed had the white 
spruce-type nucleotide and that all of the black and red 
spruce trees surveyed had the black/red spruce-type 
nucleotide (Table 4). TmK SNP 4, which also distin­
guishes white spruce, was 100% consistent in surveyed 
white spruce trees and 96% consistent in surveyed 
black spruce. As only 85% of the red spruce trees 
displayed the red/black spruce-type base, tmK SNP 4 
was not considered “spedes-spedfic’’.

Chloroplast tm K SNP 10, which distinguishes black 
spruce from white and red spruce, is located at the first 
position of codon 410 in the mutK gene. This marker 
was consistent among 100% of the white spruce sur­
veyed and among 98% of the red and black spruce. 
Only 1 red spruce tree (out of 46) appeared to have the 
black spruce-type base, and only 2 black spruce trees 
(out of 84) appeared to have the red/white spruce-type 
base.

Nuclear ITS SNP 1 has a more complicated spedes 
profile due to the heterogendty of ITS1 within an 
individual At this position, sequence chromatograms 
(using PCR as template) show a G in white and red 
spruce and an A in black spruce. BstUl digestion of 
PCR product, however, indicates that some of the 
white and red spruce DNAs have a  G at this site and
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that some of the black spruce DNAs do not have a G  at 
this site: Although the-rDNA copies are-not homogene­
ous within an individual at this site, this marker is still' 
useful for distinguishing between the spruce species 
because, the majority of amplified DNAs have a  G in 
white and red spruce individuals, and the majority of 
amplified DNAs have an Ain black spruce individuals. 
These restriction profiles were consistent in 99% of 
surveyed white spruce, 100% of black spruce and 96% 
of red spruce. Therefore, only I  white spruce tree (put of 
90) and 2 red spruce trees- (out of 46) had a majority of 
DNAs lacking a G' at this site.

The validity of the nuclear and chloroplast markers 
was confirmed by using each of the spedes-spedfic 
SNPs to identify anonymous white, black and red 
spruce samples in a blind test This test was carried out 
with DNA from as little as a single needle per sample, 
thereby demonstrating the utility of these markers 
when abundant tissue is not available.

We have identified seven species-specific SNP 
markers that can reliably identify white, black o r red 
spruce from a single needle. SNPs are easier to identify 
and more robust than other molecular tools, such as 
isozymes (Eckert 1989), RFLPs (Bobola et aL 1992a, b, 
1996) and RAPDs (Perron et aL 1995), previously used 
to distinguish spruce species. Furthermore, screening 
SNP markers with indirect PCR-based methods en­
ables an efficient high throughput of samples.
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CHAPTER n

GEOGRAPHIC DISTRIBUTION OF MITOCHONDRIAL AND CHLOROPLAST 
HAPLOTYPES AMONG RANGE-WIDE POPULATIONS OF WHITE SPRUCE 

0PICEA GLAUCA) BLACK SPRUCE (P. MARIANA) AND RED SPRUCE (P.
RUBENS): IMPLICATIONS OF SPECIATION, INTERSPECIFIC HYBRIDIZATION 

AND HISTORY OF THE WISCONSIN ICE AGE

Abstract

A total of twenty-seven mitochondrial and chloroplast haplotypes were identified within 

and among range-wide populations o f white spruce {Picea glauca), black spruce {P. 

mariana) and red spruce (P. rubens). The chloroplast genome exhibited more 

intraspecific variation than the mitochondrial genome. Among the species, red spruce 

displayed the most total chloroplast genetic diversity {Hr = 0.52). Neighbor-joining 

analysis arranged the chloroplast haplotypes into three monophyletic groups that were 

nearly 100% species-specific. The diversity o f red spruce chloroplast haplotypes and 

their reciprocal monophyly with haplotypes detected in black spruce strongly refute a 

previously proposed progenitor/derivative relationship of black/red spruce. Red and 

black spruce were estimated to have diverged from their common ancestor approximately 

0.6-3.5 million years ago. Mitochondrial diversity, detected primarily in black spruce, 

was attributed to interspecific hybridization. Hybridization between red and black spruce 

occurred during the Holocene epoch, at least 4000 years ago. White spruce 

mitochondrial haplotypes detected in multiple black spruce populations indicated that 

unidirectional introgressive hybridization has occurred between these two species. An 

east-west divide and opposing clines o f chloroplast haplotypes in black spruce are
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consistent with leptokurtic dispersal either 1 ) out of a well-recognized southeast glacial 

refugium o f North America or 2) out o f a small hypothetical northwestern refugium in 

addition to the southeast.

Introduction

The current genetic structure of populations of forest trees reflects their recent 

history of migration and adaptation in response to climate change. During the Quaternary 

period (the last two million years), vast areas of North America, Europe and Asia were 

repeatedly covered by glacial ice due to oscillations in climate (Comes and Kadereit, 

1998; Hewitt, 2000). At the onset of periods o f glaciation, 1he ranges of forest trees 

shifted; some contracted and became fragmented as species retreated to southern refugia 

and isolated ice-free regions. Upon wanning of the climate and shrinkage of the glaciers, 

ranges shifted again, expanding into newly unglaciated territories. Populations that spent 

glacial periods in geographic isolation may have reunited to form a continuous range 

(Critchfield, 1984). The spruce genus, Picea Dietr., of the Pinaceae comprises 35-50 

species that are widespread across the northern hemisphere (Schmidl-Vogt, 1977; 

Vidakovic, 1991). Paleoclimale and vegetation history reconstructions have focused on 

the distribution of this important forest component during the Quaternary, with particular 

attention to the migration history ofNorway spruce (Picea abies) in Europe, and white 

spruce (Picea glauca (Moench) Voss), black spruce (P. mariana (Mill.) B.S.P.) and red 

spruce (P. rubens Sarg.) in North America (e.g. Jackson et al., 1997; Taberletct a l,

1998).

Driving Forces in Forest Species Migration

Forests endured approximately twenty glacial-interglacial cycles during die
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Quaternary period. During the most recent ice age (the Wisconsin period; ~100,000- 

10,000 years ago), a massive ice sheet covered most of Canada, extending as far south as 

40°N over the northeastern United States by die Last Glacial Maximum (LGM; ~21,000 

calendar years ago; Delcourt and Delcourt, 1987a; Hewitt, 2000). Pollen and plant 

macrofossil records from lake and bog sediments indicate that forest species, including 

spruce, had taken refuge in the southern United States (e.g. Delcourt and Delcourt,

1987a; Jackson et al., 1997). Much of northern Europe was glaciated as well, with 

refugia located in the southern parts of the continent (Huntley and Birks, 1983). 

Following the LGM, glaciers melted as climate conditions warmed and the Holocene 

interglacial epoch ensued (—11,000 years ago to the present). Many species migrated 

from refugia to occupy their current positions. There is a growing amount of evidence 

that the present patterns of genetic variation in forest trees are largely the result of 

expansion/migration out of glacial refugia during the Holocene (reviewed in Comes and 

Kadereit, 1998; Newton et aL, 1999; Hewitt, 2000).

Historical expansions and contractions of individual species’ ranges resulted from 

their inherent adaptability to climatic changes, involving genetic variability within 

species, fitness optima (Rehfeldt et al. 2 0 0 1 ) and gene flow within and among 

populations (Davis and Shaw 2001). Furthermore, species migrations have had genetic 

consequences for the emergent population structure, which in turn affected the 

adaptation, and hence the evolution of that species (Critchfield 1984; Comes and 

Kadereit 1998; Newton et al. 1999; Hewitt 2000; Davis and Shaw 2001). During glacial 

periods reproductively isolated populations may have become differentiated due to 

mutation, selection and/or genetic drift As a  result o f retreat and re-immigration, some
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species experienced significantly reduced genetic variability via bottlenecks and founder 

events (Critchfield 1984; Comes and Kadereit 1998; Hewitt 2000; Davis and Shaw 

2001).

Genetic Structure and Biogeographv

A variety of molecular markers have been used to infer postglacial re-colonization 

patterns of forest trees since the LGM in North America and Europe. Chloroplast and 

mitochondrial genomes are well suited for the reconstruction of migration routes in forest 

trees because of their uniparental inheritance (Petit et a l, 1993). In spruce and most 

conifers, the chloroplast is paternally inherited while the mitochondrial genome is 

maternally inherited (Sutton et al., 1991; David and Keathley, 1996; Bobola et al.,

1996b). Population subdivision of mitochondrial DNA markers is greater than that of 

chloroplast markers due to differential migration of pollen and seed, Le. varying degrees 

of gene flow, within wind-pollinated conifer populations (Dong and Wagner, 1994; Latta 

and Mitton, 1997; Latta et al., 1998). Therefore mitochondrial polymorphisms are 

popular for investigations of migration history, but pollen-dispersed markers have been 

informative as well (Scotti et a l, 2000; Vendramin et al., 2000; Collignon and Favre, 

2000).

Geographical patterns of genetic differentiation have been observed that point to 

routes o f migration from putative glacial refugia. The molecular phylogeography of 

Norway spruce in Europe has been studied using a variety of markers including nuclear 

sequence-characterized amplified region (SCAR) markers (Scotti et aL, 2000), 

mitochondrial haplotypes (Sperisen et al., 1998; Sperisen et a l, 2001), chloroplast 

restriction fragment length polymorphisms (RFLPs) (Sigurgeirsson, 1992), and
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chloroplast microsatellites (Vendramin et aL, 2000). The spatial patterns of these genetic 

markers were associated with Norway spruce glacial refugia that were evidenced by 

pollen and macrofossil records. In North America, subdivided populations of limber pine 

(Pinus flexilis) were identified based on RFLP analysis of a mitochondrial gene intron 

(Mitton et al., 2000a). The authors inferred directions of dispersal out of several different 

glacial refugia by analyzing the geographic patterns of the mitochondrial DNA markers. 

Migration History of White. Black and Red Spruce in North America

White spruce, black spruce and red spruce are northern North American species 

that presently share a sympatric zone in New England and eastern Canada. The current 

range of red spruce extends north from the Appalachians in North Carolina to the 

Canadian Maritimes (Morgenstem and Farrar, 1964; Little, Jr., 1971). The ranges o f 

black and white spruce reach west to Alaska and north to the tree-line (Morgenstem and 

Farrar, 1964; Little, Jr., 1971; Fowler et al., 1988). Although their ranges overlap, each 

o f these species has distinctive ecological, edaphic, mesic and climatological niches 

(Morgenstem and Farrar, 1964; Gordon, 1976; Nienstaedt and Zasada, 1990; Viereck and 

Johnston, 1990; Blum, 1990; Vann et al., 1994; McLeod and MacDonald, 1997).

According to palynological (pollen) studies, spruce took refuge in a wide band 

between 40 and 35°N (in and around Virginia, Kentucky, Tennessee, etc.) across the 

unglaciated southeastern United States during the Wisconsin ice age (Davis, 1983;

Ritchie and MacDonald, 1986; Delcourt and Delcourt, 1987a; Jackson et aL, 1997). 

White, black and red spruce are believed to have been present in this southern refugium; 

however the boundaries of individual species’ ranges are unknown. An additional 

disjunct refugium o f white spruce was hypothesized to have existed in the unglaciated
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portion of northwestern North America. (Yukon and Alaska [eastern Beringia]) during the. 

Wisconsin period (Tsay and-Taylor, 1978;. Critchfield,. 1984; Ritchie andMacDonald,. 

1986){Fumier &. Stine. 1995 50/id}.. This hypothesis is supported by pollenrecords and 

patterns of current genetie variation; however there is no radiocarbon-dated macrofossil 

evidence to confirm the existence of this putative refugium. As the climate warmed, the 

range of spruce expanded from the southeast refugium norfeeastward, reaching New 

England,.Nova Scotia andNewfoundland between 12,700 and 8,000 yr BP (Delcourt and 

Ddcourt, 1987a).. Glacial retreat and repopulation by spruce occurred extremely rapidly 

in the western interior of Canada (Critchfield, 1984; Ritchie and MacDonald, 1986; 

McLeod and MacDonald 1997)..

Because of different ecological tolerances, individual speciesr ranges shifted at 

different times, rates and in varying directions during periods of climate change (Davis, 

1983; Taberletet aLr 1998; Comes and Kadereit, 1998; Daviis and Shaw, 2001).. For 

example, red spruce withstands much warmer summer temperatures than black and white 

spruce, while black and white spruce are more cold-hardy.. These spedes also exhibit 

varying edaphic and mesic preferences.. Considering such individual environmental 

tolerance limits, it is probable that white, black and red spruce migrated' differentially 

since the LGM.. Examining the distribution of DNA markers among extant spruce 

populations may improve our understanding of the postglacial migration histories of the 

individual spedes.

Interspecific Hybridization

Hybridization and introgression are common phenomena among spruce species 

and may contribute to adaptive variation in a  species through gene enrichment Under
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extreme adaptive pressures of environmental change, populations that contain high levels 

o f genetic variation would have an increased probability o f giving rise to individuals 

capable o f surviving such changes (Davis and Shaw, 2001). Pure and introgressed trees 

of white spruce, Engelmann spruce (Picea engelmarmii) and Sitka spruce (Picea 

sitchensis) exhibit varying levels of adaptation to different ecological niches 

(Sigurgeirsson et a l, 1991; Sutton et aL, 1994). Extant hybrids and introgressants o f red 

and black spruce occur naturally, however their persistence and abundance in the wild are 

debated (Manley, 1972; Gordon, 1976; Eckert, 1989; Perron et a l, 1995; Bobola et aL, 

1996a; Bobola et aL, 1996b; Perron and Bousquet, 1997). It is also unclear whether 

red/black spruce introgressants display negative or positive heterosis with respect to 

environmental conditions (Morgenstem and Farrar, 1964; Fowler et a l, 1988; Bobola et 

al. , 1996a). Naturally occurring hybrids of white and black spruce are believed to be 

very rare (Wright, 1955; Hulten, 1968; Viereck and Little, Jr., 1972). Interspecific 

hybridization and introgression of spruce prior to or during the last ice age may have 

directly affected their response to the changing climate.

Much concern has been expressed over the decline of red spruce populations since 

the 1800's, with anthropogenic factors and climatic warming discussed as possible causes 

(Hamburg and Cogbill, 1988; Vann et al., 1994). Analyses of isozymes and random 

amplified polymorphic DNAs (RAPDs) have suggested that red spruce harbors relatively 

low levels o f aQelic variation (Eckert, 1989; Hawley andDeHayes, 1994; Perron et al., 

1995). The lack o f genetic diversity in red spruce may have resulted from genetic 

bottlenecks during the last glacial period, which in turn may have contributed to the 

species’ recent decline (Eckert, 1989; Hawley and DeHayes, 1994). Based on a study
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using sequence tagged site markers (STS), Perron et al. (2000) proposed that black and 

red spruce comprise a recently evolved progenitor-derivative species pair. The authors 

hypothesized that the lack o f genetic variation in red spruce was a direct result o f its 

allopatric speciadon horn a preexisting black spruce population, which may have been 

isolated and become differentiated during the Pleistocene epoch (~2 million to 10,000 

years ago).

Variable DNA Markers

In order to investigate the distribution of genetic diversity in white, black and red 

spruce, potentially variable DNA markers located in the oppositely inherited chloroplast 

and mitochondrial genomes were chosen. We have previously identified intraspecific 

variation of the chloroplast /m/Cintron within black and red spruce, and of the 

chloroplast rpl33-psaJ-tmP region within black and white spruce (Gennano and Klein,

1999). The tmT-tmL-tmF region of the chloroplast genome is phylogenetically 

informative for angiosperms at the species level (Gielly andTaberlet, 1994), and displays 

variation among species o f pine and fir {Abies) (Perez de la Rosa et al., 1995; Watano et 

al.,. 1996; Isoda et a l, 2000). Universal primers have been used to amplify this region in 

spruce (Taberlet et al., 1991; Perez de la Rosa et aL, 1995). Primers have also been 

developed to amplify non-coding regions of the mitochondrial genome (Demesure et al., 

1995; Dumolin-Lapegue et aL, 1997; Mitton et aL, 2000b). The second intron of nadl 

(nadl B/C) displays variation within several species of pine and within Norway spruce 

(Latta and Mitton, 1997; Sperisen et aL, 1998; Grivet et al., 1999; Mitton et aL, 2000a; 

Mitton et a l, 2000b; Sperisen et aL, 2001).

The goals o f this project are 1) to identify chloroplast and mitochondrial variation
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within and among range-wide populations o f white, black and red spruce, 2 ) to compare 

levels of genetic diversity and degrees o f population subdivision between genomes and 

between species, and 3) to ascertain any geographical patterns o f genetic differentiation. 

The results were used to address several questions. Do genetic diversity estimates from 

range-wide samplings of red and black spruce support the progenitor-derivative species 

pair hypothesis posed by Perron et al. (2000)? Are geographic patterns of genetic 

diversity consistent with white, black and red spruce’s migration out of the well- 

documented southeastern refugium o f the Wisconsin period? Do they support the 

hypothesis of a disjunct Alaskan glacial refugium for white spruce? Did introgressive 

hybridization play a role in red and black spruces’ responses to the wanning climate of 

the last 1 0 , 0 0 0  years?

Materials and Methods 

Plant Materiab and DNA Extraction

The acquisition of most provenance test sample DNAs used in this study has been 

previously described (Germano and Klein, 1999). White spruce samples were from a 

range-wide provenance test at Grand Rapids, Minnesota (see Fumier and Stine, 1995). 

Red spruce DNAs represent a range-wide provenance test located in Coleman State 

Forest, Stewartstown, New Hampshire. Black spruce DNAs, corresponding to the 

eastern portion of the range, are from a provenance test maintained by the USDA Forest 

Service (Northeastern Forest Experiment Station), in the Massabesic Experimental 

Forest, Alfred, Maine (Bobola et aL, 1992a; Bobola et al., 1992b). Additional black 

spruce samples from northern and western Canada were collected as follows (see Table

1): samples representing die Alberta provenance were collected from Alberta Land and
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Table 1. Northern and western black spruce samples obtained from provenance test 
plantations.

Sample Latitude Longitude 
Provenance* Location size (n) (N) (W)

Research Plantation Exp G137A
474 Slave Lake Forest, Alberta 3 54° 50' 115° 19'
510 Grande Prairie Forest, Alberta 3 54° 28' 119° 42’
1759 Lac La Biche Forest,

Touchwood Lake, Alberta 3 54° 53’ 1 1 1 0  28'
1771 Athabasca Forest, Alberta 3 57° 07 1110  40’
2 0 0 0 Footner Lake Forest, Alberta 3 59° 30' 117° 30'
2240 Rocky/Clearwater, Alberta 3 52° 15' 115° 20'
2522 Peace River Forest, Alberta 3 56° 41' 116° 15’

Reno Trial
6963 Duck Mountain, Manitoba 5 51° 38’ 100° 47’
6964 Pulp River, Manitoba 5 51° 48’ 1 0 0 ° 1 2 ’
6967 Point Lake, Manitoba 5 55° 30' 98° 04'
6971 Beaver River, Saskatchewan 5 54° 43' 107° 49'
6972 Nisbet Provincial Forest, Saskatchewan 5 53° 14' 105° 46’
6986 Fort S t John ID, British Columbia 5 56° 37 1 2 1 ° 28'
6987 Steamboat Creek, British Columbia 5 58° 47 123° 36'
6988 Steamboat Mountain, British Columbia 5 58° 44' 123° 38’
7007 Bonanza Creek II, Alaska, USA 4 64° 44’ 148° 18’

Research Plantation Experiment 353-H-5
6850 Lebel sur Quevillon, Quebec 4 49° 07 76° 57
6855 Matagami, Quebec 4 49° 3 7 77° 45'
6856 Manicouagan, Quebec 4 50° 40’ 6 8 ° 46'
6859 Parc Mistassini, Quebec 4 50° 27 73° 28'
6862 Murdochville, Quebec 4 48° 55' 65° 25'
6909 Otasawian River, Ontario 4 49° 45' 85° 05'
6920 Minchin Lake, Ontario 4 50° 44' 90° 34'
6924 Red Lake, Ontario 4 50° 53’ 93° 44’
6930 Rainy Lake, Ontario 4 48° 48’ 93° 40'
6932 Shebandowan, Ontario 3 48° 40’ 90° 11’
6936 Moosonee I, Ontario 4 51° 16’ 80° 46'
6961 Riding Mountain, Manitoba 5 54° 52’ 95° 27
6969 Jan Lake, Saskatchewan 5 54° 52’ 102° 48'
7000 Mayo, Yukon 5 63° 34’ 135° 55’

a Provenance designations and locations were provided by N. Dhir and L. Bamhardt, 
personal communication.
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Forest Service Research Plantation Exp G137A, which is located near Smoky Lake, 

Alberta; samples representing northern Quebec, northern Ontario, Yukon, Saskatchewan, 

and Manitoba provenances were from Canadian Forest Service Research Plantation Exp 

353-H-5 located in die Petawawa Research Forest, Chalk River, Ontario; samples 

representing British Columbia, Alaska, and additional regions of Yukon, Saskatchewan, 

and Manitoba were from the Canadian Forest Service Reno Range Wide Black Spruce 

Trial. One additional black spruce (collected from New Hampshire), two white spruce 

(collected from Durham, New Hampshire and from Black Hills, South Dakota) samples 

from independent collections (see Germano and Klein, 1999), and two red spruce 

samples (from Indian Gap and Newfound Gap in Great Smoky Mountain National Park, 

Tennessee) were also included in this study.

Red and black spruce trees from the Coleman State Forest and Massabesic 

Experimental Forest provenance tests were previously typed using six morphological 

characters (Gordon, 1976; Eckert, 1990) and nuclear and organelle RFLPs (Bobola et al., 

1996b). Individuals determined to be hybrid by these tests were excluded from the 

present study in order to rule out recent hybrids from the zone of sympatry (Bobola et al., 

1996b). DNAs were extracted from 5-10 g fresh or frozen foliage using a standard 

CTAB method (Doyle and Doyle, 1987).

PCR Methods

Taq DNA Polymerase (in Storage Buffer B, Promega, Madison, WI) was used in 

all reactions; Taq Extender™ PCR Additive (Stratagene, La Jolla, CA) was added to 

reactions to amplify fragments longer than 2 kb. Reactions contained final 

concentrations of IX Reaction Buffer (without MgCk, Promega) or IX Taq Extender
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Reaction Buffer (Stratagene), 0.2 mM each dNTP (Promega), 0.4 pM each primer (Table

2) and 5-10 ng/pl whole genomic DNA. Reaction volume, amounts of Taq Polymerase 

and magnesium chloride are listed in Table 3 for individual reactions. Amplification and 

sequencing primers (Table 2) were designed using the PrimerSelect algorithm, part of the 

Lasergene software package (DNASTAR, version 3.72, Madison, WI).

Amplifications were carried out in a PTC-100 Program m able Thermal Controller 

(MJ Research Inc., Watertown, MA). All PCR profiles had an initial denaturation step of 

three minutes, a final extension step of ten minutes, and denaturation and extension 

temperatures of 94°C and 72°C, respectively. Annealing temperatures, annealing times 

and extension times for individual PCRs are summarized in Table 3. The nadl B/C 

intron was amplified using a Touchdown PCR profile (Don et al., 1991). Following a 3-4 

minute 94°C ‘Hot Start’ (D'Aquila et a l, 1991), each cycle consisted of a 30-second 

denaturation step, a one-minute annealing step and a three-minute extension step. The 

first four cycles had an annealing temperature of 60°C; the annealing temperature 

decreased by 2°C every four cycles thereafter. The lowest annealing temperature of 46°C 

was used for the final 2 1  cycles.

PCR products to be sequenced were purified via electrophoresis through low 

melting point agarose (Gibco BRL, Gaithersburg, MD). Excised bands were liquefied by 

incubating at 37°C for one hour with 5 units Agarase (Sigma®, S t Louis, MO) per 100 pi 

gel.

DNA Seonencing

Samples were sequenced (Table 4) using the ABI PRISM™ Dye Terminator 

Cycle Sequencing Ready Reaction Kit with AmpliTaq® DNA Polymerase, FS (Perkin
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Table 2. Primers used for PCR and sequencing 

Primer name PCR / Seqa Sequence (5' -»• S')

nadl exonBb PCR & Seq
nadl exon Cb PCR & Seq
NAD1-B1 Seq
NAD1-C1 Seq
NAD1-B2 PCR & Seq
NAD1-C2 Seq
NAD1-B3 Seq
NAD1-C3 Seq
NAD1-B4 PCR & Seq
NAD1-B5 Seq
NAD1-C4 Seq
NAD1-C5 Seq
NAD1-C6 Seq
NAD1-B Indel 2 PCR
NAD1-C Indel 2 PCR & Seq
NAD1-B Indel 3 PCR & Seq
NAD1-C Indel 3 PCR & Seq
NAD1-B Indel 4 PCR & Seq
NAD1-C Indel 4 PCR & Seq
NAD1-B Indel 5 PCR
NAD1-C Indel 5 PCR
NAD1-B Indel 6 PCR & Seq
NAD1-C Indel 6 PCR
NAD1-B Indel 7 PCR
NAD1-C Indel 7 PCR
NADI MS2R PCR & Seq
NADI SNP B-G PCR
NADI SNP B-T PCR
nad7/lc PCR & Seq
nad7/2rc PCR & Seq
NAD7-1U PCR & Seq
NAD7-2L PCR & Seq
NAD7-1U2 Seq
NAD7-2L2 Seq
NAD7-1U3 Seq
NAD7-2L3 Seq
NAD7-1 Indel 1 PCR
NAD7-2 Indell PCR
tmK SNP4/12 AS-GA PCR
tmK SNP4/12 AS-TC PCR
RPLTRNP 4/5/A-F PCR
RPLTRNP 4/5/A-R PCR

GCA TTA CGA TCT 
GGA GCT CGA TTA 
AGT GGG GAC CTT 
GGC GTA TAG GTT 
AGC GGG TCC TGG 
GCA TAG CGA AGG 
CTC AAA GGG CTA 
GCG CGA ACG AAC 
AGC CCT TCC TGA 
AAT CCC TTT CTT 
CCC CCA CCG GAT 
CAA AAG ACG CCC 
CCA AAA GCA TGG 
AGC GGG TCC TGG 
AAA AGG GAG AGG 
AAT TAA TAT CGA 
CCG AAG GGG TAG 
AGA AAA TAG GCT 
GGA ACC GAA CCG 
CAA ATT TGA GGA 
TAG TCC ACT CAT 
AGC GGT TCG GTT 
ATT TAA TGG CGG 
CCA TCC TTA TTA 
GAC AAT TTG AGT 
AAC CCT CCA TAA 
TAC CTA CCC CTC 
TAC CTA CCC CTC 
ACC TCA ACA TCC 
CGA TCA GAA TAA 
TTG GGA ATG AAC 
CAC GCC ATT TTT 
GGC CTC GTT ATC 
CCT CCC CTG GCT 
CAG AAC GCA CGA 
CCT TGA CGG GCA 
ACA CTG TAG GTA 
TGG GGT GCA GGT 
GGG CCA TAA CTG 
GGG CCA TAA CTG 
CCC ACG ATA AAA 
TCT AAG TTT GGA
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GCA GCT CA
GTT TCT GC
AAT GAT GAA
GTG TTG CT
TCA AA
GAA GGT C
GCT AAA AGG TA
ACT AAG A
TTG ACT CTA
TTG CGT AGC
AAG TT
ACT CCA
TTC CTG TC
TCA AAT C
GTA ATA AAC AA
ACG AAG AAA ATC
GGA GAT
ATA ACG AAA GT
CTC TA
TCT TGA TAC G
TGA AGG CTA AA
CCC TCA C
CCC AGA CTT T
ACC CTT ATC TGA
CGA TTT TCT TC
GAT CTC CTC TCA
GCT ACT ATC TC
GCT ACT ATC TA
TGC TGC TC
GGT AAA GC
GGA GAA
GAC TTA CA
CAC ACT G
CTT TC
GGG AAA AC
CTC CA
CGG GGA ATG G
GGT GAT A
AGG TTT GA
AGG TTT TC
CAT TTG AAA TA
GAT GGA ATG G
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Table 2. Continued.

Primer name PCR / Seqa Sequence (5' -*■ 31)

RPLTRNP SNP6 -F PCR TCT TGC ATT GTA AAT TCT CCT TAT
RPLTRNP SNP6 -R PCR TTC ATC AGT TCC GAG TTT TTC CTA
ad PCR & Seq CAT TAC AAA TGC GAT GCT CT
bd PCR & Seq TCT ACC GAT TTC GCC ATA TC
cd PCR & Seq CGA AAT CGG TAG ACG CTA G
dd PCR & Seq GGG GAT AGA GGG ACT TGA C
ed PCR & Seq GGT TCA AGT CCC TCT ATC CC
f 1 PCR & Seq ATT TGA ACT GGT GAC ACG G
TRNT-A1 Seq TCG ACT AGG GGA GGA TAA TAA CA
TRNL-B1 Seq CCC CTA GTC GAT TTG GAA GA
TRNL-C1 Seq ACC TAA AAA GTG GGA ATG TGA TA
TRNL-D1 Seq ATA TCA CAT TCC CAC TTT TTA GG
TRNL-E1 Seq TCG CAG TCC ATT TTT TCT CA
TRNL-F1 Seq TGA GAA AAA ATG GAC TGC GA

a Indicates if the primer was used for PCR, sequencing or both. 

b Universal primers (Demesure et a l, 1995). 

c Consensus primers (Dumolin-Lapegue et a l, 1997). 

d Universal primers (Taberlet et a l, 1991).
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Table 3. Conditions of individual polymerase chain reactions.

PCR Region(s) Fragment Reaction Taq MgCh Annealing Annealing Extension Cycles
# amplified Primer pair(s) size8 (bp) volume units (mM) temperature time (sec) time (sec)

J. nadl B/C nadl exon B & nadl exon Cb -3200 50 pi 4.0° NAd 60-46°Ce 60 180 50
2 nadl B/C NAD 1-B Indel 2 & NAD1-C Indel 2 182-189 25 pi 1 . 0 2.5 50°C 30 1 0 30
3 nadl B/C NAD1-B Indel 3 & NAD1-C Indel 3 106-112 25 pi 1 . 0 2.5 47°C 30 1 0 30
4 nadl B/C NAD1-B Indel 4 & NAD1-C Indel 4 223-243 25 pi 1 . 0 2.5 50°C 30 15 31
5 nadl B/C NAD 1-B Indel 5 & NAD1-C Indel 5 93-98 2 0  pi 1 . 0 2.5 50°C 30 1 0 31
6 nadl B/C NAD1-B Indel 6  & NAD1-C Indel 6 159-165 25 pi 2 . 0 2 . 0 55°C 30 15 31
7 nadl B/C NAD1-B Indel 7 & NAD1-C Indel 7 140-146 2 0  pi 1 . 0 2.5 50°C 30 1 0 31
8 nadl B/C NAD1-B4 &NAD1 MS2R 91-92 25 pi 0.75 2 . 0 49°C 60 1 0 31
9 nadl B/C 

nad71/2
NAD1-B2 & NADI SNP B-G 
NAD7-1 Indel 1 &NAD7-2 Indel 1

91-93
148-153

25 pi 1 . 0 1.5 61 °C 25 6 30

1 0 nadl B/C 
nad71/2

NADI -B2 & NADI SNP B-T 
NAD7-1 Indel 1 &NAD7-2 Indel 1

91-93
148-153

25 pi 1 . 0 1.5 61°C 25 6 30

1 1 nadl B/C nadl exon B & NADI SNP B-G -800 25 pi 2 . 0 2.5 53°C 30 45 31
1 2 nad71/2 nad7/l &nad7/2rf - 1 1 0 0 50 pi 4.0 1 -2 . 0 46°C 60 90 30
13 nad71/2 NAD7-1U & NAD7-2L -950 50 pi 4.0 2 . 0 52°C 60 60 31
14 nad7 1/2 NAD7-1 Indel 1 &NAD7-2 Indel 1 148-153 25 pi 1 . 0 2.5 54°C 30 1 0 31
15 trnK

trnK
tmK SNP4/12 AS-GA & matKR5g 
R/BvsW SSCP-1 &
R/BvsW SSCP-1 A8

326
119

25 pi 1 . 0 1.5 51°C 30 2 30

16 trnK tmK SNP4/12 AS-TC & matKR58 

R/BvsW SSCP-1 &
R/BvsW SSCP-1 A8

326
119

25 pi 1 . 0 1.5 51°C 30 2 30

17 trnK matKFl & matKRl 2072 25 pi 1.5° NAd 51°C 60 135 31
18 trnK matKF2 & matKR5 378 25 pi 1 . 0 2.5 50°C 60 30 30

I
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19 rpl33-tmP RPLTRNP 4/5/A-F & 141
RPLTRNP 4/5/A-R

2 0 rpl33-trnP RPLTRNP SNP6 -F & 95
RPLTRNP SNP6 -R

2 1 tmT-trnLS' a&  bh 477-478
2 2 trnL intron c&  dh 562
23 trnLV-tmF e&  f*1 462
24 trnT-trnL5' a&  bh 477-478
25 trnLS'-tmF c&fh -1050

8 Amplicon sizes from white, black and red spruce.

£  b (Demesure et al., 1995).

0 An equal amount of Taq Extender units was also added (see text). 

d Taq Extender Buffer (IX) contains 2 mM MgSO .̂ 

e See text for details of Touchdown PCR profile. 

f (Dumolin-Lapegue et al., 1997).

8  See Germano and Klein (1999). 

h (Taberlet et al., 1991).

25 pi 1 . 0 2.5 49°C

2 0  pi 0 . 8 2.5 49°C

50 pi 2 . 0 2 . 0 50°C
50 pi 2 . 0 2 . 0 53°C
50 pi 2 . 0 2 . 0 50°C
25 pi 1 . 0 2 . 0 50°C
25 pi 2 . 0 2 . 0 52°C

30 1 0 50

30 1 0 50

60 30 30
60 30 30
60 30 30
60 30 30
60 60 30

I



R
eproduced 

with 
perm

ission 
of the 

copyright 
ow

ner. 
Further 

reproduction 
prohibited 

w
ithout 

perm
ission.

Table 4. Geographic origin of samples used for primary sequencing and associated GenBank accession numbers.

GenBank accession

Species Sample Geographic location trnK intron8 rpl33-trnl* trnT-L-F spacers/intron nadl B/C nad71/2

White 64 Durham, N il, USA AF133923 AF 133935 AY057958 AY057967
Spruce 494 Black Hills, SD, USA AF133924 AF133936 AF156807-AF156809 AY057955 AY057968

SA Saskatchewan, Canada AF133925 AF133937
VA AK, USA AF133926 AF133938

Black 63 Durham, NH, USA AF133919 AF 133931
Spruce 3293-2 WI, USA AF156801-AF156803 AY057953 AY057963

4274-1 NH, USA AF 133920 AF133932, AY057954 AY057964
4962-1 Newfoundland, Canada AF133921 . AF133933 AY057956 AY057965
5004-1 New Brunswick, Canada AF 133922 AF 133934 AY057957 AY057966

Red 2019 21-1 Indian Gap, NC, USA AF133915 AF133927 AY057949 AY057959
Spruce 2022 51-3 October Mtn, MA, USA AF156798-AF156800 AY057950 AY057960

2027 29-4 Pillsbury, NH AF133916 AF133928
2032 8-1 Valcartier, Quebec, Canada AF133917 AF133929 AY057951 AY057961
2505 38-5 New Brunswick, Canada AF133918 AF133930 AY057952 AY057962

a See Germano and Klein (1999).



Elmer, Emeryville, CA) or the DYEnamic™ ET terminator cycle sequencing premix kit 

(Amersham Pharmacia Biotech, Inc., Piscataway, NJ). PCR-amplified fragments (both 

DNA strands) were sequenced using 5-10 pmol primer (Table 2) and 30-90 ng template 

with 8  pi of the ABI PRISM Ready Reaction mix or the DYEnamic premix. Extension 

products were separated and analyzed on an ABI PRISM 373 or 377 Automated 

Sequencer (UNH Sequencing Facility). Sequences were generated with ABI DNA 

Sequencing Software version 2.1.1, Base caller ABI50, and edited by eye using ABI 

SeqEd Software version 1.0.3. Sequences were assembled, aligned and analyzed for 

restriction sites using SeqMan II, MegAlign and MapDraw (DNASTAR). Intron/exon 

endpoints were set as determined by Gugerli et al. (2001b) for nadl and by comparison 

to Nicotiana sylvestris for nad.7 (GenBank X86706; Pla et al., 1995).

Screening Individnals for Potvmomhisms

In order to screen a large number of individuals for the presence or absence of 

specific polymorphisms efficiently, several different PCR-based techniques were 

employed (Tables 5 and 6 ). Individual restriction digests using Bsa&l, BsmAl, Dral, 

HaeTB., Hinfl, HpaU, Msel, Sau3Al (or isoschizomer DpnH) and Sspl (New England 

Biolabs, Beverly, MA or Promega) were carried out according to the manufacturers’ 

specifications. Control DNA, with the cognate restriction site, was included in all 

diagnostic restriction digests as a positive control. Sequence-specific PCR or allele- 

specific PCR (ASPCR) was carried out using primers that differentially annealed to 

specific sequences (Tables 2 and 3) (Okayama et al., 1989; Sommer et a l, 1989). All 

ASPCR reactions contained an additional non-specific pair of primers as a positive 

control (Wu et al., 1989; Germano and Klein, 1999). PCR products and/or digested DNA
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Table S. Assays used to score chloroplast polymorphisms and corresponding haplotype definitions.

Detected polymorphisms Scoring method Coding definitions

Name Location Mutation8 Sequence PCR #b Assay Possible results Code

tmK SNP 1 trnK 5'° tv G /T otherd SSCP banding pattern 1 / 2 d 0 / 1

tmK SNPs 2 & 3 tmK  5' tv, tv AT/TG otherd SSCP banding pattern 1 / 2 d 0 / 1

tmK SNP 4 trnK 5' tv G /T otherd Dral no cut (G) / cut (T) 0 / 1

tmK SNP 12 trnK 5' tv A /C 15 & 16 ASPCR PCR specific for A / C 0 / 1

tmK SNP 10 matK tv C /A otherd ASPCR PCR specific for C / A 0 / 1

Sspl no cut (C) / cut (A) 0 / 1

tmK SNP 14 matK tv A /C 17 Sequence A /C 0 / 1

tmK SNP 11 trnK 5' tv G /T 17 Sspl no cut (G) / cut (T) 0 / 1

tmK SNP 13 matK ts T /C 18 Hinfl no cut (T) / cut (C) 0 / 1

rpl-tmP SNP 3 psaJ-trnP ts A /G otherd Mspl no cut (A) / cut (G) 0 / 1

rpl-tmP SNPs 4 & 5 rpl33-psaJ tv, tv AG/TT 19 SSCP banding pattern 3/4® 0 / 1

rpl-tmP SNP 6 psaJ-trnP ts C /T 2 0 SSCP banding pattern 5/6® 0 / 1

rpl-tmP SNPs 7 & 8 rpl33-psaJ tv, ts AC/TT 19 SSCP banding pattern 3/7® 0 / 1

rpl-tmP Indel A rpl33-psaJ SSR . c„ 19 lengthf n = 8 / 9 / 10 0 / 1 / 2

tmT-L-F SNP 3 trnT-trnL tv T /G 24 RscrBI no cut (T) / cut (G) 0 / 1

tmT-L-F SNP 5 trnL-trnF tv G /T 25 Msel no cut (G) / cut (T) 0 / 1

Chloroplast haplotypes cp- cp- cp- cp- cp- cp- cp- cp- cp- cp- cp- cp- cp- cp- cp- cp- cp- cp- cp-
1 la  lb lc 2 2a 2b 2c 2d 2e 2 f 2g 3 3a 3b 3c 3d 3e 3 f

tmK SNP 1 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

tmK SNPs 2 & 3 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
t mK SNP 4 0 0 0 0 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1
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t mK SNP 12 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1 1 1

t mK SNP 10 0 0 0 0 1 1 1 1 0 1 1 1 0 0 0 0 0 0 0

t mK SNP 14 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0

t mK SNP 11 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0

t mK SNP 13 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 1

rpl-tmP SNP 3 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

rpl-tmP SNPs 4 & 5 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0

rpl-tmP SNP 6 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

rpl-tmP SNPs 7 & 8 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0

rpl-tmP Indel A 1 1 0 2 1 1 1 1 1 2 0 0 1 1 1 1 1 1 2

tmT-L-F SNP 3 1 1 1 1 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1

tmT-L-F SNP 5 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 0 0

u>
in

9 Types of mutations detected: transversions (tv), transitions (ts) and simple sequence repeats (SSR). In the cases of tmK SNPs 2 & 3, 
rpl-tmP SNPs 4 & 5, and rpl-tmP SNPs 7 & 8 , substitutions are directly adjacent to one another.

b Refer to Table 3.

c Located in the trnK intron 5' of matK. 

d Described in Germano and Klein (1999).

c Clear differences in SSCP banding patterns were observed (data not shown) and assigned numbers 1-7.

f Length differences of one base pair were detected with high-resolution agarose gel electrophoresis after shortening the amplicon with 
Dpnll digestion; results were confirmed with SSCP.
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Table 6 . Assays used to score mitochondrial polymorphisms and corresponding haplotype definitions.

Detected polymorphisms Scoring method Coding definitions

Name Location Mutation8 Sequence PCR #b Assay Possible results Code

nad7 Indel 1 nad71/2 VNTR GCCCG„ 14 length n -  1 / 2 0 / 1

nadl Indel 2 nadl B/C indel CGATA 2 length absent / present 0 / 1

nadl Indel 3 nadl B/C VNTR AATTGTn 3 length n * l / 2 0 / 1

nadl Indel 4 nadl B/C VNTR CCTTCAATGAGTGGACTAAAn 4 length n * l / 2 0 / 1

nadlIndel 5 nadl B/C indel GACCA 5 length absent / present 0 / 1

nadlIndel 6 nadl B/C VNTR TATTTA„ 6 length n * 1 / 2 0 / 1

nadl Indel 7 nadl B/C VNTR TAATATn 7 length n * l / 2 0 / 1

nadl Indel 8 nadl B/C SSR c„ 9 or 10 length0 n * 9 / 1 0 / l l 0 / 1 / 2

nadlIndel 9 nadl B/C SSR An 8 length 11*2/3 0 / 1

nadlIndel 1 0 nadl B/C VNTR GATGCGGACGAGCCATCCTTCCTCGCCC,, 4 length 1 1 * 1 / 2 / 5 / 6 / 7 0/1/4/5/6
nadl SNP A nadl B tv A /C 1 1 BsmAl no cut (A) / cut (C) 0 / 1

nadl SNPB nadl B/C tv G / T 9 & 10 ASPCR PCR specific for G/T 0 /1
nadl SNP C nadl B/C tv G /T 7 SaulAl no cut (G) / cut (T) 0 / 1

nadl SNP D nadl B/C ts C /T 6 HpaW no cut (C) / cut (T) 0 / 1

nadl SNP E nadl B/C tv A /C 6 Dra\ no cut (A) / cut (C) 0 / 1

Mitochondrial haplotype mt-1 mt-la ntt-lb mt-lc m t-ld mt-le mt-2 mt-3

nad7 Indel 1 0 0 0 0 0 0 0 1

nadlIndel 2 1 1 1 1 1 1 1 0

nadlIndel 3 0 0 0 0 0 0  1 0 1

nadl Indel 4 1 1 1 1 1 1 0 0

nadlIndel 5 0 0 0 0 0 0 1 1

nadl Indel 6 0 0 0 0 0 0 1 1
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nadl Indel 7 0 0 0 0 0 0 1 0

nadlIndel 8 2 1 2 2 2 2 0 0

nadlIndel 9 0 0 0 0 0 0 1 1

nadlIndel 1 0 0 0 1 4 5 6 0 0

nadl SNP A 0 0 0 0 0 0 1 1

nadl SNP B 0 0 0 0 0 0 0 1

nadl SNP C 1 1 1 1 1 1 0 0

nadl SNP D 0 0 0 0 0 0 1 1

nadl SNP E 1 1 1 1 1 1 0 0

a Types of mutations detected: variable number tandem repeats (VNTR), insertion/deletions (indel), simple sequence repeats (SSR), 
transversions (tv) and transitions (ts).

b Refer to Table 3.
I

0 Amplicons were shortened by digestion with Hpa II in order to resolve fragments differing by one base pair. 

d Amplicons were shortened by digestion with Hae III in order to resolve fragments differing by one base pair.



fragments were separated through 2% agarose or 4-5% MetaPhor® agarose (BioWhittaker 

Molecular Applications [BMA], Rockland, ME), depending on the degree of resolution 

required.

Single strand conformation polymorphism (SSCP) was used to survey populations 

for the presence or absence of some polymorphisms (Sheffield et aLr 1993). SSCP 

analysis was carried out according to the protocol for MDE™ Gel (BMA). One or two pi 

(3-6 ng) PCR product were combined with 10 pi stop solution, incubated at 95°C for 2 

minutes and then chilled on ice for 5 minutes. The entire denatured sample was loaded 

onto a  0.75X MDE gel. Gels were stained with 2X GelStar® nucleic acid stain (BMA) in 

50% glycerol for 15 minutes and visualized under UV light Additional DNA sequencing 

was done as a control to determine the nature of novel SSCP banding patterns, and also 

as a check when restriction digestion was negative at potential single nucleotide 

polymorphism (SNP) sites.

Phylogenetic Analysis

Chloroplast and mitochondrial haplotypes were designated as each unique 

combination of polymorphisms detected within any one individual. Haplotypes were 

coded as series of ones and zeroes (with additional numerals in cases of polyallelic loci). 

Dinucleotide substitutions aid  insertion/deletions (indels) were considered as single 

mutational events (see Laroche et al., 2000; Averof et al., 2000). Phylograms were 

generated with Phylogenetic Analysis Using Parsimony (PAUP version 4.10b; Swofford, 

1998) under the criterion of minimum evolution using neighbor-joining search with 1000 

bootstrap replicates. Character types were unordered with the exception of the variable 

number tandem repeat (VNTR) nadl Indel 10, assuming the stepwise mutation model (as
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reviewed in Jame and Lagoda, 1996). Since simple sequence repeats (SSRs) are more 

likely to display convergent evolution (Jame and Lagoda, 1996), the SSRs ipl-tmP Indel 

A and nadl B/C Indel 8  were assigned weights equal to half those of all the other 

characters. Picea schrenkiana was used as an outgroup; the sample was collected from 

the arboretum o f the Ministry o f Forests, British Columbia, in Vemon BjC. The 

mitochondrial haplotype of P. schrenkiana was determined by directly sequencing the 

nadl B/C andnad71/2 introns (GenBank AY153782 and AYI69718). Its chloroplast 

haplotype was determined by sequencing the tm K  intron and the rpl33-psaJ-tmP region 

(GenBank AY035204 and AY115679) and by indirectly screening for the substitutions 

within the tmT-tmL-tm F regions by the methods described above.

Estimation of Sequence Divergence Rates and Substitution to Indel Ratios

An average number of substitutions per site was estimated for the chloroplast tmK  

intron (including matK) from five conifer pahs by dividing the number of pairwise 

substitutions by the number o f compared nucleotides. The sequences used were those of 

white spruce (GenBank AF059341), Himalayan spruce (Picea smithiana; GenBank 

AF143429), jack pine (Pimis hanksiana\ GenBank AF143427) and Armand pine (Pimis 

armandii; GenBank AF143428), with pairwise comparisons between white spruce and 

each pine, between Himalayan spruce and each pine, and between the two pines. The 

sequence evolution rate was estimated by dividing the average per-site divergence by the 

time (geological date) since cladogenesis. The divergence o f Picea from Pimis and the 

split between the Pimis subgenera, Strobus and Pinus, (each occurring 70-100 million 

years ago) were estimated from the fossil record (Miller, Jr., 1977; Alden, 1987). The 

estimated range of time since the divergence of black and red spruce was interpolated
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from the estimated tmK  sequence evolution rates using the m inim um  and m axim um  

number of tmK  substitutions detected between any two individuals. The number o f 

substitutions per site (Ko) and the number o f indels per site (I; Laroche et a l, 2000) were 

estimated for nadl B/C  by counting polymorphisms between pairwise alignments o f 

white, black and red spruce. Since multiple mitochondrial haplotypes were detected in 

white and black spruce, polymorphisms of the most common haplotypes were used for 

the calculations. The ratios o f substitutions to indels (Ko/T; Laroche et a l, 2000) were 

subsequently estimated.

Population Genetic Analyses

Numbers of observed haplotypes were used to calculate haplotype frequencies, 

number of haplotypes per species (As) and average number of haplotypes per population 

(Ap; Hamrick and Godt, 1990). Analyses for genetic diversity and differentiation specific 

for haploid loci were carried out as specified by Pons and Petit (1995). Haplotypes were 

treated as alleles at a single genetic locus. Diversity within each population (ht), average 

within-population diversity (hs), total diversity (h-f) and degree of differentiation (Gsr) 

were calculated according to Pons and Petit (1995) using the authors’ program Haplodiv 

for Windows. Data from populations represented by two or fewer individuals were 

excluded from these analyses.

Geographical Correlations

To test the significance of clinal patterns, linear regression analysis of 

geographical coordinates versus haplotype frequencies per population was carried out 

using SYSTAT Version 10 (SPSS Inc., 2000). Analysis of molecular variance 

(AMOVA) was conducted with Arlequin version 2.000 (Schneider et a l, 2000).
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Hierarchical groups for red spruce were designated geographically such that its 

northeastern populations were grouped separately from its southwestern populations.

This was done in order to test for north/south trends in genetic diversity observed by 

Hawley and DeHayes (1994). The ranges of black and white spruce were divided at 

95°W (see Wilkinson etal., 1971; Chang and Hanover, 1991; Fumier and Stine, 1995), 

Black and white spruce populations were also divided among four of the climatic/forest 

regions of Canada defined by Rowe (1972). These included Acadia, Great Lakes-St 

Lawrence, Boreal, and Grasslands; populations located in the United States were 

assigned to the nearest Canadian region (Morgenstem, 1978). Fixation indices (Fst, Fsc, 

Far) for defined regions were tested for significance by running 3000 permutations. The 

fixation index Fst (Weir and Cockerham, 1984) was calculated for each individual 

species in AMOVA by assigning all populations of a  species to one group.

Results

The focus of this project was to assess the amount and geographic distribution of 

genetic variation within the oppositely inherited cytoplasmic genomes o f white, black and 

red spruce. Since these genomes are haploid and uniparentally inherited, polymorphisms 

within an organelle genome are linked. Loci were chosen that were expected to display 

relatively high variability. Mitochondrial regions examined were the nadl B/C and nad7 

1/2 introns. Chloroplast regions included the tmK  intron (encompassing the protein- 

coding gene matK), spacers between rpl33,psaJ and tmP, spacers between tmT, tmL 

andfraF, and the tmL intron. TmK and rpl33-psaJ-tmP sequences, and some o f the 

variation found therein, have been previously described (Germano and Klein, 1999).
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Summary of Polymorphisms Initially Detected

Sequencing of tmT-tmL-tmF from one individual per species revealed a total of 

one indel and seven base substitutions (or single nucleotide polymorphisms; SNPs) 

including one transition and six transversions. The tmT-tmL spacer was 414-415 bp and 

contained three polymorphisms that distinguished white spruce from the other two 

species and one polymorphism that distinguished black spruce. The 489-bp tmL intron 

contained one white spruce-distinguishing substitution, while the 380-bp tmL-tmF  spacer 

revealed three base substitutions, two separating white and one differentiating red spruce.

The mitochondrial intron nadl B/C ranged in size from 2983 - 3160 bp; 

comparison of the initial sequences revealed a total of nine indels and five base 

substitutions (1 transition, 4 transversions). Consensus primers (Dumolin-Lapegue et cd., 

1997) worked poorly to amplify nadJ 1/2 in white and red spruce, therefore PCR primers 

NAD7-1U andNAD7-2L were designed that annealed just inside the exons (Table 2).

The nadl 1/2 intron was 945 bp in black spruce and only a 5-bp insertion was detected 

that separated red spruce from the other two species. The ratios of substitutions to indels 

(Ko/I; Laroche et al., 2000) in the nadl B/C intron (strictly) were 4/7 between white and 

red spruce, 3/6 between white and black spruce, and 1/3 between red and black spruce; 

giving a range o f 033-0.57among the species.

Screening Populations for Identified Markers and Defining Haplotypes

The presence/absence of eveiy identified mitochondrial and selected chloroplast 

markers were scored in range-wide population samples using PCR-based techniques 

(Tables 5 and 6 ). The results of screening a  subset of the populations for markers tmK 

SNP 1, tmK SNPs 2&3, tmK SNP 4, matK SNP 10 and rpl-tmP SNP 3 have previously
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been reported (Germano and Klein, 1999). During the scoring process, additional 

intraspecific polymorphisms were detected as novel patterns when carrying out SSCP, 

restriction analysis or length assays; die molecular nature of these polymorphisms was 

determined by sequencing. These included a variable number tandem repeat (VNTR; 

nadl Indel 10), three base substitutions (tmK SNPs 11,12 and 13) and one dinucleotide 

substitution (rpl-tmP SNPs 7&8) (Tables 5 and 6 ).

Haplotypes were defined as each unique combination of polymorphisms found 

within an individual. A total of nineteen chloroplast haplotypes were defined based on 

the presence or absence o f 15 polymorphisms: eight in the tmK  intron, five in the rpl33- 

psaJ-tmP region, and two in the tmT-tmL-tmF  region (Table 5). Eight mitochondrial 

haplotypes were identified by the presence/absence profiles of 15 markers: one in nadl 

1/2 and the rest in nadl B/C (Table 6 ). The three most common mitochondrial (mt-) and 

chloroplast (cp-) haplotypes were numbered according to the species in which each was 

most frequently detected (l=white; 2=black; 3=red spruce). Variants of these haplotypes 

were designated by assigning letters (a-g) as suffixes to the numeric code.

Relationships and Frequency of FTanlotvnes

Phylogenetic relationships among the haplotypes and haplotype frequencies 

within each species are presented in Figure 1. Three lineages are evident as neighbor- 

joining analysis distributed the 19 chloroplast haplotypes among three monophyletic 

groups. Given the limited character set, much resolution was lost upon bootstrapping 

(Figure IB), however the major clades remained intact With the exception of three 

individuals, each species contained chloroplast haplotypes of only one lineage. White 

spruce contained only chloroplast haplotypes of the cp-1 lineage, and these haplotypes
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Figure 1. Phylograms showing relationships of haplotypes. Gene trees were generated 
with PAUP using distance analysis and Picea schrenkiana as the outgroup. (A) 
Chloroplast haplotypes, neighbor joining search. (B) Chloroplast haplotypes, neighbor 
joining search with bootstrap. (C) Mitochondrial haplotypes, neighbor joining search 
with bootstrap. Each haplotype’s frequency is listed to its right; frequencies are in white 
spruce (W:), black spruce (B:) and red spruce (R:).
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were not detected in die other two species. Cp-2 and its seven variants were found 

almost strictly in black spruce, with the exception of cp-2 present in one red spruce. Cp-2 

and its six variants were typical of red spruce except that cp-3 was also observed in two 

black spruce samples.

Ten, thirteen and five polymorphisms separate haplotypes m t-l and mt-2, m t-l 

and mt-2, and mt-2 and mt-2, respectively. Mt-2 and mt-3 are more closely related to 

each other than they are to mt-l; mt-l and its variants (mt-la through e) form a 

monophyletic group (Figure 1C). No variants of mt-2 or mt-3 were detected. White 

spruce contained only mt-l and four o f its variants, with mt-l being the most common. 

Mt-3 appeared to be fixed in red spruce as it was die only haplotype detected in the 

species. The most frequent mitochondrial haplotype in black spruce was mt-2 (78.2%), 

and this haplotype was specific to black spruce. Interestingly, there were 38 black spruce 

individuals (18.0%) displaying mt-3, seven individuals (3.3%) with m t-l, and one 

individual with mt-la.

TmK. Divergence Rates Among Spruce

Five pairwise comparisons of GenBank sequences were made to estimate tmK  

divergence. These included white spruce and jack pine, 119 substitutions/2431 bp; white 

spruce and Armand pine, 99 substitutions/2038 bp; Himalayan spruce and jack pine, 119 

substitutions/2426 bp; Himalayan spruce and Armand pine, 98 substitutions/1976 bp; and 

jack pine and Armand pine, 75 substitutions/1987 bp. These species were chosen 

because they represent spruces from North America (white spruce) and Eurasia 

(Himalayan spruce) and pines from each of the two Pinus subgenera, Strobus (Armand 

pine) and Pinus (jack pine). The times since cladogenesis ofPicea from Pinus and of the
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Pinus subgenera were estimated from the fossil record to have both occurred during foe 

late Cretaceous (100-70 million years ago; Miller, Jr., 1977; Alden, 1987). Both ends of 

this time range (100 and 70 million years) were used to estimate average m inim um  and 

maximum rates of chloroplast tm K  intron sequence evolution of 4.7 x 10' 10 and 6.7 x 10' 

10 substitutions/(site*yr), respectively. Estimated times since foe divergence of black and 

red spruce were then interpolated from foe sequence evolution rates using foe m inim um  

and maximum number of tmK  substitutions detected between any two individuals (e.g. 1 

tmK  substitution between cp-2 and cp-2; 4 tmK  substitutions between cp-2a and cp-Sf) 

per number of compared nucleotides (2476 bp). Therefore four estimates of foe time 

since foe divergence of red and black spruce from their common ancestor were made; 

they ranged between approximately 0.6 and 3.5 million years ago.

Genetic Differentiation and Geographical Distribution of Haplotypes

Values of genetic diversity and differentiation are presented in Table 7 and foe 

geographic distributions of haplotypes are displayed in Figure 2. All three species 

displayed more genetic variation in foe chloroplast sequences than in tire mitochondrial 

introns. Red spruce displayed the highest total chloroplast diversity (hr = 0.52) o f foe 

three species, yet no mitochondrial variation was detected within i t  White spruce 

exhibited lower diversity than black spruce in both genomes. Genetic structure among 

populations was not detected in any of foe species for foe chloroplast haplotypes (Gsr and 

F st  were close to zero). Significant structure of mitochondrial haplotypes, however, was 

observed among populations of white and black spruce, which had Fst values of 0.49 and 

0.59, respectively (P < 0.001). Reasons for this structure are proposed in foe Discussion. 

All of foe mitochondrial variation identified within white spruce (haplotypes mt-lb, -1c,
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Table 7. Genetic diversity and differentiation.

White spruce Black spruce Red spruce

n* 89 208 49
k 2 2 53 1 1

n /k 4-5 3-5 3-6
Mean n /k  (SD) 4.05 (0.21) 3.92 (0.81) 4.45 (0.93)

Chloroplast
As 4 9 8

Ap 1-3 1-4 1-3
Mean Ap (SD) 1.36 (0.58) 1.87(0.76) 2.36 (0.81)
hs (SE) 0.18 (0.06) 0.42 (0.04) 0.56 (0.09)
M S E ) 0 . 2 0  (0.06) 0.44 (0.04) 0.52 (0.06)
Gst  (SE) 0.10 (NC) 0.05(0.05) -0.06 (0.05)
Fst 0.09 0.07 - 0 . 0 2

Mitochondria
A, 5 4 1

Ap 1-3 1 - 2 1

Mean Ap (SD) 1.14 (0.47) 1.15 (0.36) 1 .0 0 (0 .0 0 )
hs (SE) 0.07 (0.05) 0.15 (0.04) 0 . 0 0

hT (SE) 0.13 (0.09) 0.36 (0.06) 0 . 0 0

Gst  (SE) 0.49 (NC) 0.58 (0.09) NA
Fst 0.49*** 0.59*** NA

Abbreviations: n , total number of trees used in diversity analyses; k , total number of 
populations they represent; n/k, number of trees per population; SD, standard deviation; 
SE, standard error; As, number of haplotypes detected per species (Hamrick and Godt, 
1990); Ap, number of haplotypes detected per population (Hamrick and Godt, 1990); hs, 
average within-population diversity; h r, total within-species diversity; Gst, differentiation 
parameter (Pons and Petit, 1995); Fst, fixation index (Weir and Cockerham, 1984); NC, 
not calculated; NA, not applicable; *** P < 0.001.

a Data from populations with two or less individuals were excluded from the diversity 
analyses (one white spruce and three black spruce individuals).
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Figure 2A. Geographic locations of populations and their included chloroplast haplotypes 
coded according to the key shown. Each circle represents one population; circle divisions 
represent the number of individual trees scored in each population.
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Figure 2B. Geographic locations of populations and their included mitochondrial 
haplotypes coded according to the key shown. The positions of individual trees within 
populations (i.e. divisions within circles) correspond between A and B.
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-Id  and -le) was confined to two of its northeastern populations (Figure 2B).

The chloroplast haplotypes in red and white spruce appeared to be randomly 

scattered across their ranges (Figure 2A); no significant differences were found between 

hierarchal groups tested with analysis of molecular variation (AMOVA) in either of these 

species (Table 8 ). Black spruce demonstrated geographic patterns of the distribution of 

its chloroplast and mitochondrial haplotypes, with much of its variation residing around 

the Great Lakes region and in the eastern half of its range (Figure 2 B). This is supported 

by AMOVA, which indicated that 32%  o f  the total chloroplast variance (P < 0.04) and 

18.2% of the total mitochondrial variance (P < 0.001) m black spruce were due to 

variation between the eastern and western halves o f its range. The chloroplast haplotypes 

cp-2e and cp-2fwere principally confined to the east; cp-2e was absent and qj-2/was 

present in only two individuals in the western half the black spruce range. Linear 

regression analysis indicated that the frequency of cp-2/"was clinal (P < 0.04), with a 

distribution decreasing from southeast to northwest Cp-2g was absent from the eastern 

quarter of die black spruce range, and its distribution was clinal (P < 0.001) in the 

opposite direction. Mitochondrial haplotype mt-3 was only present in the eastern half of 

the black spruce range. Its frequency was clinal (P < 0.001), decreasing from southeast to 

northwest. Furthermore, AMOVA indicated that 10.8% of the total mitochondrial 

variance in black spruce, which was due mostly to the presence of mt-3, was assigned to 

variation between climatic regions (P < 0.02; Table 8 ). The other mitochondrial 

haplotypes detected in black spruce, m t-l and m t-la, were detected in four different 

populations dispersed across its range, with one population in the west appearing to be 

fixed for m t-l (Figure 2B).
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Table 8. Results o f analyses of molecular variance (AMOVA).

Chloroplast Mitochondria

Variance Variance
Groupings of regions d.f.SS (% of total) Fct SS (% of total) Fct

White spruce
east/west 1 0.23 0.00 (2.3%) 0.02 0.15 0.00 (0.0%) 0.01
Acadia/Boreal/Grasslands/ 3 0.52 0.00(0.2%) 0.00 0.52 0.00(0.2%) 0.00
Great Lakes-St Lawrence

Black spruce
eastAvest 1 1.51 0.01 (3.2%) 0.03* 24.16 0.21 (18.2%) 0.18***
Acadia/Boreal/ 2 1.04 0.00(0.7%) 0.01 17.4 0.12(10.8%) 0.11*
Great Lakes-St Lawrence

Red spruce
northeast/southwest 1 0.55 0.00(0.9%) 0.07 NA

Abbreviations: d.f., degrees of freedom; SS, sum of squares; Fct, fixation index among 
groups (Schneider et al., 2000); * P < 0.05; *** P < 0.001; NA, not applicable.
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Discussion 

Between- and With in-Species Variation

Chloroplast sequence divergences among white, black and red spruce ranged from 

0.0 to 0.4 %, while the mitochondrial regions displayed levels of 0.0 to 0.2% divergences 

between species. The mitochondrial nadl B/C  intron, while containing many more 

polymorphisms than n a d l1/2, displayed low levels of variation between the three 

species. Such levels of divergence are remarkably low when compared to divergences 

among species o f its sister genus Pinus. The tmL intron, for example, displays up to 10 

times more variation between pine species than between spruce species. The low levels 

of sequence divergence in spruce are likely not due to slow rates o f mutation (i.e. 

differences in DNA replication and repair mechanisms), because there are low levels of 

between-species variation (relative to Pinus) in both cytoplasmic genomes, and also in 

the ribosomal internal transcribed spacer DNA of the nuclear genome (Germano and 

Klein, 1999). They are more likely attributed to the relatively young age of the spruce 

genus. This is consistent with Sigurgeirsson (1992), who estimated from chloroplast 

RFLPs that the spruces diverged from their common ancestor long after the radiation of 

the pines took place.

The chloroplast genome displayed significantly more intraspecific variation and 

hence higher total chloroplast genetic diversity within species than the mitochondrial 

genome. Eleven of the chloroplast sites varied within species (Table 5) compared to only 

two of the screened mitochondrial sites (Table 6 ; assuming that the presence of m t-l and 

mt-3 in black spruce is due to interspecific hybridization, see below). Although 

additional cryptic variation for these organelle regions may have gone undetected with

53

Reproduced  with permission of the copyright owner. Further reproduction prohibited without permission.



our screening methods, the pattern of greater variation of chloroplast DNA versus 

mitochondrial DNA is accurate since the same numbers of sites were screened using the 

same methods for both organelles. The difference in levels of observed intraspecific 

variation for each of the genomes in spruce is consistent with the slow rate of primary 

sequence changes of mitochondrial DNA relative to chloroplast DNA in plants (Palmer, 

1992). This observation is also consistent with findings of higher evolutionary rates in 

gymnosperm organelle DNA that is inherited paternally than in DNA inherited 

maternally (Whittle and Johnston, 2002).

Nature of Mutations in the Cytoplasmic Genomes

The frequencies of different polymorphism types (e.g. indels, base substitutions, 

and microsatellites) varied sign ificantly between the two organelle genomes. AD of the 

detected chloroplast polymorphisms were base substitutions except for one single­

nucleotide SSR (Table 5). Conversely, only a third of the mitochondrial markers were 

substitutions, die remaining two thirds being indels (Table 6 ). Most of the observed 

indels were repetitive in nature, an apparently common feature o f  nadl B/C in the 

Pinaceae (Grivet et al., 1999; MItton et aL, 2000b; Gugerli et al., 2001a). Interestingly 

however, the only VNTR that was present with greater than two repeat units long was 

nadl Indel 10. It had a  unit length of 28 bp and was repeated up to six times (Table 6 ) in 

two populations o f  white spruce (Figure 2B). Furthermore, the tandem repeat array o f 

nadl Indel 10 was flanked by short ( 8  bp) direct repeats, a pattern observed in the 

mitochondrial DNA of Norway spruce (Sperisen et a l, 2001), sugar beet, wheat and 

Arabidopsis (Nishizawa et al., 2000). The ratios of nadl B/C substitutions to indels 

(Ko/I) o f0.33-0.57 among white, black and red spruce were determined by counting the
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number of nadl B/C polymorphisms between the species in a pairwise fashion, using the 

most com m on haplotypes within species. The ratios are comparable to Norway and 

Siberian spruce (Picea obovata) (nadl B/C K</I = 1.0-2.0), however they are strikingly 

lower than Pinus cembra and Pinus pumila (Ko/I = 16) and certain angiosperms (Ko/I = 

62-6.7) (Sperisen et al., 1998; Laroche et al., 2000; Sperisen et al., 2001; Gugerli et cd., 

2 0 0 1 a).

Genetic Diversity. Structure and Gene Flow within Each Species

Chloroplast haplotypes were distributed throughout each species’ range whereas 

mitochondrial haplotypes appeared to be clustered together within populations (Figure 2). 

Therefore fixation indices G s t and Fir were effectively zero for the chloroplast yet 

significantly above zero for the mitochondria (Table 7). This is consistent with pollen 

being the main agent of gene flow among wind-pollinated plant populations (Ennos,

1994; Latta et a l, 1998). On average, wind-borne pollen can travel 10-100 km (Delcourt 

and Delcourt, 1987b), whereas spruce seeds are maximally dispersed 100 m from the 

maternal tree without physical assistance other than wind (Viereck and Johnston, 1990; 

Blum, 1990).

Detected levels of chloroplast genetic diversity were unexpectedly low in white 

spruce and unexpectedly high in red spruce (Table 7) compared to previous observations 

with other markers. For example, die average observed heterozygosity of nuclear STS 

markers in white spruce were reported to be 0.37 (Perry and Bousquet, 1998), which was 

over three times that of black spruce and over five times that of red spruce (Perron et at.,

2000). Furthermore, observed allozyme heterozygosities for red and white spruce were

0.075 (Hawley and DeHayes, 1994) and 0306 (Fumier et a l, 1991), respectively, hi
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fact, multiple studies have suggested that red spruce harbors less diversity than many 

other northeastern forest species (Eckert, 1989; Hawley and DeHayes, 1994). In the 

present study, not only did red spruce display significantly more chloroplast diversity 

than white spruce, but as much, if not more diversity than black spruce. The significance 

of this is magnified when considering the narrow geographic range of red spruce, which 

was represented by 49 individuals, equaling approximately one half the white spruce and 

one quarter of the black spruce trees sampled in this study.

Interspecific Hybridization and Introgression

The chloroplast haplotypes in each of the three lineages were nearly 100% 

specific to their respective species (Figure 1 A). The only exceptions were one red spruce 

individual possessing cp-2 and two black spruce individuals containing cp-3. These 

presumably represent introgressed individuals. The mitochondrial haplotypes on the 

other hand, were not as strictly species-specific. While white spruce displayed only the 

haplotypes of the m t-l lineage, and red spruce was monomorphic for mt-3, black spruce 

possessed one unique haplotype, mt-2, as well as haplotypes mt-l and mt-3 (Figures 1 and 

2).

Introgression of White Spruce and Black Spruce,

The eight black spruce individuals (4%) from four populations that possessed mt- 

7 or its close relative mt-la (Figures 1 and 2) can only be explained by hybridization 

between white and black spruce and subsequent back crossing wife black spruce. Since 

ten polymorphisms distinguish mt-l from mt-2 (Table 6 ), it is highly unlikely feat mt-l 

arose separately in these two species by convergent evolution. Nor were these white 

spruce trees mistakenly morphologically identified because they all contained nuclear
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(Germano and Klein, 1999) and chloroplast markers specific to black spruce (Figure 2).

Trees resulting from the hybridization of white spruce with Sitka or Engelmann 

spruce occur readily in nature (Sutton et al., 1991; Sigurgeirsson et a l, 1991; Sutton et 

a l, 1994). However, natural hybrids between white and black spruce were believed to be 

extremely rare (Wright, 1955); only one such tree has been documented. Little and 

Pauley (1958) identified a tree in Cromwell, Minnesota, which they deemed P. glauca X 

P. mariancr. variety Rosendahl. The intermediate nature of this tree was confirmed, and 

its progeny produced viable seed (Riemenschneider and Mohn, 1975). The introgressed 

black spruce populations I identified were dispersed, suggesting that hybridization 

between black and white spruce has happened on numerous occasions, and therefore is 

not as rare as previously thought Although all o f the populations are w ithin  the current 

range of white spruce, species-specific nuclear markers indicated that none of the eight 

trees were Fi hybrids (data not shown). Since neither black spruce trees with white 

spruce chloroplast haplotypes, nor white spruce trees with black spruce haplotypes were 

detected, hybridization and subsequent introgression appears to have been unidirectional. 

This is consistent with the findings of Wright (1955) in which white (female) X black 

(male) crosses were deemed successful or probably successful, yet the reciprocal crosses 

were not

Introgression of Red Spruce and Black Spruce

A considerable number of black spruce (18%) possessed mt-3, the only 

mitochondrial haplotype detected in red spruce (Figure 1C). Here again I hypothesize 

that interspecific hybridization accounts for the presence of this haplotype in black 

spruce, especially since hybridization between these two species is well known. These
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samples were not misidentified red spruce trees because they contained chloroplast 

haplotypes of the cp-2 lineage. The only exceptions to this, two black spruce trees 

possessing both mt-3 and cp-3, could not have been misidentified red spruce either 

because 1) their provenances were west of the Great Lakes, far removed from the nearest 

red spruce populations, and 2 ) they both contained nuclear markers specific to black 

spruce (Germano and Klein, 1999). Five polymorphisms distinguished mt-2 from mt-3.

In order for convergent evolution to have produced the mt-3 haplotype in black spruce, 

either five independent mutations in a single black spruce lineage, or recombination of 

haplotypes from separate lineages, would have had to have occurred.

Although the data appear to suggest that hybridization and subsequent 

introgression of red and black spruce were more successful in one direction, our sampling 

excluded some red and black spruce individuals that were previously classified as Fi 

hybrids. Due to this selective sampling, the actual number of trees possessing organelle 

haplotypes of the opposite species is probably even greater. Significant asymmetric 

directionality of introgression was not observed in allopatric populations by Perron and 

Bousquet (1997), or in a coastal island population (Bobola et a l, 1996a).

The Speciation of Red and Black Sprnce

It is broadly recognized that black and red spruce are closely related species. 

Perron et al. (2000) proposed that they comprise a recently evolved progenitor-derivative 

species pair with red spruce speciating from a once-isolated population of black spruce. 

The authors based their hypothesis on the following considerations: 1) the species can 

successfully hybridize, 2) red spruce has a narrow geographic range, 3) red spruce 

possessed fewer polymorphic STS loci, fewer alleles and less genetic diversity than black
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spruce, and 4) red spruce displayed no unique alleles. Indeed, the range of red spruce 

currently is small, and the hybridization of the species is well documented. However, the 

reciprocal monophyletic relationship of the red spruce cp-3 and black spruce cp-2 

haplotype lineages is not consistent with a progenitor-derivative relationship (Figure 1 A). 

Furthermore, red spruce displayed as many polymorphic sites (Table 5), a higher ratio of 

haplotypes per sample size, and as much, if not more, genetic diversity as black spruce 

(Table 7). Observed heterozygosities of STS markers were 0.069 and 0.103, while 

chloroplast diversities were 0.52 and 0.44 (Table 7) in red and black spruce, respectively.

A key element of the progenitor-derivative hypothesis is that red spruce contained 

no unique STS alleles, therefore its genetic diversity appeared to be a subset of that of 

black spruce (Perron et al., 2000). In the present study, six of the eight chloroplast 

haplotypes detected in red spruce were unique to it. In fact, a total of 30% of red spruce 

contained a red spruce-specific chloroplast haplotype (Figure 1 A). This discrepancy may 

be due to a lack of sufficient sampling of black spruce in the STS study. Our data 

indicate that one of the three provenances used to represent allopatric (“pure”) black 

spruce by Perron et al. (2000) was in fact introgressed: four out of four of the black 

spruce trees from the Manicouagan, Quebec population (sampled in both studies) 

possessed the mitochondrial haplotype mt-3 (Figure 2B). It is conceivable that some of 

the “black spruce” STS alleles actually originated in red spruce and were inherited by 

black spruce through interspecific hybridization during the Wisconsin period. An 

expansion of the STS study to incorporate samples from the western portion of the black 

spruce range would have improved the data set, and possibly changed the conclusions 

drawn from it.
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Perron et al. (2000) used genetic drift simulations to infer that 100,000 years 

would have been long enough for the level of genetic diversity in an isolated black spruce 

population to be reduced to the level of red spruce STS diversity. Although the authors 

proposed that the speciation of red spruce occurred some time during the Pleistocene, 

they use the genetic drift simulations to imply that the split could have happened as 

recently as the Wisconsin period. However, my analysis using differences in tmK  intron 

sequences to estimate time since divergence from a common ancestor suggests the 

divergence of red and black spruce occurred approximately 0.6 to 3.5 million years ago. 

The estimated mutation rates are expected to be accurate because they were 

approximately two-fold higher than those reported for rbcL in conifers (Albert et al., 

1994). A divergence time of 600,000 years ago means that red and black spruce endured 

at least six ice ages as distinct species, which means they also underwent six range 

displacements and hence six alterations of their population genetic structure. The current 

geographic distribution of eastern spruce haplotypes is likely the result of their expansion 

from the southeast glacial refugium during the Holocene. The black spruce populations 

possessing haplotype mt-3 were restricted to the east, nearer to the range of red spruce 

(Figure 2B). This observation is consistent with our hypothesis that black spruce 

obtained this haplotype through hybridization with red spruce; it cannot be attributed to a 

Wisconsin period speciation event.

Geographic Distribution of Haplotypes

European and North American pollen records indicate that forest trees migrated at 

rates between 150 and 500 meters per year during the late-Pleistocene and Holocene 

(Clark et al., 1998). Spruce was estimated to have migrated across the eastern United
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States at an average rate o f275 m/yr (Delcourt and Delcourt, 1987a). Such rates would 

be impossible under a stepping stone model of dispersal whereby seeds move unassisted 

(Clark et al., 1998). Instead, a model of leptokurtic dispersal is assumed in which a 

fraction of seeds travel a long distance, via animals, wind across frozen landscapes or 

rushing water from melting glaciers, that results in the establishment of individuals far 

ahead of the migration front (Clark et al., 1998).

Under the leptokurtic dispersal model, a fraction of seeds travel a long distance 

ahead of the migration front, and newly established populations are expected to possess 

less genetic diversity (loss of alleles) due to the founder effect (Hewitt, 1996; Comes and 

Kadereit, 1998). Consequently, populations nearest to the putative refugia display higher 

levels of genetic diversity (e.g. more haplotypes) than populations further away (Taberlet 

et al., 1998; Comes and Kadereit, 1998; Newton et a l, 1999; Lowe et al., 2000). The 

routes taken from a refugium determine the distribution patterns of intraspecific 

polymorphisms; specifically, a clinal pattern of variation follows the direction of 

migration (Taberlet et a l, 1998; Comes and Kadereit, 1998). Founder events also 

facilitate increased interpopulation and decreased intrapopulation variation of maternally 

inherited markers (Fumier and Stine, 1995). On the other hand, areas of merging 

populations that have expanded from different glacial refugia, i.e. zones of secondary 

contact or suture zones, are expected to contain increased genetic diversity (Hewitt, 1996; 

Taberlet et a l, 1998).

During the Holocene, the establishment of new territory by forest trees involved 

more than simple seed dispersal ahead of the advancing species front (Davis and Shaw,

2001). Not only were trees selected that could better invade the newly exposed yet still
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harsh conditions of the north, but also that selection against phenotypes poorly adapted to 

the new (warm) local conditions occurred resulting in range contraction (Davis and 

Shaw, 2001). Therefore it is conceivable that hybrid and introgressed black/red spruce 

trees had a selective advantage over pure black spruce in the southern portions of its 

range during the rapid climate w arm ing  of the Holocene considering red spruce’s 

adaptation to wanner conditions (Viereck and Johnston, 1990; Blum, 1990). Hybrid 

vigor has been reported under particular circumstances. For example Fowler et al. (1988) 

observed that red spruce with black spruce morphological characteristics outperformed 

pure red spruce under certain conditions. Gordon (1976) maintains that presently, natural 

hybrids are less fit, although he concedes that some hybrids have been quick to invade 

newly opened landscapes, e.g. clear cut land, and have become well established when not 

in direct competition with the parent species.

Distribution of the Red Spruce Mt-3 Haplotype in Alio pa trie Black Spruce

Eleven of the seventeen mt-3 containing black spruce populations were outside 

the natural range of red spruce (Little, Jr., 1971). The westernmost of these populations 

was located in the southwest comer of Ontario, over 1100 km from the closest region of 

sympatry with red spruce. Using the average spruce migration rate o f275 m/yr inferred 

from eastern North American pollen records (Delcourt and Delcourt, 1987a) and a 

generation time of 10-30 years (Fowells, 1965; Viereck and Johnston, 1990), I estimated 

that the original hybridizations occurred over 4000 years or 130-400 generations ago. 

Such a long time span can be attributed to the maternal inheritance of the mt-3 haplotype 

and the relative short dispersal distances of spruce seed. The significant number o f 

allopatric black spruce populations retaining the red spruce mt-3 haplotype suggests that
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hybridization occurred frequently during the Holocene, possibly more so than it is 

believed to occur today. It is feasible that hybrid and introgressed black/red spruce trees 

had a selective advantage over pure black spruce in the southern portions of its range 

during the rapid climate wanning of the Holocene considering red spruce’s adaptation to 

wanner conditions.

Distribution of Chloroplast Haplotvpes

No distributional patterns of the chloroplast haplotvpes were detected within red 

spruce (Figure 2A). Hawley and DeHayes (1994) observed less allozyme variation in 

southern red spruce populations, which they attributed to genetic drift within small 

isolated populations. Khalil (1987) also detected clinal patterns of growth characters in 

red spruce. The apparent random spread of chloroplast haplotypes across the red spruce 

range is probably due to the increased amount of gene flow of chloroplast DNA with 

respect to nuclear genes in conjunction with the narrow range of the species.

Previously, east-west trends were reported for cpDNA RFLPs in white spruce 

(Fumier and Stine, 1995) and for monoterpene frequencies in both white and black 

spruce (Wilkinson et a l, 1971; Chang and Hanover, 1991). Although geographic 

patterns of haplotypes in white spruce were not observed (likely because little variation in 

the surveyed genes was detected in the species), there was an obvious difference in black 

spruce chloroplast haplotype frequencies between the eastern and western portions of its 

range (Figure 2 A). The chloroplast haplotype cp-2/was detected primarily in the east 

with a significant clinal pattern decreasing from south to north and from east to west.

The cp-2g haplotype however, was predominant in the west with a significant cline in the 

opposite direction. The westward decrease in overall chloroplast diversity is consistent
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with a northward and westward expansion of black spruce from the well-documented 

southeastern glacial refugium. However the opposing clines of cp-2/and cp-2g 

frequencies are consistent with multiple scenarios. The prevalence of cp-2g in the west 

could be due to the founder effect from leptokurtic dispersal out of the southeastern 

refugium. Additionally, the large Glacial Lake Agassiz, present around 14,000-11,000 

years BP, was probably a significant barrier between the Great Lakes region and the 

Great Plains of the west (Critchfield, 1984). Another interesting possibility was 

suggested by Fumier and Stine (Fumier and Stine, 1995) who attributed their observed 

east-west genetic divide among white spruce to a small glacial refugium in the west. It is 

possible that this hypothetical western refugium contained black spruce as well.

This disjunct refugium for white spruce has been hypothesized to have existed in 

the unglaciated portion of northwestern North America during the Wisconsin period 

(Tsay and Taylor, 1978; Critchfield, 1984; Ritchie and MacDonald, 1986), with several 

lines of evidence indirectly pointing to its existence. Firstly, the postglacial climatic 

warming, ice retreat. (McLeod and MacDonald, 1997) and repopulation by spruce of the 

western interior of Canada occurred extremely rapidly (Critchfield, 1984; Ritchie and 

MacDonald, 1986; McLeod and MacDonald, 1997). McLeod and MacDonald (1997) 

demonstrated that black and white spruce pollen appeared on either side of a -1900 km 

region (from central Saskatchewan to the northwest comer of the Northwest Territories) 

within 3000 years. Moreover, Ritchie and MacDonald (1986) concluded that white 

spruce spread across 2000 km of the same region in only 1000 years. Strong winds were 

suggested by Ritchie and MacDonald (1986) as the proponent for such long-range seed 

dispersal, however these migration rates are over 2-7 times the average rate estimated for
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re-invasion of more southern parts of North America (Delcourt and Delcourt, 1987a) and 

would have required seeds to travel about 20-60 km in a northwest direction from their 

parent tree every-generation (Nienstaedt and Zasada, 1990).

Secondly, Ritchie (1980) cites pollen evidence of spruce forests in the northern 

Yukon Territory during the Middle Wisconsin, and macrofossil evidence of spruce in 

north central Alberta between -43,000 and 27,000 yr BP. Spruce pollen was present 

throughout a >24,900 yr BP sediment record from northern Yukon, however the author 

did not conclude that it was present in the vicinity of the site due to its low pollen 

percentage (2-10%) and low maximum influx values. In fact, it is common for 

palynologists to reject the regional presence of a taxa despite low pollen percentages in 

sediment cores, but this conservative inteipretational practice may lead to inaccurate 

inferences. For example, lodgepole pine (Finns contorta) pollen percentages of less than 

2% in southeast Alaska were originally attributed to long-range pollen dispersal until the 

definitive presence of the species at 10,000 yr BP was evidenced by macrofossils at the 

site (Peteet, 1991). Low pollen production would be expected of any tree species in the 

harsh conditions of a northern glacial refugium (Beiswenger, 1991), therefore low pollen 

percentages in sediments from such areas may indeed indicate the presence of the 

respective taxa. There is growing evidence that some pollen studies, which originally 

attributed the presence of pollen of unexpected taxa to long distance transport, should be 

reinterpreted to consider the possibility of cryptic northern refugia (Stewart and Lister, 

2001).

A full-glacial refugium in northwestern North America has also been suggested 

for species other than spruce. Peteet (1991) suggested that a late Wisconsin refugium
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may have existed for lodgepole pine in southeastern Alaska. Some molecular 

phylogeography studies have also suggested such a refugium (Comes and Kadereit, 

1998). In a  study of chloroplast RFLPs in perennial herbs and other species, Soltis et al. 

(1997) hypothesized that plants survived the glaciation in two widely separated refugia: 

south of the ice sheet and much further north perhaps in areas of central Alaska and 

coastal islands. Chloroplast DNA diversity supported previous fossil evidence of an 

eastern Beringian refugium for arctic plants Saxifraga oppositifolia (Abbott et al., 2000) 

and Dryas integrifolia (Tremblay and Schoen, 1999).

If a northwest refugium existed for spruce, then one would expect to see relatively 

more genetic diversity in present populations of Alaska and decreasing diversity 

continuing eastward until the zone of secondary contact where they would have merged 

with populations migrating from the southeast refugium. However, as Fumier and Stine 

(Fumier and Stine, 1995) point out, such a western refugium could have been small 

enough to allow genetic drift to diminish the amount of diversity within it Additionally, 

if chloroplast haplotype cp-2g truly was present in an Alaskan refugial population during 

the Wisconsin period, then one would expect to see it in relatively high frequencies in 

present-day populations in Alaska and western Canada. In this study, Alaska was 

represented by only one black spruce population. In order to effectively test this 

hypothesis, many more intraspecific chloroplast and mitochondrial polymorphisms would 

need to be identified and their distribution assessed in an extensive sampling of black and 

white spruce populations in Alaska and western Canada.
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Summary

Range-wide distributions of mitochondrial and chloroplast haplotypes have shed 

some light on the recent history of white, black and red spruce. We have shown several 

lines of evidence that black and red spruce do not constitute a progenitor-derivative 

species pair, and that they have endured multiple ice ages as distinct species. 

Hybridization and introgression have played a role in the population genetics of red and 

black spruce and, unexpectedly, of black and white spruce during the Holocene. 

Detection of additional variation (especially in the mitochondrial genome) and increased 

sampling are necessary to further investigate the east-west divide among black spruce 

chloroplast haplotypes. This work provides a good foundation for future studies aimed at 

elucidating the post-glacial migration history of the eastern North American spruce 

species.
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CHAPTER HI

CHLOROPLAST AND MITOCHONDRIAL DNA EVIDENCE FOR THE EVOLUTION
OF PICEA

Abstract

A robust species phylogeny of Picea (spruce) is desirable in order to answer 

multiple questions about the history of the genus’ biogeography. A phylogenetic study of 

sixteen North American and Eurasian Picea species was conducted utilizing DNA 

sequences of the chloroplast tmK  intron and the second intron of the mitochondrial nadl 

gene. The topologies of the trees inferred from the chloroplast and mitochondrial data 

varied significantly, in particular to the placement of P. omorika, P. mexicana and P. 

glauca. These trees also differ from results of previous phylogenetic and systematic 

studies. Inter-species hybridization and introgression, events not uncommon in the Picea, 

are discussed as possible reasons behind such incongruencies.

Introduction

Taxonomy of Picea

The genus Picea Dietr. is comprised of approximately 35-50 species distributed 

across the Northern Hemisphere (Schmidt-Vogt, 1977; Vidakovic, 1991; Gordon, 1992). 

While most of the species occur in northern and east/central Asia, nine are indigenous to 

North America and two are native to Europe (Table 1). The Picea are distinct from other 

members of the Pinaceae family. The genus’ monophyly is supported by morphological
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Table 1. Picea species included in the phylogenetic analysis.

Species Current Distribution Source8 trnK intron nadl intron 2 nad7 intron

Picea abies (L.) Karst. Northern Eurasia Min. AY289610 AY289611
P. asperata Mast. Central China Min. AY035202 AY153790 AY169715
P. breweriana S. Wats. Northwest U.S.A. Min. AY035197 AY153786 AY169711
P. chihuahuana Martinez Mexico Min. AY035198 AY153784 AY169710
P. engelmannii (Pany) Engelm. Western North America Min. AY035196 AY153788 AY 169707
P. glauca (Moench) Voss North America SD AF059341 AY057955 AY057968
P.jezoensis (Sieb. et Zucc.) Carr. East Asian Islands Min. 1 AY035201 AY 153791 AY169716
P. mariana (Mill.) B.S.P. North America Mas. AF059343 AY057953 AY057963
P. mexicana Martinez Mexico Min. AY035194 AY153785 AY169709
P. omorika (Pancic) Purkyne Yugoslavia Min. AY035200 AY153792 AY169713
P. pungens Engelm. Western U.S.A. Min. AY035195 AY153783 AY169712
P. rubens Sarg. Eastern North America Col. AF059342 AY057949 AY057959
P. schrenkiana Sarg. Central Asia Min. AY035204 AY 153782 AY169718
P. sitchensis (Bong.) Carr. Western North America Min. AY035203 AY153787 AY 169708
P. smithiana (Wall.) Bioss. Central Asia Min. AY035199 AY153781 AY169717
P. wilsonii Mast. Central China Min. AY035193 AY153789 AY169714

8 Abbreviations: Min. = Ministry of Forests, British Columbia, in Vernon B.C. (courtesy of Mr. Gulya Kiss); SD = Black Hills, South 
Dakota (courtesy of Dr. Gerald Rehfeldt; Germano and Klein, 1999); Mas. = USDA Forest Service (Northeastern Forest Experiment 
Station), in the Massabesic Experimental Forest, Alfred, Maine (Germano and Klein, 1999); Col. = Coleman State Forest, 
Stewartstown, New Hampshire (Germano and Klein, 1999).



and chloroplast DNA (cpDNA) assessments (Wright, 1955; Schmidt-Vogt, 1977; 

Sigurgeirsson and Szmidt, 1993; Chapter II).

A systematic classification of.the genus Picea has previously been examined by 

comparing morphology, anatomy, physiology and inter-species crossability, although a 

consensus has not been achieved. In 1887 Willkomm recognized two sections or 

subgenera using needle morphology. The Eupicea were defined as having 4-sided needles 

with stomata on all sides, like P. abies, P. glauca and P. orientalis, whereas species in the 

Omorika section have 2-sided needles with stomata only on the dorsal side like P. omorika 

and P. sitchensis. In 1890 Mayr added cone morphology to the system and divided the 

genus into three sections. The Morinda section roughly paralleled Eupicea Willk., and the 

Omorika section included P. omorika, P. bicolor, P. breweriana and P. glehnii. Mayr’s 

new section Casicta had needles like those of the Omorika section, but had ripe cones with 

thin, flexible wavy cone scales; it included P. jezoensis, P. engelmannii, P. pungens and P. 

sitchensis (previously assigned to Omorika), (Alden, 1987).

Alden (1987) presents a “practical” system of three sections, borrowing from both 

Willkomm and Mayr. Section Picea (not Eupicea Willk.), having 4-angled needles with 

stomata on all sides, hard cone scales with rounded apices, included the majority of the 

species: P. abies, P. obovata (as a subspecies of P. abies), P. koraiensis, P. pungsaniensis 

(as a variety of P. koraiensis) ', P. koyamai, P. polita, P. asperata, P. retroflexa (as a variety 

of P. asperata) P. gemmata, P. meyeri, P. neoveitchii, P. wilsonii, P. schrenkiana, P. 

crassifolia, P. smithiana, P. maximowiczii, P. glehnii, P. morrisonicola, P. bicolor, P. 

orientalis, P. mariana, P. rubens, and P. glauca. Section Casicta Mayr, with 4-angled or 

flat needles, with stomata on all sides or fewer on the ventral side, and thin flexible cone
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scales with wavy apices, included P. engelmannii, P. mexicana, P. pungens, P. 

chihuahuana, P. likiangensis, P. hirtella, P. montigena, P. jezoensis and P. sitchensis. 

Section Omorika Willk., having compressed needles with strictly dorsal stomata, included 

P. brachytyla, P.farreri, P. spinidosa, P. omorika and P. breweriana. Vidakovic (1991) 

presents a slight variation of this system. He divides section Eupicea Willk. (not section 

Picea Alden) into three subsections: the first containing P. smithiana, P. schrenkiana, P. 

wilsonii, P. maximowiczii, P. polita, P. neoveitchii, P. asperata, the second including P. 

gemmata, P. meyeri, P. retroflexa (as a species), P. abies, P. obovata (as a species), P. 

orientalis and P. hoyamai, and the third containing P. pungsaniensis (as a species), P. 

bicolor, P. glehnii, P. morrisonicola, P. mariana, P. rubens, and P. glauca. Section 

Casicta Mayr is also divided into three subsections: P. engelmannii, P. mexicana, P. 

pungens and P. chihuahuana in the first, P. likiangensis in the second and P. montigena, P. 

jezoensis and P. sitchensis in the third group. Finally Vidakovic divides section Omorika 

Willk. into two subsections: the first including P. brachytyla and P. omorika and the 

second including P. breweriana and P. spinidosa. Alden (1987) notes that the section 

Casicta Mayr in particular is heterogeneous and that the sections are probably unnatural,

i.e. related by appearance and not necessarily by descent. He concludes that a systematic 

treatment of the genus is warranted. A robust phylogeny of the Picea would facilitate an 

understanding of its biogeography and assist breeding and reforestation programs. 

Phvlogeny and Biogeography of Picea

The history of radiation and speciation in the genus is controversial due to the 

paucity and fragmented nature of the fossil record. Fossil wood from Manchuria China of 

the fossil genus Protopiceoxylon (Middle Jurassic; -160 MYA), the earliest fossil
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resembling Picea, suggests that Picea evolved in Asia. Fossil wood from England (Early 

Cretaceous; 145-100 MY A) and from Japan and North America (Late Cretaceous; 100-70 

MYA) are described as Picea (Alden, 1987). However, these records are not contained 

within a summaiy of the Picea fossil record compiled by LePage (2001), and fossil woods 

of similar age have been scrutinized by Miller, Jr., (1977; 1989). Although he cites Picea 

pollen from Paleocene coal deposits (66-58 MYA) in Montana, USA, LePage (2001) 

generally believes that Picea first appeared during the middle Eocene (58-37 MYA). In 

fact, more than a dozen distinct Picea species have been reported from the Eocene, mostly 

from North America, with a few from Asia (LePage, 2001). These are consistent with 

Miller’s (1977) belief that the genus evolved no earlier than the very end of the Cretaceous 

(-65 MYA). Picea had further diversified and established itself in western North America 

and Asia by the Oligocene Epoch (Miller, Jr., 1989; LePage, 2001).

Wright (1955) compared results of artificial crossing experiments with geographic 

distribution and morphology to predict evolutionary relationships among the Picea. 

Although he recognized no natural breaks in the genus sufficient to divide it into sections, 

he discussed several phylogenetic groups of species, the members of each group he 

believed to share a common origin. What is noteworthy about this study is that 

geographically disjunct species appeared to be more closely related than other more 

proximal species. Picea rubens and P. mariana were considered closely related and 

comprised the eastern America group. Picea glauca, P. engelmannii, P. pungens and P. 

sitchensis comprised the northwest America group; P. breweriana and P. chihuahuana 

were excluded from this group because morphologically they are more similar to the Asian 

species. The southwestern Chinese and Formosan species (P. brachytyla, P. purpurea, P.
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wilsonii and P. morrisonicola) formed another group with morphological and distributional 

evidence indicating a common origin. The Himalayan species P. spinidosa and P. 

smithiana were also considered to be closely related. Although distributed in the same 

geographic location, the Japanese species {P. koyamai, P.jezoensis, P. polita, P. 

maximowiczii, P. bicolor, P. glehnii), did not comprise a group because of their lack of 

crossability with each other. Picea koyamai was proposed to be the oldest of the Picea 

species because of its “generalized” morphological traits and crossability with multiple 

other species. Morphological and crossing data suggested that it belonged in a group of 

closely related species of north Eurasia and north China {P. abies, P. asperata and P. 

likiangensis). Picea jezoensis appeared more closely related to P. brachytyla, and was 

suggested to be a link to species of the northwest America group. Picea omorika is 

morphologically very similar to P. mbens (Wright, 1955), and it displays higher 

crossabilityr with P. rubens and P. mariana than they do with one another (Gordon, 1976).

The evolutionary relationships of North American Picea species and their historical 

biogeography are disputed. Wright (1955) believed that the genus originated in northeast 

Asia because the largest number of extant species are present in the region and it is the 

location of the putative primitive species, P. koyamai. He hypothesized that radiation from 

its origin occurred in multiple waves: at least three migration events from Asia to North 

America would account for the ancestor of the eastern America group, the ancestor of the 

northwest America group and the ancestor of P. breweriana and P. chihuahuana.

Although he hypothesized that east-west migrations occurred via both northern and 

southern routes, he did not discuss the specific locations of these postulated land bridges 

(Wright, 1955). In contrast to Wright’s hypothesis, Fowler (1966) believed that a single
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ancestor gave rise to all of the North American species. Hills and Ogilvie (1970) built on 

Fowler’s hypothesis, proposing that the migration event occurred via the Asian-Alaskan 

land bridge, giving rise to the progenitor of P. rubens and P. mariana and to the progenitor 

of P. glauca and the rest of the North American species.

In a molecular phylogeny based on cpDNA restriction fragment length 

polymorphisms (RFLPs), Sigurgeirsson and Szmidt (1993) identified several alliances that 

were in agreement with Wright’s groupings. These included a P. glauca alliance (P. 

glauca, P. engelmannii and P. mexicana), a P. abies alliance (P. abies, P. asperata, P. 

aurantiaca, P. glehnii, P. koraiensis, P. koyamai and P. meyeri) and a P. brachytyla 

alliance (P. brachytyla, P. bicolor, P. chihuahuana, P. maximowiczii, P. morrisonicola, P. 

neoveitchii, P. orientalis, P. polita, P. purpurea and P. wilsonii). Furthermore, as LePage 

(2 0 0 1 ) points out, species possessing thin and flexible cone scales were allied with each 

other, and species with thick and woody cone scales were clustered together in the cpDNA 

RFLP trees. Sigurgeirsson and Szmidt’s results were also consistent with Wright in that 

there was a close relationship of P. omorika with P. rubens and P. mariana. The 

molecular data, however, did not support the putative ancient status of P. koyamai 

(Sigurgeirsson and Szmidt, 1993). In fact, some of the North American species (the P. 

glauca alliance, P. sitchensis and P. breweriana) were positioned near the root of the 

phylogenetic tree while others were tightly nested with Eurasian species among higher 

branches. This suggested that Picea originated in North America and that intercontinental 

migrations occurred multiple times following its initial radiation (Sigurgeirsson and 

Szmidt, 1993). Considering the current geographic locations of P. omorika (Europe) and 

P. rubens and P. mariana (eastern North America), it would seem plausible that these
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species’ migrations occurred when the continents were adjoined. However, the 

supercontinent.of Pangaea began to break up during the Triassic Period (-245-200 MYA), 

and the Atlantic Ocean formed in the Jurassic Period (-200-145 MYA). Since Picea did 

not evolve until millions of years later (during the end of the Cretaceous Period according 

to the fossil record), these migrations must have occurred between northwestern North 

America and northeastern Asia.

Speciation and Inter-Species Hybridization

Reproductive isolation is a hallmark of the Biological Species Concept (Mayr, 

1992), yet this criterion is applied with difficulty to the systematics of Picea. Reproductive 

barriers among Picea are weak, and the results of artificial crossability experiments have 

found cross compatibility to be moderately high among many species. Introgressive 

hybridization has been documented for many of the species, including P. rubens and P. 

mariana (Morgenstem and Farrar, 1964; Manley, 1972; Gordon, 1976; Bobola et a l, 

1996a; Bobola etal., 1996b; Perron and Bousquet, 1997), P. sitchensis, P. engelmannii and 

P. glauca (Sutton et al., 1991; Sutton et al., 1994), P. abies and P. obovala (Krutovskii and 

Bergmann, 1995), and P. glauca and P. mariana (see Chapter II; Riemenschneider and 

Mohn, 1975). Critchfield (1984) hypothesized that introgressive hybridization played an 

important role in the evolution of conifers by resulting in the formation of new races or 

species. Transitory geographic races would have evolved during the Quaternary Period (2 

MYA-present) as species were repeatedly displaced from common territories to geographic 

isolation in response to cycling climate change. This confounds a systematic treatment of 

the Picea as some contemporary species may actually be ancient hybrids.
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Sigurgeirsson and Szmidt (1993) discuss the potential of cpDNA to cross species 

boundaries through introgressive hybridization as a possible drawback of using 

uniparentally-inherited .genomes to infer organismal phytogenies. In Picea, as well as 

other conifers, the chloroplast DNA is paternally inherited whereas the mitochondrial 

genome is maternally inherited (Stine et al., 1989; Stine and Keathley, 1990; Sutton et a l, 

1991; David and Keathley, 1996; Bobola et al., 1996b; Grivet et al., 1999). This offers a 

unique opportunity to compare the evolution of two independent lineages, as well as to 

detect evidence of past introgressive hybridization events. The chloroplast tmK  intron, 

encompassing the matK gene, has been used for multiple phylogenetic studies (Johnson 

and Soltis, 1994). TmK intron sequences demonstrate low levels of variation among Picea 

species compared to Pinus species, however they are reasonably informative for 

phylogenetic study of the genus (Germano and Klein, 1999; Chapter II). Mitochondrial 

base substitutions occur at a relatively low frequency in plants (Palmer, 1992). However, 

short duplications and insertion/deletions in introns of the mitochondrial nadl and nad.7 

genes were observed between closely related Picea species and may therefore be 

phylogenetically informative in an assessment of the genus (see Chapter II).

In this chapter, I compare phylogenetic gene trees from the chloroplast and 

mitochondrial genomes representing nine North American, two European and five Asian 

Picea species. The purpose of this preliminary study is not to present a robust phylogeny 

of the genus, but to investigate whether chloroplast and mitochondrial gene trees for Picea 

would be generally congruent
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Materials and Methods

Species included in this study, their current geographic distributions, and their 

corresponding GenBank accession numbers for the various genes sequenced are listed in 

Table 1. Picea glauca, P. mariana and P. rubens specimens were obtained from 

provenance tests and independent collections. They have associated range-wide 

population studies (Germano and Klein, 1999; Chapter II). The individuals of these three 

species used in this study had chloroplast and mitochondrial haplotypes that were the most 

frequent and hence representative of their respective species. Picea breweriana was 

collected from a stand identified as Little Grayback, in T18N R6 E Section 4 HBM by 

Charles L. Frank, North Zone Genetic Resource Program, USDA Forest Service, Klamath 

National Forest. Picea sitchensis was collected near Areata, California by Yan Linhart, 

University of Colorado. The remaining species were collected at the arboretum for the 

Ministry of Forests, British Columbia, in Vernon B.C. (courtesy of Mr. Gulya Kiss). 

Species designations at the arboretum were verified by Dr. Alan Gordon and voucher 

specimens have been deposited at the University of Maine herbarium. DNAs were 

extracted from 5-10 g tissue (buds and/or needles) using a standard CTAB method (Doyle 

and Doyle, 1987). The chloroplast tmK  intron and mitochondrial nadl intron 2 and nad.7 

intron 1 were amplified and sequenced as previously described (see Chapter II).

Sequences were assembled using SeqMan II and aligned with MegAlign 

(Lasergene software package; DNASTAR version 3.72, Madison, WI). Multiple long 

insertions and. deletions in the nadl sequences necessitated manual editing of their 

alignment. Gaps were positioned parsimoniously; i.e. in a way such that a m inim um  

number of mutations could account for the observed polymorphisms. Portions of the nadl
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intron that were unique to some Picea species were analyzed with BLASTN 2.2.4 

(Altschul el al., 1997) to check for possible shared ancestry with Pima.

Phylogenetic trees were generated with Phylogenetic Analysis Using Parsimony 

(Swofford, 1998) using maximum parsimony and minimum evolution. For the tmK  

analyses, gaps were treated as missing; indels were coded as present or absent ( 1  or 0 ) at 

the end of the alignments (see Appendix B). Due to the complexity of the nadl data, all of 

the sequence polymorphisms, including base substitutions and indels, were converted to 

binary code (see Appendix C). In cases where taxa displayed polymorphisms within 

sequence regions that were otherwise deleted in other taxa, a question mark was used for 

that character in the taxa with the region deleted (question marks were defined as missing 

data in the nexus file). All characters were unordered and weighted equally. Settings were 

as follows: 1 ) parsimony optimality criterion, full heuristic search, random sequence 

addition (10 replicates) with 1000 bootstrap replicates, tree-bisection-reconnection (TBR) 

branch-swapping algorithm or 2 ) distance optimality criterion (minimum evolution), 

distance measure = mean character difference, neighbor-joining search with 1 0 0 0  bootstrap 

replicates. A maximum parsimony analysis (parsimony optimality criterion, full heuristic 

search, random sequence addition [ 1 0  replicates]) of the nadl data set was also performed 

without bootstrapping. Pinas thunbergii (Tsudzuki et a l, 1992), Pinus armandii and Pinus 

banksiana (Wang et al., 2000) served as the outgroup for the tmK  analyses; no outgroup 

was defined for the nadl analyses. Maximum parsimony and minimum evolution trees 

generated from the same data set were compared and tested for length differences using the 

Kishino-Hasegawa (KH) test in PAUP (Goldman et a l, 2000). Trees for the KH test were 

generated with 1 ) parsimony optimality criterion, heuristic search, random sequence
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addition (10 replicates), TBR branch-swapping and 2) distance optimality criterion, 

distance measure = mean character difference, heuristic search, TBR branch-swapping. In 

order to test the significance of topological (tree length) differences between the 

chloroplast tmK  and mitochondrial nadl gene trees, a maximum parsimony analysis 

(heuristic search, computing strict consensus) of the nadl data was carried out constraining 

trees in various ways (Table 2) that were consistent with the tmK  tree topologies and vice 

versa. To determine if each constrained tree was significantly longer than the original non­

constrained consensus tree, the non-parametric ranked-sign test of Templeton (Wilcoxon 

signed-rahks test) was applied using PAUP (Larson, 1994).

Results

Chloroplast TmK Analyses

The chloroplast tmK  intron ranged from 2481-2492 bp among Picea species. The 

alignment of the sequences can be viewed via links to the GenBank accessions in Table 1. 

Of the 2507 total characters scored by PAUP, 12 were indels, 126 were parsimony- 

informative and 73 were variable but parsimony-uninformative. All of die indels were 

small; none were over 7 bp. The number of polymorphisms between any two Picea 

species ranged from 0-22 differences. Species pairs that had identical sequences included 

P. mexicana and P. glauca, P. jezoensis and P. wilsonii, P. rubens and P. omorika, and P. 

abies and P. asperata (see Appendix D for the pairwise distance matrix). The maximum 

parsimony (MP) and minimum evolution (ME) tmK  trees are displayed in Figures 1 and 2. 

Their topologies do not vary significantly, i.e. they are of the same tree length and 

therefore no differences were identified with the KH test (P = 1). The only differences 

between the trees were differences in resolution: 1) In the MP tree, the P. breweriana/P.
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Table 2. List of constraints used for the Wilcoxon signed-ranks test 

Constraints A Tree length® P

Constraints on the mitochondrial nadl trees

Sister groups:
P. engelmannii and P. glauca with 

P. abies, P. asperata, P. jezoensis, P. wilsonii 11 0.0050**
P. mexicana with P. engelmannii and P. glauca 2 0.3173

Monophyly of:
P. rubens, P. mariana and P. omorika 14 0.0062**

Constraints on the chloroplast tmK  trees

Sister groups:
P. mariana and P. rubens with 

P. schrenkiana and P. smithiana
P. sitchensis with P. engelmannii and P. glauca

3
21

0.0833
0.0010* *

8 Difference in tree length between the unconstrained and constrained maximum 
parsimony trees.

* * P < 0 . 0 1 .
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Figure 1. Maximum parsimony phylogenetic tree from chloroplast tmK  intron sequence.
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Figure 2. Minimum evolution phylogenetic tree from chloroplast tm K  intron sequence.
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sitchensis clade is basal with respect to the Picea but it is part of an unresolved polytomy 

with the Pinus species. In the ME tree, this clade forms a monophyletic group with the 

Picea z nd it is basal within that group. 2) In the MP tree, the position of P. pungens is 

unresolved, whereas in the ME tree P. pungens is sister to P. chihuahuana (73% bootstrap 

support). 3) In the ME phylogram and the M0P cladogram (not shown), the P. abies/P. 

asperatalP.jezoensislP. wilsonii clade is sister to the P. engelmanniilP. glauca/P. 

mexicana clade (80% and 84% bootstrap support, respectively). In the MP phylogram 

(Figure 1) however, this node is depicted as collapsed and the two clades are part of an 

unresolved polytomy. Overall, bootstrap values were similar between the MP and ME 

trnK trees.

In the tmK  trees overall, the Picea form a monophyletic group. Within this group, 

P. breweriana and P. sitchensis are sister taxa in a strongly supported (93-97%) basal 

clade. The remaining Picea species form a clade (87-93%) in which there are four 

relatively well-supported clades: P. abies/P. asperatalP. jezoensislP. wilsonii (97-98%), P. 

engelmanniil P. glauca!P. mexicana (91-99%), P. mariana!P. rubens!P. omorika (91-99%) 

and P. smithiana/P. schrenkiana (73-82%). The only relationship resolved among these 

clades is the one between the P. abies/P. asperatalP. jezoensislP. wilsonii and P. 

engelmanniil P. glauca/P. mexicana clades (discussed above). Relationships among this 

clade, the P. smithiana/P. schrenkiana clade, P. pungens, P. chihuahuana and the P. 

marianalP. rubens!P. omorika clade are unresolved.

Mitochondrial Nadl and Nadl Analyses

The Picea species surveyed in this study displayed virtually identical mitochondrial 

nad7 intron 1 sequences. The only polymorphisms detected out of the 895-900 bp were
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one 5-bp tandem duplication distinguishing P. rubens, a  base substitution distinguishing P. 

sitchensis, and a base substitution shared by P. smithiana and P. schrenkiana. Due to the 

paucity of sequence variation in this intron, it was excluded from the phylogenetic 

analyses.

Although less variation was observed in the mitochondrial nadl intron than in the 

tmK  intron, the nadl sequence was still phylogenetically informative. The sequences 

ranged in size from 2091-3157 bp due to the presence of many large indels. The alignment 

of the sequences can be viewed via links to the GenBank accessions in Table 1. The 

largest indel was a > 1  kb section in the middle of the intron that was present in all the 

North American species as well as in i3, schrenkiana and P. smithiana, but missing from P. 

abies, P. asperata, P. jezoensis, P. omorika and P. wilsonii. A BLASTN analysis indicated 

that various sections (between 30 and 83 bp) of this region are present (86-100% identical) 

in multiple Pinus species, therefore its absence in the five aforementioned Eurasian Picea 

must be due to a deletion. Just 50 bp upstream of this deletion was a -160-340 bp insertion 

unique to P. abies, P. asperata, P. jezoensis, P. omorika and P. wilsonii. Sequences 

contained within this insertion were found in no other database accessions by a BLASTN 

search. The variable size of this insertion was caused by large indels within it The P. 

abies sample analyzed here contained the 6 8 -bp insertion that was characterized as 

variation intraspecifically in P. abies by Grivet et al. (1999). Interestingly, the expansion 

of a 34-bp tandem repeat characterized in P. abies by Sperisen et al. (2001) was not 

present in the P. abies used here, however it was present in P. omorika. The 32-bp tandem 

repeat characterized in P. abies by Sperisen et al. (2001) was not present in any of the 

samples in this study. Other interesting indels included a 31-bp insertion caused by a

85

R eproduced  with permission of the copyright owner. Further reproduction prohibited without permission.



tandem duplication event in P. sitchensis. Picea smithiana displayed a 255-bp deletion 

and a 29-bp insertion that was flanked by a 4-bp direct repeat but otherwise showed no 

signs of being a duplication event Picea breweriana displayed a 113-bp deletion. There 

were many other small indels in the nadl intron, many of which appeared to have occurred 

via tandem duplication events.

There were a total of 53 base substitutions and 38 indels detected in nadl intron 2; 

41 of these polymorphisms were parsimony-informative. Species that had identical nadl 

sequences included P. chihuahuana and P. mexicana, P. engelmannii and P. glauca, and P. 

wilsonii, P. asperata, and P. jezoensis. The MP (with and without bootstrapping) and ME 

nadl intron 2 trees are displayed in Figures 3,4 and 5. The lengths of the MP and ME 

trees were not significantly different (KH test P = 0.18). Their overall topologies are 

similar, both demonstrate bootstrap support for the following clades: P. schrenkiana and P. 

smithiana (83-92%), P. mariana and P. rubens (70-80%), P. chihuahuana and P. mexicana 

(53-68%), P. engelmannii and P. glauca (81-98%), P. engelmannii, P. glauca and P. 

sitchensis (62-72%), and P. asperata, P. jezoensis and P. wilsonii (99-100%). It is 

surprising that the P. engelmanniil P. glauca and P. chihuahuana!P. mexicana clades did 

not have higher bootstrap scores since these pairs had identical sequences. It is possible 

that the bootstrap values were low because of the relatively small number of characters 

separating these clades from the rest of the Picea species.

In the MP tree, P. abies is contained within a clade with P. asperata, P. jezoensis,

P. wilsonii and P. omorika (82%), whereas in the ME tree, this node is collapsed. The 

relationship between the P. abies, P. asperatalP. jezoensislP. wilsonii and P. omorika nadl 

sequences is supported by the large > 1  kb region deleted in these species and by the large
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Figure 3. Maxim um  parsimony phylogenetic tree from mitochondrial nadl intron 2 
sequence depicted as a rectangular phyiogram (no outgroup was defined; A) and as an 
unrooted phyiogram (B).
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-160-340 bp insertion unique to these species (see above). Furthermore, a relationship 

between P. abies and P. omorika nadl sequences is evidenced by the presence o f the 34-bp 

tandem repeal (Grivet^r a/., 1999) in P. omorika (see above). In the ME tree, P. pungens 

forms a clade with P. chihuahuana and P. mexicana (64%); this node is collapsed however 

in the MP tree. It is interesting to point out here that the relationship between P. pungens 

and P. chihuahuana was supported with a moderate bootstrap value in the chloroplast trnK 

ME tree, but not in the trnK MP tree. Finally, in the ME tree P. breweriana is part of a 

large unresolved polytomy. Its position is still largely unresolved within the bootstrap- 

supported MP tree; however in the strict consensus MP tree (no bootstrap; Figure 5) P. 

breweriana is grouped with P. engelmannii, P. glauca and P. sitchensis.

Comparison of Mitochondrial Nadl Trees to Chloroplast TrnK Trees

The topologies of the mitochondrial nadl and chloroplast trnK phylogenetic trees 

varied significantly. Primary differences included the positions of the P. engelmannii!P. 

glauca clade, P. mexicana, P. omorika, P. sitchensis and the P. schrenkiana/P. smithiana 

clade. In the chloroplast trees, P. engelmannii and P. glauca are grouped with P. 

mexicana, and this clade is sister to the P. abiesiP. asperata IP. jezoensis IP. wilsonii clade 

in the chloroplast ME tree. In the mitochondrial trees however, P. glauca and P. 

engelmannii are sister to P. sitchensis, whereas P. mexicana is sister to P. chihuahuana. If 

the nadl parsimony analysis is carried out while constraining P. mexicana as a sister taxa 

to P. engelmannii and P. glauca, the tree is not significantly longer. However, if the 

constraint of P- engelmannii and P. glauca sister to the P. abies/P. asperata IP. 

jezoensislP. wilsonii clade is imposed on the mitochondrial analysis, the tree is 

significantly longer (P < 0.01). Furthermore, when P. sitchensis is forced to be sister to P.
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glauca and P. engelmannii in the chloroplast analysis, the resulting tree is also 

significantly longer (P < 0.01; Table 2).

In the chloroplast trees P. omorika is grouped with P. mariana and P. rubens with 

strong bootstrap support (91-99%). On the other hand in the mitochondrial trees, it is 

closely associated with P. abies and the Asian species P. asperata, P. jezoensis and P. 

wilsonii. If the monophyly of P. rubens, P. mariana and P. omorika is constrained, the 

mitochondrial nadl maximum parsimony trees are significantly longer (P <0.01; Table 2). 

Finally, if  P. mariana and P. rubens are forced to be sister to P. schrenkiana and P. 

smithiana in the chloroplast analysis, the trees are not significantly longer.

Discussion

The goal of this project was to compare phylogenetic gene trees from oppositely 

inherited cytoplasmic genomes of selected species of Picea. All of the North American 

species were included in this study because of the many questions regarding their 

phylogeography. Picea abies and P. omorika were included because they are the only two 

extant species native to Europe, and also to further investigate the relationship between P. 

omorika and the North American species P. mariana and P. rubens. The remaining Asian 

species were selected as widespread geographic representatives: northeastern Asia and 

Japan {P. jezoensis), China (P. asperata and P. wilsonii), central Asia (P. schrenkiana) and 

the western Himalayas (P. smithiana). Picea asperata and P. wilsonii also represent the P. 

abies and P. brachytyla alliances, respectively, in the phylogeny generated by 

Sigurgeirsson and Szmidt (1993). Furthermore, P. jezoensis has been postulated to be a 

link to the North American species (Wright, 1955) and it was closely associated with P.
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pungens in Sigurgeirsson and Szmidt’s chloroplast RFLP phylogenetic trees (Sigurgeirsson 

and Szmidt, 1993).

Species of Pinus were chosen as outgroups for the chloroplast DNA analysis 

because Pinus and Picea are considered to be sister genera (Chase et a l, 1993). The 

particular Pinus species were selected because 1) their complete (or nearly complete) trnK 

sequences were available in GenBank, 2) they represent the two subgenera of Pinus {Pinus 

banksiana and Pinus thunbergiv. Pinus; Pinus armandii: Strobus), and 3) they represent 

North America {Pinus banksiana) and eastern Asia {Pinus armandii and Pinus thunbergii). 

Pinus could not be used as an outgroup for the mitochondrial analysis because it was not 

possible to align Pinus and Picea nadl intron 2 sequences. Therefore, no outgroup was 

defined for the mitochondrial analyses and trees were left unrooted. If a Picea species 

were to be chosen as an outgroup, either P. breweriana, P. schrenkiana or P. smithiana 

might be appropriate. These three species exhibit the most nadl sequence variation from 

the remainder of the Picea species (Appendix D). If a constant molecular clock model is 

assumed, these species would be the oldest and most closely related to the common 

ancestor of the Picea. Furthermore, all three of these species contain the large >1 kb 

region (deleted in some Asian species) that was determined by BLASTN to be present (in 

part) in the nadl intron 2 of Pinus.

Comparison of TrnK and Nadl Trees to Results of Other Systematic Studies

The topologies of the trnK trees presented here do not change upon the addition of 

sequence data from non-coding sections of the chloroplast tmT-L-F region (Germano et 

al., 2002). However, there are several differences between these trees and the maximum 

parsimony tree generated from cpDNA RFLPs (Sigurgeirsson and Szmidt, 1993). In the
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RFLP tree, P. pungens was sister to P. jezoensis, P. chihuahuana was tightly nested in a 

group with P. wilsonii and P. schrenkiana, P. smithiana was clustered with P. mariana, P. 

rubens and P. omorika, and the P. glauca clade (P. glauca, Pengelmannii and P. 

mexicana) was basally located near the root of the tree. In the chloroplast trnK and 

mitochondrial nadl trees, the Asian species P. asperata, P. jezoensis and P. wilsonii form 

a single clade, P. pungens and P. chihuahuana are more closely related to each other than 

they are to the Asian species, and P. schrenkiana and P. smithiana are sister species 

(Figures 1-5).

In their article, Sigurgeirsson and Szmidt (1993) discuss some of the drawbacks to 

using RFLP data for phylogenetic analysis. Firstly, if some of the RFLPs were caused by 

rearrangements of the chloroplast genome, the interpretation of the data would be skewed. 

Secondly, there is a risk of homoplasy because restriction fragments of the same size could 

potentially be non-homologous. Furthermore, the presence of length mutations increases 

the level of potential homoplasy (Sigurgeirsson and Szmidt, 1993). It is for these reasons 

that die trees generated from sequence data are generally believed to be more robust The 

species relationships in the trnK and nadl trees discussed above are more likely to be true 

than the ones depicted in the RFLP tree, especially the ones that are supported by both the 

mitochondrial and chloroplast sequence data.

In traditional systematic classifications of the Picea, morphological characters such 

as 4- or 2-angled needles and hard or flexible cone scales were weighted heavily (Alden, 

1987; Vidakovic, 1991). The species belonging to various groups based on these 

characters do not necessarily group together in the chloroplast and mitochondrial 

phylogenetic trees. For example, data from both organelles support the close association
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of P. jezoensis with P. asperata and P. -wilsonii, however P. jezoensis possesses thin 

flexible cones scales whereas the other two species have hard cone scales. Likewise, P. 

engelmannii (thin cone scales) was consistently closely affiliated with P. gLauca (hard cone 

scales). Another example involves two species possessing 2-angled or flat needles, P. 

omorika and P. sitchensis. According to the chloroplast and mitochondrial trees, these two 

species are much more closely related to other species than they are to each other.

Although LePage (2001) discussed the relative congruency of cone scale morphology with 

the results of the cpDNA RFLP phylogeny (Sigurgeirsson and Szmidt, 1993), the 

important morphological characters do not seem to be consistent with the chloroplast and 

mitochondrial sequence data presented here.

Position of the P. slauca Clade

Interestingly, the topologies of the nadl and trnK phylogenetic trees differed from 

one another with respect to the position of the P. glauca clade. In the chloroplast trees, the 

clade is closely associated with the Eurasian species P. abies, P. asperata, P. jezoensis and 

P. wilsonii. In the mitochondrial trees, its position is relatively unresolved. The basal 

position of the P. glauca clade in Sigurgeirsson and Szmidt’s cpDNA RFLP tree 

(Sigurgeirsson and Szmidt, 1993) led the authors (in part) to suggest a North American 

origin of the genus. Interpreting this result, however, should be approached with caution 

for several reasons. The separation of the P. glauca clade from the rest of the Picea 

species is only weakly supported by bootstrap (27% in the RFLP tree). The large (>1 kb) 

indel in the middle of the nadl intron is present in all the North American Picea species, 

including P. glauca. The feet that sections of this indel’s sequence are present in multiple 

Pinus species suggests that the North American Picea species are more ancient in origin
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than some of the Eurasian species; however the indel sequence is also present within the 

two Asian species P. schrenkiana and P. smithiana. The grouping of Eurasian species 

with North Amen can species in both the chloroplast and mitochondrial trees suggests that 

Picea traveled cross-continentally more than once.

Positions of Individual Species: Incongruencies between Chloroplast and 
Mitochondrial Trees

Picea mexicana. The trnK sequence of the P. mexicana accession was identical to 

that of P. glauca, while its nadl intron sequence was identical to that of the P. 

chihuahuana accession. Therefore P. mexicana was sister to P. glauca in the trnK trees, 

yet sister to P. chihuahuana in the nadl trees. Morphological, phenolic and terpenoid 

analyses have indicated a close relationship between P. mexicana and P. engelmannii, so 

much so that it is considered a variety of P. engelmannii by some authors (Taylor et a l, 

1994). Picea engelmannii and P. glauca are known to be closely related; there was only a 

single base substitution between their trnK sequences. Picea glauca and P. engelmannii 

are also known to readily introgress. In fact, trees of their sympatric zone are referred to as 

“interior spruce” (a complex of the two species) (Sutton et a l, 1994). Picea mexicana is 

also thought to cross with P. engelmannii (Gordon, 1992). Two scenarios could account 

for the trnK identity between P. mexicana and P. glauca: 1) P. mexicana, P. glauca and P. 

engelmannii are closely related species and there has been little chloroplast sequence 

divergence since their split from a common ancestor, or 2) the P. mexicana accession 

represents an introgressed population and its chloroplast sequence is a  product of reticulate 

evolution. Similar scenarios (close phylogenetic relationship versus introgression) could 

be postulated to explain P. mexicana’s mitochondrial nadl identity with P. chihuahuana.
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These are perplexing in this case because P. chihuahuana is morphologically distinct and 

thought to be reproductively isolated (Taylor and Patterson, 1980; Gordon, 1992).

Picea omorika. The position of P. omorika with P. rubens and P. mariana in the 

trnK trees is consistent with the cpDNA RFLP trees (Sigurgeirsson and Szmidt, 1993). 

Picea omorika’s position on the mitochondrial nadl parsimony tree within the P. abies/P. 

asperata!P. jezoensis/P. wilsonii clade is interesting. In his inter-species crossability 

experiments, Wright (1955) deemed the artificial P. omorika X P. abies (female X male) 

cross to be unsuccessful, yet Hoffman and Kleinschmidt (1979) found the artificial cross of 

the two species to be successful in both directions. Although P. omorika was once 

widespread in Europe (before the Quaternary Period, 2 million years ago), it currently has 

a very narrow range that is sympatric with P. abies (Wright, 1955). Due to their 

geographic proximity, can the alliance between these two species’ nadl sequences be 

explained by introgressive hybridization? After all, P. abies possesses much chloroplast 

(Sigurgeirsson, 1992) and mitochondrial (Sperisen et al., 1998) variation that could be 

attributed to its introgressive hybridization with other neighboring Picea species such as P. 

obovata (Siberian spruce).

The true organismal phylogeny of species like P. mexicana, P. engelmannii, P. 

chihuahuana and P. omorika should not be determined without conducting range-wide 

population surveys o f their chloroplast mid mitochondrial haplotypes. Such studies would 

provide evidence o f past introgressive hybridization and allow individuals with the most 

common organelle haplotypes to be selected to represent the species in a robust phylogeny. 

In a range-wide population study of P. glauca, P. mariana and P. rubens, three 

significantly divergent mitochondrial haplotypes were detected within P. mariana (Chapter
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II). The most common of these haplotypes was unique to P. mariana, while the other two 

were concluded to be the result of organelle capture through introgression with P. rubens 

and with P. glauca, oven though P. mariana and P. glauca are distantly related species and 

were previously thought not to cross hybridize (see Chapter II). These results, in addition 

to the vast knowledge of introgressive-hybridization among the Picea, highlight the danger 

of choosing a single individual to represent a species without prior population surveys.

The incongruence of the chloroplast and mitochondrial phylogenetic trees presented here 

may be the result of hybrid or introgressed individuals representing particular species (e.g. 

P. mexicana or P. omorika).

Future Studies

The slow rate of mitochondrial primary sequence evolution combined with the 

complex indels of the nadl intron 2  makes this region less desirable for phylogenetic 

inquiries at the intra-genus level. Because of the opposite inheritance of the organellar 

genomes however, mitochondrial markers should be used in combination with chloroplast 

markers in order to prevent using putative hybrids/introgressants as species representatives. 

The nuclear genome of plants has been shown to undergo a higher frequency of base 

substitutions than the chloroplast genome (Palmer, 1990). The internal transcribed spacer 

(ITS) of the nuclear ribosomal DNA tandem repeat unit has been useful in phylogenetic 

studies of angiosperms (Baldwin et a l, 1995). However, ITS was determined to be a poor 

candidate for a phylogenetic assessment of Picea because it is significantly heterogeneous 

within single individuals of several Picea species (Germano and Klein, 1999; Wright et a l, 

2001). The nuclear 4CL gene was used in a phylogenetic study of the members of the 

Pinaceae. Its exons were estimated to have diverged twice as fast as the chloroplast matK
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gene and five times as fast as the mitochondrial nad.5 gene. Sequence comparisons of 

multiple 4CL-clones suggested that the gene was present as a single copy in Picea 

smithiana (Wang etaL, 2000). A  nuclear single-copy gene such as 4CL in combination 

with non-coding chloroplast regions (such as trnK and tmT-L-F) and appropriate 

population surveys would make for a more robust species phylogeny of the Picea.
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CHAPTER IV

SPECIES-IDENTIFICATION OF LATE-PLEISTOCENE AND EARLY-HOLOCENE 
PICEA MACROFOSSELS FROM THE NORTHEASTERN UNITED STATES: USING 
ANCIENT DNA TO IMPROVE VEGETATION HISTORY AND PALEOCLIMATE

. RECONSTRUCTION

Abstract

The Quaternary period (the last 2 million years) is characterized by severe 

oscillations in climate that caused the repeated formation and retreat of glaciers in North 

America and Europe. These glacial cycles had drastic effects on flora and fauna, causing 

migrations of many species. The migration histories of white spruce (Picea glauca), 

black spruce (P. mariana) and red spruce (P. rubens) are of particular interest to 

paleoclimatologists because these species have differing climate tolerances and are 

therefore used to infer climate conditions that occurred during the last ice age. Picea 

macrofossils were recovered from sediment cores of Browns Pond, Virginia, dating 

approximately 20,000-10,000 years ago. DNA was extracted from macrofossils that 1) 

were separated from the sediment and stored in water at 4°C for 5-7 years, 2) were stored 

within the core sediment at 4°C for 5-7 years and 3) were stored within the core sediment 

at -20°C for a few months. Macrofossils that were stored at 4°C for long periods of time 

yielded high molecular weight DNA that was concluded to be contemporary in nature 

presumably due to bacterial and/or fungal contamination that occurred after the cores 

were removed from the ground. DNA extracts from some macrofossils yielded low 

molecular weight DNAs that were detected by agarose gel electrophoresis (100-1000 bp
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DNA smear from cores stored at -20°C) or by Southern blot and hybridization with 

Picea-specific DNA probes (~250 to 650 bp DNA from cores stored at 4°C). These 

results suggested that authentically ancient DNA survived in some of the10-20,000 year 

old Browns Pond Picea macrofossils. All attempts to amplify ancient DNA by PCR from 

macrofossils and from fossil pollen foiled. The primary impediments included inhibition 

of PCR, non-specific amplification, contamination, lack of template DNA (regarding the 

pollen) and primer design.

Introduction

The Quaternary period (the last 2 million years) is characterized by climate 

oscillations between glacial and interglacial extremes. The overall wanning trend that 

took place during the transition from the Last Glacial Maximum (LGM; -21,000 

calibrated calendar years ago) to the present interglacial or the Holocene (which began 

-11,000 cal. years ago) was sporadically interrupted by pronounced and abrupt changes 

in climate. Paleoclimate research of this transitional period has revealed evidence from 

ice (Alley e ta l, 1993; Mayewski etal., 1993), marine (Lehman and Keigwin, 1992; 

Hughen et a l, 1996), and terrestrial sediment cores (Levesque et a l, 1993; MacDonald et 

al., 1993; Bjorck et a l, 1996) strongly suggesting that dramatic changes in regional, and 

perhaps global climate can occur over as little time as a few decades.

A global array of lake and bog core sediments contains pollen and plant 

macrofossils. The sediment or macrofossils can be radiocarbon dated by Accelerator 

Mass Spectrometry (AMS)1 and used to reconstruct vegetation histories. The histories of

1 The radiocarbon time scale is believed to diverge from the calendar year scale. This is 
based on isotope dating of marine corals and annual layer counting in Greenland ice 
cores. Hence, 11,000 cal. yr is roughly equivalent to 10,000 14C yr BP, and 21,000 cal. yr
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North America and Europe, from before the LGM through the Holocene, show great 

shifts in vegetation assemblages (Watts, 1983; Webb, III et a l, 1993). In the northern 

hemisphere, the range of forest trees changed as the ice sheets retreated during the late- 

glacial. Broad scale maps of vegetation inferred from pollen diagrams illustrate the 

magnitude of forest response to climatic changes (Delcourt and Delcourt, 1987a). Late- 

glacial and Early-Holocene regional climate oscillations have been inferred from shifts in 

vegetation assemblages (for example Mott et a l, 1986; Levesque et a l, 1993; 

MacDonald et a l, 1993; Bjorck et a l, 1996; Kneller and Peteet, 1999). Some of these 

oscillations are coincident with climate changes inferred from ice and marine cores (Mott 

et a l, 1986; Peteet et al., 1990; Kop Karpuz and Jansen, 1992; Levesque etal., 1993; 

Peteet et al., 1993; Bjorck et a l, 1996). Vegetation histories have been extremely useful 

in quantifying past climate change at the regional level and the consequences of past 

climate change upon ecosystems. Knowledge of Late-Quaternary temperate vegetation 

history is important to our understanding of contemporary patterns and processes of 

temperate forest ecosystems. It also has implications for future environmental/climatic 

changes and their consequences (Delcourt and Delcourt, 1987a).

Importance of Picea in North American Onaternarv Paleoclimate Reconstructions 

In eastern North America, Picea (spruce) has been a critical taxon in defining 

previous temperature changes (Watts, 1983; Davis, 1983a; Jacobson etal., 1987; Webb, 

HI, 1988). For example, at 11,00014C yr BP (radiocarbon years before present where 

present equals 1950 A.D.), the resurgence of Picea (along with increases in Abies, Betida

is roughly equivalent to 18,000 14C yr BP. In this chapter, all radiocarbon dates are 
denoted a s 1 C yr BP. Dates lacking die 14C notation can be assumed to be in calendar 
years.
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and Alnus) at sites in southern New England has been used as evidence for an estimated 3 

to 4°C sudden cooling in mean July temperatures (Peteet et al., 1994). This cooling 

occurred within the Younger Dry as Chronozone (11,000-10,000 years ago), a time period 

when several regions of the earth experienced severe and rapid cooling (Hansen et a l, 

1984; Johnsen et a l, 1992). Several quantitative methods have been used to reconstruct 

vegetation from fossil pollen databases, and Picea is a key taxon in these reconstructions. 

These quantitative vegetation reconstructions have been used to propose reconstructions 

o f regional climates o f the last 21,000 years. The vegetation-based climate 

reconstructions have been compared to paleoclimate simulations from General 

Circulation Models (GCMs), and in some cases, they are very different

Presently, three Picea species occupy eastern North America: Picea glauca 

(Monech) Voss (white spruce), P. mariana (Mill) B. S. P. (black spruce), and P. rubens 

Sarg. (red spruce). While their ranges overlap (Morgenstem and Farrar, 1964; Little, Jr., 

1971), each species has distinctive climatic and ecological preferences and tolerances 

(Table 1; Fowells, 1965; Gordon, 1976; Nienstaedt and Zasada, 1990; Viereck and 

Johnston, 1990; Blum, 1990). Sediment cores from many lakes, bogs and fens in eastern 

North America have been analyzed for their pollen and plant macrofossils. Picea 

macrofossils (e.g. needles, cones, seeds) are a frequent component of many eastern 

United States sites older than 9,00014C yr BP (Delcourt and Delcourt, 1985; Jackson et 

al., 1997). Fossil Picea pollen and macrofossils can be differentiated morphologically 

from other conifers. Typically, needles and seeds of P. glauca, P. mariana and P. rubens 

are not morphologically distinctive, therefore fossil Picea needles and seeds cannot be 

identified to the species level. Species-identification of Late-Pleistocene and Early-
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Table 1. Climatic and ecological preferences, tolerances and life history characteristics of the three Picea species native to eastern 
North America.8

Picea glauca Picea mariana Picea rubens

©
U >

General Climate Conditions 
Mean July Temperature

Mean January Temperature 
Mean Annual Precipitation 
Freezing/Winter Desiccation 
Shade Tolerance 
Maximum Age 
Seed Production Age 
Good Seed Crop 
Elevation

cold, moist to dry 
10-18°C (50-64°F) 
[43°C (110°F)]b 
[54°C (65°F)] 
250-1270 mm 
resistant 
moderate
250-300 yr [1000 yr] 
60 yr [30 yr] 
every 2-6 yr 
0-1520 m

cold, humid to dry subhumid cool, moist
10-21°C (51-70°F) 18-21°C (65-70°F)
[41 °C (105°F)] [32-35°C (90-95°F)]
30-6°C (22-21°F).[62°C (79°F)] 12-2°C (10-35°F).[34-17°C (30-0°F)]
380-760 mm [150-1520 mm] 910-1320 mm
resistant prone
low high
200-250 yr [280 yr] >400 yr
[10 yr] 45yr[30yr]
every 2-6 yr every 3-8 yr
150-760 m [0-1830 m] 0-1370 m [1370-1520 m]c

* (Fowells, 1965; Gordon, 1976; Nienstaedt and Zasada, 1990; Viereck and Johnston, 1990; Blum, 1990) 

b Recorded extremes are indicated in [brackets].

0 Elevations in the central Appalachian Mountains.



Holocene Picea macrofossils would enable more detailed vegetation history and hence 

more precise estimates of climate changes that occurred following the LGM in North 

America.

Picea Species as Climatological/Ecological Indicators. Picea rubens' current 

range (Figure 1 A) is from the Appalachians in North Carolina to the Maritimes including 

New England, New York, southern Quebec and restricted areas of Ontario (Morgenstem 

and Farrar, 1964; Fowells, 1965; Little, Jr., 1971; Blum, 1990). In general, its range is 

associated with a cool moist climate regime with mean July temperatures of 18 to 21 °C 

(65 to 70°F), mean January temperatures of-12  to 2°C (10 to 35°F) (Fowells, 1965) and 

mean annual precipitation of 910-1320 mm (Blum, 1990). Picea rubens grows in areas 

where average maximum summer temperatures of 32 to 35°C (90 to 95°F) and average 

minimum winter temperatures o f-34 to -17°C (-30 to 0°F) have been reported (Fowells, 

1965).

The current range of P. glauca (Figure IB) overlaps with P. rubens primarily in 

northern New England and eastern Canada, and extends west to Alaska and north to the 

tree-line, (Morgenstem and Farrar, 1964; Fowells, 1965; Little, Jr., 1971; Nienstaedt and 

Zasada, 1990; Blum, 1990). Picea glauca is considered one of the most cold-hardy 

conifers of North America (Fowells, 1965). The northern limit of its range has a mean 

July temperature of 10°C (50°F), whereas its southern limit has a mean July temperature 

of 18°C (64°F). Extreme temperatures of-54°C (-65°F) and 43°C (110°F) have been 

recorded in its range.

The range of P. mariana (Figure 1C) extends from the eastern coast of Canada 

west to Alaska and north to the tree line. It grows south to central British Columbia,
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southern Manitoba, central Minnesota and New York with isolated populations extending 

into Pennsylvania (Morgenstem and Farrar, 1964; Fowells, 1965; Little, Jr., 1971; 

Viereck and Johnston, 1990). Picea mariana is generally associated with cold humid to 

dry subhumid climate. The northern limit of its range experiences a mean January 

temperature of-30°C  (-22°F) and a mean July temperature of 10°C (51°F). The 

southern limit of its range has a mean January temperature of -6°C (21 °F) and a mean 

July temperature of 21°C (70°F). Picea mariana tolerates extreme temperatures of 

-62°C (-79°F) and 41°C (105°F) (Fowells, 1965; Viereck and Johnston, 1990). It is 

resistant to freezing and winter desiccation (Gordon, 1976) and can grow on permafrost 

due to its shallow rooting habit (Viereck and Johnston, 1990).

The Last Glacial Maximum

The Quaternary Period comprises the Pleistocene epoch followed by the Holocene 

epoch that began approximately 10,00014C yr BP. The Quaternary is characterized by its 

many glacial-interglacial cycles. During the LGM (~18,000 14C yr BP) the Laurentide 

ice sheet o f North America covered most of Canada and extended as far south as ~40°N 

over die northeastern United States. The southeastern portion of the United States 

remained unglaciated, supporting many flora and fauna of North America.

Analysis of ice cores, marine sediments and terrestrial records provide evidence 

of changing global climate conditions during the last glaciation. During the LGM, sea 

levels were at their lowest, and ocean surface temperatures, inferred from foraminiferal 

plankton assemblages preserved in marine sediments, reached a m inim um . Atmospheric 

temperatures, inferred from isotopic oxygen levels in Greenland and Antarctic ice cores, 

were at a minimum during the LGM. Following the LGM, a general wanning trend
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corresponded with the retreat of the ice sheets. This warm ing trend was punctuated by 

distinct changes in climate (Dansgaard et al., 1984; Lehman and Keigwin, 1992; Johnsen 

et al., 1992; Alley et al., 1993; Levesque et a l, 1993; MacDonald et a l, 1993; Mayewski 

etal., 1993; Hughen etal., 1996).

Migrational History of Picea. Picea is a climate-sensitive genus: the expansion 

and contraction of its range in the last 20,000 years raises several questions relevant to 

establishing Late-Quaternary temperature fluctuations. Picea pollen and macrofossils, 

such as needle fragments, seeds, sterigmata, twigs, buds or cones, are frequently 

identified in North American Quaternary sediments and are often given significant 

weight when making climatic interpretations (Watts, 1983; Davis, 1983a; Jacobson et al., 

1987; Webb, in , 1988).

The vegetation history of the unglaciated southeastern United States since the 

LGM has been reviewed by Whitehead (1973), Davis (1983b), Watts (Watts, 1980b;

1983), Delcourt and Delcourt (1985; 1987b), Jacobson et al. (1987), Webb (1988) and 

Jackson et al. (1997) among others. Using taxon calibrated data from 162 pollen records, 

Delcourt and Delcourt (1987a) presented quantitative reconstructions of past eastern 

North American forest composition at 500 and 1000-year intervals for the last 20,000 

years. Overpeck et al. (1992) analyzed 11,700 fossil and 1744 modem pollen 

assemblages to map the different forest types that occurred since the LGM.

At the LGM, discontinuous patches of tundra were located just south of the 

glacial margin and at high elevations in the Appalachian Mountains (Watts, 1979; 

Delcourt and Delcourt, 1987a; Delcourt and Delcourt, 1987b). According to pollen 

records, boreal tree taxa including Picea and northern Pinus (usually thought to be Pinus
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banksiana) were distributed across the northern half of the unglaciated United States 

south o f the ice sheet to approximately 33 °N during the full-glacial (Delcourt and 

Delcourt, 1987a; Delcourt and Delcourt, 1987b; Overpeck et a l, 1992). Picea was the 

dominant taxon in this forest (Delcourt and Delcourt, 1987a; Delcourt and Delcourt, 

1987b). Picea macrofossil needles dated 17,300 14C yr BP which were isolated from 

Browns Pond in western Virginia (~38°N) provide definitive proof of Picea’s existence 

at northern latitudes (Kneller and Peteet, 1993).

South o f 33°N, the full-glacial range of Picea extended down the Mississippi 

valley (Delcourt and Delcourt, 1987a; 1987b). In Tunica Hills, Louisiana-Mississippi 

(~30°N), many Picea macrofossils were found which predated the LGM, and Picea 

composed 40-80% of the pollen assemblages from 25,000 to 17,500 14C yr BP (Givens 

and Givens, 1987; Jackson and Givens, 1994). Pollen also indicated the presence of 

Picea in northwest Florida around 14,330 14C yr BP, and in central Texas before 15,000 

14C yr BP west (Holloway and Bryant, Jr., 1984; Watts et al., 1992).

During the late-glacial (~16,000 to ~13,000 years ago), a northward expansion of 

the Picea range occurred as Picea trees successfully invaded tundra and other areas of 

deglaciated landscapes. Picea was dominant in the northern and western portions of the 

boreal forest as northern Pinus began to diminish (Delcourt and Delcourt, 1987a; 

Delcourt and Delcourt, 1987b). The arrival of Picea to southern Pennsylvania is 

evidenced by macrofossils dated 15,210 14C yr BP from Crider’s Pond, just south of 

40°N (Watts, 1979). Farther north, Picea macrofossils dating to 12,290 I4C yr BP were 

collected from Alpine Swamp in northeastern New Jersey (north of 40°N) (Peteet et aL, 

1990).
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By 12,000 yr BP, during the transition from Late-Pleistocene to Early-Holocene, 

Picea had advanced across the deglaciated landscape to ~45°N. The southern margin of 

its range, however, still remained at 33°N. It was dominant between 40°N and 42°N, but 

its numbers had diminished south of 40°N (Delcourt and Delcourt, 1987a; Delcourt and 

Delcourt, 1987b). Between 12,000 and 8,000 yr BP, Picea advanced across New 

England, Nova Scotia and Newfoundland and persisted at higher elevations of the central 

Appalachians. Its populations collapsed, however, in the forested Great Lakes region.

By 4,000 yr BP, Picea became the dominant tree taxon in the northern boreal forest 

region in a band from 50°N to 58°N. The southern limit of its range had retreated to 

42°N in the Great Lakes region, and it persisted at high elevations in the central and 

southern Appalachians (Delcourt and Delcourt, 1987a).

Quantifying Climate Conditions from Fossil Pollen Assemblages

Pollen is preserved in most terrestrial (and even marine) sediments deposited in 

aquatic environments. The structurally strong pollen exine helps preserve individual 

grains in sediments as old as 100 million years. Most pollen can be identified 

morphologically to the genus level with a standard optical light microscope. Arboreal 

taxa commonly analyzed in paleoecological studies of eastern North America include 

Alnus (alder), Abies (fir), Acer (maple), Betula (birch), Castcmea (chestnut), Fagus 

(beech), Picea, Pinus (pine), Quercus (oak) and Tsuga (hemlock). A large data set of 

pollen stratigraphies (both fossil and modem) from all continents is available 

(http://www.ngdcjioaa.gov/paleo/pollen.html) along with plant macrofossil data 

(http://www.ngdc.noaa.gov/paleo/macrofossils.html).
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One limitation of using arboreal pollen in vegetative reconstructions is that many 

arboreal taxa have wind-dispersed pollen that can travel up to 10-100 km from their 

original source (Delcourt and Delcourt, 1987b). Furthermore, pollen grains are generally 

only identified to the genus level, and are often referred to as pollen “types” (Delcourt 

and Delcourt, 1987b). Unlike pollen, macrofossils are usually deposited near their point 

o f origin. Therefore, macrofossils provide definitive proof of the local presence of 

particular plant taxa (Davis, 1983b). Plant macrofossils are often analyzed in conjunction 

with pollen studies (see for example Whitehead, 1973; Watts, 1979; Givens and Givens, 

1987; Peteet et a l, 1990; Watts et al., 1992; Overpeck et a l, 1992; Kneller and Peteet, 

1993; Kneller and Peteet, 1999). Furthermore, some macrofossils can be identified 

morphologically to the species level thereby making vegetation history and ecological 

reconstructions more precise.

Several methods have been developed to quantify regional climate conditions, 

which are reflected by pollen records. Pollen response surfaces are functions that 

describe the way in which a single pollen taxon’s abundance depends on the combined 

effects of two or more environmental factors (e.g. annual precipitation, mean July 

temperature, mean January temperature, etc.). Response surfaces for individual taxa are 

generated from contemporary pollen assemblages and modem climate variable 

measurements. Fossil pollen assemblages are then used to interpolate a range of 

paleoclimaie conditions. The range of conditions is narrowed down for each different 

taxon that is used for interpolation (Bartlein et al., 1986; Prentice et a l, 1991; Webb, HI 

etal., 1993).

110

R eproduced  with permission of the copyright owner. Further reproduction prohibited without permission.



The modem analogue method compares modem pollen assemblages to fossil 

pollen assemblages, employing a variety of dissimilarity measures. For example, 

Oveipeck et al. (1992) used the squared-chord distance dissimilarity coefficient as a 

measure of pollen assemblage dissimilarity. Assemblages are considered analogous if the 

taxonomic make-up is the same and if abundances of pollen types are similar (i.e. below 

a given dissimilarity threshold). The climate conditions o f the closest modem analogue 

are then assumed as the local (or regional, depending on the number of fossil sites 

analyzed) climate for the period from which the fossil pollen originated (Delcourt and 

Delcourt, 1987a; Delcourt and Delcourt, 1987b; Overpeck et al., 1992).

A drawback of the modem analogue method is that many fossil pollen 

assemblages do not have modem analogues (Davis, 1983b; Delcourt and Delcourt,

1987b). In fact, much of the forests covering the eastern United States during die 

transition of the Pleistocene to the Holocene lacked good analogues to any modern-day 

forests (Delcourt and Delcourt, 1987a; Overpeck et al., 1992). During periods of climate 

change, vegetation is thought to be in dynamic equilibrium (Prentice et al., 1991). This 

means that vegetation changes in response to climate change occur continually over large 

scales of space (continental scale) and time (resolution of at most 1,500 years). 

Furthermore, different taxa respond individually to climate change and therefore migrate 

at different rates and in different directions (Davis, 1983b; Bartlein et al., 1986; Delcourt 

and Delcourt, 1987a; Prentice et al., 1991). Due to the dynamic nature of vegetation 

change during times of climate change, it is not surprising that many Late-Pleistocene 

and Holocene forests were very different from those that exist today. Macrofossil
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assemblages can be used in conjunction with pollen records to help define analogous and 

non-analogous forest assemblages (Overpeck et al., 1992).

Estimates of Full- and Late-Glacial Climate Conditions in Eastern North America

Few estimates of climate change during the LGM and late-glacial exist for 

unglaciated eastern North America, most of which are based on fossil pollen records. 

Watts (1980b) estimated LGM southeast United States climate by comparing modem and 

LGM distributions of Pinus banksiana (jack pine). Transferring modem central Maine 

climate to Columbia, South Carolina, he estimated a mean January temperature of 

-  10.1°C (AT= -  17.8°C; where AT = past temperature -  modem temperature), a mean 

July temperature of 19.9°C (AT= -7.3°C), 114 frost free days (Adays = -134) and 1050 

mm annual precipitation (AP= -10 mm). He believed this conservatively estimated the 

change since the climate is even colder and drier inland from the Maine coast 

Whitehead (1981) found the closest modem analogue to the Rockyhock Bay, North 

Carolina LGM assemblage to be the boreal region from Ontario and Saskatchewan, 

Canada. This analogue corresponds to a slightly colder and more seasonal climate: for 

mean January temperature, AT = -25°C, and for mean July temperature, AT = -  10°C.

Using pollen response surfaces (Bartlein et a l, 1986), the 18,000 14C yr BP 

climate inferred from six taxa yielded a 10°C cooling in mean January temperatures and 

8°C cooling in mean July temperatures at approximately 35°N on the Atlantic Ocean 

coast (Prentice etal., 1991; Webb, HI et al., 1993). From approximately 26 to 40°N, 

estimated precipitation ranged from 1200 to 600 mm per day which represents a 20 to 

40% decrease from modem observed values.
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Temperature and precipitation estimated from vegetation-based methods have 

been compared to climate simulations of General Circulation Models (GCMs). These 3- 

dimensional computer models can vary the prescribed boundary conditions, such as solar 

insulation, land surface elevation, continental ice distribution, sea level, land surface 

albedo (fraction of incident radiation that is reflected) and sea surface temperature, in 

order to simulate past climates (Broccoli and Manabe, 1987). GCMs can also be used to 

predict future climate changes pending a given change in a specific boundary condition.

Climate simulations o f the past 21,000 years in eastern North America using 

version 1 of the National Center for Atmospheric Research (NCAR) Community Climate 

Model (CCM1) (Kutzbach et al., 1998) were summarized by Webb HI et al. (1998). This 

GCM simulated LGM January temperatures 8-16°C lower and July temperatures 2-8°C 

lower than present These simulated temperatures, especially those for July, are 

significantly higher than vegetation-based estimates by Watts (1980b), Whitehead (1981) 

and Bartlein et al. (1986). CCM1 simulations for 16,000 and 11,000 years ago were also 

markedly different from those inferred by from pollen data (Webb, HI et al., 1998). 

Morphological Methods to Distinguish Fossil P. elauca. P. mariana and P. rubens

Positive identifications of Picea pollen and/or macrofossils to the level of species 

would make past forest reconstructions, and hence the ecological and climatic 

interpretations inferred from them, more detailed and precise. Measurements of grain 

size and distinguishing morphological characteristics have been used individually or in 

combination to separate modem P. glauca, P. mariana and P. rubens pollen (Davis,

1958; Birks and Peglar, 1980; Hansen and Engstrom, 1985). These pollen studies are 

often based on populations from small geographic regions, and hence are unlikely to have
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encompassed the full range in pollen morphology (B. Hansen, pers. comm, to M. Rneller, 

1992) and the whole phenotypic range of each species. Therefore identified pollen 

morphology characters do not reliably represent the individual species.

A few researchers have tentatively identified fossil Picea pollen to the species 

level. Watts (1980a) and Whitehead (1981) used grain size (Davis, 1958; Watts, 1979) to 

distinguish Picea species. Watts (1980a) identified primarily P. rubens pollen with some 

P. glauca pollen from White Pond, South Carolina in the central Appalachians during the 

late-glacial (from roughly 13,000 to 10,000 14C yr BP). Whitehead (1981) indicated the 

possible presence of two Picea species from Rockyhock Bay on the coast of North 

Carolina that dated from 21,000 to 10,000 14C yr BP. He believed one corresponded to P. 

mariana and did not identify the second. Further south in central Texas, P. glauca pollen 

was identified in sediments older than 15,00014C yr BP (Holloway and Bryant, Jr.,

1984).

Reliable species-identification of Picea macrofossil needles and seeds cannot be 

accomplished using traditional morphological characters. Identifications of macrofossil 

seed cones have been made to the species level (LePage, 2001), however very few sites 

in North America yield intact cones (Critchfield, 1984) and even these identifications are 

not always dependable. For example, fluvial terrace deposits of Tunica Hills, Louisiana- 

Mississippi have yielded a large number of intact Picea cones predating the LGM 

(Givens and Givens, 1987; Jackson and Givens, 1994). Givens and Givens (1987) 

assigned these cones to P. glauca, and radiocarbon dates for Picea wood from the same 

deposits ranged between 24,920 and 12,430 14C yr BP. Jackson and Givens (1994) 

questioned the taxonomic placement of P. glauca for the Tunica Hills cones.
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Subsequently, evidence from fossil cone morphology and fossil needle anatomy 

suggested that a now-extinct Picea species occupied the Mississippi Valley before the 

LGM (Jackson and Weng, 1999), a species likely misidentified as P. glauca in previous 

studies.

Resin cavity pattern in cross-sections of fresh Picea needles show some potential 

to distinguish P. glauca from P. mariana and P. rubens (Duman, 1957). Picea mariana 

and P. rubens have two continuous resin ducts running the entire length of needle, 

therefore every cross-section, from base to tip, reveals two resin ducts. Picea glauca 

resin canals are interrupted by transverse partitions of mesophyll, therefore cross-sections 

reveal two, one or no resin canals (Duman, 1957). Obviously, the whole needle is 

required for this technique, and macrofossil needles are usually in fragments. 

Furthermore, this technique is not always reliable (Kneller and Peteet, pers. comm.).

It is desirable to develop reliable methods for the species-identification of Picea 

macrofossil needles or seeds because these are commonly found at many levels 

throughout lake core sediments. Identifying which Picea species were present at several 

intervals throughout a core would enable a precise reconstruction of the paleovegetation 

over a long time span (e.g. 10,000 years). Picea needles and seeds are commonly found 

in lake sediments throughout eastern North America that date from the Late-Pleistocene 

through the Holocene. Species-identification of these macrofossils at multiple cross­

continental sites would enable the identification o f the range of each Picea species. This 

would provide a detailed regional vegetation history since the LGM, which could 

ultimately be used to make more accurate paleoclimate reconstructions.
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Molecular Methods to Distinguish Fossil P. slauca, P. mariana and P. rubens

New molecular biology techniques provide a potential means to identify 

macrofossils at the species level. DNA can be isolated from fossil tissues that have been 

well preserved. Paabo (1989) demonstrated that only DNA fragments between 40 and 

500 bp, mostly between 100 and 200 bp, could be isolated from dry remains of animal 

soft tissue ranging in age from 4 years to >50,000 years old. The yield of these DNAs 

varied between 1 and 200 pg per gram of dry tissue (Paabo, 1989). DNA is a chemically 

unstable molecule that undergoes hydrolysis and oxidation spontaneously (Hoss et al., 

1996b; Austin et al., 1997). DNA extracted from ancient tissues is considerably decayed 

and fragmented (Paabo, 1989; Paabo, 1990; Hoss et al., 1996b; Yang, 1997). The 

polymerase chain reaction (PCR™) allows the in vitro amplification of trace amounts of 

DNA (Mullis and Faloona, 1987); even extensively fragmented or damaged DNA (such 

as ancient DNA) can be amplified (reviewed by Williams, 1995; Yang, 1997; Lindahl, 

1997; Austin et al., 1997).

Fragments as large as 91 to 377 bp have been PCR-amplified from animal soft 

tissue or bone dating between 9,000 and 50,000 years old (Yang, 1997). For example, 

H6ss and Paabo (1993) PCR-amplified and sequenced a 91 bp fragment of mitochondrial 

(mtDNA) 16S rDNA from a 25,000 year old Equus (horse) bone. Krings et al. (1997) 

amplified and sequenced several fragments of the mtDNA control region ranging in size 

between ~100-150 bp from a 30,000-100,000 year old Neandertal bone. Poinar et al. 

(1998) sequenced 183-bp chloroplast rbcL fragments and 153-bp mitochondrial 12S 

rDNA fragments from a ground sloth coprolite dating back to 19,875 14C yr BP. Hoss et 

al. (1996a) amplified and sequenced -200-340-bp mitochondrial 12S and 16S rDNA
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fragments from a 13,000 year old ground sloth, and Hoss et al. (1994) sequenced 93-bp 

mitochondrial 16S rDNA fragments from wooly m am m oth. The ground sloth and 

mammoth sequences were reproduced in a different laboratory (Taylor, 1996).

Species-specific single nucleotide polymorphisms (SNPs) that distinguish 

between P. glauca, P. mariana and P. rubens have been identified (Germano and Klein, 

1999). These markers would be appropriate for distinguishing P. glauca, P. mariana and 

P. rubens macrofossils. PCR primers can be designed to amplify short DNA fragments 

(50-200 bp including the primers) that contain die site of a species-specific SNP. The 

PCR products can then be purified and directiy sequenced. Aligning the ancient DNA 

sequences with the analogous extant sequences would permit the identification of the 

macrofossil species. Although other DNA markers, including restriction fragment length 

polymorphisms (RFLPs) and random amplified polymorphic DNAs (RAPDs), have been 

identified to distinguish these species (Bobola et a l, 1992a; Perron et a l, 1995; Bobola et 

a l, 1996), these types of markers are unsuitable for the identification of fossils because 

of the limited quantity and degraded nature of ancient DNA.

Project Goals: Species Identification of Picea Macrofossils from Browns Pond. 

Virginia

Picea macrofossils (needles, sterigmata, twigs, buds and seeds) were deposited in 

sediments of Browns Pond, Virginia, during times between the LGM and the Early- 

Holocene (Kneller and Peteet, 1993; Kneller and Peteet, 1999). The site is located 

approximately 50 km west of Staunton, Virginia (38°09' N, 79°37 W), about 300 km 

south of the LGM Laurentide margin. Browns Pond is one of only approximately twenty 

sites east of the Mississippi River with a pollen and macrofossil sequence extending up to
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17,000 14C yr BP. The sediment cores contain an unusually abundant number of well- 

preserved plant macrofossils (approximately 1-5 Picea needle fragments per cm3) and an 

AMS radiocarbon date chronology (Kneller and Peteet, 1993; Kneller and Peteet, 1999). 

The goal of this project is to use PCR-amplification and sequence analysis of DNA 

fragments containing species-specific SNPs (Germano and Klein, 1999) to identify Picea 

macrofossils from Browns Pond to the species-level. This could be used in conjunction 

with future Picea species histories from other eastern North America sites to reconstruct 

a regional picture of Picea species’ northward migration following the retreat o f the ice 

sheet Overall, the successful taxonomic identification of the Browns Pond Picea would 

serve a twofold purpose: 1) to increase the precision of vegetation-based paleoclimate 

reconstructions; and 2) to reconstruct the migration patterns of this major forest 

component in this region of North America.

Materials and Methods 

Core Sample Collections

Browns Pond is a small pond, about 20 by 60 m, situated at 620 m elevation 

approximately 50 km west of Staunton, Virginia (38°09' N, 79°37 W). There are no 

surface inlets into die pond. The slopes surrounding the pond are forest-covered 

predominantly with Quercus alba and Q. rubra (white and red oak). Other trees growing 

nearby include Pinus strobus (white pine), Acer rubrum (red maple), Carya (hickory), 

Betida lenta (black birch) and Castanea dentata (chestnut). Currently, Virginia mid- 

elevations have a mean annual precipitation of 1,000 mm, mean January temperatures 

between -6°C and 6°C and mean July temperatures between 13°C and 27°C (Kneller and 

Peteet, 1993).
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Picea micro- and macrofossil samples used in this project were obtained from 

three different sets of cores collected from Browns Pond at three different times (Table 

2). The first set of samples consisted of Picea needle macrofossils that were separated 

from the sediment and sorted by Dr. Kneller. These macrofossils were from a core 

collected from Browns Pond in 1989 (Kneller and Peteet, 1993). In order to remove 

sediment from the fossils, Dr. Kneller subjected them to customary chemical treatments 

including soaking them in a solution of KOH (Kneller and Peteet, 1993). After sorting, 

the Picea needle macrofossils were stored in water and refrigerated until they were sent 

to us in 1998.

The second set of samples came from a core collected in 1992 (Kneller and 

Peteet, 1999). This core had been stored at 7°C until a portion of it was brought to UNH 

in January of 1999. Picea macrofossils were sorted from it as described below.

The final set of samples came from six sediment cores (designated 99-1 through 

99-6) collected near the northwest perimeter of the Browns Pond in April of 1999 using a 

5 cm diameter Livingston piston corer. These cores reached depths between about 250 

and 700 cm, with organic material occurring mostly within the top 2-4 m, then changing 

over to all inorganic sand and clay. The sediments along the length of each core were 

described by Dr. Kneller. Organic sections of cores suspected to contain Picea 

macrofossils totaled approximately 690 cm. These were divided in half longitudinally, 

and one half of each core was cut into 1 cm lateral sections after its outer surface had 

been scraped clean o f loose sediment. Each of these sections (~10 cm3) was placed in a 

separate plastic bag and labeled. The cores remained at ambient temperature (~20°C) for 

no longer than one week before they were divided into sections. The sections were
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Table 2. Browns Pond cores used in this project. 

Core Name BR89W1 BR92D 99-1 through 99-6

Date Collected 1989
Location of Sediment Separation LDEO8
Chemical Treatment of Macrofossils Yes 
Core Storage Conditions Refrigerated (7°C)

1992
Spaulding G07 
No
Refrigerated (7°C)

Macrofossil Storage Conditions

1999
Spaulding G07 or Rudman G30 
No
Sections individually wrapped in 
plastic and frozen (~20°C) 

Refrigerated (4°C) in water Frozen (-20°C) individually Frozen (-20°C) individually

N >
o

Lamont Doherty Earth Observatory, Columbia University, Palisades, NY



refrigerated (4°C) for a period no longer than one month, and then stored frozen at 

(-20°C).

Precautions for Fossil Manipulation

Laboratory surfaces and equipment were periodically wiped down with either 

RNase Away (Molecular BioProducts Inc., San Diego, CA) or 8% bleach (both solutions 

chemically destroy DNA). Plastic tube racks were soaked overnight in 10% RNase 

Away and rinsed with water between uses. New micropipets were purchased, and only 

aerosol-resistant filter pipet tips were used. An acid-treated glass distillation apparatus 

provided the distilled water. Water was autoclaved before use in solutions or for PCR. 

All glassware, microcentrifuge tubes, spatulas, mini-pestles, etc. were autoclaved (121°C 

for at least 20 min) between uses. All the supplies and chemicals used were purchased 

new. To avoid contamination from amplified Picea DNAs abundant in the main research 

laboratory of Dr. Anita Klein, all of the equipment (water bath, microcentrifuges, 

balance, etc.) was borrowed from either the Biochemistry or Microbiology teaching 

laboratories. Refrigerators and freezers used were located in the Biochemistry or 

Microbiology teaching labs or the basement of Rudman Hall.

The 1999 cores were sectioned and prepared for storage on the bench tops of 

Spaulding Life Sciences room G07. This laboratory is located in the comer of the ground 

floor of the building, adjacent to the Biochemistry Department teaching lab prep room. 

The Biochemistry teaching labs do not routinely do experiments with plants or with plant 

DNA (note: if any plant materials were used, they would have involved plants distantly 

related to conifers). Macrofossils were separated from the sediment over a sink and 

sorted under a microscope on one of the bench tops in Spaulding G07. Attempts to

121

R eproduced  with permission of the copyright owner. Further reproduction prohibited without permission.



extract and PCR-amplify DNA from die macrofossils were also carried out in this room. 

Macrofossil DNA extractions and PCR preparations were carried out in separate hooded 

enclosures. These enclosures were illuminated with ultra-violet (UV) light for 10-15 

minutes prior to use.

All work with fossil pollen, including separating it from core sediment and 

attempts to PCR-amplify pollen DNA, was carried out in the Microbiology teaching lab 

room G30 on the ground floor of Rudman Hall. This work was conducted in laminar- 

flow hoods equipped with UV lights with the exception of sorting individual pollen 

grains from sediment suspensions. Sorting was carried out under a microscope on one of 

the bench tops in Rudman G30. The only equipment from the main research lab that was 

used in for these experiments was a thermal cycler used for pollen DNA amplifications in 

Rudman G30. Every surface of the machine was decontaminated with RNase Away and 

8% bleach; the heating block was soaked with each solution and thoroughly rinsed with 

distilled water.

Separating Macrofossils and Pollen from Core Sections

Macrofossils of core BR92D and the 1999 cores were separated from the 

sediment by rinsing one 1-cm section at a time with distilled water through sterile 500 

pm and 125 pm brass sieves. Brass sieves were rinsed well with deionized water 

followed by distilled water between each use, and autoclaved each day (between every 5- 

10 uses). Picea macrofossils were sorted from other macrofossils under a dissecting 

microscope, and then transferred to sterile 1.5-ml microcentrifuge tubes. Larger 

macrofossils, such as whole needles or almost whole needles, seeds, seed wings, twigs or 

buds, were transferred into individual 1.5-ml tubes. Smaller macrofossils, such as small
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needle fragments or sterigmata, were pooled together into single tubes. Each tube 

contained about 1-15 mg of tissue (wet weight); the contents of each tube served as one 

sample from which DNA was extracted. Large seeds, such as Rubus (raspberry) or Abies 

(fir), were retained for future AMS radiocarbon dating from each core section and stored 

in individual tubes refrigerated (4°C) or frozen (-20°C).

Pollen was separated from the sediment of core 99-1 by passing 1-2 cm3 pieces of 

a section through 1) a 500 pm brass sieve, 2) a 120 pm nylon screen and 3) a 7 pm nylon 

screen using copious amounts of distilled water. Sometimes the 7 pm nylon screen was 

placed in aNalgene filter sterilizer unit (with the 0.2 pm filter removed) and attached to a 

vacuum in order to speed the process. The apparatus was sterilized between separating 

each core section, the sieve by autoclaving, and the nylon screens by soaking in 8% 

bleach and exposing them to UV light The pollen suspension was collected from the 7 

pm and 120 pm nylon screens with a pipet and transferred to separate microcentrifuge 

tubes. Before any sediment was separated, distilled water was passed through the entire 

apparatus and collected in order to serve as a blank negative control. Pollen grains were 

identified as Picea under a 40X magnification dissecting microscope according to 

morphological descriptions provided by Drs. Margaret Kneller and Dorothy Peteet 

Individual grains were removed from underneath the microscope with a P-2 Gilson 

Pipetman and transferred to a microcentrifuge tube.

DNA Extraction from Macrofossils

DNA was extracted from macrofossil tissue using two types o f extractions. 

Extractions using a traditional CTAB extraction and isopropanol precipitation (Doyle and 

Doyle, 1987) were performed as described for small scale preparations in Germano and
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Klein (1999). The macrofossil samples used for these extractions were from cores 

BR89W1 and BR92D. A phenol extraction step was incorporated into some of the 

extractions just before the chloroform extraction step. A Proteinase K step was also 

added to the end of some extractions. The DNA pellet was resuspended in a Proteinase K 

buffer (0.01 M Tris, pH 8,5 mM EDTA, 0.5% SDS), Proteinase K (50 pg/ml; Promega) 

was added, and the solution was incubated at 37°C for one hour. The solution was re- 

extracted with phenol and chloroform, brought to 1.4 M NaCl and re-precipitated.

A silica extraction method for fossil DNA extraction was modified from: Poinar 

etal. (1998), PaSbo (1989), Paabo (1988), Hoss and Paabo (1993), Boom et al. (1990), 

and Hendrik Poinar (pers. comm). Macrofossil tissue (1-15 mg) was ground to a fine 

powder in a 1.5-ml microcentrifuge tube resting in liquid nitrogen using a conical mini­

pestle. The powdered tissue was suspended in 200 pi Extraction Buffer (10 mM Tris [pH 

8.0], 2 mM EDTA, 10 mM NaCl) and Proteinase K was added to a final concentration of 

200 pg/ml. The suspensions were incubated at 37°C with constant agitation for 48 hours. 

iV-phenacylthiazolium bromide (PTB) was added to a final concentration o f 10 mM. PTB 

was synthesized according to Vasan et al. (1996), stored dry under a vacuum as crystals 

and dissolved in a solution of 10 mM NaPC>4 buffer (pH 7.4) immediately before use.

The solution was extracted twice with an equal volume of saturated phenol (pH —7) and 

once with an equal volume of chloroformrisoamyl alcohol (24:1). Solutions were mixed 

for 5-10 minutes and centrifuged at 10-13,000 * g for 3-5 minutes. The supernatant was 

removed to a Microcon-30 sample reservoir (Amicon Inc., Danvers, MA) and 

concentrated by centrifugation to 20-30 pi. L6 Buffer (10M GuSCN, 0.1M Tris [pH 6.4], 

3.6mM EDTA, 21 mg/ml Triton X-100) and Silica Suspension (Boom et al., 1990) were
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added to die concentrate (100 pi and 4 pi, respectively, per 20 pi concentrate), and the 

solutions were rotated for several hours to overnight at room temperature. The silica was 

pelleted by centrifuging 10-13,000 * g for 8 seconds and the supernatant was discarded. 

The pellet was washed once in 150 pi L2 Buffer (10M GuSCN, 0.1M Tris [pH 6.4]) and 

twice in 150 pi ice-cold Bio 101 New Wash (Bio 101). After discarding the supernatant, 

the pellet was allowed to dry at 56°C for 2-3 minutes. DNA was eluted from the pellet 

with 20 pi TE buffer (56°C) for 1-2 minutes at 56°C. Note: the L6 and L2 Buffers 

contained a small amount of Silica Suspension in order to bind any contaminating DNAs, 

therefore these buffers were centrifuged before each use. Reagent blanks, where no 

macrofossil tissue was added, were carried out with each batch of extractions.

DNA was “extracted” from pollen grains by crushing grains suspended in distilled 

water with a pipet tip or glass rod. Either die crushed grains in suspension or the 

supernatant after pelleting the grains were added to PCR amplification reactions. 

Southern Blot and Hybridization Analysis

In an attempt to detect ancient Picea DNA, macrofossil extracts (CTAB 

extractions, core BR92D) were subjected to electrophoresis through an agarose gel, and 

transferred to a nylon membrane by Southern blot according to Sambrook et al. (1989). 

Whole genomic DNAs from extant Picea, Escherichia coli (bacteria), Trichoderma (a 

common soil fungus) and Phaeocryptopus (a conifer endophytic fungus) were also 

loaded into different lanes of the gel as well as X Hind HI and OX Hae ID DNA size 

markers. Radioactive probes were synthesized from P. rubens ITS1 PCR amplicon 

(Germano and Klein, 1999) using Prime-It® Random Primer Labeling Kit (Stratagene, La 

Jolla, CA). Hybridization and wash buffers were prepared according to Sambrook et al.

125

R eproduced  with permission of the copyright owner. Further reproduction prohibited without permission.



(1989). Pre-hybridization was carried out in 5 ml pre-hybridization solution (50% 

deionized formamide, 4X SSPE buffer, 0.5% BLOTTO, 1% SDS, 1OOpg/ml sheared, 

denatured, quenched herring sperm DNA) at 42°C for 2 hours. Hybridization was carried 

out in 5 ml reactions (50% deionized formamide, 4X SSPE buffer, 9.3% dextran sulfate, 

0.5% BLOTTO, 1% SDS, 1 OOpg/ml sheared, denatured, quenched herring sperm DNA, 

probe) at 42°C for 16 hours with constant rolling. The membrane was washed twice with 

2X SSC buffer, 0.1% SDS for 15 minutes, once at room temperature and once at 65°C. 

KODAK XOMAT Blue X-Ray film was exposed for 10 days.

PCR Amplification

Attempts to amplify macrofossil DNA were carried out using the primers 

R/BvsW SSCP-1 and R/BvsW SSCP-1A (Germano and Klein, 1999). Each 25-pl 

reaction contained 1-4 pi DNA extract, IX Taq Buffer (Promega), 2.5 mM MgCb, 0.2 

mM each dNTP, 0.4 pM each primer, and 1-12.5 units Taq Polymerase (Promega).

Some reactions contained an amount o f Taq Antibody (Gibco BRL) equal to the amount 

o f Taq. Bovine Serum Albumin (Promega) was also added to some reactions to a final 

concentration of 1 mg/ml. Thermal cycling conditions were as follows: initial 

denaturation 94°C for 3 minutes, 35-50 cycles of 94°C for 30 seconds, 47-63°C for 30-60 

seconds, 72°C for 0-30 seconds, final extension step 72°C for 10 minutes.

Primers were designed to amplify fossil ITS DNA as follows: ITS1-5.8S-1 and 

ITS1-5.8S-1A (GTC TTG TGG GGT GGG AGG GTT GTT G and AGA GCC GAG 

ATA TCC GTT GCC GAG AG) and 5.8S-ITS2-1 and 5.8S-ITS2-1 A (CAG AAT CCC 

GTG AAT CAT CGA GTT TTT G and CTT GCA GGG AGC GCG TGT ATG TAG G). 

Each 25-pl PCR reaction contained 10-100 crushed pollen grains or 14 pi crushed pollen
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supematent, IX Taq Buffer, 2.5 mM MgCh, 0.2 mM each dNTP, 0.4 pM each primer, 

6.25 units Taq Polymerase and 6.25 units Taq Antibody. Bovine Serum Albumin was 

also added to some reactions to a final concentration o f 1 mg/ml. Thermal cycling 

conditions were as follows: initial denaturation 94°C for 4 minutes, 39 cycles of 94°C for 

20 seconds, 55°C for 1 minute, 72°C for 1 minute, final extension step 72°C for 10 

minutes.

Results and Discussion 

Core Samples: Effects of Handling and Time since Collection from the Ground

CoreBR89W l. Macrofossils from core BR89W1 were unsuitable for fossil DNA 

analysis for several reasons. Firstly, they were subjected to a number of chemical 

treatments including immersion in a basic solution (KOH) to completely remove the 

sediment from the macrofossils. These treatments are customary for analysis of pollen 

and macrofossil core records because they reveal details of the fossils’ anatomy allowing 

easier identification. However, the chemical treatments likely compromised the integrity 

of any DNA remaining in the BR89W1 fossils. Furthermore, after separating them from 

the sediment, the macrofossils were stored in tap water and refrigerated for at least five 

years. DNA is most stable in a buffered, bacteriostatic solution that is stored at -80°C. 

Any DNA remaining in the macrofossils after the chemical treatments would have been 

hydrolyzed, or degraded by bacteria or fungus that could have easily grown under these 

storage conditions. In fact, high molecular weight DNAs were detected by agarose gel in 

the CTAB extracts from these macrofossils (data not shown). Bacterial and fungal DNAs 

are common contaminants of ancient DNA extracts (Hoss et a/., 1996b; Austin et a l, 

1997), and are thought to be recent in origin and the source of high molecular weight
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DNAs. The presence of high molecular weight DNAs in the BR89W1 extracts 

suggested that they were indeed contaminated with contemporary microorganisms.

Core BR92D. The macrofossils from core BR92D also yielded high-molecular 

weight DNA (CTAB extraction; see Figure 2). Following a Southern blot, the Picea 

ITS1 radiolabeled probe hybridized to the contemporary Picea DNA on the blot, and it 

did not cross-react with any of the microbial or size marker DNAs. The high molecular 

weight DNA seen in the macrofossil lane on the agarose gel did not hybridize to the 

Picea probe, supporting the hypothesis that it is microbial in origin (Figure 3). The 

growth of bacteria and/or fungi is not surprising considering the length of time that core 

BR92D had been stored refrigerated (approximately seven years).

Interestingly, the macrofossil lane of the Southern blot revealed a very faint smear 

corresponding to DNAs ranging from ~250 to 650 bp (Figure 3). This result suggests 

that authentic ancient Picea DNA was present in the macrofossil extract. The size range 

inferred for the macrofossil DNAs may be skewed due to DNA-DNA cross-links between 

ancient DNA molecules (P2abo, 1990). Even if the macrofossil DNAs are half as long as 

250-650 bp, they are within the range that can typically be PCR-amplified (Paabo, 1989).

The 1999 Cores. The macrofossils from the 1999 cores did not yield a high 

molecular weight DNA band visible on an agarose gel (data not shown). This suggests 

that the contemporary microorganisms hypothesized to be the source of the high 

molecular weight DNA in BR89W1 and BR92D macrofossils developed throughout the 

cores/fossils after the cores were extracted from the ground and were not inherent in the 

sediments below Browns Pond. The proper handling and storage of the 1999 cores 

prevented such growth from occurring. This also confirms the expectation that few
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-High MW DNA

Figure 2. Agarose gel showing DNA extracts (CTAB method) from BR92D Picea 
macrofossils. Lane 1: Lambda HindPQ. and PhiX HaeIII DNA size markers, Lanes 2-7: 
macrofossil extracts (note: high molecular weight DNA visible in some extracts).
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Figure 3. Hybridization o f Southern blot with Picea-spoci&c probe. Lanes 1 and 2: Picea 
rubens contemporary DNA, Lane 3: DNA size markers, Lane 4: Trichoderma, Lane 5:
E. coli, Lane 6 : Picea macrofossil, Lane 7: Phaeocryptopus. Bracket indicates presence 
of putative ancient DNA.
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microorganisms grow in the anoxic environment o f the sediment layers below lakes and 

ponds, a reason why the fossils below Browns Pond are so well preserved structurally.

Extraction of one of the macrofossils from core 99-1 (silica method), a small twig 

with nine pulvini and a bud, yielded a very feint DNA smear visible on the agarose gel 

used for a second Southern blot (data not shown). This smear of DNA, from about 100- 

1000 bp, contains larger DNAs than those detected in the BR92D macrofossil extract by 

hybridization. This suggests that the fossil DNA in core BR92D degraded significantly 

after the core was extracted from the ground, possibly due to bacterial/fungal growth or 

oxidation. These results demonstrate the importance of properly handling fossils once 

they are removed from their original place of deposit, in order to preserve the integrity of 

their DNA. The putative fossil DNA visualized on fee agarose gel, however, was not 

detected by fee Picea radiolabeled probe (data not shown). This could be because 1) the 

probe had a 2-fold lower specific activity than fee probe used for fee BR92D blot, 2) 

there was a lot of residual background left on fee blot after fee washes, or 3) fee film was 

exposed to fee blot for less than half fee amount of time as fee BR92D blot

The Southern blot and hybridization experiment to detect authentically ancient 

Picea DNA from fee macrofossils of fee 1999 cores warrants repetition, wife several 

changes to the protocol. A large-scale DNA extraction from numerous Picea 

macrofossils should be carried out in lieu of extracting DNA from individual fossils, and 

the entire contents of fee extract should be loaded on the gel. Furthermore, fee DNAs in 

the gel should not be depurinated wife hydrochloric acid (HC1) prior to blotting on the 

nylon membrane since ancient DNA is already extensively damaged and depurinated 

(Lindahl, 1993), and further depurination may completely abolish fee ability of fee target
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DNA to anneal to a probe. Also, the probe should have a specific activity of at least 4 X 

1 0 9  dpm/pg. Finally, the radioactivity should be detected over time with a phosphor- 

imager. This would eliminate the guessing involved in determining how much time the 

X-ray film should be exposed, and there is no risk of over-exposing X-ray film. 

Problems Encountered with DNA Extraction of Spruce Macrofossils

CTAB Extraction. The CTAB extraction method was used to extract DNA from 

BR89W1 and BR92D macrofossils. Following the isopropanol precipitation and ethanol 

washes, the precipitant pellet was brown in color. When subjected to electrophoresis 

through an agarose gel, this brown substance traveled towards die anode at a slightly 

greater speed than the bromophenol blue. Interestingly, when visualized under UV light, 

it appeared as though all of the ethidium bromide had been stripped away from the lane 

containing brown extracts, or as if the brown molecules prevented the ethidium bromide 

from traveling towards the cathode.

Ancient DNA extracts are almost invariably brown in color, commonly due to the 

presence of Maillard products (Paabo, 1989; Paabo, 1990; Poinar et al’, 1998). The 

Maillard reaction involves the condensation of reducing sugar carbonyl groups with 

primary amines; advanced stages of the reaction can cross-link DNA and proteins over 

long periods of time (Poinar et a l, 1998). Humic acid, a form of Maillard products 

(Richard Blakemore, pers. comm.), is a common component of organic soil and it is a 

common contaminant of DNA extracts from soil microorganisms (Torsvik, 1995).

Humic acid is brown in color, and it has an electrophoretic mobility that is slightly faster 

than bromophenol blue through agarose gel (Richard Blakemore, pers. comm.). It is
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likely that a component of the brown contaminants of the macrofossil CTAB extracts was 

a form of humic acid that co-precipitated with the DNA.

Silica Extraction. The silica based extraction method purified much of the brown 

contaminants away from the DNA extract. After each wash of the silica pellet, the brown 

color became lighter; following the elution with TE buffer, any rem aining  brown 

substance stayed on the silica and did not elute into the final product This purification 

may have been aided by the addition of PTB during the extraction. PTB has been shown 

to break down Maillard products (Vasan e ta l.,1 996). It is hypothesized to help 

chemically release DNA molecules that may be covalently bound in M aillard products 

ancient tissue extracts (Poinar et a l, 1998). This purification is also important because 

humic acid is known to inhibit PCR (Richard Blakemore, pers. comm.).

In addition to yielding a better purified product, silica based extractions are 

generally preferred over precipitation methods for fossil DNA because DNAs that are 

small in size (such as ancient DNAs) do not always precipitate on their own. Many times 

a “seed” such as tRNA is added to assist the small DNA fragments in precipitating. The 

CTAB method may have worked for the BR89W1 and BR92D macrofossils because the 

contemporary high molecular weight DNAs that were present may have acted like a 

“seed” for the precipitation step. For these reasons, it was concluded that the silica 

extraction method was better suited for extracting DNA from Browns Pond macrofossils. 

PCR Amplification

All attempts to PCR-amplify authentically ancient DNA from macrofossils and 

from fossil pollen failed. The primary impediments included inhibition of PCR, non-
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specific amplification, contamination, lack of template DNA (regarding the pollen) and 

primer design.

Inhibition. Inhibition is a common problem when using to PCR to amplify 

ancient DNAs because many different substances that co-purify with the fossil DNA in 

the extraction can interfere with the PCR reaction. There are two ways to determine if 

inhibition is the reason behind failed PCR. Firstly, one can conduct an experiment in 

which quality template (known to be amplifiable) is added to a reaction containing fossil 

extract If  amplification does not occur, yet a positive control reaction does 

(demonstrating the functionality of all the PCR reagents), then it may be concluded that 

some component of the fossil extract inhibited the amplification reaction. Second, the 

absence of primer-dimer amplification products in PCRs containing fossil extracts is also 

an indicator of inhibition, especially if such products are present in negative control 

reactions. If  inhibition is determined to be the problem, the next step is to determine the 

nature o f the inhibition; i.e. is the inhibitor affecting the polymerase, or is it 

compromising some other component of the reaction?

In many of the attempts to amplify DNA from the macrofossil CTAB extracts, 

inhibition was apparent by both indicators discussed above. Since positive controls were 

positive, and negative controls exhibited primer-dimer amplicon, it was concluded that 

the inhibitor was derived from the fossil extracts. Working under the hypothesis that the 

inhibitor was a form of DNase (digesting the primers, hence no primer-dimer), tire CTAB 

extraction method was conducted with two additional steps: a phenol extraction step, and 

a Proteinase K digestion step. Neither of these prevented PCR inhibition, therefore it was 

concluded that the inhibitor was not DNase or any other protein-based molecule.
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Switching to the silica extraction method greatly reduced the amount of PCR 

inhibition. This can probably be attributed to the increased purity of the DNA extracts 

with using silica and to the fact that the method employs both Proteinase K and phenol 

Since Maillard products, including humic acid, inhibit the Taq DNA polymerase (Poinar 

et al., 1998), two additional strategies were employed in assembling the amplification 

reactions. First, 6-12 fold more polymerase (than is used when amplifying fresh DNA) 

was added to die reactions to combat the effects of the inhibitor. This strategy worked to 

overcome inhibition for PSSbo (1990). Second, bovine serum albumin (BSA), was added 

to stabilize the polymerase as has been employed in multiple ancient DNA studies (PSSbo 

et al., 1988; PSabo, 1990; Taylor, 1996). BSA is often used to stabilize other molecular 

biology enzymes such as DNA ligase and restriction endonucleases. Theoretically, if the 

inhibitor was chemically reacting with and hence disabling the polymerase, the BSA 

would act as a competitor with which the inhibitor could react. These strategies, both 

singly and together, in addition to switching to the silica extraction method, significantly 

overcame many of the inhibition problems.

PCR Amplification Attempts from Fossil Pollen. Attempts were also made to 

amplify DNA from Browns Pond pollen. The sporopollenin wall of pollen grains is 

durable, chemically inert, and even resistant to treatments with strong acid; therefore 

pollen grains can remain intact for thousands of years. Theoretically, the pollen wall can 

act to protect and preserve the pollen DNA over long periods of time. PCR amplification 

has been demonstrated from DNA template from single pollen grains (Petersen et al., 

1999). Moreover, putatively ancient DNA was detected with DAPI staining and
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amplified by PCR from 150,000 year old Abies pollen from peat deposits (Suyama et al., 

1996).

Attempts to PCR-amplify DNA from Browns Pond pollen yielded no positive 

results. Under 40X magnification, the Picea pollen grains appeared compressed, and 

many were broken open. The poor condition of the pollen was not due to the vacuum 

apparatus used during sifting of the sediment Separating die intact pollen grains from a 

suspension of the sediment was tedious and time consuming. The low number of well- 

preserved pollen grains and the amount of time it took to isolate them from the sediment 

limited the chances of successful amplification o f pollen DNA.

Inhibition of PCR was also a problem when attempting to amplify DNA from 

fossil pollen. Although no experiments were carried out where quality template was 

added to reactions containing pollen, the accumulation of primer-dimer amplicon was 

affected by the pollen extract An experiment was carried out in which 1) smashed pollen 

grains were added directly to the PCR or 2) just die supernatant (distilled water atop the 

pollen grains after smashing them and pelleting them by centrifugation) was added. The 

reactions containing pollen grains (approximately 50-100 grains per reaction) produced 

no primer-dimer amplicons, whereas the reactions containing supernatant did yield 

primer-dimer amplicon (Figure 4). This led me to conclude that either the substance that 

makes up the outer layer of pollen grains (sporopollenin), or something associated with 

die pollen from the sediment, inhibits PCR.

Non-Specific Amplification. Non-specific amplification can be problematic in 

conducting PCR of ancient DNAs. Ancient DNAs are extensively damaged. Not only 

are the phosphodiester bonds cleaved by hydrolysis, effectively shortening the DNA
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Figure 4. Agarose gel showing PCR products using primers ITS1-5.8S-1 and ITS1-5.8S- 
1A. Lane 1: PhiX Haelll DNA size marker, Lane 2 Picea positive control, Lane 3: 
supematent collected after crushing pollen, Lanes 4 and 5: crushed pollen grains, Lanes 
6 ,7  and 8 : negative control of water left open on bench top.
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fragments, but the nucleobases are compromised as -well through depurination and 

hydrolytic deamination (Lindahl, 1993). This damage of die nucleobases directly affects 

die effectiveness with which the PCR primers anneal with the template DNA. Therefore, 

annealing temperatures are usually set much lower than usual so that primers can anneal 

to the damaged template. Even if primers are designed to be specific to the species of 

fossil organism, such low annealing temperatures would enable them to anneal to 

contemporary DNA from other contaminating organisms.

Many PCR reactions resulted in the production of multiple amplicons between 

100 and 500 bp in length. This problem was exacerbated by carrying out more than 40 

cycles of PCR. Contamination is an obvious source of non-specific amplification. 

However experiments with and without BSA showed that most o f these random 

amplification products were due to the addition of BSA (Figure 5). According to their 

tech-support, Promega does not carry out quality control measures for die presence of 

DNA in their BSA products, therefore residual bovine DNA was likely present in the 

BSA preparations. This hypothesis could be tested directly by sequencing some o f the 

non-specific PCR products and searching for homologous sequences by a BLAST search 

of GenBank. Since die addition of excess Taq polymerase overcame much o f the 

inhibition caused by the fossil extracts, the addition of BSA is probably not necessary.

Contamination. The risk of contamination o f ancient DNA with contemporary 

DNA is problematic because ancient DNA molecules are present in very low numbers, 

and PCR is so sensitive, it can yield amplified products from just a few starting template 

molecules (PSabo, 1990; Austin et al., 1997). Contaminating modem DNA usually out- 

competes ancient DNA during PCR because ancient DNA is significantly damaged, thus
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Expected product
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<—Primer dimer

Figure 5. Agarose gel showing PCR products using primers ITS1-5.8S-1 and 
ITS1-5.8S-1A. Top panel: reactions contained 1 mg/ml BSA, bottom panel, 
reactions contained no BSA. Lane 1: PhiX Haein DNA size marker, Lanes 2-7: 
negative controls (no DNA template added), Lane 8 : Picea positive control (DNA 
template from contemporary Picea sample).
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modem DNA makes a better template (Hoss et a l, 1996b). Multiple PCR reactions 

containing macrofossil extracts yielded amplicons o f the expected size. Some of these 

amplicons, of both macrofossil extracts and of negative control reactions, were directly 

sequenced. The sequences were compared to homologous sequences of a variety of 

conifers including Picea sitchensis (Sitka spruce), Picea engelmcomii (Engelman spruce), 

Picea pimgens (Colorado blue spruce), Picea breweriana (Brewers spruce), Picea 

chihuahuana (Chihuahua spruce), Picea mexicana (Mexican spruce), Abies balsamea 

(Balsam fir), Larix decidua (European larch), Pinus contorta (shore pine), Pinus 

sylvestris (Scotch pine), Pinus thunbergii (Japanese black pine), Pinus banksiana (jack 

pine) and Pinus strobus (eastern white pine). The PCR sequences matched those o f 

eastern white pine. It was concluded that these amplifications were of contemporary 

contaminating white pine DNA because the PCR products were also found in the 

negative controls. It is likely that die source of the contamination was white pine pollen, 

which was particularly abundant during 1999 when many of these experiments were 

performed.

Multiple negative controls were carried out throughout all fossil manipulation 

procedures. These included 1) a blank run of distilled water through the sifting 

apparatuses (the brass sieves and nylon membranes), 2 ) a reagent blank carried out along 

side of each batch of macrofossil extractions to test for contamination of extraction 

reagents and 3) a template blank along side of each batch of PCR preparations to test for 

contamination o f PCR reagents. Many times, the PCRs using these negative controls as 

templates were negative for amplification, yet the fossil extract-containing reactions were 

positive for the expected-size product (later identified as white pine DNA). Therefore,
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the contamination must have occurred at some point in time other than during the sifting, 

extraction or PCR preparations. It is important to note here that the macrofossil 

extractions and preparation of PCR reagents were carried out under hooded enclosures.

In the case of pollen sifting, the pollen was separated from the sediment under a laminar 

flow hood. This led to the suspicion that the contamination occurred during the sorting 

and picking of macrofossils and pollen because during this step, 1 ) the samples are open 

to the environment while under the microscope, 2 ) the sorting under the microscope takes 

a relatively long time, and 3) the sorting and picking are carried out on the bench top 

because it was not possible to use a microscope in the laminar flow hood.

Issues with contamination were more prevalent when working in Spaulding G07. 

This laboratory was chosen because it was in a separate building as Dr. Klein’s 

laboratory. The rationale was to get as far away from the ubiquitous Picea genomic and 

amplified DNAs present in the Klein lab. Spaulding was probably a poor choice for a 

“clean” lab however since it does not have a filtered air handling system. Many o f the 

rooms in Spaulding, including G07, have windows in them. During the hot summer 

months these windows are opened to let in fresh air. Large amounts of wind-borne 

pollen, including white pine pollen, enter the building this way.

Working in the Microbiology lab G30 solved many o f the contamination 

problems because the lab is effectively closed to the outside environment, and because of 

the availability of laminar flow hoods. There were still some issues with contamination 

however when working in the Microbiology lab. An experiment was conducted in which 

a sterile Petri dish containing distilled water, like the ones used for sorting and picking 

pollen grains, was left on the bench top next to the microscope for the length of time it
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took to sift and pick through one batch of pollen grains. This water was then used as 

template in a negative control PCR reaction. Amplicons of the expected size range were 

produced in these negative controls indicating that the water in the open Petri dish had 

become contaminated by simply standing open on the bench top, even after the bench 

was disinfected with bleach (Figure 4). The source of the contamination was likely air­

borne pollen.

Primer Design. When attempting to amplify the macrofossil DNA, the primers 

used (R/BvsW SSCP- 1  and R/BvsW SSCP-1A) were chosen based on 1) die location of 

their target in the multi-copy chloroplast DNA and 2) the short length of their product 

(119 bp). When attempting to amplify the pollen DNA, different primers (ITS1-5.8S-1 

and ITS1-5.8S-1A / 5.8S-ITS2-1 and 5.8S-ITS2-1A; see Materials and Methods for 

primer sequences) were used. Their target was in also in a multi-copy region: the ITS 

region of the rDNA repeat, which is tandemly repeated on multiple chromosomes in 

thousands to millions o f copies in the Picea cell nucleus (Bobola et cd., 1992b). The 

amplicon (product) lengths were also short: 147 and 108 bp, respectively. These primers, 

however, were designed with additional conditions in mind. They were significantly 

longer (25-28 nucleotides) and therefore had much higher melting temperatures (63- 

65°C). The rationale was die longer the primer, the higher the melting temperature, the 

“stickier” the primer, the better the chances of it annealing to damaged DNA templates.

A high GC content was also preferred; G and C nucleotides form a complimentary base 

pair by three hydrogen bonds, whereas A and T only anneal by two hydrogen bonds. 

Additionally, the GA content was considered because purines are damaged in DNA over 

time much more rapidly than pyrimidines (Lindahl, 1993). The newly designed primers
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had %GC contents between 43 and 60% and %GA contents between 46 and 60%. Since 

these primers are “stickier” they have a greater capability of annealing non-specifically to 

contaminating contemporary DNAs. Therefore, they were designed to anneal to highly 

variable regions of the ITS region. Sequence alignment of this region in spruce with 

species of pine and hemlock indicate that there are multiple mismatches between the 

primer and the non-spruce conifer DNAs (data not shown). At PCR annealing 

temperatures near the melting temperatures of these primers, they should not amplify 

contaminating conifer DNAs. However, when positive controls were performed using 

contemporary Picea DNA with an annealing temperature of 55°C, longer than expected 

amplicons were produced in addition to the fragment of expected size. This was likely 

caused by non-specific annealing to other regions of the Picea genome because of the 

low annealing temperature. These primers most likely had a greater chance of 

successfully amplifying ancient DNA, however, their “stickiness” increases the risk of 

amplifying contemporary contaminating DNAs.

Future Directions

Hindsight is always 20/20. If this project were to be attempted again, I would 

cany it out the following way. All the work would be done in the Microbiology teaching 

laboratories. These rooms are sufficiently far enough away from the main research lab 

and its amplified Picea DNA. All equipment, supplies and reagents would be borrowed 

or brand new. Experiments would have designated rooms, i.e. one room for sediment 

separation and extraction, one room for amplification preparation, one room for thermal 

cycling and one room for detecting PCR products. Each room would have its own 

designated equipment and supplies that would not travel from room to room. All
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experiments would be carried out in laminar flow hoods equipped with UV light A 

special hooded enclosure would be necessary for microscope work. Picea macrofossils 

would be pooled together and large-scale extractions (from 1 0 0 - 1 0 0 0  mg tissue) would 

be carried out using the silica extraction method. All of the negative controls discussed 

above would be used. If DNA cannot be detected with agarose gel electrophoresis, then 

Southern blot and hybridization analyses would be done to show that authentic ancient 

DNA is present. PCR would be carried out with the ITS1-5.8S-1 / ITS1-5.8S-1A and 

5.8S-ITS2-1 / 5.8S-ITS2-1A primers. Ten times the normal amount of Taq polymerase 

would be used in each reaction, and a higher quality polymerase with proof-reading 

function would be used (e.g. AmpliTaq Gold, Applied Biosystems Inc.). BSA would not 

be used in the reactions unless a source could be found where quality controls for the 

presence of DNA are performed. In addition, experiments would be done to check for 

the presence of contaminating DNA in the BSA. PCR products would be cloned in lieu 

being directly sequenced since multiple species of spruce could have been combined 

when pooled together for the extraction process. Any positive results would be repeated 

by a collaborator in another laboratory in a remote location.

Specific Applications of Picea Species Identifications Using DNA Technology. 

Upon successful amplification of macrofossil DNA, the following hypotheses would be 

addressed. Estimates of climate change during the LGM have been made for the 

unglaciated region of eastern North America based on pollen records (Watts, 1980b; 

Whitehead, 1981; Prentice et al., 1991; Webb, HI et a l, 1993). Interestingly, these 

estimates are significantly colder and drier than LGM climates simulated using GCMs 

(Hansen et al., 1984; Rind and Peteet, 1985; Broccoli and Manabe, 1987; Kutzbach,
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1993; Kutzbach and Ruddiman, 1993; Webb, m  et al., 1998; Kutzbach et a l, 1998). 

Picea glauca is considered tbe most cold-hardy of the Picea (Fowells, 1965), and it is 

most tolerant o f dry conditions (Nienstaedt and Zasada, 1990). Therefore, we 

hypothesize2  that P. glauca was the dominant Picea species at Browns Pond, Virginia 

during the LGM. I f  P. glauca was dominant at this time, then this strongly supports 

previous vegetation-based inferences that LGM conditions were much colder and drier 

than present, and also colder and drier than conditions simulated by GCMs. If P. rubens 

or P. mariana were dominant, then a less severe LGM climate would be implied.

Between 12,730 and 12,260 14C yr BP, a local warming trend is proposed to have 

taken place based on pollen and macrofossil assemblages from Browns Pond, Virginia 

(Kneller and Peteet, 1999). This warming trend is correlative with warming interpreted 

in southern New England and Western Europe, hence it may be a regional event (Kneller 

and Peteet, 1999). O f the eastern Picea species, P. rubens currently has the most 

southern range (Morgenstem and Farrar, 1964; Little, Jr., 1971), and it tolerates the 

highest mean July temperatures (Fowells, 1965; Blum, 1990). We hypothesize3 that P. 

rubens became the dominant or only Picea in western Virginia between 12,730 and 

12,260 14C yr BP. If  P. rubens was dominant at this time, then the assemblage can be 

considered analogous to modem higher elevation tree assemblages in the Appalachians, 

providing further support of the warming trend. If  P. glauca or P. mariana are identified, 

then the assemblage present between 12,730 and 12,26014C yr BP was more like the 

modem forest assemblages of the Adirondack or White Mountains.

2  This hypothesis was formed with input from Drs. Margaret Kneller and Dorothy Peteet, 
Lamont Doherty Earth Observatory of Columbia University.

3  This hypothesis was formed with input from Drs. Margaret Kneller and Dorothy Peteet
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Previously, it was believed that trees were displaced latitudinally as whole forest 

units during glacial/interglacial cycles in response to climate change. In contrast, it is 

now widely accepted that different taxa respond to climate change individually and 

migrate at different rates (Davis, 1983b; Bartlein et al., 1986; Delcourt and Delcourt, 

1987a; Prentice et al., 1991). Therefore, it is not unreasonable to expect that different 

species also respond to environmental changes individually, especially when their 

individual environmental preferences and reproductive characteristics (Table 1) are 

considered. Following the LGM as the Laurentide ice sheet retreated, pollen records 

show that the leading northern margin of Picea’s range advanced northward thousands of 

years before the southern margin of its range retreated from the south (Delcourt and 

Delcourt, 1987a). I hypothesize that this significant expansion of the range of the genus 

(Picea) was caused by differential migration rates of the individual species (P. glauca, P. 

mariana and P. rubens). Furthermore, I hypothesize that P. glauca and P. mariana were 

the dominant Picea species at the northern margin of Picea’s range and that P. rubens 

was dominant at the southern margin of the genus’ range throughout die 1 0 , 0 0 0  years 

which followed the LGM. If mainly P. glauca and P. mariana are identified in older 

Browns Pond sediments (18,000-17,000 WC yr BP) and P. rubens is identified in younger 

sediments (11,000-10,00014C yr BP), then these hypotheses would be supported.

A primary goal of this project was to determine which species of Picea was 

dominant at Browns Pond, Virginia during the LGM. Using the modem analog method, 

Watts (1980b) and Whitehead (1981) estimated the climate of the southeastern United 

States during the LGM to be 17.8-25°C colder than modem mean January temperatures 

and 7.3-10°C colder than modem mean July temperatures. Pollen response surfaces were
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used to estimate 8-10°C cooler temperatures and 20-40% lower precipitation during die 

LGM (Prentice et al., 1991; Webb, IJ le ta l., 1993). Interestingly, all these estimates are 

for a colder and drier LGM climate than that seen in GCM simulations of LGM climate 

(Hansen et al., 1984; Rind and Peteet, 1985; Broccoli and Manabe, 1987; Kutzbach, 

1993; Kutzbach and Ruddiman, 1993; Webb, III et al., 1998; Kutzbach et al., 1998). 

Identifying predominantly P. glauca macrofossils from Browns Pond sediments dated

18,000 to 14,000 14C yr BP would support the vegetation-based climate estimates and 

suggest that some GCM climate models cannot accurately simulate LGM climate of 

eastern North America. The species-identification of P. glauca would also allow a more 

precise estimate of the magnitude of the temperature depression and aridity during the 

LGM. Identification of predominantly P. mariana or P. rubens would show that 1) there 

may have been a moisture gradient from the edge of the ice sheet southward, or 2 ) there 

may have been more than one species of Picea present during this time. The latter case 

could be tested by further species-identifications of LGM macrofossils from other 

southeastern United States sites.

Another goal of this project is to determine which species of Picea was dominant 

at Browns Pond, Virginia between 12,730 and 12,26014C yr BP. A local and probably 

regional wanning trend between 12,730 and 12,260 14C yr BP was inferred from an 

increase in deciduous hardwood pollen, an increase in Tsuga macrofossils and a decrease 

in Alnus macrofossils from Browns Pond (Kneller and Peteet, 1999). Presently, Tsuga, 

hardwood deciduous trees and P. rubens grow together at higher elevations in the central 

Appalachians. If  P. rubens were identified at Browns Pond during this time period, then 

this would support the inference of warming, and it would suggest that the pollen and
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macrofossil assemblage at the time is analogous to modem forests at higher elevations in 

the central Appalachians. If P. mariana or P. glauca are present at this time, then an 

assemblage analogous to lower elevations of the Adirondack or White Mountains existed. 

The Adirondack and White Mountains have much cooler climates than the central 

Appalachians. Based on which analogue is supported, a more precise local climate 

inference can be made. Species identifications of Picea macrofossils of this time period 

from other eastern United States sites could be used to test the hypothesis that this 

warming trend is regional in extent

The final goal of this project is to determine which species o f Picea were present 

at Browns Pond, Virginia at ~1,000 year intervals spanning from the LGM to the Early- 

Holocene. Delcourt and Delcourt (1987a) estimated that between 12,000 and 10,000 

years ago, Picea advanced across New England at a rate o f368 m/year. The highest 

mean rate o f advance for the leading margin of Picea’s range was 242 m/year between

10,000 and 8,000 yr BP as it invaded central and eastern Canada. Interestingly, the 

migration of Picea's  southern range margin was markedly different than its northern 

lim it In feet, the northern margin of Picea's  range began to spread northward 4,000 

years before its southern margin began to retreat from the south (Delcourt and Delcourt, 

1987a). This expansion of the genus’ range could be explained by differential migration 

rates of the different Picea species.
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APPENDIX A

List of abbreviations and useful definitions.

AMOVA analysis of molecular variance
AMS Accelerator Mass Spectrometry
Ap average number of haplotypes per population
As number of haplotypes per species
ASPCR allele-specific PCR
BMA BioWhittaker Molecular Applications
bp base pairs
BSA bovine serum album in
CCM1 Community Climate Model
cp chloroplast
cpDNA chloroplast DNA
F st, F sc, F ct fixation indices
GCM General Circulation Model
Gsr degree of differentiation
hk diversity within each population
Holocene epoch Geologic time period ~11,000 years ago to the present
hs average within-population diversity
Hr total genetic diversity
I number of indels per site
indel insertion/deletion
ITS internal transcribed spacer
kb kilobase pairs
KH test Kishino-Hasegawa test
Ko number of substitutions per site

ratio of substitutions to indels 
LGM Last Glacial Maximum; ~21,000 calendar years ago
ME minimum  evolution
MP maximum parsimony
mt mitochondrial
mtDNA mitochondrial DNA
nadl B/C  The intron between exons B and C (i.e. exons 2 and 3) of the

mitochondrial nadl gene 
NCAR National Center for Atmospheric Research
PAUP Phylogenetic Analysis Using Parsimony
PCR polymerase chain reaction
Pleistocene epoch Geologic time period ~2 million to 10,000 years ago
PTB N-phenacylthiazolium bromide
Quaternary period Geologic time period of the last two million years
RAPD random amplified polymorphic DNA
RFLP restriction fragment length polymorphism
SCAR sequence-characterized amplified region
SNP single nucleotide polymorphism
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SSCP single strand conformation polymorphism
SSR simple sequence repeat
STS sequence tagged site
UV ultra-violet
VNTR variable number tandem repeat
Wisconsin period The most recent ice age; ~100,000-10,000 years ago
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APPENDIX B

TmK  intron insertion/deletion data expressed as binary code and positioned at the end of 
the sequence alignment in die nexus file for phylogenetic analysis in Chapter ID.

[ ABCDEFGH3 J KL]
Picea abies 1 0 1 1 0 0 1 1 0 1 1 1

Picea asperata 1 0 1 1 0 0 1 1 0 1 1 1

Picea breweriana 1 0 1 1 1 0 1 1 1 1 0 1

Picea chihuahuana 1 0 1 1 0 0 1 1 1 1 1 1

Picea engdmarmii 1 0 1 1 0 0 1 1 1 1 1 1

Picea glauca 1 0 1 1 0 0 1 1 1 1 1 1

Picea jezoensis 1 0 1 1 0 0 1 1 0 1 1 1

Picea mariana 1 0 1 1 0 0 1 1 1 1 1 1

Picea mexicana 1 0 1 1 0 0 1 1 1 1 1 1

Picea omorika 1 0 1 1 0 0 1 1 1 1 1 1

Picea pungens 1 0 1 1 0 0 1 1 1 1 1 1

Picea rubens 1 0 1 1 0 0 1 1 1 1 1 1

Picea schrenkiana 1 0 1 1 0 0 1 1 1 1 1 1

Picea sitchensis 0 0 1 1 1 0 1 1 1 1 1 1

Picea smithiana 1 0 1 1 0 0 1 1 1 1 1 1

Picea wilsonii 1 0 1 1 0 0 1 1 0 1 1 1

Pinus armandii ? ? ? 0 1 1 0 0 1 1 1 1

Pinus banksiana 2 0 1 0 1 1 0 0 1 1 ? ?
Pinus thunbergii 2 1 0 0 1 1 0 0 1 0 1 0
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APPENDIX C

Nadl intron 2 polymorphic sequence data expressed as binary code for phylogenetic analysis in Chapter III. The 
polymorphisms SNPs A-E and Indels 1-9 were identified in Chapter II, therefore their names were retained here. Positions correspond 
to location of polymorphisms within the sequence alignment. Mutation types include transitions (transit), transversions (transvers), 
insertion/deletions (indels; in/del), tandem duplications (dup) or mononucleotide tandem repeats (e.g. C repeat).

Polymorphism SNP A Indel1 1 SNPF Indel 12 SNP G Indel 13 SNPH SNP I Indel 8

Position 19 466 467 467-472 522 549-553 656 657 724-734
Mutation type transvers indel transit dup transvers dup transvers transvers C repeat
Code definition 0=A 0=A 0=T 0 =in 0=T 0 =del 0=T 0=C 0=9C

1=C l=del 1=C l=del 1=G l=in 1=G 1=A 1=10C 
2=11C

P. abies 0 0 0 0 0 0 0 0 0

P. asperata 0 0 0 0 0 0 0 0 0

P. breweriana 0 0 0 0 0 1 0 0 1

P. chihuahttana 0 0 0 0 0 0 0 0 0

P. engelmannii 0 0 0 0 0 0 0 0 2

P. glauca 0 0 0 0 0 0 0 0 2

P.jezoensis 0 0 0 0 0 0 0 0 0

P. mariana 1 0 0 0 0 0 0 0 0

P. mexicana 0 0 0 0 0 0 0 0 0

P. omorika 0 0 0 0 0 0 0 0 0

P. pungens 0 0 0 0 1 0 0 0 0

P. rubens 1 0 0 0 0  . 0 0 0 0

P. schrenkiana 1 0 0 0 0 0 1 1 0

P. sitchensis 0 0 0 0 0 0 0 0 1

P. smithiana 1 1 1 1 0 0 0 0 0

P. wilsonii 0 0 0 0 0 0 0 0 0
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Polymorphism SNP B SNP K Indel 2
Position 753 777 782-786
Mutation type transvers transit 5bp indel
Code definition 0=G 0=C 0 =in

1=T 1=T l=del

P. abies 0 0 0

P. asperata 0 0 0

P. breweriana 0 0 0

P. chihuahuana 0 0 0

P. engelmannii 0 0 0

P. glauca 0 0 0

P.jezoensis 0 0 0

P. mariana 0 0 0

P. mexicana 0 0 0

P. omorika 0 0 0

P. pungens 0 0 0

P. rubens 1 0 1

P. schrenkiana 0 1 0

P. sitchensis 0 0 0

P. smithiana 0 0 0

P. mlsonii 0 0 0

SNPL Indel 14 Indel15 Indel17 Indel 16 SNP BBB
858 869-1131 902-904 932-1033 932-964 969

transvers 160bp indel C repeat 1 0 2 bp indel 33bp indel transit
0=A 0 =del 0=2C 0 =del 0 =del 0=T
1=C l=in 1=3C 

in Indel 14
l=in 

in Indel 14
l=in 

in Indel 17
1=C 

in Indel 17
0 1 1 1 1 0

1 1 0 0 ? ?
0 0 ? ? ? ?
0 0 ? ? ? ?
0 0 ? ? ? ?
0 0 ? ? ? ?
1 1 , 0 0 ? ?
0 0 ? ? ? ?
0 0 ? ? ? ?
0 1 1 1 0 1

0 0 ? ? ? ?
0 0 ? ? ? ?
0 0 ? ? ? ?
0 0 ? ? ? ?
0 0 ? ? ? ?
1 1 0 0 ? ?
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Polymorphism Indel 18 SNPM Indel 19
Position 974-976 1013 1132-1267
Mutation type G repeat transvers 34bp dup
Code definition 0=2G 0=T 0 =del

1=3G 1=G l=in4X
in Ihdel 17 in Indel 17

P. abies 1 0 0

P. asperata ? ? 0

P. breweriana ? ? 0

P. chihuahuana ? ? 0

P. engelmannii ? ? 0

P. glauca ? ? 0

P.jezoensis ? ? 0

P. mariana ? ? 0

P. mexicana ? ? 0

P. omorika 0 1 1

P. pungens ? ? 0

P. rubehs ? ? 0

P. schrenkiana ? ? 0

P. sitchensis ? ? 0

P. smithiaha ? ? 0

P. wilsonii ? ? 0

Indel 20 SNPN Indel 21 Indel 22 SNP 0 SNP P
1275-1291 1318 1333-2613 1495-1525 1538 1570

indel transvers 1281 bp indel 31bpdup transvers transvers
0 =del 0=C , 0 =del 0 =del 0=G 0=A
l=in . 1=A l=in l=in 

in Indel 21
1=T 

in Indel 21
1=C 

in Indel 21
0 0 0 ? ? ?
0 0 0 ? ? ?
0 0 1 0 0 1

0 0 1 0 1 0

0 0 1 0 0 0

0 0 1 0 0 0

0 0 ? ? ?
0 0 1 0 0 0

0 0 1 0 1 0

0 0 ? ? ?
0 0 1 0 0 0

0 0 1 0 0 0

1 1 1 0 0 0

0 0 1 1 0 0

0 0 1 0 0 1

0 0 0 ? ? ?
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Polymorphism SNP Q SNP R SNP S 
Position 1613 1614 1615
Mutation type transvers transvers transvers
Code definition 0=A 0=G 0=C

1=T 1=T 1=A
in Indel 21 in Indel 21 in Indel 21 

P. abies ? ? ?
P. asperata ? ? ?
P. breweriana 0 0 0
P. chihuahuana 0 0 0
P. engelmannii 0 0 0
P. glauca 0 0 0
P.jezoensis ? ? ?
P. mariana 0 0 0
P. mexicana 0 0 0
P. omorika ? ? ?
P. pungens 0 0 0
P. rubens 0 0 0
P. schrenkiana 0 0 0
P. sitchensis 0 0 0
P. smithiana 1 1 1
P. wilsonii ? ? ?

Indel 9 SNPT SNP U SNP V SNP C Indel 23
1632-1634 1637 1638 1738 1786 1803-2057
A repeat transvers transvers transvers transvers 255bp indel

0=2A 0=T 0=C 0=A 0=G 0 =del
1=3 A 1=G 1=A 1=C 1=T l=in

in Indel 21 in Indel 21 in Indel 21 in Indel 21 in Indel 21 in Indel 21
? ? ? ? ? ?
? ? ? ? ? ?
1 1 1 1 0 1

0 0 0 0 1 1

0 0 0 0 0 1

0 0 0 0 0 1

? ? ? ? ?
1 0 0 0 1 1

0 0 0 0 1 1

? ? ? ? ?
0 0 0 0 1 1

1 0 0 0 1 1

1 0 0 0 1 1

0 0 0 0 0 1

1 0 0 0 1 0

? ? ? ? ? ?



Polymorphism Indel 24 Indel 7 Indel 3
Position 1865 1865-1872 1900-190
Mutation type . indel 6 bp dup 6 bp dup
Code definition 0 =del 0 =del 0 =del

1=A l=in l=in
in Indel 23 in Indel 23 in Indel 2

P. abies ? ? ?
P. asperata ? ? ?
P. breweriana 1 0 0

P. chihuahuana 1 0 0

P. engelmannii 1 0 0

P. glauca 1 0 0

P. jezoensis ? ?
P. mariana 1 1 0

P. mexicana 1 0 0

P. omorika ? ?
P. pungens 1 0 0

P. rubens 1 0 1

P. schrenkiana 0 1 0

P. sitchensis 1 0 0

P. smithiana ? ? ?
P. wilsonii ? ? ?

Indel 5 Indel 4 Indel 25 SNP W SNP X Indel 26
2126-2130 2 2 0 1 - 2 2 2 0 2299-2307 2346 2347 2348-2460
5bp indel 2 0 bp dup 9bp dup transvers transvers U3bp indel

0 =del 0 =del 0 =del 0=T 0=C 0 =del
l=in l=in l=in 1=G 1=A l=in

in Indel 21 in Indel 21 in Indel 21 in Indel 21 in Indel 21 in Indel 21
? ? ? ? ? ?
? ? ? ? ? ?
1 0 0 1 1 0

1 0 0 0 0 1

0 1 0 0 0 1

0 1 0 0 0 1

? ? ? ? ?
1 0 0 0 0 1

1 0 0 0 0 1

? ? ? ? ?
1 0 0 0 0 1

1 0 0 0 0 1

1 0 0 0 0 1

0 0 0 0 0 1

1 0 1 0 0 1

? ? ? ? ? ?
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Polymorphism SNP Y Indel 27 SNPD SNP E SNPZ Indel6 SNP AA SNP BB SNP CC
Position 2361 2407-2412 2447 2492 2506 2508-2513 2532 2544 2546
Mutation type transit 6 bp indel transit transvers transvers 6 bp dup transvers transvers transvers
Code definition 0=A 0 =del 0=T 0=C 0=A 0 =del 0=C 0=T 0=A

1=G l=in 1=C 1=A 1=C l=in 1=A 1=A 1=C
in Indel 26 in Indel 26 in Indel 26 in Indel 21 in Indel 21 in Indel 21 in Indel 21 in Indel 21 in Indel 21

P. abies ? ? ? ? ? ? ? ? ?
P. asperata ? ? ? ? ? ? ? ? ?
P. breweriana ? ? ? 0 0 0 0 0 0

P. chihuahuana 0 1 0 0 0 0 0 0 0

P. engelmannii 0 1 0 1 0 0 0 0 0

P. glauca 0 1 0 1 0 0 0 0 0

P. jezoensis ? ? ? ? ? ? ? ?
P. mariana 0 1 1 0 0 1 0 0 0

P. mexicana 0 1 0 0 0 0 0 0 0

P. omorika ? ? ? ? ? ? ? ?
P. pungens 0 1 0 0 0 0 0 0 0

P. rubens 0 1 1 0 0 1 0 0 0

P. schrenkiana 1 0 0 0 0 0 0 0 0

P. sitchensis 0 1 0 1 0 0 0 0 0

P. smithiana 1 0 0 0 1 0 1 1 1

P. wilsonii ? ? ? ? ? ? ? ? ?
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Polymorphism Indel 28 SNP DD SNP EE 
Position 2549 2567 2599
Mutation type indel transvers transvers
Code definition 0=del 0=G 0=A

1=T 1=T 1=C
in Indel 21 in Indel 21 in Indel 21

P. abies ? ? ?
P. asperata ? ? ?
P. breweriana 1 1 0

P. chihuahuana 1 0 0

P. engelmannii 1 0 0

P. glauca 1 0 0

P. jezoensis ? ?
P. mariana 1 0 0

P. mexicana 1 0 0

P. omorika ? ?
P. pungens 1 0 0

P. rubens 1 0 0

P. schrenkiana 1 0 0

P. sitchensis 1 0 0

P. smithiana 0 0 1

P. wilsonii ? ? ?

Indel 29 SNP FF 
2628-2632 2641
5bp indel transvers 

0=del 0=C
l=in 1=A

1 0

1 0

1 0

1 0

1 0

1 0  .
1 0

1 0

1 0

1 0

1 0

1 0

1 1

1 0

0  0

1 0

Indel 30 Indel 32 
2691-2694 2842-2846 
4bp indel 5bp indel 

0 =del 0 =del
l=in 1 —in

SNP LL Indel 33 
2875 2910-2938

transvers 29bp indel 
0=C 0=del
1=A l=in

1 0
1 0
0 0
0 0
0 0
0 0
1 0
0 0
0 0
1 0
0 0
0 0
0 0
0 0
0 1
1 0
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Polymorphism SNP MM Indel 34 SNP NN
Position 2943 2951-2956 2965
Mutation type transvers 6 bp dup transvers
Code definition 0=G 0 =del 0=C

1=T l=in 1=A

P. abies 1 0 0

P. asperata 0 0 1

P. breweriana 1 0 0

P. chihuahuana 0 0 0

P. engelmannii 0 0 0

P. glauca 0 0 0

P.jezoensis 0 0 1

P. mariana 0 0 0

P. mexicana 0 0 0

P. omorika 0 0 0

P. pungens 0 0 0

P. rubens 0 0 0

P. schrenkiana 1 1 0

P. sitchensis 1 0 0

P. smithiana 0 1 0

P. wilsonii 0 0 1

SNP 0 0 SNPPP SNPQQ Indel 35 Indel 36 SNP YY
2569 2570 3013 3088-3093 3176-3186 3472

transvers transvers transvers 6 bp dup 1 1  bp dup transvers
0=T 0 = 0 0=G 0 =del 0 =del 0=A
1=G 1=A 1=T l=in l=in 1=C

0 0 0 0 0 0

1 1 0 • 0 0 0

0 0 0 0 0 1

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

1 1 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 1 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 1 0 1 1

0 0 0 0 0 0

0 0 0 0 0 1

1 1 0 0 0 0
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Pairwise distances between taxa as generated in PAUP. 

Chloroplast trnK intron

1 Picea abies
2 Picea asperata
3 Picea breweriana
4 Picea chihuahuana
5 Picea engelmannii
6  Picea glauca
7 Picea jezoensis
8  Picea mariana
9 Picea mexicana
10 Picea omorika
11 Picea pungens
12 Picea rubens
13 Picea schrenkiana
14 Picea sitchensis
15 Picea smithiana
16 Picea wilsonii
17 Pinus armandii
18 Pinus banksiana
19 Pinus thunbergii

APPENDIX D
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Pairwise distances between taxa (continued): chloroplast trnK intron 

Below diagonal: Total character differences
Above diagonal: Mean character differences (adjusted for missing data)

9 1 0 1 1 1 2 13 14 15 16
1 0.00241 0.00361 0.00321 0.00361 0.00441 0.00762 0.00441 0.00040
2 0.00241 0.00361 0.00321 0.00361 0.00441 0.00762 0.00441 0.00040
3 0.00762 0.00641 0.00601 0.00641 0.00721 0.00400 0.00721 0.00885
4 0.00280 0.00240 0 . 0 0 1 2 0 0.00240 0.00240 0.00560 0.00240 0.00401
5 0.00040 0.00400 0.00280 0.00400 0.00400 0.00720 0.00400 0.00321
6 0 . 0 0 0 0 0 0.00360 0.00240 0.00360 0.00360 0.00680 0.00360 0.00281
7 0.00281 0.00401 0.00361 0.00401 0.00481 0.00803 0.00481 0 . 0 0 0 0 0

8 0.00400 0.00040 0.00240 0.00040 0.00360 0.00600 0.00280 0.00441
9 - 0.00360 0.00240 0.00360 0.00360 0.00680 0.00360 0.00281

1 0 9 - 0 . 0 0 2 0 0 0 . 0 0 0 0 0 0.00320 0.00560 0.00240 0.00401
1 1 6 5 - 0 . 0 0 2 0 0 0 . 0 0 2 0 0 0.00520 0 . 0 0 2 0 0 0.00361
1 2 9 0 5 - 0.00320 0.00560 0.00240 0.00401
13 9 8 5 8 - 0.00560 0.00160 0.00481
14 17 14 13 14 14 - 0.00560 0.00803
15 9 6 5 6 4 14 . 0.00481
16 7 1 0 9 1 0 1 2 2 0 1 2

17 106 105 104 105 105 107 105 104
18 130 124 126 124 129 123 129 127
19 135 132 130 132 . 135 130 135 133
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Mitochondrial nadl intron 2

1 Picea abies
2 Picea asperata
3 Picea breweriana
4 Picea chihuahuana
5 Picea engelmannii
6  Picea glauca
7 Picea jezoensis
8  Picea mariana
9 Picea mexicana
10 Picea omorika
11 Picea pungens
12 Picea rubens
13 Picea schrenkiana
14 Picea sitchensis
15 Picea smithiana
16 Picea wilsonii
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