University of New Hampshire University of New Hampshire Scholars' Repository

Doctoral Dissertations

Student Scholarship

Winter 2002

Oxygen and nitrate enhanced in situ bioremediation of an oil -contaminated salt marsh

Fabio A. Roldan-Garcia University of New Hampshire, Durham

Follow this and additional works at: https://scholars.unh.edu/dissertation

Recommended Citation

Roldan-Garcia, Fabio A., "Oxygen and nitrate enhanced in situ bioremediation of an oil -contaminated salt marsh" (2002). *Doctoral Dissertations*. 112. https://scholars.unh.edu/dissertation/112

This Dissertation is brought to you for free and open access by the Student Scholarship at University of New Hampshire Scholars' Repository. It has been accepted for inclusion in Doctoral Dissertations by an authorized administrator of University of New Hampshire Scholars' Repository. For more information, please contact nicole.hentz@unh.edu.

INFORMATION TO USERS

This manuscript has been reproduced from the microfilm master. UMI films the text directly from the original or copy submitted. Thus, some thesis and dissertation copies are in typewriter face, while others may be from any type of computer printer.

The quality of this reproduction is dependent upon the quality of the copy submitted. Broken or indistinct print, colored or poor quality illustrations and photographs, print bleedthrough, substandard margins, and improper alignment can adversely affect reproduction.

In the unlikely event that the author did not send UMI a complete manuscript and there are missing pages, these will be noted. Also, if unauthorized copyright material had to be removed, a note will indicate the deletion.

Oversize materials (e.g., maps, drawings, charts) are reproduced by sectioning the original, beginning at the upper left-hand corner and continuing from left to right in equal sections with small overlaps.

ProQuest Information and Learning 300 North Zeeb Road, Ann Arbor, MI 48106-1346 USA 800-521-0600

OXYGEN AND NITRATE ENHANCED IN SITU BIOREMEDIATION OF AN OIL-CONTAMINATED SALT MARSH

BY

FABIO A. ROLDAN-GARCIAB.S, Universidad de los Andes, 1990M.Sc, Cranfield University, 1994

DISSERTATION

Submitted to the University of New Hampshire In Partial Fulfillment of the Requirements for the Degree of

> Doctor of Philosophy in Engineering: Civil

> > December 2002

UMI Number: 3070983

UMI®

UMI Microform 3070983

Copyright 2003 by ProQuest Information and Learning Company. All rights reserved. This microform edition is protected against unauthorized copying under Title 17, United States Code.

> ProQuest Information and Learning Company 300 North Zeeb Road P.O. Box 1346 Ann Arbor, MI 48106-1346

This dissertation has been examined and approved.

Dissertation Director, Dr. Nancy E. Kinner, Professor of Civil/Environmental Engineering

Dr. Thomas P. Ballestero, P.E. Associate Professor of Civil Engineering

Dr. Stephen H/Jong

Research Associate Professor of Natural Resources and Marine Science

P. Malley

Dr. James P. Malley, Jr., Professor of Civil Environmental Engineering

Lansey

Dr. Philip J. Ramsey, Lecturer Department of Mathematics and Statistics

October 22 2002

Date

ACKNOWLEDGEMENTS

Funds for this research were provided by the Cooperative Institute for Coastal and Estuarine Environmental Technology (CICEET), in cooperation with the National Oceanic and Atmospheric Administration (NOAA) and the New Hampshire Department of Environmental Services (NHDES).

I would like to thank my advisor Dr. Nancy Kinner for her invitation to come to UNH, her teaching and her comments. She has been a star who always points north.

Additionally, I would like to thank Dr. Thomas Ballestero for his help and comments during the field study and for his sense of humor. I would like to thank Dr. Phil Ramsey for his time and willingness to discuss the results and the statistical approach to understand them.

I want to thank to the Colombian Government and especially COLCIENCIAS for the scholarship that allowed me to concentrate on my studies and finish my doctorate. I also thank the Pontificia Universidad Javeriana, especially Dr. Elizabeth Hudson, for giving me the time to finish my writing.

I would like to thank my mother, sisters and brothers for their moral support and love that gave me the strength to finish. I would like to thank to Paula, Maria Isabel Gonzalo for giving me a home and support here at UNH.

Finally I would like to extend my thanks to Marylin my love and life, for her support, sense of humor and final push to finish what I started.

DEDICATION

I would like to dedicate this dissertation to my mother Cecilia and Marylin, my true love. To the memory of Fabio and Elisa, they will always be in my heart.

TABLE OF CONTENTS

ACKNOWLEDGEMENTS	iii
DEDICATION	iv
TABLE OF CONTENTS	v
LIST OF FIGURES	ix
LIST OF TABLES	xi
ABSTRACT	xiii
INTRODUCTION	1
1.1 Objectives	5
1.2 Study Site – Fore River Creek Salt Marsh	6
1.3 Background Conditions and Experimental Design	6
1.4 Field Study	8 9
1.5 Duration of the Study	7
LITERATURE REVIEW	11
2.1 Petroleum Contamination	11
2.1.1 Light Non Aqueous Phase Liquids (LNAPLs)	11
2.1.2 Petroleum HCs	12
2.1.3 Petroleum Refining	13
2.1.4 Impact of Weathering on Petroleum Composition	13 16
2.1.5 TPH 2.1.6 TPH Determination	10
2.1.7 Estimates of Risk from TPH	19
2.1.8 Effect of Oil in Marshes	20
2.2 HC Biodegradation	21
2.2.1 Biodegradation Process	21
2.2.2 Thermodynamics of Microbial Metabolic Processes	23

2.2.3 Aerobic Respiration	26
2.2.4 Nitrate Reduction and Denitrification	27
2.2.5 Manganese and Iron Reduction	28
2.2.7 Sulfate Reduction	29
2.2.8 Methanogenesis	30
2.2.6 Fermentation	31
2.3 Bioremediation of Petroleum HCs	31
2.4 Biodegradation Mechanisms	33
2.5 Aerobic and Anaerobic HC Metabolism	35
2.6 Bioremediation Kinetics	36
2.7 Factors that Affect Biodegradation	37
2.7.1 Temperature	37
2.7.2 pH	38
2.8 Bacterial Enumeration	39
2.9 Petroleum-Contaminated Salt Marshes and Remediation Techniqu	es 41
2.9.1 Bioremediation in Salt Marshes	42
2.9.2 Phytoremediation	44
2.9.3 Nutrient Amendment	46
2.9.4 Bioaugmentation	48
2.9.5 Use of Surfactants	49
2.9.6 Addition of TEAs	49
2.10 Oil Spill Incidents	51
2.11 Julie N Spill	56
2.12 Research Justification	58
METHODS AND MATERIALS	60
3.1 TPH Methods	60
3.1.1 EPA Oil and Grease Gravimetric Method	61
3.1.2 ASTM Method for Screening Fuels in Soils	62
3.1.3 MADEP Method for the Determination of Extractable Pe	troleum
HCs	64
3.1.3.1 Sample Extraction	65
3.1.3.2 Silica Gel Cleanup and Fractionation	65
3.1.3.3 GC Analysis	66
3.1.3.4 GC Methods	67
3.1.3.5 IS Calibration Procedure	67
3.1.3.6 RT Windows	71
3.1.3.7 Sample Analysis	72
3.1.3.8 TPH Calculations	72
3.1.3.9 Calculation of Dry Weight of Sample	73
3.2 Porewater Analysis	73
3.2.1 Phosphate Analysis	73
3.2.2 Nitrate and Nitrite Analysis	74
3.2.3 Ammonia Analysis	75
3.3 Enumeration of Oil-Degrading Bacteria	75

3.4	Site Selection	77
-	Experimental Plots	78
	Design of Experimental Plots	78
	Sampling Events	86
	Sampling Methods	87
5.0	3.8.1 TPH	87
	3.8.2 Microbial Abundance	90
	3.8.3 Porewater	90
3.9	Amendment Addition	91
RESU	LTS AND DISCUSSION	93
4.1	Evaluation of Screening Methods for TPH	94
	4.1.1 EPA Method	95
	4.1.2 ASTM Method	103
	4.1.3 Comparison of the EPA and ASTM Methods	108
4.2	TPH Concentrations in the Fore River Creek Salt Marsh	111
	4.2.1 Depth of Contamination in the Marsh Sediments	119
4.3	QC for MADEP Method	121
	4.3.1 Instrument QC	121
	4.3.2 Calibration	124
	4.3.3 QC Monitoring	130
	4.3.4 Solvent, Laboratory and Trip Blanks.	130
	4.3.5 Surrogate Recovery	134
	4.3.5.1 Blank Surrogate Recovery	134
	4.3.5.2 Sample Surrogate Recovery	136
	4.3.6 IS Monitoring	138
	4.3.6.1 Blank IS	139
	4.3.6.2 Sample IS	139
	4.3.7 Distribution of the TPH Data	143
4.4	Analysis of Covariance	143
4.5	TPH Results	150
	4.5.1 Seasonal Variability	150
	4.5.2 Summer and Fall 1998	150
	4.5.3 April-June 1999	155
	4.5.4 Overall Results (June 1998-June 1999)	164
4.6	TPH Biodegradation	169
	4.6.1 Aliphatic Biodegradation	169
	4.6.2 Aromatic Biodegradation	177
	4.6.3 Degradation Rates	180
	4.6.4 Subplot Distribution	183
4.7	Abundance of TPH-Degraders	187
4.8	Nutrient Analysis	197
	4.8.1 Porewater NO ₃	198
	4.8.2 Porewater NH_4^+	203
	4.8.3 Porewater PO_4^{-3}	205

4.9 Plant Growth and Density	207
4.9.1 Seasonal Variation	208
4.9.2 Treatment Effect	212
4.9.2.1 IVRM Analysis	212
4.9.3 S. alterniflora and HC Biodegradation	213
4.9.4 S. alterniflora Coverage	217
4.10 Summary	219
CONCLUSIONS AND RECOMMENDATIONS	224
5.1 Conclusions	224
5.1.1 Evaluation of Screening Methods for TPH and Site Selection	224
5.1.2 TPH Biodegradation	225
5.1.3 Bacterial Abundance	227
5.1.4 Nutrient Analysis	227
5.1.5 Plant Growth	228
5.2 Recommendations for Future Research	229
REFERENCES	231
APPENDIX A.1 SCREENING METHODS (EPA AND ASTM METHODS) 248
APPENDIX B.I CALIBRATION CURVES FOR THE MADEP METHOD	255
APPENDIX C.1 FORE RIVER CREEK SALT MARSH DATA	264
APPENDIX D.1 CALCULATIONS DURING THE STUDY	293

LIST OF FIGURES

Figure 1. Site selected for the study at the Fore River Creek salt marsh.	7
Figure 2. Relationship between reduced and oxidized substrates as a vertically-arranged	
hierarchy of oxidation-reduction half reactions.	24
Figure 3. View of the Fore River Creek salt marsh selected for the study.	79
Figure 4. S. alterniflora in the Fore River Creek salt marsh.	80
Figure 5. Relative location of the plots in the Fore River Creek salt marsh.	81
Figure 6. Experimental plot design for oxygen and NO ₃ .	83
Figure 7. Experimental plot volume.	83
Figure 8. Installation of the horizontal wells used for the distribution of the TEAs.	84
Figure 9. Distribution system for the experimental plots.	84
Figure 10. Experimental plot grids.	85
Figure 11. Cat walks used during the study to avoid damaging the salt marsh.	88
Figure 12. Selected subplot during a sampling event.	88
Figure 13. Plant stem height and plant density measurements.	89
Figure 14. Double gloves used to avoid cross contamination during sampling.	89
Figure 15. Addition of NO ₃ solution.	92
Figure 16. Schematic diagram of the Soxhlet extraction set-up used in the EPA Method.	99
Figure 17. Calibration curves for the ASTM Method.	104
Figure 18. Droplets of oil in the sediments in the Fore River Creek salt marsh.	112
Figure 19. Relative locations of the candidate test plots in the Fore River Creek salt marsh.	114
Figure 20. TPH concentrations using the ASTM Method for the candidate test plots from	
the Fore River Creek salt marsh on February 17, 1998.	116
Figure 21. TPH concentrations using the ASTM Method for the candidate test plots from	
the Fore River Creek salt marsh on March 6, 1998.	117
Figure 22. C_{28}/C_{20} ratios for the aliphatic calibration standards for the calibrations.	128
Figure 23. C ₂₈ /C ₂₀ ratios for the aliphatic calibration standards checks used during the	
sampling events.	129
Figure 24. RPDs during the sampling events.	131
Figure 25. Area counts for LBs and TBs.	133
Figure 26. Control chart for LB and TB surrogate %Ps.	135
Figure 27. Control chart for the sample surrogate %Ps.	137
Figure 28. Control chart of the IS area counts for the LBs and TBs.	140
Figure 29. Control chart for the IS area counts for the aliphatic samples.	141
Figure 30. Control chart for the IS area counts for aromatic samples.	142
Figure 31. Residual plots for the SC aliphatic fraction: arithmetic and log transformations.	144
Figure 32. Residual plots for the LC aliphatic fraction: arithmetic and log transformations.	145
Figure 33. Residual plots for the aromatic fraction: arithmetic and log transformations.	146
Figure 34. SC aliphatic concentrations during the Summer and Fall 1998.	151
Figure 35. LC aliphatics concentrations during the Summer and Fall 1998.	152
Figure 36. Aromatic concentrations during the Summer and Fall 1998.	153

Figure 37. TPH concentrations during the Summer and Fall 1998.	154
Figure 38. SC aliphatic concentrations during the Spring 1999.	157
Figure 39. LC aliphatic concentrations during the Spring 1999.	158
Figure 40. Aromatic concentrations during the Spring 1999.	159
Figure 41. TPH concentrations during the Spring 1999.	160
Figure 42. Concentration of the different TPH fractions for the control.	161
Figure 43. Concentration of the different TPH fractions for the air treatment.	162
Figure 44. Concentration of the different TPH fractions for the NO ₃ ⁻ treatment.	163
Figure 45. SC aliphatic concentrations during the study.	165
Figure 46. LC aliphatic concentrations during the study.	166
Figure 47. Aromatic concentrations during the study.	167
Figure 48. TPH concentrations during the study.	168
Figure 49. Spatial diagram for the NO3- plot and the sampled subplots (a,b,c,d) for May	
1999 (Event 8) and the SC concentrations.	184
Figure 50. Spatial diagram for the NO3- plot and the sampled subplots (a,b,c,d) for May	
1999 (Event 8) and the LC concentrations.	185
Figure 51. Spatial diagram for the NO3- plot and the sampled subplots (a,b,c,d) for May	
1999 (Event 8) and the aromatic concentrations.	186
Figure 52. Log of the MPN for the TPH-degrading bacteria.	188
Figure 53. MPN of the TPH-degrading bacteria for the NO ₃ plot.	190
Figure 54. Log of the MPN for the TPH-degrading bacteria.	191
Figure 55. Relationship between the log TPH concentrations and log MPN data for the	
control.	193
Figure 56. Relationship between log TPH concentrations and log MPN data for the air	
amendment.	194
Figure 57. Relationship between log TPH concentrations and log MPN data for the NO ₃ ⁺	
amendment.	195
Figure 58. NO ₃ ⁻ concentration in the porewater samples of the Fore River Plots.	199
Figure 59. NH ₄ ⁺ concentration in the porewater samples of the Fore River plots.	204
Figure 60. PO ₄ ⁻³ concentration in the porewater samples of the Fore River Plots.	206
Figure 61. S. alterniflora stem heights.	209
Figure 62. S. alterniflora densities.	210
Figure 63. Relationship between log TPH concentration and log S. alterniflora stem height	
for the control.	214
Figure 64. Relationship between the log TPH concentration and log S. alterniflora stem	
height for the air amendment.	215
Figure 65. Relationship between log TPH concentration and log S. alterniflora stem height	
for the NO_3^- amendment.	216
Figure 66. Damage caused outside of the plots and around the treatments by the pedestrian	
traffic.	218
Figure 67. Differences in the S. alterniflora coverage for the different plots.	220
Figure 68. S. alterniflora stem height in the subplots (a,b,c.d).	221

LIST OF TABLES

Table 1. General characteristics of individual petroleum fuel mixtures.	14
Table 2. Selected reactions illustrating carbon transformation pathways and their energy	
yields.	26
Table 3. Stoichiometric equations of anaerobic bacterial toluene oxidation coupled to the	
reduction of different TEAs.	36
Table 4. Cleanup techniques used in marshes.	41
Table 5. Aromatic HC calibration standards with the calculated average RTs and their	~ 1
respective windows.	69
•	09
Table 6. Aliphatic hydrocarbon calibration standards with the calculated average RTs and	70
their respective windows.	70
Table 7. Calibration standard concentrations and masses used for MADEP Method.	71
Table 8. Sampling events from June 1998 through Spring 1999.	86
Table 9. CS replicates used to calculate the MDL and LOQ of the EPA Method.	96
Table 10. TPH concentrations obtained from the EPA Method analysis of laboratory-	
spiked known samples.	97
Table 11. TPH in the Fore River Creek salt marsh samples using the EPA Method.	100
Table 12. Calibration curves used for the TPH determination for the ASTM Method.	103
Table 13. TPH concentrations obtained from the ASTM Method analysis of laboratory-	
	106
Table 14. TPH in the Fore River Creek salt marsh samples analyzed using the ASTM	
	107
Table 15. Summary of the detection limits, %CVs and %Ps for the EPA and ASTM	
•	109
	110
•••••	113
Table 18. TPH concentrations in split salt marsh sediments samples (ASTM and MADEP	110
· · · · · · · ·	118
Table 19. TPH concentrations at depth in the Fore River Creek salt marsh sediments of	
	120
Table 20. RT windows for the aliphatic standards in the MADEP Method during the study.	122
Table 21. RT windows for the aromatic standards in the MADEP Method during the	
study.	123
Table 22. %CVs for the aliphatic standards in the MADEP Method used in the	
· · · · · · · · · · · · · · · · · · ·	125
Table 23. %CVs for the aromatic standards in the MEDEP Method used in the	
	126
Table 24. Mean RRFs used for calculation of SC and LC aliphatic and aromatic	
•	127
Table 25. Treatment slopes and probabilities obtained using the IVRM during Summer	- = /
	150

Table 26. Treatment slopes and probabilities obtained using the IVRM during Spring	
1999.	156
Table 27. Treatment slopes and probabilities obtained using the IVRM during 1998-1999.	164
Table 28. Treatments and their significant reduction in TPH fractions.	170
Table 29. Treatments achieving significant reduction in TPH concentration (p<0.2) and	
their biodegradation rates (mg/kg _{dw} /d $\pm 2s$).	180
Table 30. Mean TPH-degrading bacteria MPN for July 26-27, 1998 through June 1999.	192
Table 31. Treatment slopes for the relationships between MPN counts and TPH	
concentrations for July 26-27, 1998 through June 1999.	192
Table 32. Theoretical stoichiometry for TPH fraction degradation by using NO ₃ as TEA.	202
Table 33. S. alterniflora stem height during the months with the tallest plants.	211
Table 34. S alterniflora during the months with the highest densities.	211
Table 35. Treatment slopes and their probabilities using the IVRM.	212
Table 36. Slopes of the best-fit linear relationship between S. alterniflora growth and TPH	213
Table 37. S. alterniflora growth and SC and LC aliphatic and aromatic concentrations for	
the NO ₃ plot during August 1998.	222

ABSTRACT

OXYGEN AND NITRATE ENHANCED IN SITU BIOREMEDIATION OF AN OIL-CONTAMINATED SALT MARSH

by

Fabio A. Roldan-Garcia

University of New Hampshire, December 2002

Salt marshes are among the most ecologically-sensitive areas to oil spills and remediation activities. Contaminated marshes may take years or decades to recover. Bioremediation is the process of enhancing naturally-occurring biodegradation by supplying limiting nutrients and terminal electron acceptors (TEAs). During this study, two TEAs (O_2 and NO_3) were evaluated for their ability to enhance natural *in situ* biodegradation of total petroleum hydrocarbons (TPH) in an oil-contaminated marsh. EPA (9071A) and ASTM (D5831) methods were evaluated for screening TPH in the contaminated marsh sediments. The ASTM Method was selected to evaluate TPH levels in candidate sites at the Fore River Creek salt marsh, Portland, ME impacted by the *Julie N* oil spill in 1996. Two plots in the marsh received air and NO_3 , two served as controls. Subsurface horizontal wells were used to inject the amendments into the sediments. During 1998-1999, degradation of short chain (SC) and long chain (LC) aliphatics and aromatics, abundance of oil-degrading bacteria, nutrients and *Spartina alterniflora*

growth were monitored.

Results indicated that natural attenuation (control) significantly reduced the TPH. The overall (1998-1999) degradation rates in the controls were 7.8±2.1 and 3.0±1.0 mg/kg_{dw}/d for SC and LC aliphatics, respectively; and 6.9±4.8 mg/kg_{dw}/d for aromatics. The NO₃⁻ amendment degradation rates for SC aliphatics and aromatics were 4.7±2.4 $mg/kg_{dw}/d$ and 4.5±3.3 $mg/kg_{dw}/d$, respectively. These degradation rates were not significantly different than control rates. During the first season (Summer and Fall 1998), the air and NO₃ amendments significantly degraded more SC aliphatics than the control, while NO₃ significantly degraded LC aliphatics. Porewater monitoring indicated more NO₃ amendment was needed to promote denitrification. In addition, low degradation rates in the amendments plots may have been caused by problems with the well (distribution) system and mass transfer limitations. There was no significant change in the abundance of oil-degraders, probably because they were already established when the study began two years after the spill. Subsurface addition of air and NO₃ has the potential to accelerate in situ biodegradation of Nos. 2 and 4 fuel oils in marsh sediments if problems with the supply of the amendments can be overcome.

CHAPTER I

INTRODUCTION

One of the most important environmental problems, not only in the United States (U.S.) but worldwide, is oil spills onto soil and water. The U.S. uses over 945 million m³ of oil and petroleum products per year and to satisfy this it produces 473 million m³ of crude oil and imports 472 million m³ of crude oil (EPA, 1998). Most soil and water contamination is caused during the loading and unloading of oil in ports. In addition, a significant amount of oil is spilled during the extraction, transport, storage and refining processes.

Of all oil-impacted estuarine and coastal environments, salt marshes are one of the most sensitive and fragile ecosystems (Wright *et al.*, 1997). Salt marshes are highly productive and serve as nursery grounds for fish, shellfish and other marine organisms, providing a place where the young can grow rapidly (Carman *et al.*, 1996). Salt marshes can be impacted by petroleum spills from marine vessels and oil pipelines. Oil may coat plants, remain on the water surface or become associated with the sediments (Wright *et al.*, 1997). Oiled wetlands and salt marshes may take years or decades to recover (Fingas, 2000).

Oil spill remediation in salt marshes differs from remediation of contaminated beaches because mechanical cleaning is not desirable as it causes more damage than the oil (Adrian *et al.*, 1998). Methods used as remediation technologies include cutting,

washing or burning of oiled vegetation, but these may also cause more damage (Wright et al., 1997). In addition, salt marshes are very sensitive to physical damage caused by crews and equipment used during remediation.

The oil released into the environment is affected by natural attenuation processes (biodegradation, dispersion, sorption, volatilization and photodegradation). Natural attenuation modifies the fate and transport of hydrocarbons (HCs) and under favorable conditions, it can act without human intervention to reduce the mass, toxicity, mobility, volume or concentration of the contaminants.

Many naturally-occurring microorganisms can degrade HCs and use the energy they derive from this to create cell biomass and less complex organic compounds or, upon complete degradation, water and carbon dioxide. The ability of microorganisms to degrade a great number of HCs in a wide range of environments has been described in the literature (Alexander, 1994; Atlas, 1978, 1981; Bartha, 1986; Margesin and Schinner, 2001a; McKee and Mendelssohn, 1994).

Bioremediation is the process of enhancing naturally-occurring biodegradation. It consists of a suite of cost-effective and non-invasive cleanup technologies that have gained wide acceptance to restore HC-contaminated environments.

Several oil spill studies have shown that *in situ* biodegradation is a major reason for decreases in HC concentrations. For example, the success of HC degradation was scientifically demonstrated during studies of the *Exxon Valdez* oil spill in Alaska (Lindstrom *et al.*, 1991; Pritchard, 1993; Wolfe *et al.*, 1994). These studies demonstrated that the correct nutrient mass balance (nitrogen and phosphorus) and the presence of the appropriate terminal electron acceptor (TEA) were the most important factors to achieve higher biodegradation rates in the oil-contaminated environments (rocky intertidal shorelines, primary low energy beaches) (Braddock et al., 1995; Pritchard, 1993; Wolfe et al., 1994).

Coastal salt marsh sediments are saturated, limiting oxygen (O_2) transfer from the atmosphere. Any oxygen dissolving into the porewater is rapidly consumed with depth because of the abundance of organic matter. This results in a thin (few mm) aerobic layer (Shin *et al.*, 2000). The low oxygen concentrations may limit the presence of aerobic microorganisms able to degrade the HCs present in oil-contaminated sediments. As oxygen is depleted, the activity of obligate aerobic microorganisms ceases and facultative and obligate anaerobes use alternate TEAs such as nitrate (NO₃⁻¹), manganese, iron, sulfate (SO₄⁻²) and carbon dioxide in a sequential fashion (Hurst *et al.*, 1997). In the absence of oxygen, microorganisms can use NO₃⁻¹ as an alternative TEA. However, NO₃⁻¹ is not usually available in marshes because its concentration is low in marine environments (McKee and Mendelssohn, 1994).

The predominant TEA in salt marsh porewater is SO_4^{-2} , even though the energy yield is less than other TEAs (e.g., NO_3^{-3}). Sulfate reduction is usually the dominant metabolism for oxidation of organic carbon in coastal marine sediments because of the great availability of SO_4^{-2} in marine environments (Rooney-Varga *et al.*, 1997). Sulfate reducing bacteria (SRB) can degrade a variety of HCs (Coates *et al.*, 1997; 1998; Madsen *et al.*, 1995). The HCs usually metabolized by SRBs include small aliphatic alkanes and single aromatics (Heider *et al.*, 1999).

One of the main ways to enhance the *in situ* biodegradation of organic contaminants is to add more efficient TEAs than SO_4^{-2} into salt marsh sediments.

Usually, research projects have focused on adding nutrients on the surface of the beaches and salt marshes. However, studies have shown that tidal and dilution factors remove most of the treatments and they did not go into the pore spaces where the contamination was present (Levin and Gealt, 1997; Venosa *et al.*, 1996).

Availability of nutrients is a major limitation in bioremediation of HCcontaminated soils (Atlas and Bartha, 1973a; Margesin and Schinner, 2001b; Olivieri *et al.*, 1976). Nitrogen and phosphorus are the most important nutrients necessary to achieve biodegradation.

The Cooperative Institute for Coastal and Estuarine Environmental Technology (CICEET) is a national center for the development and application of innovative environmental technologies for monitoring, management, and prevention of contamination in estuarine and coastal waters. The institute is associated with the University of New Hampshire (UNH) and the National Oceanic and Atmospheric Administration (NOAA). This project was funded by CICEET and the New Hampshire Department of Environmental Services (NHDES) to study bioremediation of oil-contaminated salt marshes. The main goal was to conduct a field study to evaluated four methods of bioremediation (natural attenuation, nutrient addition, bioventing and NO₃⁻ addition) to cleanup a salt marsh contaminated by petroleum HCs.

The specific objectives of the project were to:

 determine the zone(s) within the marsh that were most affected by petroleum contamination, so bioremediation methods would be targeted effectively;

- develop air (TEA), NO₃⁻ (TEA) and nutrient (nitrogen and phosphorus) delivery and monitoring systems that minimize the impact and invasion of the marsh;
- determine the petroleum attenuation in the marsh for each bioremediation method; and
- recommend the types of salt marsh applications for which each bioremediation method is suitable.

1.1 **Objectives**

This dissertation research evaluated the ability of two TEAs (oxygen and NO_3) to enhance the *in situ* biodegradation of total petroleum hydrocarbons (TPH) in an oilcontaminated salt marsh over a one year period. Evaluations were performed in subsequent years by other graduate students.

The objectives of this dissertation research were to:

- determine the zones within an oil contaminated salt marsh that were most affected by the oil spill;
- evaluate and select an analytical method for the evaluation TPH present in the contaminated salt marsh sediments; and
- determine if addition of oxygen (added as air) and NO₃⁻ could enhance the in situ biodegradation of HCs compared to natural attenuation processes (e.g., volatilization, dilution, dispersion).

1.2 <u>Study Site – Fore River Creek Salt Marsh</u>

The oil-contaminated salt marsh selected for the study was located at Thompson Point in Portland, ME (Figure 1). The salt marsh was contaminated in September 1996, when the Tanker Vessel (T/V) *Julie N* hit the Route 77 Bridge. The *Julie N* lost 353 m³ and 327 m³ of Nos. 2 and 4 fuel oils, respectively. After an immediate response, more than 530 m³ of the fuel was recovered (~80%), and only 150 m³ was lost to the environment.

The most affected environments were the marshes along the Fore River (Lelyveld, 1996; Porter, 1997). The selection of a study site for the CICEET salt marsh remediation project was coordinated with officials from NHDES, NOAA, and the Maine Department of Environmental Protection (MEDEP). Specific sites were chosen within the Fore River salt marshes in areas where oil droplets were visible in the sediments. The marshes were covered by *Spartina alterniflora* and few invertebrates were present.

1.3 Background Conditions and Experimental Design

In May 1998, four experimental plots (10 m long by 3 m wide) were selected in the Fore River Creek salt marsh and designated for the addition of air (oxygen as TEA) and NO_3 . Two control plots were also established to evaluate the extend of natural attenuation.

The plots were initially selected based on the visual presence of oil droplets in the sediments and subsequent TPH analysis. Horizontal wells installed in the sediments were used to deliver the amendments (TEAs).

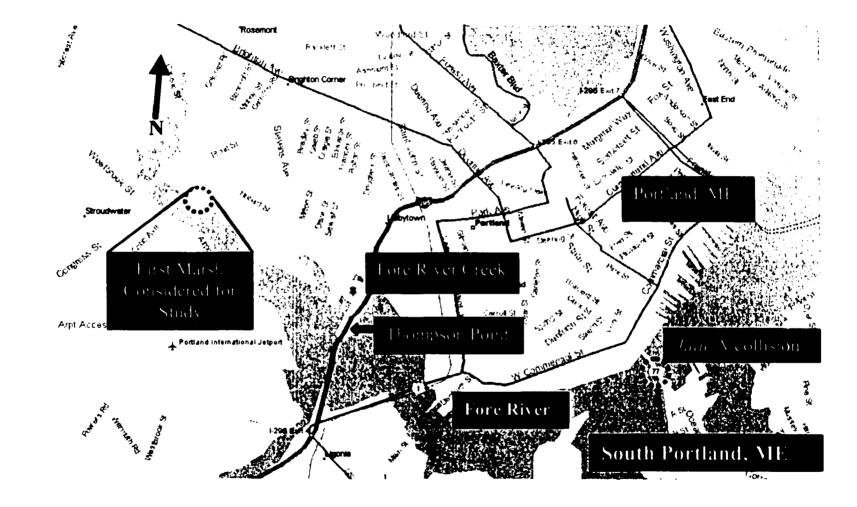


Figure 1. Site selected for the study at the Fore River Creek salt marsh. (taken from http://maps.expedia.com)

While horizontal wells are used for the treatment of terrestrial subsurface contaminated soils, this research was the first time that they were used in a contaminated salt marsh. The wells were buried ~16-20 cm to be below the root zone. The wells consisted of 3.7 m long plastic perforated tubes with a 2.5 cm external diameter and a 1.9 cm internal diameter. The perforations consisted of 1.6 mm holes spaced every 5 cm. The wells were set 60 cm on center and connected to a distribution header made from the same tubing. The wells were installed by first driving a 2.5 cm diameter stainless steel pipe (with a removable drive tip) into the sediments. After the pipe was driven below the marsh surface, the plastic tube was placed inside and the driven pipe was removed, leaving the well behind. Each plot was divided into grids (0.61 m x 0.31 m subplots) for sampling.

1.4 Field Study

The parameters used to monitor and assess the *in situ* HC degradation were: TPH concentration, abundance of oil-degrading bacteria, nutrient concentrations (NO₃⁻, ammonia and phosphorus), and plant height and density. Prior to starting the study, two screening methods were evaluated for their ability to detect and quantify TPH in the salt marsh sediments: the U.S. Environmental Protection Agency (EPA) Soxhlet Extraction with Gravimetric Determination of Grease and Oils (EPA, 1994) and the American Society for Testing Materials (ASTM) Standard Test Method for Screening Fuels in Soils (ASTM, 1995). Because of the large number of samples anticipated, the analytical method needed to be low cost, rapid and relatively easy to use. However, the EPA and ASTM methods both experienced significant interferences from the organic matter and

fines in the salt marsh sediments. For this reason, samples were analyzed using the Massachusetts Department of Environmental Protection (MADEP) (MADEP, 1998a) Method for the Determination of Extractable Petroleum Hydrocarbons. This method is designed to measure the concentration of extractable aliphatic and aromatic HCs in water and soil. The aliphatic HCs were quantified as: C₉ through C₁₈ (short chain-SC) and C₁₉ through C₃₆ (long chain-LC). The aromatic HCs were quantified as C₁₁ through C₂₂. The aliphatic and aromatic HCs ranges corresponded to compounds with boiling points between 150°C and 500°C. This method uses a solvent extraction, silica gel solid-phase extraction/fractionation process (SPE), and gas chromatography (GC)/flame ionization detection (FID). While more expensive, time consuming and complex, the MADEP method had less interferences than the EPA and ASTM methods.

1.5 Duration of the Study

Field sampling was conducted from June 1998 through October 2001. This dissertation covers the first year from June 1998 to June 1999. During this period, nine sampling events occurred spaced ~3 to 4 weeks apart during the warmer months in New England. Background conditions were evaluated on June 11 and 12, 1998.

Each sampling event took two days to complete. Four subplots within each treatment and control plot were randomly selected for sampling. Sampling was conducted during the 3-4 hr surrounding low tide. Portable catwalks were used as working platforms to minimize the impact on the experimental plots. Two sediment samples were collected from each subplot to evaluate TPH concentration. A sediment

sample was also collected to evaluate the abundance of oil-degrading microorganisms. A porewater sample was used to quantify NO_3^- , ammonia (NH_4^+), and phosphate (PO_4^{-3}) from each subplot. A 30 cm x 30 cm frame was used in each subplot to delineate clusters of plants whose density and height were measured.

CHAPTER II

LITERATURE REVIEW

2.1 <u>Petroleum Contamination</u>

2.1.1 Light Non Aqueous Phase Liquids (LNAPLs)

Many pollutants exist at contaminated sites that are not in the aqueous phase or sorbed to soils, but rather are liquids immiscible with water. The availability of these compounds to biodegradation is drastically reduced (Atlas, 1978). Typically, LNAPLs are composed of molecules that have low aqueous solubility (i.e., the concentration in the water phase is quite low) and high solubility in organic solvents.

LNAPLs are often released by spills or leaks from transporting petroleum tankers. Crude oil LNAPLs have contaminated surface waters, marine sediments, and coastal beaches of the Caribbean Sea, and Atlantic, Pacific and Indian Oceans. Gasoline, petroleum products and industrial solvents have contaminated aquifers and groundwater at a large number of sites because they are often contained in underground storage tanks that after many years of burial corrode and release their contents (EPA, 1995).

If an LNAPL contains two or more compounds (common in oil spills, leakage of underground storage tanks containing gasoline, or at hazardous waste sites), the amount of each compound present in the aqueous phase that is in equilibrium with the LNAPL phase is a critical factor that affects its transport and fate. This is well known from measurements of the disappearance of different compounds following crude oil spills or under experimental conditions (Atlas, 1981). Compounds present in a LNAPL may be degraded simultaneously or destroyed only after the more susceptible molecules are transformed.

2.1.2 <u>Petroleum HCs</u>

Petroleum is a mix of different HCs containing mainly carbon and hydrogen in their molecular structure. Crude oil has a highly variable composition that depends on the site where it is extracted (Atlas, 1981). However, it contains on average 83 to 86% by weight carbon and 11 to 13% hydrogen. In addition, it has small quantities of sulfur, oxygen and some metals (e.g., iron, chromium, nickel and vanadium). These atoms are arranged in different structural configurations. In general, HCs are divided in two main groups: aliphatics and aromatics. Aliphatics are further divided into alkanes, alkenes and cycloalkanes (Potter and Simmons, 1998).

The alkanes contain only single carbon-carbon bonds. The simplest alkane is methane (CH₄). The general formula for an alkane is C_nH_{2n+2} . Alkenes contain less hydrogen because they have one or more double bonds between their carbons (C=C). The alkene general formula is C_nH_{2n} .

Aliphatic and aromatic compounds differ by the pattern of bonding between adjacent carbons atoms. Aromatics have ring structures and are basically flat and symmetric with clouds of electrons above and below the plane of the molecule. Aromatic carbon-carbon double bonds are called resonance bonds because electrons are shared between multiple carbon atoms. This imparts chemical stability to the molecule. Aromatic HCs have one or more benzene (C_6) aromatic rings as structural component (Harayama *et al.*, 1999; Potter and Simmons, 1998).

2.1.3 <u>Petroleum Refining</u>

Petroleum fuel mixtures are produced from crude oil through a variety of refining and blending processes. After treatment to remove dissolved gas, dirt and water, crude oil is distilled, producing different petroleum fractions. The fractions can be used directly or can be modified through cracking or reforming. During cracking, LC alkanes are converted into smaller alkanes and alkenes. This is the origin of most of the alkenes because they are not abundant in the crude oil. Reforming converts aliphatics into aromatics. The composition of a distillation fraction can be altered through treatment to add, remove or convert a specific compound. The products from the different refining processes are blended to produce petroleum fuel mixtures with characteristics required for specific uses (Table 1) (Potter and Simmons, 1998).

2.1.4 Impact of Weathering on Petroleum Composition

Petroleum products suffer changes when they are released to the environment in the process called weathering (Potter and Simmons, 1998). The main types of weathering are dissolution of HCs into water, volatilization, photodegradation and biodegradation.

Petroleum Fuel Mixture	Density g/mL (20°C)	Alkane Carbon Number Range	Distillate Characteristics	Compound Classes	End Use
Gasoline	~0.73	n-C4 - n-C12	Low-end distillate, Boiling point range of 40- 200°C	High concentration of BTEX, Monoaromatics and branched alkanes, Lower concentration of n-alkanes, alkenes cycloalkanes, and naphthalenes, Very low concentration of PAHs	Automotive spark-ignition engines
Kerosene	~0.80	n-C'6 - n-C16	Middle distillate, Boiling point range of 150- 300°C	High concentration of cycloalkanes and n-alkanes, Lower concentrations of monoaromatics and branched alkanes, Very low concentration of PAHs	Critical kerosene burners
JP-4 fuel	~0.75	n-C5 - n-C14	Middle distillate, Mixture of gasoline (65%) and petroleum distillated (35%), Boiling point range of 150- 275°C	High concentration of cycloalkanes and n-alkanes, Lower concentrations of mono aromatics, BTEX and alkenes, Very low concentration of PAHs	Aviation turbine engine
JP-5 fuel	~0.82	n-C8 – n-C17	Middle distillate, Specially blended kerosene Boiling point range of 150- 275°C	High concentration of cycloalkanes and n-alkanes, Lower concentration of monoaromatics and branched alkanes, Very low concentration of BTEX and PAHs	Aviation turbine engines, Shipboard engines
JP-7 fuel	~0.80	n-C10 – n-C17	Middle distillate, High flash point kerosene, Boiling point range of 150- 275°C	High concentration of cycloalkanes and n-alkanes. Lower concentration of monoaromatics and branched alkanes	Aviation turbine engines

Table 1. General characteristics of individual petroleum fuel mixtures. (Taken from Potter and Simmons, 1998)

Petroleum Fuel Mixture	Density g/mL (20°C)	Alkane Carbon Number Range	Distillate Characteristics	Compound Classes	End Use
Diesel (#2)	~0.83	n-C8 – n-C21	Middle distillate, Boiling point range of 200- 325°C	High concentration of n-alkanes, Lower concentration of branched alkanes, cycloalkanes, monoaromatics, naphthalenes and PAHs, Very low concentrations of BTEXs	High-speed engines
No. 2 fuel oil	~0.90	n-C8 – n-C21	Middle distillate, Boiling point range of 200- 325°C	High concentration of n-alkanes, Lower concentration of branched alkanes, cycloalkanes, monoaromatics, naphthalenes and PAHs, Very low concentrations of BTEXs	Domestic burners, Medium capacity commercial, industrial burners
No. 6 fuel oil	~0.95	n-C12 beyond n- C34	Residual oil, Boiling point range of 350- 700°C	High concentration of n-alkanes and cycloalkanes, Lower concentration of naphthalene and PAHs, Very low concentration of BTEXs	Commercial burners Industrial burners
Lubricating and motor oil		n-C18 beyond n- C34	Heavy end distillated, Boiling point range of 325- 600°C	Lower concentration of barium, High concentration of n-alkanes and cycloalkanes, Very low concentrations of BTEXs and PAHs	Internal combustion engines
Crude oil	~0.94	n-C1 beyond n- C34	Feedstock	High concentration of n-alkanes branched alkanes and cycloalkanes, Lower concentration of BTEX, PAH, and naphthalenes, Variable concentrations of sulfur heterocyclics	

Table 1. (Continued) General characteristics of individual petroleum fuel mixture (Taken from Potter and Simmons, 1998)

Each HC group is weathered uniquely. For example, aromatics tend to be more soluble in water than aliphatic HCs, whereas aliphatics tend to be more volatile, contaminating the air. Solubility and volatility of all compounds generally decreases with an increase in molecular weight. In general, the more water soluble and volatile compounds are, the more rapidly they are weathered in contaminated soils. Individual rates of dissolution and volatilization are retarded when compounds are present as fuel mixtures. If volatilization rather than dissolution is the dominant weathering process, lower molecular HCs within each series are depleted first. The greater a compound's volatility, the more rapid its loss from an HC mixture. Considering volatilization and dissolution trends together, it is possible to predict the composition of a fuel mixture after its release into the environment (Gustafson et al., 1997). Where volatilization is the predominant process, the loss of lower molecular weight alkanes will be the most significant change in the product. In situations where dissolution is the dominant weathering process (e.g., sediment porewater), the aromatics will be depleted first with benzene removed most rapidly. Photooxidation mainly affects the aromatic compounds in crude oil and converts them to polar species (Dutta and Harayama, 2000).

2.1.5 <u>TPH</u>

TPH analysis is used as a general measure of the presence of crude oil or petroleum products in soil, water or sediments (MADEP, 1998a; Rooney-Varga *et al.*, 1997). TPH is the measurable amount of petroleum based HCs present in the environment. However, TPH is not a direct indicator of the risk (i.e., mobility, toxicity, and exposure to human and environmental receptors) posed by petroleum contamination. Other analysis or information in addition to a single TPH concentration must be used to evaluated risk (Gustafson, 1998).

EPA Method 418.1 (1994) is the TPH analytical method required by some regulatory agencies. It provides a value of TPH in an environmental medium (e.g., contaminated sand), but does not yield information on the composition of the HC mixture. The amount of TPH measured by EPA 418.1 depends on the ability of the solvent to extract the HCs from the environmental medium and the absorption of infrared (IR) light by the HC in the extract. This method will also detect other organics such as humic acids that act as interferences.

EPA Method 8015 (Modified) (1994) reports the concentration of purgeable and extractable HCs referred to as gasoline (C_6 to C_{10-12}) and diesel fuel (C_{8-12} to C_{24-26}). Purgeable HCs are measured by purge-and-trap GC using FID, while extractable HCs are analyzed by GC following extraction with a solvent and subsequent concentration by evaporation (Gustafson, 1998).

In practice, TPH is defined by the method of analysis used. No single method gives a precise and accurate measurement of TPH for all types of HC contamination. The four most commonly used TPH testing methods include GC, IR spectrometry, gravimetric analysis, and immunoassays (Weisman, 1998).

2.1.6 <u>TPH Determination</u>

The chemical composition of petroleum products is complex and may change over time because of weathering. These factors make it very difficult to select the most appropriate analytical methods for evaluation of environmental samples (Weisman, 1998). Measuring the extent of crude oil degradation is challenging, because crude oil is a complex mixture of many compounds. Oil degradation is usually based on changes in TPH concentrations (Huesemann, 1995). TPH may be measured by extracting total oil and grease and adsorbing the polar (grease) component onto silica gel and measuring the IR absorption (EPA, 1994). Although this method is subject to interferences, it is satisfactory for monitoring gross changes in TPH (Huesemann, 1995).

More traditional analytical approaches have focused on the identification and evaluation of specific indicator components (e.g., PAH and BTEX). However, because of the inability to analyze for the large numbers of constituents in TPH and the lack of toxicological and other relevant data for many of those constituents that could be individually identified (Edwards *et al.*, 1998), an indicator approach is generally accepted and used by state regulatory agencies for carcinogenic risks posed by TPH.

MADEP has developed a TPH analytical method based on the EPA Modified Method 8015 (EPA, 1994). This method reports the concentration of purgeable and extractable HCs, which are also referred to as gasoline and diesel range organics. The MADEP method is designed to measure the collective concentration of extractable aliphatic and aromatic petroleum HCs in water and soil. The extractable aliphatic HCs are collectively quantified within two ranges; C₉ through C₁₈ (SC) and C₁₉ through C₃₆ (LC) The extractable aromatic HCs are collectively quantitated within the C₁₁ through C₂₂ range. These aliphatic and aromatic HCs ranges correspond to boiling points between ~ 150°C and 500°C. In this method, a sample is extracted by sonication with methylene chloride, dried over sodium sulfate, solvent exchanged into hexane, and concentrated. Sample cleanup and separation into aromatic and aliphatic fractions is conducted using commercial silica gel cartridges. The two extracts are re-concentrated and separately analyzed by capillary GC/FID.

Surrogate standards are used to monitor the efficacy of the sample extraction, chromatographic and calibrations systems. The recommended surrogate standards are chloro-octadecane (COD) and ortho-terphenyl (OTP). Using these two compounds, a surrogate spiking solution is prepared. Each sample and blank is fortified with a known concentration of the surrogates.

2.1.7 Estimates of Risk from TPH

There are three approaches that are used to estimate potential human health risks posed by TPH contamination (Gustafson, 1998). The most used is the evaluation of the carcinogenic risk from TPH as an "indicator" approach assuming that the risk is characterized by a small number of compounds (i.e., BTEX, PAHs). The "surrogate" approach assumes that TPH is not included as an indicator and can be characterized by a single compound. This approach can overestimate toxicity and mobility because of the compounds used as surrogates. In the "whole product" approach the toxicity and mobility of the TPH are based on a whole product of similar character (e.g., LC aliphatics). All approaches are similar because they use specific knowledge of a single or few constituents to characterize the many constituents in a HC mixture (Gustafson, 1998).

The TPH Criteria Working Group (TPHCWG), which is a national *ad hoc* committee that was formed to develop a technically risk-based approach to TPH, has developed a combined indicator of the grouping or fraction approach (EPA, 1998; Gustafson *et al.*, 1997; Gustafson, 1998). The basic approach is similar to that developed

by MADEP where the TPH is split into a small number of groups or fractions that have similar properties. The main difference between the MADEP and TPHCWG approaches is that the latter defines groups or fractions of TPH based on the potential mobility of the HC within each group. In the MADEP approach, fractions are based on the available toxicity data (MADEP, 1998a).

2.1.8 Effect of Oil in Marshes

Petroleum HCs can have a profound effect on marshes. Salt marshes are occasionally impacted by crude oil spills from marine vessels and oil pipelines. Oil may cover plants, remain on the water surface or become associated with sediments (Wright *et al.*, 1997). Oil may have physical or toxic effects on marsh plants, animals and microorganisms. Physical effects result from the viscous and adhesive properties of oil. Stomata (gas-exchange pores) of plants may be blocked. The gills and mouthparts of invertebrates may be clogged and the fine structure of birds' feathers may be disrupted. Toxic effects result from the oil's interaction with the biochemical functioning of the contaminated organisms (i.e., the replacement of fatty molecules in cellular membranes resulting in membrane disruption, increased permeability and leakage of cellular contents). In addition, an increase in respiration is often observed, possibly because mitochondria are damaged so that the rate of oxygen use is no longer coupled to other biochemical processes (Dibner, 1978; Walker *et al.*, 1975; Wharfe, 1975).

When large amounts of oil are dispersed into the water column, heterotrophic bacterial growth may show a transient inhibition within hours. The acute toxicity of the most volatile petroleum HCs could also explain the lag phase (Siron *et al.*, 1996). Significant increases in bacterial productivity coupled with decreased primary

productivity, suggest a shift toward heterotrophy following exposure to diesel fuel that could cause serious trophic perturbations. The effects of petroleum pollution may have complex ecological, trophic and biochemical implications in areas like marshes where much of the ecosystem's production and nutrient cycling is microbially mediated (Piehler *et al.*, 1997a).

A compound's toxicity is a major factor determining its biodegradation in a NAPL. Toxicity results from the major solvent or one or more minor components of a heterogeneous NAPL. Many organic solvents suppress microbial proliferation and metabolism (Diaz and Roldan, 1996). Experiments show that differences in petroleum toxicity are attributable to individual fuel composition rather than characteristics of the individual alone (London and Robinson, 1984). As a rule, organic solvents with high values for log K_{OW} (\geq 4.0) do not suppress microbial activity, whereas those with low values for log K_{OW} (\leq 2.0) are highly toxic. (Note: K_{OW} is the octanol-water partition coefficient)

2.2 HC Biodegradation

2.2.1 Biodegradation Process

Problems associated with pollution can be reduced by conventional technologies that remove, alter or isolate the contaminants. These technologies are expensive, and in many cases they do not destroy the contaminant compounds, but transfer them from one environment to another (Hickey, 1995; Hurst *et al.*, 1997; Ritter and Scarborough, 1995). Bioremediation exploits the biological breakdown or biodegradation of organic contaminants. It is not a new technology. The Romans used it to treat human-generated wastes. They were the first to discharge sewage effluents onto soils, allowing the naturally-occurring microorganisms to degrade them (Chapelle, 1996).

During biodegradation of HCs, microorganisms use the energy they derive from the organic compounds to create cell biomass and less complex organic compounds or, upon complete degradation, water and carbon dioxide (mineralization) (Atlas, 1992). Bioremediation addresses the limitation of more conventional technologies because it can completely degrade the pollutants into inert byproducts, in many cases at reduced cost. As a result, over the past 20 years, bioremediation has grown from a relatively unknown technology to one that is considered for the cleanup of a wide range of contaminants.

Bioremediation has also become an intensive area for research and development in academia, government and industry. Because environmental regulations are becoming more strict regarding the cleanup of contaminated sites, funding for basic and applied research on bioremediation by government agencies and private industry has increased over the past decade (Alexander, 1994; Crawford and Crawford, 1996).

The extent of biodegradation and the rate at which it occurs depend on environmental conditions, the type and number of microorganisms present, and the chemical structure of the contaminants being degraded (Hurst *et al.*, 1997). Bioremediation can be affected by other factors such as temperature, pH, nutrient status, bioavailability and solubility of the organic compounds, biotic interactions, electron donor (ED) and TEA availability, and the composition of the microbial community (Atlas, 1981; McKee and Mendelssohn, 1994). The presence of contaminants in the environment can alter the microbial community structure through selection of species capable of biodegradation or by causing acute toxicity effects (Long et al., 1995; Macnaughton et al., 1999).

2.2.2 Thermodynamics of Microbial Metabolic Processes

Bioremediation is based mainly on microbial metabolism (Atlas, 1978). Most microbes obtain energy by transferring electrons from EDs to TEAs. Contaminants can act as TEAs or EDs and the rate of the metabolic processes is related to their availability (Chapelle, 1996).

The relationship between reduced (TEA) and oxidized (ED) substrates can be shown as a hierarchy of oxidation-reduction half reactions (Figure 2) (Hurst *et al.*, 1997). In this figure, the vertical axes are oxidation-reduction potential, Eh or pE values. Compounds on the left side of the hierarchy are oxidized, while those on the right are reduced. The transition from oxidized to reduced forms is governed by the redox status of the system and by catalytic mechanisms of microbially-produced enzymes.

Highly oxidizing conditions appear in the upper part of the figure, while highly reducing conditions are in the lower portion. Under environmental conditions, the lower reaction proceeds to the left (electron producing or donating) and the upper reaction proceeds to the right (electron accepting). In nature, a variety of TEAs may be present: oxygen (O₂), nitrate (NO₃⁻), manganese (Mn₄⁺), iron III (Fe₃⁺), sulfate (SO₄⁻²), and carbon dioxide (CO₂). Each of these coupled half reactions is mediated by microorganisms. When diagonal arrows directing carbohydrate oxidation to these TEAs are drawn, the length of each arrow is proportional to the free energy gained by the microorganisms (Hurst *et al.*, 1997).

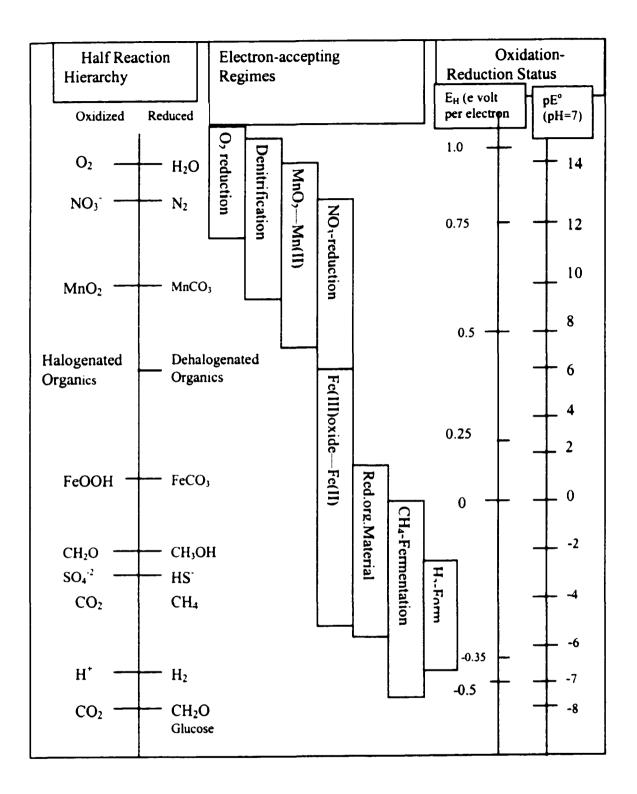


Figure 2. Relationship between reduced and oxidized substrates as a vertically-arranged hierarchy of oxidation-reduction half reactions. (Taken from Hurst *et al.*, 1997)

Microorganisms metabolizing carbohydrates using oxygen as a TEA generate more energy in the form of ATP than those carrying out NO_3^- respiration. These microorganisms, in turn, gain more energy than those using Mn^{+4} and Fe⁺³.

In a salt marsh, the sediment microflora require an organic substrate as a source of carbon for biosynthesis and to serve as an ED. They also need an organic or inorganic compound to serve as a TEA (McKee and Mendelssohn, 1994). Aerobes and facultative anaerobes use oxygen as long as it is available because the energy yield of this pathway is the highest (Table 2). As oxygen is depleted, the activity of obligate aerobic microorganisms ceases and facultative and obligate anaerobes use the oxidants NO_3 , Mn^{*4} , Fe^{*3} , SO_4^{-2} and CO_2 in a sequential fashion (Ponnamperua, 1972).

The sequences of the reductions are determined by the energy yield of each reaction leading to the production of reduced compounds such as ammonium (NH_4^+) , manganous manganese (Mn^{+2}) , ferrous iron (Fe^{+2}) , sulfides (S^{-2}, HS^-, H_2S) , and methane (CH_4) . Due to incomplete decomposition of organic matter under anoxic conditions, organic acids and alcohols are also produced (Table 2). With a sufficiently long adaptation period and an appropriate TEA, most petroleum-HCs can be degraded by anaerobic microbial communities (Coates *et al.*, 1996).

Although reducing conditions may prevail in the waterlogged sediments of a marsh, oxidized zones exist at the soil-water interface and in the rhizosphere of plants growing there. These zones result from the diffusion of oxygen from the overlying water or atmosphere into the soil, but may only be a few millimeters thick (McKee and Mendelssohn, 1994). Oxygen is also transported through the air space in tissues (i.e., aerenchyma) of wetland plants and diffuses out of the roots, forming an oxidized

rhizosphere (Armstron, 1964). The width of the oxic zones depends on the rate of oxygen diffusion to these interfaces and the oxygen demand of the bulk sediment. Oxidized and reduced zones may occur very close together in marsh sediments.

Table 2. Selected reactions illustrating carbon transformation pathways and their energy	
yields. (Taken from McKee and Mendelssohn, 1994)	

Pathway	Reaction	Energy yield (kcal/mol)
Aerobic Respiration	$C_{0}H_{12}O_{0}$ (glucose) + $6O_{2} = 6CO_{2} + 6H_{2}O$	686.0
Nitrate reduction and Denitrification	$C_6H_{12}O_6 + 24/6 \text{ NO}_3^+ + 24/5 \text{ H}^+ = 6CO_2 + 12/5 \text{ N}_2 + 42/5$ H ₂ O	649.0
Manganese Reduction	$C_6H_{12}O_6 + 12 MnO_2 + 24 H^+ = 6CO_2 + 12 Mn_2^+ + 18H_2O$	457.8
Iron Reduction	$C_{6}H_{12}O_{6} + 24Fe(OH)_{3} + 48H^{+} = 6CO_{2} + 24Fe_{2}^{+} + 66H_{2}O$ $C_{6}H_{12}O_{6} + 12Fe_{2}O_{3} + 48H^{+} = 6CO_{2} + 24Fe_{2}^{+} + 30H_{2}O$	100.4 86.9
Fermentation	$C_6H_{12}O_6 = 2CH_3CHOCOOH$ (lactic acid) $C_6H_{12}O_6 = 2CH_2CH_2OH$ (ethanol) + $2CO_2$	58.0 57.0
Methanogenesis	$H_2 + 1/4 CO_2 = 2CH_4 + 1/2 H_2O$ $CH_3COO + 4H_2 = 2CH_4 + 2H_2O$ $CH_3COO - = CH_4 + CO_2$	8.3 39.0 6.6
Sulfate Reduction	$CH_{3}CHOHCOO^{-}(lactate) + 1/2SO_{4}^{=} + 3/2H^{+} = CH_{3}COO^{-}$ (acetate) + CO_{2} + 1/2HS ⁻ $CH_{3}COO^{-} + SO_{4}^{=} = 2CO_{2} + 2H_{2}O + HS^{-}$	8.9 9.7

2.2.3 <u>Aerobic Respiration</u>

Aerobic respiration is rare in marshes and the rate of oxygen movement from the atmosphere is low, due to diffusion limitations in aqueous solutions. However, microbially-mediated oxidation (e.g., nitrification, methane oxidation, sulfide oxidation) occurs in reduced zones in saturated sediments (McKee and Mendelssohn, 1994). Oxygen is the preferred TEA when its concentration exceeds 0.8 mg/L. Below ~ 0.5 mg/L, there is a potential for NO₃⁻ competing with oxygen for available electrons. If there is no NO₃⁻ present, the threshold oxygen concentration may be ≤ 0.16 mg/L (Hurst

et al., 1997). If dissolved oxygen is present, it is assumed that aerobic respiration is the predominant process (Lovley et al., 1994). For *in situ* bioremediation of simple HCs, oxygen transport is almost always the rate limiting step in biodegradation (Ritter and Scarborough, 1995). The results of aerobically incubated total heterotrophic plate counts on subsurface soil samples indicate that organisms capable of aerobic growth are present in all sediments tested, even those from anoxic zones (Long et al., 1995). Studies have confirmed that anthracene and naphthalene mineralization are strongly dependent on the availability of oxygen in the marsh sediments (Bauer and Capone, 1985).

In passive bioremediation of petroleum HC contaminated soils and sediments, diffusion is the primary mechanism for supplying oxygen to maximize the effectiveness of treatment (Huesemann and Truex, 1996).

The enhancement of the biodegradation of HCs in soil by forced aeration has been confirmed under field conditions (Yeung *et al.*, 1997). Innovative bioremediation approaches using air injection to stimulate biodegradation *in situ* (e.g., biosparging and bioventing) are now popular. Unfortunately, the efficiency of oxygen transfer *in situ* can vary widely. Because it is difficult to predict or adequately measure this transfer *in situ*, there is a concern that techniques such air sparging or bioventing are often used where they are not appropriate (Stroo, 1996).

2.2.4 <u>Nitrate Reduction and Denitrification</u>

 NO_3^- is reduced to nitrogen gas (N₂) by denitrification or NH_4^+ by dissimilatory NO_3^- reduction. Denitrification is often the main process removing dissolved nitrogen in wetlands (Stepanauskas *et al.*, 1996). NO_3^- reduction and denitrification are the major anaerobic processes responsible for HC degradation in microaerophilic-flooded soils

when NO₃⁻ is present in cold environments (McKee and Mendelssohn, 1994). In the absence of oxygen, microorganisms use NO₃⁻ as an alternative oxidant. NO₃⁻ reduction appears to be the preferred pathway when the electron supply (organic carbon) exceeds the amount of available NO₃⁻ (Hurst *et al.*, 1997; Smith *et al.*, 1991).

Dissimilatory NO₃⁻ reduction can also contribute to the production of NH₄⁺ in reduced environments. Denitrification and nitrification are reported to be the main processes involved in N₂O production in soils (Stepanauskas *et al.*, 1996).

Bench studies have shown that NO_3 can be used as a TEA for bioremediation of soils contaminated with low molecular weight PAHs (Al-Bashir, 1990; Mester and Kosson, 1996; Mihelcic and Luthy, 1988a, 1988b). A study demonstrated that NO_3 dependent anaerobic degradation and mineralization of naphthalene by pure cultures is possible (Rockne *et al.*, 2000). The main reasons for using NO_3 as a TEA are its high solubility in water, very low volatilization rate, and high biodegradation rates that approach those achievable under aerobic conditions. Denitrification represents the optimal redox environment when a tradeoff between volatilization and biodegradation of low molecular weight PAHs is achieved (Burland and Edwards, 1999; Hess *et al.*, 1996; Leduc *et al.*, 1992).

2.2.5 Manganese and Iron Reduction

 Mn^{+4} and Fe⁺³ are reduced in anoxic environments (McKee and Mendelssohn, 1994). The energy yield of manganese reduction is slightly lower than NO₃⁻, and the energy yield for iron reduction is less than NO₃⁻ and manganese reduction (Table 2). Iron is one of the most abundant elements in the earth's crust, but is a minor component in aquatic systems because of its relative insolubility in water. The form in which iron that

is found *in situ* is greatly influenced by the *in situ* pH and oxygen concentration (Brock and Madigan, 1997). *Geobacter spp.* have been associated with the oxidation of monoaromatic compounds (e.g., benzene) using Fe^{+3} as a TEA in petroleumcontaminated sediments and aquifers (Lovley *et al.*, 1996; Rooney-Varga *et al.*, 1999). Sulfate reduction is generally inhibited in the presence of Fe⁺³ because iron reducers out compete SRBs for EDs (Weiner and Lovley, 1998b).

2.2.7 Sulfate Reduction

After chloride, the anion most abundant in the marine environment is SO_4^{-2} . In organically-rich marine environments, the microbial reduction of SO_4^{-2} to S^{-2} initiates the cycling of sulfur compounds producing H₂S, the precipitation of FeS and the formation of a disulfide and the deposition of elemental sulfur.

SRB use low molecular weight organic compounds such as lactate (CH₃CHOHCOO⁻) or acetate (CH₃COO⁻) as energy sources and EDs, and use SO₄⁻² as their TEA. Even though the energy yield is less than for other anaerobic pathways, sulfate reduction often dominates the organic carbon oxidation in coastal marine sediments because of the great availability of SO₄⁻² in seawater. Sulfate's oxidizing capacity (640-960 mg/L) is 200 times greater than oxygen's (3.2-4.8 mg/L) in marine sediments (McKee and Mendelssohn, 1994). Sulfate reduction is the dominant TEA process and accounts for more than half of the total decomposition of organic matter in salt marshes (Rooney-Varga *et al.*, 1997).

Much of the mineralization of organic matter in coastal marine sediments occurs via anaerobic processes. Dissimilatory reduction of SO_4^{-2} results in the formation of extracellular H₂S. Sulfide oxidation by oxygen occurs at the interface between reduced

sediments and the oxidized zone, typically in a suboxic zone immediately below the aerobic layer. The oxidation of reduced S⁻² and aerobic respiration of natural organic matter (NOM) are the major oxygen sinks in a salt marsh (Shin *et al.*, 2000). The addition of crude oil represents an additional demand and HC-degrading bacteria may compete for oxygen with the demand from aerobic respiration of organic matter and oxidation of S⁻² produced at depth.

A wide variety of HC contaminants can be degraded under sulfate reducing conditions in contaminated sediments, suggesting the use of sulfate reduction rather than aerobic respiration as a treatment strategy in natural attenuation of HCs in these sediments (Coates *et al.*, 1996; 1997; Madsen *et al.*, 1995). *S. alterniflora* roots produce low molecular weight organic compounds such as ethanol and malate, and SRBs can use these compounds directly (Haines *et al.*, 1996).

Sulfate reducing activity has been shown to be closely tied to plant growth stages, suggesting that plant-SRB interactions in the *S. alterniflora* rhizosphere play an important role in salt marsh biogeochemical cycles (Rooney-Varga *et al.*, 1997).

The fact that HC metabolism can be linked to sulfate reduction is beneficial because SO_4^{-2} is one of the most abundant electron acceptors in marine environments (Coates *et al.*, 1997). In BTEX-contaminated aquifers, the presence of sulfate reducing conditions and SRBs is coupled with a decrease in HC concentrations in the contaminated sediments (Weiner and Lovley, 1998b; Gieg *et al.*, 1999).

2.2.8 <u>Methanogenesis</u>

When other TEAs are depleted, carbon dioxide can be used as a TEA, being reduced to methane during methanogenesis (Hurst *et al.*, 1997). Methanogenes are strict

anaerobes, and may alternatively use low molecular weight organic compounds produced by other bacteria as their electron acceptors (e.g., CH_3COO^-) (McKee and Mendelssohn, 1994). Degradation of toluene under methanogenic conditions has been demonstrated in laboratory studies (Gieg *et al.*, 1999). Degradation of benzene, with the production of methane, is possible after a long period (~30 d) in sediments contaminated with HCs, probably after a microbial consortium is established (Weiner and Lovley, 1998a).

2.2.6 <u>Fermentation</u>

Fermentation is an important process mediated by microorganisms in anoxic conditions. During the fermentation process, when an organic compound is oxidized another organic compound is reduced (McKee and Mendelssohn, 1994). The energy yield is less than a tenth that of aerobic respiration. Hence, the major limitation to fermentative HC degradation is the low energy yield (Atlas, 1975).

2.3 **Bioremediation of Petroleum HCs**

The microbial degradation of HCs is a long recognized process that has been measured by a variety of strategies (Atlas and Bartha, 1973a; Atlas, 1978; Chapelle, 1996; Leahy and Colwell, 1990; Ritter and Scarborough, 1995).

Biodegradation of the aliphatic HCs has been extensively studied (Watkinson and Morgan, 1990). The metabolic capability to degrade aliphatic pollutants is usually related to the size of the metabolically-active microbial community.

Aromatic HCs, with low solubility in water, are decomposed microbiologically. The metabolic capability to degrade mono-aromatic compounds is usually related to the level of pollutant exposure (Long *et al.*, 1995). In soil, multi-ranged compounds like anthracene, phenanthrene, pyrene, 1,2-benzopyrene, and chrysene can be biodegraded (Bossert and Bartha, 1986). The microorganisms in soil sediments can also mineralize anthracene and naphthalene (Bauer and Capone, 1985). In pure culture, PAHs such as naphthalene, anthracene, and phenanthrene can serve as carbon sources for bacteria (Bastiaens *et al.*, 2000). Recent observations of HC under anaerobic conditions also indicate the possibility of other pathways for aromatic HC biodegradation (Hughes *et al.*, 1997; Watkinson and Morgan, 1990).

Two-and three-ring PAH compounds are readily degraded, while the four-ring chrysenes are more resistant. While no microorganisms have been isolated that are capable of using four- and five-ring PAHs as sole carbon sources, studies of naturally-occurring microorganisms have demonstrated co-metabolism of pyrene, benz(a)pyrene, benz(a)anthracene, and dibenz(a,h)anthracene in the presence of naphthalene or anthracene (Herbes and Schwall, 1978; Walker *et al.*, 1976; Watkinson and Morgan, 1990; Wrenn and Venosa, 1996). However, co-metabolism may be less important in sediments than in liquid media, possibly because sorptive immobilization of the larger PAHs to sediment particles limits their availability to microorganisms (Herbes and Schwall, 1978). Different isolates have the ability to metabolize naphthalene or phenanthrene as sole carbon sources. Representatives of the genera *Pseudomonas* and *Sphingomonas* form a remarkably high fraction of these isolates (Meyer *et al.*, 1999).

The most stable of the PAHs, hopane $(17\alpha(H), 21\beta(H)$ -hopane) is often used as a control in bioremediation studies (Atlas, 1981; Douglas *et al.*, 1996). In addition, much of the variability inherent in crude oil bioremediation during field studies can be

32

eliminated when TPH concentrations are normalized to the hopane concentration (Venosa et al., 1997).

The extent of TPH biodegradation is affected by the type of HCs in the contaminant matrix, while the influence of variables such as soil type, fertilizer concentration, microbial abundance and type of treatment (slurry vs. land-treatment) appear to be less significant (Huesemann, 1995; Ramirez *et al.*, 1996).

Molecular studies have shown that the *alk* (C_5 to C_{12} n-alkanes), *nah* (naphthalene), and *xyl* (toluene) genes are responsible for the HC degradation. They are usually located on large catabolic plasmids (Whyte *et al.*, 1997). Significant differences in the frequency and distribution of plasmids among bacterial isolates have been observed (Leahy *et al.*, 1990).

2.4 **Biodegradation Mechanisms**

The rate of degradation of oil depends on its rate constant and the concentration of the oil (Uraizee *et al.*, 1998). Different mechanisms are postulated to explain how microorganisms use compounds in LNAPLs or metabolize organic solvents with low aqueous solubility. These mechanisms focus on how the compounds are transported from the environment to the cell surface and from the outside of the membrane to the interior to be processed by enzymes. Only the chemicals dissolved in the water are used, but microorganisms can use molecules that enter the aqueous phase by spontaneous partitioning. Microorganisms also excrete some products (e.g., surfactants or emulsifiers) that convert the oil compounds into $<1 \mu m$ droplets that can be used. The cells must

come in direct contact with the LNAPL, and the solubilized compounds pass through the cell surface into the cytoplasm.

Substrates that have low log K_{OW} values will typically dissolve rapidly in water. The organisms will multiply as they use them as ED. Hence, biodegradation will eventually be limited by the rate of dissolution if the process is ED-limited and will depend on the initial concentration in the water and the spontaneous dissolution rate. Other constituents of the LNAPL can affect the partitioning from the mixture to water. Competition among the active microbial species for oxygen, nitrogen, phosphorus and other inorganic nutrients may also occur (McKee and Mendelssohn, 1994).

The production and use of emulsifiers and surfactants in remediation has received considerable attention in the case of environmental contamination by LNAPLs, oils and oil products (Uraizee *et al.*, 1998). Emulsifiers and surfactants facilitate the partitioning of the molecules from the NAPL in the aqueous phase, thus resulting in enhanced biodegradation. In contrast with a true solution, in which two or more substances are mixed homogeneously at the molecular level, an emulsion is an immiscible liquid that is dispersed intimately in another immiscible liquid as >0.1 μ m-1.0 μ m droplets (Watkinson and Morgan, 1990). The role of emulsifiers or surfactants in degradation of LNAPLs other than pure aliphatic HCs remains uncertain (Alexander, 1994; Banat *et al.*, 2000). Because of their suspected toxicity, man-made surfactants are usually tested in lower concentrations first in laboratory studies (Madsen *et al.*, 1995). In addition some studies have shown high toxicity of some of these emulsifiers or surfactants during field experiments (Perkins, 1970)

2.5 Aerobic and Anaerobic HC Metabolism

Catabolism of HCs has long been considered as a strictly oxygen-dependent process. For aerobic organisms (e.g., fungi and bacteria), the initial attack of HCs always requires molecular oxygen as TEA. The first enzymes in the metabolic pathways of alkanes are monooxygenases, while aromatic HCs are attacked by either monooxygenases or dioxygenases. These enzymes incorporate hydroxyl groups derived from molecular oxygen, into the aliphatic chain or aromatic ring. The alcohols formed are then oxidized to the corresponding acids; the phenolic compounds generated by ring hydroxylation of the aromatic HCs are direct precursors for oxidative ring cleavage (Harayama *et al.*, 1999). Some microorganisms are also able to catabolize HC compounds under anaerobic conditions. The microorganisms capable of this have developed alternative, oxygen- independent reactions for the initial attack. All anaerobic HC-degrading strains, available as pure cultures, are either denitrifying, Fe^{*3}-reducing bacteria or SRB (Heider *et al.*, 1999; MacRae and Hall, 1998).

The denitrifying species mineralize a variety of alkylbenzenes, including toluene, *m*-xylene, ethylbenzene, propylbenzene, *p*-ethyl toluene and *p*-cymene. These bacteria are typically members of the genera *Pseudomonas*, *Thauera* and *Azoarcus*. Other known species can degrade a wide spectrum of aliphatic HCs, but are restricted to few aromatic HCs. For example, only one species of an Fe^{+3} -reducing bacterium that degrades aromatic HCs (*Geobacter metallireducens*), has been reported (Lovley and Lonergan, 1995). The growth of these bacteria in the environment is probably limited by the availability of the insoluble Fe(OH)₃. Several SRBs have been reported to use aromatics,

35

even though this process yields only small amounts of free energy (-205 kJ/mol of toluene) (Table 3).

Benzoate (or its CoA-thioester) is a central intermediate in the anaerobic mineralization of aromatic HCs (Harayama *et al.*, 1999). Thus, the initial series of reactions in anaerobic toluene degradation apparently involves the conversion of toluene to benzoate (or benzoyl-CoA) (Heider *et al.*, 1999).

Denitrifying bacteria	7 HCO ₃ ⁻ +3.6 N ₂ +0.6 H ₂ O	$G^{\circ} = -3554$ kJ (per mol			
$C_7H_8 + 7.2 \text{ NO}_3 + 2OH^2$		toluene)			
Iron(III)reducing bacteria	7 Fe CO ₃ + 29 Fe ₃ O ₄ +145	$G^{o} = -3398$ kJ (per mol			
$C_7H_8 + 94 \text{ Fe}(OH)_3$	H ₂ O	toluene)			
SRB	$7 \text{ HCO}_3^{-} + 2.5 \text{ H}^{+} + 4.5 \text{ HS}^{-}$	$G^{\circ} = -205 \text{ kJ} \text{ (per mol})$			
$C_7H_8 + 4.5 \text{ SO4}^{-2} + 3 \text{ H20}$		toluene)			
Methanogenic					
a) $C_7H_8 + 9H_2O$	7 HCO ₃ ⁻ + 3 H ₃ C-COO ⁻ +4 H ⁺	$G^{o} = +166 \text{ kJ} \text{ (per mol})$			
	+ 6 H ₂	toluene)			
b) $6 H_2 + 1.5 HCO_3 + 1.5$	1.5 CH ₄ + 4.5 H ₂ O	$G^{o} = -303 \text{ kJ} \text{ (per 6 mol})$			
H ⁺		H ₂)			
c) $3 H_3C-COO^2 + 3H_2O$	3 CH ₄ + 3 HCO ₃	$G^{\circ} = -93$ kJ (per 3 mol			
		acetate)			
Sum: C ₇ H ₈ + 7.5 H20	$4.5 H_2O + 2.5 HCO_3 + 2.5 H^+$	$G^{o} = -131 \text{ kJ} \text{ (per mol})$			
		toluene)			

Table 3. Stoichiometric equations of anaerobic bacterial toluene oxidation coupled to the reduction of different TEAs. (Taken from Heider *et al.*, 1999).

a. Proton reducing bacteria; b and c. Methanogens

2.6 **Bioremediation Kinetics**

Once degradation of a chemical commences, the amount disappearing with time and the shape of disappearance curve will be a function of the specific compound (Alexander, 1994). The study of kinetics of biodegradation in natural environments is often empirical, a reflection of the rudimentary level of knowledge about microbial populations and activities in these environments. An example of an empirical approach is the power rate model:

$$- dC/dt = kC^{n}$$
 (Eq. 2.1)

where C is the substrate concentration (M/L^3) , t is the time (T), k is the rate constant for chemical disappearance (T^{-1}) , and n is a kinetic order (e.g., 1^{st} , 2^{nd} , 3^{rd}). The model can be used to create substrate disappearance curves by varying n and k until a good fit of the data is achieved. The power rate law provides a basic comparison of the goodness of fit of different curves, but it gives no insight into the reason for the shapes and may not have predictive ability (Alexander, 1994). Most biodegradation kinetics is first order:

$$C_t = C_s e^{-kt}$$
 (Eq. 2.2)

where C_t is the substrate concentration at any time (t) and Co is the substrate concentration at t = 0.

2.7 Factors that Affect Biodegradation

2.7.1 <u>Temperature</u>

Temperature has an important role in controlling the nature and extent of microbial metabolism. Metabolism controls *in situ* bioremediation (Alexander, 1994; Atlas, 1975; Walker and Colwell, 1974). Temperature affects the growth rate of HC-degrading microorganisms and the activity of the enzymes involved in the oxidation of HCs (McKee and Mendelssohn, 1994). A general rule is that for every 10°C increase biodegradation rates increase about twofold. However, above a critical temperature biodegradation decreases because of enzyme and protein denaturation (Eweis *et al.*,

1998). In addition, bioavailability and solubility of less soluble hydrophobic substances, such as aliphatic and polyaromatics HCs, are temperature dependent. When the temperature increases, the viscosity decreases affecting diffusion rate. Therefore, higher reaction rates due to smaller boundary layers are expected at elevated temperatures. The increased volatilization and solubility of some HCs at elevated temperature affects toxicity and allows biotransformations with high substrate concentration (Margesin and Schinner, 2001a). However, bioremediation processes can be achieved in environments with low temperature under the right conditions (Margesin and Schinner, 1997; Margesin and Schinner, 2001b). Like total numbers of culturable microorganisms, the numbers of HC-degraders show seasonal fluctuations. Rates of disappearance of HCs are correlated with the mean monthly environmental temperature (Jackson and Pardue, 1997; Rooney-Varga *et al.*, 1997). Biodegradation of petroleum at low temperatures (0°C, 5°C and 10°C) had been observed for the marine environment (Walker and Colwell, 1974).

2.7.2 <u>pH</u>

Neutral or slightly alkaline pHs (6-8) promote optimum microbial activity and oil biodegradation (Dibble and Bartha, 1979). Changes in the pH can have indirect impact on enzymes and nutrient availability (McKee and Mendelssohn, 1994). Wetland soils are typically saturated, a condition that gives rise to a near neutral pH (Breitenbeck and Bryan, 1998). pH can be increased by application of lime, however, the requirements cannot be determined directly by the soil pH since many other characteristics such as soil texture, soil type, conductivity and clay content influence lime requirements. Care must be taken when pH is going to be modified because some elements may become more toxic at different pH ranges (Breitenbeck and Bryan, 1998) or the native microorganisms

can be adapted to site conditions (Kastner *et al.*, 1998). Oil biodegradation can be severely inhibited by dramatic reduction in pH when ammonia is provided as the nitrogen source (Wrenn *et al.*, 1994). However, this is primarily true for closed environments such as laboratory studies (e.g., microcosms) where no dilution from changing aqueous conditions is present (e.g., tides) (Zhu *et al.*, 2001).

2.8 <u>Bacterial Enumeration</u>

While no technique to enumerate specific metabolic types of microorganisms in marine systems is absolute, the Most Probable Number (MPN) technique can give consistent results that are appropriate for relative comparisons among sampling sites (Brown and Braddock, 1990). The MPN method is based on the hypothesis that inoculation of a single cell into a tube of media will produce an observable change in the substrate or culture medium (e.g., a color or turbidity change), the microorganisms are distributed randomly throughout the sample, and growth can be described by a Poisson distribution (Long *et al.*, 1995).

Microorganisms with specific metabolic capabilities, such as oil biodegradation, can be enumerated based on their ability to grow on selective media. Tetrazolium dyes can be used as colorimetric indicators of the biochemical oxidation of any organic substrate. Bacterial oxidation of a substrate generates reduced nicotinamide adenine dinucleotide (NAD), so if the electrons are donated to an electron transport system, a tetrazolium dye may function as an artificial TEA. The reduced product is a colored, insoluble formazan and the density of microorganisms can be calculated based on the number of colored tubes (positives) (Konopka *et al.*, 1998).

The MPN procedure is suitable for organisms that grow on insoluble substrates, because solid media containing a homogeneous distribution of the appropriate carbon source is difficult to prepare (Haines *et al.*, 1996). The low percentage of living bacteria obtained when comparing viable counts (such as MPN) with total direct counts in seawater could be due more to inappropriate technique for detecting the growth ability of living cells than to unacceptable culture conditions (Hurst *et al.*, 1997). MPN calculations can also be enumerated by using the visual observation of pH indicator or turbidity and gas production to detect positive tubes. Changing the detection method (i.e., from MPN to direct counts) could provoke an overestimation of the microbial density (Bianchi and Giuliano, 1996).

MPN procedures have been used to estimate the population density of oil degrading microorganisms in aqueous solutions and soil samples (Long *et al.*, 1995; Piehler *et al.*, 1996; Uraizee *et al.*, 1998). Enumeration of HC-degraders is accomplished most reliably by MPN procedures, because non HC-degrading bacteria can grow on impurities present even in highly purified agar (Wrenn and Venosa, 1996). After the three year period following the *Exxon Valdez* oil spill in Prince William Sound, AK, significantly higher numbers of HC-degrading microorganisms were found at sites within the path of the oil slick than at control sites, indicating rapid acclimation of the resident microbial populations (Braddock *et al.*, 1995; Piehler *et al.*, 1996; Piehler *et al.*, 1997a). The number of HC-degraders varied with depth and location. The ratio of HC-degraders to total number of cells also changed with depth (lower with depth) and site of study (higher close to the site) (Braddock *et al.*, 1995; Venosa *et al.*, 1996).

2.9 Petroleum-Contaminated Salt Marshes and Remediation Techniques

Salt marsh environments are highly sensitive to oiling and high priority is given for their protection during oil spills. Inappropriate response activities can cause harm to oil impacted marshes. Different parameters such as substrate type, plant species, season of impact, oil type, and climate have to be considered and may all affect the eventual recovery of an oil-impacted salt marsh (Table 4) (Hoff, 1995).

Advantages	Disadvantages		
No response	Potential oiling of birds or wildlife		
Minimal impact (if oil degrades quickly)	Oil may impact adjacent areas		
No physical impact	Heavy oil may degrade slowly or form		
	asphalt		
Vacuum/pumping	Access/deployment of equipment		
Can remove large quantities of oil	Physical impact		
Low pressure flushing	Requires careful monitoring		
Assists in removal by confining oil	Pressure must be controlled		
Lifts oil off sediment surface	Physical impact		
Burning	Potential damage to plant roots and		
Potential to remove oil quickly	rhizomes		
Can minimize impacts from trampling	Little known about impacts due to season,		
	destruction of marsh, species composition,		
	air pollution		
	Regulatory concerns		
Sediment removal	Destroys marsh		
May be only remediation possible for	Increased erosion potential		
heavily-oiled sediments	Elevation changes could affect regrowth of		
	plants		
	Replanting necessary		
Vegetation cutting	May kill plants		
Leaves most of future plants intact	Potential for increased erosion		
Prevents oiling of birds	Must be carefully monitored		
Bioremediation	Few case studies available		
Great theoretical potential	Potential for nutrient enrichment		
Low impact	Oxygen may be limiting		

Table 4. Cleanup techniques used in marshes. (Taken from Hoff, 1995)

2.9.1 <u>Bioremediation in Salt Marshes</u>

A salt marsh is a wetland. Three major features of wetlands are generally recognized: 1) the presence of water at the soil surface or in the root zone, 2) soil conditions that are unique and distinctly different from uplands, and 3) the occurrence of vegetation adapted for growth in saturated or flood soils (McKee and Mendelssohn, 1994). Because of variation in tidal regime, temperature, sediment transport, topography, and hydrology, salt marsh characteristics vary with location and even within individual marshes (Hines *et al.*, 1989). Although marshes are present all along the coast, those in New England tend to be small and characterized by a heavy peat substrate. The hydrology of marshes determines their unique physiochemical qualities, influences the occurrence and distribution of organisms within them, and controls the movements of water, sediments, salts, nutrients, and toxins.

The intermittent or permanent presence of water in wetlands leads to the development of hydric soils, which are characterized by anaerobic conditions in the bulk soil (McKee and Mendelssohn, 1994). The high oxygen demand of marsh soils creates a very small aerobic layer (only few millimeters thick) at the surface of the soil. Most of the marsh soils are dominated by anaerobic processes (Hines *et al.*, 1989; Jackson and Pardue, 1997; McKee and Mendelssohn, 1994; Nixon and Oviatt, 1973; Wright *et al.*, 1997).

Microbial degradation appears to be the major process through which petroleum HCs and other toxic organics are removed from bottom sediments in wetlands (DeLuane *et al.*, 1990). For example, after an experimental oil spill, where a community shift from primary eukaryotic biomass to Gram negative bacterial biomass was observed, the

structure and diversity of the dominant bacterial community changed substantially (Macnaughton *et al.*, 1999). Strains of the same species often have different degradation abilities or HC substrate preferences. However, the taxonomic status of the microorganisms seems highly dependent on the physicochemical factors at a site (e.g., soil structure, water capacity) (Becker and Dott, 1995). The physiological condition of microbial communities represents a definite sum of abilities, within which different contributions of the individual organisms allow a certain variability of the species spectrum. This sum of abilities seems to depend on the carbon source of the salt marsh. Generally, the petroleum contamination is located in the surface layer (0-4 cm) and infrequently reaches the deeper zones because of the fine-textured nature of the sediments (Hershner and Lake, 1980; Mille *et al.*, 1998). The effect of crude oil on microbial processes may be affected by the type of organic material present in the impacted marine sediment (Griffiths *et al.*, 1982).

Redox potential and pH have been shown to control the degradation of many classes of organics in coastal regions in Louisiana bottom sediment. Most of the HCs degrade more rapidly under aerobic conditions. Aerobic microorganisms in oxidized sediment are more capable of degrading HCs than anaerobic microorganisms in reduced sediment at the same pH (DeLaune *et al.*, 1980; DeLuane *et al.*, 1990). Both oxidized and reduced zones may occur in proximity to a wetland soil (McKee and Mendelssohn, 1994).

Results indicate that marsh grasses can survive one, light to moderate dose of oil (Wright *et al.*, 1997). Multiple doses, however, are frequently very deleterious. *S. alterniflora* was the only grass to exhibit sublethal effects of oil dosing on growth

(Hershner and Lake, 1980). Cleanup methods for spilled oil, such as tilling and burning of oiled vegetation, may cause more damage to salt marshes than the spilled oil (Wright *et al.*, 1997). Tilling can move HCs deeper in the sediments where biodegradation is generally slower.

2.9.2 Phytoremediation

In recent years, the use of plants to remediate soils contaminated with organics has become a promising new area of research, particularly for *in situ* cleanup of large volumes of slightly contaminated soils (Adler, 1996; Chang and Corapcioglu, 1998; Cunningham and Berti, 1993; Cunningham *et al.*, 1995; Cunningham *et al.*, 1996; Cunningham *et al.*, 1997; Rogers *et al.*, 1996; Sergeant, 1995). Using different plants, phytoremediation can contain, destroy, or extract organic contaminants from soil (Rock, 1997). Several studies have shown the effective use of plants to remediate soils contaminated with PAHs (Aprill and Sims, 1990; Chang and Corapcioglu, 1998; Kling, 1997; Schwab and Banks, 1994; Simonich and Hites, 1994). Rhizosphere microbial populations may increase bioremediation if the soil is contaminated with organic chemicals (Gatliff, 1994; Nichols *et al.*, 1997). Microbial populations have been reported to be at least two orders of magnitude higher in the soil of the root zone than in an adjacent unplanted soil (Rock, 1997). The limiting factors for the growth of most microbial consortia include oxygen, nutrients and water. As roots penetrate the soil, there is a passive aeration as they release oxygen as part of the normal plant respiration.

Phytodegradation is the process of the plant degrading the contaminant. This may occur because of the plant's transformation or mineralization of the contaminant by

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

exudates to a less toxic form. For example, there are plants that bring pollutants (e.g., heavy metals) into their plant tissue and store quantities of them. Plants can also influence the movement of contaminants by creating new path of movement with their roots (Jordahl *et al.*, 1997; Rock, 1997). *S. alterniflora* roots can produce low molecular weight organic compounds (e.g., ethanol and malate) when the roots metabolize anaerobically. SRB can use these compounds directly (Hines *et al.*, 1989).

In plant-inhabited soils and sediments, the rhizosphere is an important microhabitat. Biochemical processes (e.g., organic matter decomposition, pollutant degradation, and nonsymbiotic nitrogen fixation) occur at accelerated rates in the rhizosphere and greatly influence ecosystem functions. Despite its importance, very little is known about microbial activity in the rhizosphere or about how it differs from its non-rhizosphere counterpart (Rooney-Varga *et al.*, 1997).

Several factors such as temperature (Howes *et al.*, 1985; McKee and Mendelssohn, 1994), salinity (Buresh *et al.*, 1980), tidal energy (Buresh *et al.*, 1980), oxygen (Dibner, 1978), and NO₃⁻ (Buresh *et al.*, 1980; Stepanauskas *et al.*, 1996) concentrations, and nutrients (Jackson and Pardue, 1997) are responsible for the variation in *S. alterniflora* growth in marshes. Although the leafy tissues and aerial stems of *S. alterniflora* die back each year, the underground stems (i.e., rhizomes) and roots are perennial structures. These organs, which are essential to the plant's vegetative survival, require oxygen to survive, but cannot obtain it from the anaerobic sediments in which the plant commonly grows. They obtain the necessary oxygen and release carbon dioxide through a system of open spaces and hollow, air-filled tubes that are in contact with the atmosphere via pores in the leaves (i.e., stomata) (Dibner, 1978).

Coastal microbial communities play key roles in nutrient cycling and are a primary food source for many high level organisms. *Spartina sp.* stem microalgal epiphytes have been identified as a source of new nitrogen for salt marshes and they also serve as prey for marsh microfauna. Petroleum has the potential to be toxic to stem epiphytes as well as to be a source of labile organic carbon (Piehler *et al.*, 1997b).

2.9.3 Nutrient Amendment

Availability of nutrients is a major limitation in bioremediation of HCcontaminated soil (Atlas and Bartha, 1973b; Margesin and Schinner, 2001b; Olivieri *et al.*, 1976). Nutrients can be added in the form of inorganic or organic fertilizers (Levin and Gealt, 1997). C/N/P ratios of 100:10:1 (Dibble and Bartha, 1979), 100:10:2, or 120:10:1 (Margesin and Schinner, 1997), 300:15:1 (Ritter and Scarborough, 1995) are recommended. Optimal C/N ratios between 9:1 and 200:1 have been reported for waste oils and sludge (Margesin and Schinner, 1997) and C:N and C:P ratios of 60:1 and 800:1, respectively, for an oil sludge (Dibble and Bartha, 1979). However, in reality, a complete assimilation of petroleum HCs into biomass is not achievable under natural conditions and most of these ratios are based on theoretical and laboratory studies. Some of the compounds are recalcitrant or are metabolized slowly over long periods, so the ratios cannot be predicted accurately and require experimental determination (Dibble and Bartha, 1979).

The rate of biodegradation can be a function of the nitrogen concentration maintained in the porewater of the intertidal sediments. This suggests that the effectiveness of bioremediation can be improved by making real time measurements of nutrient levels in sediments to ensure that adequate, but non-toxic levels of nutrients are maintained during the treatment (Bragg et al., 1994). The excess of nutrients can cause eutrophication in aquatic environments.

After the *Exxon Valdez* spill, areas treated with water soluble and oleophilic fertilizers were compared to untreated control areas (Levin and Gealt, 1997). Nutrients in the oleophilic fertilizers adhered to the oil covering the rocks and grasses. After approximately two weeks, the areas receiving the oleophilic fertilizer were visibly cleaner at and below the beach surface than other sections of the shoreline (Frederick and Egan, 1994). Studies have shown that adding fertilizers can accelerate the rate of oil removal by a factor of >5 (Bragg *et al.*, 1994).

Bioremediation of petroleum has been correlated with soil nitrogen as a function of soil water (porewater), not soil dry matter (associated with soil) (Walworth *et al.*, 1997). The addition of nitrogen can increase the biomass of *S. alterniflora* up to 28% over controls (Buresh *et al.*, 1980).

Studies have shown that the minimum NO_3^- concentration needed to support the maximum growth rate of alkane-degraders under continuous flow conditions ranges between 0.5 and 2.5 mg NO_3^- -N/L. Results have demonstrated that maintenance of a threshold concentration of about 1-2 mg NO_3^- -N/L in interstitial porewater in sandy beaches permits HC bioremediation. Since NO_3^- in interstitial porewater is quickly diluted to background levels whenever the incoming tide completely submerges the beach, it has to be applied every day (Venosa *et al.*, 1996).

The addition of nitrogen and phosphorus alone does not result in stimulation of biodegradation (Walworth and Reynolds, 1995), but nitrogen although not P and *Spartina* does result in stimulation of biodegradation. Maximum biodegradation rates were

obtained by the addition of the *Spartina* particulate organic carbon (POC), NH_4^+ , and PO_4^{-3} (Piehler and Paerl, 1996). The presence of small organic compounds enhances microbial growth and HCs can be biodegraded by co-metabolism. Nutrient addition is a plausible strategy for improving HC degradation, although its overall effectiveness may be limited by oxygen availability, the type of crude to be degraded, and the form and concentration of the amendments (Adrian *et al.*, 1998; Swannell *et al.*, 1996).

2.9.4 Bioaugmentation

Bioaugmentation requires the addition (seeding) of non-indigenous, or native petroleum-degrading microorganisms into contaminated sites (Atlas, 1981; Lee and Merlyn, 1999; Mishra *et al.*, 2001). In many cases the addition of microorganisms does little to recover contaminated sites under changing environmental conditions (e.g., temperature, pH) (Atlas, 1992; Lee and Merlyn, 1999; Levin and Gealt, 1997). However, under controlled conditions, adapted or modified microorganisms may efficiently degrade target HCs compounds over wide ranges of temperatures and nutrient level (Kastner *et al.*, 1998). The *in situ* competitive interaction between novel and introduced species generally seems, however, to favor the indigenous species. The added microorganisms generally are not adapted to the specific environmental conditions of the contaminated site and their survival is often very limited. Conversely, the reintroduction after enrichment of indigenous microorganisms isolated from contaminated sites with nutrients can help overcome a problem with low microbial abundance in a contaminated site (Korda *et al.*, 1997; Kujat, 1999; Mishra *et al.*, 2001).

2.9.5 Use of Surfactants

Surfactants are compounds capable of reducing surface and interfacial tension at the interfaces between liquids, solids and gases, allowing emulsion mixing or dispersion of sorbed HCs (Banat *et al.*, 2000). Chakrabarty (1985) reported that an emulsifier produced by *Pseudomonas aeruginosa* was able to quickly disperse oil into fine droplets, and inferred that it may be useful in removing oil from contaminated sites. However, some studies have shown the effects of adding surfactants on oil bioremediation are unpredictable (Banat *et al.*, 2000; Bruheim *et al.*, 1997; Bruheim and Eimhjellen, 1998).

2.9.6 Addition of TEAs

Microbial degradation rates of oil within sediments are very low under anoxic conditions (Atlas, 1992; McKee and Mendelssohn, 1994). Recent studies in marshes have demonstrated mixed results for biodegradation rate enhancement with the addition of fertilizers and suggest that oxygen limitation may be the main limiting parameter (Hin *et al.*, 2000; Jackson and Pardue, 1997; Lee and Merlyn, 1999; Swannell and Head, 1994). As indicated by the sediment oxygen demand (SOD) experiments, adding oil and nutrients can increase the SOD *in situ* (Adrian *et al.*, 1998).

Oxygen supplements in the form of Oxygen Release Compounds (ORC) (Regenesis Corporation; San Juan Capistrano, CA) are usually patented formulations consisting of magnesium peroxide and other chemicals. When wetted, the magnesium peroxides react to form oxygen and magnesium hydroxide. According to the manufacturer's literature, ORC is 25-35% magnesium peroxide.

Microbiological investigations focusing on laboratory microcosms and selective enrichment experiments have isolated and characterized different microorganisms and demonstrated anaerobic degradation of aromatic HCs under redox conditions ranging from denitrification to methanogenesis (Mahne and Tiedje, 1995; Shi *et al.*, 1999; Song *et al.*, 2000; Straub and Buchholz-Cleven, 1998). Biodegradation of three-and fourringed PAHs by pure cultures has been possible under denitrifying conditions to non detectable levels ($\leq 0.001 \text{ mg/L}$) (McNally *et al.*, 1998, 1999).

In a controlled oil spill (Arabian light crude oil) in a salt marsh (San Jacinto River, TX), KNO₃ was selected as source of NO₃⁻ to act as TEA. During this study, the addition of NO₃⁻ did not significantly increase the numbers of aliphatic-degrading, PAH-degrading or total heterotrophic microorganisms compared to the populations in the control plots (Townsend *et al.*, 2000).

A study by Cervantes *et al.* (2001) indicated that humic acid substances might significantly contribute to the intrinsic bioremediation of anaerobic sites contaminated with HC pollutants by serving as TEAs. The dismutation of chlorite by perchlorate-reducing bacteria in anaerobic environments can produce extracellular oxygen. This oxygen can be used by HC-degraders for compounds such as benzene (Coates *et al.*, 1998).

Oxygen is directly used in HC metabolism (e.g., initial conversion to alcohol). Although other oxidants such as NO_3^- , Fe^{+3} , Mn^{+4} , SO_4^{-2} and CO_2 can be used as TEAs, they cannot replace oxygen as a direct reactant (Chayabutra and Ju, 2000). For example, addition of NO_3^- resulted in reduced concentrations of toluene, ethylbenzene, and m,pxylenes (TEX) in contaminated groundwater in Monroe County, WI. During the study, excess NO_3^- loss was attributed to oxidation of other organics in addition to TEX (Schreiber and Bahr, 2002).

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

2.10 Oil Spill Incidents

There have been several oil spills where different products have been used in an attempt to enhance biodegradation. In some cases, the authorities have allowed products to enhance remediation to be used for experimental purposes. However, in general, it is difficult to draw valid conclusions from many of these efforts because of the time constraints in planning experiments with appropriate controls after a major spill (Swannell *et al.*, 1996). One notable exception is the work conducted in response to the *Exxon Valdez* spill. The assessment of bioremediation products and techniques for this spill were based on experiments carried out with considerable scientific rigor (Braddock *et al.*, 1995; Bragg *et al.*, 1994; Lindstrom *et al.*, 1991).

Several oil spills have impacted a large number of salt marshes around the world. The best evidence of the effects of an oil spill on a shore community is usually obtained from investigations following the coastal wreck of a tanker or a serious accident during its unloading. Several such spill have occurred, in 1957 the wreck of the *Tampico Maru* in Baja CA and in 1967 the stranding and break-up of the *Torrey Canyon* off Cornwall, England (Nelson-Smith, 1970). In addition, the oil barge *Florida* ran aground in Buzzards Bay on the coast MA in September 1969. An estimated 700 m³ of No. 2 fuel oil leaked from the barge and was driven on-shore by heavy winds. In the oil-contaminated coastal habitats and subtidal bays many marine and salt marsh organisms died (Burns and Teal, 1979). On the night of May 25-26, 1969, at the site of the Wellen Oil Company storage facility in Jersey City, NJ, an oil tank ruptured releasing a considerable amount of crude oil (Dibner, 1978).

During the years 1970-1972, the Nipisi, Rainbow, and Old Peace River pipeline spills occurred in the lesser Slave Lake area of northern Alberta, Canada. After 25 years, results on these wetlands showed that: 15-43% of the residual oil in surface samples (0-4 cm) has been removed by weathering. Subsurface samples (10-40 cm) had the greatest quantities of oil even 25 years after the spill, indicating that the recovery rates were slow. The extent of contamination and degree of degradation correlated strongly with sample depth (Wang *et al.*, 1998).

On the night of March 16, 1978, the supertanker *Amoco Cadiz* drifted onto the North Brittany coast of France, releasing 223,000 m³ of crude oil (123,000 m³ of the Iranian light and 100,000 m³ of Arabian light). Up to 64,000 m³ of this was estimated to have contaminated the Ile Grande salt marshes during the four weeks following the grounding (Mille *et al.*, 1998). Most of the beach cleanup efforts focused on pumping and mechanical recovery. These operations caused some of the oil to penetrate the sand. Four different products were tested to assess the possibility of promoting the biodegradation of the trapped oil (Swannell *et al.*, 1996): 1) a commercial cleaning compound containing nutrients especially adapted to restore oiled soils; 2) a mixture of lyophilized, bacteria adapted to HC, a chemical dispersant, and a nutrient; 3) a chemical fertilizer used in agricultural applications; and 4) a powder treated with 0.1 % surfactant. Some changes in oil concentrations were found after these experiments, but the limited results were inconclusive. It was not clear if the disappearance of the oil was physically or biologically mediated (Swannell *et al.*, 1996).

On July 28, 1983, the Greek tanker *Shinoussa* collided with two tank barges in the Houston Ship Channel, Galveston Bay, TX, releasing approximately 3,000 m³ of partially

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

refined catalytic feedstock oil over 2 days, which spread onto the surrounding coastline. Alpha Biosea (Alpha Environmental, Houston, TX) a product composed of a lyophilized bacterial mixture and inorganic nitrogen and phosphorus was applied eight days after the spill in selected areas of Pelican Island and Marrow Marsh. Two plots on the beach were treated, and two were left as controls. The 15 m diameter experimental plots were sampled on a routine basis. The results showed that there were no significant differences between pre-and post-treatment samples after 96 hr of treatment with any of the selected methods (Swannell *et al.*, 1996).

A pipeline broke on April 1985 near Nairn, LA, resulting in the release of 120 m^3 crude oil into a brackish salt marsh dominated by a vegetative mixture of *S. patens*, *S. alterniflora* and *Distichlis spicata*. Studies after the spill showed that small oil concentrations (0.28 Lt/m²) had toxic effects on the marsh plants. Prolonged contact of the oil with the photosynthetic leaf issue and the subsequent movement of the oil into the marsh substrate may have been the primary causes for the plant death and low live percentage of cover exhibited after the spill (Mendelssohn *et al.*, 1990).

On June 8, 1990, the Norwegian tanker *Mega Borg* was off-loading crude oil from the Italian tanker *Fraqmura* about 90 km off the Texas coast. Following an explosion and fire, there was a release of 45 m^3 of crude oil. Two portions of the slick were treated with a product containing Alpha Biosea. Little change was observed in the control areas and conclusive evidence of the enhancement's bioremediation effectivenes was not obtained because of limitations in the sampling strategy (Aldhous, 1991; Swannell *et al.*, 1996).

In January 1990, fuel oil from a pipeline failure was spilled into the Arthur Kill, NJ waterway contaminating a gravel beach on the Prall's Island bird sanctuary. Mechanical methods were used to remove the bulk of the oil. A slow-release fertilizer (Customblen; Sierra Chemicals, Mustang, NV) was placed in trenches to encourage biodegradation. Over a 93 d period, subsamples were taken, together with beach and water samples. No clear trends of increased bioremediation from the fertilized plots could be identified during the experiment. However, there was high variability in the levels of TPH, which may have masked any effects (Swannell *et al.*, 1996).

On October 31, 1990, a well blowout off in Seal Beach, CA, resulted in the release of approximately 20 m³ of crude oil that contaminated 8,000 to 12,000 m² of marsh grassland in the Seal Beach National Wildlife Refuge. One week after the incident, a combination of a microbial product used in sewage treatment plants (INOC 8162) and a commercial fertilizer (Miracle Gro 30-6-6) was hand sprayed onto the marsh. After 35 days of monitoring no differences between the treated and untreated plots were observed. The microbial products were also not effective in accelerating biodegradation of oil under controlled laboratory conditions (Swannell *et al.*, 1996).

The tanker *Exxon Valdez* ran aground on Bligh Reef in the Gulf of Alaska on March 24, 1989, spilling approximately $41,000 \text{ m}^3$ of Alaska North Slope crude oil. A major response effort was mounted at sea to recover the oil, but the weather and tidal conditions resulted in the contamination of about 2,090 km of coastline. Many cleanup techniques of shorelines were tried, these included cold and warm water washing, steam cleaning, and manual oil recovery techniques. Initially, the main aim was to remove the heaviest concentrations of oil to minimize the impact on wildlife and fisheries (Bragg *et*

al., 1994; Swannell *et al.*, 1996). Shortly after the spill, it was suggested that bioremediation could enhance the rates of oil removal from the contaminated beaches (Lindstrom *et al.*, 1991). As a preliminary step, the number of oil-degrading microorganisms on oiled beaches was determined as compared to controls. The number of microorganisms increased by as much as 10,000 times to an average level of 10^6 cell/g of beach material (Swannell *et al.*, 1996). Then, it was necessary to establish which factors were likely to limit biodegradation and which specific hydrocarbon components were biodegradable. The experiments demonstrated unequivocally that the microbial population in Prince William Sound could rapidly biodegrade the aliphatic and aromatic fractions of the Prudhoe Bay crude oil in the presence of suitable nitrogen and phosphorus sources. The highest mineralization rates were noted in the test systems treated with the highest concentration of nitrogen (Swannell *et al.*, 1996). Hence, the addition of nutrients, and not seeding with microbes, was thought to be the most appropriate bioremediation strategy (Bragg *et al.*, 1994).

In Snug Harbor located on the southeastern side of Knight Island in Prince William Sound, three oil-contaminated cobble plots were evaluated. They were treated with an oleophilic nutrient amendment, Inipol EAP 22 (Elf Aquataine, France), Woodace briquettes, or left untreated (control). Microbial numbers increased in all plots during the experiment. No significant differences in microbial numbers or TPH concentration were noted between the treatments and the controls. The amounts of oil extracted from beach sediment were highly variable, making the results difficult to interpret. Even though the chemical data were not conclusive, there was at least some evidence that the treatment with Inipol EAP 22 did encourage microbial biodegradation of the oil (Frederick and Egan, 1994; Stone, 1992; Swannell and Head, 1994; Swannell *et al.*, 1996). Elevated mineralization potentials, coupled with increased numbers of HC degraders, indicated that natural HC biodegradation was enhanced. However, the microbial counts alone were not sufficient to determine *in situ* rates of crude oil biodegradation (Lindstrom *et al.*, 1991). The high energy environmental conditions (e.g., wave action) at the spill site and cleanup efforts resulted in extensive dispersion of the oil. About 50% of the oil was biodegraded *in situ* on beaches and in the water columns, 14% was recovered or disposed, and about 20% was subject to evaporation and photolysis (Wolfe *et al.*, 1994).

2.11 Julie N Spill

In September 27, 1996, the T/V Julie N, inbound with a cargo of 34,000 m³ of Nos. 2 and 4 fuel oils struck the Rte 77 Bridge, spanning Portland, ME, as it went through the draw span. In the collision, four holds were damaged: the fore peak tank, forward bunker tank, a void tank/space, and the No.1 port cargo tank. The forward bunker tank lost 353 m³ of No. 4 fuel oil and the No.1 port cargo tank lost 327 m³ of No. 2 diesel, totaling 680 m³ of oil spilled (US Coast Guard, USCG) (Lelyveld, 1996; Porter, 1997). The National Transportation Safety Board said that incorrect instructions from a docking pilot to the helmsman of the tanker caused the vessel to sideswipe a concrete bridge pillar (Kent, 1996). Although much of the oil volatilized over a period of days, the spill fouled beaches and marshes and killed a large amount of marine life in a natural sanctuary (Lelyveld, 1996). The terminal to which the *Julie N* was heading had booms in place by the time the ship arrived. Although good weather helped the subsequent cleanup, a strong wind moved the oil to the Fore River salt marshes. Within minutes,

emergency services had swung into action, with the Coast Guard warning returning lobster fishermen to stay out of the harbor, and lobster dealers shutting off water circulation machinery to prevent oil from reaching nearby fish farms (Porter, 1997; Rice, 1998). Nearly all of the salt marsh vegetation from the I-295 Bridge north to the within 300 m of the Congress Street Bridge near Stroudwater, then south to and including Long Creek was oiled (Reilly, 1998) (Figure 1).

High-volume pressure washing flow, and hot water flushing were conducted along some of the contaminated areas, and were effective in removing some pooled oil, however, a heavy surface coating remained. A test application of Corexit® 9850 (Nalco/Exxon Energy Chemicals; Sugar Land, TX), a biodegradable surfactant, was conducted on marsh vegetation at Thompson Point and was confined to exposed surfaces. The areas that were exposed to oil experienced good removal but the underlying materials remained heavily oiled. The different agencies (MEDEP, the U.S. Fish and Wildlife Service (USFWS), NOAA and EPA) recommended that use of Corexit 9850 should not continue because: 1) the vegetation was not visibly cleaned enough to warrant the risk of introducing more oil into the water column and sediments; 2) it appeared that a significant amount of the released oil was not immediately recoverable; and 3) the test site represented the best operational considerations in terms of good access and even then the effectiveness was limited (Reilly, 1998). Another two options were evaluated: cutting the oiled vegetation and "no action". Consensus among the regulatory group was for the "no-action" alternative.

Teachers and students from the Waynflete School (Portland, ME) conducted one of the first studies in the area. They established two study sites on the East side of Thompson Point near where the School's outdoors classrooms, nature trails and marsh and river shorelines are located. During the study, they measured stem density of the marsh grass in the plots, to determine whether the oil, which coated the *Spartina sp*, affected the rate of growth of new grass the following spring (Millard, 1997).

Brown (1997) detected total PAH concentrations in Fore River sediments ranging from 2.0 to 62.0 mg/kg (dry weight basis). Only four of the 25 sediments samples analyzed contained petrogenic PAHs attributable to the *Julie N* oil (Brown *et al.*, 1997), however no sampling locations were given. Of the 34 lobster samples analyzed, 22 indicated a contribution from *Julie N* oil. Of the 47 water samples analyzed, 31 samples were identified as contained *Julie N* oil residues, with most samples having from 70% to 95% PAHs. Six of the samples contained PAHs signatures from other (non-*Julie N*) petroleum sources (Brown *et al.*, 1997).

2.12 Research Justification

One of the most important environmental problems is the spill of crude oil and refined products (e.g., Nos. 2 and 4 fuel oils) onto soil and water environments occurred during the extraction, transport, storage and refining processes. Of all oil-impacted estuarine and coastal environments, salt marshes are generally the most sensitive and fragile ecological systems (Wright *et al.*, 1997). The remediation of an oil-contaminated salt marsh is very difficult. Follow up studies from past spills have documented that inappropriate response activities can cause more harm than good (Hoff, 1995). In addition, the ability of salt marshes to recover after an oil spill is very slow because the anaerobic environment (sulfate-reducing) conditions predominant in the sediments. For

this reason the remediation of oil-contaminated salt marshes throught natural attenuation could take years or decades (Bachoon *et al.*, 2001; Burns and Teal, 1979; Mille *et al.*, 1998). Bioremediation, which has emerged as one of the most effective and inexpensive methods to recover oil-contaminated groundwater and soil (Kinner, 1996), could be used for the remediation of oil-contaminated salt marshes.

Some studies have demonstrated the advantages of adding nutrients (mainly nitrogen) to contaminated marine shorelines (Lindstrom *et al.*, 1991; Piehler and Paerl, 1996; Pritchard and Costa, 1991; Venosa *et al.*, 1996). However, this is the first research to evaluate the amendment of oxygen and NO_3^- using a buried horizontal well system meant to deliver amendments to the rhizosphere of an oil-contaminated salt marsh.

CHAPTER III

METHODS AND MATERIALS

This study evaluated the ability of two TEAs (oxygen and NO₃⁻) to enhance *in situ* bioremediation in an oil-contaminated salt marsh located along the Fore River Creek in Portland, ME. Two plots were selected for the amendment additions and two plots served as controls to evaluate the natural attenuation process. Background conditions were assessed in all four plots prior to adding amendments. The amendment of the TEAs and sampling events were conducted during Summer and Fall 1998 and Spring 1999. The parameters used to monitor and assess biodegradation were: TPH concentration, abundance of oil-degraders, porewater nutrient concentrations, and plant height and density. Prior to the field evaluation, three methods of TPH analysis were compared: the ASTM (1995) Standard Test Method for Screening Fuels in Soils, the EPA (1994) Oil and Grease Extraction Method for Sludge and Sediment Samples, and the MADEP (1998) Method for the Determination of Extractable Petroleum Hydrocarbons (EPH).

3.1 TPH Methods

TPH is sometimes referred to as hydrocarbon oil, extractable hydrocarbon, or oil and grease. There are many analytical techniques available that measure TPH concentrations in the environment. No single method measures the entire range of

60

petroleum-derived HCs. The methods vary in the way HCs are extracted, concentrated, and detected. In addition, they measure slightly different groups of petroleum HCs. Therefore, the definition of TPH depends on the analytical method used (Weisman, 1998).

3.1.1 EPA Oil and Grease Gravimetric Method

This method is used to quantify low concentrations of oil and grease by chemically drying the sample and performing a Soxhlet extraction (EPA, 1994; Standard-Methods, 2000). It was evaluated because of its high percent recovery in fuel oil-contaminated soils and the availability of the equipment needed in the laboratory (Simonton, 1998).

A 10.00 g sediment sample was weighed (P1200N, Balance, Mettler; Hightown, NJ) and mixed thoroughly with 10.00 g of granular anhydrous sodium sulfate (ACS grade) (EM Scientific; Gibbstown, NJ) previously pre-dried at 400°C for 4 h in a shallow tray. The sodium sulfate was used to absorb the water present in the sample. The mixture was placed in a 20 mL glass extraction thimble (VWR; Boston, MA) and covered using glass fibers to avoid spilling. The thimble was placed in a Soxhlet apparatus and 150 mL of hexane (ACS grade) (Burdick and Jackson; Muskegon, MI) were circulated at a rate of 20 cycles/h for 4 h to extract the TPH. Boiling chips were used during the extraction to minimize superheating. The extract was filtered into a pre-weighed boiling flask using Whatman #40 filter paper (Maidstone, UK) and 4.5 g silica gel (100-200 mesh) (Fisher Scientific; Fair Lawn, NJ) were added to remove the grease. The hexane was evaporated from the boiling flask. The flask was then allowed to cool in

a ventilation hood for 3 h and was weighed on an analytical balance (Ohaus AS200; Florham Park, NJ). The flask's net weight represented the TPH in the sample:

$$mgTPH/kg_{dw} \text{ soil} = \frac{gain in \text{ weight of flask (g) x (}\frac{1000 \text{ mg TPH}}{\text{g TPH}} \text{ x } \frac{1000 \text{ g soil}}{\text{kg soil}})}{\text{weight of the solids (g) x dry weight fraction}} (Eq.3.1)$$

To calculate the dry weight fraction, another 10.00 g of the sample was weighed and dried overnight at 100°C. The sample was cooled to room temperature and weighed to determine the dry weight fraction:

Dry weight fraction =
$$\frac{\text{weight dry sample (g)}}{\text{weight wet sample (g)}}$$
 (Eq. 3.2)

For quality control, three types of blanks were used: clean sand (CS) (Ossipee Aggregate; Ossipee, NH) combusted at 550°C for 90 min to eliminate any organic matter present, an organic soil (OS) (Hoffman; Lancaster, NY), and sand previously contaminated (PCS) with No. 2 fuel oil used in another study (Simonton, 1998). The blanks were spiked with 0.5 g of No. 2 fuel oil (Proulx Oil; Newmarket, NH). Percent recoveries were obtained by dividing the weight increase of the spiked samples by the weight change of a spiked blank. Percent recoveries were considered acceptable if they were within 75% and 115% of the theoretical value (EPA, 2000).

3.1.2 ASTM Method for Screening Fuels in Soils

This method is a screening procedure to determine the presence of fuel compounds in soil. It can be used to identify the presence of contamination or to estimate the concentration of a fuel in a soil using average response factors (ASTM, 1995; Sorini *et al.*, 1997).

A 5.00 g sediment sample was placed in a preweighed 125 mL wide mouth, glass sample bottle with a Teflon®-lid cap (VWR). 5.00 g of calcium oxide (Certified Grade) (Fisher Scientific) was mixed with the sample to remove water and humic acids. The calcium oxide was pre-dried at 900°C for 12 h and stored in a desiccator prior to use. 50.0 mL of isopropyl alcohol (Reagent Grade) (Fisher Scientific) were poured into the mixture. A Teflon® magnetic stir bar (VWR) was placed in the bottle prior to capping. The slurry was stirred for 3 min. After a ~5 min settling period, 10 mL of the supernatant were collected with a syringe and filtered using a disposable 0.45 μ m polytetrafluoroethylene cartridge (Osmotics; Livermore, CA). The filtrate was poured in a 1 cm pathlength quartz cuvette and the sample's absorbance was read at 254 nm in a spectrometer (Hitachi U-2000; New York, NY).

A calibration curve was obtained using No. 2 fuel oil (Proulx Oil) at four different concentrations: 40.0, 80.0, 120.0 and 160.0 mg/L (n=2). These standards were selected because they were inside of the 0.000 to 1.000 absorbance unit (AU) range. Isopropyl alcohol was used to zero the instrument. Any sample above 1 AU was diluted into the range using isopropyl alcohol. A calibration curve was created from the standards (mg/L vs. absorbance) and used to calculate the TPH concentration associated with the samples (mg/kg). The initial concentration in mg/L was multiplied by a factor of 10 to find the concentration in mg/kg. The factor of 10 was used for a solvent volume-to-soil mass ratio of 50.0 mL of isopropyl alcohol: 5.00 g of soil. If the extract was diluted, an appropriate correction was made.

For quality control, a sample was monitored that only contained isopropyl alcohol and calcium oxide. Two types of blanks were used: CS and OS. One set of blanks was spiked with 20 μ L of No. 2 fuel oil, and the extractions conducted. Recoveries were calculated by comparing the absorbance of the extract from the spiked sample with the absorbance of a solution of 20 μ L of No. 2 fuel oil in 50 mL of isopropyl alcohol. After correction for any material appearing in the unspiked sample, the recovery had to be within ± 20% of the true value (ASTM, 1995).

3.1.3 MADEP Method for the Determination of Extractable Petroleum HCs

This method is designed to measure the concentration of extractable aliphatic and aromatic petroleum HCs in water and soil (MADEP, 1998a). The aliphatic HCs are quantified as: C₉ through C₁₈ (SC), and C₁₉ through C₃₆ (LC). The aromatic HCs are quantified as C₁₁ and C₂₂. The aliphatic and aromatic HC ranges correspond to compounds with boiling points between 150°C and 500°C. This method uses an SPE process, and GC/FID.

Approximately 5 g of the sample (weighed to the nearest 0.01 g) were placed into a 60 mL amber glass bottle with a Teflon® lid (VWR). 5.00 g of anhydrous sodium sulfate (Na₂SO₄) (ACS grade) (Fisher Scientific) was blended with the sample. A disposable tongue depressor was used to transfer and mix the sample. The sodium sulfate, pre-dried at 400°C for 4 h, removed water from the sample. 200 μ L of a surrogate, with a final concentration of 40.0 mg/mL, was added to the sample. The surrogates used for the aliphatic and aromatic fractions were COD (AccuStandard, Inc; New Haven, CT) and OTP (AccuStandard), respectively. Using a pipette dispenser (Brinkmann Instrument, Inc.), 40.0 mL of methylene chloride, (CH₂Cl₂) (GC grade) (Fisher Scientific) were added to the bottle for the solvent extraction phase.

3.1.3.1 Sample Extraction

The extraction was conducted using an ultrasonic and liquid processer sonicator, (Misonix Inc; Farmingdale, NY) for 5 min in a pulse mode (1 sec). The 5 min sonication cycle was performed three times. The sonicator was tuned before use, following the manufacturer's specifications. The instrument was located in a soundproof box inside a fume hood. Between samples, the horns were cleaned with 70% isopropyl alcohol (Fisher Scientific) (commercial grade). After the extraction, the samples were filtered into a concentrator tube using a glass funnel and Whatman #40 filter paper. The extraction bottle was rinsed twice with 5 mL of methylene chloride to ensure that all of the TPH was collected. The methylene chloride was concentrated to 1.0 mL using a bench top concentrator (TurboVap II® Concentration Workstation; Zymark Corp; Hopkington, MA). The concentration consisted of a water bath at 40°C with a constant nitrogen flow (15 psi; Ultra High Purity grade) (Northeast Air Gas; Dover, NH). For the solvent exchange, 50 mL of hexane (GC grade) (Fisher Scientific) were added. The sample was concentrated to 1 mL in the Turbo Vap as described previously.

3.1.3.2 Silica Gel Cleanup and Fractionation

Using a Pasteur pipette, the extract was transferred to a 5 g/20 mL commerciallyprepared SPE silica gel cartridge (Waters Corporation; Milford, MA). The cartridge was pre-cleaned by passing 30.0 mL of methylene chloride through it, prior to being pre-dried in a convection oven at 100°C for 3 h, and stored in a desiccator until use. The cartridges were rinsed with 60.0 mL of hexane prior to being loaded with sample. The concentrator tube was rinsed with 1.0 mL of hexane, and the rinsate transferred into the silica gel cartridge. Silica gel separates petroleum distillates into aliphatic and aromatic fractions. In order to elute the aliphatic fraction, 20.0 mL of hexane were passed through the column and collected in the concentrator tube. 20.0 mL of methylene chloride were subsequently passed through the cartridge to elute the aromatic fraction. This extract was collected in a second concentrator tube. The samples were concentrated to 1.0 mL in the Turbo Vap and transferred into labeled 15 mL glass vials with Teflon®-lined screw caps (VWR). Each concentrator tube was rinsed with 1.0 mL of hexane for the aliphatic fraction or 1.0 mL of methylene chloride for the aromatic fraction to obtain a final volume of 2 mL. 200 μ L of the internal standard (IS) 5-alpha androstane (AccuStandard Inc) (200 ng/ μ L) were added to the final extract. Samples were extracted within 7 d after collection and the extracts analyzed within 40 d (MADEP, 1998a).

3.1.3.3 <u>GC Analysis</u>

A Perkin-Elmer (Norwalk, CT) 1020 GC Plus with a Nelson Model 1020 personal integrator and an Autosystem GC equipped with an FID was used for the TPH analysis. An RTX®-5 (Crossbond 5% diphenyl-95% dimethyl polysiloxane; Restek Corporation; Bellafonte, PA) capillary column performed the separation (30 m long, 0.32 mm internal diameter, 0.25 μ m film thickness). The total run time was 44.5 min with an initial lockout time of 2.9 min to avoid the integration of the solvent peak. The area sensitivity and base sensitivity were 1350 and 65, respectively. The skim sensitivity was 10% and the minimal peak area was 1.00000 x 10⁵ area counts.

The initial oven temperature of 60°C was maintained for 1 min and then increased at rate of 8.0°C/min to 290°C. The injector and detector temperatures were 285°C and 315°C, respectively. The column pressure was 15 psi. A 0.5 min equilibration time at 60°C was required prior to initiation of a run. The split valve was open for the first 0.35 min of the run to eliminate excess of solvent (Rice, 1998). The analog output settings for the integrator were 10 mV at an attenuation of 4. The injection of the sample from the autosampler was in a fast speed mode. The injection volume was 2.0 μ L.

3.1.3.4 <u>GC Methods</u>

In order to analyze the samples and standards, four different methods were created in the GC integrator (EPH 1, EPH 2, EPH 3, and EPH 4; EPH= Extractable Petroleum Hydrocarbons). EPH 1 was used to analyze the aliphatic and first part of the aromatic standards. This method used valley-to-valley baseline integration. EPH 3 was used for the second part of the aromatic standard (after 21.00 min). This method forced a horizontal projection of the baseline and was used to separate aromatic peaks that were very close together (i.e., indenol [1,2,3-cd] pyrene and dibenzo [a,h] anthracene with retention times of 33.227 min and 33.332 min, respectively). EPH 2 and EPH 4 were used for samples. EPH 2 identified and quantified the surrogates and internal standards. This method used valley-to-valley baseline integration. EPH 4 was used to quantify the aromatic samples and the C_9-C_{18} and $C_{18}-C_{36}$ ranges for the aliphatic samples with base-to-base baseline integration.

3.1.3.5 IS Calibration Procedure

The internal standard calibration procedure for aromatic and aliphatic HCs used five concentrations (4.55, 9.10, 45.46, 72.73 and 81.82 ng/ μ L). The aromatic HC calibration set (DRH-006-CAL SET) (AccuStandard) was composed of 17 aromatic compounds and an aromatic surrogate (Table 5). The aliphatic HC calibration set (DRH-007-CAL SET) (AccuStandard) was composed of 14 aliphatic compounds and an aliphatic surrogate (Table 6) $2 \ \mu L$ of each calibration standard were injected into the GC. The peak area responses were tabulated using the concentration of each compound and the internal standard. Then, the response factors (RF) were calculated for each individual compound:

$$RF = \frac{(A_{s})(C_{s})}{(A_{s})(C_{s})}$$
(Eq. 3.3)

where: A_s is the response for the analyte to be measured (area counts), C_{is} is the concentration of the internal standard (ng/µL), A_{is} is the response for the internal standard (area counts), and C_s is the concentration of the analyte to be measured (ng/µL).

If the RF value over the working range was <25% relative standard deviation (RSD), it was assumed to be invariant, and the range RF (RRF) was used for calculations (MADEP, 1998a). An RRF was established for each HC range. The summation of the peak areas of all components in a specific range were tabulated against the total mass injected (Table 7) to calculate the RRFs for the C₉-C₁₈ aliphatic HCs, C₁₉-C₃₆ aliphatic HCs, and C₁₁-C₂₂ aromatic HCs.

Range RF =
$$\frac{(A_s)(C_s)}{(A_s)(C_s)}$$
 (Eq. 3.4)

where: A_s is the summation of peak areas of component standards (e.g., C₉-C₁₈, 6 components), (area counts), C_{is} is the concentration of internal standard (ng/µL), A_{is} is the response for the internal standard (area counts), and C_s is the total mass concentration of injected standards (ng/µL).Each RRF was verified every sampling event, and after every 20 samples, by injecting a mid-level calibration standard to verify instrument performance and linearity.

Compound	Mean RT (min)	RT Window (min)		
Naphthalene	7.647	7.613-7.682		
2-Methyinaphthalene	9.615	9.569-9.663		
Acenaphthylene	12.289	12.230-12.350		
Acenaphthene	12.868	12.804-12.934		
Fluorene	14.441	14.370-14.513		
Phenanthrene	17.385	17.310-17.461		
Antracene	17.527	17.440-17.616		
Ortho-Terphenyl (surrogate)	18.886	18.817-18.955		
5-alpha Androstane (IS)	20.388	20.350-20.426		
Fluoranthene	21.126	21.048-21.205		
Рутепе	21.792	21.704-21.880		
Benzo(a)Anthracene	25.630	25.549-25.712		
Chrysene	25.761	25.660-25.862		
Benzo(b)Fluoranthene	28.839	28.754-28.925		
Benzo(k)Fluoranthene	28.917	28.804-29.031		
Benzo(a)Pyrene	29.701	29.614-29.789		
Indeno(1,2,3-cd)Pyrene	33.227	33.087-33.367		
Dibezo(a,h)Anthracene	33.331	33.187-33.476		
Benzo(g,h,i)Perylene	34.185	34.023-34.349		

Table 5. Aromatic HC calibration standards with the calculated average RTs and their respective windows (\pm 0.000 min).

Compound	Carbon Number	Mean RT (min)	RT Window (min)
n-Nonane	9	3.004	2.986-3.022
n-Decane	10	4.351	4.334-4.367
n-Dodecane	12	7.786	7.748-7.824
n-Tetradecane	14	11.286	11.230-11.342
n-Hexadecane	16	14.416	13.539-15.293
n-Octadecane	18	17.407	17.339-17.475
n-Nonadecane	19	18.758	18.687-18.828
n-Eicosane	20	20.044	19.971-20.117
5-alpha Androstane (IS)		20.382	20.350-20.414
1-Chloro-octadecane (surrogate)		21.152	21.083-21.220
n-Docosane	22	22.451	22.371-22.530
n-Tetracosane	24	24.660	24.582-24.739
n-Hexacosane	26	26.704	26.625-26.783
n-Octacosane	28	28.599	28.522-28.676
n-Triacontane	30	30.407	30.326-30.488
n-Hexatriacotane	36	39.901	39.724-40.079

Table 6. Aliphatic hydrocarbon calibration standards with the calculated average RTs and their respective windows (± 0.000 min).

If the relative percent difference (RPD) for any analyte varied from the predicted response (Eq. 3.4) by more than $\pm 25\%$, a new calibration curve was prepared for that analyte or range (QC analysis are presented in Chapter IV).

	Concentration of Standard Analytes (ng/µL)				
Components	4.55	9.10	45.46	72.73	81.82
Total Mass C ₉ -C ₁₈ (SC) Aliphatic HCs, ng (6 components)	54.6	109.2	545.5	872.7	981.8
Total Mass C ₁₉ -C ₃₆ (LC) Aliphatic CHs, ng (8 components)	120.8	145.6	727.3	1,163.6	1,309.1
Total Mass C ₁₁ -C ₂₂ Aromatic HCs/PAHs, ng (17 components)	154.7	309.4	1,545.6	2,472.8	2,781.8

Table 7. Calibration standard concentrations and masses used for MADEP Method.

*2 μL injection

3.1.3.6 <u>RT Windows</u>

Three injections of the aromatic and aliphatic standards were made in the course of a 72 h period using EPH 1 and EPH 3. The mean RTs were calculated as the average of 15 values for each surrogate (OTP and COD), the IS, and each aromatic and aliphatic compound (Tables 5 and 6). The RT windows for each compound were calculated as ± 3 times the standard deviation of the mean RT.

The range RT windows were defined as beginning 0.1 min before the RT of the beginning marker compound and ending 0.1 min after the RT of the ending marker compound. C_{19} was the beginning and ending marker compound for the two different aliphatic ranges. The C₉-C₁₈ aliphatic HC range ended 0.01 min before the elution of the C_{19} peak. The C₁₉-C₃₆ aliphatic HC range began 0.01 min before the elution of the C_{19} peak.

3.1.3.7 Sample Analysis

The GC sequence began with a blank (hexane for aliphatic HC samples and methylene chloride for aromatic HC samples). The blank identified whether contamination was present in the liner or GC column. If any peak was detected, a second blank was injected to recheck the column. If this was clean (no peaks), a calibration standard was run to verify instrument performance and linearity. Then, the sample extracts were analyzed. Every 20 samples, a blank and a calibration standard were analyzed. The output from the GC reported the RT and the area counts for each peak.

Identification of an analyte occurred when a peak from an extract fell within the daily RT window. Aliphatic and aromatic ranges were determined by the collective integration of all peak elutions between specified compounds (e.g., n-nonane and n-octadecane for the C₉-C₁₈ aliphatic range). For the quantification on a peak area basis by IS, collective peak area integration for the fractional ranges, was from the baseline (including the unresolved complex mixture areas). For the integration of individual surrogate compounds and IS, a valley-to-valley approach was used.

3.1.3.8 <u>TPH Calculations</u>

The concentration of a specific HC range in a sample was determined by calculating the amount of analyte or HC injected, from the peak response, based upon the analyte/IS response ratio (MADEP, 1998a):

Concentration
$$(ug/kg) = \frac{(A_x)(C_y)(D)}{(A_y)(RF)(W_d)}$$
 (Eq. 3.5)

where: A_x is the response of the analyte, HC range/being measured (area counts), C_{1s} is the mass of IS added to extract (ng), D is the dilution factor (1) (dimensionless), A_{1s} is the

3.1.3.9 Calculation of Dry Weight of Sample

Dry weight were calculated as follows:

% Moisture =
$$\frac{g \text{ wet sample} - g \text{ dry sample}}{g \text{ wet sample}} x 100$$
 (Eq. 3.6)

% Dry Solids =
$$(100 \%) - (\% Moisture)$$
 (Eq. 3.7)

$$W_d$$
 (g) = (% Dry solids / 100)(g of extracted sample) (Eq. 3.8)

3.2 **Porewater Analysis**

3.2.1 <u>Phosphate Analysis</u>

Orthophosphate (PO_4^{-3}) was analyzed by the Environmental Coastal Chemistry Laboratory (ECCL) at UNH using a Lachat Continuous Flow Analyzer (Milwaukee, WI) with the QuikChem Method 31-115-01-3-A. In this method, the PO_4^{-3} reacts with ammonium molybdate and antimony potassium tartrate under acidic conditions to form a complex. The complex is reduced with ascorbic acid to form a blue color, which absorbs light at 880 nm. The absorbance is proportional to the concentration for PO_4^{-3} in the sample (Lachat-Instruments, 1994). During the analysis, a calibration curve was created using three standards (0.50, 1.00 and 2.00 μ M). All standards were prepared using MilliQ® (Millipore; Bedford, MA) water. As part of the QA/QC criteria, an initial calibration blank (ICB) was run before the samples and continuing calibration blanks (CCB) and continuing calibration verification standards (CCV) were run between the samples to detect any carryover. In addition, a duplicate was run after 15 samples. If the response for a sample was out of range of the calibration curve, a dilution was conducted and a dilution factor was used to calculate the final concentration. No silicate or arsenate interferences were found. Precision was judged by percent coefficient of variation (%CV) using 1.0 and 5.0 μ M standards. Percent recovery (%P) was evaluated using artificial seawater spiked with PO₄-³.

3.2.2 <u>Nitrate and Nitrite Analysis</u>

The NO₃, and nitrite (NO₂) were analyzed by the Jackson Estuarine Laboratory (JEL) at UNH. The samples were run through a cadmium column (where all NO₃ was reduced to NO₂). Then, NO₂ was determined alone. In this method, NO₂ is diazotizated by sulfanilamide and N-(1-naphthyl) ethylendiamine dihydrocloride to create a pink color measured at 520 nm.

The NO₃⁻ and NO₂⁻ were analyzed using a Lachat Continuous Flow Analyzer with JEL Standard Operating Procedure (SOP) 1.12 derived from EPA (1992). During the analysis, a calibration curve was created from standards (1.00 and 2.50 and 5.00 μ M). All standards were prepared using Milli Q® water. No interferences were present during the analysis of the samples. QA/QC and precision were analyzed as described for the PO₄⁻³ analysis.

3.2.3 <u>Ammonia Analysis</u>

 NH_4^+ was analyzed by JEL using a Continuous Flow Analyzer with the QuikChem Method 31-107-06-1-C. This method was based on the Berthelot reaction where NH_4^+ reacts with alkaline phenol and then with sodium hypochlorite to form indophenol blue. Sodium nitroprusside (nitroferricyanide) is added to enhance sensitivity. The absorbance of the reaction product is measured at 630 nm and is directly proportional to the original NH_4^+ concentration (Lachat-Instruments, 1994).

During the analysis, a calibration curve was created using three standards (10.0, 20.0 and 50.0 μ g N/L). All standards were prepared using Milli Q® water. No interferences from color, turbidity, calcium, magnesium, sulfite or organic matter were present in the samples analyzed. QA/QC and precision were analyzed as described for PO₄⁻³.

3.3 Enumeration of Oil-Degrading Bacteria

In this study, the MPN technique was used for quantifying oil-degrading bacteria present in the salt marsh sediments. This method determines the abundance of microorganisms, present in a sample with the metabolic capacity to degrade or use different HCs. Microbial growth occurs in a liquid mineral medium (Bushnell Haas (BH); Difco Products; Detroit, MI), with an HC as a carbon and energy source. The presence of active microorganisms is confirmed by the reduction of INT. When the INT is reduced, it is possible to observe a precipitate and red/pink color in the tubes that contain metabolically-active microorganisms with the capacity to degrade HCs. These tubes are considered positives (Brown and Braddock, 1990; Haines et al., 1996; Konopka et al., 1998; Wrenn and Venosa, 1996).

1.0 g of sediment was used to inoculate a dilution tube containing 9.0 mL sterile buffered peptone water (BPW). This tube was vigorously mixed for 30 s using a vortex. A 1.0 mL aliquot was transferred to a new BPW dilution tube to provide a 1:100 dilution of the sediment. This tube was mixed and the procedure continued to provide a decimal dilution series adequate for enumerating the oil-degrading bacteria. Four dilutions sets of five MPN replicates were used for each sediment sample. Typical dilution series ranged from 10^{-1} to 10^{-6} .

MPN tubes contained 9 mL of BH broth supplemented with 2% sodium chloride, inoculated with 1.0 mL of the sediment dilution and 0.1 mL of No.2 fuel as a carbon and energy source. Blank tubes were included that contained No. 2 oil fuel, but no inoculum. Controls had no fuel.

The MPN tubes were incubated at $20\pm2^{\circ}$ C for 28 d. After the incubation, the tubes were inspected for evidence of emulsification (breakup/droplet formation) of the fuel pellicle in the top of the BH broth according to Brown and Braddock (1990), turbidity, and reduction of INT (Haines *et al.*, 1996).

To determine INT reduction, 1.5 mL of 0.3% INT (Research Organics, Inc.; Cleveland, OH) were added to each tube, and after incubating for 20 min at 20°C, red or pink tubes were counted as positive. A second reading was conducted after 16 h to check for any new positive tubes. A combination of positive/negative tubes for the most representative three dilutions was recorded and the score compared to published 5-tube MPN reference tables (Haines *et al.*, 1996).

3.4 Site Selection

The salt marsh chosen for the field studies had to meet the following criteria: a) be impacted by a recent oil spill with a relatively uniform contaminant distribution (TPH concentrations higher than 5,000 mg/kg_{dw}), b) be close to UNH where the microbial and chemical analysis were conducted, c) have easy access for installing the horizontal wells and sampling, and d) have access to power and water needed for the distribution system.

Site selection was coordinated with officials from NHDES, MEDEP and NOAA. A salt marsh located along the main channel of the Fore River was initially considered for the study (Figure 1). However, the results indicated that the TPH concentrations were lower than the expected to conduct this research (See Chapter IV). For this reason a second marsh was evaluated and selected for the study. The selected marsh was located at Thompson Point in Portland, ME (Figure 1). The salt marsh was contaminated in September 1996, when the T/V *Julie N* collided with the Rte. 77 bridge, spilling 353 m³ of No. 4 and 327 m³ of No. 2 fuel oils. After an immediate response, more than 530 m³ were recovered (80%), but approximately 150 m³ of oil were lost to the environment. The most affected environments were the marshes along the Fore River (Lelyveld, 1996; Porter, 1997).

Reilly (1998) reported that the vegetation in the marshes between Thompson Point and the Congress Street Bridge still showed evidence of stress in 1997. "In this area, there were scattered open patches in the marsh where much of the *S. alterniflora* vegetation had died and not regrown from the roots, and the broken-off dead stems from the previous year growth were still visible" (Reilly, 1998). The selected Fore River Creek salt marsh lies between the property owned by Peter Van Wyck (Boston, MA) and the Waynflete School (Figure 3). The Fore River Creek salt marsh has a 2 m mean diurnal tidal range and is mainly dominated by short *S. alterniflora* (Figure 4). The salt marsh conditions are similar to those thought New England as it is small, low energy and characterized by the presence of heavy peat substrate (Howes *et al.*, 1985; Nixon and Oviatt, 1973).

3.5 Experimental Plots

Four plots were selected for the evaluation and installation of the amendments and controls (Figure 5). The plots were selected initially based on visual observation of the oil in the sediments and the TPH concentration was later confirmed by sediment analysis. Two plots were used to evaluate the effectiveness of the air and NO₃⁻ amendments. In addition, two plots were used as controls to evaluate the natural attenuation process.

3.6 Design of Experimental Plots

Each plot was 10 m long by 3 m wide. The corners of each plot were marked using wooden poles (5.1 cm x 7.6 cm x 1.8 m) that were hammered 1.0 m into the marsh sediment. The amendment plots were divided into 0.6 m intervals with two sections of 0.3 m on the left and right ends of the plots. At each 0.6 m interval, a 3.7 m plastic pipe (2.5 cm external diameter, 1.9 cm internal diameter) was buried approximately 20 cm below the marsh surface.

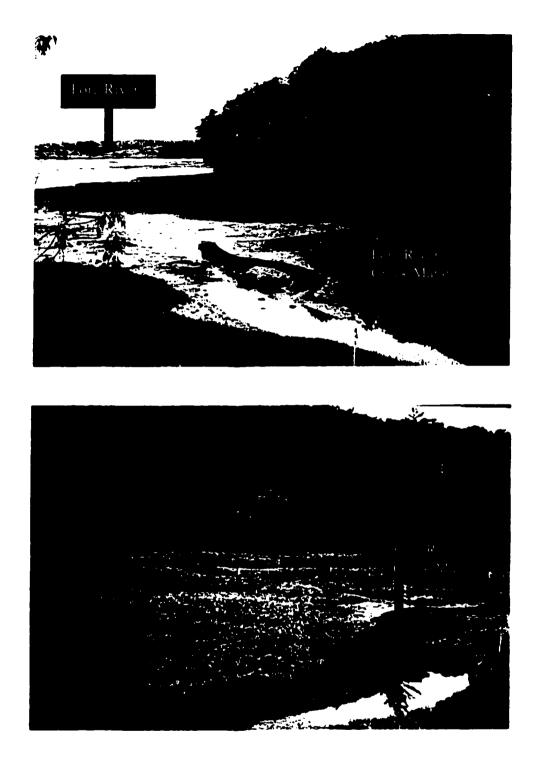


Figure 3. View of the Fore River Creek salt marsh selected for the study. Top: Fore River and Fore River Creek salt marsh (view looking south). Bottom: Fore River Creek salt marsh (view looking north).

Figure 4. S. alterniflora in the Fore River Creek salt marsh. Top: June, 1998. Bottom: August 1998.

B

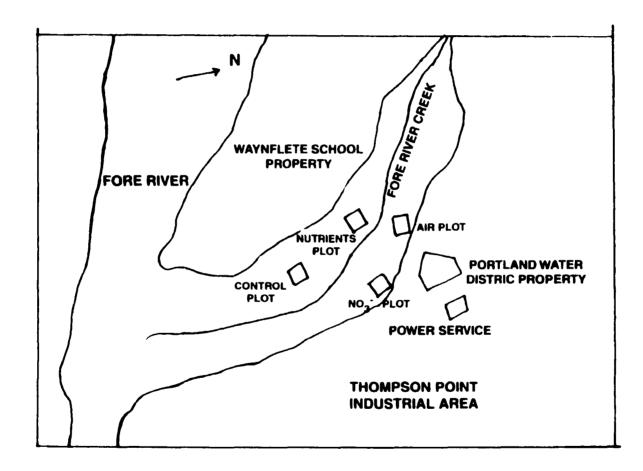


Figure 5. Relative location of the plots in the Fore River Creek salt marsh. (Not to scale)

This depth was chosen based on the estimated contaminant depth of ~ 4 cm and the depth of the rhizosphere. The final volume per plot surrounding the wells was 2.27 m³ (Figures 6 and 7).

The plastic pipe was perforated to facilitate the proper distribution of air or NO_3 ^{\cdot}. To place the plastic pipes into the salt marsh, a hollow metal pipe, with a bolt inserted into its leading end, was manually driven into the sediments (Figure 8). The perforated plastic pipe was placed inside of the metal pipe once it was driven fully into the sediments. The metal pipe was then pulled out of the sediments, leaving the plastic pipe and the bolt behind. The 15 plastic pipes (horizontal wells) were connected to a distribution header using T connectors. The plastic distribution header and tube connectors were buried into the sediments and partially into the bank of the marsh. The header was connected to the air or NO_3 ^{\cdot} supply (Figure 9). The installation of the distribution lines inside of amendment plots was done in May 1998, when the plant growth was just starting, so fewer roots and plants were affected. However, the sides of the plots where the distribution headers were buried were heavily impacted.

Each plot was subdivided to obtain sampling grids of 0.61 m x 0.31 m and six sections 0.23 m wide where the sampling platforms (catwalks) were placed (Figure 10). 120 sampling grids were available within each plot. Each grid was assigned a number from 1 to 120. A random number generator was used to select the subplots to be sampled during each sampling event.

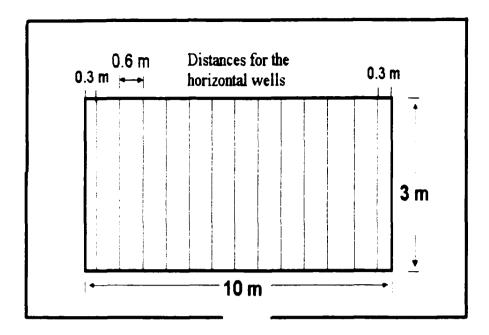


Figure 6. Experimental plot design for oxygen and NO₃⁻.

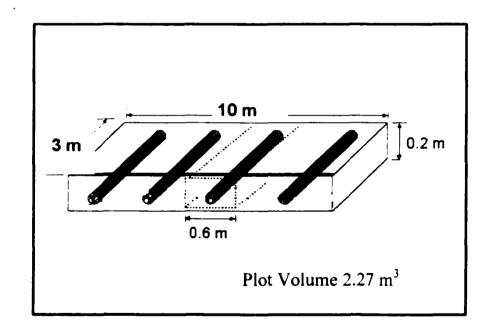


Figure 7. Experimental plot volume.

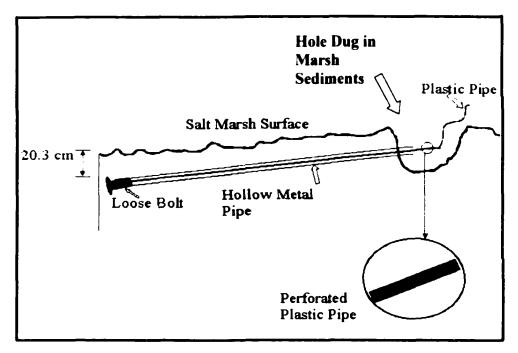


Figure 8. Installation of the horizontal wells used for the distribution of the TEAs.

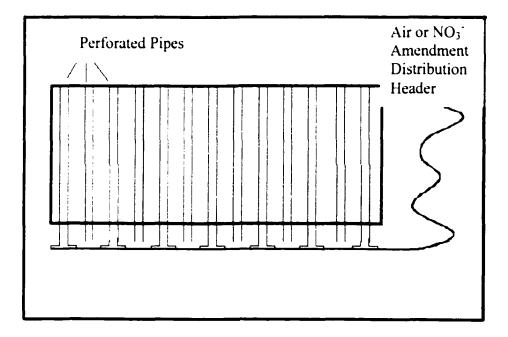


Figure 9. Distribution system for the experimental plots. Plastic pipes were connected to a distribution header for the addition of the Amendments.

1	2	3	4	5	6	7	8	9	10	11	12
13	14	15	16	17	18	19	20	21	22	23	24
25	26	27	28	29	30	31	32	33	34	35	36
37	38	39	40	41	42	43	44	45	46	47	48
19	50	51	52	53	54	55	56	57	58	59	60
31	62	63	64	65	66	67	68	69	70	71	72
'3	74	75	75	77	78	79	80	81	82	83	84
35	86	87	88	89	90	91	92	93	94	95	96
97	98	99	100	101	102	103	104	105	106	107	108
109	110	111	112	113	114	115	116	117	118	119	120

Wells Enter From this Side

Figure 10. Experimental plot grids. Each plot was divided into 120 subplots (0.3 x 0.6 m) and spaces were left where the catwalks legs could rest (0.23 m).

3.7 Sampling Events

The field sampling of this dissertation research was conducted from June 1998 through June 1999. During this period, there were nine sampling events (Table 8). Background conditions were evaluated on June 11 and 12, 1998. Samples for TPH, salinity, plant density, plant height, abundance of oil-degrading microorganisms, NO_3^- , NH_4^+ , and $PO_4^{2^-}$ were collected.

Sampling Event	Date	Year
1	June 11,12	1998
2	July 8,9	1998
3	July 27,28	1998
4	August 18,19	1998
5	September 19,20	1998
6	October 17,18	1998
7	April 10,11	1999
8	May 12,13	1999
9	June 10,11	1999

Table 8. Sampling events from June 1998 through Spring 1999.

Sampling was a two day process. Four different subplots (0.6 x 0.3 m) were randomly selected for each sampling event. The sampling was conducted during low tide (~4h). Portable catwalks were used to avoid damaging the marsh grass inside of the plots (Figure 11). The catwalks, used to access inside of the plots, were placed in corridors with in the plots previously defined for this purpose. Sampling was not conducted in the winter assuming that microbial activity was minimal.

3.8 Sampling Methods

During each sampling event a marked cord was used as a template to frame the plot and color cords were used side to side to identify the selected subplot (Figure 12).

The portable catwalks were made of a panel of fiberglass isophthalic-polyester grating (IKG Fiberglass Systems; Nashville, TN). This material was selected because it is light and resistant to saline and cold environments. The catwalk panels were 1.0 m x 1.5 m, and they were mounted on aluminum legs and supported by two wood poles 2.0 m x 0.8 m long and 0.2 m thick.

Two sediment samples were collected from each subplot to evaluate TPH concentration. A sediment sample was also collected to evaluate the abundance of oil-degrading microorganisms. A porewater sample was collected to quantify NO_3 , NH_4^+ , and PO_4^{3-} . In addition, a frame 30 cm x 30 cm was used inside of each subplot to evaluated plant density and plant height (Figure 13).

All samples were taken using plastic spoons to avoid contamination between samples. During the sampling event, all person collecting samples wore neoprene gloves (18 mm thickness and 33 cm length) (VWR) to avoid any contact with oil-contaminated sediments and disposable latex gloves (VWR) to avoid cross-contamination between subplots (Figure 14).

3.8.1 <u>TPH</u>

TPH samples were collected from the top sediments (~ 4.0 cm) in the selected subplots. The samples were placed in 120 mL amber wide-mouth glass bottles with Teflon®-lined screw caps (VWR).

Figure 11. Catwalks used during the study to avoid damaging the salt marsh.

Figure 12. Selected subplot during a sampling event. Note colored cords delineating subplots and quadrant used sampling.

Figure 13. Plant stem height and plant density measurements.

Figure 14. Double gloves used to avoid cross-contamination during sampling.

The bottles were previously decontaminated by washing them with Extran® laboratory detergent (VWR). They were dried in a Thelco® oven (Precision Scientific) at 100° C and combusted at 500°C for 90 min. The caps were acid washed (chromic acid) and rinsed 3 times with MilliQ® water. Samples were cooled to 4°C on blue ice in coolers immediately after collection and transported to the UNH laboratory with in ~5 h. TPH samples were stored at 4°C in the laboratory for a maximum of 7 d prior to extraction. Extract were held at 0°C for a maximum of 40 d prior GC analysis.

3.8.2 <u>Microbial Abundance</u>

The sediments for microbial studies were collected from the top ~ 4.0 cm in the selected subplots. The samples were placed in plastic Ziploc® bags (SC Johnson; Racine, WI). Samples were cooled to 4° C on blue ice immediately after collection and transported to the JEL at UNH to be processed during the next 3-4 d.

3.8.3 <u>Porewater</u>

Porewater samples were collected using a porous ceramic cup (lysimeter) that was inserted horizontally (top 4 cm) into the salt marsh sediments. The ceramic cup (10.0 cm long x 1.0 cm diameter) (Soil Moisture Equipment Corp; Goleta, CA) was attached to a plastic tube (50 cm length x 0.32 cm diameter). The cup was attached to the tubing using epoxy resin (Soil Mixture Equipment Corp) and wrapped with Teflon® tape (VWR). The other side of the tubing was attached to a 125 mL side arm flask. The flask was sealed with a rubber stopper. A hand vacuum pump (Soil Mixture Equipment Corp) attached to the flask was used to create a 350 to 370 mm Hg vacuum. Approximately 60 to 70 mL of porewater was obtained after a vacuum was applied for 45 min. The filtrate was poured into a 125 mL high-density polyethylene bottle (VWR). Samples were cooled to 4° C on blue ice immediately after collection and transported to the UNH laboratory where they were frozen until analysis at the end of the research (~6 months).

The lysimeters were decontaminated for 2 h in a 50% HCl solution and subsequently soaked in MilliQ® water for 2 d, rinsed for 2 h in methanol, and finally soaked 1 d in MilliQ® water. They were air dried. The flasks and polyethylene bottles were washed with 50% HCl and rinsed with MilliQ® 3 times.

3.9 Amendment Addition

A low flow pump (DOA, Gast Manufacturing, Inc.; Lombard, IL) $(3.2 \text{ m}^3/\text{h})$ was used to add air. The pump worked 24h during the entire study. Sodium nitrate (NaNO₃) was used as the NO₃⁻ amendment. To prepare the solution, 430 g of NaNO₃ were mixed with 0.028 m³ of water for a final concentration of 11.04 g NO₃⁻/L. Mixing occurred in a Rubbermaid® (Wooster, OH) (~0.26 m³) tank. The solution was delivered by gravity using the distribution network (Figure 15). The solution was made at the site weekly and delivered immediately after preparation. The volume of injected water was calculated based on the volume of the sediments to treat (2.27 m³). 0.028 m³ of water flushed the distribution lines after the injection assuring to release all of the NO₃⁻ solution into the sediment (Ballestero, 1999). The amendment was added at the beginning of a low tide to avoid loss of the solution, this was assumed to be the best case so the solution would not be diluted by the tide and could stay longer in the sediments. The estimate final concentration of N-NO₃⁻ in the porewater was ~31.2 mg N/L. A porosity of 0.4 pore size value was assumed to calculate the total volume of the experimental plots (2.27 m³).

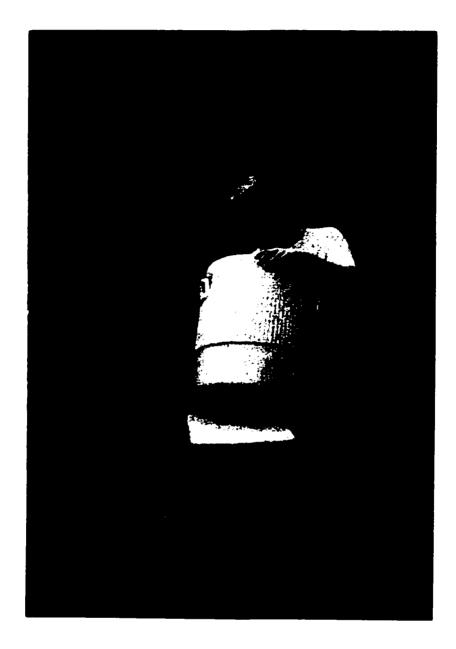


Figure 15. Addition of N03⁻ solution by gravity during the Fore River Creek salt marsh study..

CHAPTER IV

RESULTS AND DISCUSSION

Two TEAs (NO₃⁻, and oxygen) were evaluated for their ability to enhance *in situ* biodegradation of TPH in the Fore River Creek salt marsh contaminated by the *Julie N* oil spill in September 1996. Horizontal wells, placed in the sediments of the contaminated salt marsh in June 1998, were used to distribute the TEAs. The effects of the amendments were evaluated from June 11, 1998 until June 10, 1999. During this period, nine sampling events were conducted. Sampling was not conducted during colder months (November-March) because of the difficulty in accessing the site and the assumption that microbial metabolism and rhizosphere activity would be limited due to the low temperatures.

The objectives of this dissertation research were to:

- determine the zones within an oil contaminated salt marsh that were most affected by the oil spill;
- evaluate and select an analytical method for the evaluation TPH present in the contaminated salt marsh sediments; and
- determine if addition of oxygen (added as air) and NO₃⁻ could enhance the *in situ* biodegradation of HCs compared to the natural attenuation process.

Prior to beginning the study, two screening methods were evaluated for their ability to detect and quantify TPH in the salt marsh sediments: the EPA (1994) Method

and the ASTM (1995) Method. These methods were compared to the MADEP (1998) Method for Extractable Petroleum Hydrocarbons. During the field study, TPH concentrations in the sediments were analyzed using the MADEP Method. The abundance of oil-degrading bacteria; porewater NO_3^- , NH_4^+ , and PO_4^{-3} concentrations; and plant growth and density were also monitored during each event.

4.1 Evaluation of Screening Methods for TPH

Many non-halogenated HCs can be used as an energy and carbon source by naturally-occurring microorganisms and be completely biodegraded to water and carbon dioxide (complete mineralization). One important indicator of the effectiveness of a bioremediation process is the decrease in the *in situ* concentration of the contaminants. Hence, it was crucial that the analytical method chosen for this research project be able to detect differences in TPH concentration on the order of 500 mg/kg_{dw}. Ideally, the selected screening methods would also be low cost, relatively easy to perform and yield rapid results. For example, the EPA Method is simple, quick and inexpensive. During a subsurface bioventing study at UNH, it had achieved good recoveries for TPH in No. 2 fuel oil-contaminated soils (Simonton, 1998). In addition, the equipment needed to conduct the EPA Method was also available in the laboratory. The ASTM Method was also evaluated because it is a standard test method for screening fuels in soil (ASTM, 1995), has a high sample throughput, and is inexpensive and simple to perform.

Three types of soil were analyzed to compare the two screening methods: a commercial organic soil (OS), sand contaminated with No. 2 fuel oil (PCS), and clean sand (CS). Samples from the Fore River oil-contaminated salt marshes were also used to

compare the efficiency of the extraction and analysis of the two analytical methods. The methods were compared based on their Method Detection Limit (MDL), Limit of Quantification (LOQ), precision (expressed as %CV) and ability to detect No. 2 fuel oil spiked into the samples (expressed as %P). Statistical analyses were generally conducted using a probability (p) of 0.05 (p=0.05).

4.1.1 EPA Method

The EPA Method was evaluated because it may be used to quantify low concentrations of TPH in sediments and sludges (EPA, 1999) and it was used in a previous study at the UNH laboratory (Simonton, 1998). This method is not applicable to measurements of materials that volatilize at temperatures below ~85°C. The EPA Method uses a Soxhlet extraction (with hexane as the solvent) and subsequent gravimetric analysis to determine the TPH present in the sample. The sediment TPH concentrations were expressed as dry weight (dw) (mg TPH/kg_{dw}) in order to compare samples on an equal basis (Appendix A).

To calculate the MDL and LOQ, seven CS replicates were analyzed under laboratory conditions (Table 9). The MDL was calculated as 3.75 (one tail *t* statistic, p=0.01) times the standard deviation of the CS replicates (Standard Methods, 2000). The LOQ was calculated as 10 times the standard deviation of the CS replicates. The calculated MDL and LOQ were 773 mg TPH/kg_{dw} and 2,060 mg TPH/kg_{dw}, respectively (Appendix D).

Although the MDL and LOQ were calculated based on CS samples, some of the concentrations found were relatively high (300 and 503 mg/kg_{dw}). This indicated that some contamination was present in the CS or more likely that small particles were being

transported from the extraction thimble into the flask during the Soxhlet extraction affecting the flask weight and, therefore, the TPH concentration.

TPH mg/kg _{dw}
30
10
140
ND
503
ND
300
197
206

Table 9. CS replicates used to calculate the MDL and LOQ of the EPA Method.

ND = Not detected

The Ohaus analytical balance used to make the gravimetric measurements had a manufacturer reported detectable difference of ± 0.5 mg, which represented approximately \pm 50 mg TPH/kg_{dw} (0.5 mg TPH/10 g_{dw} sample x 1000 g_{dw}/kg_{dw}), so differences in TPH concentration of \leq 50 mg/kg_{dw} could not be distinguished.

The TPH concentration of the OS was significantly greater than the CS and significantly larger than the MDL (one tail, p=0.05), but not significantly different (NSD) from the LOQ (two tail *t*-test, p=0.05) (Table 10). The data suggested that some compounds present in the OS caused a positive interference during the analysis. Some of the NOM associated with the OS was probably extracted by the hexane and detected as TPH.

The precision for all of the sample matrices whose concentrations were above the MDL and LOQ (i.e., the spiked CS and OS) were acceptable compared to the published %CV of $\leq 25\%$ (Table 10) (EPA, 2000).

To be acceptable, the average %P for the EPA Method must be between 75% and 115% (EPA, 2000). %Ps obtained during the analysis of the spiked CS and precontaminated sand (PCS) were within this range (Table 10). The %P for the OS was lower, but NSD (one tail *t*-test, p=0.05) than the recommended range.

Table 10. TPH concentrations obtained from the EPA Method analysis of laboratory-spiked known samples.

Sample	N	TPH⁵ mg∕kg _{dw}	%CV	% P
CS	3	(140±194)BDL*	-	-
Spiked CS ^a	4	38,000±2,540	±7 %	76.0±5.1
PSC	3	12,000±2,142	±18 %	-
Spiked PCS ^a	4	55,000±6,653	±12 %	84.0±4.5
OS	4	2,000±1,828	[±91 %]	-
Spiked OS ^a	5	100,000±12,370	±12 %	70.0±8.7

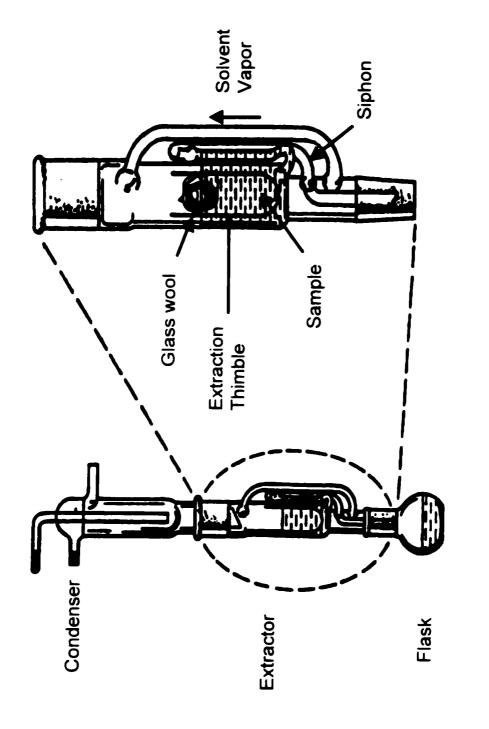
⁴500 mg of No. 2 fuel oil spiked into 10 g of sample (50,000 mg/kg).

BDL = below MDL of 773 mg/kg_{dw} BQL= below LOQ of 2,060 mg/kg_{dw}

{} %P significantly lower than published range (75-115%) p=0.05

[] %CV exceeds acceptable published value of ≤ 25 %

The TPH concentrations in the spiked samples are modified by the dry weight .


The spiked CS %P was NSD from the results previously obtained for a bioventing study (72.0 \pm 2.5%) (two tail *t*-test, p=0.05) (Simonton, 1998) indicating a consistent recovery of No. 2 fuel oil within the laboratory. Initially, the concentration of the spiked samples was based on a study that had been conducted at the UNH laboratory with the PCS. This spike resulted in concentrations 2 or 3 times higher than the CS and OS, the desired spiked range recommended by EPA. The lower %CV and higher %P of the spiked CS, PCS and OS samples could been caused by the high concentration (50,000 mg/kg) used.

b (means ± 1 standard deviation)

Overall, the tests with the EPA Method on known soil matrices yielded acceptable precision and accuracy compared with published values. The organic compounds (coextracted by the hexane) present in the unspiked OS matrix affected the precision of the method at low TPH concentrations, while at higher concentrations precision and accuracy were NSD from published values.

Several problems occurred during the first attempt to analyze the actual marsh samples with the EPA Method. Sediments in New England salt marshes contain very fine (silt and clay size) particles in addition to roots and rhizomes (Hines *et al.*, 1989). Although big roots were avoided during sample collection, the Soxhlet extraction was very slow because the fine particles clogged the extraction thimble, reducing solvent flow through the sample. In addition, some of the sediment and sodium sulfate (used to absorb the water from the sample) flooded the thimble and fell into the extraction flask. This problem was solved by placing a small piece of glass wool on top of the sample inside the thimble (Figure 16). After resolving these problems, marsh samples were analyzed with this modified Soxhlet method (Table 11). Sites 1-4, from which the sediments were collected, were located in the salt marsh along the Fore River main channel.

The %CVs for the salt marsh samples analyzed using the modified Soxhlet extraction were very large (Table 11) compared to the published criterion (%CV ≤ 25 %). The poor precision was probably a function of the variability (uneven distribution) of TPH in the contaminated marsh sediments and within sample heterogeneity (Pritchard, 1993; Reynolds *et al.*, 1997). High *in situ* variability in sediments can be overcome if the samples are thoroughly mixed (manually or mechanically) to homogenize them.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

For example, the PCS contaminated with a No. 2 fuel oil had a relatively low % CV because it was slowly mixed (Table 10) on a plastic tarp with shovels and rakes (Simonton, 1998). However, the PCS was fairly uniform sand and tended to have relatively little heterogeneity. The salt marsh sediments were much more heterogeneous because of the presence of *S. alterniflora* roots and rhizomes interspersed among the fine sediments and their different redox conditions and sorptive capacities for TPH. In addition, TPH is an LNAPL that does not dissolve readily in water and forms droplets at high concentrations, resulting in phase separation.

Sample	N	TPH mg/kg _{dw}	%CV	% P
Site 1	4	4,000±2,776	[±69%]	-
Spiked Site 1 ^a	1	6,099		{71.0}
Site 2	4	3,000±2,460	[± 82 %]	-
Spiked Site 2 ^a	1	3,877		{54.7}
Site 3	4	4,000±2,908	[± 73 %]	•
Spiked Site 3 ^a	1	4,901		{64.2}
Site 4	4	3,000±3,018	[± 101 %]	•
Spiked Site 4 ^ª	1	8,327		{61.6}
Blank (CS)	4	(200±246)BDL*	-	~
Spiked Blank (CS) ^a	1	(1,310)BQL*		

Table 11. TPH in the Fore River Creek salt marsh samples using the EPA Method.

^a19 mg of No. 2 fuel oil into 10 g of sample (1,900 mg/kg) BDL = below MDL of 773 mg/kg_{dw} BQL= below LOQ of 2,060 mg/kg_{dw} []%CV exceeds acceptable published value of ≤ 25 % {} %P lower than published range (75-115%)

A CS sample was spiked and used as a control to evaluate laboratory performance during the analysis of the contaminated salt marsh sediments. During this analysis, the CS was spiked with a lower concentration (1,900 mg/kg) than the one used with the laboratory-spiked known samples (50,000 mg/kg). Unfortunately, this 1,900 mg/kg spike was only slightly higher than the method's LOQ, which was a poor choice. Only 1,310 mg/kg_{dw} of the spike CS were recovered, which is below the LOQ, so the %P could not be calculated for the CS for this sample run.

The salt marsh samples were also spiked with 1,900 mg/kg of TPH. The dry weight of the marsh sediments was 0.3, so the spike was equivalent to ~6, 500 mg TPH/kg_{dw} which was barely or not within the 2-3x spiking window required by EPA. Again, this confounded any determination of %P for the EPA Method with respect to the marsh samples. The mean recovery for the salt marsh samples $(63.0\pm6.7\%)$ was significantly lower (SL) (one tail *t*-test, p=0.05) than the %P initially obtained for the CS (Table 10) and the lowest acceptable %P (75%) reported by the EPA, but NSD (two tail t-test, p=0.01) (Table 11). The mean %P for the salt marsh sediments was also SL than the recovery obtained for the spiked PCS (one tail *t*-test, p=0.05), but not SD than the recovery obtained for the spiked OS (two tail *t*-test, p=0.05) (Table 10). The low recoveries indicated than some interference was limiting TPH recovery in the salt marsh sediments. Sulfur compounds, organic compounds and chlorophyll that may be present in marsh sediments, are all soluble in hexane and have been reported to lower efficiency and interfere with the EPA method (EPA, 1999). The presence and concentration of these potential interferences are a function of the season, microbial activity and plant growth. Therefore, %Ps will likely vary spatially and temporally within the marsh. The use of higher spikes concentrations for the salt marsh samples could also have improved the %P making it easier to detect the spike.

The mean TPH concentration found in the four sites within the contaminated salt marsh sediments of the Fore River was $3,000\pm2,584 \text{ mg/kg_dw}$. This concentration was lower than the 10,000 mg/kg_dw desired to conduct the *in situ* bioremediation study. The lower concentrations could have been the result of the low %P of EPA Method, the marsh areas tested being less heavily impacted by the *Julie N* spill or natural attenuation of the TPH between the September 1996 spill and February 1997 when sampling occurred.

Using the EPA method on Fore River Creek marsh samples with concentrations of 3,000±2,584 mg/kg_{dw}, ~100 replicate samples (p=0.05) from each plot would be needed to observe a change in concentration of 500 mg/kg_{dw} (See Equation 4.1 below) (Appendix D). The standard deviations associated with the TPH concentrations observed between the different replicates for all sites were very large necessitating analysis of a very high number of samples to achieve the small detectable differences (500 mg TPH/kg_{dw}) between samples. The large number of replicates made it impractical to use the EPA Method as a screening tool during this research. Generally, the more heterogeneous the system, the more sample replication is needed to achieve a low %CV and high %P (Zhu *et al.*, 2001).

Number of replicates of a sample required:

$$N \ge \left[\frac{ts}{U}\right]^2$$
 (Eq. 4.1)

where: N is the number of samples, t is the Student's *t*-statistic for a given confidence level (one tail, p=0.05), s is the overall standard deviation of marsh samples, and U is the

acceptable level of uncertainty or detectable difference desired between samples (i.e., 500 mg TPH/kg_{dw}).

4.1.2 ASTM Method

The ASTM Method was evaluated because of its high sample throughput (~30 samples per day; 10 min/sample) (ASTM, 1995), low cost (< \$10 per sample), and simplicity (Sorini *et al.*, 1997). This method uses an isopropyl alcohol extraction that is fast (3 min/sample). It has been used for monitoring organic-rich soils, which often cause interferences for other screening methods (Sorini *et al.*, 1997, 2001).

Three calibration curves were prepared for the ASTM Method to calculate the TPH concentrations in the marsh sediments (one for each batch of samples processed) (Figure 17). The slopes and y intercepts of the calibration curves were NSD (two tail *t*-test, p=0.05) (Table 12). The readbacks were within of the 95% C.I. of the calibration curves and the \pm 20% range recommended by ASTM (1995). The correlation coefficients (r²) for the calibration curves (Table 12) were higher than the minimum accepted value (0.995) for absorbance calibration curves (Standard Methods, 2000) Hence, all calibrations curves were acceptable and consistent between runs.

Calibration Curve	Slope (absorbance/mg/L)	y intercept (absorbance)	r ²	n
I	$4.41 \times 10^{-3} \pm 6.3 \times 10^{-5}$	$8.9 \times 10^{-3} \pm 4.5 \times 10^{-2}$	0.9990	4
2	$4.22 \times 10^{-3} \pm 4.5 \times 10^{-5}$	$7.0 \times 10^{-3} \pm 7.0 \times 10^{-3}$	0.9997	4
3	$4.36 \times 10^{-3} \pm 9.0 \times 10^{-6}$	$2.5 \times 10^{-3} \pm 1.4 \times 10^{-4}$	0.9999	4

Table 12. Calibration curves used for the TPH determination for the ASTM Method.

[] exceeds the minimum accepted value of 0.995

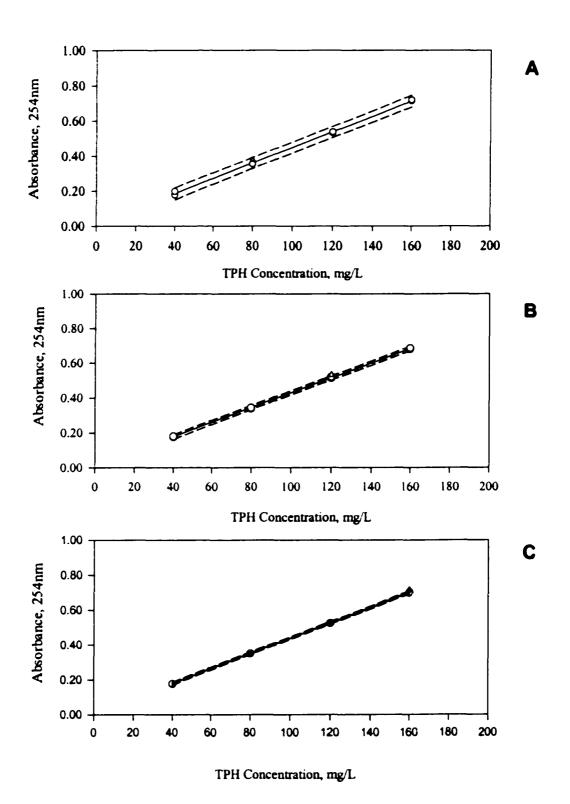


Figure 17. Calibration curves for the ASTM Method. Four different standards (0) were used (40.0, 80.0, 120.0 and 160.0 mg/L). A). Curve 1 Readback (Δ)(80 mg/L).
B) Curve 2 Readback(Δ)(120 mg/L). C) Curve 3 Readback (Δ)(160 mg/L). Slopes and y-intercepts for calibration curves shown in Table 12.

The absorbance of the lowest calibration standard (i.e., 40 mg/L) was used to calculate the MDL (52 mg/kg_{dw}) (one tail *t*-test, p=0.01) (Appendix D) (N.B., n=6 because the 40 mg/L standard was analyzed twice for each of the calibration runs. The 5.2 mg/L MDL for the liquid concentration corresponds to a MDL of 52 mg/kg_{dw} in the sediment samples (ASTM, 1995) (Table 13)). The LOQ of 180 mg/kg_{dw} (equivalent to 18 mg/L in liquid) was calculated as 10 times the standard deviation of the absorbance of the 40 mg/L standard (ASTM, 1995) (Appendix A). This LOQ was higher than that reported by ASTM for sand contaminated with diesel fuel (75 mg/kg), possibly because different conditions were used during the analysis. Unfortunately, ASTM did not report the calibration standard used to calculate its LOQ.

The ASTM Method was initially evaluated by analyzing CS and OS (Table 13). Not surprisingly, the TPH concentration for CS was lower than the MDL. As with the EPA Method, the unspiked OS had a significantly higher concentration than the LOQ. It was assumed that there was little to no TPH in the commercial OS used. Sorini (1997) reported that some humic materials present in OS can interfere at 254 nm, the wavelength recommended in the ASTM Method. It is likely that humic materials were present in the OS.

The %CV for the CS was higher than for the spiked samples probably because the TPH concentration was less than the calculated MDL (52 mg/kg_{dw}). There is usually a large amount of variation in data near detection limit. ASTM reported %CVs of 7% for diesel-contaminated sand and OS (802±54 mg/kg and 618±42 mg/kg, respectively). The precision obtained in this study for the spiked CS and OS samples was NSD from the published precision (β test, p=0.05), and was therefore considered acceptable. The spike

This high concentration of the spike helped reduce variation and improved the %P.

Sample	- mg/kg _{dw}		%CV	% Recovery of Spike, %P
Clean sand (CS)			[± 38 %]	-
Spiked CS ^a	2	1,800±77	±4%	94.3±4.0
Organic soil (OS)	2	270±18	±7%	-
Spiked OS ^a	2	2,900±199	±7%	78.0±5.7

Table 13. TPH concentrations obtained from the ASTM Method analysis of laboratoryspiked known samples.

*9.7 mg of No. 2 fuel oil to 5 g sample (1,940 mg/kg)). [] %CV exceeds acceptable published value of \leq 7 % BDL = below MDL of 52 mg/kg_{dw} BQL= below LOQ of 180 mg/kg_{dw}

{} %P significantly lower than published range (80%-120%) at p=0.05

The TPH concentrations in the spiked samples are modified by the dry weight .

The %Ps for the spiked CS and OS were NSD the ASTM recommended range (80%-120%) (Table 13) (two tail *t*-test, p=0.05). The %Ps for the spiked CS and OS were also NSD from each other (two tail *t*-test, p=0.05), but were SD at an 80% CI. Not surprisingly, the OS %P was lower than the CS, most likely due to the negative interference from humic substances retaining the TPH in the OS. In spite of this, the rapid isopropyl extraction and spectrophotometric analysis were able to recover an acceptable amount the No. 2 fuel oil from the OS.

The samples collected in the Fore River Creek salt marsh and previously analyzed by the EPA Method (Table 11) were also evaluated by the ASTM Method (Table 14). The marsh samples had higher %CVs than the spiked CS and OS analyzed previously (Table 13) and than published for the method. This was expected because of the highly variable composition of the sediments and the uneven distribution of TPH within them (Pritchard, 1993; Reynolds *et al.*, 1997).

Sample	n	TPH mg/kg _{dw}	%CV	%P
Site 1	4	3,000±2,359	[± 79 %]	-
Spiked Site 1 ^a	1	6,327		112.2
Site 2	4	1,400±791	[± 56 %]	-
Spiked Site 2 ^a	1	2,284		116.6
Site 3	4	6,800±3,445	[± 51 %]	-
Spiked Site 3 ²	1	4,499		98.6
Site 4	4	6,500±5,296	[± 82 %]	•
Spiked Site 4 ^a	1	8,245		108.3
Blank (CS)	2	(110±16)BQL*	[±15%]	-
Spiked Blank (CS) ^a	1	1,946		102.0

Table 14. TPH in the Fore River Creek salt marsh samples analyzed using the ASTM Method.

*9.7 mg of No. 2 fuel oil to 5 g sample (1,940 mg/kg)). [] %CV exceeds acceptable published value of \leq 7 % BQL = below MDL of 52 mg/kg_{dw} BQL= below LOQ of 180 mg/kg_{dw}

{} %P significantly lower than published range (80%-120%) at p=0.05

Although, the spike concentration (1,940 mg/kg) used during the marsh sediments analysis was lower than the recommended 2-3x concentration (~6,000 mg/kg_{dw}), all %Ps for the salt marsh sediments were in the 80%-120% range recommended by the ASTM Method. Most recoveries were higher than 100%. Sorini *et al.* (2001) reported that ASTM Method could yield higher concentrations than other methods because of its sensitivity to aromatic compounds present in the samples. Overall, the ASTM Method had better %Ps when spiked samples were analyzed, perhaps because the isopropyl alcohol extraction is more efficient. Unfortunately, only small numbers of replicates were analyzed during this part of the experiment. In future work, the number of replicates should be greater than one or two. The TPH concentrations in the contaminated salt marsh sediments measured by the ASTM Method were lower than the desired concentration (~10,000 mg/kg_{dw}) for the bioremediation field study. Using the ASTM Method on Fore River Creek salt marsh with a TPH concentration of $4,500\pm3,790$ mg/kg_{dw}, >100 replicates (p=0.05) of each sample would be needed to observe a change in concentration of 500 mg/kg_{dw} (Equation 4.1) (Appendix D). The large number of replicates was driven by the large standard deviations associated with the TPH concentrations in the marsh sediments relative to the desired detectable difference of 500 mg/kg_{dw}. This high number of replicates made it impractical to use the ASTM Method to evaluate the disappearance of TPH during the *in situ* bioremediation study.

4.1.3 <u>Comparison of the EPA and ASTM Methods</u>

The calculated MDL and LOQ were one order of magnitude lower for the ASTM Method than the EPA Method (Table 15). Hence, small TPH concentrations could be better detected and quantified using the ASTM Method. This occurred because the detection limits for the EPA Method were calculated by analysis of the standard deviation of the CS in contrast to the ASTM Method where the detection limits were calculated with the lowest calibration standard (40 mg/L). Both methods exhibited possible negative analytical interferences (%P < published criterion) from organic compounds in the unspiked OS samples (Table 15). This effect was much greater in the EPA Method when the marsh samples were analyzed indicating the EPA Method would be more problematic with the actual sediments.

			EPA Mo	ethod						ASTM	1 Method			
		MDL= 773 mg/kg		LOQ	2,06	0 mg/kg	ldw.	•	MDL= 52 mg	/kg _{dw}	LO)== 1	80 mg/k	Bdw
Sample		ТРН	± %	6 CV	Ι	0	ωP	• · · · ·	ТРН	± %	ώCV	 	9/	6Р
	n	Concentration mg/kg _{dw}	Value	Spec.* Met	n	Value	Spec.* Met	n	Concentration mg/kg _{dw}	Value	Spec.* Met	n	Value	Spec.* Met
CS	3	(140±194)BDL						2	(50±19)BDL					
SCS	4	38,000±2,540	7%	Yes	4	76±5	Yes		1,800±77	4%	Yes	2	94±4	Yes
OS	4	(2,000±1,828)BLQ						2	270±18	7%	Yes			
SOS	5	100,000±12,370	12%	Yes	5	70±8	Yes		2,900±199	7%	Yes	2	78±6	Yes
PCS	3	12,000±2,142	18%	Yes										
SPCS	4	55,000±6,653	12%	Yes	4	84±4	Yes							
Site 1	4	4,000±2,776	69%	No	1	71	No	4	3,000±2,359	79%	No	1	112	Yes
Site 2	4	3,000±2,460	82%	No	1	55	No	4	1,400±791	56%	No	1	117	Yes
Site 3	4	4,000±2,908	73%	No	1	64	No	4	6,800±3,445	51%	No	1	99	Yes
Site 4	4	3,000±3,018	101%	No	1	<u>62</u>	No	4	6,500±5,296	82%	No	1	108	Yes
Mean		shed method oritorion				63±7							109±8	

Table 15. Summary of the detection limits, %CVs and %Ps for the EPA and ASTM Methods.

*Meets published method criterion.

Precision for the EPA and ASTM Methods were within their recommended ranges when unspiked and spiked laboratory samples were analyzed. However, the ASTM Method had significantly better precision for spiked and unspiked OS than the EPA Method (F-test, p=0.05) (Table 16). Comparing the precision for samples from each site within the contaminated salt marsh indicated the two methods were NSD (F-test, p=0.05). However, all %CVs for the marsh sediments were outside the range specified by both methods because of the high *in situ* spatial variability in TPH and the highly heterogeneous conditions in the salt marsh sediments (e.g., fine sediment particles and *S. alterniflora* roots).

The %Ps of the two methods were within the published criteria for each method for spiked CS and OS. The %Ps for the two methods for the spiked OS samples were NSD (two tail *t*-test, p=0.05). However, the %P was significantly higher for the ASTM Method for the spiked CS (one tail *t*-test, p=0.05). With the contaminated salt marsh sediments, the two methods had SD %Ps (two tail *t*-test, p=0.05). The ASTM Method met the published criterion ($\pm 20\%$), but the EPA Method did not. These results indicated that the ASTM Method was preferred with respect to %P.

Sample	Concentration mg/kg _{dw}	%CV	%P
Spiked CS	-	NSD	SD
OS	SD	SD	NSD
Salt marsh sediments	NSD	NSD	SD

Table 16. Statistical comparison of the %CVs and %Ps for the EPA and ASTM Methods.

The extraction process of the samples was faster for the ASTM Method (0.05h) (EPA Method = 4h) because the samples could be weighted in the same bottles in which

110

the extraction was conducted and shaking was faster than performing a Soxhlet extraction. The very fine nature of the marsh sediments slowed the Soxhlet extraction step (4 samples/d). The ASTM Method was less expensive (~\$10 vs. \$30 per sample) because the EPA Method requires a large number of Soxhlet setups in the laboratory, whereas the ASTM Method uses disposable syringes and polytetrafluoroethylene filters.

Overall, the ASTM Method was judged to be the better method of the two for analyzing of the TPH of the salt marsh sediments because it had a lower calculated MDL and better precision for spiked and unspiked OS, and a higher and acceptable %P during the analysis of the spiked salt marsh sediments. The only problem with the ASTM Method was the high %CV for the marsh sediments which required a large number of replicates to be analyzed to obtain a detectable differences of 500 mg/kg_{dw}. In fact, the large number of replicates (> ~50) required for both methods resulted in the decision to seek another analytical method to evaluate the TPH degradation in the marsh sediments for use in the bioremediation study.

4.2 <u>TPH Concentrations in the Fore River Creek Salt Marsh</u>

The Fore River Creek salt marsh at Thompson Point (Portland, ME) was selected as the study site because oil droplets were observed in the sediments (Figure 18) and it was easy to get onto the marsh for the installation of the distribution wells and sampling. Power and water needed for the distribution systems were also readily available at the site. Once the Fore River Creek salt marsh was selected for the study, the location of individual test plots within the site had to be determined.

111

Figure 18. Droplets of oil in the sediments in the Fore River Creek salt marsh.

During a visit to the site in February 1998, four potential test plots locations (A,B,C,D) were identified at the entrance of the marsh, where most of the contamination from the *Julie N* spill occurred (Reilly, 1998). Two sets of sediment samples from each location were analyzed using the ASTM Method (February 17 and March 6, 1998) (Table 17). Subsequently, Dr. Lehmann (NOAA) realized that Site A was part of a long-term monitoring program on the recovery of *S. alterniflora* being conducted by his agency and Research Planning International (Columbia, SC). Therefore, this plot could not be used for the bioremediation study. In addition, Plot B had low sediment TPH concentrations (<5,000 mg/kg_{dw}) (Table 17), so two more locations (E and F) were selected to determine their efficacy as test plots (Figure 19).

			Set of Sa	mples	
	-	First (February 1	7,1998)	Second (March)	5, 1998)
Sample	n	TPH mg/kg _{dw}	%CV	TPH mg/kg _{dw}	%CV
Plot A	4	10,000±6,325	[± 63 %]	13,000±7,830	[± 60 %]
Plot B	4	4,000±2,377	[± 59 %]	2,900±710	[± 25 %]
Plot C	4	18,000±8,748	[± 49 %]	19,000±13,194	[± 69 %]
Plot D	4	17,000±15,962	[± 93 %]	23,000±9,192	[± 40 %]
Plot E	4	7,000±2,582	[± 36 %]	7,000±2,348	[± 35 %]
Plot F	4	9,000±3,635	[± 42 %]	9,000±3,650	[± 41 %]
Blank (CS)	2	(85±15)BQL [•]	[± 18 %]	(130±32)BQL*	[± 25 %]

Table 17. TPH for the initial candidate test plots in the Fore River Creek salt marsh (ASTM Method).

BQL=below LOQ of 180 mg/kg_{dw}

[] %CV exceeds acceptable published value of \leq 7 %

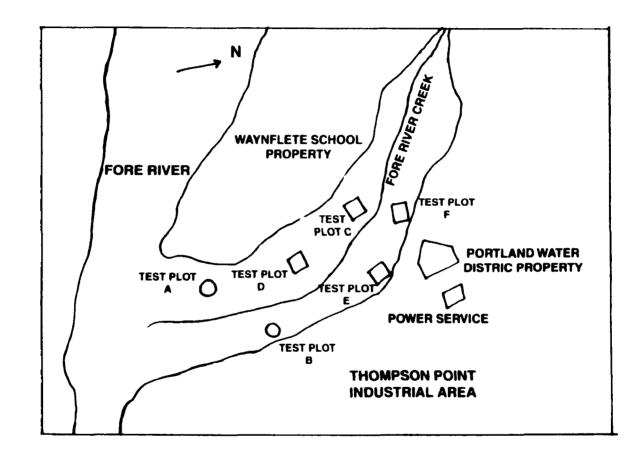


Figure 19. Relative location of the candidate test plots in the Fore River Creek salt marsh. (Not to scale)

The TPH concentration in the blank (CS) was again lower that the LOQ as expected, and for both events the %CVs for the CS were lower than previously obtained $(\pm 38\%)$ (Table 13). This increase in precision was probably the result of the increased operator experience with the method. During this part of the study, Calibration Curve 3 was prepared and used (Figure 17C). The concentrations obtained in each of the plots on the two days (e.g., A vs. A) were NSD (two tail *t*-test, p=0.05) indicating that there was no significant short term change in TPH during this period of cold weather. Plots C, D, E, F were selected for use in the bioremediation study because their TPH concentrations were closer or greater than the desired 10,000 mg/kg_{dw} and they were not being used by NOAA.

The variability in the TPH concentration for the salt marsh sediments was worse than that of the OS (F test, p=0.05) (Table 13). However, the %CVs for the February and March samples were NSD (Bartlett test, p=0.05) from the %CVs found previously with the ASTM Method for the contaminated salt marsh sediments (Table 14). The relative highly %CVs obtained did not meet the ASTM Method criteria (\leq 7%) probably because of the high *in situ* variability of the TPH. For some plots, one of the replicates had a markedly different TPH concentration than the others (e.g., Site D, sampled on February 2, 1998) increasing the %CVs (Figures 20 and 21). Again, this was attributed to pockets of TPH causing high *in situ* variability in TPH.

A third sampling round was conducted on March 25, 1998 to compare the results obtained by UNH using the ASTM Method with those of Aquarian Analytical, Inc. (Canterbury, NH) using the MADEP Method (Table 18).

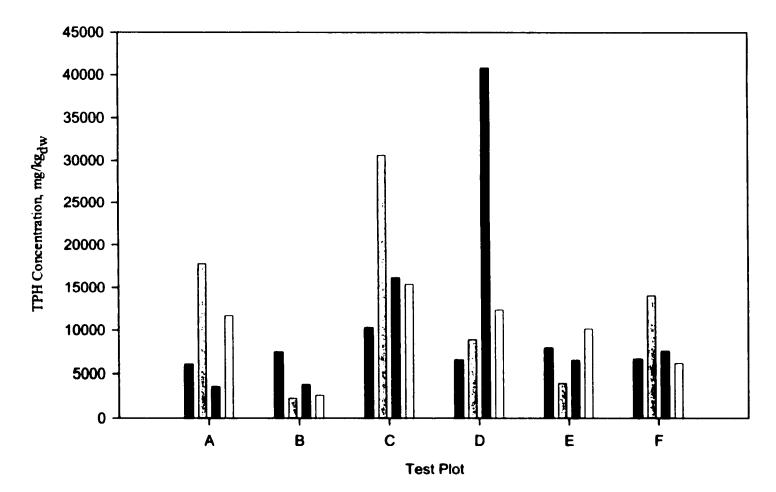


Figure 20. TPH concentrations using the ASTM Method for the candidate test plots from the Fore River Creek salt marsh on February 17, 1998. (4 replicates for each plot)

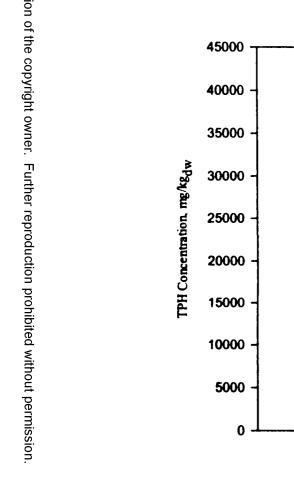


Figure 21. TPH concentrations using the ASTM Method for the candidate test plots from the Fore River Creek salt marsh on March 6, 1998. (n=4 replicates)

Test Plot

D

Ε

F

С

В

A

117

	ASTM Metho	MADEP Method (n=1)	
Sample	TPH mg/kg _{dw}	%CV	TPH mg/kg _{dw}
Plot C	12,500±175	± 1.4 %	5,700
Plot D	10,500±437	± 4.1 %	7,300
Plot E	17,000±4,881	[± 29 %]	2,900
Plot F	7,000±190	± 2.7 %	3,700
Blank (CS)	(23±9.7)BDL*	[± 42 %]	

Table 18. TPH concentrations in split salt marsh sediments samples (ASTM and MADEP Methods).

BDL=below MDL of 52 mg/kg_{dw} for the ASTM Method

[] %CV exceeds acceptable published value of \leq 7 %

The concentration obtained for the CS was BDL, as expected indicating that the operator was getting better at analyzing the blanks. The high %CV of the CS was expected in this concentration range. The %CVs from the split samples (Plots C,D,E,F) analyzed at the UNH laboratory were significantly lower than the values previously obtained from the marsh samples analyzed with the ASTM Method (e.g., E vs. E) (F test, p=0.05) (Table 17) and most had better precision than recommended by ASTM (1995). This could be explained in part because of the special attention given to the homogenization of the samples before taking the three subsamples: one to send to Aquarian Analytical and two analyzed at UNH.

The TPH concentrations for each plot on March 25, 1998 were NSD (two tail *t*-test, p=0.05) from those found in the first and second sampling rounds (except for Site E that was SH) (Table 18). It is possible that during this event one of the sample locations in Plot E may have had some oil droplets.

TPH concentrations found in the split marsh samples analyzed with the ASTM Method were significantly higher (one tail *t*-test, p=0.05) by as much as ~5,000 mg/kg_{dw}. than the concentrations reported by the Aquarian Analytical using the MADEP Method. For Plots C, D and F differences were > 50%, while for Plot E differences were > 200%.

Previously, the ASTM Method had high %Ps when marsh sediments were spiked with No. 2 fuel oil (Table 15), which could have been the result of NOM that absorbed 254 nm light (Sorini *et al.*, 2001). Aquarian Analytical reported a %P of 80±14% for the marsh samples analyzed by the MADEP Method (based on surrogate recovery).

The MADEP Method was used for all subsequent analysis because it was reported to yield reliable results that could be used to assess and evaluate the extent of bioremediation occurring during the study (Rice, 1998; Weisman, 1998). The MADEP method increased the time required to analyze the samples (12 samples/d) and the cost per sample was higher (~\$50/sample). However, it allowed TPH characterization (SC and LC aliphatics and aromatics HCs) that is important when monitoring the effectiveness of *in situ* biodegradation. The MADEP Method is reported (Weisman, 1998) to have less interferences with NOM because the identification and quantification of TPH are conducted using gas chromatography.

4.2.1 Depth of Contamination in the Marsh Sediments

Sediment samples were taken at three depths in Plot D of the Fore River Creek salt marsh (n=1): 0 to 4 cm, 4 to 6 cm and 9 to 11 cm. The samples were sent to Aquarian Analytical and analyzed using the MADEP Method (Table 19). The highest TPH concentration was present in the top interval. This amount of TPH penetration in the sediments ~19 months after the *Julie N* spill was consistent with what has been observed in other contaminated marshes. Burns and Teal (1979) found ~4,300 mg TPH/kg from 0 to 5 cm and 15 mg TPH/kg from 45 to 50 cm below the surface during studies two years after a West Falmouth, MA spill of No. 2 oil. They suggested that the oil concentration decreased exponentially with depth because of diffusion or small scale

120

mixing. In addition, they found that five years after the spill, while the overall TPH concentration had decreased, the concentration was still highest between 0 and 5 cm ($\sim 2,100 \text{ mg TPH/kg}$).

Depth, cm	TPH Concentration. mg/kgdw
0-4	6,700
4-6	24
9-11	640

Table 19. TPH concentrations at depth in the Fore River Creek salt marsh sediments of Plot D (n=1).

The rate and depth of oil penetration also depends on the porosity of the substrate (Zhu *et al.*, 2001). For coarse-grained shorelines (e.g., cobble and sandy beaches), oil can penetrate deeper and stay longer, compared to fine-grained sediments (e.g., silts and clay) such as found in salt marshes. Generally, in salt marshes if no action is taken (e.g., tilling), the spilled oil will not travel deeper into the sediments. Under a controlled No. 2 fuel oil spill, Hershner and Lake (1980) found that the maximum oil penetration in a Chesapeake Bay salt marsh was < 20 cm. Five and half months after dosing ended, the highest concentration was present in the 0 to 10 cm region. They suggested that because the marsh studied was relatively young (in geological time), the depth of marsh peat and nature of the underlying sediment contributed to the minimal penetration. Mille *et al.* (1998) studied the Ile Grande salt marshes (Brittany, France) that were contaminated by the *Amoco Cadiz* spill in 1978. After the spill, they found a penetration similar to that in the Fore River Creek salt marsh. They found no contamination in the lower layers (12 to 20 cm) in any of the locations they studied. As a result of this evaluation, sediment

samples were collected from 0-4 cm during the *in situ* bioremediation study in the Fore River Creek marsh.

4.3 <u>OC for MADEP Method</u>

This section presents the QC results for the MADEP Method during this dissertation research.

4.3.1 Instrument QC

The surrogates (COD and OTP) and IS (5-alpha-androstane) were adequately resolved in the GC chromatograms having RTs separate from the individual components in the aliphatic and aromatic calibration standards and eluting at or near the representative RTs specified in the MADEP Method. Using the split injection, the first aliphatic peak (n-nonane; n-C₉) peak was resolved from the solvent (hexane or methylene chloride) peak. The RT windows were calculated and adjusted three times during the study (Tables 20 and 21). They were slightly different than those cited in the MADEP Method. because the column and chromatographic conditions used were specific for the UNH laboratory (See Chapter III-Materials and Methods). The calibration standard checks run between samples were used to identify and verify the IS and surrogate RTs in each event. Initially, there was a problem for the aromatic peaks that were very close (i.e., Indenol [1,2,3-cd] pyrene and dibenzo [a,h] anthracene). This was resolved using a suggestion by Dr. Rice (Aquarian Analytical) to force a horizontal projection during the GC integration after the pyrene. Overall, there were no problems with the RT windows during the bioremediation study.

	MADEP	RT Calibration 1 (min)		RT Ca	libration 2 (min)	RT Calibration 3 (min)		
Compound	RT(min)	Mean	Window	Mean	Window	Mean	Window	
n-Nonane (C ₉)	3.14	3.088	3.017 -3.159	3.117	3.028 - 3.205	3.004	2.986 -3.022	
n-Decane (C ₁₀)	4.55	4.441	4.401 -4.481	4.542	4.432 -4.652	4.351	4.334 -4.367	
n-Dodecane (C ₁₂)	7.86	7.882	7.836 -7.928	8.065	7.922 -8.207	7.786	7.748 -7.824	
n-Tetradecane (C ₁₄)	11.10	11.390	11.334 -11.445	11.605	11.442 -11.767	11.286	11.230 -11.342	
n-Hexadecane (C ₁₆)	14.05	14.608	14.545 -14.672	14.847	14.676 -15.018	14.416	13.539 -15.293	
n-Octadecane (C ₁₈)	16.71	17.520	17.450 -17.589	17.781	17.604 -17.958	17.407	17.339 -17.475	
n-Nonadecane (C ₁₉)	17.95	18.873	18.801 -18.945	19.148	18.969 -19.327	18.758	18.687 -18.828	
n-Eicosane (C ₂₀)	19.14	20.162	20.092 -20.232	20.449	20.267 -20.631	20.044	19.971 -20.117	
5-alpha Androstane (IS)	N/A	20.502	20.424 -20.579	20.805	20.610 -21.001	20.382	20.350 -20.414	
COD (surrogate)	20.13	21.277	21.206 -21.348	21.568	21.382 -21.755	21.152	21.083 -21.220	
n-Docosane (C ₂₂)	21.35	22.574	22.498 -22.650	22.884	22.697 -23.071	22.451	22.371 -22.530	
n-Tetracosane (C ₂₄)	23.40	24.789	24.709 -24.868	25.124	24.939 -25.310	24.660	24.582 -24.739	
n-Hexacosane (C ₂₆)	25.29	26.834	26.753 -26.915	27.195	27.010 -27.381	26.704	26.625 -26.783	
n-Octacosane (C ₂₈)	27.04	28.732	28.645 -28.818	29.116	28.929 -29.303	28.599	28.522 -28.676	
n-Triacontane (C ₃₀)	28.69	30.561	30.458 - 30.663	31.050	30.819 -31.282	30.407	30.326 -30.488	
n-Hexatriacotane (C ₃₆)	34.82	40.393	40.119 -40.666	42.145	41.453 -42.838	39.901	39.724 -40.079	

Table 20. RT windows for the aliphatic standards in the MADEP Method during the study.

RT Calibration 1 used for June and July 1998.

RT Calibration 2 used for August, September and October 1998. RT Calibration 3 used for April, May and June 1999.

N/A Not available.

	MADEP		RT Calibration 1 (min)		RT Calibration 2 (min)		RT Calibration 3 (min)	
Compound	RT(min)	Mean	Window	Mean	Rt Window	Mean	Window	
Naphthalene	7.660	7.756	7.718-7.793	7.903	7.744 -8.063	7.648	7.613 - 7.682	
2-Methylnaphthalene	9.490	9.723	9.683-9.763	9.896	9.716-10.076	9.616	9.569-9.663	
Acenaphthylene	11.930	12.402	12.359-12.445	12.600	12.403-12.796	12.290	12.230-12.350	
Acenaphthene	12.460	12.983	12.939-13.026	13.189	12.990-13.388	12.869	12.804-12.934	
Fluorene	13.890	14.556	14.513-14.599	14.771	14.564-14.977	14.442	14.370-14.513	
Phenanthrene	16.540	17.503	17.460-17.546	17.740	17.522-17.957	17.386	17.310-17.461	
Anthracene	16.660	17.642	17.593-17.692	17.882	17.658-18.106	17.528	17.440-17.616	
OTP (surrogate)	17.950	19.013	18.975-19.051	19.251	19.043 - 19.460	18.886	18.817-18.955	
5-alpha Androstane (IS)	N/A	20.512	20.497-20.526	20.807	20.594-21.020	20.388	20.350-20.426	
Fluoranthene	19.920	21.248	21.200-21.296	21.519	21.288-21.750	21.127	21.048-21.205	
Pyrene	20.510	21.913	21.859-21.967	22.192	21.958-22.427	21.792	21.704-21.880	
Benzo(a)Anthracene	24.080	25.750	25.692-25.808	26.065	25.825-26.305	25.630	25.549-25.712	
Chrysene	24.210	26.026	24.911-27.141	26.199	25.954-26.444	25.761	25.660-25.862	
Benzo(b)Fluoranthene	26.940	28.961	28.893-29.028	29.306	29.055-29.556	28.839	28.754 - 28.925	
Benzo(k)Fluoranthene	27.020	29.039	28.952-29.126	29.386	29.129-29.643	28.917	28.804-29.031	
Benzo(a)Pyrene	27.660	29.703	28.787-30.619	30.189	29.915-30.463	29.701	29.614-29.789	
Indeno(1,2,3-cd)Pyrene	30.250	33.401	33.261-33.542	34.031	33.606-34.456	33.227	33.087-33.367	
Dibenzo(a,h)Anthracene	30.360	33.535	33.390-33.680	34.183	33.764-34.602	33.332	33.187 - 33.476	
Benzo(g,h,i)Perylene	30.760	34.380	34.198-34.562	35.096	34.619-35.572	34.186	34.023-34.349	

Table 21. RT windows for the aromatic standards in the MADEP Method during the study.

RT Calibration 1 used for June and July1998.

RT Calibration 2 used for August, September and October1998.

RT Calibration 3 used for April, May and June1999.

N/A Not available.

4.3.2 <u>Calibration</u>

An internal calibration method was used. The calibration was based on the five calibration standards and an IS. During the study, three calibrations were prepared: June 9, 1998 [(n=1) (used for June10-11, July 7-8 and July 26-27, 1998)], August 13, 1998 [(n=3) (used for August 17-18, September 18-19 and October 16-17, 1998)] and April 27, 1999 [(n=3) (used for April 9-10, May 11-12 and June 9-10, 1999)] (Appendix B). The calibration data were used to generate RFs in each standard concentration for each compound. RRFs as the arithmetic average of the individual RFs for the SC, and LC aliphatics and aromatics were also calculated.

All calibrations, based on the RFs, were generally acceptable because the %CVs were $\leq 25\%$ over the working range (Tables 22 and 23) (MADEP, 1998a). The mean RRF for each calibration was used to calculate SC and LC aliphatic and aromatic concentrations for each sampling event (Table 24).

For the first calibration (June 9, 1998), some of the %CVs for the aromatic compounds were $\geq 25\%$, especially for those compounds that were resolving close together (e.g., benzo (k) fluoranthene and benzo (a) pyrene). After discussing this problem with Dr. Rice (Aquarian Analytical), the integration method was adjusted to baseline to separate these peaks. The calibration was reintegrated and the %CVs were reduced to $\leq 25\%$. The corrected RRFs were used to calculate the TPH concentrations for the June 10-11, July 8-7 and July 26-27, 1998 data (Table 24). For the second calibration (August 13, 1998), some of the C₁₂-C₁₈ data had %CVs > 25%.

Compound	% CVs of Calibrations							
Calibration Curve #	1		3					
n-Nonane (C ₉)	7.1	10.4	19.8	23.7	13.5	5.9	15.3	
n-Decane (C ₁₀)	9.3	10.9	21.7	27.6	14.6	1.7	4.0	
n-Dodecane (C ₁₂)	7.8	12.3	22.0	30.0*	6.1	10.3	4.6	
n-Tetradecane (C ₁₄)	6.1	12.9	20.7	30.0*	3.3	9.9	5.1	
n-Hexadecane (C ₁₆)	5.3	12.7	19.7	28.0*	5.6	8.1	4.4	
n-Octadecane (C ₁₈)	15.6	12.2	19.2	25.8*	5.6	6.3	4.5	
n-Nonadecane (C ₁₉)	7.5	12.0	18.7	25.0	5.4	5.5	4.0	
n-Eicosane (C ₂₀)	6.1	11.2	21.4	24.3	5.0	4.8	4.0	
COD (surrogate)	9.2	7.4	18.6	24.8	6.5	5.7	5.3	
n-Docosane (C ₂₂)	8.9	11.0	18.7	23.9	5.1	3.9	3.6	
n-Tetracosane (C ₂₄)	6.5	11.2	19.2	23.9	5.4	3.6	3.6	
n-Hexacosane (C ₂₆)	6.9	11.7	19.7	24.5	6.2	4.7	4.9	
n-Octacosane (C ₂₈)	7.5	10.7	19.7	24.6	5.0	4.5	5.4	
n-Triacontane (C ₃₀)	6.9	12.4	24.5	24.9	8.6	6.9	8.3	
n-Hexatriacotane (C ₃₆)	9.1	19.0	19.8	27.8*	18.4	19.7	20.4	

Table 22. %CVs for the aliphatic standards in the MADEP Method used in the calibrations.

* Exceeds the 25% maximum %CV cited by the MADEP Method. For Calibration Curve 1, only one replicate is shown because the data file containing the others was lost.

Compound	% CV of Calibrations								
	1 2				3				
Naphthalene	4.7	5.5	3.0	1.8	10.6	9.8	7.2		
2-Methylnaphthalene	4.6	5.2	3.1	2.1	10.2	9.5	7.5		
Acenaphthylene	3.7	5.3	3.2	1.7	8.6	8.2	6.1		
Acenaphthene	4.0	4.8	3.3	2.2	6.7	6.3	5.2		
Fluorene	4.4	4.5	3.5	2.5	5.7	5.5	5.0		
Phenanthrene	5.4	5.9	4.2	3.8	11.2	13.0	10.3		
Anthracene	6.5	6.3	3.9	4.3	12.1	12.3	11.3		
OTP (surrogate)	5.0	5.4	4.4	4.0	5.7	5.4	4.7		
Fluoranthene	4.8	6.8	5.5	5.9	6.8	5.0	5.0		
Pvrene	4.4	7.4	5.6	6.0	6.0	9.7	5.4		
Benzo(a)Anthracene	5.4	10.8	8.3	12.1	11.9	11.5	11.7		
Chrvsene	5.4	10.6	8.6	11.5	2.0	3.3	2.5		
Benzo(b)Fluoranthene	4.2	11.0	9.7	12.7	18.1	18.0	18.0		
Benzo(k)Fluoranthene	10.0	5.9	5.4	7.5	19.7	17.7	14.8		
Benzo(a)Pyrene	13.3	7.7	14.2	13.6	3.7	2.4	3.8		
Indeno(1,2,3-cd)Pyrene	4.6	8.6	14.0	11.0	11.6	13.9	22.9		
Dibenzo(a,h)Anthracene	6.5	12.8	25.2*	21.6	11.1	10.4	5.9		
Benzo(g,h,i)Pervlene	6.6	10.4	23.6	20.3	16.6	8.6	17.4		

Table 23 %CVs for the aromatic standards in the MADEP Method used in the calibrations.

* Exceeds the 25% maximum %CV cited by the MADEP Method. For Calibration Curve 1, only one replicate is shown because the data file containing the others was lost.

However, because these %CVs were close to 25% and the %CVs of the other data generated for the calibration were $\leq 25\%$, all of the data were used for the August 17-18, September 18-19 and October 16-17, 1998 events.

<th collectination in the second second

0.82

0.79

0.98

1.00

Table 24. Mean RRFs used for calculation of SC and LC aliphatic and aromatic concentrations.

MADEP specifies that the RRFs should be ~ 1.00 .

LC Aliphatics

Aromatics

In order to demonstrate the absence of mass discrimination during the study, the ratio of n-octadecane (C₂₈) to n-Eicosane (C₂₀) area counts was evaluated for the standards used during the calibrations (Figure 22). This ratio is used because both C₂₈ and C₂₀ belong to the LC aliphatic fraction. The MADEP Method stipulates that the ratio must be ≥ 0.85 (MADEP, 1998a).

Initially, the C_{28}/C_{20} ratio was not monitored during the study. After realizing this omission, the ratio was calculated based on the aliphatic check standards (Figure 23). Generally the ratios were all ≥ 0.85 . Although September 18-19 and October 16-17, 1998 ratios were ≤ 0.85 , the data were used because they were close to the stated value. A new column was purchased, a new calibration prepared on April 27, 1999 and, and all samples (Figure 22) from April 9-10, 1999 were reanalyzed. With the new column and calibration, all of the ratios were ≥ 0.85 . [N.B., All of the data shown in this dissertation for April 9-10, May 11-12 and June 9-10, 1999 were generated using this column.]

0.91

0.84

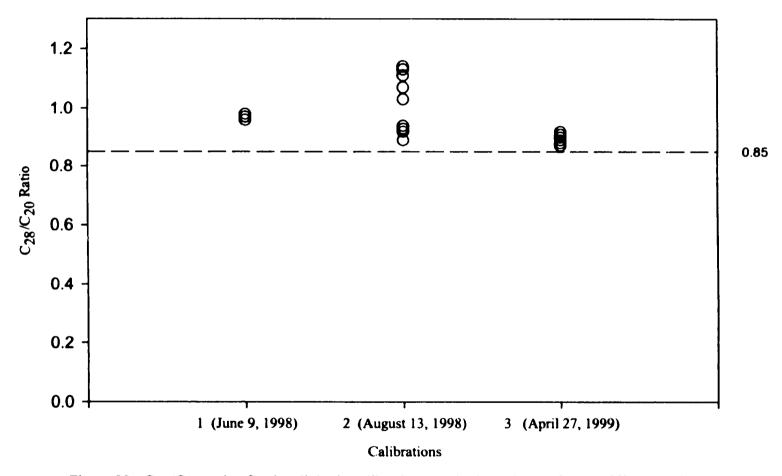


Figure 22. C_{28}/C_{20} ratios for the aliphatic calibration standards evaluated for the different calibrations. 0.85 is the C_{28}/C_{20} ratio stipulated by the MADEP Method.

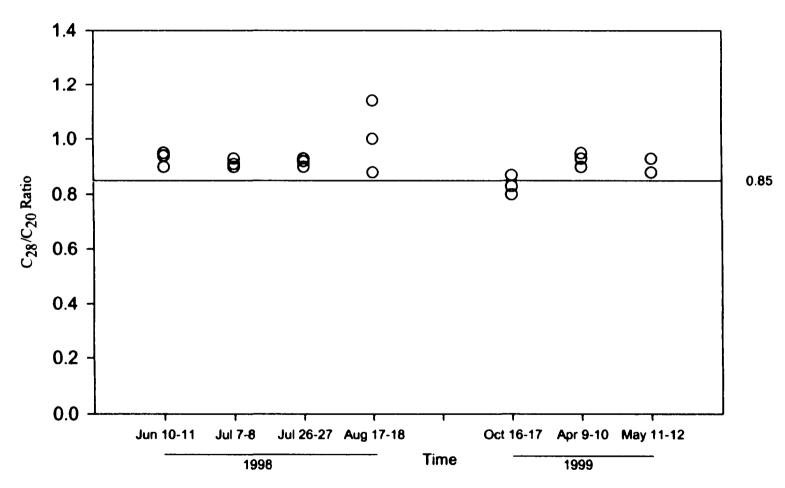


Figure 23. C_{28}/C_{20} ratios for the aliphatic calibration standards checks during the sampling events. 0.85 is the C_{28}/C_{20} ratio stipulated by the MADEP Method.

4.3.3 <u>QC Monitoring</u>

After every 20 samples analyzed during each sampling event, calibration check standards were run to monitor QC. These standards were prepared from the same stock solution as the calibration standards for Calibrations 1, 2 and 3, and were generally mid-level concentrations.

The calibration checks for each sampling event were also used to calculate RFs and those were compared, as RPDs with the RFs from the calibrations curves (1, 2 or 3) for the specific concentration of the standard (Figure 24). The MADEP Method specifies that the RPDs must be $\leq 25\%$. This criterion was meet throughout the study for all compounds.

4.3.4 <u>Solvent, Laboratory and Trip Blanks.</u>

Solvent blanks (hexane or methylene chloride) were analyzed at the beginning of each batch of samples to evaluate if there was any contamination in the solvent or GC (e.g., column, liner or detector). If any peaks were detected, then several solvent blanks were run to clean the GC and determine if the contamination persisted that it was in the solvent. Fine aggregate sand (Ossipee Aggregate) was used for laboratory blanks (LBs) and trip blanks (TBs) to evaluate the sampling performance and analyze recovery in a blank matrix. The sand was muffled at 550°C for 2 h to eliminate organic contamination. For TBs, the muffled sand was placed in pre-cleaned glass bottles and transported to the field to monitor potential contamination during sampling, transportation and storage. The LBs were kept in the laboratory in a close jar until processing. The TBs and LBs were spiked with the IS and aliphatic and aromatic surrogates just before extraction.

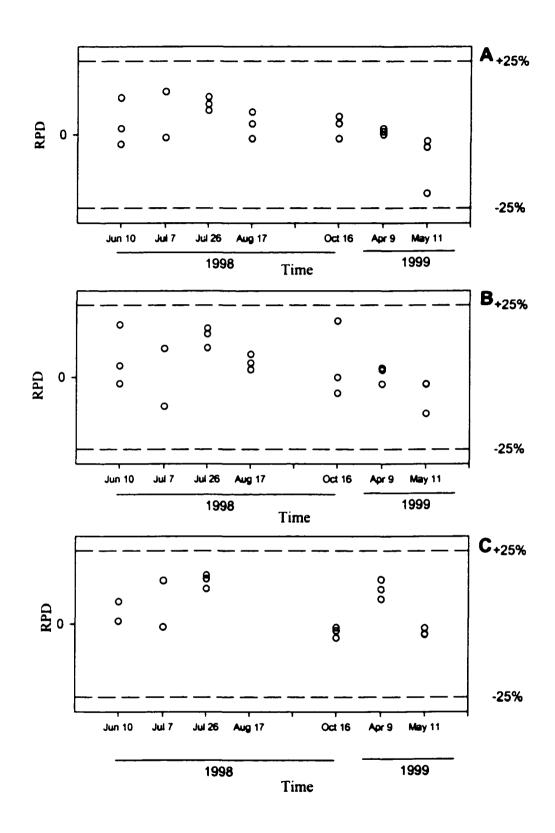


Figure 24. RPDs during the sampling events. A) SC aliphatics, B) LC aliphatics, and C) aromatics. $\pm 25\%$ is the RPD stipulated by the MADEP Method.

The TBs and LBs were exposed to all glassware, solvents, reagents, and equipment used during the analysis. In addition, their area counts were used for baseline correction of peaks attributable to the leaching of plasticizers or other contamination from the silica gel SPE columns (MADEP, 1998a).

The LBs and TBs for July 7-8 and July 26-27, 1998 were contaminated with SC and LC aliphatics and aromatics (Figure 25). After checking all procedures (by running methylene chloride through the extraction and GC process), it was determined that the sand used for the LBs was contaminated with TPH. During the study, large (kg) batches of the sand were muffled and placed in a single wide-cap mouth plastic container and stored for long periods of time (~6 weeks). Because, the storage container was plastic, it could not be muffled. It is likely that the sand was contaminated by mistake. After the problem was discovered, only small amounts of sand (g) were muffled and these were kept in low volume pre-muffled, sealed glass bottles for short periods of time (~3 d) prior All SC and LC aliphatic and aromatic concentrations were corrected by to use. subtracting the mean area counts for the blanks from the sample area counts for each event as recommended by the MADEP Method. To be able to use the sample data from July 7-8 and July 26-27, 1998, the area counts for the LBs and TBs for August 1998 through June 1999 were averaged and those values were used to correct the sample TPH concentrations for July 1998 (Figure 25).

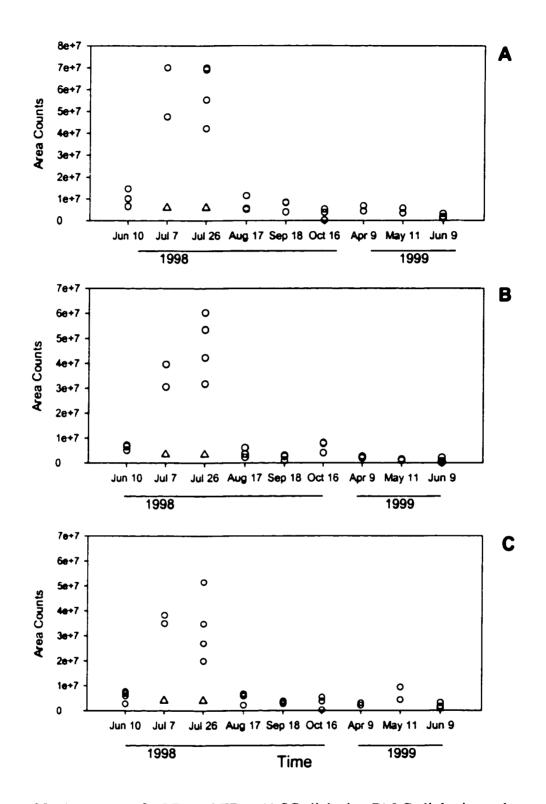


Figure 25. Area counts for LBs and TBs. A) SC aliphatics, B) LC aliphatics and C) aromatics. ∆ is the mean blank used value for August 1998-June 1999 instead of the contaminated blanks originally associated with the July 7 and 26, 1998 sampling dates.

4.3.5 <u>Surrogate Recovery</u>

Two surrogates were used (OTP and COD for the aromatic and aliphatic fractions, respectively). They were added to the samples in the laboratory just before extraction began, so that the overall efficiency of the method could be determined.

A surrogate's behavior mimics that of the analytes of interest, but surrogate compounds are not typically found in natural environments. Hence, they can be used to correct extraction efficiency and %P in each sample. The surrogate recoveries were also used to compensate the SC and LC aliphatics and aromatic concentrations for any loss or gain in the %P during the extraction and analysis.

4.3.5.1 Blank Surrogate Recovery

The acceptable surrogate range used in this study (40 to 140 %P) is specified by the MADEP Method. Some of the initial surrogate recoveries for TBs and LBs (June 10-11, 1998) were low and out of range (Figure 26).

The main reason for this was the inexperience of the analyst with the MADEP Method. The extraction process must be done carefully to avoid loss of the surrogate (e.g., via sonication, and filtration and concentration of the extract). One problem noted in August 1998 was that the extraction solvent (methylene chloride) was being shaken out of the vial during sonication. To avoid this problem, the power of the sonicator was decreased until loss of solvent was not evident. In addition, Dr. Rice (Aquarian Analytical Laboratory) recommended that the surrogates and IS be added to blanks and samples using GC glass micro-syringes (VWR) instead of a micropipette. Extraction vials were also placed into a beaker containing cold water to minimize solvent heating and TPH volatilization during sonication.

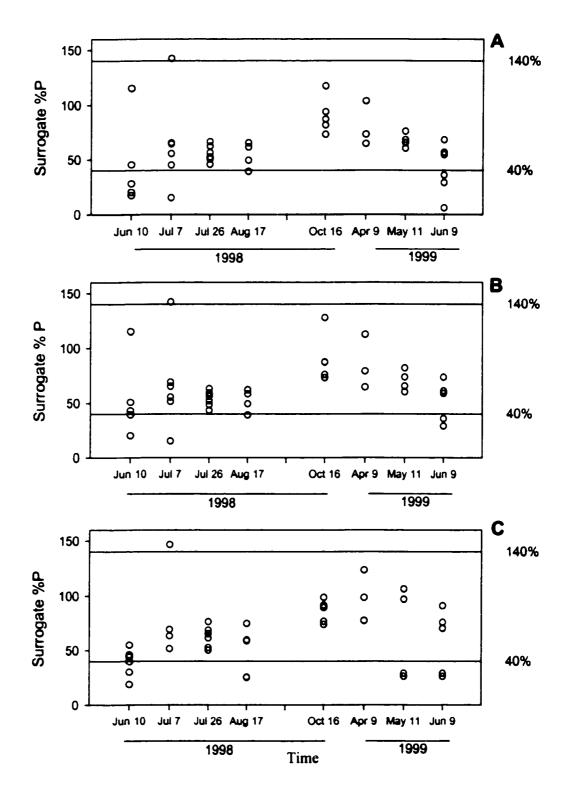


Figure 26. Control chart for LB and TB surrogate %Ps .The surrogates used were COD and OTP for the aliphatic and aromatic fractions, respectively.A) SC aliphatics, B) LC aliphatics and C) aromatics. 40-140 is the %P range stipulated by the MADEP Method.

During rinsing of the sonicator horns, special care was also taken to avoid TPH losses. Because of these changes, most of the blanks recoveries after August 1998 were higher and within the 40-140% range recommended by the MADEP (Figure 26). Lower recoveries were observed for June 9-10, 1999 because a new group of graduate students had taken over the analyses.

Samples from September 18-19, 1998 were discarded because the SPE fractionation was conducted using Supelco (Bellefonte, PA) silica gel columns instead of those manufactured by Waters Corporation (Milford, MA) that were out of stock in September 1998. The extraction performed with the Supelco columns did not meet QC criteria. By the time, the Waters columns became available the maximum holding time (14 days) for the September 18 and 19 sediment samples had been exceeded, so they could not be reanalyzed. Therefore, no TPH data is shown for September 18-19, 1998.

4.3.5.2 <u>Sample Surrogate Recovery</u>

Because of the high water and NOM content of the salt marsh sediments, as well as the small particle size, the surrogate recoveries in the samples were lower than for the LBs and TBs (Figure 27). The original draft of the MADEP method specified a Soxhlet extraction. However, after the second interlaboratory "Round Robin" evaluation was conducted by MADEP, a sonication extraction procedure was found to yield good %Ps for sand samples (MADEP, 1998b). The sonication extraction is not as rigorous as other extraction methods and is not recommended for applications where high extraction efficiencies of analytes at very low concentrations are necessary (e.g., demonstration of effectiveness of corrective action) (EPA, 1994). However, the TPH concentrations in this study in the salt marsh sediments were high (4,000 to 5000 mg TPH/kg_{dw}).

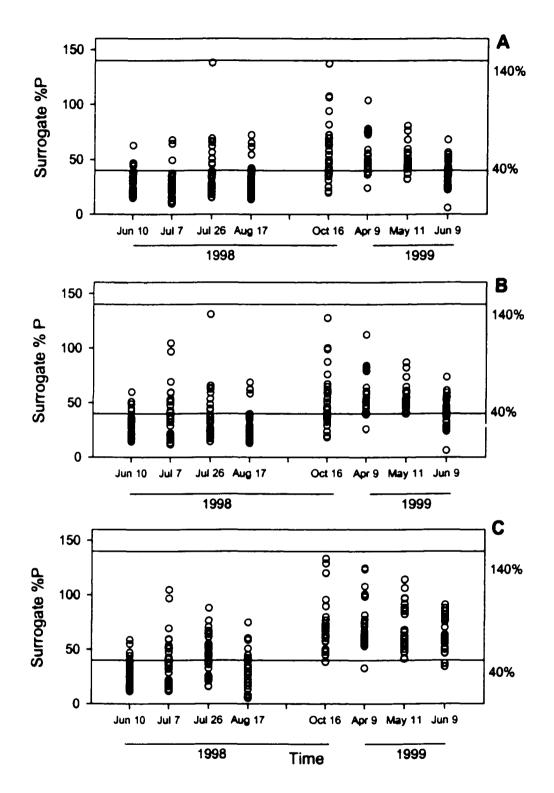


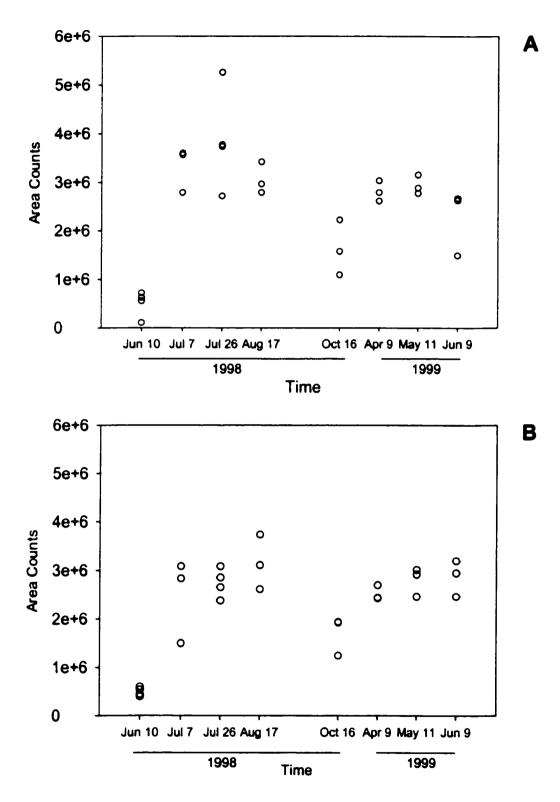
Figure 27. Control chart for the samples surrogate %Ps. The surrogates used were COD and OTP for the aliphatics and aromatic fractions, respectively.A) SC aliphatics, B) LC aliphatics and C) aromatics. 40-140 is the %P range stipulated by the MADEP Method.

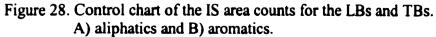
Sonication was preferred for the marsh samples because of its short extraction process (~ 0.25 h) compared to the Soxhlet extraction (4 h). In addition, the dual horn sonicator allowed extraction of two samples concurrently.

Several critical steps responsible for the low recoveries with the sediment samples were identified. During the initial sampling events, the sediments were placed in extraction vials and the surrogates and sodium sulfate were added. After removing the water from the sample, the sodium sulfate formed a compact layer preventing complete mixing of the sample and solvent contact with the sediments. This problem was solved by rigorously mixing the samples and minimizing holding time before adding the solvent (methylene chloride) and starting the sonication. Filtration of some samples was very slow (>45 min) because the fine sediments clogged the filter paper and the only way to continue was to transfer the material to a new filter. During the transfer, some surrogate may have been lost. In addition, clogging of the silica gel column made the solvent elute very slowly from some samples.

After solving these issues and the problems described for the blanks (Section 4.3.5.1), most of the %Ps for the aromatic surrogate from October 1998 to June 1999 were within the recommended range (40-140%) (MADEP, 1998a). For the same period, the aliphatic recoveries were lower probably because some aliphatics were retained in the silica gel columns and eluting with the aromatic fraction.

4.3.6 <u>IS Monitoring</u>


The IS was added to the LBs and TBs, as well as the samples immediately after the extraction process was completed. The IS was used to monitor the GC's performance during the analysis of each event and between events.


4.3.6.1 <u>Blank IS</u>

By mistake, the IS concentration used for June 10-11, 1998 (4 ng/ μ L) was an order of magnitude lower than the concentration used for the rest of the events (Figure 28). The IS concentration was increased because it was too close to the low end of the calibration standards. Hence, TPH data from June 10-11, 1998 were not considered during the statistical analysis of the data. All of the IS area counts for October 16-17, 1998 were also somewhat low. Based on this and the low C₂₈/C₂₀ ratios (< 0.85) observed for October 16-17, 1998 and April 9-10, 1999, a new column was installed in the GC and this corrected the problem. The April 1999 samples were reanalyzed with the new column. The October 1998 samples could not be reanalyzed because their hold time exceeded the published value when the problem was finally solved.

4.3.6.2 <u>Sample IS</u>

The IS area counts for the samples in June 10-11 and October 16-17, 1998 were low (Figures 29 and 30) as were the IS area counts blank (See Section 4.3.6.1). The June 1998 data were not used (See Section 4.3.6.1). Although the IS area counts for the October 16-17, 1998 samples were somewhat lower than for the other sampling events, they were used during the statistical analysis. No correction was made to these data. During some of the events (July 26-27 and August 17-18, 1998), some of the samples had high IS area counts. This may have occurred because higher volumes of the IS solution were added to the extract by mistake. These data were also used. These decisions were made because there were not criteria in the MADEP Method requiring their exclusion and some variation in IS area counts is expected.

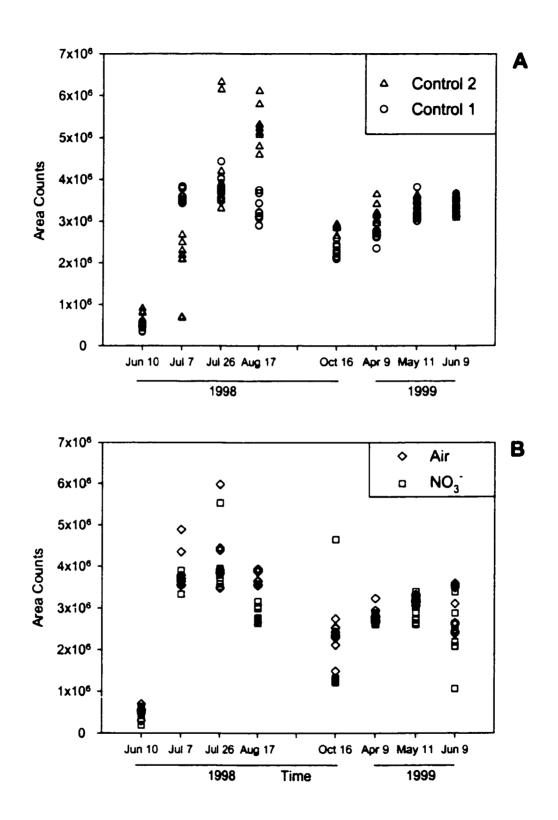


Figure 29. Control chart for the IS area counts for aliphatic samples. A) controls and B) treatments.

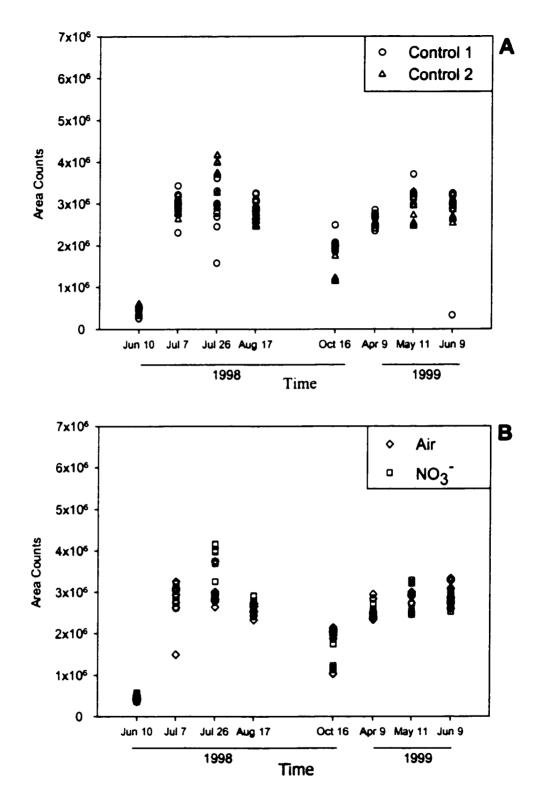


Figure 30. Control chart for the IS area counts for aromatic samples. A) controls and B) treatments.

4.3.7 Distribution of the TPH Data

The distribution of the data was analyzed by plotting the residuals for each TPH fractions: SC aliphatics (Figure 31), LC aliphatics (Figure 32), and aromatics (Figure 33). The residuals were plotted to observe if the log transformation had a normal distribution. Normal distribution was required for the analysis of covariance linear model (ACLM) and also stabilizes variance (Ramsey, 2002). The residual plots represent the observed minus the predicted concentration. The transformed TPH concentrations were randomly distributed around zero and there were no trend or pattern observed. Therefore, all of the TPH data were log transformed. The TPH concentrations were calculated by summing the SC and LC aliphatic and aromatic concentrations. As a result, the TPH data were redundant and more variable, so they were not used in any statistical analyses.

4.4 Analysis of Covariance

ACLM was developed to determine if the amendments (air and NO_3) enhanced biodegradation of the TPH fractions compared to the control plots. The ACLM was used to test the hypothesis that the amendments had a significant effect on the degradation of the TPH fractions (SC and LC aliphatics and aromatics) over time compared to the control (amendments vs. control).

The ACLM was performed using the statistical software JMP IN, Version 3.2.6 (SAS Institute INC; Cary, NC).

The general ACLM is:

$$Log Y = \mu + Ai + Bj(i) + Dl + ADil + E(i,j,l)$$

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

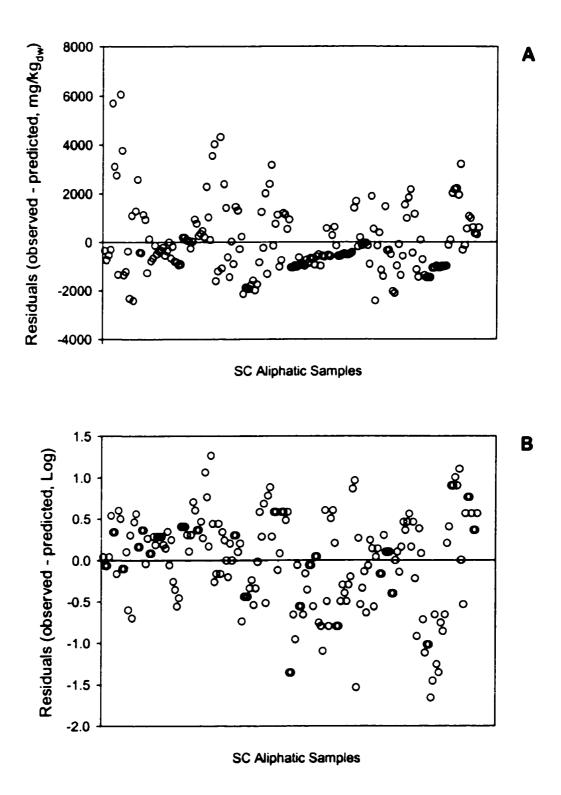
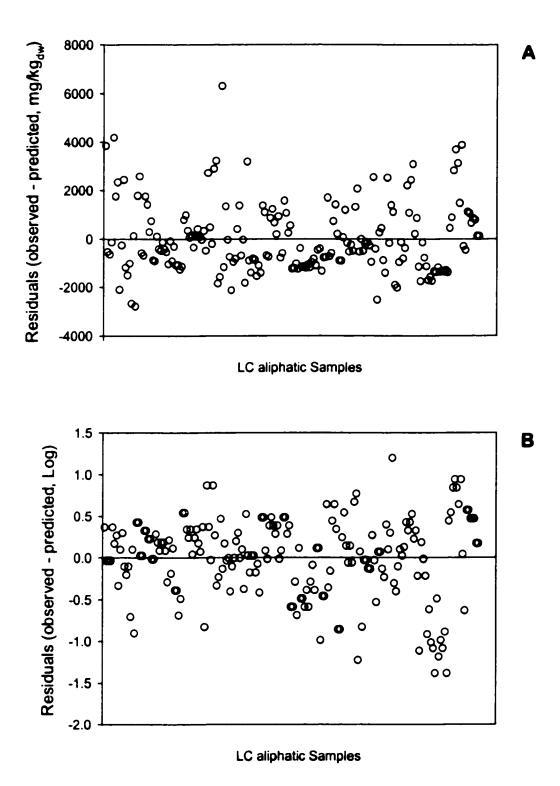



Figure 31. Residuals plots for the SC aliphatic fraction. A) arithmetic and B) log transformation.

22. Desidents also for the LC slinkstic A) without

Figure 32. Residuals plots for the LC aliphatic. A) arithmetic and B) log transformation.

Figure 33. Residuals plots for the aromatic fraction. A) arithmetic and B) log transformation.

where: Y is the response variable (for the SC aliphatic, LC aliphatic and aromatic concentrations); μ is the theoretical overall mean of the response; Ai is the individual treatment (amendments or control); Bj(i) is the within treatment plot sample location (Subplots: a, b, c and d for this study); DI is time (days); ADil is the interaction of the treatment effects with time; and E(i,j,l) is a random error associated with the ith treatment, jth sample location within the ith treatment plot, and lth time period.

In the analysis of the ACLM, the amendment (Ai), is the nominal factor and time is the continuous factor (covariate). The interaction of the two factors (ADil), is used to determine if the effect of time and degradation depend upon the specific amendment (air or NO₃⁻). The within plot factor (Bj(i)) is used to test for the significance of the treatment effect (Ai). The JMP IN form of the ACLM is: treatment, time, treatment * time, and Plot[treatment]{random}.

To facilitate the interpretation of the analysis, the ACLM was reparameterized as an indicator variable regression model (IVRM). The ACLM and IVRM are statistically equivalent and either form can be used to perform the data analysis (Myers, 1990). The IVRM is developed by representing the levels of the treatments as a set of indicator variables (Z_1), which can only have values of 0 or 1. In general, the number of indicator variables required for the regression model is one less than the number of treatment levels. For the Fore River Creek salt marsh study, there were three treatments levels requiring two indicator variables (Z_1 and Z_2). If the treatment was air, then $Z_1 = 1$ and Z_2 = 0. If the treatment was NO₃⁻, then $Z_1 = 0$ and $Z_2 = 1$. If the treatment was the control, then $Z_1 = 0$ and $Z_2 = 0$. The IVRM produced a linear regression model describing the relationship of each treatment (amendment) level to the responses of the SC and LC aliphatics and aromatics.

The IVRM, containing interaction terms between time and the amendment, was:

$$Log Y = \mu + \beta_1 Z_1 + \beta_2 Z_2 + \beta_3 time^* Z_1 + \beta_4 time^* Z_2 + \beta_5 time$$

where: Y is the response variable (SC aliphatics, LC aliphatics or aromatics); μ is the intercept of the regression model when $Z_1 = 0$ and $Z_2 = 0$, which is the control treatment level; Z_1 and Z_2 are the indicator variables (1 for the amendments and 0 for the control) (air = 1,0) (nitrate = 0,1) (control = 0,0); $\beta_{1,2}$ shift the intercepts of the simple linear regression models for air and NO₃, respectively; β_5 is the slope of time for the control; and $\beta_{3,4}$ are the adjustment for the slope of each specific treatment. The time factor was the main parameter that considered the natural attenuation of the TPH in the Fore River Creek salt marsh.

After replacing the indicator variables (Z values) with their settings for each treatment, the specific models were:

Air Amendment model:

Log Y = $(\mu+\beta_1) + (\beta_3+\beta_5)$ time,

NO₃[•] Amendment model:

Log Y = $(\mu+\beta_2) + (\beta_4+\beta_5)$ time, and

Control model:

 $Log Y = \mu + \beta_5 time.$

The regression model provided an easy form of direct comparison of the air and NO_3 ⁻ amendments to the control. The IVRM provided a statistically-based test of significance for each of the terms in the model.

The hypothesis during the study was that the amendments (NO₃⁻, air) would enhance the *in situ* bioremediation of the TPH fractions in the oil-contaminated Fore River Creek salt marsh sediments during the period of the study relative to the natural attenuation of the fractions occurring in the control (no amendment). A more negative slope for the model relative to the control indicated greater degradation of the TPH fractions during the study.

The output displayed the probability that one of the variables (air, NO₃⁻ or control) used in the model could have a significant effect over the TPH degradation. For this study, it was assumed that a $p \le 0.2$ meant that the variables (treatments) were significant. A p of this size is often used during biological studies (Simonton, 1998) because of the high variability observed in biological systems and in the distribution of the TPH fractions in sediments.

The subplot term (B) was not considered in the IVRM because it was negligible indicating that the subplot sampled (a, b, c, or d) did not have a significant effect during the study. Interestingly, the replicates taken in each subplot (aa, ab) generally had a greater variability that the subplot sampled. This could indicate that the *in situ* variability (e.g., caused by presence of oil droplets) was greater within subplots than between subplots.

4.5 TPH Results

4.5.1 Seasonal Variability

This study was conducted over one year to observe the effect of the seasons on the biodegradation of TPH in the Fore River Creek salt marsh sediments. The horizontal well installation and first sampling events were conducted during Summer and Fall 1998 (June-October) and the second sampling period covered the Spring 1999 (April-early June). The TPH results are presented in Section 4.5 and discussed in Section 4.6. The data are contained in Appendix C.

4.5.2 Summer and Fall 1998

For visual purposes, the TPH fractions were plotted as simple regressions without considering the amendment-time effect (Figures 34-37).

During Summer and Fall 1998, the IVRM showed that there was significant biodegradation of all three TPH fractions in the control plot (Table 25). The negative slopes indicated that there was a reduction in the concentrations during this season.

Treatment	Treatment Slopes (1x10 ⁻³)			p value		
	Log SC	Log LC	Log Aromatics	Log SC	Log LC	Log Aromatics
Control	-2.190	-1.886	-7.245	0.1097	0.1137	<.0001
Air	-4.338	-0.608	-2.268	0.1979	0.5805	0.1257
NO ₃ ⁻	-10.422	-5.274	-7.647	0.0189	0.0117	0.5356

Table 25. Treatment slopes and probabilities obtained using the IVRM during Summer and Fall 1998.

Shading indicates a significant $p \le 0.20$

150

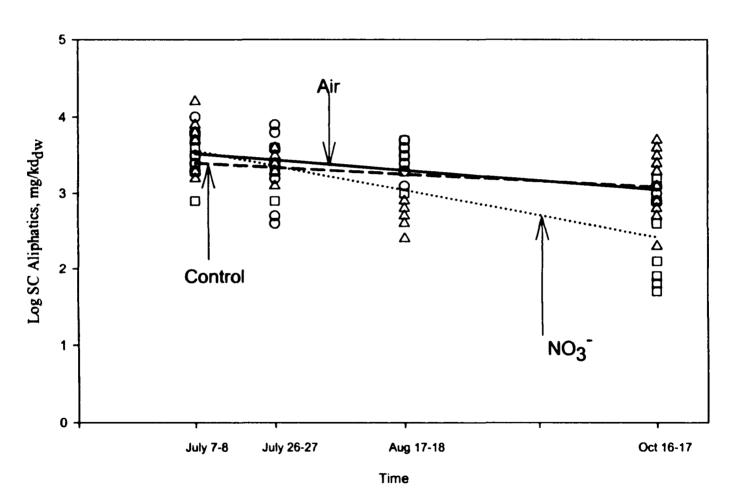


Figure 34. SC aliphatic concentrations during the Summer and Fall 1998. For visual comparison only. Does not include amendment-time interaction effects. Δ =Control, O=Air, 0=NO₃⁻

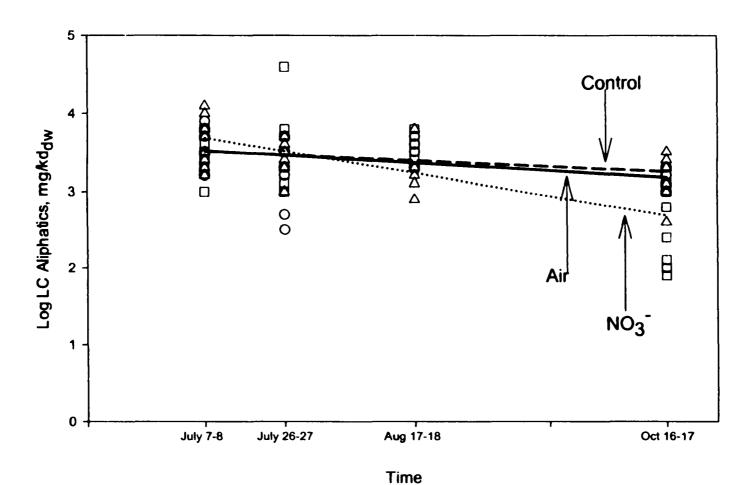


Figure 35. LC aliphatic concentrations during the Summer and Fall 1998. For visual comparison only. Does not include amendment-time interaction effects. Δ =Control, O=Air, D=NO₃⁻

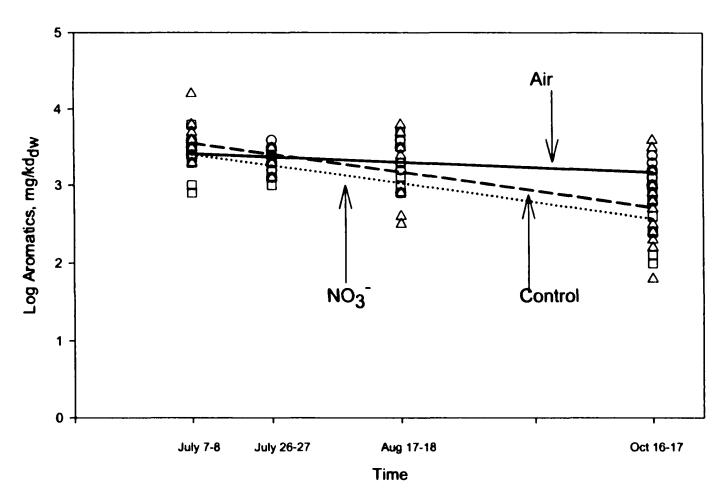
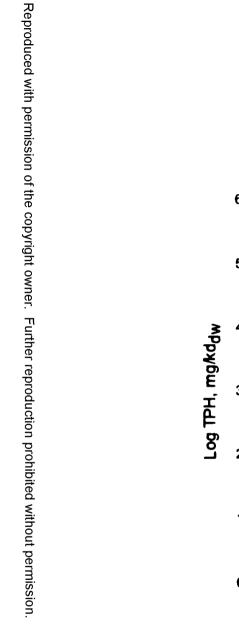



Figure 36. Aromatics concentrations during the Summer and Fall 1998. For visual comparison only. Does not include amendment-time interaction effects. Δ=Control, O=Air, D=NO₃⁻

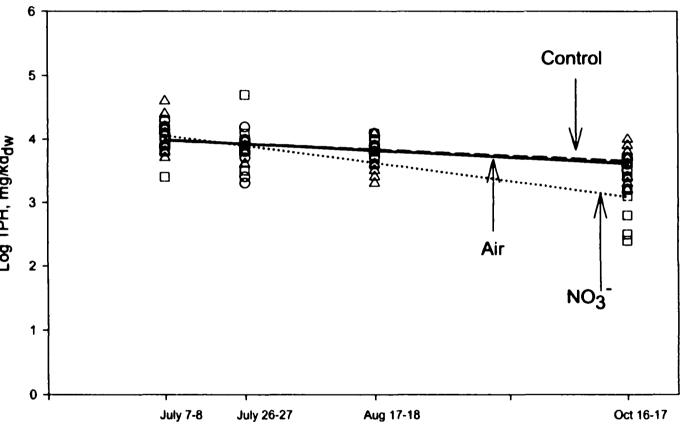


Figure 37. TPH concentrations during the Summer and Fall 1998. For visual comparison only. Does not include amendment-time interaction effects. Δ =Control, O=Air, 0=NO₃⁻.

Time

The main remediation process causing the natural attenuation of the TPH in the control plot was probably biodegradation (microbial metabolism of the TPH fractions) because \sim 19 months after of the *Julie N* spill, most of the volatile TPH compounds were likely gone and weathering (e.g., volatilization) had already occurred. It is possible that some dilution and losses by tidal and wave action were occurring. The extend of this could be ascertained by comparing losses over the summer season vs. the winter months when TPH biodegradation should have been limited by the cold temperatures.

In the air plot, there was significant biodegradation of the SC aliphatics and aromatic fractions. The slope for the SC aliphatics was more negative than the control slope for this fraction indicating that the addition of air enhanced removal of these aliphatics compared to natural attenuation alone (i.e., the control). It was unlikely that the TPH removal was due to air stripping because the air flow used was low $(3.2 \text{ m}^3/\text{h})$ and intended to achieve biodegradation not volatilization. The horizontal well network was designed to promote bioventing in contrast to a soil vapor extraction (SVE) system where the flow rates are optimized for volatilization (Lesson and Hinchee, 1996). The NO₃⁻ plot showed a significant degradation of the aliphatic fractions (SC and LC) compared to the control (i.e., p < 0.20 and slope more negative than control). The IVRM also showed that the control (natural attenuation) was more effective at reducing the aromatic concentrations than either of the amendments.

4.5.3 <u>April-June 1999</u>

Again, for visual purposes the TPH fractions were plotted as simple regressions without considering the amendment-time effect (Figures 38-41). During this season, the slopes for all of the treatments were positive (Table 26). However, only the p values for

the NO₃ plot were significant (p < 0.20). The data indicated that no TPH degradation was occurring during this season in any of the treatment plots. To observe if any sampling event was driving these observations, the NO₃ data (SC and LC aliphatics and aromatics) for the 1999 season were compared using a Tukey-Kramer test (p < 0.005). The analysis indicated that the mean concentrations for the SC and LC aliphatics were significantly lower for the April 1999 event. During this event, the TPH concentrations in the control and air plots for all fractions were somewhat lower than those in May and June 1999 (Figures 42-44). However, in the NO₃ plot, the April concentrations were very low and the May concentrations were high. This accentuated the trend of increasing TPH and could have been caused by sampling subplots that had very low concentrations of TPH during April and higher TPH during the May and June events (e.g., contamination pockets).

Treatment	Treatment Slopes (1x10 ⁻³)			p value		
	Log SC	Log LC	Log Aromatics	Log SC	Log LC	Log Aromatics
Control	+0.718	+1.644	+0.843	0.8454	0.6364	0.8127
Air	+6.306	+3.949	+3.199	0.4947	0.7601	0.8306
NO ₃ .	+19.496	+17.896	+12.388	0.0024	0.0038	0.0695

Table 26. Treatment slopes and probabilities obtained using the IVRM during Spring 1999.

Shading indicates a significant $p \le 0.20$

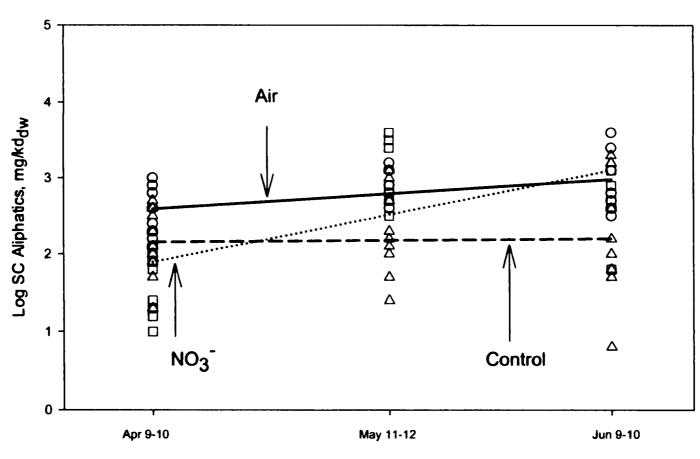
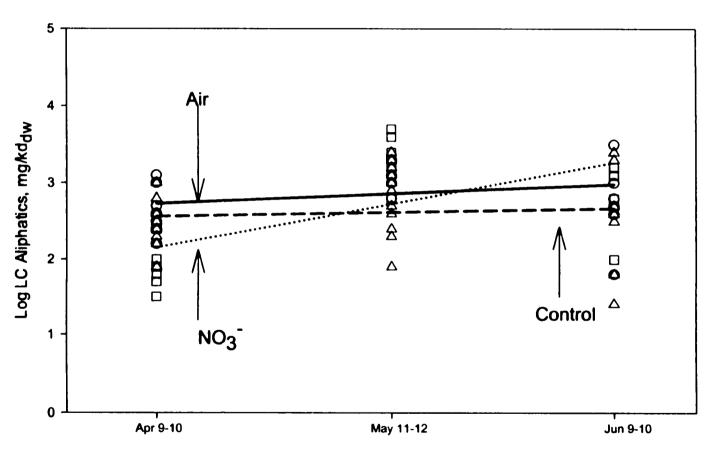



Figure 38. SC aliphatic concentrations during the Spring 1999. For visual comparison only.

Does not include amendment-time interaction effects. Δ =Control, O=Air, O=NO₃

Time

Figure 39. LC aliphatic concentrations during the Spring 1999. For visual comparison only. Does not include amendment-time interaction effects. Δ=Control, O=Air, D=NO₃⁻

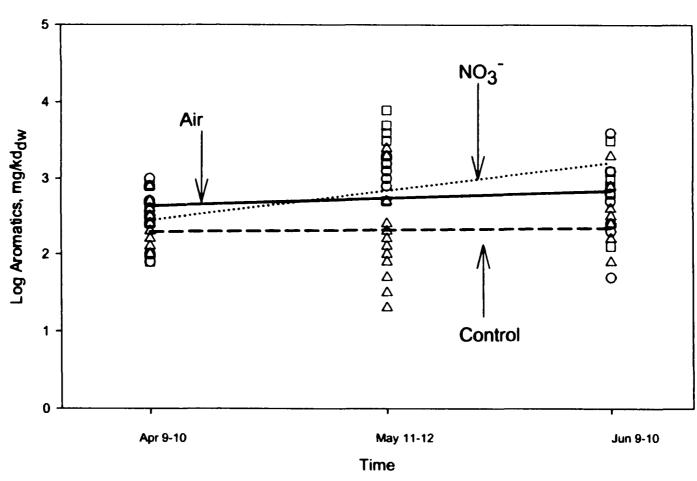
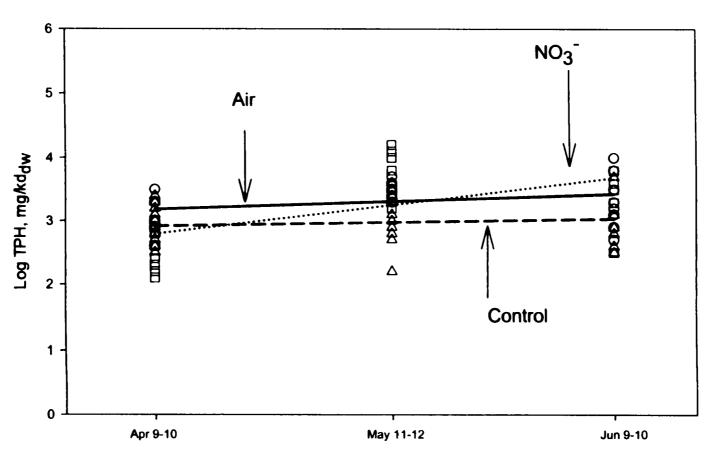
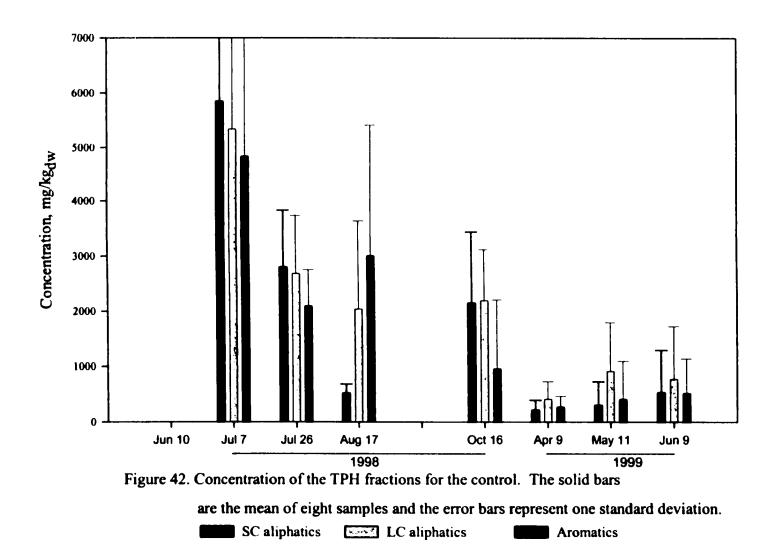
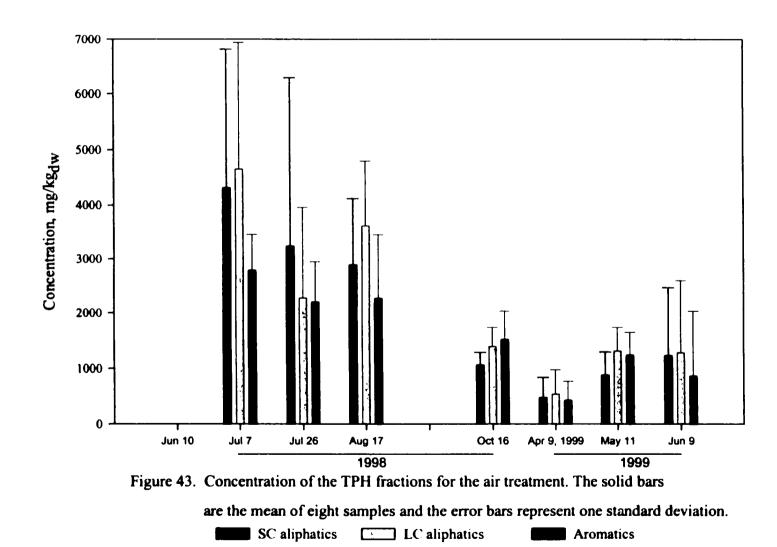


Figure 40. Aromatic concentrations during the Spring and Fall 1999. For visual comparison only. Does not include amendment-time interaction effects. Δ =Control, O=Air, D=NO₃⁻

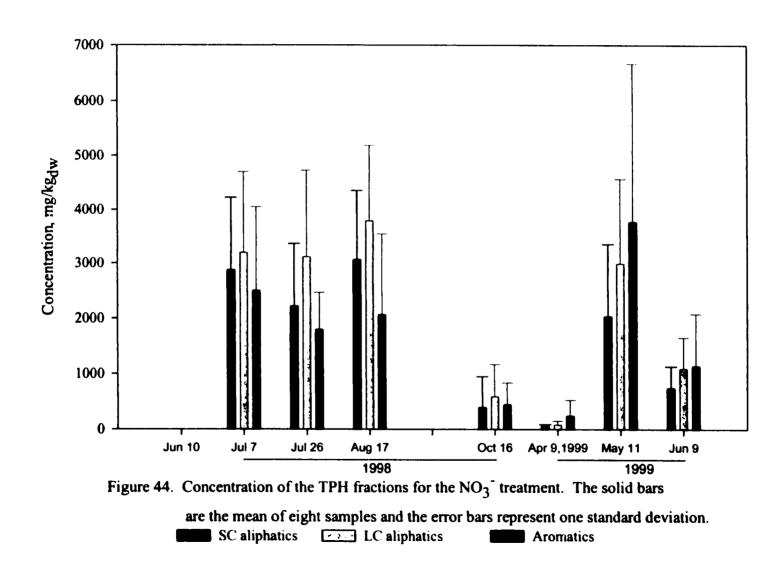


Figure 41. TPH concentrations during the Spring 1999. For visual comparison only.

Does not include amendment-time interaction effects. Δ =Control, O=Air, O=NO₃⁻

4.5.4 Overall Results (June 1998-June 1999)

Again for visual purposes, the TPH fractions were plotted as simple regressions without considering the amendment-time effect (Figures 45-48). Over the one year period, natural attenuation in the control plot significantly reduced all TPH fractions (Table 27). There was no significant decrease in the air plot. The SC aliphatic and aromatic concentrations significantly decreased in the NO₃⁻ plot, but the removals were not greater than the control. The Spring 1999 data for the air and NO₃⁻ plot, where the concentrations in May were high, greatly influenced the finding that there was no decrease in TPH for the amendments during the one year period.

Treatment	Treatn	nent Slopes (1x10 ⁻³)	p value			
	Log SC	Log LC	Log Aromatics	Log SC	Log LC	Log Aromatics	
Control	-3.763	-2.683	-3.122	<0.0001	<0.0001	<0.0001	
Air	-1.922	-2.103	-1.979	0.7769	0.6520	0.6215	
NO ₃ ⁻	-2.197	-2.388	-0.973	0.1280	0.3557	0.1055	

Table 27. Treatment slopes and probabilities obtained using the IVRM during 1998-1999.

Shading indicates a significant $p \le 0.20$

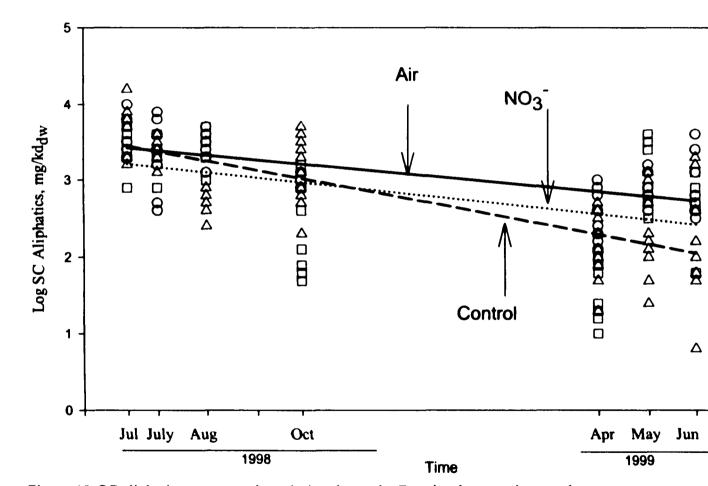


Figure 45. SC aliphatics concentrations during the study. For visual comparisons only. Does not include amendment-time interaction effects. Δ=Control, O=Air, D=NO₃⁻

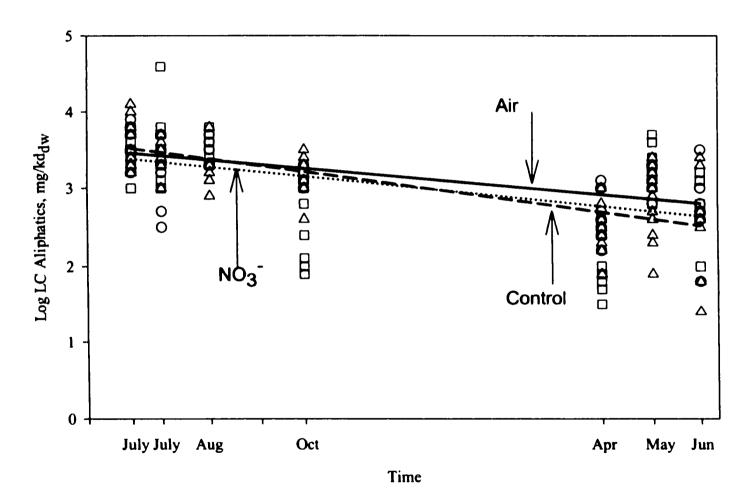
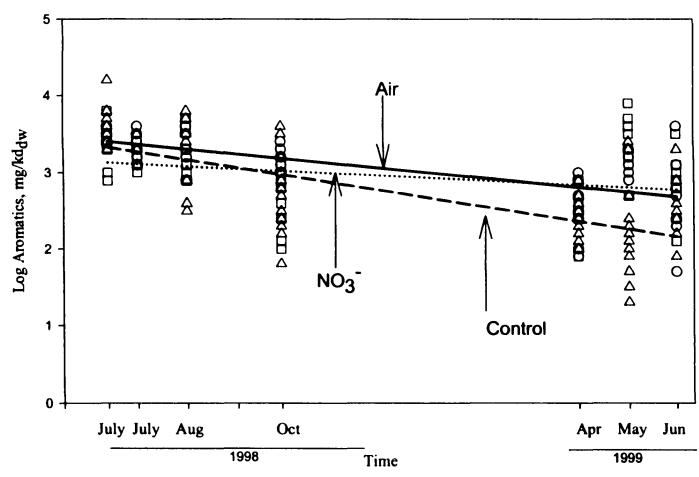
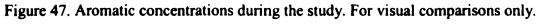




Figure 46. LC aliphatic concentrations during the study. For visual comparisons only. Does not include amendment-time interaction effects. Δ =Control, O=Air, 0=NO₃⁻

Does not include amendment-time interaction effects. Δ =Control, O=Air, D=NO₃⁻

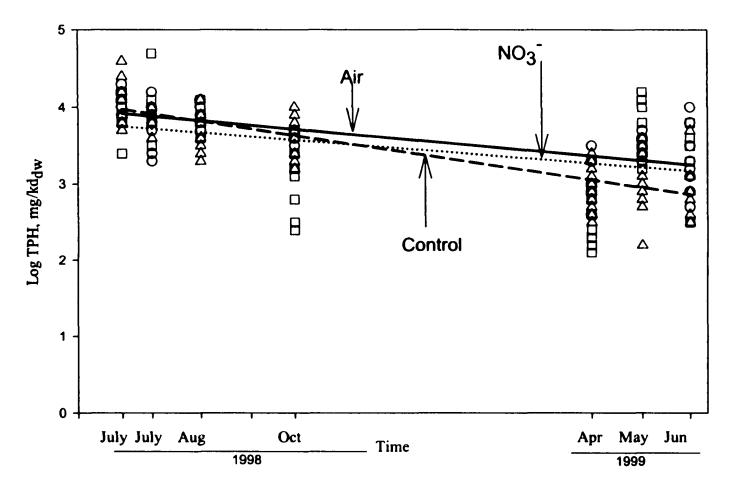


Figure 48. TPH concentrations during the study. For visual comparisons only. Does not include amendment-time interaction effects. Δ =Control, O=Air, D=NO₃⁻

4.6 TPH Biodegradation

4.6.1 Aliphatic Biodegradation

The SC and LC aliphatics are C₉ to C₁₈ and C₁₉ to C₃₆ HCs, respectively. They may be saturated (alkanes) or unsaturated (alkenes or alkynes) and straight chain, simply branched or highly branched molecules. They have limited solubility (i.e., they are hydrophobic) because they are composed entirely of carbon-carbon and carbon-hydrogen linkages (Watkinson and Morgan, 1990). The solubility of aliphatics rapidly decreases with increasing molecular weight. Hence, SC aliphatics are more water soluble than LC aliphatics. A wide variety of bacteria, filamentous fungi and yeast can metabolize aliphatics, but biodegradation is hampered by their bioavailability (i.e., their limited solubility in water and high sorptive capacity) (Atlas, 1975).

During 1998 and the overall study, the control plot had a significant decrease of all TPH fractions (Table 28) indicating that natural attenuation was occurring. Natural attenuation is the combination of the physical, chemical and biological processes that reduce TPH concentrations in the environment. The main natural attenuation processes in a salt marsh are biodegradation, volatilization, dissolution/dilution by wave and tidal action, sediment removal by ice, and tidal forces. Volatilization generally occurs when the oil spreads on the water during the first hours of a spill. The spreading process increases the surface area of the spill enhancing mass transfer via evaporation (Zhu *et al.*, 2001). Because the *Julie N* spill occurred ~19 months before the start of this study and evaporation removes the majority of alkanes smaller than C_{15} within one to ten days after a spill, volatilization was probably not responsible for the decrease in TPH observed in the control plot during the study. However, some volatile components may have persisted longer because the oil had permeated into the sediments.

Because the Fore River Creek salt marsh is a low energy system, dissolution of the TPH by waves was probably not a significant factor in TPH removal. Dissolution into the tidal waters could have affected the TPH concentration and would have been more significant during the warmer months of June to September than October, April and May.

Treatment	June-October 1998	April-June 1999	June 1998-June 1999
Control	SC, LC, aromatics	-	SC, LC, aromatics
Air	SC, aromatics	-	-
NO3 ⁻	SC, LC	-	SC, aromatics

Table 28. Treatments and their significant reduction in TPH fractions.

Some TPH loss in the Fore River Creek marsh could have been caused by the redistribution of the sediments. However, it was difficult to assess this impact because at the same time that some TPH was removed from the control plot other TPH could have entered. A detailed hydraulic and sediment analysis would need to be conducted to determine the extend of sediment redistribution in the marsh. Although it was in a different environment, Venosa *et al.* (1996) reported that sand exchange had no effect on the observed biodegradation rates in the control plot under a controlled oil (Bonny Light) spill on the shoreline of Delaware Bay. However, sand has low sorptive capacity compared to the salt marsh sediments. During the Fore River Creek study, ice movement during the winter may have resulted in losses of TPH because there was a decrease in the

TPH concentration during the winter in the control plot, and during this period, cold temperatures probably reduced microbial metabolism.

It is likely that biodegradation accounted for some, if not all, of the TPH removal observed in the control plot. Biodegradation of No. 2 fuel oil has been observed in natural systems by many researchers (Carman *et al.*, 1996; Hess *et al.*, 1996; London and Robinson, 1984; Piehler and Paerl, 1996; Reynolds *et al.*, 1997; Simonton, 1998; Sorini *et al.*, 1997; Suarez and Rifai, 1999; Walker *et al.*, 1975; Yang *et al.*, 2000). Generally, the SC aliphatics are the first TPH fraction to be biodegraded because they are the most bioavailable. Until recently, it was thought that biodegradation of aliphatics and aromatics could only be initiated under aerobic conditions since oxygenase reactions appear to be necessary for the initial metabolic activation of the molecule to be degraded (Watkinson and Morgan, 1990). However, studies have now demonstrated the degradation of TPH under microaerophilic (NO_3) and sulfate-reducing conditions (Coates *et al.*, 1997; Rueter *et al.*, 1994).

Since the Julie N spill occurred almost ~19 months before the bioremediation study began, there is a high probability that microorganisms capable of degrading TPH and related compounds were present in the sediments because they are ubiquitous in marine and soil environments (Zhu *et al.*, 2001). The most readily available TEA in the marsh sediments of the control was SO_4^{-2} . The highest sulfate reduction rates have been observed in the top ~3 cm of salt marsh environments where often the concentration is ~ 2,000 mg SO_4^{-2}/L (Hines *et al.*, 1989; Shin *et al.*, 2000). Even if it were diluted 90% by freshwater coming into the marsh (e.g., Fore River Creek or runoff), the sulfate concentration would be more than adequate for reduction of the existing TPH. In addition, the highest TPH concentrations were found in the top ~4 cm in the Fore River Creek salt marsh where sulfate reduction rates are typically the greatest (Hin *et al.*, 2000).

The other possible TEA for aliphatic biodegradation in the marsh sediment was oxygen. In the Fore River Creek marsh, *S. alterniflora* could have aerated the contaminated sediments through its roots (Rock, 1997). The extension of plant roots into the sediment also augments soil-surface contact serving as a natural ventilation system (Lin and Mendelssohn, 1998). Because aliphatics are more biodegradable than aromatics, the former would probably have been used first.

An important factor that probably was limiting the biodegradation of the aromatics and aliphatics in the marsh was the presence of clay or humic fractions in the sediment matrix. These materials make TPH compounds less bioavailable (Zhu *et al.*, 2001). Because TPH compounds are hydrophobic, they are often sorbed or trapped in the sediment pores by capillary action (Chayabutra and Ju, 2000). In addition, the low aqueous solubility of some of the compounds (e.g., naphthalene and phenanthrene) makes them less available in the water phase where microorganisms can access them (Carman *et al.*, 1996; Huesemann, 1995).

The addition of NO₃⁻ enhanced the biodegradation of the aliphatic fraction (SC and LC) during the 1998 season (vs. the control) (Table 28). Similar results have been described by Bachoon *et al.* (2001) in a Georgia salt marsh microcosms study where the addition of NO₃⁻ (as an inorganic nutrient) was the most effective treatment for the enhancement of TPH degradation (mainly alkanes and a lesser extend the aromatic fraction). The concentration of residual alkanes (>C₁₉) was reduced to less than the 10% of the residual values in the control treatment (Bachoon *et al.*, 2001). Other researchers

have also observed enhanced biodegradation of SC and LC aliphatics upon the addition of NO₃⁻ (Adrian *et al.*, 1998; Coates *et al.*, 1997; 1998). It is difficult to assess whether the NO₃⁻ was used as a TEA (dissimilatory pathway) and/or as a nutrient (nitrogen source; assimilatory pathway). The nitrogen concentration in the porewater of the Fore River Creek sediments (~ 2.0 mg N/L) (as NO₃⁻ and NH₄⁺) could have served as a nutrient to support the TPH biodegradation based on stoichiometry (See Section 4.8). Porewater nitrogen concentrations of 1-2 mg N/L and 1.5 mg/L have been successful in maintaining TPH biodegradation on sandy beaches (Bragg *et al.*, 1994; Venosa *et al.*, 1996). However, these nitrogen concentrations would probably be too low for degrading all of the TPH in the Fore River Creek marsh because of the high sediment NOM content.

Air only enhanced the biodegradation of the SC aliphatics during the first season (Table 28). Oxygen is the TEA that provides the highest energy yield per molecule of TPH and aerobic conditions generally provide the fastest means of biodegradation. However, oxygen is a limiting factor for TPH biodegradation in most salt marshes (Zhu *et al.*, 2001). Few studies have been conducted adding oxygen as a TEA in salt marshes because of the technical difficulties and high cost of delivering it into the sediment. Adrian *et al.* (1998) studied aerated Louisiana marsh cores (15 cm diameter and 30 cm long) artificially-contaminated with weathered Louisiana crude oil and ¹⁴C hexadecane. ¹⁴CO₂ production was monitored to assess biodegradation. ORC (Regenesis Corp), a patented material consisting mainly of magnesium peroxide and other chemicals, was used to deliver oxygen into the marsh sediments. ORC addition did not increase available oxygen in the porewater and hence did not increase TPH biodegradation.

A theoretical oxygen supply rate of 110 g/cm^2 was reported (Adrian *et al.*, 1998) to be necessary in the marsh, which exceeds any reasonable application rate.

One of the possible reasons why the air treatment did not have a more positive effect during this study may be because in a salt marsh, sulfate reduction is the dominant metabolic process and accounts for >50% the total decomposition of NOM (Rooney-Varga *et al.*, 1997). This sulfate-reducing activity is closely related to plant growth and microbial metabolism suggesting that plant-SRB interaction in the *S. alterniflora* rhizosphere plays an important role in salt marsh biogeochemical cycles (Coates *et al.*, 1996; Hin *et al.*, 2000; Hines *et al.*, 1989; Rooney-Varga *et al.*, 1997). The oxidation of reduced sulfides present in this environment and the aerobic respiration of NOM are the major oxygen sinks in a salt marsh (Shin *et al.*, 2000). This could be a potential problem when adding oxygen as TEA in a marsh. Probably the air injected did not provide enough oxygen to sustain aerobic TPH biodegradation as well as meet the demand resulting from the oxidation of natural compounds (e.g., sulfides and NOM).

During the 1999 season, the TPH concentrations appeared to decrease and then increase in all plots. This could have occurred because of losses (e.g., ice or storms) over the winter followed by deposition of sediments. In addition, warmer temperatures may have released some of the TPH sorbed in the sediments by increasing the solubility of the HCs immediately after the winter.

There are several engineering-based reasons why the NO_3 and air amendments may not have been totally effective in the biodegradation of all TPH fractions compared to the natural attenuation. The amendments may not have been delivered in a homogeneous way to the total volume of the treatment plot. The NO_3 solution and the air may have followed the path of less resistance, going immediately to the surface of the sediments where they were removed by the tidal water. The NO₃⁻ was dissolved in freshwater which was less dense than the saline porewater. Hence, it may have risen to the marsh surface due to density differences. Another possibility could be that the NO₃⁻ solution and air were following the path made by the metallic pipe that was used to install the horizontal wells. If the sediments did not consolidate around the horizontal wells, as expected, the NO₃⁻ solution and air could have exited ground via these channels. No liquid was observed coming out of the ground after injection. In the air plot bubbles were observed where the head of the distribution system pipes was buried indicating incomplete consolidation was at least initially (~2 months) a problem.

It is also possible that the concentrations of NO_3^- (71.0 g NO_3^- -N/L) and air (3.2 m³/h) were lower than the amount needed for biodegradation of TPH. Although the NO_3^- amendment was injected weekly, it could have been used rapidly. One of the main challenges associated with biostimulation in oil-contaminated coastal areas is maintaining optimum nitrogen concentrations in contact with the oil and the microorganisms (Zhu *et al*, 2001). Salt marsh sediments also have higher nitrogen demands due to the size of microbial population within an organic carbon-rich environment (Lee and Merlyn, 1999).

Mass transfer limitations could have been an important factor during the Fore River Creek salt marsh study. Because most of the TPH compounds have limited solubility in water, they may have been unavailable to the microbes. Diffusion of the HCs and TEAs in the marsh sediments follows Fick's law (Equation 4.2), which can describe the molecular movement of these biologically-important parameters.

$$J = D\left(\frac{\Delta C}{\Delta X}\right)$$
(Eq. 4.2)

where: J is the mass flux $(M/T^{1}L^{2})$, D is the diffusivity coefficient (L^{2}/T) , C is the concentration (M/L^{3}) and X is the distance (L). Factors such as low temperature, laminar flow conditions, limited mixing in the marsh sediments may have limited the mass transfer of relatively low soluble TPH to the active microorganisms. Varying ionic strength (salinity) may have change the availability and conformation of the HCs. Lower TPH concentrations could also have limited the flux of HCs to the microbes. In addition, over time, the composition of the TPH mixture probably changed because more biodegradable compounds were being degraded, leaving a preponderance of compounds more resistant to biodegradation.

During the first part of the study (Summer and Fall 1998), because of the higher *in situ* TPH concentrations present in the Fore River Creek marsh, biodegradation was probably limited by the flux of TEAs (oxygen and NO_3 ⁻). Subsequently, during the second season (Spring 1999) when the HC concentrations were lower, *in situ* biodegradation was probably limited by the flux of biodegradable TPH to the microorganisms in the marsh sediment. Probably the main factors controlling this were the concentration and sorption/desorption of TPH molecules in the marsh sediments.

An important parameter that could have affected the aerobic biodegradation in the salt marsh sediment was the limited gas permeability through the sediments. This movement is a function of the sediment structure, grain size and moisture content. The fine nature of the salt marsh sediments makes it difficult for gases to move through them. This helps create anaerobic environments in most marshes. In addition, because the organic-rich nature of the marsh exerts a large TEA demand, microorganisms immediately scavenge any oxygen diffusing into the sediments.

Some differences were observed in the plant growth between the plots and within them indicating that the distribution of *S. alterniflora* could have impacted in the biodegradation of aliphatics during the study. Abundance of active metabolic microorganisms in the rhizosphere and the presence of plant roots and their importance for the production of exudates and passive oxygenation could have had a significant effect during the study (Heider *et al.*, 1999) (See Section 4.9).

4.6.2 Aromatic Biodegradation

The aromatics include monocyclic compounds (e.g., benzene, toluene and xylene) and PAHs (e.g., naphthalene, anthracene and phenanthrene), which have two or more aromatic rings. In general, aromatics are more resistant to biodegradation than SC and some LC aliphatics. Monoaromatics are toxic to some microorganisms because of their solvent action on cell membranes, but in low concentrations they are degraded under aerobic and anaerobic conditions (Zhu *et al.*, 2001). It is unlikely that many monoaromatics were present in the Fore River Creek sediments because they are not common in No. 2 or No. 4 fuels and when present, they volatilize rapidly (within hours or days of a spill). PAH biodegradation is limited because these compounds are hydrophobic, have low aqueous solubility and a strong sorptive capacity to sediments reducing their bioavailability (Banat *et al.*, 2000). Usually, they must be degraded into smaller ring compounds before they can be degraded (Atlas, 1981).

During 1998 and the overall study, the aromatic HCs in the control plot decreased (p<0.20) (Table 28) probably as a result of natural attenuation. The natural attenuation of aromatic HCs is similar to the natural attenuation described for aliphatic HCs. However, although most of the aromatic compounds have low solubility in water, the smaller compounds (<2 rings) are more soluble and can be reduced by dilution processes (tidal action). Large aromatic compound (>3 rings) tend to sorb to the sediment organic particles and therefore are retained much longer in marine sediments (Atlas, 1981). Because the *Julie N* spill occurred ~19 months before this study and PAH are generally less volatile than aliphatic compounds, volatilization was probably not responsible for the decrease in aromatic HCs in the control plot.

Generally, most aromatics can be degraded under aerobic conditions (Bauer and Capone, 1985; Bossert and Bartha, 1986; Wrenn and Venosa, 1996). Some low molecular aromatics have been degraded under denitrifying conditions (Al-Bashir, 1990; Burland and Edwards, 1999; Leduc *et al.*, 1992; MacRae and Hall, 1998; Mihelcic and Luthy, 1988a, 1988b). Some aromatics have been degraded under sulfate-reducing (Coates *et al.*, 1996; 1997; Coates *et al.*, 1998; Rueter *et al.*, 1994) and methanogenic conditions (Heider *et al.*, 1999). It is most likely that any biodegradation of the aromatics that occurred in the control plot was a function of aerobic respiration (diffusion of oxygen into the top layers of sediments) or sulfate-reduction (because of the predominance of sulfate in seawater).

Although the IVRM model indicated that the air treatment had a significant effect (p<0.20) during 1998, the degradation rates for this plot and the control were not significantly different. The Fore River Creek research is the first study to evaluate the

addition of air (bioventing) by a horizontal well system into the salt marsh sediments. Aerobic conditions are generally considered necessary for extensive degradation of oil since major degradative pathways for aliphatics and aromatics involve enzymes that required oxygen (oxygenases) (Atlas, 1991; Zhu et al., 2001). Oxygen is the TEA that yields more energy (ATP) per molecule of TPH during the microbial metabolism. Probably one of the main reasons why the air treatment did not achieve higher degradation rates during this study was because of mass transfer limitations. The efficiency of oxygen mass transfer in a marsh is known to be restricted by the low gas permeability of the very fine and organic-rich sediments and limitations between phases including liquid/gas (water/oxygen), and liquid/microbes (dissolved oxygen/microorganisms) (EPA, 1995).

Although the biodegradation of aromatics under denitrifying conditions is not as extensive as under aerobic conditions, it has been reported in several studies under laboratory and environmental conditions (MacRae and Hall, 1998; McNally *et al.*, 1998, 1999). However, comparison with these studies is difficult because either pure cultures or laboratory conditions were used and there was little correlation between NO₃⁻ use and PAH degradation. Typically, smaller and more soluble PAHs were degraded faster than larger, less soluble compounds.

During the Fore River Creek study, the NO_3^- did not enhance the degradation of aromatics. The IVRM model indicated that NO_3^- had a significant effect during the overall study however, the biodegradation rates for the NO_3^- and the control were not significantly different. As noted for aliphatic HCs (Section 4.6.1), problems with the NO_3^- delivering and availability could have limited its effectiveness and availability.

4.6.3 Degradation Rates

Degradation rates were calculated (Appendix D) (Table 29) for the treatments that the IVRM indicated had a significant effect on the removal of TPH during the study (Table 28). During the 1998 season, all plots exhibited significant linear degradation of SC aliphatics. The air and NO₃⁻ amendment degradation rates (as judged by the slope of best fit line in the mg TPH/kg_{dw} vs. time plot) were significantly greater than the biodegradation rate of the control (one tail *t*-test, p<0.05.). This corroborated the results of the IVRM (Table 28).

For the LC aliphatics, the NO₃⁻ treatment had a significantly higher degradation rate than the control, while for the aromatic fraction the air and control rates were NSD (one tail *t*-test, p<0.05). During the 1999 season, none of the treatments had a significant effect on the degradation of any TPH fraction during the study. Again, these results corroborated the results of the IVRM (Table 28).

Table 29. Treatments achieving significant reduction in TPH concentration (p<0.2) and their biodegradation rates ($mg/kg_{dw}/d \pm 2s$).

	1998+	1999	Overall (1998-1999)**
SC aliphatics	Control (13.1±12.8) Air (27.6±17.5)* NO ₃ ⁻ (20.6±10.9)*	-	Control (8.7±3.9) NO3 ⁻ (5.0±4.9)
LC aliphatics	Control (13.6±12.2) NO ₃ ⁻ (23.7±13.0)*	-	Control (6.2±3.5)
Aromatics	Control (19.2±11.2) Air (16.9±9.9)	•	Control (7.2±3.8) NO ₃ ⁻ (2.2±4.3)

Shaded = IVRM indicated degradation significantly better TPH removal than control (Table 28). *indicates degradation rate significantly greater than control (one tail *t*-test, p=0.05).

+ Assumes linear degradation model ++ Assumes first order degradation model.

During the overall study (1998-1999), it was assumed that first-order degradation occurred (See Figures 42-44). The first order degradation rate constants (k) (T^{-1}) were estimated from the slope of the best-fit line on a plot of Ln concentration (mg/kg_{dw}) vs. time. During the entire study, the control and NO₃⁻ exhibited significant degradation of the SC aliphatics, but their rates were NSD from each other (one tail *t*-test, p<0.05). Neither of the amendments had a significant effect on the degradation of the LC aliphatics. For the aromatic fraction, the control and NO₃⁻ exhibited significant degradation the the significant degradation of the LC aliphatics. For the aromatic fraction, the control and NO₃⁻ exhibited significant significant degradation, but their rates were NSD from each other (one tail *t*-test, p<0.05). These results also corroborated those of the IVRM (Table 28).

Suarez and Rifai (1999) summarized data from approximately 280 biodegradation studies for BTEX and chlorinated solvents. They reported that the specific conditions used in the experiments greatly affected the degradation rates observed. Some of the factors that caused this variation included: the nature of the microorganisms present (consortium or pure culture), competition among different cultures for the substrate, the medium or environment in which the experiment was conducted (aqueous phase, soil or sediments), the temperature, the size of the microbial community, and the availability of TEAs, nutrients and substrate (ED). A comparison between laboratory and field degradation rates indicated that those obtained in the laboratory were generally higher than field rates, because the laboratory studies maintained more favorable conditions (Suarez and Rifai, 1999).

In a laboratory study, Al-Bashir et al. (1990) studied the biodegradation of ¹⁴Clabelled naphthalene in pristine and oil-contaminated soil slurries under denitrifying conditions. When the initial naphthalene concentration was 50 mg/L, a biodegradation rate of 1.3 mg/kg/d was observed over 50 days incubation (T= 35° C). At higher naphthalene concentrations (500 mg/kg), they observed a rate of 1.8 mg/kg/d. The rates obtained in the Fore River Creek salt marsh and by Al-Bashir *et al.* (1990) were NSD (two tail *t*-test, p<0.05), corroborating our results.

During bioventing studies of Florida soils contaminated with JP-4 jet fuel, the degradation rates ranged from approximately 2 to 20 mg/kg/d, with average values of 5 mg/kg/d (Lesson and Hinchee, 1996). Although, the air treatment had no significant effect during the overall study in the Fore River Creek salt marsh, it had a significant effect during the 1998 season. During that season, the air showed a significant biodegradation of SC aliphatics and aromatics with removal rates of 27.6 \pm 17.5 and 16.9 \pm 9.9 mg/kg_{dw}/d, respectively. These biodegradation rates were NSD from those reported in the Florida study.

Venosa et al. (1996), under a controlled crude oil spill (artificially weathered) (2,040L) in Delaware beach, found higher first-order degradation rates in the control (- $26.0 \times 10^{-3} d^{-1}$ and $-21.0 \times 10^{-3} d^{-1}$) for the alkanes and aromatics, respectively. The biodegradation rates obtained during Venosa's study were normalized using hopane. The main reason to observe lower degradation rates during the Fore River Creek marsh study are that the study was conducted ~19 months after the No. 2 fuel oil spill.

4.6.4 <u>Subplot Distribution</u>

It was possible that the location of the subplots may have affected the TPH results (Figures 49-51). The proximity of a subplot to: the borders where catwalks were placed (e.g., Subplots 1, 13, 25, 12, 24); the distribution header (e.g., 1, 2, 3...12); the entrance of the distribution system to the plot (e.g., 109, 110, 111...120), the center or the border of the plot (e.g., 67 vs.115) and the underground horizontal wells (e.g., 8,43 vs. 21,48) could have been a factor in the distribution of the amendments.

The mass (concentration x volume) of amendment (e.g., NO_3) added was calculated assuming equal distribution radially in all directions from the well over a 0.6 m x 0.3 m x 18 cm volume. However, if the solution was not evenly distributed, some part of the subplot could have been devoid of amendment because the amendment may have followed the path of less resistance to the surface of the sediment. Also, some subplots could have received more amendment than planned.

In order to check for patterns of removal as a function of subplot position the means for SC and LC aliphatics and aromatics (for each sampling event) were compared statistically by using a Tukey-Kramer test (p<0.05.). This test was used because it allowed graphical and numerical observation of the data (mean \pm 2s.) for each subplot compared to the other subplots (a vs. b vs. c vs. d). During each sampling event four subplots were sampled (e.g., 3c meaning third sampling event subplot c). Only 4 of the 63 evaluated (7 sampling events x 3 fractions x 3 plots) were significantly different. The results corroborated those of the IVRM (See Section 4.4) that indicated that the subplot sampled did not have a significant effect on the degradation.

Further reproduction prohibited without permission.	Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

1	2	3	4	5	6	7 4b	8 8c 2711 ± 190	9	10	11 7 b	12 7c
13	14	15	16	17	18	19	20	21 8d 1571 ± 1790	22 9d	23	24 la
25 2c	26 6 c	27	28	29	30	31	32	33	34 6b	35	36 7d
37	38 9a	39 6a	40	41	42	43 8b 2735 ± 111	44 4 c	45	46	47	48 8a 617±
49	50	51	52	53	54 lc	55	56	57 2b	58	59 5a	<u> 166 </u> 60
61	62	63	64	65 3a	66	67	68 Ib	69	70 9 c	71 2 m	72
73	74	75 6d	75	77 2d	78	79	80	81 Sb	82	83	84
85	86	87	88 42	89	90	91	92	93	94	95	96 3b
97	98 3d	99	100	101	102	103	104	105	106	107 3c	108
109	110	111	112	113	114	115 9b	116	117	118 5d	119 1d	120 Sc

Wells Enter from this Side

Figure 49. Spatial diagram for the NO₃⁻ plot and the sampled subplots (a,b,c,d) for each event. The SC concentrations for May 1999 (Event 8) are shown as an example.

1 2	3	4 5	6	7 4b	8 8 3284 : 1153
13 14	15	16 17	18	19	20
25 2c 26	6c 27	28 29	30	31	32
37 38	9n 39 6n	40 41	42	43 8b 4238 ± 618	44 4
49 50	51	52 53	54 le	55	56
61 62	63	64 65 3a	6 6	67	68 1
73 74	75 6d	75 77 20	d 78	79	80
85 86	87	88 4a 89	90	91	92
97 98	3d 99	100 101	102	103	104
109 110	111	112 113	114	115 9b	116

Figure 49. Spatial diagram for the NO₃ plot and the sampled subplots (a,b,c,d) for each event. The LC concentrations for May 1999 (Event 8) are shown as an example.

22 9d

6b

5d

9c

21 8d

2778 ± 2952

57 2b

5b

7b

5a

71 2a

107 3c

119 1d

12 7c

24 la

36 7d

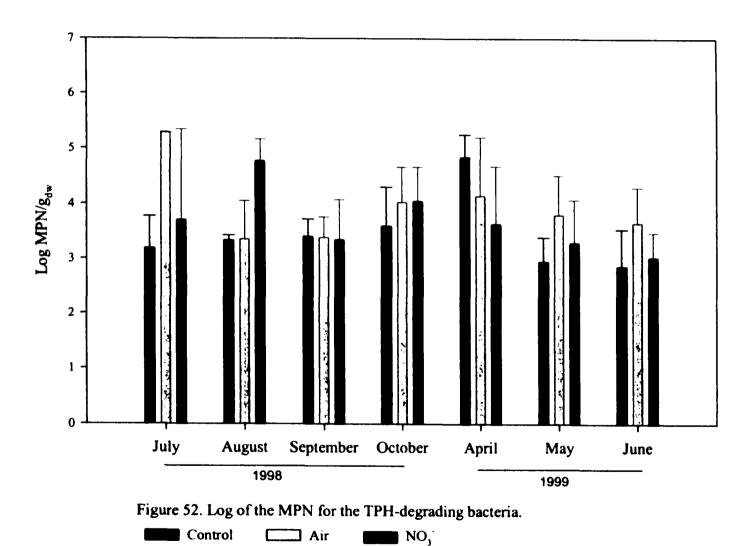
8a 1663 ±

3b

120 5c

1	2	3	4	5	6	7 4b	8 8c 4747 ± 707	9	10	11 7b	12 7 c
13	14	15	16	17	18	19	20	21 8d 505 ± 20	22 9 d	23	24 1 n
25 2c	26 6c	27	28	29	30	31	32	33	34 6b	35	36 7d
37	38 9a	39 6a	40	41	42	43 8b 7588 ± 117	44 4 c	45	46	47	48 8a 2266 ± 1107
49	50	51	52	53	54 lc	55	56	57 2b	58	59 5a	60
61	62	63	64	65 3a	66	67	68 Ib	69	70 9c	71 2m	72
73	74	75 6d	75	77 2d	78	79	80	81 5b	82	83	84
85	86	87	88 4a	89	90	91	92	93	94	95	96 3b
97	98 3d	99	100	101	102	103	104	105	106	107 3c	108
109	110	111	112	113	114	115 9 b	116	117	118 5d	119 1d	120 5c
				1		1			-	1	-

Wells Enter from this Side


Figure 49. Spatial diagram for the NO₃⁻ plot and the sampled subplots (a,b,c,d) for each event. The aromatics concentrations for May 1999 (Event 8) are shown as an example.

In the control plot, all subplots were NSD, while in the air plot (SC aliphatics), Subplot 8C was significantly lower than 8D. In the NO_3 plot (SC aliphatics), Subplot 3C was SL than Subplots 3A, 3B and 3 D. For the LC aliphatics, 4B and 4C were SH than 4A. In the aromatic fraction, 8D was SL than 8A, 8B and 8C. No trends with respect to proximity to the catwalks platforms, distribution system or horizontal wells were evident in any of the plots for any of the events for the SC, and LC aliphatics or aromatics.

4.7 Abundance of TPH-Degraders

The abundance of TPH-degrading microorganisms was evaluated by colorimetric INT reduction coupled with an MPN method. When INT is reduced, it is possible to observe a precipitate and color change in the oil-containing MPN tubes that contain active microorganisms with the capacity to degrade TPH. In the marine environment, bacteria are the predominant TPH-degraders, along with a few fungi. The role of algal and protistan communities in TPH biodegradation is unknown (Leahy and Colwell, 1990). The abundance of TPH degraders for the first two sampling events was high and variable. During this period, turbidity was used as an indicator of growth (Brown and Braddock, 1990). However, a precipitate that formed in the liquid media interfered with the readings creating false positives (Jones, 1999). Starting on July 26-27, 1998, INT was added to evaluate the presence of TPH-degrading microorganisms (Haines *et al.*, 1996; Konopka *et al.*, 1998). Hence, only MPN data from July 26-27, 1998 thought June 9-10, 1999 were used in this study (Figure 52) (Appendix C).

While researchers have shown that the number of TPH-degrading microorganisms

188

and their proportion in the heterotrophic community increase upon exposure to petroleum (Leahy and Colwell, 1990; Zhu *et al.*, 2001), especially in the first two weeks (Braddock *et al.*, 1995; Lindstrom *et al.*, 1991), such a change was not expected in the Fore River Creek salt marsh study because the spill had occurred ~19 months earlier.

One of the four MPN replicates in the NO₃⁻ plot for July 26-27, 1998 and one for August 17-18, 1998 were one order of magnitude higher than the rest of the MPN data during the study (Figure 53), so these results were assumed to be outliers, they were not considered during the statistical analysis. In July 1998, the air MPN data were significantly higher (ANOVA, p<0.05) than those from the control and NO₃⁻ treatment. In August 1998, the NO₃⁻ plot had significantly higher MPN counts than the control and air plots. In general, these occurrences were isolated and there were not consistent trends in the abundance of TPH degraders over time.

The mean MPN abundances (July 26-27, 1998 to June 1999) for the treatments (NO_3) and air amendment) were also compared to the control data using a Mann-Whitney U test (p<0.05) (Table 30). This non-parametric method requires a minimum sample size of three for each sample class and is used in remediation field studies (Braddock *et al.*, 1995; Lindstrom *et al.*, 1991). The TPH-degrading community was significantly higher (p<0.05) in the air treatment when compared with NO₃⁻ and control treatments. There was not a significant difference (p<0.05) between the microbial counts for the NO₃⁻ treatment and the control over time (Figure 54). Interestingly, the air treatment only had the highest degradation rate during the 1998 season for the SC aliphatic fraction (Table 29). Possibly, the high degradation rates were related to a greater abundance of TPH-degraders during the 1998 season.

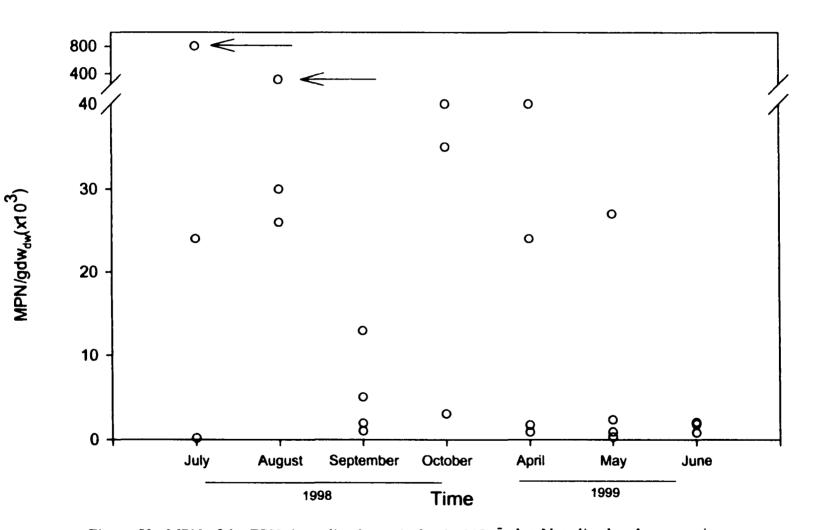
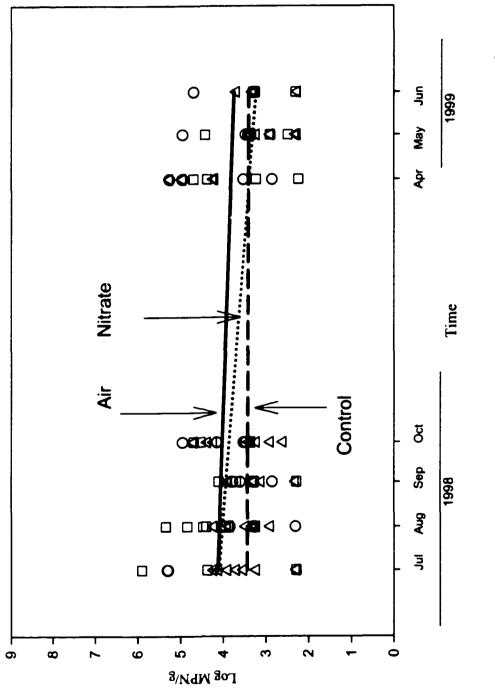



Figure 53. MPN of the TPH-degrading bacteria for the NO₃⁻ plot. Note line break on y axis. Arrows indicate data that was considered out of range and not used in statistical analysis.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Treatment	Mean MPN/g _{dw}	Standard Deviation MPN/g _{dw}	Lower 95% MPN/g _{dw}	Upper 95% o MPN/g _{dw}
Control	16,900	40,000	6,500	27,000
Air	47.700	72,000	28,500	67.000
NO ₃ ⁻	15,000	19,000	9,500	20,500

Table 30. Mean TPH-degrading bacteria MPN for July 26-27, 1998 through June 1999.

The data were plotted for the different treatments to visualize the relationship between the MPN counts and HCs concentrations during the study (Figures 55-57). The control plot showed higher slopes and correlation coefficients (r^2) between the MPN data and the TPH fraction concentrations than the air and NO₃⁻ plots (Table 31). The trend observed in the control plot with the slopes and correlation coefficients (Figures 55-57) indicated that higher MPN data were observed at higher TPH concentrations. This was expected because the higher organic carbon (electron donor) concentrations could support higher numbers of TPH degraders. The correlation coefficients for the SC and LC aliphatics, as well as, the TPH, were significant in the control plot (two tail *t*-test, p<0.2) supporting the trend of higher MPN data with higher TPH concentrations.

	(Log	reatment Slop MPN/TPH fra IPN/kg/mg/kg	action)	Correla	ation Coeffic	ient (r ²)
	Control	Air	NO ₃ -	Control	Air	NO ₃
SC Aliphatics	0.5099	0.0327	0.0755	0.2023	0.0024	0.0029
LC Aliphatics	0.4828	-0.2738	0.6513	0.1048	0.0167	0.0020
Aromatics	0.1937	0.1759	0.0957	0.0235	0.0080	0.0026
ТРН	0.5286	-0.0466	0.0754	0.1193	0.0040	0.0021

Table 31. Treatment slopes for the relationships between MPN counts and TPH concentrations for July 26-27, 1998 through June 1999.

Shading indicates a significant $p \le 0.20$

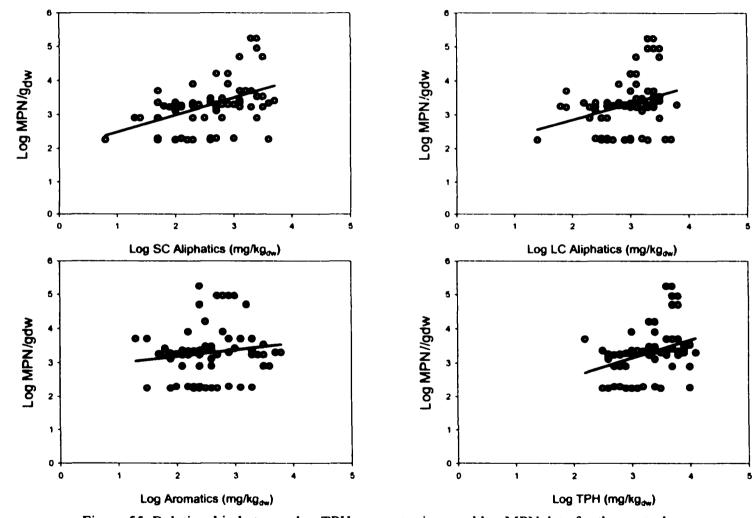
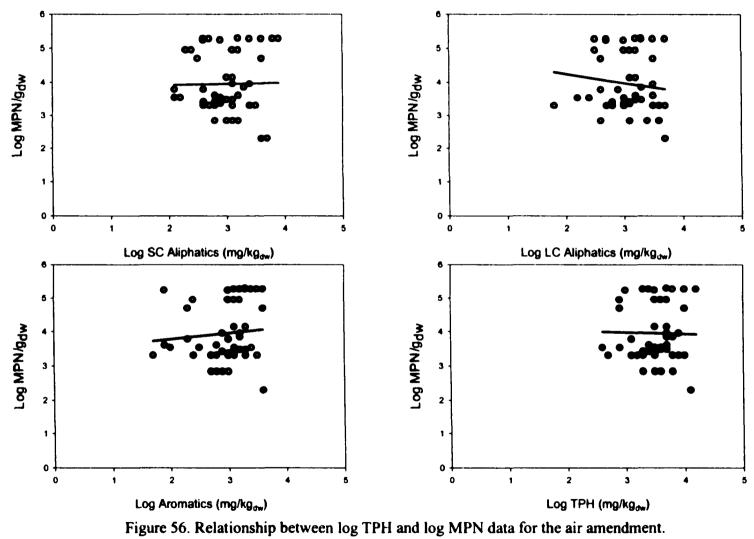
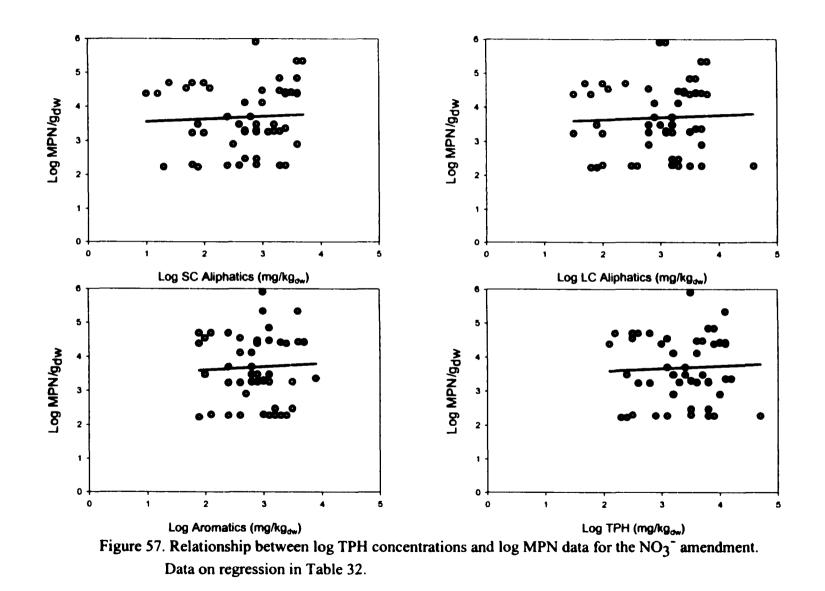




Figure 55. Relationship between log TPH concentrations and log MPN data for the control. Data on regression in Table 32.

Data on regression in Table 32.

Braddock et al. (1995) reported that in intertidal (shoreline) environments MPN abundance of 20,000-50,000/g_{dw} almost a year after the Exxon Valdez spill, which were similar to the range found in the control at the Fore River marsh (Table 30) \sim 19 months after the Julie N spill. It is possible that the structure and diversity of the dominant microbial community in the Fore River Creek marsh changed with the addition of NO_3^{-1} and air, but not the abundances as observed by Macnaughton et al. (1999). It is also possible that the abundance of the target population (e.g., denitrifiers, aerobes) was so small that it was masked by other populations of degraders (e.g., SRB). Such small changes may not have been observed due the variability in the MPN (Uraizee et al., 1998). There is the possibility that the TEAs stimulated the microbial community to degrade NOM, especially if the TPH remaining was more difficult to degrade or the concentration too low to be used efficiently. If sediment samples were not properly shaken or if clumping of bacterial cells occurred, the MPN value could also have underestimated the real bacterial density, but a trend should still have been present (Standard Methods, 2000). In addition, large numbers of microorganisms may have been needed to observe a color change of the INT (Haines et al., 1996).

In results similar to these in the Fore River Creek study, many researchers have observed only small changes in microbial abundance in response to a spike of TPH contamination after the first period of exposure. For example, Carman *et al.* (1996) found in a 28 d microcosm study (with Louisiana marsh sediments) that the bacterial abundance had not significantly increased after the addition of diesel-contaminated sediments. However, they found an increase in the PAH degradation suggesting that an adequate microbial community was present. McCurdy *et al.* (1997) were also unable to

observe a stimulation of the TPH degraders over a 650 d period in soil cores studies (Louisiana marshes). They suggested that previous oil spills in the salt marsh could have increased the microbial abundance before the study or the large variance in the counts from soil samples could have masked changes. Townsend et al. (1996) evaluated the effect of two biostimulation treatments ($(NH_4)PO_4$ and KNO_3) on a controlled oil spill (Arabian light crude oil) in a marsh (San Jacinto River, TX). Again, there was an initial (30 d) increase in the number of aliphatic- and PAH degraders, but the amendments did not significantly increase microbial abundance compared to control plots. By Day 140, all populations were back to baseline. Venosa et al. (1999) evaluated four different treatments in response to a controlled oil spill: no oil (control), oil alone (Bonny Light crude oil), oil and nutrients; and oil, nutrients and an indigenous bacterial inoculum. The MPN data indicated that the alkane degraders did not increase with time, while the aromatic degraders increased during the first 15 d and then both populations decreased steadily. With an average TPH degradation rate of $\sim 5 \text{mg/kg}_{dw}/d$ in the Fore River Creek salt marsh study, it was unlikely there would be a marked increase in the abundance of TPH degraders, especially because the community was already acclimated 19 months after the oil spill.

4.8 <u>Nutrient Analysis</u>

Nutrient availability (mainly nitrogen) can be one of the most common limiting factors of oil biodegradation along marine shorelines (Atlas, 1981; Bartha, 1986; Venosa *et al.*, 1996). Therefore, monitoring nutrients, particularly concentrations in porewater, is critical to understanding the potential of oil bioremediation (Lee and Merlyn, 1999; Zhu

et al., 2001). An appropriate C:N:P ratio is necessary to ensure that oil biodegradation is not limited by nutrients (Reynolds et al., 1997). Different ratios have been recommended ranging from 60:1 and 800:1 for C:N and C:P, respectively (Dibble and Bartha, 1979), 160:1 C:N (American Petroleum Institute (API), 1985), 100:10:2 C:N:P (Margesin and Schinner, 1997), and 20:20:1 C:N:P (Belloso et al., 1998). However, maintaining a specific nutrient ratio *in situ* is nearly impossible, especially in marine environments, because of the dynamic washout and dilution caused by tides and waves (Zhu et al., 2001).

4.8.1 <u>Porewater NO₃</u>

Because oil degradation takes place mainly in the interface between the TPH molecules and the water or sediment particles where the microorganisms reside, the effectiveness of biostimulation depends on the nitrogen concentration in the interstitial porewater of contaminated sediments (Bragg *et al.*, 1994; Venosa *et al.*, 1996).

The porewater NO₃⁻ concentration was highly variable in all of the plots during the Fore River Creek study (Figure 58) (Appendix C). Only samples from June 1998 through April 1999 were analyzed for NO₃⁻ because of some analytical problems (e.g., salinity interferences). In the control plot, the porewater NO₃⁻ concentration significantly decreased from ~0.5 mg to ~0.01 mg NO₃⁻-N/L (Tukey-Kramer, p<0.05) possibly because of the NO₃⁻ demand exerted by the oil biodegradation, *S. alterniflora* and the lack of adequate supply. Generally, NO₃⁻ concentrations in salt marshes are low in comparison to other nitrogen sources such as NH₄⁺ because of the reducing conditions (McKee and Mendelssohn, 1994).

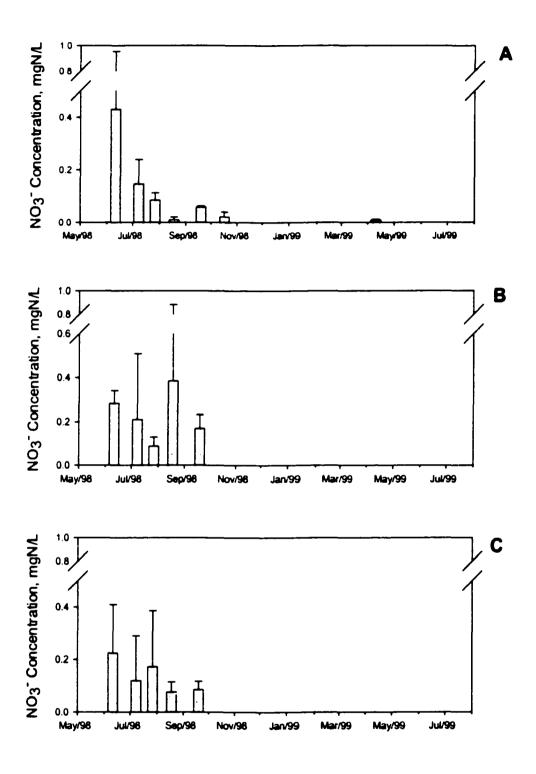


Figure 58. NO₃⁻ concentration in the porewater samples of the Fore River Creek plots. A) control, B) air and C) NO₃⁻. Note line breaks on y axis

It is very difficult to assess if the decrease in the NO_3^- concentration in the control plot during the Fore River Creek study was a result of it being used as a TEA (dissimilatory pathway) or as a source of nitrogen (nutrient) (assimilatory pathway).

Jones (2000) reported in a technical characterization of the estuarine and coastal waters in New Hampshire, that although different concentrations of nitrogen are observed within locations, there is a seasonal pattern. Late fall through early spring, high inorganic nitrogen concentrations are observed, while by late spring through early fall low inorganic nitrogen concentrations are present. This pattern was observed at the Fore River Creek salt marsh except for April 1999. During that month, the inorganic nitrogen concentrations were low corresponding to lower TPH, especially in the NO₃⁻ plot.

In the air plot, the NO₃⁻ concentration (0.3 \pm 0.2 mg N/L) was somewhat variable, and did not change significantly during the study (Tukey-Kramer, p<0.05). Similar results were also observed in the NO₃⁻ plot (0.2 \pm 0.1 mg N/L) (Tukey-Kramer, p<0.05).

The NO₃⁻ concentration in the porewater of the NO₃⁻ plot (plot volume = 2.27 m^3) was supposed to be 32 mg N/L. The *in situ* NO₃⁻ porewater concentrations were ~ two order of magnitude below this desired value. During the Fore River Creek study, the NO₃⁻ solution was added after the sampling events to avoid bias when collecting porewater. The NO₃⁻ concentrations found in the porewater samples suggested that either microorganisms were using NO₃⁻ very quickly because of the high demand (i.e., NO₃⁻ was very limiting in the environment) or it was washed out by tidal action. NO₃⁻ can also serve as TEA for the reoxidation of sulfides present in a salt marsh (Davidova *et al.*, 2001).

Field tests conducted after the *Exxon Valdez* oil spill in Prince William Sound showed that the rate of oil biodegradation in three sandy beaches was accelerated by maintaining average interstitial nitrogen concentrations (as NO_3^- or NH_4^+) of about 1.5 mg N/L (Bragg *et al.*, 1994). A microcosm study with sandy sediments suggested that optimum rates of biodegradation could be sustained by maintaining *in situ* concentrations approaching 1-2 mg N/L in interstitial porewater (as NO_3^- or NH_4^+) (Venosa *et al.*, 1996). Zhu *et al.* (2001) noted that bioestimulation of oil-impacted beaches should occur when nitrogen concentrations (as NO_3^- or NH_4^+) in the porewater are at least 2 to 5-10 mg N/L,. The higher concentrations should only be used after a broad analysis of cost, environmental impact and practicality. However, these concentrations may be lower than the nitrogen demand in the Fore River Creek marsh, which has a much higher organic content and thus greater nutrient demand (i.e., growing plants) than a beach.

Based on the stoichiometry of the degradation of SC and LC aliphatics and aromatics under denitrifying conditions (Table 32), ~ 158 mg N (NO₃⁻ as TEA) would be needed to completely degrade ~0.1 g SC fraction (Appendix D). Considering that the Fore River Creek marsh had ~4,600 g SC/plot, it would theoretically require ~7,268 g N (NO₃⁻ as TEA) for the complete degradation. Based on the theoretical (Appendix D) for the LC aliphatics 4,908 g/plot and aromatics 3,834 g/plot degradation: 7,803 g N and 6,594 g N, respectively, would be needed. The total of N (NO₃⁻ as TEA) theoretically needed to degrade the initial TPH in the Fore River Creek salt marsh would be approximately 19,979 g N. During the study (1998-1999), 2,154 g N (as NO₃⁻) were added to the NO₃⁻ plot. This indicates that only 10.6% of the nitrogen required as NO₃⁻ (to be used as TEA) was added (Appendix D). In order to supply the needed NO3⁻-N, the porewater should be monitored frequently to maintain the optimum concentration of the TEA in situ (Bragg et al., 1994; Venosa et al., 1996; Zhu et al., 2001).

During the Fore River Creek marsh study, 430 g of NaNO₃ were added weekly for an expected porewater final concentration of 32 mg N/L (Appendix D). This concentration is lower than that reported by Townsend *et al.* (1996) in an oilcontaminated salt marsh (San Jacinto River, TX) (40 mg available N/kg_{dw} for the nutrient treatment, and 40 mg available N/kg_{dw} plus 100 mg NO₃⁻-N/kg_{dw} for the TEA treatment). In addition, the Fore River Creek salt marsh had a higher TPH concentration: SC (2,900±1,400 mg/kg_{dw}), LC (3,200±1,500 mg/kg_{dw}) and aromatics (2,500±1,500 mg/kg_{dw}) than Townsend et al. (aliphatics (~869 mg/kg_{dw}) and aromatics (~271 mg/kg_{dw})).

Compound	Theoretical Stoichiometry
SC Aliphatic C ₁₄ H ₃₀	$C_{14}H_{30} + 22.4 \text{ NO}_3^- + 48.4 \text{ H}^+ \rightarrow 14 \text{ CO}_2 + 11.2 \text{ N}_2 + 39.2 \text{ H}_20$
LC Aliphatic C ₂₈ H ₅₈	$C_{28}H_{58} + 44.8 \text{ NO}_3^+ + 99.8 \text{ H}^+ \rightarrow 28 \text{ CO}_2 + 22.4 \text{ N}_2 + 78.4 \text{ H}_20$
Aromatic C ₁₇ H ₁₇	$C_{17}H_{17} + 27.2 \text{ NO}_3^- + 78.2 \text{ H}^+ \rightarrow 17 \text{ CO}_2 + 13.6 \text{ N}_2 + 47.6 \text{ H}_20$

Table 32. Theoretical stoichiometry for TPH fraction degradation by using NO₃⁻ as TEA.

Based on typical C_nH_n compound

In salt marsh sediments Adrian *et al.* (1998) observed little to no enhancement of degradation for the lowest chain length alkanes (C_{11} and C_{12}) with the exception of a plot where NO₃⁻ was added at 500 mg NO₃⁻-N/kg. In addition, the NO₃⁻ at this concentration stimulated biodegradation of almost all other alkanes at two to three times the rate of the control. Their porewater concentrations were ~90-292 mg N/L. However, they found that NH₄⁺ was a better amendment because it required only 20% of the concentration that NO₃⁻ did to achieve the same degradation rates. Not only were the porewater NO₃⁻

concentrations much higher in the Adrian *et al.* (1998) study, but also the concentration of the crude oil was higher too (700,000 mg oil/kg soil). In addition, during the Adrian *et al.* (1998) study, they did not experience nitrogen losses by tidal action because they used microcosms.

One of the main reasons to use horizontal wells during the Fore River Creek salt marsh study was to minimize the potential for washout of the NO_3 by the tide. This approach assumed that nutrients dissolved in freshwater would be brought into contact with the oiled sediments assuming equal movement in all directions. However, the delivery system may not have worked properly as discussed in Section 4.6. The horizontal well delivery system in the Fore River Creek marsh should be assessed using a tracer to monitor the amendment pathways *in situ* after injection.

4.8.2 <u>Porewater NH4</u>[±]

The NH₄⁺-N concentration during the Fore River Creek study was highly variable in all plots (Figure 59) (Appendix C) and was not significantly different between the different treatments (ANOVA, p<0.05). The NH₄⁺-N was higher than the NO₃⁻-N concentration in all cases as expected because the majority of the nitrogen in salt marsh sediments is in the form of NH₄⁺ because of the reducing conditions (McKee and Mendelssohn, 1994). The concentration of the NH₄⁺ did not change significantly in any of the plots during the study (Tukey-Kramer, p<0.05).

The inorganic nitrogen concentrations in the porewater (NO₃⁻-N- and NH₄⁺-N) in the air, NO₃⁻, and control plots were ~3.0 mg N/L, ~1.8 mg N/L and ~2.6 mg N/L, respectively. These nitrogen concentrations are similar to levels that supported biodegradation of oil on contaminated beaches, however, the concentration of available

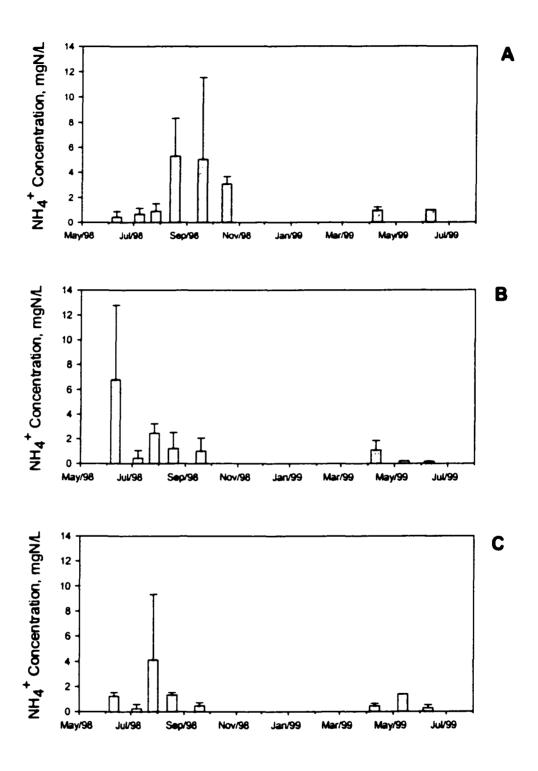


Figure 59. NH₄⁺ concentration in the porewater samples of the Fore River Creek plots. A) control, B) air and C) NO₃⁻

NOM is much higher in salt marsh environments (See Section 4.8.1) (Bragg *et al.*, 1994; Venosa *et al.*, 1996; Zhu *et al.*, 2001). In fact, Townsend *et al.* (1996) and Adrian *et al.* (1998) found concentrations 1-2 orders of magnitude higher were needed in salt marshes. Therefore, it is likely that nitrogen concentrations in the Fore River Creek salt marsh may not have been adequate to stimulate TPH degradation. NH_4^+ is a source of inorganic nitrogen for microorganisms and plants (*S. alterniflora*) and is less likely to be lost from a marsh by washout because it is able to sorb to organic matter more efficiently than NO_3^- (Adrian *et al.*, 1998). For future amendments, NH_4^+ should be considered as the nitrogen source if TPH biodegradation is nutrient limited. However, unlike $NO_3^ NH_4^+$ cannot serve as a TEA because the nitrogen is already reduced (-3 valence).

4.8.3 <u>Porewater</u> PO₄⁻³

Phosphorus and other minerals (e.g., potassium, magnesium) must be incorporated into biomass. Phosphorus is generally used as a structural element and is present in DNA and RNA molecules and as co-factor in some enzymes. Low phosphorus concentrations available at a TPH contaminated site could limit the rate of the microbial degradation of TPH.

The PO_4^{-3} concentrations present in the porewater during the Fore River Creek study were highly variable (Appendix C). The control plot had high PO_4^{-3} concentrations at the end of the Summer and early Fall 1998 season (Figure 60), followed by a drastic decrease during October 1998 and April 1999. This pattern was similar in the NO_3^{-1} plot where higher PO_4^{-3} concentrations in the porewater were present during the June-August 1998 compared to September-October 1998 and April-June 1999. The air plot had lower porewater PO_4^{-3} concentrations compared to the control and NO_3^{-1} plots.

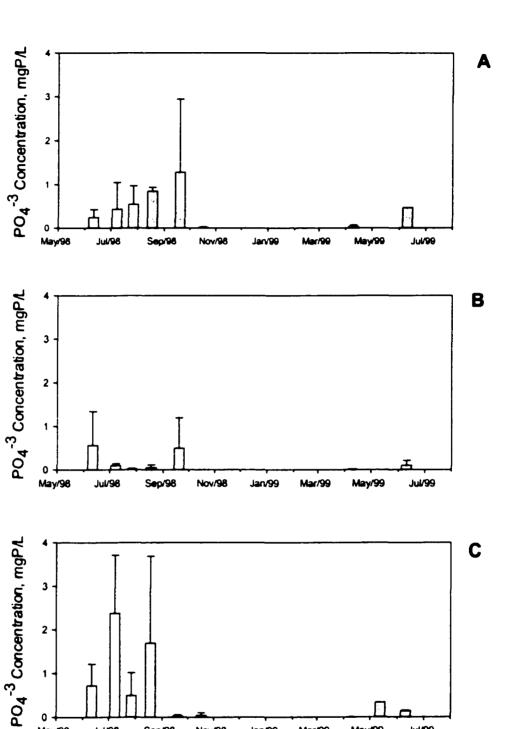


Figure 60. PO_4^{-3} concentration in the porewater samples of the Fore River Creek plots. A) control, B) air and C) NO₃⁻

Jan/99

Mar/99

May/99

Nov/98

Jul/99

Sep/98

Jul/98

0 May/98 These lower concentrations could have been indicative of a higher uptake of PO_4^{-3} by the active microbial population. For example, the air plot also had a significantly higher MPN counts for TPH degraders and a significantly higher degradation rate for the SC aliphatics during the Summer and Fall 1998.

Wright *et al.* (1995), in a mesocosm study using salt marsh sediments contaminated with light crude oil, found that the application of phosphorus significantly enhanced TPH degradation during the winter, but not during summer. They concluded that warmer temperatures influenced phosphorus diffusion from sediments. This type of trend was not observed in the Fore River Creek marsh. Lower PO_4^{-3} concentrations occurred during the Fall (October 1998) and early Spring (April 1999).

The PO_4^{-3} porewater concentrations in the Summer and Fall 1998 were enough to support the biodegradation of the TPH present in the Fore River Creek marsh sediments compared to Wright *et al.*'s levels (40 kg PO_4^{-3} /ha). The low PO_4^{-3} concentrations observed in the Fore River Creek marsh during the 1999 season could have limited biodegradation, however, the lower TPH during that period may also have exerted a lower demand for PO_4^{-3} .

4.9 Plant Growth and Density

The stem height and density of *S. alterniflora* was measured in each subplot during the sampling events (Appendix C). *S. alterniflora*, the predominant plant in the Fore River Creek marsh, is usually found in environments where it can be flooded. It is an important primary producer that acts as the initial source of detrital food on which all of salt marsh organisms depend (DeLaune *et al.*, 1979). *S. alterniflora* spreads asexually

by means of a subterranean rhizome system. The plant forms a dense net that encourages the deposition of fine sediment particles including organic matter (salt marsh peat) (Lin and Mendelssohn, 1998).

4.9.1 <u>Seasonal Variation</u>

In the Fore River Creek marsh, the *Spartina* started to grow during the spring and reached its highest stem height during August and September 1998 (Figure 61). In late summer, *S. alterniflora* flowered and by late fall (October, 1998), the grasses died back and showed no growth until the following spring (May 1999).

A similar growth pattern was described by Hines (1989) during a study of sulfate reduction in a northern New England salt marsh (upper region of Great Bay, NH). Although leafs and aerial stems of *S. alterniflora* die back each year, the underground rhizomes are perennial structures (Dibner, 1978). Plants can transport oxygen to their roots, which contain some air-filled tissue. Hence, they are not asphyxiated when they are inundated by the tide (Dibner, 1978).

The 1998 and 1999 data were used to evaluate and compare the stem height growth and density of *S. alterniflora* between the different amendments. The blade height and density data were not normally distributed, typical of plant population growth, so they were log transformed for statistical analysis. The tallest stems were present in September 1998, July-August 1998 and August 1998 for the NO₃⁻, control and air plots, respectively (Table 33). The *S. alterniflora* stem density in the control plot showed a decreasing trend during the 1998 season compared to the treatment plots (Figure 62).

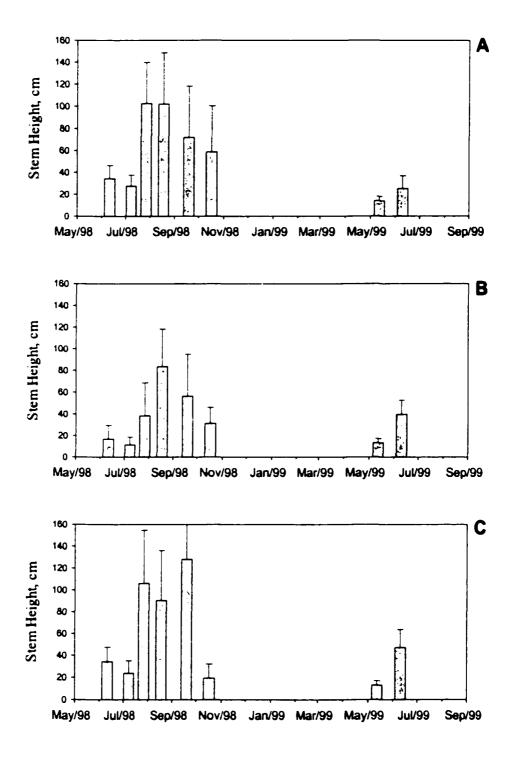


Figure 61. S. alterniflora stem heights. A) control, B) air and C) NO₃

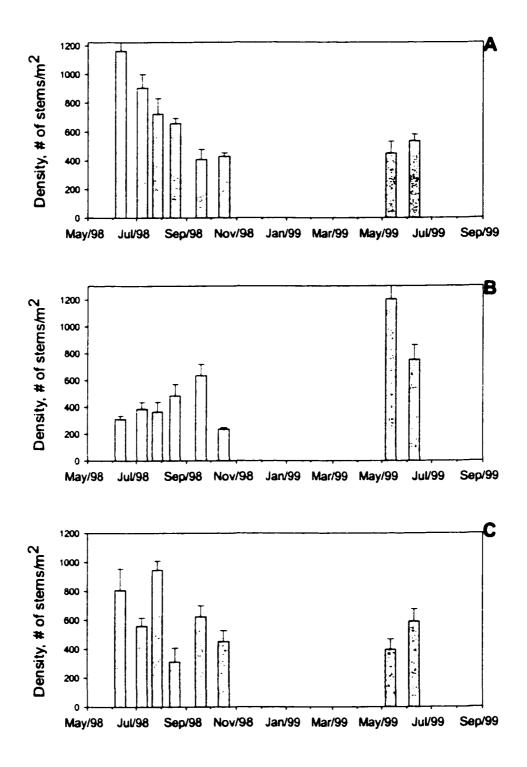


Figure 62. S. alterniflora densities. A) control, B) air and C) NO3

cm	Control		Air			N03		
	July, August 1998	September October 1998	August 1998	July, September October 1998	June 1999	September 1999	July, August 1999	June 1999
Mean	88.5	46.9	73.6	33.1	37.4	117.8	83.0	43.8
Std. Dev.	1.9	2.5	1.8	2.5	1.47	1.8	2.0	1.6
Max.	171.0	164.1	134.0	146.9	68.1	170.8	169.1	74.0
Min.	9.0	6.0	12.0	3.0	10.0	12.0	12.0	6.0

Table 33. S. alterniflora stem height during the months with the tallest plants.

The S. alterniflora mean densities were not significant different between the different treatments (Tukey-Kramer, p<0.05) (Table 34). The densities in the air plot on May and June 1999 were significantly higher than the other events for this treatment (Tukey-Kramer, p<0.05.). It is possible that the subplots sampled had a high number of small plants in the quadrant counted compared to the other treatments.

# of stems/m ²	Control		Air		NO3 ⁻	
	June-July 1998	May-June 1999	June-July 1998	May-June 1999	June-July 1998	May-June 1999
Mean	21.6	11.5	8.3	22.8	13.4	11.5
Std. Dev.	8.8	5.7	6.1	10.5	9.3	7.1
Max.	27.2	16.3	12.1	31.5	19.3	17.4
Min.	16.0	6.7	4.4	14.0	7.5	5.6

Table 34. S alterniflora during the months with the highest densities.

4.9.2 Treatment Effect

The plant stems in the control and NO₃⁻ treatments were significantly higher than those in the air plot when they were compared using one-way ANOVA (p<0.05). However, this was true even at the beginning of the study before the amendments were added when the air plot had the lowest stem height (Figure 61). This indicated that the amendments did not have a significant effect in the *S. alterniflora* height over the course of the study.

4.9.2.1 IVRM Analysis

The IVRM was used to determine if the NO₃⁺ and air amendments were related to the *S. alterniflora* stem length. The IVRM was basically the same used initially to observe the effect of the treatments on the degradation of TPH (See Section 4.4), except that the log of *S. alterniflora* stem height was used as a variable. The July, August and September 1998 stem height data were used because these were the months with the tallest plants and most stable growth (Table 33). The model indicated that none of the plots had a higher effect in the *S. alterniflora* stems (Table 35). The control and NO₃⁺ had higher *S. alterniflora* stems compared to the air (Tukey-Kramer test, p<0.05). This agreed with the earlier findings indicating that the treatments (control, air or NO₃⁺) did not have a significant effect on the plants' growth.

Treatment	Treatment Slopes (1x10 ⁻⁴)	p value		
	Log stem height	Log stem height		
Control	0.81	0.002		
Air	1.76	<0.0001		
NO ₃	1.81	0.0142		

Table 35. Treatment slopes and their probabilities using the IVRM.

Shading indicates a significant p < 0.20

4.9.3 <u>S. alterniflora and HC Biodegradation</u>

S. alterniflora stem height data was plotted against the degradation of the TPH (SC and LC aliphatics and aromatics) to observe possible relationships during the study (Figures 63-65). None of the slopes (Table 36) were significantly different from zero (two tailed *t*-test, p<0.05) indicating that there was no apparent relationship between the S. alterniflora stem height and the degradation of the SC and LC aliphatics or aromatic. Similar results to the obtained in this study at the Fore River Creek salt marsh were observed by Wright *et al.* (1996). They found that S. alterniflora did not significantly influence the degradation of artificially weathered Arabian crude oil in a salt marsh (Galveston, TX) mesocosms.

Table 36. Slopes of the best-fit linear relationship between S. alterniflora growth and TPH

	Control		Air		NO ₃ -	
	Slope	r ²	Slope	r ²	Slope	r²
SC Aliphatics	-0.191±1.132	0.0282	-0.083±0.735	0.0130	+0.089±0.449	0.0388
LC Aliphatics	-0.177±1.468	0.0130	+0.034±0.736	0.0022	+0.075±0.456	0.0267
Aromatics	-0.277±1.236	0.0485	-0.280±0.639	0.1645	-0.025±0.601	0.0017
ТРН	-0.218±1.512	0.0207	-0.125±0.804	0.0239	+0.045±0.546	0.0069

Buresh *et al.* (1980) found that nitrogen availability is an important factor influencing *S. alterniflora* productivity in salt marshes (Louisiana). Although, it is likely that in the Fore River Creek salt marsh, NO_3^- did not enhance S. *alterniflora* growth vs. the control because this was used rapidly by *in situ* microorganisms.

213

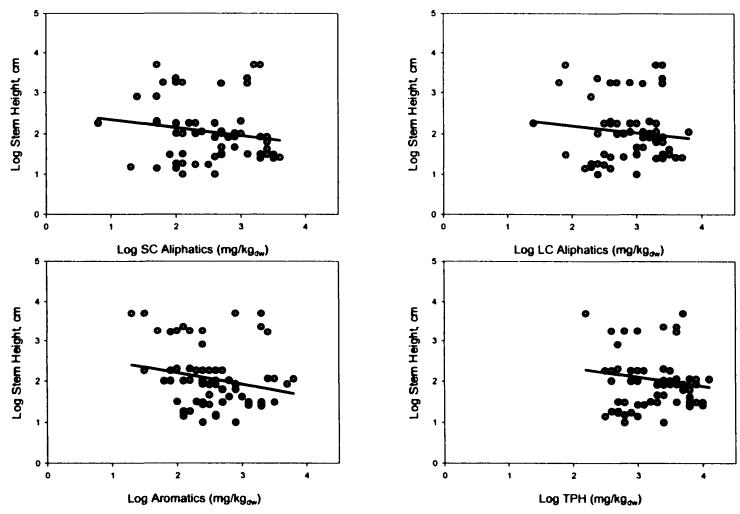


Figure 63. Relationship between the log TPH concentration and log S. alterniflora stem height for the control. Data on regression is presented in Table 38.

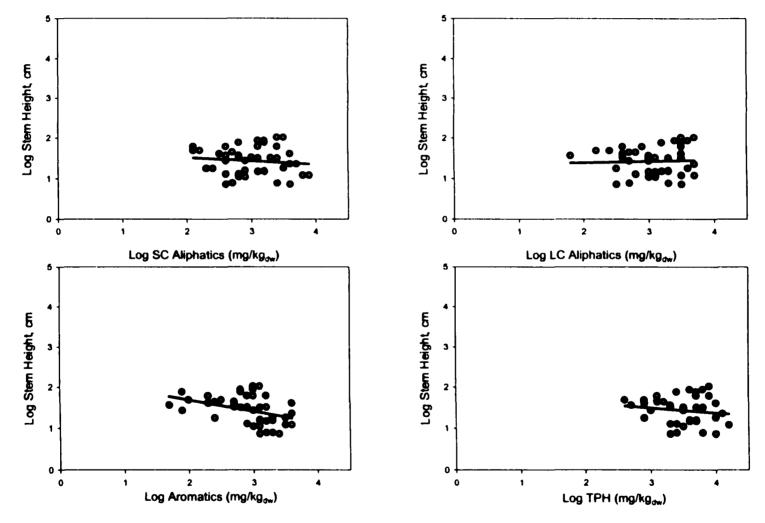


Figure 64. Relationship between the log TPH concentration and log S. alterniflora stem height for the air amendment. Data on regression is presented in Table 38.

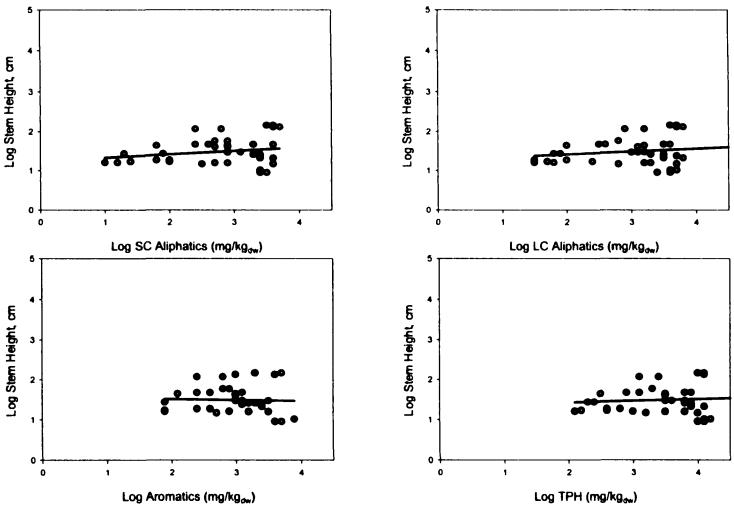


Figure 65. Relationship between the log TPH concentration and log S. alterniflora stem height for the NO₃⁻ amendment. Data on regression is presented in Table 38.

Burns and Teal (1980) reported that after 16 months of an oil spill, there was an inverse correlation between the amount of oil in surface sediments and plant growth (*S. alterniflora*). However, they found that areas showing concentrations greater than 1,000 to 2,000 mg No. 2 fuel oil/kg in the sediments contained non-living plants. The results obtained during the Fore River Creek salt marsh disagreed with Burns and Teal's study because *S. alterniflora* was growing in sediments contaminated with concentrations ~ 5,000 mg/kg_{dw} after a similar period of time. There was no correlation between the TPH and the *S. alterniflora* growth. DeLaune *et al.* (1979) reported that *S. alterniflora* can apparently tolerate large amounts of crude oil without any direct short-term harmful effect on standing crop biomass.

During the sampling process in the Fore River Creek salt marsh, catwalks were used to avoid damaging the plants and sediments in the treatment plots. However, because the limited number of platforms some damage was caused outside and on the periphery of the plots. Foot and mechanical traffic is known to damage vegetation and drive the HCs into the anaerobic layer of the sediments where they may persist for decades (Hoff, 1995). The foot traffic was clearly detrimental as the track remained visible for months after sampling was done for the season (Figure 66). However, there was no relationship between the plots located in the border of the plots and low biodegradation of TPH (See Section 4.9.4).

4.9.4 <u>S. alterniflora</u> Coverage

The marsh is a habitat with high rates of microbial activity that are strongly affected by plant growth and activity (Hines *et al.*, 1999). Therefore, it was important to assess the potential impact of *S. alterniflora* cover on TPH concentration.

Figure 66. Damage caused outside of the plots and around the treatments by pedestrian traffic.

Because the plots were initially selected during the Spring 1998, when no plants were no growing, it was difficult to observed whether the plant coverage in each plot was homogeneous (Figure 67). Data from the NO_3^- plot in August 1998 were analyzed because it was the only time when two of the subplots sampled (c and d) did not have plants, while the other two subplots (a and d) did. The stem height and density data from the NO_3^- subplots (a, b, c, d) were compared (Figure 68) (Table 37) using a Tukey-Kramer test (p<0.05). The SC aliphatic and the aromatic concentrations were not significantly different between the barren and *S. alterniflora* subplots, but the LC aliphatic concentrations were. In addition, the IVRM indicated that NO_3^- had a significant effect on the biodegradation of LC aliphatics during the 1998 season. There is not enough statistical evidence during this study to assess if the *S. alterniflora* cover affected TPH degradation at the Fore River Creek salt marsh.

Little research has been conducted to assess the capacity of vegetation to enhance the degradation of oil in marshes. Lin and Mendelssohn (1998) evaluated two salt marsh plants, *Juncus roemerianus and S. alterniflora*, in the biodegradation of artificially weathered crude oil (45,000 mg/kg_{dw}). They also found that *S. alterniflora* did not enhance degradation compared to the control while *J. roemerianus* did most likely due to its higher biomass and transpiration rates.

4.10 Summary

One of the major objectives of this dissertation was to determine if the addition of oxygen (added as air) and NO_3^- could enhance the *in situ* biodegradation of HCs

219



Figure 67. Differences in the S. alterniflora coverage in the different treatments.

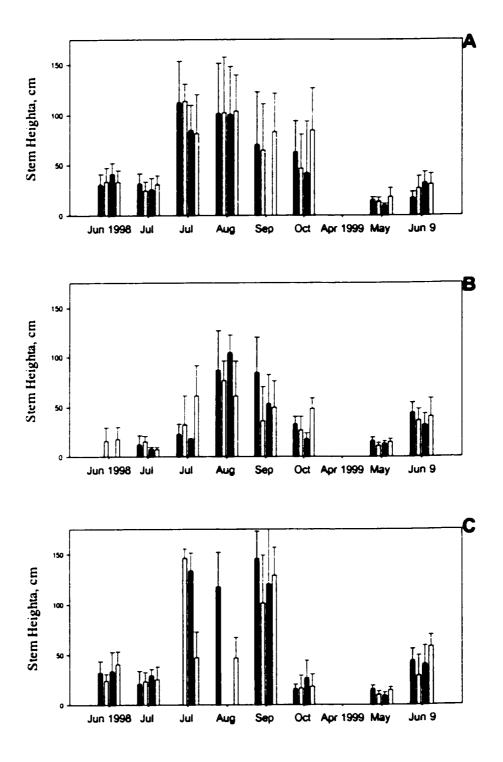


Figure 68. S. alterniflora stem height in the subplots (a,b,c,d). The solid bars are the mean of stem height measurements per subplot, and the error bars represent one standard deviation. A) control, B) air and C) NO₃⁻

Subplot	S. altern	iflora growth	Concentration (mg/kg _{dw}) (n=2)				
	# Plants	Stem height (cm)	SC aliphatics	LC aliphatics	Aromatics		
a	18	117.4±34.3	1,417±553	2,106±311	1,065±272		
b	-	-	3,665±394	4,350±787	3,330±1,789		
с	-	-	4,395±235	5,457±462	2,581±1,257		
d	11	46.8±20.5	2,754±1,146	3,254±467	1,296±141		

Table 37. S. alterniflora growth and SC and LC aliphatic and aromatic concentrations for the NO₃⁻ plot during August 1998.

compared to the natural attenuation process in an oil-contaminated salt marsh. During the overall study (1998-1999), the addition of oxygen and NO_3^{-1} as TEAs did not enhance the *in situ* degradation of TPH compared to natural attenuation. Because the study was conducted ~19 months after the *Julie N* spill and considering that the Fore River salt marsh is a low energy system, biodegradation was considered to be the main natural attenuation process acting on the TPH removal in all of the plots. Over the one year period, none of the treatments had significantly higher biodegradation rates than observed in the control plot for the different TPH fractions (SC and LC aliphatics, and aromatics). However, during the 1998 season (Summer and Fall), the addition of oxygen and NO_3^{-1} yielded significantly higher degradation rates for the SC aliphatics and NO_3^{-1} also yielded significantly higher degradation of the LC aliphatics.

The low nitrogen concentrations observed in the porewater samples and mass transfer limitations could be the main factors that limited the *in situ* TPH biodegradation during the Fore River Creek study. Based on porewater analysis, the *in situ* NO_3^- concentrations in the NO_3^- plot were low (<0.15 mg N/L). Also, stoichiometry indicated

that the amount of NO_3 added was ~11% of that needed to degrade all the TPH using NO_3 as a TEA. The degradation obtained in the air plot also indicated that the oxygen delivered into the sediments was not enough to enhance aerobic TPH biodegradation over that observed in the control. The low biodegradation rates in the treatment plots could also indicate that the treatments were not properly delivered into the marsh sediments by the horizontal well system.

Based on the results obtained during this dissertation research it will be necessary to conduct more studies to understand better the fate of the amendments and the hydrologic conditions present in the marsh sediments to optimize the biodegradation rates. Although, subsurface horizontal wells (inserted 0.6 m apart) could be an acceptable system to deliver the amendments directly into the sediments of a small oilcontaminated salt marsh, this system is not practical for larger marshes. A more efficient subsurface injection system and longer residence times of the amendments will be necessary.

CHAPTER V

CONCLUSIONS AND RECOMMENDATIONS

5.1 Conclusions

5.1.1 Evaluation of Screening Methods for TPH and Site Selection

During the first part of the study, the EPA and ASTM Methods were evaluated as screening tools for TPH determination. The MDL and LOQ for the ASTM Method (52 mg/kg_{dw} and 180 mg/kg_{dw}, respectively) were lower than for the EPA Method (773 mg/kg_{dw} and 2,060 mg/kg_{dw}, respectively) indicating that small TPH concentrations would be better quantified using the ASTM Method. The precision and accuracy were within the published ranges for each method when they were evaluated with unspiked and spiked laboratory samples (CS and OS). The precision of the two methods was NSD, but was out of the published ranges when TPH-contaminated sediments from the Fore River Creek salt marsh were evaluated. The percent recovery (109±8%) for the ASTM Method was within the recommended ranges and SH than for the EPA Method (63±7%). The ASTM Method also had a higher sample throughput (~30 samples per day; 10 min/sample) and was less expensive (~\$15) compared to the EPA Method. Overall, the ASTM Method was better for screening TPH in the Fore River Creek salt marsh

sediments. However, the presence of NOM in the marsh caused a significant overestimation of TPH in the sediments by the ASTM Method and the variability was so high that >50 replicates would have needed to obtain a detectable difference of 500 mg TPH/kg_{dw}. Using the ASTM Method, it was possible to determine the plots with higher TPH concentrations in the Fore River Creek salt marsh.

During the study, the MADEP Method was used to analyze the TPH in the sediments. This method could detect specific fractions of TPH (SC and LC aliphatics, and aromatics) and was recommended by NHDES for the TPH analysis. Although some initial problems occurred during the first sampling event, the MADEP Method exhibited acceptable QC, except that the recovery of the surrogates (COD and OTP) was lower than that recommended by MADEP. This effect was the result of the NOM in the sediments and was consistent throughout the study. Therefore, the data could be used for comparative purposes as long as the QC criteria established were consistently achieved.

5.1.2 TPH Biodegradation

During the first season of the study (Summer and Fall 1998), there was a significant degradation of the SC and LC aliphatics and aromatics, indicating that natural attenuation was occurring. In the air plot, removal of the SC aliphatics and aromatics was significantly greater than in the control. The NO₃⁻ plot had a significantly greater reduction of the SC and LC aliphatics compared to the control. Because the *Julie N* spill occurred ~19 months before the study began and the Fore River Creek salt marsh is a low energy system, it is likely that biodegradation accounted for most, if not all, of the TPH removal observed in the plots. The biodegradation rates observed during 1998 for the SC aliphatics were significantly higher in the treatments (27.6±17.5 mg/kg_{dw}/d and

20.6±10.9 mg/kg_{dw}/d for the air and NO₃⁻ plots, respectively) than in the control (13.1±12.8 mg/kg_{dw}/d). For the LC aliphatics, the biodegradation rate for the NO₃⁻ plot (23.7±13.0 mg/kg_{dw}/d) was significantly higher than the control plot (13.6±12.2 mg/kg_{dw}/d). The biodegradation rate for the aromatics was NSD than in the control. During the 1999 season, none of the plots (control, air and NO₃⁻) exhibited a significant reduction in the TPH fractions. This may have been because less TPH was present in the marsh sediments limiting the degradation rates and because there were problems with the amendment delivery systems.

The overall results after a year of study for the Fore River Creek salt marsh indicated that significant degradation of SC and LC aliphatics and aromatics occurred in the control as a result of natural attenuation (as indicated by the IVRM model and degradation rates) and neither the air nor NO_3 amendments enhanced degradation over this natural process.

Natural biodegradation rates could have been limited during the study because of the low porewater nitrogen concentrations, mass transfer limitations and the presence of less biodegradable HCs remaining at the end of the study. The ability of the amendments to enhance biodegradation could have been limited because there was not a complete distribution of the amendments into the sediments, mass transfer limitations of TEAs to the microorganisms, and the low mass application of NO₃'/air used during the study. During the 1998 season (Fall and Summer), the flux of TEAs was probably the main factor limiting the TPH degradation. However, during the 1999 season (Spring), the flux of biodegradable TPHs was most likely the limiting factor because the HC concentrations were much lower limiting mass transfer.

5.1.3 Bacterial Abundance

The use of INT as an indicator for the presence of active TPH-degrading microorganisms during the MPN procedure was more reliable than the observation of turbidity to assess presence/absence. This was evident during the first sampling events in June 1998 when a precipitate present in liquid media interfered with the readings creating false positives. There was no significant change in the abundance of TPH-degrading bacteria during the study. However, a significant increase was not expected because the microbial population was probably already adapted almost 19 months after the spill. The control was the only plot that had higher MPN counts associated with higher TPH concentrations. The air plot exhibited significantly higher MPN data, but this could not be correlated to higher biodegradation rates during the study.

5.1.4 Nutrient Analysis

The porewater NO₃⁻ concentration in the control plot significantly decreased from ~0.5 mg to ~0.01 mg NO₃⁻-N/L. This could have been related to seasonal patterns observed in marsh environments. The amendment concentration in the porewater of the NO₃⁻ plot was NSD than the porewater NO₃⁻ in the air treatment indicating that the NO₃⁻ injected weekly was either rapidly used supporting TPH or NOM biodegradation or removed by dilution (e.g., tidal action). The *in situ* concentrations were two orders of magnitude below the desired goal of 32 mg NO₃⁻-N/L used during the study. Based on stoichiometry, the 32 mg/L concentration desired in the porewater for use as a TEA supplied only 11% of the mass of NO3⁻-N needed to maintain and degrade the TPH. Previous studies reported that to avoid nitrogen limitation during TPH biodegradation, it is necessary to maintain a concentration in the range of 0.8 to 10 mg N-NO₃⁻/L in the

porewater. However, most of these studies have been conducted in (non organic-rich) sandy beaches (Bragg *et al.*, 1994; Venosa *et al.*, 1996; Zhu *et al.*, 2001). The NO₃⁻ mass application rate required for denitrification of the TPH within the Fore River Creek salt marsh environment was much higher than for beaches because of the TEA demand exerted by the NOM (available as a carbon source) and the demand for NO₃⁻ by growing plants (i.e., *S. alterniflora*).

The porewater ammonia concentration found during the Fore River Creek study ranged from 1.8 to 3.0 mg N-NH₄⁺/L indicating that nitrogen, as a nutrient (not as TEA), was probably also limiting the TPH biodegradation. The lower PO_4^{-3} concentrations observed during the second season (1999) (~0.005 mg PO_4^{-3} -P/L) could also have contributed to the lower TPH biodegradation observed during this period.

5.1.5 Plant Growth

There was no relationship between *S. alterniflora* heights and densities and the decrease of TPH during the study. Some areas of the air and NO_3 plots were not completely covered by *S. alterniflora*. Although there was not enough data for statistical analysis, it seems that the absence of *S. alterniflora* affected the TPH biodegradation. This could indicate that the location of the plots in the Fore River Creek salt marsh could have affected the study.

During the overall study, the addition of TEAs (oxygen and NO_3^-) did not enhance the biodegradation over the natural attenuation monitored in the control plots. However, during the 1998 season, the air and NO_3^- plots showed a significantly higher degradation of SC aliphatics. The NO_3^- plot also had significantly higher degradation of LC aliphatics. Problems with the delivery system, the low *in situ* nitrogen concentrations, and mass transfer could have slowed subsequent biodegradation of TPH in the Fore River Creek marsh.

More studies are necessary to better understand the fate of the amendments and the hydrologic conditions present in the marsh sediments. The optimization of these parameters could increase biodegradation rates. Closely-spaced subsurface horizontal wells (0.6 m) used in the Fore River Creek salt marsh could be an acceptable system to deliver the amendments directly into the sediments of a small oil-contaminated marsh. However, this system is not practical for larger marshes. A more efficient subsurface injection system that achieves longer residence times of the amendments will allow longer contact time between the microorganisms, TPH and TEAs.

5.2 <u>Recommendations for Future Research</u>

Based on the results obtained during the Fore River Creek study, the concentration of NO_3^- injected could be increased (~10x) to obtain the necessary *in situ* porewater concentration. In addition, NH_4^+ should also be added because of its low *in situ* concentration in the marsh sediments. The frequency of the NO_3^- injection should be evaluated with the help of tracer studies because this study did not maintain a sufficient NO_3^- concentration *in situ*. The fate of the amendments should be assessed using hydrological and chemical studies. In addition, NO_3^- and nutrients have to be monitored more frequently.

The use of biomarkers would help to differentiate between the biodegradation of TPH and the physical-chemical losses. An ideal biomarker is not formed during the weathering or biological process and is non-biodegradable or relatively resistant to biodegradation (Zhu *et al.*, 2001). Although hopane $(17\alpha(H), 21\beta(H))$ -hopane) has been recognized as an ideal biomarker for oil biodegradation, its concentration in refined product such as No. 2 fuel oil (present at the Fore River Creek salt marsh) is very reduced. Therefore, phenanthrenes, anthracenes and chrysenes could be used as biomarkers to assess biodegradation.

Toxicological analysis could be conducted to evaluate the effect of the treatments. These analyses could be conducted in parallel during the study to evaluate the presence of toxic compounds. A series of bioassay tests with organisms from different trophic levels could be used (e.g., bacteria, algae and microinvertebrates).

MPN counts for aliphatics and aromatics degraders (Wrenn and Venosa, 1996) could be evaluated to assess community changes and their relationship during the TPH fraction degradation (SC and LC aliphatics and aromatics). In addition, it would be useful to determine the diversity of bacterial communities during the biodegradation process. Molecular methods, such as the polymerase chain reaction (PCR) and denaturing gradient gel electrophoresis (DGGE), could be useful tools to understand the microbial ecology during bioremediation. These techniques monitor microorganisms that are difficult to growth under laboratory conditions.

Finally, alternative subsurface delivery systems could be implemented and optimized associated with hydrological and fate and transport studies to maximize the distribution of the amendments into the marsh sediments to more effectively enhance *in situ* bioremediation.

REFERENCES

Adler, T. (1996). Botanical Cleanup Crews. Science News. 150: 42-43.

Adrian, D. D., Jackson, W. A., Pardue, J. H., Tate, T. and, Shin, W. (1998). Engineered Application of Bioremediation to Oil Spills in Coastal Wetlands: A Field Trial. Louisiana Applied Oil Spill Research and Development Program, OSRADP. Batin Rouge, LU. Technical Report Series. 97-001: 33 pp.

Al-Bashir, B. (1990). Effect of Soil/Contaminant Interactions on the Biodegradation of Naphthalene in Flooded Soil under Denitrifying Conditions. <u>Applied Environmental</u> <u>Biotechnology</u> 34: 414-419.

Aldhous, P. (1991). Big Test for Bioremediation. Nature 349: 447.

Alexander, M. (1994). <u>Biodegradation and Bioremediation</u>. Academic Press, Inc. San Diego, CA: 453 pp.

Aprill, W. and Sims, R. C. (1990). Evaluation of the Use of Prairie Grasses for Stimulating Polycyclic Aromatic Hydrocarbon Treatment in Soil. <u>Chemosphere</u> 20: 253-265.

Armstron, W. (1964). Oxygen Diffusion From the Roots of Some British Bog Plants. Nature 204: 801-802.

ASTM (1995). <u>Standard Test Method for Screening Fuels in Soils</u>. American Society for Testing Materials. West Conshohocken, PA., 11.04: 10 pp.

Atlas, R. M. and Bartha, R. (1973a). Abundance, Distribution and Oil Biodegradation Potential of Microorganisms in Raritan Bay, NJ. <u>Environmental Pollution</u> 4: 291-300.

Atlas, R. M. and Bartha, R. (1973b). Stimulated Biodegradation of Oil Slicks Using Oleophilic Fertilizers. Environmental Science Technology 7: 538-541.

Atlas, R. M. (1975). Effects of Temperature and Crude Oil Composition on Petroleum Biodegradation. <u>Applied Microbiology</u> **30**: 396-403.

Atlas, R. M. (1978). Microorganisms and Petroleum Pollutants. BioScience 28: 387-394.

Atlas, R. M. (1981). Microbial Degradation of Petroleum Hydrocarbons: An Environmental Perspective. <u>Microbiological Reviews</u> 45: 180-209.

Atlas, R. M. (1992). Oil Spills: Regulation and Biotechnology. <u>Current Opinion</u> <u>Biotechnology</u> 3: 220-223.

Bachoon, D., Araujo, R., Molina, M. and, Hodson, R. (2001). Microbial Community Dynamics and Evaluation of Bioremediation Strategies in Oil-Impacted Salt Marsh Sediment Microcosms. Journal Industrial Microbiology Biotechnology 27: 72-79.

Ballestero, T. (1999). Personal Communication, Department of Civil Engineering. University of New Hampshire.

Banat, I., Makkar, R. and, Cameotra, S. (2000). Potential Commercial Applications of Microbial Surfactants. <u>Applied Microbiology Biotechnology</u> 53: 495-508.

Bartha, R. (1986). Biotechnology of Petroleum Pollutant Biodegradation. <u>Microbial</u> <u>Ecology</u> 12: 152-172.

Bastiaens, L., Springael, D., Wattiau, P., Harms, H., Wachter, R., Verachtert, H. and, Diels, L. (2000). Isolation of Adherent Polycyclic Aromatic Hydrocarbons (PAH)-Degrading Bacteria Using PAH-Sorbing Carriers. <u>Applied Environmental Microbiology</u> 66: 1834-1843.

Bauer, J. E. and Capone, D. G. (1985). Degradation and Mineralization of the Polycyclic Aromatic Hydrocarbons Anthracene and Naphthalene in Intertidal Marine Sediments. <u>Applied and Environmental Microbiology</u> **50**: 81-90.

Becker, P. M. and Dott, W. (1995). Functional Analysis of Communities of Aerobic Heterotrophic Bacteria from Hydrocarbon-Contaminated Sites. <u>Microbial Ecology</u> 30: 285-296.

Belloso, C., Carrario, J. and, Viduzzi, D. (1998). Biodegradación de Hidrocarburos en Suelos Contenidos en Terrarios. <u>XXVI Congreso Interamericano de Ingeniería Sanitaria</u> <u>y Ambiental</u>: 44-52.

Bianchi, A. and Giuliano, L. (1996). Enumeration of Viable Bacteria in the Marine Pelagic Environment. <u>Applied Environmental Microbiology</u> 62: 174-177.

Bossert, I. D. and Bartha, R. (1986). Bioremediation. <u>Bulletin Environmental</u> <u>Contamination Toxicology</u> 37: 490-495.

Braddock, J. F., Lindstrom, J. E. and, Brown, E. J. (1995). Distribution of Hydrocarbon-Degrading Microorganisms in Sediments From Prince William Sound, Alaska Following the *Exxon Valdez* Oil Spill. <u>Marine Pollution Bulletin</u> **30**: 125-132.

Bragg, J. R., Prince, R. C., Harner, E. J. and, Atlas, R. M. (1994). Effectiveness of Bioremediation for the *Exxon Valdez* Oil Spill. <u>Nature</u> 368: 413-418.

Breitenbeck, G. and Bryan, G. (1998). Use of Ammoniated Cellulosic Materials for Remediation of Oil-Contaminated Wetlands. Louisiana Applied Oil Spill Research and Development Program. Baton Rouge, LI. Technical Report. 97-003: 35 pp.

Brock, T. D. and Madigan, M. T. (1997). <u>Biology of Microorganisms</u>. Prentice Hall. 8. Englewood Cliffs, NJ

Brown, J., Yarranton, N. and, Boehm, P. (1997). Evaluation of Sediment, Water and Tissues Samples From the Fore River Area, Portland Maine, After the Julie N Oil Spill. Arthur D Little, Inc. Cambridge, MA. Final Report. 31478: 23 pp.

Brown, K. W. and Braddock, J. F. (1990). Sheen Screen, a Miniaturized Most-Probable-Number Method for Enumeration of Oil-Degrading Microorganisms. <u>Applied</u> <u>Environmental Microbiology</u> **56**: 3895-3896.

Bruheim, P., Bredholt, H. and, Eimhjellen, K. (1997). Bacterial Degradation of Emulsified Crude Oil and the Effect of Various Surfactants. <u>Canadian Journal</u> <u>Microbiology</u> **43**: 17-22.

Bruheim, P. and Eimhjellen, K. (1998). Chemically Emulsified Crude Oil as Substrate for Bacterial Oxidation: Differences in Species Response. <u>Canadian Journal Microbiology</u> 44: 195-199.

Buresh, R. J., DeLuane, R. D. and, Patrick, W. H. (1980). Nitrogen and Phosphorous Distribution and Utilization by *Spartina alterniflora* in a Louisiana Gulf Coast Marsh. Estuaries 3: 111-121.

Burland, S. and Edwards, E. (1999). Anaerobic Benzene Biodegradation Linked to Nitrate Reduction. <u>Applied and Environmental Microbiology</u> 65: 529-533.

Burns, K. A. and Teal, J. M. (1979). The West Falmouth Oil Spill: Hydrocarbons in the Salt Marsh Ecosystem. <u>Estuarine Coastal Marine Science</u> 8: 349-360.

Carman, K. R., Means, J. C. and, Pomarico, S. C. (1996). Response of Sedimentary Bacteria in a Louisiana Salt Marsh to Contamination by Diesel Fuel. <u>Aquatic Microbial</u> <u>Ecology</u> 10: 231-241.

Chang, Y. and Corapcioglu, M. Y. (1998). Plant-Enhanced Subsurface Bioremediation of Nonvolatile Hydrocarbons. Journal Environmental Engineering: 162-169.

Chapelle, F. H. (1996). <u>Fundamentals of Bioremediation</u>. Bioremediation in the Saturated Subsurface, University of New Hampshire, Durham. NH, February 5.

Chayabutra, C. and Ju, L. (2000). Degradation of n-Hexadecane and its Metabolites by *Pseudomona aeruginosa* under Microaerobic and Anaerobic Denitrifying Conditions. Applied and Environmental Microbiology **66**: 493-498.

Coates, J., Anderson, R. T. and, Lovely, D. (1996). Oxidation of Polycyclic Aromatic Hydrocarbons Under Sulfate-Reducing Conditions. <u>Applied Environmental Microbiology</u> 62: 1099-1101.

Coates, J., Woodward, J., Allen, J., Philip, P. and, Lovely, D. R. (1997). Anaerobic Degradation of Polycyclic Aromatic Hydrocarbons and Alkanes in Petroleum-Contaminated Marine Harbor Sediments. <u>Applied Environmental Microbiology</u> 63: 3589-3595.

Coates, J., Bruce, R. and, Haddock, J. (1998). Anoxic Bioremediation of Hydrocarbons. Nature 396: 730.

Crawford, R. L. and Crawford, D. L. (1996). <u>Bioremediation: Principles and</u> <u>Applications</u>. Cambridge University Press. Cambridge, UK: 400 pp.

Cunningham, S. and Berti, W. R. (1993). Remediation of Contaminated Soils With Green Plants: An Overview. In Vitro Cell Developmental Biology 29: 207-212.

Cunningham, S., Berti, W. R. and, Huang, J. H. (1995). Phytoremediation of Contaminated Soils. <u>Tibtech</u> 13: 393-397.

Cunningham, S., Anderson, T. A., Schwab, A. P. and, Hsu, F. C. (1996). Phytoremediation of Soils Contaminated With Organic Pollutants. <u>Advances in</u> <u>Agronomy</u> 56: 55-114.

Cunningham, S., Shann, J. R., Crowley, D. and, Anderson, T. A. (1997). Phytoremediation of Contaminated Water and Soil. <u>American Chemical Society</u>. Orlando, Florida: 17 pp.

Davidova, I., Hicks, M., Fedorak, P. and, J., S. (2001). The Influence of Nitrate on Microbial Processes in Oil Industry Production Waters. Journal Industrial Microbiology Biotechnology 27: 80-86.

DeLaune, R., Patrick, W. H. and, R.J., B. (1979). Effect of Crude Oil on a Louisiana Spartina alterniflora Salt Marsh. Environmental Pollution: 21-31.

DeLaune, R., Hambrick, G. A. and, Patrick, W. H. (1980). Degradation of Hydrocarbons in Oxidized and Reduced Sediments. <u>Marine Pollution Bulletin</u> 11: 103-106.

DeLuane, R., Gambrell, R. P., Pardue, J. H. and, Patrick, W. H. (1990). Fate of Petroleum Hydrocarbons and Toxic Organics in Louisiana Coastal Environments. <u>Estuaries</u> 13: 72-80.

Diaz, M. C. and Roldan, F. (1996). Evaluation of the Agar Plate Method for Rapid Toxicity Assessment With Some Heavy Metals and Environmental Samples. <u>Environmental Toxicology Water Quality</u> 11: 259-263.

Dibble, J. T. and Bartha, R. (1979). Effect of Environmental Parameters on the Biodegradation of Oil Sludge. <u>Applied Environmental Microbiology</u> 37: 729-739.

Dibner, P. (1978). Response of a Salt Marsh to Oil Spill and Cleanup: Biotic and Erosional Effects in the Hackensack Meadowlands, NJ. U.S. Environmental Protection Agency. Cincinnati, OH. EPA-600/7-78-109: 20 pp.

Douglas, G. S., Bence, A. E., Prince, R. C., McMillen, S. J. and, Butler, E. L. (1996). Environmental Stability of Selected Petroleum Hydrocarbon Source and Weathering Ratios. <u>Environmental Science Technology</u> **30**: 2332-2339.

Dutta, T. and Harayama, S. (2000). Fate of Crude Oil by the Combination of Photooxidation and Bioremediation. <u>Environmental Science Technology</u> 34: 1500-1505.

Edwards, D., Andriot, M., Amoruso, M., Tummey, A., Bevan, C., Youngren, S. and, Nakles, D. (1998). <u>Development of Fraction Specific Reference Doses (RfDs) and</u> <u>Reference Concentrations (RfCs) for Total Petroleum Hydrocarbons (TPH)</u>. Amherst Scientific Publishers. Amherst, MA, 4: 125 pp.

EPA (1994). Oil and Grease Extraction Method for Sludge and Sediment Samples. Method 9071A. <u>Methods for Chemical Analysis of Water and Wastes</u>. Cincinnati, OH, U.S. Environmental Protection Agency.

EPA (1995). Bioremediation of Hazardous Waste: Research, Development and Field Evaluations. Biosystems Technology Development Program. Office of Research and Development. EPA/540/R-95/532.: 95 pp.

EPA (1998). Oil Spill Program. Office of Water. U.S. Environmental Protection Agency 2: 4-6.

EPA (1999). Standard Operating Procedure for the Analysis of Oil and Grease. United States Environmental Protection Agency. Region V Central Regional Laboratory. Chicago, IL.: 8 pp.

EPA (2000). Preliminary Report of EPA Efforts to Replace Freon for the Determination of Oil and Grease. United States Environmental Protection Agency, Office of Water. EPA-821-93-009:

Eweis, J., Ergas, S., Chang, D. and, Schroeder, E. (1998). <u>Bioremediation Principles</u>. McGraw-Hill. New York: 312 pp. Fingas, M. (2000). <u>The Basics of Oil Spill Cleanup</u>. Lewis Publishers. 2nd. ed. Boca Raton, Fl: 233 pp.

Frederick, R. J. and Egan, M. (1994). Environmentally Compatible Applications of Biotechnology. <u>BioScience</u> 44: 529-535.

Gatliff, E. G. (1994). Vegetative Remediation Process Offers Advantages Over Traditional Pump-and-Treat Technologies. <u>Remediation</u>: 343-352.

Gieg, L. M., Kolhatkar, R. V., Tanner, R. S., Harris, S. H., Sublette, K. and, Suflita, J. (1999). Intrinsic Bioremediation of Petroleum Hydrocarbons in a Gas Condensate-Contaminated Aquifer. <u>Environmental Science Technology</u> 33: 2550-2560.

Griffiths, R. P., Caldwell, B. A., Broich, W. A. and, Morita, R. Y. (1982). The Long-Term Effects of Crude Oil on Microbial Processes in Subartic Marine Sediments. <u>Estuarine, Coastal Shelf Science</u> 15: 183-198.

Gustafson, J., Griffith, J. and, Orem, D. (1997). <u>Selection of Representative TPH</u> <u>Fractions Based on Fate and Transport Considerations</u>. Amherst Scientific Publishers. Amherst, MA, 3: 109 pp.

Gustafson, J. (1998). Using TPH in Risk-Based Corrective Action. Shell News: 1-5.

Haines, J. R., Wrenn, B. A., Holder, E. L., Strohmeir, K. L., Herrington, R. T. and, Venosa, A. D. (1996). Measurement of Hydrocarbon-Degrading Microbial Populations by a 96-Well Plate Most-Probable-Number Procedure. Journal Industrial Microbiology 16: 36-41.

Harayama, S., Kishira, H., Kasai, Y. and, Shutsubo, K. (1999). Petroleum Biodegradation in Marine Environments. Journal Molecular Microbiology Biotechnology 1: 63-70.

Heider, J., Spormann, A., Beller, H. and, Widdel, F. (1999). Anaerobic Bacterial Metabolism of Hydrocarbons. <u>FEMS Microbiology Reviews</u> 22: 459-473.

Herbes, S. E. and Schwall, L. R. (1978). Microbial Transformation of Polycyclic Aromatic Hydrocarbons in Pristine and Petroleum-Contaminated Sediments. <u>Applied</u> <u>Environmental Microbiology</u> **35**: 306-316.

Hershner, C. and Lake, J. (1980). Effects of Chronic Oil Pollution on a Salt-Marsh Grass Community. <u>Marine Biology</u> 56: 163-173.

Hess, A., Hohener, P., Hunkeler, D. and, Zeyer, J. (1996). Bioremediation of a Diesel Fuel Contaminates Aquifer: Simulation Studies in Laboratory Aquifer Columns. Journal Contaminant Hydrology 23: 329-345.

Hickey, W. J. (1995). Biodegradation and Bioremediation. <u>Environmental Quality</u> 24: 571-582.

Hin, W., Pardue, J. and, Jackson, A. (2000). Oxygen Demand and Sulfate Reduction in Petroleum Hydrocarbon Contaminated Salt Marsh Soils. <u>Water Research</u> 34: 1345-1353.

Hines, M. E., Knollmeyer, S. L. and, Tugel, J. B. (1989). Sulfate Reduction and Other Sedimentary Biogeochemistry in a Northern New England Salt Marsh. <u>Limnology</u> Oceanography 34: 578-590.

Hines, M. E., Evans, R., Genthner, R., Willis, S., Friedman, S., Rooney-Varga, N. and, Devereux, R. (1999). Molecular Phylogenetic and Biochemical Studies of Sulfate-Reducing Bacteria in the Rhizosphere of *Spartina alterniflora*. <u>Applied Environmental</u> <u>Microbiology</u> 65: 2209-2216.

Hoff, R. (1995). Responding to Oil Spills in Coastal Marshes: The fine Line between Help and Hindrance. Hazardous Material Response and Assessments Division. NOAA. Seattle, Washington. HAZMAT Report 96-1: 1-14.

Howes, B. L., Dacey, J. W. and, Teal, J. M. (1985). Annual Carbon Mineralization and Belowground Production of *Spartina alterniflora* in a New England Salt Marsh. <u>Ecology</u> 66: 595-605.

Huesemann, J. L. and Truex, M. J. (1996). The Role of Oxygen Diffusion in Passive Bioremediation of Petroleum Contaminated Soils. <u>Journal Hazardous Materials</u> **51**: 93-113.

Huesemann, M. H. (1995). Predictive Model for Estimating the Extend of Petroleum Hydrocarbon Biodegradation in Contaminated Soils. <u>Environmental Science Technology</u> 29: 7-18.

Hughes, J., Beckles, D., Chandra, S. and, Ward, C. (1997). Utilization of Bioremediation Processes for the Treatment of PAH-Contaminated sediments. <u>Journal of Industrial</u> <u>Microbiology and Biotechnology</u> 18: 152-160.

Hurst, J. C., Knudsen, G. R., McInerney, M. J., Stetzenbach, L. D. and, Walter, M. V. (1997). <u>Manual of Environmental Microbiology</u>. ASM Press. Washington, D.C.: 894 pp.

Jackson, A. and Pardue, J. H. (1997). Seasonal Variability of Crude Oil Respiration Potential in Salt and Fresh Marshes. Journal Environmental Quality 26: 1140-1146.

Jones, S. H. (1999). Personal Communication, Jackson Estuarine Laboratory. University of New Hampshire.

Jordahl, J. J., Foster, L., Schnoor, J. L. and, Alvarez, R. J. (1997). Effect of Hybrid Poplar Trees on Microbial Populations Important to Hazardous Waste Bioremediation. <u>Environmental Toxicology Chemistry</u> 16: 1318-1321.

Kastner, M., Breuer-Hammali, M. and, Mahro, B. (1998). Impact of Inoculation Protocols, Salinity and pH on the Degradation of Poly Cyclic Aromatics Hydrocarbons (PAH) and Survival of PAH-Degrading Bacterial Introduced into Soil. <u>Applied</u> <u>Environmental Biotechnology</u> 4: 359-362.

Kent, C. (1996). Record Fine Levied in Puerto Rico Spill. Oil Gas Journal. 94: 43.

Kinner, N. E. (1996). <u>Bioremediation</u>. Bioremediation in the Saturated Subsurface. Seminar Proceedings, University of New Hampshire, Durham. NH.

Kling, J. (1997). Phytoremediation of Organics Moving Rapidly Into Field Trials. Environmental Science and Technology 31: 129-135.

Konopka, A., Oliver, L. and, Turco, R. F. (1998). The Use of Carbon Substrate Utilization Patterns in Environmental and Ecological Microbiology. <u>Microbial Ecology</u> **35**: 103-115.

Korda, A., Santas, P., Tenente, A. and, Santas, R. (1997). Petroleum Hydrocarbon Bioremediation: Sampling and Analytical Technique, *In Situ* Treatments and Commercial Microorganisms Currently Used. <u>Applied Microbiology Biotechnology</u> **48**: 677-686.

Kujat, D. J. (1999). A Comparison of Popular Remedial Technologies for Petroleum Contaminated Soils from Leaking Underground Storage Tanks. <u>Electronic Green Journal</u> 11: 1-15.

Lachat-Instruments (1994). Phosphate in Brackish or Seawater: QuiChem Method 31-115-01-3-A. Lachat Instruments. Milwaukee, WI.: 15 pp.

Leahy, J. C., Somerville, C. C., Cunningham, K. A., Adamantiades, G. A., Byrd, J. J. and, Colwell, R. R. (1990). Hydrocarbon Mineralization in Sediments and Plasmid Incidence in Sediment Bacteria From the Campeche Bank. <u>Applied Environmental Microbiology</u> 56: 1565-1570.

Leahy, J. G. and Colwell, R. R. (1990). Microbial Degradation of Hydrocarbons in the Environment. <u>Microbiological Reviews</u> 54: 305-315.

Leduc, R., Samson, R., Al-Bashire, B., Al-Hawari, J. and, Cseh, T. (1992). Biotic and Abiotic Disappearance of Four PAH Compounds From Flooded Soil Under Various Redox Conditions. <u>Water Science Technology</u> 26: 51-60.

Lee, K. and Merlyn, F. X. (1999). Bioremediation of Oil on Shoreline Environments: Development of Techniques and Guidelines. <u>Pure Applied Chemistry</u> **71**: 161-171.

Lelyveld, M. S. (1996). Tanker Leaks Diesel in Maine Harbor. Journal Commerce: 2-3.

Lesson, A. and Hinchee, R. (1996). <u>Soil Bioventing: Principles and Practices</u>. CRC Press. Boca Raton, FL: 244 pp.

Levin, M. and Gealt, M. A. (1997). <u>Biotreatment of Industrial and Hazardous Waste</u>. McGraw-Hill. Washington, DC.

Lin, Q. and Mendelssohn, I. (1998). Phytoremediation for Oil Spill Cleanup: Biostimulant and Species Effect. Wetland Biogeochemistry Institute, Louisiana State University. Baton Rouge, LO. Technical Report Series 98-005.: 28 pp.

Lindstrom, J. E., Prince, R. C., Clark, J. C., Grossman, M. T., Yeager, T. R., Braddock, J. F. and, Brown, E. J. (1991). Microbial Populations and Hydrocarbon Biodegradation Potentials in Fertilized Shoreline Sediments Affected by the T/V *Exxon Valdez* Oil Spill. <u>Applied Environmental Microbiology</u> 57: 2514-2522.

London, S. A. and Robinson, J. D. (1984). Microbial Growth Effects of Petroleum and Shale-Derived Fuels. <u>Environmental Contamination Toxicology</u> 32: 602-613.

Long, S. C., Aelion, C. M., Dobbins, D. C. and, Pfaender, F. K. (1995). A Comparison of Microbial Community Characteristics Among Petroleum-Contaminated and Uncontaminated Subsurface Soil Samples. <u>Microbial Ecology</u> **30**: 297-307.

Lovley, D., Chapelle, F. H. and, Woodward, J. C. (1994). Use of Dissolved H_2 Concentrations to Determine Distribution of Microbially Catalyzed Redox Reactions in Anoxic Groundwater. <u>Environmental Science Technology</u> 28: 1205-1210.

Lovley, D. and Lonergan, D. (1995). Anaerobic Oxidation of Toluene, Phenol and p-Cresol by the Dissimilatory Iron Reducing Organisms GS-15. <u>Applied Environmental</u> <u>Microbiology</u> 56: 1858-1864.

Lovley, D., Woodward, J. and, Chapelle, F. (1996). Rapid Anaerobic Benzene Oxidation with a Variety of Chelated Fe(III) Forms. <u>Applied Environmental Microbiology</u> 62: 288-291.

Macnaughton, S., Stephen, J., Venosa, A., Davis, G., Chang, Y. and, White, D. (1999). Microbial Population Changes During Bioremediation of an Experimental Oil Spill. <u>Applied Environmental Microbiology.</u> 65: 3566-3574.

MacRae, J. and Hall, K. (1998). Biodegradation of Polycyclic Aromatic Hydrocarbons (PAH) in Marine Sediments under Denitrifying Conditions. <u>Water Science Technology</u> **38**: 177-185.

MADEP (1998a). Method for the Determination of Extractable Petroleum Hydrocarbons (EPH). Department of Environmental Protection. Boston, MA. MADEP-EPH-98-1: 38 pp.

MADEP (1998b). Report on Results of the Fall 1997 VPH/EPH Round Robin Testing Program. Department of Environmental Protection. Boston, MA.: 72 pp.

Madsen, T., Rasmussen, H. B. and, Nilsson, L. (1995). Anaerobic Biodegradation Potentials in Digested Sludge, a Freshwater Swamp and a Marine Sediment. <u>Chemosphere</u> 31: 4243-4258.

Mahne, I. and Tiedje, J. (1995). Criteria and Methodology for Identifying Respiratory Denitrifiers. <u>Applied and Environmental Microbiology</u> 61: 1110-1115.

Margesin, R. and Schinner, F. (1997). Efficiency of Indigenous and Inoculated Cold-Adapted Soil Microorganisms for Biodegradation of Diesel Oil in Alpine Soils. <u>Applied</u> <u>Environmental Microbiology</u> 63: 2660-2664.

Margesin, R. and Schinner, F. (2001a). Biodegradation and Bioremediation of Hydrocarbons in Extreme Environments. <u>Applied Microbiology Biotechnology</u> 56: 650-663.

Margesin, R. and Schinner, S. (2001b). Bioremediation (Natural Attenuation and Bioestimulation) of Diesel-Oil-Contaminated Soil in an Alpine Glacier Skiing Area. <u>Applied Environmental Microbiology</u> 67: 3127-3133.

McKee, K. L. and Mendelssohn, I. A. (1994). A Review of the Methods and Ecological Consequences of Substrate Aeration for the Enhancement of Oil Bioremediation in Wetlands. Marine Spill Response Corporation. Washington, D.C. 94-004: 35 pp.

McNally, D., Mihelcic, J. and, Lueking, D. (1998). Biodegradation of Three- and Four-Ring Polycyclic Aromatic Hydrocarbons under Aerobic and Denitrifying Conditions. <u>Environmental Science Technology</u> **32**: 2633-2639.

McNally, D., Mihelcic, J. and, Lueking, D. (1999). Biodegradation of Mixtures of Polycyclic Aromatic Hydrocarbons under Aerobic and Nitrate-Reducing Conditions. <u>Chemosphere</u> 38: 1313-1321.

Mendelssohn, I. A., Hester, M. W., Sasser, C. and, Fischel, M. (1990). The Effect of a Louisiana Crude Oil Discharge From a Pipeline Break on the Vegetation of a Southeast Louisiana Brackish Marsh. <u>Oil Chemical Pollution</u> 7: 15 pp.

Mester, K. G. and Kosson, D. S. (1996). Anaerobic Biodegradation of Toluene Under Denitrifying Conditions in Contaminated Groundwater and Soil. <u>Journal Hazardous</u> <u>Materials</u> **45**: 219-233.

Meyer, S., Mose, R., Neef, A., Stahl, U. and, Kampfer, P. (1999). Differential Detection of Key Enzymes of Polyaromatic-Hydrocarbon-Degrading Bacteria Using PCR and Gene Probes. <u>Microbiology</u> 145: 1731-1741.

Mihelcic, J. and Luthy, R. (1988a). Degradation of Polycylic Aromatic Compounds Under Various Redox Conditions in Soil-Water Systems. <u>Applied and Environmental</u> <u>Microbiology</u> 54: 1182-1187.

Mihelcic, J. and Luthy, R. (1988b). Microbial Degradation of Acenaphthene and Naphthalene Under Denitrification Conditions in Soil-Water Systems. <u>Applied and Environmental Microbiology</u> 54: 1188-1198.

Millard, K. S. (1997). The Julie N Oil Spill: Learning a Lesson. <u>Waynflete School</u> <u>Magazine</u>. 10: 4-6.

Mille, G., Munoz, D., Jacquot, F., Rivet, L. and, Bertrand, J. (1998). The Amoco Cadiz Oil Spill: Evolution of Petroleum Hydrocarbons in the Ile Grande Salt Marshes (Brittany) After a 13-Year Period. <u>Estuarine, Coastal Shelf Science</u> 47: 547-559.

Mishra, H., Jyot, J., Kuhad, R. C. and, Lal, B. (2001). Evaluation of Inoculum Addition to Stimulate *In Situ* Bioremediation of Oily-Sludges-Contaminated Soil. <u>Applied</u> Environmental Microbiology 67: 1675-1681.

Monod, J. (1949). The Growth of Bacterial Cultures. <u>Annual Review Microbiology</u> 3: 371-394.

Myers, R. (1990). <u>Classical and Modern Regression with Applications</u>. Duxbury Press. Belmont, CA: 488.

Nelson-Smith, A. (1970). Biological Consequences of Oil Pollution and Shore Cleansing. Environmental Pollution: 73-80.

Nichols, T. D., Wolf, D. C., Rogers, H. B., Beyrouty, C. A. and, Reynolds, C. M. (1997). Rhizosphere Microbial Populations in Contaminated Soils. <u>Water, Air, Soil Pollution</u> 95: 165-178.

Nixon, S. W. and Oviatt, C. A. (1973). Ecology of a New England Salt Marsh. <u>Ecological</u> <u>Monographs</u> 43: 463-498.

Olivieri, R., Bacchin, P., Robertiello, A., Oddo, N., Degen, L. and, Tonolo, A. (1976). Microbial Degradation of Oil Spills Enhanced by a Slow Release Fertilizer. <u>Applied</u> <u>Environmental Microbiology</u> 31: 629-634.

Perkins, E. J. (1970). The Toxicity of Oil Emulsifiers to Some Inshore Fauna. BioScience: 81-90. Piehler, M. F. and Paerl, H. W. (1996). Enhanced Biodegradation of Diesel Fuel Through the Addition of Particulate Organic Carbon and Inorganic Nutrients in Coastal Marine Waters. <u>Biodegradation</u> 7: 239-247.

Piehler, M. F., Paerl, H. W. and, Swistak, J. G. (1996). Stimulation of Petroleum Hydrocarbon Degradation by Indigenous Coastal N_2 Fixing Bacterial Consortia. University of North Carolina at Chapel Hill, Institute of Marine Sciences. Morehead, NC. EPA Cooperative Agreement 821946-01-0.: 18 pp.

Piehler, M. F., Paerl, H. and, Swistak, J. (1997a). Effects of Petroleum Pollution on Coastal Microbial Communities. University of North Carolina, Institute of Marine Sciences. Morehead City, NC. EPA Cooperative Agreement 821946-01-0.: 18 pp.

Piehler, M. F., Swistak, J. G., Pinckney, J. L. and, Paerl, H. W. (1997b). Sub-Lethal Effects of Coastal Petroleum Pollution on *Spartina alterniflora* Stem Epiphytes. <u>Chemosphere</u> 35: 2665-2674.

Ponnamperua, F. N. (1972). The Chemistry of Submerged Soils. <u>Advance Agronomy</u> 24: 29-95.

Porter, J. (1997). Oil Spills Need Not Be Extremely Painful. Journal of Commerce June 3: 8B.

Potter, T. L. and Simmons, K. E. (1998). <u>Composition of Petroleum Mixtures</u>. Amherst Scientific Publishers. Amherst, MA, 2: 114 pp.

Pritchard, P. and Costa, C. (1991). EPA's Alaska Oil Spill Bioremediation Project. Environmental Science Technology 25: 372-379.

Pritchard, P. (1993). Cuestiones Reglamentarias y de Eficacia en la Biorrecuperacion de los Derrames de Petroleo: Experiencias con el Derrame del *Exxon Valdez* en Alaska. <u>Biotratamiento de Residuos Toxicos y Peligrosos</u>. M. Levin and M. A. Gealt. Madrid, España, McGraw-Hill: 338 pp.

Ramirez, N. E., Vargas, M. C. and, Sanchez, F. N. (1996). Use of the "Sediment-Chromotest" for Monitoring Stimulated Hydrocarbon Biodegradation Processes. <u>Environmental Toxicology Water Quality</u> 1: 223-230.

Ramsey, P. (2002). Personal Communication, Lecturer Department of Mathematics and Statistics. University of New Hampshire.

Reilly, T. J. (1998). Julie N Preassessment Data Report. Industrial Economics, Inc. Cambridge, MA.: 118 pp.

Reynolds, C. M., P., B. and, A., K. B. (1997). Soil Remediation Demonstration Project: Biodegradation of Heavy Fuel Oils. US Army Corps of Engineers. Hanover, NH. Special Report. 97-20: 16 pp.

Rice, W. (1998). Personal Communication, Aquarian Analytical Inc. Laboratory. Canterbury, NH.

Ritter, W. F. and Scarborough, R. W. (1995). A Review of Bioremediation of Contaminated Soils and Groundwater. Journal Environmental Science Health 2: 333-357.

Rock, S. A. (1997). Phytoremediation. <u>The Standard Handbook of Hazardous Waste</u> <u>Treatment and Disposal</u>. H. Freeman. New York, McGraw Hill.

Rockne, K., Chee-Sanford, J., Sanford, R., Hedlund, B., Staley, J. and, Strand, S. (2000). Anaerobic Naphthalene Degradation by Microbial Pure Cultures Under Nitrate-Reducing Conditions. <u>Applied Environmental Microbiology</u> **66**: 1595-1601.

Rogers, H. B., Beyrouty, T. D., Nichols, T. D., Wolf, D. C. and, Reynolds, C. M. (1996). Selection of Cold-Tolerant Plants for Growth in Soils Contaminated with Organics. Journal Soil Contamination 5: 171-186.

Rooney-Varga, J., Devereux, R., Evans, R. S. and, Hines, M. E. (1997). Seasonal Changes in the Relative Abundance of Uncultivated Sulfate-Reducing Bacteria in a Salt Marsh Scdiment and in the Rhizosphere of *Spartina alterniflora*. <u>Applied Environmental</u> <u>Microbiology</u> 63: 3895-3901.

Rooney-Varga, J., Anderson, R., Fraga, J., Ringelberg, D. and, Lovley, D. (1999). Microbial Communities Associated with Anaerobic Benzene Degradation in a Petroleum-Contaminated Aquifer. <u>Applied and Environmental Microbiology</u> **65**: 3056-363.

Rueter, P., Rabus, R., Wilkes, H., Aeckersberg, F., Rainey, F. A., Jannasch, H. W. and, Widdel, F. (1994). Anaerobic Oxidation of Hydrocarbons in Crud Oil by New Types of Sulphate-Reducing Bacteria. <u>Nature</u> 372: 455-458.

Schreiber, M. and Bahr, J. (2002). Nitrate-enhanced Bioremediation of BETX-Contaminated Groundwater: Parameter Estimation from Natural-Gradient Tracer Experiments. Journal of Contaminant Hydrology **55**: 29-56.

Schwab, A. P. and Banks, M. K. (1994). Biologically Mediated Dissipation of Polyaromatic Hydrocarbons in the Root Zone. <u>Bioremediation Recalcitrant Organics</u>: 132-141.

Sergeant, K. (1995). The Green Clean: The Emerging Field of Phytoremediation Takes Root. <u>BioScience</u> 45: 579-582.

Shi, Y., Zwolinski, M., Schreiber, M., Bahr, J., Sewell, G. and, Hickey, W. (1999). Molecular Analysis of Microbial Community Structures in Pristine and Contaminated Aquifers: Field and Laboratory Microcosm Experiments. <u>Applied Environmental</u> <u>Microbiology</u> 65: 2143-2150.

Shin, W., Pardue, J. and, Jackson, A. (2000). Oxygen Demand and Sulfate Reduction in Petroleum Hydrocarbon Contaminated Salt Marsh Soils. <u>Water Research</u> 34: 1345-1353.

Simonich, S. L. and Hites, R. A. (1994). Importance of Vegetation in Removing Polycyclic Aromatic Hydrocarbons From the Atmosphere. <u>Nature</u> 370: 49-51.

Simonton, J. A. (1998). Pilot Scale Evaluation of Bioventing of No. 2 Fuel Oil Effects of Oxygen, Nutrient, and Bacterial Addition. Master's Thesis. Department of Civil Engineering. University of New Hampshire. Durham, NH: 267 pp.

Siron, R., Pelletier, E. and, Roy, S. (1996). Effects of Dispersed and Adsorbed Crude Oil on Microalgal and Bacterial Communities of Cold Sea Water. <u>Ecotoxicology</u> 5: 229-251.

Smith, R. L., Howes, B. L. and, Duff, J. H. (1991). Denitrification in Nitrate-Contaminated Groundwater: Occurrence in Steep Vertical Geochemical Gradients. <u>Geochimica Cosmochimica Acta</u> 55: 1815-1825.

Song, B., Palleroni, N. and, Haggblom, M. (2000). Isolation and Characterization of Diverse Halobenzoate-Degrading Denitrifying Bacteria form Soil and Sediments. <u>Applied Environmental Microbiology</u> 66: 3446-3453.

Sorini, S. S., Schabron, J. F., Bowes, J. R. and, Frisbie, S. H. (1997). ASTM Screening Method Works for Heavier Fuel Products. <u>Soil Groundwater Cleanup</u> 11: 14-15.

Sorini, S. S., Schabron, J. and, Rovani, J. (2001). Case Studies of Field Analysis by ASTM Method D 5831 Using the Diesel DOG(R) Soil Test Kit. <u>Contaminated Soil Sediment Water</u>: 17 pp.

Standard-Methods (2000). <u>Standard Methods for the Examination of Water and Wastewater</u>. American Public Health Association. American Water Works Association. Water Environment Federation. 18th Ed. Washington, DC

Stepanauskas, R., Davidsson, E. T. and, Leonardson, L. (1996). Nitrogen Transformations in Wetland Soil Cores Measured by 15N Isotope Pairing and Dilution at Four Infiltration Rates. <u>Applied and Environmental Microbiology</u> 62: 2345-2351.

Stone, R. (1992). Oil-Cleanup Method Questioned. Science 257: 320-321.

Straub, K. and Buchholz-Cleven, B. (1998). Enumeration and Detection of Anaerobic Ferrous Iron-Oxidizing, Nitrate-Reducing Bacteria from Diverse European Sediments. <u>Applied Environmental Microbiology</u> **64**: 846-4856.

Stroo, H. F. (1996). <u>Biodegradation and Bioremediation of Contaminated Sites: The Role of Soil Science</u>. American Society of Agronomy and Soil Science Society of America. Madison, WI: 37-55.

Suarez, M. and Rifai, H. (1999). Biodegradation Rates for Fuel Hydrocarbons and Chlorinates Solvents in Groundwater. <u>Bioremediation Journal</u> 3: 337-362.

Swannell, R. P. and Head, I. M. (1994). Bioremediation Comes of Age. <u>Nature</u> 368: 396-397.

Swannell, R. P., Lee, K. and, McDonagh, M. (1996). Field Evaluations of Marine Oil Spill Bioremediation. <u>Microbiological Reviews</u> 60: 342-365.

Townsend, R., Bonner, J. and, Autenrieth, R. (2000). Microbial Dynamics During Bioremediation of a Crude Oil-Contaminated Coastal Wetland. <u>Bioremediation Journal</u> 4: 203-218.

Uraizee, F. A., Venosa, A. D. and, Suidan, M. T. (1998). A Model for Diffusion Controlled Bioavailability of Crude Oil Components. <u>Biodegradation</u> 8: 287-296.

Venosa, A. D., Suidan, M. T., Strohmeier, K. L., Haines, J. R., Eberhart, B. L., King, D. and, Holder, E. (1996). Bioremediation of an Experimental Oil Spill on the Shoreline of Delaware Bay. <u>Environmental Science Technology</u> **30**: 1764-1775.

Venosa, A. D., Suidan, M., King, D. and, Wrenn, B. (1997). Use of Hopane as a Conservative Biomarker for Monitoring the Bioremediation Effectiveness of Crude Oil Contaminating a Sandy Beach. Journal Industrial Microbiology Biotechnology 18: 131-139.

Walker, J. and Colwell, R. (1974). Microbial Degradation of Model Petroleum at Low Temperatures. <u>Microbial Ecology</u> 1: 63-95.

Walker, J. D., Seesman, P. A. and, Colwell, R. R. (1975). Effect of South Louisiana Crude Oil and No. 2 Fuel Oil on Growth of Heterotrophic Microorganisms, Including Proteolytic, Lipolytic, Chitinolytic and Cellulolytic Bacteria. <u>Environmental Pollution</u> 9: 13-33.

Walker, J. D., Colwell, R. R. and, Petrakis, L. (1976). Biodegradation of Petroleum by Chesapeake Bay Sediment Bacteria. <u>Canadian Journal Microbiology</u> 22: 423-428.

Walworth, J. L. and Reynolds, C. (1995). Bioremediation of a Petroleum Contaminated Critic Soil: Effects of Phosphorus, Nitrogen, and Temperature. <u>Journal_Soil</u> <u>Contamination</u> 4: 299-306.

Walworth, J. L., Woolard, C. R., Braddock, J. F. and, Reynolds, C. M. (1997). Enhancement and Inhibition of Soil Petroleum Biodegradation Through the Use of Fertilizer Nitrogen. Journal Soil Contamination 6: 465-481.

Wang, Z., Fingas, M., Blenkinsopp, S., Sergy, G., Landriault, M., Sigouin, L. and, Lambert, P. (1998). Study of the 25-Year-Old Nipisi Oil Spill: Persistence of Oil Residues and Comparisons Between Surface and Subsurface Sediments. <u>Environmental Science Technology</u> 32: 2222-2232.

Watkinson, R. J. and Morgan, P. (1990). Physiology of Aliphatic Hydrocarbon-Degrading Microorganisms. <u>Biodegradation</u> 1: 79-92.

Weiner, J. and Lovley, D. (1998a). Rapid Benzene Degradation in Methanogenic Sediments from a Petroleum-Contaminated Aquifer. <u>Applied Environmental</u> <u>Microbiology</u> 64: 1937-1939.

Weiner, J. and Lovley, D. (1998b). Anaerobic Benzene Degradation in Petroleum-Contaminated Aquifer Sediments after Inoculation with a Benzene-Oxidizing Enrichment. <u>Applied Environmental Microbiology</u> 64: 775-778.

Weisman, W. (1998). <u>Analysis of Petroleum Hydrocarbons in Environmental Media</u>. Amherst Scientific Publishers. Amherst, MA: 98 pp.

Wharfe, J. R. (1975). A Study of the Intertidal Macrofauna Around the BP Refinery. Environmental Pollution 9: 11 pp.

Whyte, L., Bourbonniere, L. and, Greer, C. (1997). Biodegradation of Petroleum Hydrocarbons by Psychotropic *Pseudomonas* Strains Possessing Both Alkane (*alk*) and Naphthalene (*nah*) Catabolic Pathways. <u>Applied and Environmental Microbiology</u> 63: 3719-3723.

Wolfe, D. A., Hammedi, M. J., Galt, J. A., Watabayashi, G., Short, J., O'Claire, C. and, Rice, S. (1994). The Fate of the Oil Spilled from the *Exxon Valdez*. <u>Environmental Science Technology</u> **28**: 560-569.

Wrenn, B. A., Haines, J., Venosa, A., Kadkhodayan, M. and, Suidan, M. (1994). Effects of Nitrogen Source on Crude Oil Biodegradation. <u>Journal Industrial Microbiology</u> 13: 279-286.

Wrenn, B. A. and Venosa, A. D. (1996). Selective Enumeration of Aromatic and Aliphatic Hydrocarbon Degrading Bacteria by a Most-Probable-Number Procedure. <u>Canadian Journal Microbiology</u> **42**: 252-258.

Wright, A. L., Weaver, R. W. and, Webb, J. W. (1997). Oil Bioremediation in Salt Marsh Mesocosms as Influenced by N and P Fertilization, Flooding, and Season. <u>Water, Air, Soil Pollution</u> **95**: 179-191.

Yang, L., Lai, C. and, Shieh, W. (2000). Biodegradation of Dispersed Diesel Fuel Under High Salinity Conditions. <u>Water Research</u> 34: 3303-3314.

Yeung, P. Y., Johnson, R. L. and, Xu, J. G. (1997). Biodegradation of Petroleum Hydrocarbons in Soil as Affected by Heating and Forced Aeration. <u>Journal Environmental Quality</u> 26: 1511-1516.

Zhu, X., Venosa, A., Suidan, M. and, Lee, K. (2001). Guidelines for the Bioremediation of Marine Shorelines and Freshwater Wetlands. U.S. Environmental Protection Agency, Office of Research and Development. Cincinnati, OH.: 156 pp.

APPENDIX A.1 SCREENING METHODS (EPA AND ASTM

METHODS)

std. dev	8(%P)									0.05											0.0									0.04
% Recovery	4					0.71	0.74	0.75	0.83	0.76						0.68	0.73	0.61	0.81	0.67	0.71					06.0	0.82	0.81	0.81	
std.dev.	Img/Kgaw				70					2541					1828						12370				2142					2220
	mg/kgaw				3					37824					2386						80548				12202					54693
TPH	morroam	30 0	10.0	139.9		35563.8	37046.1	37217.9	41468.8				3678.8	1094 1		91287.1	105676.4	86360 3	117549.6	966707		11277.7	14650.1	106768		63573.8	56025.1	49623.7	49548.7	
Ş	0	1.00	1.00	1.00		1 00	1.00	1.00	1.00		0.35	0.35	0.38	0.36		0.38	0.35	0.37	0.35	0 35		1.07	1.07	06.0		06.0	96 [.] 0	1.07	1.07	
Flask weight	10	0.0003	0 0001	0.0014		0.3556	0.3704	0 3721	0.4146		0000	00000	0.0140	0.0039		0.3474	0.3738	0.3153	0.4163	0.3427		0.1202	0.1563	0.0965		0.5746	0.5363	0.5289	0.5281	
ž	5	10.00	10.03	10.01		10 00	10.00	10.00	10.00		10.00	10.01	10.00	10.02		10.00	10.02	10.00	10.00	10.01		10.00	10.01	10.00		10.00	10.00	10.00	10.00	
Sample		S	S	cs		css	CSS	css	css		so	os	SO	SO		oss	oss	oss	oss	oss		PCS	PCS	PCS		PCSS	PCSS	PCSS	PCSS	

Table A1.1 TPH using EPA Method in laboratory samples.

•

[a] [a] [a] [mg/kgd/w] [mg/kgd/w] 1000 00165 0.23 1536.5 1000 00165 2776 1000 00165 0.26 6313.7 3611 2776 1000 00154 0.25 6099.4 3611 2776 1000 00154 0.25 6099.4 3611 2776 1000 00156 0.33 3004.4 3776 3611 1000 00156 0.33 3004.4 3676 3611 2460 1001 00056 0.31 18219 2811 2460 3676 1001 00071 0.24 2984.8 74071 4106 2465 1001 00071 0.24 2984.8 74071 4106 2466 1001 00071 0.25 19251 3274 2466 2466 1001 00010 0.25 19251 3274 2552 3018 10010 00000		sample w	Flask weight	dry fraction	HdT	mean	std.dev.	% Recovery
1000 00019 0.28 1550 1000 00154 0.28 5570 1000 00162 0.28 5570 1000 00165 0.26 5313 341 1000 00164 0.25 5500 41 1000 00154 0.25 5094 31 1000 00156 0.23 5401 1240 1000 00126 0.33 3004 4 1001 00056 0.31 18219 2311 1001 00071 0.24 2384.6 311 1001 00071 0.24 2384.6 311 1001 00071 0.24 2384.8 3104 1001 00071 0.24 2387.6 311 2460 1001 00071 0.24 2384.8 3106 3176 3176 1002 0254 0.34 7407.1 4106 240.7 3176 1001 01010		9	9	[0]	[mg/Kgdw]	[mg/Kgdw]	[mg/Kgdw]	٩X
1000 00019 0.28 6/5.0 1000 00165 0.26 6313 7 3411 2776 1000 00165 0.26 6313 7 3411 2776 1000 00154 0.25 60994 3411 2776 1000 00126 0.33 3004 3004 3004 1000 00126 0.33 3004 3004 3004 1000 00126 0.33 3004 3676 3411 2776 1001 00056 0.31 18219 2846 2617 2616 2405 1001 00071 0.26 18219 2816 2811 2866 1002 00071 0.26 19251 19251 2816 2811 2860 1001 00071 0.26 19251 37627 2864.3 3762 1002 00254 0.26 1926 1927.4 286.3 3762.7 285.3 3018 100	Site 1-1	10.00	0.0060	0 33	1836.5			
1000 00162 0.29 56206 1000 00165 0.26 63137 3611 2776 1000 00165 0.26 6304 3610 2776 1000 00154 0.25 60994 3611 2776 1000 00156 0.33 30044 3004 3004 1000 00126 0.33 30044 3004 3004 1001 00018 0.33 30044 3004 3004 1001 000126 0.31 18219 2011 2460 1001 00071 0.25 19251 2004 2400 1001 00071 0.26 19251 2407 2460 1001 00071 0.25 19251 2407 2460 1002 0.0254 0.34 7407 4106 2406 1001 0.0170 0.25 1970 274 2451 1001 0.01010 0.203 0.22	Site 1-2	10.00	0.0019	0.28	675.0			
10 00 0 0165 0 26 6 313 7 3011 2776 10 00 0 0154 0 25 6 099 4 313 3004 4 2776 10 00 0 0156 0 33 3004 4 333 3004 4 276 10 00 0 0018 0 33 3004 4 333 540 1 240 10 01 0 00126 0 31 1821 9 2811 240 10 01 0 0012 0 33 540 1 240 240 1 10 01 0 0012 0 31 1821 9 261 3 261 3 10 01 0 0012 0 34 7407 1 240 1 240 10 01 0 00170 0 35 1925 1 261 3 261 3 10 01 0 0170 0 35 1327 4 255 3 3016 10 01 0 0170 0 32 1767 7 255 3 3016 10 01 0 0170 0 32 3762 7 255 3 3016 10 01 0 0106 0 28 3762 7<	Site 1-3	10.00	0.0162	0.29	5620.6			
10 00 0 0154 0 25 6099 4 3411 2778 10 00 0 0098 0 33 3004 4 1 2400 10 00 0 00156 0 33 3004 4 2401 2400 10 01 0 00126 0 33 5401 2400 2410 10 01 0 0072 0 31 18219 2411 2460 10 01 0 0071 0 26 1925 1 2400 2400 10 01 0 0071 0 24 2964 8 2410 2460 10 01 0 0071 0 24 2964 8 2407 2460 10 01 0 0071 0 24 2964 8 2407 2460 10 01 0 0070 0 34 7407 1 2460 10 01 0 0170 0 35 4900 8 2631 2631 10 01 0 0170 0 350 3762 2533 3018 10 01 0 0122 0 377 2533 3018 2633 10 01<	Site 1-4	10 00	0.0165	0.26	63137			
10 00 00154 0.25 60994 10 00 00018 0.33 54011 10 00 00018 0.33 54011 10 00 00018 0.33 54011 10 01 00056 0.31 18219 2440 10 01 00071 0.24 2984 8 2411 2460 10 01 00071 0.25 1925 1 2407 2407 10 01 00071 0.26 1925 1 2460 2407 2460 10 01 00071 0.25 1925 1 2467 2467 2460 10 01 00710 0.26 1925 1 2407 2467 2460 10 01 00710 0.26 1925 1 2327 2407 2407 2407 2407 10 01 00170 0.25 1925 1 2407 2407 2407 2407 2407 2407 2407 2407 2407 2407 2407 2407 2407 2407						3611	2776	
1000 00096 0.33 3004.4 1000 00126 0.20 6277.5 1001 00056 0.31 1821.9 1001 00056 0.31 1821.9 1001 00071 0.24 2984.8 1001 00071 0.24 2984.8 1001 00071 0.24 2984.8 1001 00071 0.24 2984.8 1001 00071 0.26 1925.1 1002 0.0254 0.34 7407.1 1001 0.0170 0.35 4900.8 1001 0.0170 0.35 4900.8 1001 0.0170 0.35 4300.8 1001 0.0170 0.35 376.7 1001 0.0106 0.28 6.261.3 1001 0.0223 0.27 2.552 1001 0.0203 0.77 5.03.3 1001 0.0030 1.00 300.0 1001 0.0030.0	SSite 1-1	10.00	0 0154	0 25	e099 4			071
1000 00018 0.33 5401 1001 00056 0.31 18219 241 1001 00071 0.26 5275 231 240 1000 00122 0.31 3876.6 231 240 1001 00071 0.24 2984.8 2407.1 240 1001 00071 0.24 2984.8 2407.1 2407.1 1001 00071 0.24 2984.8 2407.1 2407.1 1002 00254 0.34 7407.1 4104 2400 1001 00170 0.35 4900.8 4104 240 1001 00170 0.35 4900.8 270.4 240 1001 00178 0.22 137.0 237.4 255.2 3018 1001 00106 0.20 0.27 2357.4 255.2 3018 1001 00030 0.77 503.3 201 240 240 1001 0.0	Site 2-1	10.00	9600.0	0 33	3004 4			
1000 00126 0.20 6277 5 1001 00056 0.31 18219 2440 1001 00071 0.24 2984 8 2440 1001 00071 0.26 1925 1 2440 1001 00071 0.24 2984 8 2440 1001 00071 0.26 1925 1 2407 1001 00070 0.25 1925 1 2406 1001 00170 0.35 4900 8 4106 2406 1001 00170 0.35 4900 8 4106 2406 1001 00170 0.35 4900 8 4106 2406 1001 00170 0.35 4300 8 4106 2406 1001 00170 0.21 475 2552 3018 1001 00106 0.22 1370 2552 3018 1001 00223 0.27 2552 3018 1001 1001 00030 0.77 </td <td>Site 2-2</td> <td>10 00</td> <td>0 0018</td> <td>0 33</td> <td>540.1</td> <td></td> <td></td> <td></td>	Site 2-2	10 00	0 0018	0 33	540.1			
1001 00056 0.31 18219 2011 2000 1000 00122 0.31 38766 2011 2000 1001 00071 0.24 2984 8 2001 2001 1001 00071 0.24 2984 8 4071 2400 1001 00071 0.25 1925 1 4071 4106 1001 00170 0.35 4900 8 4106 2008 1001 00170 0.35 4900 8 4106 2008 1001 00170 0.35 4900 8 4106 2008 1001 00170 0.35 4302 7 2553 3018 1001 00106 0.28 3762 7 25552 3018 1001 00233 0.27 6327 4 2552 3018 1001 00039 0.77 503.3 301 260 1000 00030 1.00 300 201 261 263 1000	Site 2-3	10.00	0 0126	0 20	6277 5			
1000 00122 0.31 3876.6 2410 1001 00071 0.24 2964.8 2405 1001 00071 0.24 2964.8 2407 1001 00071 0.25 1925.1 2407 1001 00170 0.35 4906.8 2106 1001 00170 0.35 4900.8 4106 1001 00170 0.35 4900.8 2108 1001 00170 0.35 4900.8 2108 1001 00170 0.35 4300.8 2108 1001 00170 0.22 137.0 2137.0 1001 00106 0.28 3762.7 2552.2 3018 1001 00233 0.27 6327.4 2552.2 3018 1001 00039 0.77 503.3 301 246 1000 00030 1.00 300.0 201 246 1000 0.0030 1.00 300.0 <	Site 2-4	10.01	0.0056	031	1821.9			
10.00 0.0122 0.31 3676.6 10.01 0.0071 0.24 2984.8 10.01 0.0048 0.25 1925.1 10.01 0.0170 0.25 1925.1 10.01 0.0170 0.34 7407.1 4106 10.01 0.0170 0.35 4900.8 4106 2008 10.01 0.0170 0.35 4900.8 4106 2008 10.01 0.0170 0.35 4900.8 4106 2008 10.01 0.0170 0.22 137.0 137.0 137.0 137.0 10.01 0.0108 0.28 376.27 255.2 3018 1001 10.01 0.0223 0.27 8327.4 255.2 3018 1001 1000 1000 1000 1000 1000 1000 1000 1000 1000 2001 246 246 246 246 246 246 246 246 246 246 246 246						2011	2460	
1001 00071 0.24 2984 8 1002 00048 0.25 1925 1 1001 00048 0.25 1925 1 1002 00254 0.34 7407 1 1002 00254 0.34 7407 1 1002 00170 0.35 4900 8 1001 00170 0.35 4900 8 1001 00178 0.28 6261 3 1001 00106 0.28 6261 3 1001 001078 0.28 6261 3 1001 00106 0.28 5762 7 2552 1001 00223 0.27 6327 4 2552 1001 00203 0.77 503 3 3018 1001 00039 0.77 503 3 301 1000 00030 1.00 3000 201 1001 00030 1.00 300 201 1001 00030 1.00 301 263	SSite 2-2	10.00	0 0122	0.31	3876.6			0.55
10 02 0.26 10 01 0 0046 0.25 1925 1 10 01 0 0170 0.34 7407 1 4106 2906 10 01 0 0170 0.35 4900 8 4106 2906 10 01 0 0170 0.35 4900 8 4106 2906 10 01 0 0170 0.35 4900 8 4106 2906 10 01 0 0178 0.21 47.5 237.0 237.2 10 01 0 0106 0.28 6.261 3 376.7 255.2 3018 10 01 0 0106 0.28 376.7 255.7 3018 1018 10 01 0 0223 0 27 8327.4 255.2 3018 1018 10 01 0 0039 0 77 503.3 1000 200 2018 246 10 00 0 0030 1 000 300.0 201 246 246	Site 3-1	10 01	0 0071	0.24	2984 8			
10 01 0 0048 0 25 1925 1 10 02 0 0254 0 34 7407.1 4106 2008 10 01 0 0170 0 35 4900 8 4106 2008 10 01 0 0170 0 35 4900 8 4106 2008 10 01 0 0170 0 21 47.5 137.0 137.0 10 01 0 0108 0 22 137.0 235.2 3018 10 01 0 0106 0 28 6261 3 37627 2552 3018 10 01 0 0106 0 28 5277 4 2552 3018 101 10 01 0 0223 0 27 633.3 1010 260.3 3018 10 01 0 0039 0 77 503.3 261 266 266 266 10 00 0 0030 1.00 3000 201 261 266 10 00 0 0030 1.00 3001 263 263 261 266 10 00 0 000	Site 3-2	10 02		0 26				
10 02 0 0254 0 34 7407.1 4106 2008 10 01 0 0170 0.35 4900.8 4106 2008 10 01 0 0170 0.35 4900.8 4105 2008 10 00 0 0001 0 21 47.5 47.5 4106 2008 10 01 0 0108 0 22 137.0 213.7.0 213.7.0 210.2	Site 3-3	10 01	0 0048	0.25	1925 1			
10 01 0 0170 0.35 4900 8 4106 2908 10 00 0 0001 0 21 47.5	Site 3.4	10.02	0 0254	10.0	7407.1			
10 01 0 0170 0.35 4900 8 10 00 0 0001 0 21 47.5 10 00 0 0003 0 22 137.0 10 01 0 0178 0 28 6.261.3 10 01 0 0106 0 28 5.261.3 10 01 0 0106 0 28 3762.7 2552 10 01 0 0223 0 27 8327.4 2552 10 01 0 0023 0 77 503.3 3018 10 01 0 0039 0 77 503.3 300 10 00 0 0030 1,00 300.0 201 10 00 0 0030 1,00 300.0 201						4106	2908	
10 00 0 0001 0 21 47.5 10 00 0 0003 0 22 137.0 10 01 0 0106 0 28 6261.3 10 01 0 0106 0 28 6261.3 10 01 0 0106 0 28 6261.3 10 01 0 0106 0 28 537.4 2552 3018 10 01 0 0223 0 27 6327.4 2552 3018 10 01 0 0223 0 77 503.3 1001 1000 1000 1000 1000 1001 1000 1001 1000 1000 246 246 10 00 0 0030 1 00 3000 201 246 246	SSite 3-3	10.01	0 0170	0.35	4900.8			064
10 00 0 0003 0 22 137 0 10 01 0 0178 0 28 6 261 3 10 01 0 0106 0 28 5 261 3 10 01 0 0106 0 28 3762 7 2552 3018 10 01 0 0106 0 28 3762 7 2552 3018 10 01 0 0223 0 27 6327 4 2552 3018 10 01 0 00239 0 77 5 03.3 100 1000 1000 1000 1000 1000 200 201 246 10 00 0 0030 1 00 300.0 201 246 246	Site 4-1	10.00	0 0001	0.21	475			
10 02 0 0178 0 28 6261 3 10 01 0 0106 0 28 3762 7 2552 3018 10 01 0 0123 0 27 6327 4 2552 3018 10 01 0 0223 0 27 6327 4 2552 3018 10 01 0 0223 0 77 503 3 10 10 10 01 0 00039 0 77 503 3 10 10 10 00 0 00030 1 00 300.0 201 246 10 00 0 0131 1 00 300.0 201 246	Site 4-2	10.00	0.0003	0 22	137.0			
10 01 0 0106 0 28 3762 7 2552 3018 10 01 0 0223 0 27 6327 4 2552 3018 10 01 0 0223 0 27 6327 4 2552 3018 10 01 0 0000 0 79 0 0 0 0 10 01 0 0000 1 70 503 3 1 0 10 00 0 0000 1 00 300.0 201 246 10 00 0 0131 1 00 300.0 201 246	Site 4-3	10.02	0 0178	0.28	6261 3			
10 01 0 0223 0 27 6327 2552 3018 10 01 0 0223 0 27 6327 4 255 3018 10 01 0 0000 0 79 0 0 0 0 0 0 1 0 1 1 0 1 0 0 1 1 1 1 1 1 0 0 0 0 0 0 1 0	Nia 4.4	10.01	0.0106	0 28	3762.7			
10.00 0.0223 0.27 0.257 0.257 0.000 0.79 0.0 10.01 0.0039 0.77 5.03.3 10.01 0.0030 1.00 0.0 10.00 0.0030 1.00 300.0 2.00 2.01 2.46				20.0		2552	3018	69.0
10 00 0 00000 0 79 0.0 10 01 0.0039 0.77 503.3 10.01 0.0000 1.00 0.0 10.00 0.0030 1.00 300.0 10.00 0.0131 1.00 300.0 201 246		10.01	6770 0	17.0	• 17CD			70.0
10.01 0.0039 0.77 503.3 10.01 0.0000 1.00 0.0 10.00 0.0030 1.00 300.0 10.00 0.0131 1.00 1310.0 201 246	cs	10 00	0000.0	0.79	0.0			
10.01 0 0000 1.00 0.0 10.00 0.0030 1.00 300.0 10.00 0.0131 1.00 1310.2	cs	10.01	0.0039	0.77	503.3			
10.00 0.0030 1.00 300.0 10.00 0.0131 1.00 1310.2 10.00 0.0131 1.00 1310.2	S	10.01	00000	8	0.0			
10 00 0 0131 1 00 1310 201 246	S	10.00	0:0030	1.00	300.0			
	CSS	10.00	0.0131	6	1310 2	102	246	0.69

Table A1.2 TPH using EPA Method in saft marsh samples.

								spiked	koil S=	OS=organic s	CS=clean sand
5.7	77.6	81.6	200	2889	3030.5	0.55	1679.5	168.0	2		OSS
		736			2748.0	0 55	1523.0	152.3	~	0.680	oss
4.0	64.3	97.1	7	1829	1884.1	1 00	1883 8	188.4	~	0.839	CSS
		91.5			1774 8	8	1774 8	177.5	7	0.791	css
			18	270	257 2	0 35	91.1	9.1	2	0.749	os
					282.8	0 35	100.2	10 0	7	0.680	SO
			19	9	36.7	1.00	36.6	37	٢	0.025	SS
					63.9	9	63.9	6.4	-	0.037	cs
5%P	X% P	с %	(mg/Kgdw)	(mg/Kgdw)	[mg/kgdw]	6	[mg/Kg]	[mg/r]		25 4 nm	
Std dev	Mean	%Recovery	std dev.	mean	ТРН	dry fraction	Aprox	γριοκ	dilution	Absorb	sample

Table A1.4 TPH using ASTM Method in salt marsh samples.

alqmas	Absorb	dilution	new absorb	Aprox	dry fraction	ТРН	mean	std dev
	254 nm		254 nm	[1/0m]	(0)	[mg/Kgdw]	[mg/Kgdw]	[mg/Kgdw]
Site 1-1	2.714	9	0 454	101.0	0.33	1855.0		
Site 1-2	3.673	8	0 77	222.6	0.28	6327.9		
Site 1-3	1.233	7	0.236	51.5	0.29	1251.8		
Site 1-4	3.687	æ	0.652	145.9	0.26	4467.5	3476	2359
Site 2-1	3.404	2	0 478	106.5	0.33	2284.6		
Site 2-2	0.907	2	0 505	112.6	0.33	675.6		
Site 2-3	1.435	7	0.251	54.9	0.20	1916.3		
Site 2-4	1.084	æ	0.152	32.5	0.31	B46.3	1431	182
Site 3-1	3.670	2	0.655	146.6	0.24	4319.0		
Site 3-2	3.673	6	0.491	109.4	0.26	11704 5		
Site 3-3	3.671	6	0.699	202.0	0.25	6487.3		
Ste 34	3.669	10	0.757	192.5	0.34	4498.9	6752	A A A
Site 4-1	3.009	4	0.422	93.8	0.21	3117.2		
Site 4-2	3.665	80	0.498	111.0	0.22	4054.9		
Site 4-3	3.673	10	0.29	63.8	0.28	14391.1		
Site 4-4	3.674	8	0.689	154.3	0.28	4387.2	ij	5296
SS	0.061	-	0.061	11.8	1.00	118.4		
cs	0.051	-	0.051	9.6	1.00	95.7	107	16
CS=clean sand								

sample	dilution	sample dilution new absorb Aprox corrected Aprox Mean	Aprox	corrected	Aprox	Mean	std dev
		254 nm	[]	[w@/r]	[mg/Kgdw]	[mg/Kgdw]	[mg/Kgdw]
Plot A-1	15	0.654	153.3	2299.8	22997 6		
Plot A-2	80	0.542	126.8	1014.2	10142.2		
Plot A-3	80	0.702	164.7	1317.5	13175.4		
Plot A-4	¢	0.232	53.3	426.5	4265.4		
						12645	7830
Plot B-1	60	0.111	24.6	197.2	1971.6		
Plot B-2	80	0.166	37.7	301.4	3014.2		
Plot B-3	80	0.158	35.8	286.3	2862.6		
Plot B-4	80	0.202	46.2	369.7	3696.7		
						2886	710
Pol C-1	8	0.571	133.6	1069.2	10691.9		
Plot C-2	80	0.337	78.2	625.6	6255.9		
Plot C-3	15	0.705	165 4	2481.0	24810.4		
Plot C.4	15	0.707	165.9	2488.2	24881.5		
						16660	9624
Plot D-1	15	0.715	167.8	2516.6	25165.9		
Plot D-2	15	0.716	168.0	2520.1	25201.4		
Plot D-3	60	0.517	120.9	966.8	9668.2		
Plot D-4	15	0.69	161.8	2427.7	24277.3		
						21078	7619
cs	-	0.051	10.4	10.4	104.3		
cs	-	0.07	14.9	14.9	149.3		
			:			127	32

792.4
vî r
10156
1 in 1
ب
835.9
•
ω
1400 7
ŵ
÷
23

sample	ditution	new absorb	Aprox	corrected	Aprox	Mean	std dev
		254 nm	[mg/L]	[mg/L]	[@J/@u]	[mg/Kgdw]	[mp()Kgdw]
Plot C-1	6	0.602	137.4	1236.8	12368 3		
Plot C-2	6	0.614	140.2	12616	12615.7		
						12492	175
Plot D-1	6	0.514	6.711	1055.4	10554.3		
Plot D-2	6	0.511	116.6	1049.2	10492.4		
						10523	4
Plot E-1	13	0.679	1551	2015.8	20158 0		
Plot E-2	6	0.645	147.3	1325 5	13254.7		
						16706	4881
Plot F-1	6	0.352	80.2	721.5	72148		
Plot F-2	6	0.339	77.2	694.7	6946.9		
						7081	100
cs	-	600.0	1.6	1.6	16.0		
SS	-	0.015	30	2	20.0		10

APPENDIX B.1 CALIBRATION CURVES FOR THE MADEP

METHOD

10 mL				mean std	<u>∧</u> ∎0	*cv		8	ponse factor 20 40	8		std dev
106 099 076 096 093 092			Ē			+		<u>no/mt no/mt</u>	The notified	no/mL		
98 6 6 0 0 0 0 0 0	5 8			33								
2 3 0 0	8		3	8	07							
30	82		8	92 0		-	58	0 83 0	96 0 96	080	0 03	1004
	J		8	°								
0 95	82		8	80								
800	8		0 92 1	•		ç						
66 0	8		5	0								
0 82	82 0	•	0 11 0	0							-	
101	- -	-	16	0	_							
101		-	- 080	0			8		101 101	28.0		
8	5	-	8	0 10				•	•	5	3	5
0.97	97	-	8	8	<u>.</u>							
J	3	8	5									
76	0	80 081	990									
æ	Reporte	onee tactor				╞		Rance reaccose	ones factor			ſ
		55 727	818 B	mean std	1		4 6	91		010	a a a a a a a a a a a a a a a a a a a	and day
Tim (8		- 51		_		Ē	۔ ر	-			
0 82	•	75 061	-	73								
0 75	0			2	_							
• 1 •	0		2	2		0 	38	0 79 0	61 0.66	0.06	0 76	000
110	•		6 7	26						1		
081	•		5	8								
100	0		J	2		2						
0 87	•		9860	8	10 12	0						
900	°		8	5	-	~						
0 77	77 0	8		62	~ 8	*						
087	67 0	82	16	8	=	0						
980	8	92		8		2						
1 00	5	91	8	3		2	8	0 80	87 075	0.07		0.0
0 82	0 2	69 077	100	2	: 9	10.7	}	}			3	2
080	8	8	63	5								
	47 0	8	8	3								

B.1 Calibration for the MADEP Method

B.1.1 Allohatic Calibratic

H872408

0

1 07

Ratio C28/C20 =

4 6 91 10/14 10/14 C10 34666 756026 C12 336285 756027 C14 34612 64269 C16 314612 64269	8 1 45 5 100 4 70 45 5 160 26 394 9927 15947 4228004 168717 4525927 142689 5054217 183944 5387858													Hange resoonse lactor				
7.4812 314866 314866 314865 314812			618	4 6	10	45.5	727	010	LEON	std dev	*cv	46	- 0	455	727	010	U BE	sid dev
338265 338265 338265 334812 374812			ng/ut	og/mL	ng/mL	no/mL	JE/2	ng/mL				20/11	שלישר	no/mt	no/mL			
338285 348857 374812 374812			6300250	061	67.0	0 72	88 0	0.67	0 75	0 15	19.8							
34867 7			5624972	0 59	67.0	0 77	8	120	0 77	017	217	0 65	0 77	0.76	0 78	100	0 76	0.07
374612		7549147	6874301	0 61	0 76	0 85	1 00	0 76	0.61	0 18	220				1	;		i
		7826764	6292227	0 65	081	0 93	1 13	000	980	018	2							
		7965793	6609663	0 69	0 85	86 0	1 16	200	08 0	010	107							
416926		6294032	6005242	0 73	68 0	1 03	8-	800	100	0 18	19.2							
412896		0000000	0063256	072	0 80	1 02	117	100	0 93	017	10.7							
1246309		2382244	1543531					-										
SURR 425663 013233		8343705	6262550	0 74	0 78	6 9 0	121	0 79	880	61.0	214							
417008		6130630	6746673	0 73	69 O	10	118	980	30	017	186							
C24 413172 9122		002415	6744237	072	0 88	101	117	800	60	017	187							
407157		034200	6702536	071	800	1 03	1 16	0 85	0.92	0 18	19.2	0 69	0.81	0.00	0.81	0.92	00	000
362013		7063664	6540062	0 60	0 83	101		500	08.0	010	107			1	•	}		
364366		7707646	6456966	0 67	0.82	90	1 12	0 82	8000	017	197							
229925		5211367	4567411	0 40	0 51	120	0 75	800	0.50	0 14	245							

ō		
5		
~		
1.07		
0.92		

Í		tion and and																		
ł	É								1 SC UC							runge response ractor				
-	4.6		45.5	727	818	9 7	10	45.5	727	818	USOE	std dev	×C√	4	-	45.5	727	9 19		atd dev
-	קיין אין אין אין אין אין אין אין אין אין	no/ut	ng/ut.	ng/ut.	ne/ut.	הם/חור	ng/mL	Ju/Ju		ug/mL				ng/mL	Jm/ge			Pomr		
	402160	646297	4060060	7090566	8279694	0 70	0 62	074	1 03	1 05	083	80	237							
	330706	631521	3960010	7042150	8215751	0 50	061	073	1 02	20	000	0.22	276							
	327156	M2001	4112518	7399566		0 57	0 62	075	1 07	8	0 82	0.25	300	0.67	0 69	083	0.83	880	0 / 0	010
	336037	19149	4327523	7775601		0 59	9900	0 79	1 13	113	800	92 0	000			•	}	;		;
	357064	60240	4567594	0999900		0 62	0 73	0 83	117	117	180	0.25	280							
619	376665	111200	4706839	8261469		99 0	080	98 0	1 20	8	30	0 24	258							
	397625	991930	4912763	0622234		69 0	980	06 0	1 25	1 24	800	0 25	250							
	014000	89169	4800965	8419479		0 69	0 85	080	122	121	0.87	0 24	243							
2	2137433	026536	2054241	2206474																
œ	404627	185806	4187866 7	7994005	9008159	0 70	076	0 77	1 16	114	180	0.22	248							
~	397149	15967	4833366	8479460		0 69	0 88	6 9 0	123	1 22	8	20	23.9							
*	005733	220647	4806830	8462578		0 60	69 O	88 0	1 22	122	800	0 23	23.9							
80	366290	11729	4762026	BM20733		0.67	9800	0.87	27	121	0.97	0 24	245	0 69	0 85	0.00	0.80	0 92	NO	600
e	376646	194965	4632448	8260443		9 9 00	98 0	0 85	1 20	1 18	60.0	52 O	246				1			
。	367366	978796	4564396	0120532		190	9 0	0 83	1 18	1 16	0 03	200	24.9							
•	220192	505005	3046716	56033005	0071402		\$ 0	350		110		2 5 0	37.6							

Ξ 1.14 Ratio C26/C20 = 0.63

1.03

	×	Vee accounts		H			Response	factor						and H	Lettone	e factor	
	9.4	18.2	45.5	6 06	4 6	18.2	45.5	6 06		std dev	¥C∕	99	18.2	45.6	45.5 90.9 mea		end dev
	i ng/ut	ng/ut.	DQ/UL	no/ut	10/01		ng/ut	no/ut					- TO LA	ng/ut			
ວິ	669699	2100313	5564879	1.1E+07	1 19	0 92	96 0	160	66 0	0 13	135						
5 5	609179	2096743	5617667	1 1E+07	123	0 92	96 0	0 93	101	0 15	14.6						
C12	467660	2126510 54	5848929	1 1E+07	0 87	0 93	8	800	300	90.0	-						
5	56666	2226506	6136963	1.2E+07	101	0.97	1 05	8	101	0.03	33	1 03	90 0	1 02	96 0	8	000
5 C	527928	2292392	6267324	1.2E+07	300	8	108	1 02	101	800	56						
5	633676	2326768	6329494	1.2E+07	98 O	1 02	1 09	103	1 02	800	56						
0 0	549010	2387096	6492964	1.2E+07		101	111	1 05	1 05	800	54						
8 C	54144	23535556	6375679	1.2E+07	0.97	1 03	8	2	1 03	\$0 0	000						
INT STC	2246643	2290947	2329095	2359507													
SURR	439250	1942951	6327237	1E+07	0 78	0 85	0.81	0.87	980	80 0	65						
g	635663	2320912	6290095	1 2E+07	98 0	101	90	1 02	1 02	90 0	51						
Š	519954	2260665	6149649	1.2E+07	0 92	88 0	106	8	800	800	54	0 79	0.67	30	080	160	0 003
ŝ	496631	2196209	6975544	1.2E+07	8800	800	1 03	860	800	800	62						
039 C	486060	2083583	5676913		98.0	180	0.97	0 93	0.92	800	60						
80	403599	1049128	5109782		0 72	0.81		9800	081	0 01	00						
98 C		550043	1776695	4121966	80	0 24	031	0.35	000	000	184						

4 6 18 2 45 5 mg/u/2 195159 5651946 1 557806 2195396 5700628 1 155384 2220693 5645948 1 155384 2220693 5645949 1 155384 2220693 5645949 1 155382 2291653 645540 1 15322 2354340 6586120 1 266225 2451340 645522 1 266225 2451340 645522 1 266225 2451340 645520 1 266225 2451340 645525 1 266225 2451340 645250 1 266225 2451340 645250 1 266272 235961 625261 1 264225 264385 6477090 1 264225 264385 647709 1 264772 239051 652243 1 264772 200537 6427280 1 264772 200537 6427280 1 264772 200537 6427280 1 266273 207643 6427280 1 266273 207643 642782 1 266274 2 266772 200537 642782 1 266772 200537 64278 1 266778 1 26788 1		<	Vea accounts	13				Response	factor						Range	Range response factor	a factor	
Null ng/ull ng/ull <th></th> <th>4 9</th> <th>18.2</th> <th>45.5</th> <th>6 06</th> <th>94</th> <th>18.2</th> <th>45.5</th> <th>6 06</th> <th>UG9U</th> <th>std dev</th> <th>∧C≮</th> <th>46</th> <th>18.2</th> <th>45.5</th> <th>3</th> <th>U</th> <th>atd dev</th>		4 9	18.2	45.5	6 0 6	94	18.2	45.5	6 06	UG9U	std dev	∧C≮	46	18.2	45.5	3	U	atd dev
004208 2198158 6431646 116-07 103 092 092 095 006 59 155306 2195306 500628 116-07 015 012 017 17 165306 2730600 178-07 015 012 013 002 17 16306 25305 565464 126-07 012 013 002 17 16306 25305 565464 126-07 012 013 102 006 103 16306 2545 665523 136-07 012 102 102 103 006 63 46021 2545 665523 136-07 017 104 101 006 63 64 46217 2545 017 017 104 110 103 005 48 65		ng/ut	ng/ut.	ng/ut.	ng/uL	ng/ut	ng/ut	10/00						no/ut	no/ut	no/ut		
557006 2165.306 5700628 11 [= -07] 095 082 083 095 094 002 17 155304 2250693 54056948 125 = -07 078 093 097 096 003 103 153205 2350593 5405700 125 = 07 078 093 097 006 103 103 153206 2350530 125 = 07 087 082 102 110 006 63 66256 23535 135 = 07 087 102 110 104 101 006 63 66256 23557 135 = 07 087 108 103 109 104 101 006 63 66256 23557 135 = 07 087 107 103 106 104 103 095 056 665778 2355436 135 = 07 087 102 110 106 104 103 056 65 665778 2057442 6578617 214147 077 103 109 104 103 056 65 776444 231267 077 078 086 100 103 106 104 103 106	ວ	604209	2199159	5631646	1 1E+07	1 03	0 92	0.92	0.92	0 95	90 0	59						
1553364 2720683 5645640 12E-07 078 093 091 006 103 152060 2320690 56570 12E-07 082 082 010 99 006 61 153058 25801563 13E-07 082 082 103 099 006 61 153058 25801563 13E-07 082 102 103 098 006 61 266213 13E-07 087 108 110 104 101 006 61 266212 245306 656527 13E-07 087 104 101 006 61 266212 245306 655273 13E-07 087 104 101 006 61 266212 245430 087637 13E-07 087 103 104 103 005 65 266512 241471 079 086 102 104 103 005 67 276442 667720 12E-07 086 102 106 103 005 67	5	557606	2195396	5700628	1 1E+07	0 95	0.92	0 93	0.95	180	0 02	17						
H87060 23278690 6280210 12E+07 082 086 103 102 096 010 99 090 440021 2435789 456570 12E+07 086 103 103 006 61 00 440021 2435789 456573 13E+07 087 100 105 104 101 006 61 05 440021 2435789 6565237 13E+07 087 103 106 104 006 65 48 460225 2481340 612E+07 087 104 103 106 104 006 65 48 460226 2481340 612E+07 087 103 106 103 005 65 48 467722 241471 077 079 109 104 103 005 65 48 46578 2027442 657803 12E+07 079 070 086 055 47 08 475812 2027442 657803 12E+07 079 070 086 165	C12	455364	2220693	5945948	1.2E+07	078	0 93	0.97	800	160	60 0	10.3						
513028 2381963 6456720 12E+07 086 100 105 103 096 01 640212 3285796 6563223 13E+07 097 100 101 106 65 65 640212 2456346 13E+07 097 103 106 104 103 006 65 66722 2456346 13E+07 097 103 106 104 103 005 65 66722 2456346 13E+07 077 097 103 106 104 103 005 65 342064 2386618 2477877 241471 27 24147 36 7 103 005 65 65 7 65 7 67 27 107 103 005 65 7 65 7 7 66 65 65 7 67 7<	5	482060	2328690	6260210	1.2E+07	0 82	86 0	1 03	1 02	860	0 10	0	060	96 O	6	66 0	80	0 05
MM0021 2435796 6665223 13E+07 082 102 107 104 101 006 63 M6256 24361067 6554346 13E+07 087 107 104 110 006 63 M6256 2454346 13E+07 087 107 103 106 104 103 005 55 M4204 286518 247437 13E+07 087 103 103 005 48 M4204 286518 247437 11471 079 085 081 103 005 48 M4204 286518 247447 079 085 081 103 005 47 M4504 286773 12E+07 086 081 021 087 083 064 47 M4527 2280685 6327643 12E+07 082 081 091 091 091 091 061 47 M4527 2280685 6327643 12E+07 082 086 083 083 081 064 45 <	C18	513929	2391953	6456720	1.2E+07	0 80	8	1 05	1 03	80	800							}
660725 2481007 6754346 13E+07 097 104 110 106 104 006 55 667202 2365130 635627 132+07 097 103 106 103 005 57 642004 2365631 241471 2411471 071 073 109 104 103 005 57 64204 23656312 241471 079 085 081 005 57 645678 2027442 5678812 1E+07 079 086 102 103 005 57 645678 2027442 5678812 1E+07 079 086 102 103 005 45 778412 2770831 646772 1220031 122 103 005 45 723435 125-07 086 103 097 097 093 055 724352 125-07 086 102 103 097 097 095 45	65	540821	2436799	6565223	1.36+07	0.92	1 02	1 07	5	101	800	0						
5677202 2454340 6656827 135407 087 103 109 104 103 005 48 342004 2366518 2441677 2411471 <td>C 19</td> <td>566236</td> <td>2491067</td> <td>6754346</td> <td>1.3€+07</td> <td>0.97</td> <td>5-</td> <td>1 10</td> <td>8</td> <td>2</td> <td>90 0</td> <td>5 5</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>	C 19	566236	2491067	6754346	1.3€+07	0.97	5-	1 10	8	2	90 0	5 5						
342004 2385618 247/877 241471 241471 1656778 2027442 2578012 16-07 079 055 091 087 065 57 1656778 2027442 2578012 16-07 079 025 091 087 026 57 1756444 2370803 6417500 126-07 096 106 100 101 004 35 175142 2370803 6417507 096 096 106 100 101 004 35 051 141527 2290605 6326573 126-07 096 096 103 097 097 097 097 051 051 051 051 141527 2290605 6322643 166-70 096 106 100 101 004 35 051 1233051 6522643 166-70 079 099 091 092 033 006 47 141527 23076561 4014141 000 023 034 033 006 197 1533051 6522643 1614141 000 023 034 033 030 066 197 166677 5078661	80	567202	2454340	6655627	1 36+07	0.97	1 03	1 09	8-	1 03	0 05	4						
H66678 2027442 667842 1E-07 079 065 081 67 57 78444 233005 6467260 122 102 103 004 39 77844 233005 6467260 122 106 102 103 004 39 77815 2330055 6467260 122 106 102 103 004 39 72815 239065 647780 122-07 092 096 103 097 097 097 081 47 24362 2166535 6407000 116-07 092 090 092 093 064 45 24362 2166534 014141 000 023 034 033 030 066 45 666772 2708561 014141 000 023 034 033 030 066 45	NT STD	2342004	2386618	2447677	2411471													
3/6444 2432030 6612500 12E+07 0.66 102 103 0.04 39 3/72813 23700637 64672673 12E+07 0.96 106 100 101 0.04 36 0.61 44527 23700635 64672673 12E+07 0.92 0.96 100 101 0.04 36 0.61 44528 15E+07 0.92 0.96 103 0.97 0.97 0.97 0.97 0.81 44528 1657 0.77 0.77 0.81 0.90 0.84 0.83 0.06 4.7 44528 16572643 177 0.77 0.81 0.90 0.84 0.83 0.06 4.5 44528 1823951 6527943 164141 0.00 0.23 0.34 0.33 0.30 0.06 19.7	SURR	465678	2027442	5678912	1E+07	0 79	0 85	16 0	0.67	980	0 05	57						
X/2813 237/0637 4467292 1 2E+07 0 96 0 69 1 06 1 00 1 01 0 04 3 6 0 81 X41527 22906965 53.264573 1 2E+07 0 92 0 93 0 97 0 97 0 67 4 7 0 81 X41527 22906965 63.264573 1 2E+07 0 92 0 93 0 92 0 92 0 83 0 65 4 7 X43245 1 6329651 6527643 1 67-07 0 77 0 99 0 94 0 83 0 06 6 5 X48524 1 5229651 4014141 0 00 0 23 0 34 0 33 0 30 0 06 19 7	80	576444	2432030	6612500	1 2E+07	800	1 02	9	1 02	1 03	500	80						
MIS27 22806805 6326573 1 25 407 0 82 0 98 1 03 0 97 0 97 0 05 4 7 23382 7166555 6407080 1 15 47 0 99 0 91 0 99 0 92 0 93 0 04 4 5 148524 193951 652543 1 5 47 0 77 0 91 0 99 0 94 0 83 0 06 5 9 566772 2078561 4014141 0 00 0 23 0 34 0 33 0 30 0 006 1 9 7	Š	572813	2370837	0407292	1.26+07	860	88 0	1 06	8	101	800	30	0.81	0.67	58 O	80	6 81	000
224302 2186535 6047080 11E+07 0 89 0 91 0 89 0 92 0 93 0 04 148524 1933051 552243 1E+07 0 77 0 81 0 90 0 64 0 83 0 06 148524 1933051 522078581 4014141 0 00 0 23 0 34 0 33 0 30 0 06 1	80	541527	2290965	6326673	1 26 +07	0 92	800	1 03	0.87	0.97	0 05	~ *			1			
H48524 1833951 5622843 1E+07 077 081 080 084 083 006 148524 1833951 5622843 16+07 077 081 080 023 034 033 030 008 1	8	524362	2166535	6047080	1 1E+07	68 0	160	88 0	0 92	0.83	100	5						
666772 2078581 4014141 000 023 034 033 030 006 1	8	448524	1933951	6622643	1E+07	077	081	80	100	083	90 0	0.9						
	8		666772	2078681	4014141	80	0 23	0.34	033	8	800	19.7						
	Ratio C26/C20 =	0.92	9800	0.91	99 0													

B.1.3 Aliphatic Calibration (B)

B.1.3 Aliphatic Calibration (C)

Range response factor	46 162 455 909 mean	mout mout				0.99 0.96 1.01 0.97 0.96	I							0.00 0.00 0.00 0.00 0.00			
	ski dev SCV	_	15 153	_	5 7				4			004 53	30	36	60 90	05 54	
	Thean std											0.85 0.					
factor	6 08	MOVE .	0.66	0 92	58 0	8	101	1 02	5	1 03		8000	1 02	66 0	0.87	0.92	
Response	45.5	ng/ut.	300	98 0	10	10	106	1 08	1 10	109		0 91	8	1 05	1 03	960 0	
	18.2	no/ut	0.91	0 92	0 83	0.97	5	101	5-	1 03		0 85	1 02	66 0	800	180	
	4	ne/uL	121	5	800	0 92	80	80	5			8	80	0.97	0.91	80	
			-	1.2E+07	-	-	-	1.36+07	-		2620242		-	1 3E+07	1 36 +07	1 2E+07	10.71.1
Į	45.5							7164724				6052312			•	6616913	
Ven account	18.2	No/AL	2364650	2377460	2405486	2521728	2586846	2623116	2666718	2658690	1 2560056	2201279	2629880	2566170	2496179	2366679	0000000
<	4						_	_		_		607466			_		
			වී	S	33	5	5	5	65	80	NT STD	SURR	ß	ŝ	8	80	

Ratio C28/C20 = 0.87 0 69 0 90

80

	₹	Area accounts	ŧ			Response	factor					Range	Range response factor	actor			
	9	8	04	\$	s	8	ş	8		std dev	Ş	0	8	ę	3		atd dev
	no/uL	ng/uL	ng/ut.	ne/ut	ոք/ալ	Jm/Jm/	je/jer	20/mt				oo/mr	no/mL	no/mL	no/mt		
Napthelene	678737	2735704	5720071	6739010	1 15	1 22	1 20	117	- 20	800	-						
2-MethyMapthelene	690715	2760696	5748475	6706185	117	22	1 28	1 16	121	80 0	46				_		
Acenapthylene	671905	2618391	6383774	6360135	114	1 16	2	1 10	1 15	500	10						
Acenapthene	692419	2660591	5602902	6550676	117	1 19	125	1 13	1 19	0 05	0	1 03	10	100	0.99	101	0.04
Fluorene	675759	2666307	5636369	6441035	114	1 18	122	::	117	900	4			:	}		-
Phenenthrene	632466	2556462	5340667	6140225	1 07	1 14	1 19	8	1 12	800	19				_		
Anthracene	524451	2144505	4508584	6853252	0 89	0 95	8	1 03	0.97	800	9 9				_		
OTP (surrogate)	709633	2010046	5626621	660056	8	1 25	90	1 16	1 23	800	040				_		
5-Alphe-Androstane	472626	449000	449016	462146							,				_		
Fluoranthrene		2533826	5160150	5843564	111	113	1 15	1 03	1 10	0 05	4.8						
Pyrene	634857	2460674	5095670	5899667	1 07	60	1 13	1 02	8	8							
Benz(a)Anthracene	54.0486	2211001	4505016	5282340	0 93	800	1 03	0.91	800	900	4				_		
Chrysens	550052	2322030	4772545	5595257	98 0	103	8	0.07	6	800	4 9				_		
Benzo(b)Fluroenthe	556743	2179901	4472824	5209383	36 0	0.97	8	80	0 95	8	42				_		
Benzo(k)Fluoranten	709140	2457226	4867907	6413090	8	8	8	30	8	0 11	10.0				_		
Benzo(a)Pyrene	066612	1942217	4027118	4561128	:: :	9800	80	200	0 93	0 12	13.3				-		
Indeno[123cd]pyrer	474325	1833166	3915670	4528217	000	081	0.87	0 78	0 82	50	4				_		
Diberut a.hjanthrace	10034	1917548	4074642	4494685	0 82	980	160	0 78	180	0 05	65				_		
Benzo(ghi)penyene	456383	1703051	3560011	6057082	0 77	0.76	0.79		0.00	0.05					-		

B.1.5 Aromatic Calibration (A)

	2	Area accounts	Ę				Response	factor						Range	Rance resource factor	factor	
	•	10.2	45.5	6 06	9 4	18.2	45.5	6 08	S E	Shi dev	Ş	•	10.2	45.6	8		ald daw
	ne/ut	ng/ut.	ng/ut	ne/ut	No.		-	No.				10/20			No.		
Napthelene	699962	3251331	0921916	16434632	88.0	8-	98 0	8	8	800	55						l
2-MethyNNapthere	666237	3223706	1010100	16206473	0 95	1 03	98 0	8	80	90 0	52						
Acenapthylene	640160	2902178	0028230	14985570	880	0 83	9800	180	0.91	800	63						
Aceneptiene	666416	3144076	0000159	15638780	10	101	0 83	1 02	0.97	0 05	84	0 75	080	0 7.0	0.87	100	800
Flume	683629	3124664	0042290	15619510	0.85	8	0 93	1 02	0.97	30	4	1)	j		;
Phenerithene	056925	3099020	0640796	15630448	080	800	0 93	1 02	800	800	9						
	603475	2019201	7714904	14491424	081	080	0 83	28 0	0 87	800		_					
OTP (surrogate)	500000	3231666	0062637	16307468	300	5	96 0	50	8	000	4						
5-Aphe-Androstane	2922263	3121634	3727417	3100056													
	622963	3008802	0344619	15324528	0 85	96 0	060	860	0.92	800	8.8						
Pyrene	619456	2997290	8385580	15565626	0 85	9 6 0	80	8	0 93	0 07	14						
Benz(a)Anthracene	601214	2546336	7327942	13822733	0 60	0 82	0 79	58 O	0 79	800	10.8						
Chrysens	508309	2560631	7414937	13999771	0 7 0	0 83	080	80	081	800	10.6						
Benzo(b)Fiuroanthe	463237	2200011	0622134	12580130	0 62	520	071	0.81	0 72	800	110						
Benzo(k)Fluoranten	546751	2497994	0005241	12666637	0 75	080	0 72	0.82	077	800	6 9						
Benzo(a)Pynene	442932	1973090	5626671	10975972	0.61	000	090	071	190	0 05	77						
Indeno[123cd]pyren	a 308747 1582099 4	1582099	4790904	9149985	042	051	051	0 59	300	000	8						
Othenz(a,h)anthrace	200976	1547148	4632385	B402430	040	050	0 49	30	048	800	12.6						
Benzo(phi)penylene	296576	1497601		6122436	140	0 48	0 47	0 62	0 47	0 05	10.4						

	×	Area accounts					Response	factor						Rance	Rance resource factor	tactor	
	9 7	18.2	45.5	8 08	4 6			6 0 6	U	std dev	Ş	•	18.2	45.5	8		ald dev
	NO/UL	ng/ut.	ng/ut.	ng/ut	ng/ut.	ng/ut		Moline.				no/ut	NO/OL				
Napthelene	632249	2716196	6673263	13047410	1 10	1 15	109	114	112	0 03	06						
2-MethyNapthalene		2677765	6762263	13691174	90	114	1 07	113	1 10	0 03	: 6						
Acenapthylene	605789	2517527	-	13026820	105	107	8	8	105	0 03	32						
Acenapthene	614679	2637064		13333910	1 07	1 12	5	1 10	8	500	33	67.0	090	0.76	0 83	0 78	0 0
Fluorene		2571948		13070349	1 05	8	101	9 9	108	100	35				}		;
Phenanthrana	561712	2399964	5960763	12390578	98 O	1 02	100	1 02	880	100	4 2						
Anthracene		2292575		11950662	0 92	0.97	0 92	800	58 0	500	61						
OTP (surrogate)	565365			12824246	96 0	1 05	0.97	8	1 02	100	4						
5-Apha-Androstane	2302138	2367109		2419837													
Fluoranthrene	476967			11276316	500	16.0	0 85	0 93	800	90 0	5 5						
Pyrene	484573			11405200	180	160	0 85	30	69 0	800	99						
Benz(a)Anthracene	300005			9348957	300	120	8900	0 77	0 20	800	0						
Chrysens	366566	1664768	4311770	9429676	190	0 72	0 68	0 78	0 70	8000	6						
Benzo(b)Fhroenthe	299069		3617818	7910632	0 52	090	0 57	066	800	800	9.7						
Benzo(k)Fluoranten	377007	1672377	3949533	7666006	0 66	110	0 62	80	800	500	4 9						
Benzo(a)Pyrene	235167	1320005	3229279	6632266	041	95 0	051	80	051	0 07	14.2						
Indeno[123cd]pyrer	124717	_	2328291	6316317	0 22	10	0.37	40	80	50 0	•						
Dibenz(a,h)anthrace	125566	756747	2329294	4977532	0 22	0 32	037	641	20	800	25.2						
Benzo(ghi)pen/lene]	125363	782747	2219696	4816965	0 22	220	035	940	0 32	800	23.0						

-	1
	4
-	1
- 6	
- 22	
- 22	
- 16	
- 22	
_	
王	
- 32	
_	
- 63	
•	
- 22	
- 23	
- 76	
- 2	1
F	1
- 0	
- 2	
-	r

						ſ		•									
	ž	AN ACCURA				-	(eeponee	tactor.						e de la	Range response factor	tactor	
	•	18.2	45.5	6 06	4 6	18.2	45.5	6 06		veo bia	ړ ₽	•	16.2	45.5	8		and dev
	ne/ut		TO/N	20/41	NOVE	Jo/du		30							New York		
Napthelene	662240	2825821	7309786	14019276	107	1 10	100	8	8	0 02	-						
2-MethyNaphalan	040059	2649438	7183448	14034643	1.07	111	1 07	8	8	0 02	21						
Acenepthylene	615907	2636160	0620224	13644306	101	103	96 0	103	101	0 02	17						
_	~	2796366	0056772	12000073	8	109	5	106	9 0 7	0 02	22	0 72	0.81	0 76	0.82	078	800
Fluorene		2732867	6744275	13691200	8	1 07	101	8	5	0 03	25			•	;		}
Phenanthrene (561178	2598608	6333147	13454566	800	101	96 0	1 02	800	100	90						
Anthracene	294843	2457309	5969955	12006450	180	80	60 0	0.87	083	100							
OTP (surrogate) (695913	2662770	6636476	13006092	800	105	96 0	8	5	8	4						
5-Apha-Androstane 2	2425527	2560591		2642107													
Fluoranthrene	511676	2369066		12484956	100	0 93	0 85	200	0 80	800	69						
Pyrene		2369775		12622667	0 85	0 93	0 85	800	800	800	09						
Benz(a)Anthracene	369036	1866860	4515076	10449773	0 50	0 73	99 0	0 79	0 20	800	12.1						
Chrysene	366523	1063250	4567942	10560212	061	0 74	8800	080	120	800	11.5						
Benzo(b)Fhuroenthe	200561	1582455	3616506	0015330	0 49	0.62	0 57	0 67	0 59	0 07	12.7						
Benzo(k)Fluoranten	360607	18M3366	4085239	6974793	30	0 72	061	890	800	0 05	7.6						
Benzo(a)Pyrene	254650	1434581	164945	7612622	0 42	80	0 52	800	0 62	0 07	136						
Indeno[123cd]pyrer	147442	6 42919	2529090	5929217	0 24	0 37	800	0 45	940	800	110						
Othenda, Nanthrace	149434	936292	2430157	6640566	£2 0	03/	96 0	640	80	800	216						
Benzo(ghi)penytene	148286	929048	2373766	6361436	0 24	80	92 0	041	Ņ	0 07	203						

4 6 18 2 46 56 9 4 6 18 2 45 6 1 9 10 10 10 10 10 10 10 10 10 10 10 10 10	18.2 19.2 11.1 11.1 11.1 11.2 11.2 11.2 11	455 809 120 129 119 127	uga M	std dev	Š	46		45.5 00.9			
ng/ut ng/ut ng/ut ng/ut bbiene 627416 2344010 6179169 12407617 bbiene 627416 2344010 6179169 12405617 bbiene 671766 23469615 6175680 12405637 b579663 2367962 567736 11646396 b539663 2370986 6537756 11295396 b536635 2370986 653456 11729396 b437235 2165678 5411700 10420305 b2360354 5360322 2165678 5411700	2					•	7 01	,			
527415 2344010 6179166 12407517 Maiend 521194 2356845 617568 1265662 6 617655 2367862 6617738 1694596 6 6179565 2367862 6617738 1694596 6 5396025 2367862 6617738 1634596 6 5396022 23078686 6617736 1635659 6 437235 2165678 5411780 10428036 4 437235 2124396 5364223 10460354						ng/ut	ng/ut	N	_		
Mailend 521194 2356845 6125680 1210302 617955 2207062 607773 1046303 617955 22067862 6071754 1054503 6238653 22067865 607162 1153863 6238653 27067865 6637653 117500 1042803 63252 23165878 6637633 117700 1042803 637235 2165878 6417700 10428030 643723 6437733 2124336 5586423 1046036 6437733			115	0 12	10 6						
617955 2280224 567738 1046396 538630 2367962 5671862 1023662 0538632 23070968 653458 5671862 538632 23070968 653458 564782 643755 216568 51182 50503 623623 236518 51182 50503 623755 216568 564222 104603		-	1 1	0 12	10.2						
CLADEAS 2067962 5671802 216000 2000 558002 2370806 650452 210 427702 2165618 551470 000 427702 2121438 5584220 10460354			1 10	800	99						
638032 2370808 5834523 11295396 4 437235 2165678 541779 0028030 427102 2121436 5384223 10480354		•	113	800	67	0 75	98 0	0.67	80	180	0 0 2
437235 2165678 5411790 10426030 427102 2121438 5364223 10460354				800	57				1		i
427102 2121436 5364223 10460354	-		8	110	112				_		
		·	80	0 12	121						
5550355 10599444	-	•	8	800	57				_		
2056150											
9284522			0 93	0 00	68						
4882271 8331166		-	0 93	800	60						
7602512			0 75	800	11.9						
4192491 7093933			0	0 02	2.0				_		
3502633 8685900			200	110	18.1				_		
3019000 6771922			1	0 16	19.7						
Benzo(a)Pyrene 336910 1372832 3134976 5772420 0 64	0 65 0	061 060	0 62	0 02	37						
Indemo(123cd)pyrene 793630 2218345 4545330 0 00			0 43	80	116						
4522208			0 45	800	111						
Benzo(ghi)penyene 156547 901681 2249986 4121924 0 30			0 40	002	14.6						

B.1.6 An	omatic C	allbration	8														
	~	Area accounts	1				Reporte	tactor						Rance	Range resource factor	- factor	Γ
	9 4	18.2	45.5	a 0a	4 6	18.2	45.5	6 08		veb bia	2 V	•	18.2	45.5	8		and day
	ng/ut	. ng/ut.	ng/ut	ng/ut	10/00	ng/ut	no/ut	no/ut				no/ut		No.	ž		
Napthelene	561206	2441378	6346035	12986410	5	1 12	1 20	1 27	1 15	0 11	86						
2-MethyNapthelene	PE4634	2446304	6280927	12762705	6 6 0	1 12	1 19	1 24	114	110	9 0						
Acenapthylene	531661	2317613	5823497	-	0.87	108	1 12	1 10	90	800	82						
Acemphene	562170		6112716	12193288	1 02	1 12	1 15	1 19	112	0 07	6.0	0 75	98 0	0.87	0800	1	0 00
Fluorene	557867		5072879	11854680	1 02	1 12	113	1 16	1 10	8000	55		1				;
ere's	436631		5649323	11000666	80	1 02	1 05	1 07	88.0	0 13	13.0						
	439286	2192290	54.86396	10940287	080	8	8	1 07	96 0	0 12	12.3						
OTP (surrogate)	546385		6827156	11570648	100	1 09	1 10	1 13	80	0.06	94						-
5-Aphe-Androstane	2193669	2163693	2117953	2060969			•	!		}	,						
Fluoranthrene	473560	2099431	101737	9635826	9 8 0	98 0	58 0	980	0.93	90.02	50						
Pyrene	427967		6016974	9901644	0 78	98 0	58 0	0.97	0.91	800	2.6						
Benz(a)Anthracene	340105	_	4151252	8221853	0 62	0 79	0 78	080	0 75	800	115						
Chysens	430389	-	4303420	8385109	078	0 85	0 81	0.82	0 82	80	33						
Benzo(b)Fhroanthe 254062	254062	-	3624160	7166501	0 46	0900	800	0 20	0 63	110	18.0						
Benzo(k)Fluoranten	n 561005	1781500	JEETSCH	7184841	1 02	0 82	0 73	0 70	0.82	10	177						-
Benzo(a)Pyrene	DA2A3A	1378301	3193278	6106235	0 62	063	000	000	0 62	0 01	24						
Indeno(123cd)pyren		612613	233876M	6052762	80	16 0	140	049	440	800	13.9						
Dibenz(a,h)anthrace 316175	316175	1181928	2563731	4682318	890	1 50	0 49	0 46	0 52	80 0	10.4						
Benzo(ghi)penyene 205268	205268	1001697	2336765	4367263	16.0	048	40	043	640	800	99						

		Ľ	Response	factor						Range	Range response factor	actor	ļ
908	48	18.2	45.5	6 06		skid dev	S ₹	84	18.2	45.5	0.00		shi dev
_	10/10	ng/ut	no/ut	NOVIL				no/ut	ng/ut	20 AL	20 M		
3565640 0 96	800	1 15	115	111	1 10	800	72						
	0.97	-	114	111	8	80.0	75						
-	3	8	1 07	5	5	800	-						
3632902 1 01	<u>1</u> 0	51 1	1 12	20	8	800	62	0 75	0 85	0 67	8	10	90 0
_	101	1 13	1 10	1 10	8	800	60						
2957336 0 BM	100	1 02	2	8	58 0	010	10.3						
2467528 0 79	0 79	0.97	101	1 02	0.95	110	113						
	8	8	8	=	107	0 05	47						
2449657													
_	800	800	9 6 0	80	30	0 05	50						
12176361 0.07	0 87	96 0	96 0	80	10	0 05	64						
_	100	0 77	0.81	085	0 77	800	117						
	990	0.63	10 0	80	98 0	0 02	25						
	840	0 67	071	0.75	8800	0 12	180						
	1 02	0 79	0 77	0 75	590	0.12	14.8						
	800	061	063	0 65	0.62	0 02	38						
6661010 0.00	8	0.36	0 49	8	047	011	22.9						
_	047	840	0 52		050	0 03	5.9						
5103506 0.33	2023	10	84 0	300	40	80 0	17.4						

APPENDIX C.1 FORE RIVER CREEK SALT MARSH DATA

C.1.1 Short Chain Aliphetics	t Chain A	Hphetics		H	TPH Concentration using MADEP Method	on using l	MADEP M	pout					
		ł	đ	c	ł	Ĭ	3	concentration	concentration	Burrogen	HUTOBAN PACONE	% recovery	concentration
Nurste	2	3112431	1000	200	NAME:	20	:						•
NUTRE	2	1005677	16000		TERMEN A			212000				Ż	
NUTAKe	3	5004229	16000	09	400670			210822		SAACIA			1011
Nitrate	8	1000000	16000	05	400579	0		57025		ATTA		R	
Nitrate	3	1110005	16000	90	021900			ECZ161	151	244500		2	
	8	10067670	16000	50	450876		0	1780851	12/1	244508	5	223	
Nerte	පී	3607547	16000	50	510633	60	:	514106	514	250007	10	218	226
OVENN	8	909994	10000	09	020200	30	10	50532	3	238716	09	15.6	374
2	2:	15466214	16000	09	451180	8	1.5	1933399	1903	315707	7.0	Ē	6M25
2	22		16000		112046	0		2554120	2564	311678	10	79	1000
2	2 4		16000		504715	80	5	623366	2	207417	•	15.3	909
24	82	100/001		20	011000	a (-	150071	5	243636	5.1	80	2 82
23	36	1700001						1112001		315707		- 8	
23	38				0/00/0				5		a .	0 0 9 2	
2	18	10501338						0002122 00121021	2122				
Control	12	7897997	00001		90000								
Cantrol	2	476007	1000		141000		:-	1212MAC			2		
Control	3	1567796	10000	0.9	2253300	0		TARKA?		COMPANY C		23	
Control	8	1006233	16000	80	426662		2	20002		200640	. 0		
Control	8	1908054	16000	50	626344	00	12	46254	\$	256730	. 0	0/1	2
Control	8	1200367	16000	50	667966	80	12	130846	<u>96</u>	240107	62	157	
Control	8	2277206	16000	50	610050	80	12	200178	2	217806		- 9	1756
Control	8	1201366	10000	50	611769	60	:	104110	10	217901	6.5	153	1071
		0645270	16000	90	505051	60	8	198657	981	202367	12	172	151
		10117536	16000	90	564040	80	5	310403	310	407000	06	37.0	818
control		10040615	10000	00	717816	0	8	205666	8	756712	5	E 94	3
CONTRO		14004240	16000	90	022012		4	455005	2	639361	•	1	1031
		4	Į	4	ł	Ĭ	3	concentration	concentration		MUTOBER POCON	A recovery	concentration
	24.5	1 STORES		2		ŧ				Prine Bocourt	ł		2
	{	45451013		20				110120		20812/		R a	5
All	2	00004519						1924	5	Dir un die	- 4	29	
AL A	8	10000001	4000		W75601			and a	38				
	13	107547164	0000	2	BACCOME			718030	3	1101011		22	
	8	150000003	0000	0	00101712	0	2	045045		1200100		1	7476
Niczia	8	10322042	0000	0	3463220		22	104090	ğ	001000		18	1
	8	7463026	4000	01	3610875	80		81628	8	1154711	12.6	8	Ā
2	2:	Zeregene	0000	0	4360334	0	12	218064	218	807536	52	22	ł
2 4	22	/02/91/24	40000	-		a (200002	9	001100	2	275	1124
23	8 á				1000110					120M21		37.2	202
12	13	1021201									3	5	
2	8	199487250	0000		000000		0	10000	25	10101	- 0		
z	8	202447302	40000	01	400000	00	+	1267960	Sec.	12200221	0	27.0	
Ž,	8	BA14115	4000	10	2648447	•	-	2016	2	011229	-0	278	100
Control	2:	47105665	0000	-	1007500	0	4-	CZ1016	1/6	177924	•		721C
	24					0 (0 (•	144052	Ŧ	079462		910	457
	2 4					300		ZOMEZI		575623	5 7	999	
	80					30	-		į	2453790	ē.	67.7	192
	36					30			8/6	20000	4	2	
Control	38							190951	151		0 4 10 1	241	
	38			20		30			1 :	009107		19.8	2240
	3	ATARNAT		2		50		100101	33	018770			<u>6</u>
COMPUT		PROCESSION OF	0000	22				712211			n -	» - 8 1	81
		,		1		•	2	5	2		5	5	B

TPH Concentration using MADEP Method

concentration	>	2140	102	2		ł	2				1904	5912	9	3	1206																5		100 100	1000		1000	23		I		ļ				A	112	2522	R	613	8	194	8	6	8	ទ្ឋិរ	21	2
A recovery		101	201	×	i P			35	37	3 1 5 1	ē:	9 7	ลิ	8	ŝ	8	24 0	7 761	293	¥,R	21	27.4	16.3	20	27.4	222	3	19	2.99	8	A recovery		2012	Ŧ	20	ŝ	485	2	15.0	- 2					140	ê	Ŕ	151	2	21	8	- i Ri	R I	ი (房 (9 - 7 -		į
uurragene recove	r st	50	69	7.0	12.0				2				0		82	00	8	- 3	-	120	101	8.8	10	4	3 8	40	4			. 9	HUTOBER POCH		9	11	100	62		10							27	13	* *	52		95	0.2	00	0		32		
	ana account	67775	029667	007003	110000	0.000	21112	100001				10001		2002045	10/01/7/		1228	003000	BUCKEN	1301605	100928	1002563	786192	748666	914630	760564	2175480	2225424	17630071	2203610	Burrogene	are account	876657	1367036	2086994	04677		010040				074042	1017014	756870	506145	907155	725129	100300	660078	12100	781063	001 MM	20000		1010011	1 Manual	
concentration	ł	ş	S	8	240	8	13		ž	3	3			8		2	3		2	2	ē	8	916	410	ī	161	31	101	110	101	concentration	į	5	2	Secon		E				22	3	lē	2	ş	98 X	5	8	12	Ξ	9		23	Ì₿	2:	2 :	
£																															5																		121419								
:	8	4	-	13	=	91					::		-	-		-		-	=	2	:	:	17	18	12	12	56	56	53	50		8	20	2	-						-	20	-	11	20	51							::	: :) () (
ł	È.		60	80	60	00	00	00	00								30	2		0	80	•	8 0	00	•		90	80	80	60		2											00	80	80	80	•)	
i	ŧ	4015356	3664150	3742108	3010505	3486660	2002450	4031078	4428566	CHOOLAN A											12761216	201220	BECROOM	3042610	3684665	3617913	3760152	5256747	C19967C	3666676		ŧ	9611025		1000110	14/14/6				X6015	BCACTAG	3646621	2640717	3010400	2005077	200000	1211280	COMPOSITE STATE				61 JOUUT	10000	CHOW U	200210		
(2	2	10	10	•	01	10	10	10	10								2	2		0	0	•	•	-	-	9	10	9	•		• (2 2				0.	9	0	2	2	-	-	2 3		2 0		2	20	2	2		
ä	5		4000 4	000 4	0004	0000	4000	4000	40000	4000											0000		0000	40004	40000	0000	40004	0004	4000	000 0	i	8								0000	0000	0004	0000	0000	4000	0000	0004					0000	0000	0000	0000		
ł	2	07096770	24632504	21527270	25011528	3037979	22601419	83037466	110119232	170152319	TO A BARANCE	COMMENCE	74774							/2/2000	1/003/00	SHOOL OF	67750807	66719300	100+200	15740862	00780372	00143065	56247561	42081873		2						UNIT VICT F	60222100	04210806	00671406	PM110007	PM512314	110898636	00243742		1000	1000/110		1001071	CCCUCALC	27750070	11042623	23097116	5082206		
		3	2	1	2	3	8	8	8	1	1	1	5 á	82	36	38	ł	34	24	22	8 i	8	3	8	8	8							3:	2	1	82	36	38	18	2	ł	1	8	3	8	58	8:	24	21	1 á	10	38	38	8	ł		
			excare.			N erse	Nerge	Nerve	Nerve	ž	1	1	1	1	1	1	1	Į					Control	Contra	Control	Control			COMIC	COMIC										ž	z	ž	ž	ž	2	2	2		Control			Control	Control	Control			

overy concentration	2	1																												8																			25 1 1272								
rroughts recover 1% rec		a7 2						11 2 20	84 27	1 00	73 31	76 X6	13 51	78 36	90 00	17 1 57	70 20	12.2 50	CI C. 4	00 001	16.3	20	10							ş																			136 25								2
eurrogene Hu	and account	011156	010561				1000	1901/00	522901		204/145	102001	1513025	105A075	1298631	1462905	1203400	1291304	DAC/AD	000000	1256789	675327	667533	1501215	1007534	1005430	2497974	1791046	2006624		area account	200500	6M02067	578042	910751	003700	626253		11/4540	L MOUUL		2062704	1242714	1220721	1246206	104865		Z30000	245456				I DAMA		110675		
concentration	ł	ž	\$	į			2	3	2	53	8	-	R.	ā	j	1779	125	8	ē	10	4	Ī	3	3	192	8	~	5	¥Ĵ	concentration	ł	151	ñ	5	R	3	81	g :	Ş	Ř) 9	8	12	1254	8		3			23	2 8		2	}≤	2 9	1	\$
concentration	ł	73757	00100	AL ADA	17760				10401		Andene		101000	\$100C9		1110/11	124070	1/95	131014	67162	95/94	14,064	20003	80,062	201122	00523	7028	13325	8009	CONCEPTION	ł	151112	2116	5632503			/90CZ			ACT THE	00000	1001023	720882	1254110				180001	10/2010					1000	0/007		
ł		11	10	-					2:				3		-	-		11		- 12	12	:	:	12	=	10	53	63	58		×	••	2	10	20		2		- 6		0	80	80	0				5		2 0				57			
1	5	80	90																0	0	80	80	80	80	80	80	80	80	80	1		6									80	80	80	8									80		80	80	,
	Ŧ	2000002	1901194	2001301	264MITA	CHARTER		2764.70		110100					74040/0				2740204	2705666	2806670	1627872	280008	2814906	2016161	2004645	2716330	2480017	ZAURIEN	ł	ł	DOMON ZZ		2154028					CANAL CAC	2111900	2745621	2514071	2536246	1463601				1178411	124441	Trance I	120A20	1312000	1217966	2224000	1573610	1 CINCIPLO	
6	<u>،</u> د	2	10	10	01		2						-	-	2 .	2	2	2	2	-	•	-	•	ĉ	•	2	•	•	2	•	• ;	2		2			2		2	2	-	:	-	2				2	20	2	2	2	2	2	2	2	
ł	5	90004	900 4	4000	40000	AMMA	40000	Annna.		4000											0000	0000	0004	0000	0004	0000	0000	0004	40004	ł	5	4000							0004	0000	0004	4000	0000	0000						0000	0000	0000	0000	4000	0000+	0000	
4		01001017	6025146	26099918	44027080	14000057	A117014	COOUCON .	1400210	ALC: NOT ONLY OF	CANAN CANAN	ADVR00V							100001			10001001			21282014	4047271	200000	400004	COMET!					1/10/2701			CUCA PU	1620676	13752336	15302273	21000781	42407753	20140200		217212	201100	06/27400	6776340	11176262	2476315	17841708	10003001	0079736	200000	6306143	8169348	
	- 44	3	Ş	2	8	J	6	8	8	2	1	2	łá	82	36	38	lé	3	24	27	8 2	8	31	8	5	6						34	2	ł	82	36	38	8	2	2	3	8	3(92	16	34	1	! 2	8	3	8	ð	8				
				Nei Ne	NCTHO	Nirtio			Nu and	ž	2	1	1	14	1	14	1	Į								Control of			control									ž	Ž	ž	ž	Ž	2	24	1	Control	Control	Control	Control	Control	Control	Control	Control		control	control	

		E			0	ŧ	æ	Ŗ	CONCENTRATION MUNICIPALITY	concentration marks de	Burrogene	HUTOPAN INCOM	A recovery	concentration
		₹		•	ç	201155	0	-	4076	•0	1213613	10.8	£73	2
Notice Notice<		Ş		•	10	2363630	10	00	1716	~	1071700	110	244	
No. No. <td>Matrix Matrix Matrix<</td> <td></td> <td></td> <td></td> <td></td> <td>101111</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>28</td>	Matrix Matrix<					101111								28
Matrix Matrix<	Matrix Matrix<			•	2		2	2	con ic	-		A 67	8	3
Non Non <td>1 1</td> <td>8</td> <td></td> <td>•</td> <td>-</td> <td></td> <td>-</td> <td>3</td> <td>00001</td> <td>10</td> <td>1420044</td> <td>241</td> <td>8</td> <td>2</td>	1 1	8		•	-		-	3	00001	10	1420044	241	8	2
Titled Control Contro Contro Contro	Titled Control Control <th< td=""><td>3</td><td></td><td>•</td><td>01</td><td>2731560</td><td>01</td><td>10</td><td>1 ACRES</td><td>ç</td><td>PALLANC .</td><td></td><td>7.6.7</td><td>5</td></th<>	3		•	01	2731560	01	10	1 ACRES	ç	PALLANC .		7.6.7	5
Matrix Matrix<	Matrix Matrix<	Ć			-	aryan'ic			5	1	074710			
Total Total <th< td=""><td>Total Total <th< td=""><td>52</td><td></td><td></td><td></td><td></td><td></td><td>- 6</td><td></td><td>\$ \$</td><td></td><td></td><td></td><td>3 :</td></th<></td></th<>	Total Total <th< td=""><td>52</td><td></td><td></td><td></td><td></td><td></td><td>- 6</td><td></td><td>\$ \$</td><td></td><td></td><td></td><td>3 :</td></th<>	52						- 6		\$ \$				3 :
Totality Control Contro Control Control <t< td=""><td>ZATORNEY COUNT CANADA COUNT COUNT</td><td>3 /</td><td></td><td></td><td>-</td><td>1002112</td><td>-</td><td>2</td><td></td><td>ę</td><td>C1177204</td><td>1 01</td><td></td><td>8</td></t<>	ZATORNEY COUNT CANADA COUNT	3 /			-	1002112	-	2		ę	C1177204	1 01		8
7700000 0000 10 20000 10 20000 10 20000 10 20000 10 20000 10 20000 10 20000 10 20000 10 20000 10 20000 10 20000 10 20000 10 20000 10 20000 10 20000 10 200000 20000 20000 <th< td=""><td>7770000 770000 10 74000 10 74000 10 74000 10 74000 10 74000 100</td><td>5</td><td></td><td>•</td><td>-</td><td>2700752</td><td>-</td><td>20</td><td></td><td>8</td><td>104,0015</td><td>15.3</td><td>5</td><td>8</td></th<>	7770000 770000 10 74000 10 74000 10 74000 10 74000 10 74000 100	5		•	-	2700752	-	20		8	104,0015	15.3	5	8
Titunes Control Contro Control Control <th< td=""><td>Titues Constrained <t< td=""><td>2</td><td></td><td>•</td><td>10</td><td>2943086</td><td>10</td><td>-</td><td>202063</td><td>103</td><td>12700AA</td><td>18.2</td><td>410</td><td>704</td></t<></td></th<>	Titues Constrained Constrained <t< td=""><td>2</td><td></td><td>•</td><td>10</td><td>2943086</td><td>10</td><td>-</td><td>202063</td><td>103</td><td>12700AA</td><td>18.2</td><td>410</td><td>704</td></t<>	2		•	10	2943086	10	-	202063	103	12700AA	18.2	410	704
New New <td>New New New<td>1</td><td></td><td></td><td>-</td><td>TATOMAC</td><td></td><td></td><td>Concernence of</td><td>3</td><td>A LINED</td><td></td><td></td><td></td></td>	New New <td>1</td> <td></td> <td></td> <td>-</td> <td>TATOMAC</td> <td></td> <td></td> <td>Concernence of</td> <td>3</td> <td>A LINED</td> <td></td> <td></td> <td></td>	1			-	TATOMAC			Concernence of	3	A LINED			
Transmer	Transm Transm<	ť					2			i,			R	6/01
Norme Norme <th< td=""><td>Norme Norme <th< td=""><td>2</td><td></td><td>•</td><td>-</td><td></td><td>0</td><td>-</td><td>09230</td><td>8</td><td>102524</td><td>0</td><td>24 1</td><td>Ş</td></th<></td></th<>	Norme Norme <th< td=""><td>2</td><td></td><td>•</td><td>-</td><td></td><td>0</td><td>-</td><td>09230</td><td>8</td><td>102524</td><td>0</td><td>24 1</td><td>Ş</td></th<>	2		•	-		0	-	09230	8	102524	0	24 1	Ş
Matrix Matrix<	Matrix Matrix<	8		-	-	2712360	-	:		Ŗ	1162756	10.2	1 54	
Control Contro Control Control <th< td=""><td>Matrix Matrix Matrix<</td><td>3</td><td></td><td></td><td>01</td><td>2671612</td><td>91</td><td>90</td><td>10001</td><td>3</td><td>CURINO</td><td>2</td><td>74.0</td><td>ą</td></th<>	Matrix Matrix<	3			01	2671612	91	90	10001	3	CURINO	2	74.0	ą
Norm Norm Nor Nor </td <td>Matrix Matrix Matrix<</td> <td>1</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td><u> </u></td> <td></td> <td>5</td> <td></td> <td></td>	Matrix Matrix<	1								<u> </u>		5		
Matrix Matrix<	Matrix Control Control <th< td=""><td>3,</td><td></td><td>-</td><td>2</td><td></td><td>2</td><td>2</td><td>77401</td><td>3</td><td>AMPROX L</td><td>101</td><td>- 24</td><td>2</td></th<>	3,		-	2		2	2	77401	3	AMPROX L	101	- 24	2
Matrix Model Model <t< td=""><td>Matrix Matrix Matrix<</td><td>đ</td><td></td><td>-</td><td>5</td><td>2700003</td><td>2</td><td>-</td><td>60105</td><td>67</td><td>1475124</td><td></td><td>3</td><td>124</td></t<>	Matrix Matrix<	đ		-	5	2700003	2	-	60105	67	1475124		3	124
Nontright Nontright <t< td=""><td>30011 0000 1 770001 0 2 2 2 2 2 2 2 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0</td><td>đ</td><td></td><td>-</td><td>20</td><td>2760412</td><td>0</td><td>-</td><td>10131</td><td>8</td><td>1012101</td><td>24.8</td><td>292</td><td>2</td></t<>	30011 0000 1 770001 0 2 2 2 2 2 2 2 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	đ		-	20	2760412	0	-	10131	8	1012101	24.8	292	2
Matrix Matrix<	Matrix Moto <	4		-	01	2740070	-	9		d	10000111			! \$
Manual Manua Manua Manua <td>Manual Manual Manuull Manuull Manuu</td> <td>24</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>• 9</td> <td></td> <td></td> <td></td> <td>3</td>	Manual Manuull Manuull Manuu	24								• 9				3
New No.	Name Name <th< td=""><td>2</td><td></td><td>-</td><td></td><td></td><td>2</td><td>5</td><td></td><td>2</td><td>Concert.</td><td>R</td><td></td><td>2</td></th<>	2		-			2	5		2	Concert.	R		2
NAME MODE Probabilie MODE Probabilie <	1/100000 1000 2700000 1000 2700000 1000 2700000 200100 20010000 20010000 20010000 2001	3		-	-	2211 MOZ	2		42719	3	1190200	101	630	8
2/70000 100 20000 10 20000 201000 201000 201000 201000 201000 201000 201000 201000 201000 201000 201000 201000 201000 2010000 201000 201000 <td>7/70000 0000 10 700000 000 1270000 20010</td> <td>ä</td> <td></td> <td>-</td> <td>-</td> <td>2724361</td> <td>01</td> <td>90</td> <td>24400</td> <td>24</td> <td>1256082</td> <td>214</td> <td>47.1</td> <td>2</td>	7/70000 0000 10 700000 000 1270000 20010	ä		-	-	2724361	01	90	24400	24	1256082	214	47.1	2
You 7000 Control Contro Control Control <t< td=""><td>Yor Yoo Control <t< td=""><td>2</td><td></td><td></td><td>0</td><td>2000076</td><td></td><td></td><td>201102</td><td>Ę</td><td>OTOCCE :</td><td></td><td></td><td>ţ</td></t<></td></t<>	Yor Yoo Control Control <t< td=""><td>2</td><td></td><td></td><td>0</td><td>2000076</td><td></td><td></td><td>201102</td><td>Ę</td><td>OTOCCE :</td><td></td><td></td><td>ţ</td></t<>	2			0	2000076			201102	Ę	OTOCCE :			ţ
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	MATCRAD COUND TO MODE MOD	ιĉ				1705				{			2	
MUKANA ALTICAS COUNT Country (1) MUKANA (1) MUKANA	Markary (133.25 Markary (1	5 6		-	2		2	2		Bi		ę		2
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	XY/XX COUD 10 XY/XX COUD 10 XY/XX COUD 11 XY/XX COUD 11 XY/XX	5		-	-	2/00/202	•		64061	3	1408606	24 0	202	128
111420 0000 10 201420 0000 10 20130 11143 10 20010 114 10010 114 10010 114 10010 114 10010 114 10010 114 10010 114 10010 114 10010 114 10010 114 10010 114 10010 114 10010 114 10010 114 10010 114 10010 114 10010 114 1110000 1110000 1110000 11100000 11100000 111000000 111000000 1110000000 $1110000000000000000000000000000000000$	11,14,20 0000 10 241,14,30 10 241,14,30 10 241,14,30 10 241,14,30 10 241,14,30 10 241,14,30 10 241,14,30 10 241,14,30 10 241,14,30 10 241,14,30 10 241,14,30 10 241,14 <t< td=""><td>đ</td><td></td><td></td><td><u>-</u></td><td>9211 MR</td><td>2</td><td>00</td><td>101400</td><td>8</td><td>2011044</td><td>- 8</td><td>111</td><td>8</td></t<>	đ			<u>-</u>	9211 MR	2	00	101400	8	2011044	- 8	111	8
0716336 6000 10 270647 10 17543 10 106407 52 73 Mark Ca D Mark Ca D Mark D Mark D Mark D Mark D <thd< th=""> D <thd< th=""> D <thd< th=""> <thd< <="" td=""><td>0716336 6000 10 270647 10 270647 10 270647 10 270647 10 270647 10 270647 10 270647 10 270647 10 270647 10 270647 10 270647 10 270647 10 270647 10 270647 10 270647 10 270647 10 270647 27014 270647 27014 270647 27014 270647 27014 270647 27014 270647 27014 270647 27014 270647 27014 270647 27014 270647 27014 270647 27014 270647 27014 <t< td=""><td></td><td>4211436</td><td></td><td>-</td><td>0/00192</td><td>10</td><td>56</td><td>11743</td><td>27</td><td>2000170</td><td>14</td><td>103.0</td><td>=</td></t<></td></thd<></thd<></thd<></thd<>	0716336 6000 10 270647 10 270647 10 270647 10 270647 10 270647 10 270647 10 270647 10 270647 10 270647 10 270647 10 270647 10 270647 10 270647 10 270647 10 270647 10 270647 10 270647 27014 270647 27014 270647 27014 270647 27014 270647 27014 270647 27014 270647 27014 270647 27014 270647 27014 270647 27014 270647 27014 270647 27014 <t< td=""><td></td><td>4211436</td><td></td><td>-</td><td>0/00192</td><td>10</td><td>56</td><td>11743</td><td>27</td><td>2000170</td><td>14</td><td>103.0</td><td>=</td></t<>		4211436		-	0/00192	10	56	11743	27	2000170	14	103.0	=
Non-state Non-state <t< td=""><td>Matrix Matrix Matrix<</td><td></td><td>MULTIN TA</td><td></td><td>-</td><td>27600A7</td><td></td><td></td><td>17647</td><td>•</td><td></td><td></td><td></td><td></td></t<>	Matrix Matrix<		MULTIN TA		-	27600A7			17647	•				
Matrix Ca D Matrix	Matrix Constraint Constraint<			-	-		2	0		2		70	05	e,
1 1 1 2 1	1 1			ł		i	ł		CONCINENCI	CONCERNINGO		MUTOR RECOM	A RECOVERY	concentration
Nitosati (007)13107 6000 10 307/3014 10 727/162 221 1220400 163 444 007/13107 6000 10 307/3014 10	Nitomatria 4000 10 301/3014 10 32.1162 22.1 1220400 16.3 44.4 100/1110/1 40000 10 301/3014 10 10 32.1162 22.1 123.46 111 30.4 100/1110/1 40000 10 301/3014 10 10 32.44 111 30.4 111 30.4 111 30.4 111 30.4 111 30.4 111 30.4 111 30.4 111 30.4 111 30.4 111 30.4 111 30.4 111 30.4 111 30.4 111 30.4 111 30.4 111 30.4 111 30.4	i			Ð	ŧ	k		ł	į	and account	ł		>
RM/18(3) 40000 10 312442 372 467744 211 607 667003(1) 60000 10 3136666 10 372442 372 1667744 211 607 667003(1) 60000 10 343366 10 10 343366 10 114 21 67 111666607 60000 10 344567 10 10 1342 101 11 41 111166667 60000 10 344567 10 10 1342 11	Reviration econo 10 312442 312 14474 211 507 067/0051 6000 10 314867 10 10 372442 312 1467 211 507 067/0051 6000 10 343367 10 10 343367 10 11 417 417 111466607 6000 10 343367 10 10 1343 1015 1341601 11 417 111166607 6000 10 344667 10 10 1343 1015 111 417 27000000 10 344667 10 10 1345 1015 111 417 111 417 111 417 111 417 111 1	2	_	-	-	1002/01	•	•	2011/22	ā	1200026	18.3	1	\$
(00113) 4000 10 345244 104 104 010013) 4000 10 345324 104	(00713107 40000 10 345324 10 7766 154244 104 77 010713107 40000 10 345323 10 10 345343 104 77 0106466707 40000 10 345450 100 1074670 139 221 111364607 40000 10 345450 10 107457 1316 271 111364507 40000 10 340733 10 134 273 131 211 111364507 40000 10 340733 307 13457 126 371 111 264007 11 264007 10 10 1446507 270 210 171 417 2700000 10 340737 307 1146505 201 171 417 260007 10 347 466270 307 1172721 216 216 260007 10 11 200 117271 107	2			-	3110617	•	20	372442	372	1407744	211	201	ž
66/10.05(1 6000 10 353.33 10 017.467 130 221 11146460(7) 6000 10 314.6620 10 10 314.2360 23 314 11146460(7) 6000 10 314.6520 10 10 134.2360 134.2360 17 14 11146460(7) 6000 10 314.6520 10 10 134.2360 134.2360 17 14 17<	06/10.05(1 6001 10 XXXX3 10 06/12 06/14 0	đ		-	-	0000000	0	10	1206647	1206	1548244	10.4	47.7	WW
Transmit/ Tra	Transmer/T Condition Total and the second s	2		-	0	ANALOA A	01	90	COM136	5	ACRANCIA I	110	10	1100
Transmit/ COUD Transmit/ COUD Transmit/ Count Transmit/ Transmit/ </td <td>Tytementy Color 10 State of the state State<td>Ċ</td><td></td><td></td><td></td><td>1007176</td><td></td><td></td><td></td><td></td><td></td><td>2</td><td></td><td></td></td>	Tytementy Color 10 State of the state State <td>Ċ</td> <td></td> <td></td> <td></td> <td>1007176</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>2</td> <td></td> <td></td>	Ċ				1007176						2		
Intereduction constraint constant constraint constr	111 111 <td>58</td> <td></td> <td>-</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>8</td> <td></td>	58		-									8	
111 111 <td>111 111<td>3</td><td></td><td>-</td><td>-</td><td></td><td>-</td><td>-</td><td></td><td>c/2</td><td>1241000</td><td></td><td></td><td></td></td>	111 111 <td>3</td> <td></td> <td>-</td> <td>-</td> <td></td> <td>-</td> <td>-</td> <td></td> <td>c/2</td> <td>1241000</td> <td></td> <td></td> <td></td>	3		-	-		-	-		c/2	1241000			
T134.2703 40000 10 2010.326 10 2011.36 1/1 419 26700615 40000 10 2010.326 10 10 2011.36 1/1 419 26700615 40000 10 2000075 10 10 2011.36 1/1 419 26700615 40000 10 314000 10 11 410 1/1 419 26700615 40000 10 314000 10 11 2007.6 201 11/2212 10 10 26611661 40000 10 314000 10 11 2007.6 201 11/2212 10 11 26611661 40000 10 314000 10 11 2007.6 201 11/2212 10 <t< td=""><td>711344250 4000 10 2010326 10 2010371 126 151 11 11 20104456 4000 10 201036 10 10 2010471 20 10 11 11 11 11 20104455 4000 10 220430 10 11 200271 201 10 12 20071 20 11 11 11 11 11 11 11 11 11 11 11 20</td><td>5</td><td></td><td>-</td><td>-</td><td>0022200</td><td>•</td><td>80</td><td>1015201</td><td>1015</td><td>1001621</td><td>178</td><td>ą</td><td></td></t<>	711344250 4000 10 2010326 10 2010371 126 151 11 11 20104456 4000 10 201036 10 10 2010471 20 10 11 11 11 11 20104455 4000 10 220430 10 11 200271 201 10 12 20071 20 11 11 11 11 11 11 11 11 11 11 11 20	5		-	-	0022200	•	80	1015201	1015	1001621	178	ą	
Zimunuse Common 10 Zimunuse Common 12 Zimunuse 11/2012 11/2012 12/2012 10/2012 11/2012 10/2012 11/2012 10/2012 11/2012 10/2012 11/2012 10/2012	Zimunuse 40000 10 Zimunuse 100 12 20077 207 1145653 120 270 Zimunuse 40000 10 Zimunuse 10 10 Zimunuse 10 200 10 200 10 20	đ		-	2	0000100	-	-	127872	22	1511000	121	410	9
26700613 6000 10 320560 10 30025 300 117212 10 10 26800111 6000 10 314670 10 10 34007 311 300 10 10 317212 10 10 317212 10 10 317212 10 10 317212 10 10 317212 10 10 317212 10 10 316 10 10 316 317 146 31 10 10 10 10 316 10 10 316 31 10 <	26700635 6000 10 322,4630 10 10 327,213 10 117,213 10 10 117,213 10 10 117,213 10 </td <td>2</td> <td></td> <td>-</td> <td>-</td> <td>3260,066</td> <td>10</td> <td>12</td> <td>306727</td> <td>202</td> <td>1144CBC</td> <td>12.6</td> <td>37.0</td> <td>2</td>	2		-	-	3260,066	10	12	306727	202	1144CBC	12.6	37.0	2
Zástelii († 6000 (1) 20020 351 (42247) (4) Zástelii († 6000 (0) 3144872 (1) 20020 341 (1) 36071 341 (1) 36071 341 (1) (1) 345 (1) (1) 345 (1)	Zeseniii eccore ic Secore sci iczanii iczanii<	3		-	10	OLUMPIC L	0	0.0	ACTOR 1	9	CIALIN			ŝ
Tenentiese como 10 31467 347 104620 10 11467 500 10 31467 10 10 34676 347 104620 10 11467 10 11467 10 11 3667 347 104620 10 11 3667 347 104620 10 11 3667 347 10467 10 <th10< th=""> 10 <th10< th=""> <th10< td="" tht<=""><td>Perilities 0000 10 313407 10 10 34600 347 104420 10 10 200016515 40000 10 314606 10 314606 301 105448 10 10 200016515 40000 10 314606 10 11 30001 10 34617 301 105448 10 10 201716515 40000 10 314606 10 11 30001 10 34617 301 105448 10</td><td>2</td><td></td><td></td><td></td><td>A10000</td><td></td><td>2</td><td>NCMON N</td><td>ž</td><td>ULACCA.</td><td>ļ</td><td></td><td>12</td></th10<></th10<></th10<>	Perilities 0000 10 313407 10 10 34600 347 104420 10 10 200016515 40000 10 314606 10 314606 301 105448 10 10 200016515 40000 10 314606 10 11 30001 10 34617 301 105448 10 10 201716515 40000 10 314606 10 11 30001 10 34617 301 105448 10	2				A10000		2	NCMON N	ž	ULACCA.	ļ		12
Time Sector Sector <td>Transition Accord Total Accord <</td> <td>Í</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>13</td> <td></td> <td></td> <td></td> <td>-</td>	Transition Accord Total Accord <	Í								13				-
Nimedia: None No	Nimedia: Control 10 34000 10 11 2012 100 104 <t< td=""><td>1 4</td><td></td><td>-</td><td></td><td></td><td>2</td><td>2</td><td></td><td>ī, i</td><td></td><td>7</td><td>8</td><td></td></t<>	1 4		-			2	2		ī, i		7	8	
Serences 40000 10 314000 10 324000 323 444 130173 40000 10 324000 10 11 820000 10 324000 444 32211679 40000 10 3110024 10 01 324000 434 3210431 40000 10 324000 10 137116 224000 234 434 3210431 40000 10 10000 10 144000 144000 144000 144000 144000 144000 144000 144000 </td <td>Serencedit 40000 10 111 Second 300 1778443 214 567 66713179 40000 10 316706 10 11 326001 102 447 66713179 40000 10 316706 10 11 326011 300 1778443 214 567 46713179 40000 10 376137 10 11 25631 233 3667 444 42713176 40000 10 275436 10 01 2753 3667 444 42713176 40000 10 275436 10 01 2753 367 4271176 4000 71 32017 12 2253 233 446 2721043 4000 71 2753 130076 270 440 2721043 4000 71 2731 440 440 2721043 4000 10 130076 271 440 <t< td=""><td>3</td><td></td><td>-</td><td>2</td><td></td><td></td><td>71</td><td></td><td></td><td>D10/2000</td><td>4 71</td><td>8</td><td></td></t<></td>	Serencedit 40000 10 111 Second 300 1778443 214 567 66713179 40000 10 316706 10 11 326001 102 447 66713179 40000 10 316706 10 11 326011 300 1778443 214 567 46713179 40000 10 376137 10 11 25631 233 3667 444 42713176 40000 10 275436 10 01 2753 3667 444 42713176 40000 10 275436 10 01 2753 367 4271176 4000 71 32017 12 2253 233 446 2721043 4000 71 2753 130076 270 440 2721043 4000 71 2731 440 440 2721043 4000 10 130076 271 440 <t< td=""><td>3</td><td></td><td>-</td><td>2</td><td></td><td></td><td>71</td><td></td><td></td><td>D10/2000</td><td>4 71</td><td>8</td><td></td></t<>	3		-	2			71			D10/2000	4 71	8	
Best 157 ecode 10 2004361 10 11 122 1367/1 10 2 47/1 1367/1 10 12 45/1 1367/1 10 2 45/1 1367/1 10 10 2 45/1 1367/1 10 10 2 45/1 1367/2 10 11 10 2 45/1 1367/2 10 11 10 2 45/1 <td>Best (8575) 40000 10 2200031 10 12 467 407/3175 40000 10 2704031 10 11 820671 102 461 407/3175 40000 10 274381 10 11 820671 821 1206822 13 1556822 13 1556822 13 1556822 13 1556822 13 165 10 14 562703 40000 10 274381 10 01 255571 15 150 15 16 14 562703 40000 10 274418 10 01 255571 15 16 14 5627043 40000 10 274418 10 01 7714 27 201444 40 40 5256071 455 13 2556822 233 40 40 40 40 5256071 456 260 77140 77 2011644 40 40</td> <td>đ</td> <td></td> <td></td> <td>-</td> <td>3140000</td> <td>2</td> <td>-</td> <td></td> <td>8</td> <td>1778043</td> <td>214</td> <td>28</td> <td>999</td>	Best (8575) 40000 10 2200031 10 12 467 407/3175 40000 10 2704031 10 11 820671 102 461 407/3175 40000 10 274381 10 11 820671 821 1206822 13 1556822 13 1556822 13 1556822 13 1556822 13 165 10 14 562703 40000 10 274381 10 01 255571 15 150 15 16 14 562703 40000 10 274418 10 01 255571 15 16 14 5627043 40000 10 274418 10 01 7714 27 201444 40 40 5256071 455 13 2556822 233 40 40 40 40 5256071 456 260 77140 77 2011644 40 40	đ			-	3140000	2	-		8	1778043	214	28	999
467/13/17b 4607/13/17b 100 111 8208/17b 820 1228/17b 100 144 128/174) 40000 10 271.317b 2553.11 255 100 44 128/174) 40000 10 271.16 2553.11 255 100 44 2221167b 40000 10 271.16 130.25 123 240 2221167b 40000 10 271.16 0.0 130.25 123 240 2221167b 40000 10 271.16 0.0 130.24 10 0.0 244 2221167b 40000 10 286.07 130.25 1280.076 20 24 2231143 40000 10 286.07 10 0.0 24 44 22880111 40000 10 286.07 255 24 46 22880111 40000 10 286.07 26 24 46 22711169 40000 10 <td>467/3179 46000 10 316707 10 11 600870 621 1226872 105 44 1381747 40000 10 271373 10 0 25531 25 25531 25 26 27 25 25 27 23 26 27 23 26 27 23 26 27 23 26 27 23 26 27 23 26 27 23 27 27 27 23 27 23 27 26<</td> <td>đ</td> <td></td> <td>-</td> <td>10</td> <td>1209081</td> <td>-</td> <td>-</td> <td>172,000</td> <td>2</td> <td>11/00011</td> <td>10.2</td> <td>45.7</td> <td>1991</td>	467/3179 46000 10 316707 10 11 600870 621 1226872 105 44 1381747 40000 10 271373 10 0 25531 25 25531 25 26 27 25 25 27 23 26 27 23 26 27 23 26 27 23 26 27 23 26 27 23 26 27 23 27 27 27 23 27 23 27 26<	đ		-	10	1209081	-	-	172,000	2	11/00011	10.2	45.7	1991
138/74/1 6000 10 272.4381 10 00 25631 26 1256662 23 60 251753 4000 10 211072 10 01 21053 25 250062 23 60 251753 4000 10 211072 10 01 25531 25 12 1256662 23 60 2517647 4000 10 2110624 10 01 25507 213 266 23 2516417 4000 10 236074 10 01 255062 23 23 40 2516417 4000 10 236074 10 01 40 40 25660111 4000 10 266677 10 01 40 40 25568011 4000 10 266774 10 01 40 40 2511159 4000 10 266677 21 20 142410 21 40	1381747 6000 10 2724381 10 08 25431 26 1256662 233 66 562703 40000 10 211072 10 0 25431 26 13 253 26 13 25 13 66 60 562703 4000 10 211072 10 0 13 12 253023 27 60 43 2021113 4000 10 2110674 10 0 813017 77 2011644 400 605 43 2120111 40000 10 210076 10 0 81772 54 43 43 2251011 40000 10 210076 10 0 84 1420660 231 44 40 2520101 500 10 206 50 122 1420660 231 43 2520101 500 10 00 0 123 1420660 231<	a		-	10	3167067	10	-	00000	10	10001			
SZ7103 40000 10 251137 13021 140 140 Z2211111 40000 10 3314 3314 3314 3314	667/03 60000 10 261/07 1000 10 261/07 1000 10 261/07 1000 1000 10 261/07 1000	. 4				1774				į				
XZ211579 XZ2211579 XZ221157 XZ221157 XZ221157 XZ21157 XZ2171 XZ2171 XZ2171 XZ2171 XZ2171157 XZ217157 XZ2171157 XZ2171157 XZ2171 XZ2171 XZ2171 XZ2171 XZ2171157 XZ2171157 XZ2171 XZ2171 XZ2171 XZ2171 XZ2171 XZ2171157 XZ2171	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	(4					•••) r) (3:				3 1
M21117 M20117 M20100 M20117 M20100 M201000 M201000 M201000 M201000 M201000 M201000 M201000 M201000 M201000 M2010000 M20100000 M2010000000 M20100000000000000000000000000000000000	XX21117 XX20101 10 31101 XX20105 XX20 XX2011 XX20 XX2011 XX20 XX2011 XX20	ť		-	2		2	2		2]	CTINC 71		B	R
33104.3 40000 10 2641.176 10 00 605 605 123104.3 40000 10 26641.176 10 08 19864 406 605 123104.3 40000 10 3300374 10 08 19864 20 14,0066 231 440 25680111 40000 10 31060374 10 08 400805 341 440 22511570 40000 10 316024 10 08 201423 241 440 12711580 40000 10 3266077 10 08 27423 241 440 12711580 40000 10 276421 231 327 40 12711580 40000 10 27421 27 2237 40 40 12711580 40000 10 27421 27 227 40 40 40000 10 27421 27 272 40 40<	3810147 40000 10 2841176 10 00 005 005 123704.1 40000 10 3362674 10 08 77.16 77 2011644 400 005 123704.1 40000 10 3362674 10 08 4000 20 1420470 241 440 12371579 40000 10 316024 10 08 450602 241 441 12711579 40000 10 3116024 10 08 541772 540 122070 241 491 1271159 40000 10 3116024 10 08 271453 540 1326770 241 434 1271159 40000 10 274433 271 134 434 1271159 40000 10 274233 271 272 40 434 1277159 40000 10 274233 271 272 434 434			-	-	110024	0	80	110525	5	1200766	2		1208
1237043 40000 10 3392674 10 08 19885 20 143066 231 440 2569011 40000 10 306075 10 08 640772 451 1422470 247 461 2211571 40000 10 3116024 10 08 647772 546 126776 218 434 22711199 40000 10 2868075 10 08 21453 231 1222970 241 484 12711199 40000 10 2868075 10 29 231453 231453 246 1222970 241 484	127704.3 40000 10 3360714 10 08 19865 20 143066 231 440 25680111 40000 10 306075 10 0.8 640872 545 122710 247 461 25680111 40000 10 316624 10 0.8 640872 545 122076 218 43.4 2511169 40000 10 2166627 546 122076 218 43.4 2511169 40000 10 2166627 543 122.47 541 40.4 2511169 40000 10 216627 231 1222970 241 40.4 2677471 10 31 27421 271 231.4 40.4 2677471 20 20 1222970 241 40.4 40.4 2677471 10 31 27421 271 2222970 241 40.4 2677471 10 31 27421 2	ð		•	-	02111M02	-	80	7116	-	2011044	10 Q	805	8
Z5680111 40000 10 3060375 10 0.0 450802 451 1422470 247 461 Z211570 40000 10 3100036 10 0.0 827723 540 120706 21 841 461 Z211570 40000 10 310000 0.0 0.0 221453 231 1222970 21 843 12711590 40000 10 3264077 10 0.0 27421 27 840 434 12711590 40000 10 200 23 231 1222970 24 464 457773 40000 10 30 27421 27 20 276 464 457773 40000 10 30 27421 27 20 70 464 457773 40000 10 27421 27 27 40 40 457773 40000 10 27421 27 27 27	Z5680111 40000 10 3060075 10 0.6 450802 451 1422470 247 461 22211579 40000 10 316024 10 0.6 450802 451 1422470 247 461 22211579 40000 10 3116024 10 0.6 541772 546 122676 21.6 43.4 12711169 40000 10 2866077 10 0.6 27443 271 1227970 241 461 13771354 40000 10 2866077 10 30 271421 277 277421 10 75 3362251 40000 10 2774071 10 31 16601 17 178074 89 642	9		-	10	3360674	10	0.0		8	ATTOMAN A	2		4
XZ211570 40000 10 3116024 10 0 64/772 544 120/16 21 23 XZ211570 40000 10 3116024 10 0.8 54/772 544 10 31 43 XZ211570 40000 10 3116024 10 0.8 54/752 544 34 34 XZ2111159 40000 10 28 231453 231 1122970 241 48 XX711159 40000 10 28 231453 231 1222970 241 48 XX711159 40000 10 27421 27 241 48 XX711150 40000 10 27421 27 241 48 XX7111150 40000 10 27421 27 241 48 XX7111150 40000 10 27421 27 27 27 27 27 27 27 27 27 27 27	X2211570 40000 10 3118024 10 0.8 847712 546 120716 31 31 12711190 40000 10 3118024 10 0.8 511432 546 120716 31 31 31 12711190 40000 10 2188075 10 0.8 231433 231 1222970 21 40 40 12711190 40000 10 2784071 10 0.8 231433 231 1222970 241 40 40 1287735 40000 10 27421 27 27 20027 10 75 50 366757 40000 10 31 16801 17 178074 89 60 62	۶¢				1000 M								3
XZ1150 40000 10 3100 31 34 34 1271150 40000 10 3169075 10 08 57452 23 34 43 1271150 40000 10 2669075 10 08 27453 23 43 46 1271150 40000 10 28 27453 23 46 46 1271150 40000 10 28 27451 27 272970 26 447754 40000 10 30 27421 27 27 26 447754 4000 31 27421 27 27 26 7 26 447754 400 27 27 27 27 26 7 26 447754 400 27 27 27 27 26 7 26 447754 40 40 40 40 40 40 40 40 40	222115/V 40000 10 3116024 10 08 54/72 545 1260766 218 434 61771156 40000 10 2666075 10 08 271453 221 1222070 241 464 51771156 40000 10 2666077 10 30 27121 27 2070627 100 759 3362251 40000 10 2774071 10 31 16661 17 1766074 89 662	5.		-	2		2	5		į				010
12711199 40000 10 2000075 10 08 231453 231 1322970 241 484 1470736 4000 10 200017 10 30 27421 27 1470736 40000 10 200017 10 30 27421 201027 10 759	12711190 40000 10 2006075 10 06 231453 231 1322970 241 46.4 1878736 40000 10 2006077 10 30 27421 27 36878736 40000 10 2774071 10 31 16001 17 1786074 6.9 642	ð		-	2	3116024	-	80	CTTIN0	3	1200765	218	12	1921
1427274 40000 10 204007 10 30 27421 27 207427 10 10 759	5679736 40000 10 2066077 10 3.0 27421 27 2070627 10.0 75.9 3362251 40000 10 2774071 10 3.1 16661 17 1756074 8.9 66.2	đ			•	2000075	01	80	231152	ឆ	1322970	241	484	478
	40000 10 2774071 10 31 19961 17 1796074 89 662				-	CLONERC	-		10410	5	7CBU20		76.0	1
										5 4		200		B (

concentration a.m	1	3	8	9	2476	1230	Ŕ	CL.C	8	750	1272	181		3	500	908	1017	1879	•	1	3	8	ē	8	9	8	8	Ŧ	
The recovery			8	590	20.0	3	10	37.9	0.04	42	898	24.8	200	242	906	898	614	23.0	51.8	505	119	42.6	4.2	404	5 9 5	13	990	67	
HUTOBAN INCOM		10.8	10.2	40	82	10.0	50	87	10		00	99	13	40	76	85	151	6.7	16.5	14 0	10.0	12.1	140	10.6		•	• 9	40	
Burrogate	1630674	1315445	1129803	1236268	1030200	80C1111	1611517	1241212	1508458	700674	662340	560681	005012	787093	000560	100011	1124407	762601	516240	902715	1057530	1067530	1052621	042240	1427834	767674	1000117	156456	
concentration	20	102	243	0	2	8	141	1413	R	ž	234	8	214	8	ž		8	14	-	8	2	4	8	8	=	12	1	e	
concentration mucho der	219626	237106	242679	8	E0921E1	429870	140936	1412961	4192	167816	456076	206506	214346	180113	150069	200013	067830	447406	2007	106152	96125	42071	00071	2002	10799	11630	10001	1608	
-	:	9 -	4	11	15	4	20	17	20	20	9 -	51	15	15	9-	17	13	-	:	-	12	4	12	15	51	50	50	8	
ž	2	:	:	10	0	•	10	2	•	0.	-	•	10	-	•	01	10	•	•	•	10	•	•	0	2	•	10	10	
1	3671779	3211072	3200512	3010306	3666308	3306304	3614687	1/19940	3495065	3004092	2607161	2300017	2047718	2430227	3106766	3636313	2676026	3066405	1058146	2078077	2160110	2629667	2624119	2465762	2670211	1490876	2627574	2069812	
٥	01	10	10	10	9	10	10	10	01	10	0	9	0	10	0	•	0 i	9	0	10	10	01	10	2	•	°	9	10	
8	0000	0000+	0000	0000#	0000	0000	0000	0004	0004	0000	0004	0004	0000#	0004	0000	0004	0000#	0004	0000	0004	0000	4000	0000	0004	0004	0004	0004	4000	
ą	24666031	28747327	26764129	5110	83045413	47707875	23622175	201462870	4706667	26014507	4440036	25140631	19466615	15864403	18471017	100121004	57133063	50927598	80808	1.0606231	2084131	3677860	5140000	1751562	247740	2093976	100051	1001001	
	3	2	3	2	3	8	8	8	2	₹	2	2	3	8	8	8	२	१	1	2	3	ô	8	8					
American	ž	Ž	ž	ž	ž	Ž	Ž	Ž									Control	Control	Control	Control	Control	Control	Control	Control			control	control	

		į	(ł	ł		5	concentration	Burrogate	HUTOBAR NECON	% recovery	concentration
E	2	5	¢,	ŧ	Þ	PA		ł	artia account		Burrogene	>
	2002012	16000	20	513046	•	17		R	256369		107	1116
	22566607	16000	9 0	103904	•	15		202	10000	4 8	111	1111
	12136766	16000	50	466670	•	15		1425	402645		2	TOR
	0011000	16000	50	466579	01	-		1200	367376	4	20	3
	4423064	10000	50	336170	0 7	9		573	244560		8	1925
	16170679	16000	50	450876	•	9 -		101	244508	99	222	7411
	362/090	16000	50	510633	•	:		23	256667	12	202	2500
	3160799	16000	90	902999	10	01		378	236716	5.7	140	253
	19606412	10000	50	451180	10	15		2366	315707	2.2	28.6	000
	10362126	16000	60	11201	10	91		1540	311678	0.0	5	
	11344573	10000	50	504715	10	15		040	207417		22	170
	2004002	16000	90	511968	10	51		2	247676			
	19806412	16000	90	451100	10	-			315707			
	13630261	10000	06	526676	0	-		0211	AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA			
	19414984	16000	9	663623	01	-		A1A1			5	
	6798462	1000	90	300130	10			5041	247607	0	ŝ	
	000903	10000	0.6	548026	0	0		8			2	
	248121	10000	9	141008	0	: :		2	Carried Carried			3 ŝ
	475A752	16000	9	2255300	0			5	24440			Ī
	2629109	16000	9	1200024	0			19		2.9		
	1860613	16000	990	ACEUMA	01			Ş	244710			
	7123080	10000	09	667966	0	2		140	240107			
_	474415	16000	09	010000	10	12		19	217836			ž
	529043	16000	90	011780	10			3	217901		14.0	1
	500000	16000	09	505051	10	00		8	202367	12	4 91	2
	110000	000	0	554040	•	5		ž	067960	04	8 09	2
			00	819/1/	-	10 v 10 v		2	756712	20	- 24	5
	Arch071.1		20	710770	5	•		210	190061	4 4	9	3
	4	8	9	1	*			CONCENTRATION		Ē	The recovery	CONCENTRATION
Men 2	43300030	0000	2	COLUMN N	2					-		
,	04448707	0000	0	100000	-	88		12	CULLER C	• •		
	00430026	0000	01	3684401	0	8		ģ	or use			
	30797486	0000	01	3675691	0	167		22	100011			
	166152796	0000	0	3462048	•	8		1040	1103700	10		
	200902800	0000	•	3779108	01	15		7611	1209100		12	
	48173660	0000	•	3463220	0	123		2			1 8	
	36040360	0000	0	3610875	0	112		5	1154711			
	67979636	0000	• •	4360334	10	2		3	107530			
	82110544	0004	•	3775884	•	8		572	COMMON	10	R	2120
	127306140	0004	•	3710667	0	1 70		5	1204321	03	192	2336
	130201029	0000	0	3645170	•	8		Ŧ	12/0221	99	M 2	2760
	100010001	0000	0	I WG ZOOD	0	3		195		67	7 62	56 72
						8		1	1010844	2 D	107	4518
3 <i>6</i> 2 4	ANTAN BAC					R 9			2200Z	•	297	5156
								R	018220	~ ~	8	782
										4	16.5	200
	201021111	0000		1 CONSIGN							2	
	140456094	0000	0	TRACKS 1	0	2			2441700			
	79940672	40000	0	10000							5	
	50621922	0000	-	2753033	0	3		10	ALL V		2	
	57302472	0000	10	9C20M9C	•	8		3	000167	202	19	
	100114001	0000	-	360666	10	1 07		8	5122616	5.7	191	021
5	30617940	0000	-	2000001	-			8				Ì
					-	20		3			1	167

concentration			010	111	010	1	1574	2276	1678	4700	211	1074			2000			38	1 5	1	2					1	8 3	3 5			į		4007	Marca 1	1013	5704	200	3000	9011	67.79	2118	20102	31	4176								1150	1905		5	n	
A recovery	5.11		24.0	202	1	100	4 84	- 7	24.8	0/6					32						2			2 2	19						į	1		247	145	- 7	15.0	16.5	19.9	181	273	ĝ	19.5				2 8	38		272	27.4	24		28	62 2	ខ្ល	
urragata recore maña de	4			114	4	13.4	12.5	-0	52	110	10	13.6			1	19		2						- 4		; ;							18.0	9	0.4		36	47	4 8	96	8 5	82		2.6					2	- 6	11	12.8	261	42	4 5	94	
Burrogate area account	07775	2.MMDCD	007003	1196630	1505050	2257715	1909090	1476359	1000040	1606730	1202001	2002045	1070177	MOUNDA	A01234	ARTICO	ALCON L				706100		014400	TADALA	2175400	NON-CLL	17620071	0191062			070657	1367036	2005004	904677	405005	1070546	463086	400275	662513	520130	074042	1017614		1000				112104		00H 100	2000032	1074366	1615311	1000027	1006324	2074149	
concentration me/lig de	99	đ	J.	1316	Ř	3	30	111	417	1706	32	575	1	3	4	ş	5	5	ŝ		6	1	Ŕ		13	9	8	Ē	concentration		ŝ	ŝ	1066	2	¥.	1972	\$	8	ŝ	ž	579	3		3		3	You!	ģ	51	902	9	Ŗ	3	6	a	2	
c																													6																				374040								
PM	4		-	:	19	6	9-	10	*-	:1	10	0-	9	41	•	10	-	:					12	27	- 10	0.0		0	1	P	8	200	4-	8	1-	3-	8	9	\$	21	181	5	Ba	5	2 1	88	38	2	13	5	3	8	5	8.58	93 S	×	
ž	2	01	0	10	•	10	•	•	10	10	10	10	10	10	0	10	10	10	2				10	10	10	01	•	01		¥	80	80	80	80	80	80	80	80	80	0	80								0	80	60	90	80	0	80	80	
ł	015350	3664150	3742108	3010505	3486680	3062456	4031078	4428566	4300253	4442003	3015719	3624348	0001040	6074040	2027400	20652283	3603023	MORE	001210	3631220	9020299	3042610	3004006	2617913	3700152	5256747	5136615	3666876		ł	3201156	3000000	1000110	3741741	34,26000	2011110	3080742	2007176	2000015		1200400					Contraction of the local data	1000002	ZOMAGE	2763044	2736001	C/19/9C	3162561	2030062	0192062	2161875	3421514	
۵	°	-	10	-	•	•	10	10	2	10	2	10	10	-	10	2	10	10	10	0	2	•	•	0	0	10	0	-		٥	0	• •	-	•	10	•	-	0	-	10	01	-							0	•	•	•	•	•	•	•	
ð	0004	0000	0000	0004	4000	4000	4000	4000	0004	0000	0000	0000	4000	4000	0000	4000	0000	40000	00000	0000	40000	4000	40000	40000	0000	0000	0000	0000		8	0000	0000#	000	0000	0004	0000	0000	0000	0000							0000	0000	0000	0000	0000	0000	0004	0000	0000	000	40000	
ž	000001440	00653026	01978453	136243607	42920605	73454166	116630022	136715604	60097067	257989402	00600276	64904192	40606627	17060665	76720150	2400457	16621211	6427329	9623600	11162192	72516494	10002118	20754130	20400000	B0254072	10040024	31747648	53478036		ł	01290660	10001746	370919007	143612362	0/100000	254211179	94 4989 99	SM0/0000	14/03000	112/0444	CHINODIOI					110011	SCALES S	AUBBORGB	74213000C	73120066	63066627	00010205	56752661	MC2022	3672734	1072700	
	3	2	2	â	3	8	8	8	\$	ł	3	8	ð	8	8	8	2	ł	2	8	3	8	8	8							3	ł	2	8	3	8	8	8	2:	22	8 4	88	36	38	18	2	2	3	8	3	8	8	8				
Amendment		Nerse			Nerse	Nersee	Negla	Nerste	ž	ž	ž	ž	Ž	ž	ž	ž	Control	Contra	Control	Control	Control	Control	Control	Control		Chanked true	control	control		Ĭ				Nerse .		Ì			Z	2	2.3	24	1	2 4	24	Control	Control	Control	Control	Control	Control	Control	Control		control	CONTROL	

C/01/100 C/01/00 <		AK 54330004	S g	٥ç	AN 2000002	20	P S	CONCENTRATION Review de ACOTOR	CONCENTRATION TRUNG ON	Burrogate Brea account	HUTOBER INCOM	A recovery	
	20171280						8			001118		5	<u>s</u>
	42162903		0004	20	2011301			200519		01067/			
	00215012		0000	10	2000774	80	05	801675	3	010112			
0000 10 700/11 10 700 10 700 0000 10 700/12 10 700 10 700 0000 10 700/12 10 700 10 70 0000 10 700/12 10 700 10 70 0000 10 700/12 10 700 10 70 0000 10 700/12 10 70 100 70 0000 700/12 700 10 70 100 70 0000 700/12 10 10 70 100 70 0000 700/12 70 70 70 70 70 0000 700/12 70 70 70 70 70 0000 700 70 70 70 70 70 0000 700 70 70 70 70 70 0000 70	34636332		0000	•	2663662	80	880	567482	58	100000	001	ŝ	
1 7784/3 1 706/2 2 706/2 2 706/2 2 706/2 7 70	14005173		4000	•	2024712	80	1 02	227566	5	667067	10.6	27.2	2
0000 10 310/10 0 12 100000 12 10000 12	1921677		0000	0	2786438	80	90	9000	8	708225	0	0 R	Ŧ
	01023001				0//9210		121	09/229	8	00000	02	20	R
	UCUGCUTU I	_			2191040		8	SV BONE 1			0	8	3750
00000 10 100001 10 100001 10 100001 10 100001 10 100001 10 100001 10 100001 10 100001 10 100001 10 100001 10 10 100001 10 100001 10 100001 10 100001 10 10 100001 10 10 100001 10	10001157		0000		201020		3	7 ADMA1		100021111			
	16396774	3	0000	•	3100603	80	1	1156650	291	1054075			2
0000 10 271001 10 10000 10 20000 200000 200000 20000 <th>2800012:</th> <th>2</th> <td>4000</td> <td>10</td> <td>3764642</td> <td>80</td> <td>12</td> <td>1017643</td> <td>1818</td> <td>170001</td> <td></td> <td>5</td> <td></td>	2800012:	2	4000	10	3764642	80	12	1017643	1818	170001		5	
	1475080	<u>0</u>	4000	•	2719031		8	1030040	let w	1402005	20	2	1010
0000 10 7740000 10 17421 1743 1744 <th< td=""><th>4133145</th><th>3</th><td>0000</td><td>10</td><td>4520954</td><td>80</td><td>02 -</td><td>212076</td><td>212</td><td>1293400</td><td></td><td></td><td>Ĕ</td></th<>	4133145	3	0000	10	4520954	80	02 -	212076	212	1293400			Ĕ
0000 10 770600 11 72061 11 7101 11 7101 11 7101 </td <th>1955344</th> <th>=</th> <td>0000</td> <td>•</td> <td>2733000</td> <td>80</td> <td>1 67</td> <td>1225/1</td> <td>5/1</td> <td>1201304</td> <td>9:</td> <td></td> <td></td>	1955344	=	0000	•	2733000	80	1 67	1225/1	5/1	1201304	9:		
0000 10 270070 111 17001 131 24010 133 0000 10 270070 10 270070 10 24010 133 0000 10 270070 00 133 141 2701 141 141 141 0000 10 201400 00 120 2017 131 24010 133 0000 10 201400 00 120 2017 121 24010 121 24010 121 0000 10 201400 00 121 24010 121 24010 121 0000 10 201400 00 201400 00 201400 121 24010 121 24010 121 24010 121 24010 121 24010 121 24010 121 24010 121 24010 121 24010 121 24010 121 24010 241 24010 241 24010	1903346	~	0000	•	2746264	80	8	224064	S	945745	•	12.9	
0000 10 779731 111 113 155/16 155 400 0000 10 779731 0 75231 15 753 15 753 15 753 15 753 15 753 15 753 15 753 15 753 15 753 15 753 15 753 15 753 15 753 15 753 15 753 75	1761201		4000 4	10	2705666	80	115	799002	ā	04000	12.9	5/5	619
0000 10 770731 10 770731 10 770731 10 770731 10 770731 10 770731 10 770731 10 770731 10 770731 10 770731 10 770731 10 770731 10 770731 10 770731 10 770731 10 270731 270731 270731 270731 270731 270731 270731 270731 270731 270731 270731 270731 270731 270731 2707311 2707311 2707311 <th></th> <th></th> <td>0000</td> <td>•</td> <td>2636670</td> <td>0</td> <td>117</td> <td>118711</td> <td>110</td> <td>1256789</td> <td>15.5</td> <td>C 94</td> <td>R</td>			0000	•	2636670	0	117	118711	110	1256789	15.5	C 94	R
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	276451	x :	4000	0	1627072	60	107	167916	517	675327	82	24.7	25
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		8:	0000	-	9000982	0	2	156600	9 5	087533	75	24.3	665
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		=		-	2014102		21	102002	2	1561215	19.2	67.4	511
00000 10 2000000 2000000 2000000 2000000 2000000 2000000 2000000 2000000 2000000 2000000 2000000 2000000 20000000		5 2			1010102		82		2	1007534	12.9	8	92
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$								201.102	è	1000410	0.91	21	5-
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	19182	. 9	0000		210000		5, 3 0 w		> 4	2401014		3,	a ;
Clip D Contract Contract <thcontract< th=""> Contrac</thcontract<>	P4804	-	0000	10	2030104	00		2756		P COMPUS			-
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$								concentration	CONCENTRATION	and the second	HUTCHER TICON	A PECONEN	concentration
0000 10 256/7.4 25/7 <t< th=""><th>₹</th><th></th><th>8</th><th>۵</th><th>ŧ</th><th>¥</th><th>PM</th><th>i ze</th><th>ł</th><th>are account</th><th>ł</th><th></th><th>></th></t<>	₹		8	۵	ŧ	¥	PM	i ze	ł	are account	ł		>
00000 11 25007 260<		8 5	0004		2004CCZZ	800	•	21952	2	000002	15.5	373	ŧ
00000 10 244150 00 01 200000 11 20154.2 11 201 00000 10 244150 00 01 00 010 11 201 201 00000 10 244150 00 11 010 11 010 11 201 00000 10 244150 00 11 010 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11		33							8	1903040	4 8	8	8
6000 10 2008/3 00 24/30	17706	22		22	2441551		200		8 4	5/80%2		2	ē
0000 10 27240 57 80003 11 2000402 11 2000402 11 2000402 11 2000402 11 2000402 11 2000402 11 2000402 11 2000402 11 2000402 11 2000402 11 2000402 11 2000402 20	00200	2	40000	0	2000126			OWCANC	1	AU1700			5
6000 10 240001 10 22010 10 200 10 200 10 200 10 200 10 200 10 200 10 200 10 200 10 200 10 200 20 200 20 200 20 200 20 20 200 20 20 200 20 <th< td=""><th>26405</th><th>8</th><td>0000</td><td>0</td><td>2290016</td><td>0</td><td></td><td>57204</td><td>2</td><td>N-CMCH</td><td>975</td><td></td><td>12</td></th<>	26405	8	0000	0	2290016	0		57204	2	N-CMCH	975		12
60000 11 2713 6000 11 2713 6000 11 2714 2713	57004	8	0000	•	2402061	80	0	120701	5	CUMPO D	0.01		
60000 11 2473657 08 646865 466 1000643 266 1000643 266 100 60000 11 214827 08 097907 646 720 646 720 646 720 646 720 646 720 646 720 646 720 646 720 76 64 720 76 64 720 76	109212	5	0000	••	2120000	80	-	67915	8	1174540	24.3		į
40000 10 2111400 08 647501 660 5275 540 40000 10 2518371 08 647507 646 715 640 40000 10 2518371 08 645300 641 252574 255 640 40000 10 2518371 08 64300 641 252574 255 640 40000 10 2518371 08 1713 1224774 255 640 40000 10 251843 1713 1224774 255 640 40000 10 251846 1713 1224774 255 640 40000 10 251846 1713 1224774 255 640 40000 10 273753 01 1713 1224774 255 640 40000 10 272866 10 1713 1224774 255 640 40000 10 272866 10 1	18330	14	40004	10	2423667	80	80	464065	\$	1006043	200	9	5
0000 10 27.4621 0.6	16794	3	4000	5	2111900	80	80	407507	Ş	600016	27.6	3	โล้
4000 10 2533(307) 0.8 1412500 1413 2003764 400 900 40000 10 2533(307) 0.8 0.8 133000 141 20037764 400 900 40000 10 123300 0.8 0.8 133001 111 1220731 255 560 40000 10 123001 0.8 0.8 171316 171 1220731 201 600 40000 10 2290430 0.8 0.8 171314 171 1220731 253 500 40000 10 2290430 0.8 0.8 17104666 201 201 201 40000 10 2290430 0.8 0.8 100 202456 201 201 40000 10 2290435 0.8 0.8 201 200 201 201 40000 10 2204665 0.8 0.8 202 201 201 201		5	0004	•	2745621	80	80	0080300	3	706662	165	300	1967
0000 10 2550243 03 01300 113 122773 255 560 00000 10 2550243 03 03 173154 1713 1220733 502 1000 00000 10 2550340 03 03 173154 1713 1220733 502 1000 00000 10 220630 03 03 7231545 723 1104885 236 503 100 00000 10 220630 03 722 1104885 236 503 101 00000 10 220640 06 722 1000 236 503 101 00000 10 225460 03 723 900 224 1000 224 102 224 103 00000 10 1276417 03 72 900 224 900 224 900 224 900 224 900 224 900 224 900			0000	-	2518071	80	80	1412560	E1#1	206278M	8	0.00	1541
0000 10 14301 03 01 1713 120773 60 100 0000 10 2346760 03 03 1713 120773 60 100 100 0000 10 2346760 03 03 1713 120773 60 10 0000 10 2346760 03 03 1140 11 1246766 20 10 10 00000 10 276417 03 03 1046667 10 11 1246766 10 11 00000 10 1276417 03 03 246459 12 11 12 11 00000 10 1276417 03 07 246459 12 13 13 13 13 13 00000 10 1276417 13 246459 12 13 13 13 13 13 13 00000 10 12764000 13		12/4	0000		2536248	0	0	613(963	518	1242714	5 F2	990	1980
0000 10 Z200470 01 02 221554 221 1246205 20 645 00000 10 Z200470 01 01 221554 722 1246205 20 645 00000 10 Z200470 01 01 7527645 72 1104666 20 137 00000 10 1276417 01 01 01 220450 130 137 00000 10 1276417 01 01 2233115 224 1306617 137 134 00000 10 1276417 01 01 2233115 224 130661 12 137 00000 10 1276417 01 01 2233115 224 130601 12 134 00000 10 1276407 01 01 223 130 13 13 13 00000 10 1276407 01 01 224 190601 <td< td=""><th></th><th></th><td></td><td></td><td>1460801</td><td></td><td></td><td>1713154</td><td>1713</td><td>1220723</td><td>80 7</td><td>000</td><td>1714</td></td<>					1460801			1713154	1713	1220723	8 0 7	000	1714
00000 110 2273759 05 062000 110 2270400 050 06000 110 2270400 050 06000 100 2270400 050 060 06000 100 2270400 050 060 06000 100 2270400 060 060 06000 100 22704000 100 22704000 100 22704000 100 22704000 100 22704000 100 22704000 100 2270400 100 2270400 100 2270400 100 2270400 100 2270400 100 2270400 100 2270400 100 2270400 100 2270400 100		55	2000		08/0902		0	821456	8	1246205	8	9 5	8291
00000 10 201733 00 001140 10 201733 00 00176 10 201743 10 10 201743 10 10 201743 10 10 201743 10 10 201743 10 <th></th> <th></th> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>2 2</td> <td>1104000</td> <td></td> <td>8</td> <td>100</td>									2 2	1104000		8	100
00000 10 000000 10 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 0000000 0000000 <t< td=""><th></th><th></th><td></td><td></td><td></td><td></td><td></td><td>0110</td><td>5</td><td></td><td>12.6</td><td>18.7</td><td>3</td></t<>								0110	5		12.6	18.7	3
00000 10 12.5464/5 08 07 080/763 264 12.6 23.4 00000 10 12.5465/7 08 06 07 22.34 244.66 12.6 23.4 00000 10 12.5465/7 08 07 22.36 244.66 12.6 23.4 00000 10 12.6653/7 08 07 7.4002 7.1 67.0 00000 10 12765300 08 07 7.4002 7.1 27.1 67.0 00000 10 1276530 08 07 7.3003 10.4 10.4 10.4 00000 10 1276530 08 57 52.75 7.3 2000335 5.4 7.5 00000 10 15.73 57.0 57.0 50.03 5.4 7.5 67.0 00000 10 12.73 57.0 50.03 6.2 7.5 67.03 7.3 67.03 7.5 67.03		B					0	5/20001		2366665	0	616	ŝ
40000 10 122600/ 03 07 223610 224 196611 122 19 40000 10 126537 08 07 740002 244.65 12 23 40000 10 1275560 08 07 740002 244.65 12 23 40000 10 1275660 08 07 740002 570 12,00 24 23 23 40000 10 1277860 08 07 73277 73 200841 12 23 24 23 23 24 23 23 24 23 23 23 24 23					1140171				ē.	245456	12.6	ŝ	9992 2007
40000 10 1/265/360 0.8 0.7 403622 7.41 6617 371 617		8 5			1000021		0		ลี	10001	12.2	10.4	156
40000 10 1/20000 07 960432 600 236456 12.6 23.6 40000 10 1312660 0.8 0.7 570132 571 1300661 10.4 165 40000 10 1217966 0.8 0.7 73277 733 200034 12.6 290 40000 10 1217966 0.8 0.7 73377 733 200034 12.6 290 40000 10 127566 0.8 5.7 42250 42 11.06575 6.2 870 40000 10 1573618 0.8 5.7 42250 4.2 11.06575 6.2 873 40000 10 1090604 0.8 5.7 42250 4.2 11.44441 9.0 17.7		22			100021			20004/	Ē	110/00	175	670	106
40000 10 1217966 01 07 570122 570 196661 104 165 40000 10 2224666 01 67 15367 15 130003 14 759 40000 10 2224666 01 67 15367 15 130003 14 759 40000 10 197551 01 57 42256 42 113675 62 87 759 40000 10 197656 01 57 42256 42 114441 90 1774		53					10		3	245456	126	236	2717
40000 10 2224666 0 0 57 13327 13 130003 12 234 75 0 40000 10 1573418 0 8 57 13356 42 11 130003 54 75 0 4000 10 10 1573418 0 8 57 42256 42 11 130055 6 2 87 3 40000 10 10 105664 0 8 57 42256 42 11 144441 80 17 17 4		58					200	5/0/62	978 1	199901	4 6	185	
40000 10 1573618 08 57 42256 42 130655 62 673 40000 10 1080664 08 57 42256 42 130655 62 673 40000 10 1080664 08 57 42275		1					3 M		2:		0.	o c Rij	Ş.
40000 10 108000 08 57 61127 51 114461 80 177 A	1001	2	4000		1577610			APACTA A	2 9				q :
	00500	5	0000		1 DROPON				72	0/00011			Ş 5

272

0000 0000 <th< th=""><th>No. No. No. No. No. No. No. No. No.</th><th>N.</th><th>ð</th><th>0</th><th>ŧ</th><th>2</th><th>P.</th><th>CONCRETE OF</th><th>concentration mg/hg de</th><th>eurrogete area account</th><th>INTOURS INCOM</th><th>A recovery</th><th>Concentration</th></th<>	No. No. No. No. No. No. No. No. No.	N.	ð	0	ŧ	2	P.	CONCRETE OF	concentration mg/hg de	eurrogete area account	INTOURS INCOM	A recovery	Concentration
00000 100000 100000 100000 202 00000 00000 200000 200000 200000 200000 200000 200000 000000 2000000 200000 200000 <t< th=""><th>0000 10 2000 10 1000 200</th><th>1010150</th><th>0000</th><th>-</th><th>1917192</th><th>•</th><th>10</th><th>C1901</th><th>A</th><th>1213613</th><th>214</th><th>512</th><th>8</th></t<>	0000 10 2000 10 1000 200	1010150	0000	-	1917192	•	10	C1901	A	1213613	214	512	8
0000 0000 00000 00000 00000 00000 00000 00000 00000 00000 00000 0000000 0000000 0000000 00000000		00000	0004	•	2363630	-		1221	2	0071701	202	603	£
	0000 10 2004 31 20040 31 2004	7504700	0004	-	2041307	0	60	20//121	2	142MAAA	2		į
00000 10 7710000 100 200000 200100		1662127	40000	10	2010231	0	0	11744	! =			88	ç:
00000 0000000 00000000 000000000000000000000000000000000000	0000 0000 0000 00000 00000 0000000	100100	WWW		277400		• •		5 6		R	8	5
	00000 10 000000 10 000000 10 000000 10 000000 10 000000 10 000000 10 000000 10 000000 10 000000 10 0000000 10 0000000 10 0000000 10 0000000 10 0000000 10 0000000 10 0000000 10 00000000 10 000000000000 10 000000000000000000000000000000000000	A DOUDAL							3 :		2	2	"
0000 0000 000000 00000 00000	Control Contro <thcontrol< th=""> <thcontrol< th=""> <thco< td=""><th>7770015</th><th></th><td></td><td></td><td></td><td>- 6</td><td></td><td>ę :</td><td>8/8717</td><td>00</td><td>7</td><td>8</td></thco<></thcontrol<></thcontrol<>	7770015					- 6		ę :	8/8717	00	7	8
	00000 100 0000000 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 <t< td=""><th>A A A A A A A A A A A A A A A A A A A</th><th></th><td></td><td>1744767</td><td></td><td></td><td></td><td>2:</td><td></td><td></td><td></td><td>ŝ</td></t<>	A A A A A A A A A A A A A A A A A A A			1744767				2:				ŝ
	0000 10 110 01000 10 111 01000 10 111 01000 111 01000 111 01000 111 01000 111 01000 111 01000 111 01000 111 01000 111 01000 111 01000 111 01000 111 01000 111 01000 111 010000 111 010000 111 010000 111 010000 111 010000 111 010000 111 010000 111 010000 111 010000 111 010000 111 010000 111 010000 111 010000 111 010000 111 0100000 111 010000 111 010000 111 010000 111 010000 111 010000 111 010000 111 010000 010000 010000 010000 010000 010000 010000 010000 010000 010000 010000 010000 0100000 0						-		2		10.0	418	8
0000 10 2000/1 10 2000/1 10 2000/1 10 200 0000 10 2000/1 10 2000/1 10 200 10 200 0000 10 2000/1 10 2000/1 10 2000/1 10 200 200 0000 10 2000/1 10 2000/1 200 200 200 200 200 0000 10 2000/1 10 2000/1 200 200 200 200 200 0000 10 2000/1 10 1000/1 200 200 200 200 0000 10 2000/1 2000/1 200 2000/1 200 200 200 0000 2000/1 2000/1 2000/1 2000/1 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200	0000 10 20000 10 20000 10 20000 10 0000 10 20000 10 20000 10 20000 10 0000 10 20000 10 20000 10 10000 10 0000 10 20000 10 10000 10 10000 10 0000 10 20000 10 10000 10 10000 10 0000 10 20000 10 10000 10 10000 10 0000 10 20000 10 10000 10 10000 10 0000 10 20000 10 10000 10 10000 10 0000 10 20000 10 10000 10 10000 10 10000 0000 10 20000 10 10000 10 10000 10 10000 10 10000 10000 10000 10000 </td <th></th> <th></th> <td></td> <td></td> <td></td> <td>-</td> <td></td> <td>ē.</td> <td>1230646</td> <td>175</td> <td>5 94</td> <td>Ş</td>						-		ē.	1230646	175	5 9 4	Ş
	0000 10 2772000 10 11 275000 10 11 276000 10 111 276000 10 111 276000 10 111 276000 10 111 276000 10 111 276000 10 111 276000 100 111 276000 100 111 110000 100 111 110000 111 110000 111 1100000 1100000 1100000 1100000 1100000 1100000 1100000 1100000 11000000 11000000 11000000 11000000 11000000 110000000 11000000000 1100000000000000000000000000000000000			2	19/1902	-	-	120103	3	900174	151	8	521
0000 10 27/1280 10 11 225/13 200 100/13 200 0000 10 27/1280 10 11 225/13 100/13 200 100/13 200 0000 10 27/050 10 10 100/13 200 100/13 200 100/13 200	0000 10 27/12/30 10 11 25/31 25/31 110/31 <	00/21101	0000	0	10620270	•		128902	82	762524	~ 8	20	4
0000 10 20010 10 20010 10 20010 10 20010 10 20010 10 20010 10 20010 10 20010 10 20010 10 20010 10 20010 10 20010 10 20010 10 20010 10 20010 <th< td=""><td>$\begin{array}{cccccccccccccccccccccccccccccccccccc$</td><th>34641024</th><th>0004</th><td>-</td><td>2712300</td><td>•</td><td>-</td><td>815229</td><td>5</td><td>1162756</td><td>17.5</td><td></td><td>9011</td></th<>	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	34641024	0004	-	2712300	•	-	815229	5	1162756	17.5		9011
0000 10 70000 10 177100 177100 1771	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	13700013	0000	-	2671612	10	00	TIEMOR	Ŕ	CONTROL 1	1.11		2
0000 10 770000 10 10000	6000 11 770003 10 17200 11 17200 11 17200 21 6000 10 772003 10 17200 11 17200 21 6000 10 75007 10 17200 11 17200 21 6000 10 75007 10 17200 11 10000 27 6000 10 75007 10 17200 11 10000 27 6000 10 75007 10 110 110 10000 27 6000 10 21007 10 110 110 10 27 6000 10 21007 10 110 10 10 10 6000 10 110 110 110 110 10 10 6000 10 110 110 110 110 10 10 10 6000 10 10 10	00051901	0000	10	2002056	01	12	17770	174	COLUMN 1			
	0000 100 0000 10100 00100 001100	070A37A	4000	101	Choron C				2 4			2	3
0000 10 10000 10 10000<	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$								8 3	14/01/24	8 21	8	2
0000 10 773001 10 773001 20 6445 61 173201 20 60 0000 10 770010 10 717201 11 110000 72 10 60 0000 10 770010 11 11 110000 72 10 10 0000 10 77001 11 11 11 10000 71 10 11 10 11 10 11 10 11 10 11 10 11 10 11 10 11 10 11 10 <t< td=""><td>0000 10 77300 10 7730 77300 7730 77300 77300 77300 77300 77300 77300 77300 7730 77300 7730 77300 7730 77300 7730 77300 7730 77300 7730 77300 7730 77300 7730 77300 7730 77300 7730 77300 7730 77300 7730 77300 77300 77300 77300 77300 77300 77300 77300 77300 77300 77300 77300 77300 773000 77300 773000</td><th></th><th></th><td>2</td><td></td><td>2</td><td>2</td><td>A10/01</td><td>10/</td><td>101101</td><td></td><td>ŝ</td><td>Ŕ</td></t<>	0000 10 77300 10 7730 77300 7730 77300 77300 77300 77300 77300 77300 77300 7730 77300 7730 77300 7730 77300 7730 77300 7730 77300 7730 77300 7730 77300 7730 77300 7730 77300 7730 77300 7730 77300 7730 77300 77300 77300 77300 77300 77300 77300 77300 77300 77300 77300 77300 77300 773000 77300 773000			2		2	2	A10/01	10/	101101		ŝ	Ŕ
	$ \begin{array}{llllllllllllllllllllllllllllllllllll$	000001+	0004	-	2750070	0	60	81445	5	1129697	802	45.3	
0000 10 7720 1730 1	0000 10 284/72 10 017200 177200 17720 177	4072900	40000	-	2101182	•	07	100632	101	12550021	10		1
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	10284620	0000	-	22/1/M22	10	00	17720	111	Chectary 1			ļ
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	4404145	4000	•	INTACIC				5		ŝ		ī, i
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	TOTA A MARCA	4000		Concerning of the second se				3		21	3	
0000 10 000000 10 000000 0000 <th< td=""><td>$\begin{array}{cccccccccccccccccccccccccccccccccccc$</td><th>ANT TANK</th><th></th><td></td><td></td><td></td><td></td><td></td><td>ž</td><td></td><td></td><td></td><td>100</td></th<>	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	ANT TANK							ž				100
$ \begin{array}{lcccccccccccccccccccccccccccccccccccc$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$			2			5			1257080	273	513	240
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$			2	C/07002	-	80	141200	E	1409609	e R	5	2
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	DerZ/ HOM	0000	•	9/11 M92	•	80	175472	175	2011044	0.08	040	200
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	2009666	4000	•	201202	-	0.0	11160	=	2000179	14.8	112.3	9
Classical D Matrix Concentration Matrix Ma	Calibre D Annual Conservation Conservation <thconser< th=""><th>2567730</th><th>0004</th><th>•</th><th>2789947</th><th>10</th><th>06</th><th></th><th>:</th><th>1998302</th><th>104</th><th>79.0</th><th>:5</th></thconser<>	2567730	0004	•	2789947	10	06		:	1998302	104	79.0	:5
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	OCC0 1 OCC0 I OCC0 I OCC0 I OCC0 I OCC0 I OCC0 I OCC0		i	ı				concentration	concentration	Burrogene	HUTOBIA RECOVE	A recovery	concentration
0000 10 3073414 10 10 601625 602 1766476 10 <th>0000 10 307/814 10 10 601/25 602 7566676 10 001 00000 10 307/354 10 10 1001 1002 12766756 1001 12776675 1001 12776675 1001 12776675 1001 12776675 1001 12776675 1001 1277667 1277667 1277667 1277667 1277667 1277667 1277667 1277 1277 1277467 1278 1277467 1278 1277 1277 1277467 1277 1277 1277 1277 1277467 1278 1277 1277 1277 1277467 1278 1277</th> <th>ž</th> <th>8</th> <th>0</th> <th>ŧ</th> <th>ž</th> <th>¥</th> <th>ł</th> <th></th> <th>and account</th> <th></th> <th></th> <th>></th>	0000 10 307/814 10 10 601/25 602 7566676 10 001 00000 10 307/354 10 10 1001 1002 12766756 1001 12776675 1001 12776675 1001 12776675 1001 12776675 1001 12776675 1001 1277667 1277667 1277667 1277667 1277667 1277667 1277667 1277 1277 1277467 1278 1277467 1278 1277 1277 1277467 1277 1277 1277 1277 1277467 1278 1277 1277 1277 1277467 1278 1277	ž	8	0	ŧ	ž	¥	ł		and account			>
0000 10 31168/1 10 1031 1647744 228 660 0000 10 31368/1 10 10 1031 1647744 228 660 0000 10 346275 10 10 1031 154676 119 913 00000 10 346775 10 10 1172505 120 1242786 139 131<	0000 10 3136817 10 1031130 10311 1640744 228 00000 10 3435675 10 1031130 103113 1640744 228 00000 10 343575 10 10 10254855 1031 1546244 103 00000 10 343575 10 10 1132555 1231 1241506 134 00000 10 344073 10 11 346073 1241506 134 00000 10 3410246 10 11 113 1146503 134 00000 10 3410245 10 11 113 1146503 136 00000 10 314067 11 111 1145063 130 00000 10 3130673 111 1146663 231 231 00000 10 313236 111 1146663 231 231 00000 10 313346 111	45030056	4000	0	1073614	• •	•	601625	200	1286626	10.0	479	1
0000 10 10000 10 100000 100000 10	00000 10 3433863 10 1966255 1666 1548264 10 00000 10 3433863 10 10 3433863 10 10 00000 10 344567 10 10 344563 10 10 00000 10 344567 10 10 2400143 2400 342586 10 00000 10 344567 10 10 2400143 2400 342586 343 00000 10 344567 10 10 3123 1145833 116 00000 10 12 317243 312 1145833 136 00000 10 314675 10 12 71074 711 1145833 136 00000 10 314675 10 12 71074 711 142470 201 00000 10 314675 10 11 716 142470 201 201	67862961	0004	-	3119817	2	•	0011001	1031	1497744	22.8	2.2	
0000 10 260.00 27.12 27.266.00 260.00 260.00 260.00 260.00 260.00 260.00 260.00 260.00 260.00 260.00 260.00 260.00 260.00 260.00 260.00 27.20.00	0000 10 XXXX4 10 00 102.4500 102.4500 102.4500 113 00000 10 3145670 10 10 1113 12.45660 134 00000 10 3145670 10 10 1113 12.41601 134 00000 10 3145670 10 10 1113 12.41601 192 00000 10 3145670 10 10 2211561 192 00000 10 3145670 10 10 1113 1145560 134 00000 10 2211561 112 1112 1145560 134 00000 10 2211561 112 110726 111 1145560 111 00000 10 314677 111 1145560 211 211 00000 10 110 110 112 1145560 211 00000 10 110 112 110561 11145560	152712740	0000	-	NAUGO	•	5	1966256	1966	15-MORA		2	1
0000 10 300161 2400 14.7266 24.106 24.1 0000 10 314276 10 10 2400161 2400 14.7266 24.1 0000 10 312330 10 11 11.21200 11.3 12.41806 10 24.1 0000 10 300361 2 217240 21.1 12.241806 10 24.1 0000 10 300361 2 11.1 11.45400 10 24.1 0000 10 300361 71061 711 14.4501 24.1 24.1 0000 10 313477 10 10 12 7007 201 24.1 0000 10 314877 10 11 144317 201 201 24.1 0000 10 314877 10 11 22.4 24.1 201 24.1 24.1 24.1 24.1 24.1 24.1 24.1 24.1 24.1	60000 10 30073/5 10 10 200113 240 154/2780 241	137375200	0000	0	1616124	10	80	1024303	1004	AC44721		5	
6000 10 314500 10 10 1172500 1113 124506 451 6000 10 314500 10 10 1172500 1113 124506 451 60000 10 3002786 10 10 317230 312 151601 102 451 60000 10 300373 10 112 717330 312 151601 102 451 60000 10 300373 10 10 712 511601 102 451 60000 10 315407 10 11 422402 201 451 60000 10 11 417343 211 423702 200 413 60000 10 11 416401 712 114303 211 423 60000 10 11 416401 712 114303 211 423 60000 10 11 416401 702 703	6000 10 314567 10 111500 113 1241806 18 6000 10 2002365 10 10 211543 2241805 19 60000 10 2002365 10 10 2241843 2312 1241805 19 60000 10 2000365 10 10 2241843 13 60000 10 2000365 10 10 70236 711 1146303 13 60000 10 200365 10 10 70351 71073 711 146203 200 60000 10 200365 10 10 70351 71073 711 1422410 713 60000 10 314677 10 10 70351 710 200 60000 10 11 716343 711 146460 711 60000 10 11661 11 716344 711 711 60000	15200081		10	AUT700	-	-						
6000 10 302766 10 00 2113 123100 10 00 6000 10 301336 10 10 312316 111 112317 123100 10 10 60000 10 301336 10 10 312316 312 1511660 16 453 60000 10 310336 10 10 10 111 144231 201 453 60000 10 314473 10 10 10 172343 201 453 60000 10 314473 10 10 172343 201 453 60000 10 314473 10 11 1422470 201 453 60000 10 314473 10 11 1423470 201 453 60000 10 314374 10 11 112343 11 11 1142470 201 453 60000 10	6000 10 200256 10 11 <	74670445	1000	-	11 AGOD							8	
00000 10 2/12/160 1/12 1/12/160 1/12 1/12/160 1/12 1/12/160 1/12 1/12/160 1/12 1/12/160 1/12 1/12/160 1/12	00000 10 301336 10 113331 113 113311 114 00000 10 301336 10 10 313336 314 113 114	C 22 OF 10 10 10 10 10 10 10 10 10 10 10 10 10					- 6				0.01	ą :	
0000 10 200346 10 10 201346 2013 201346 2013 201346 2013 201346 2013	00000 10 200,0000 10 200,0000 10 200,0000 10 200,0000 10 200,0000 10 200,0000 10 200,0000 10 200,0000 10 200,0000 10 200,0000 10 200,0000 10 200,0000 10 200,000 10 200,000 10 200,000 10 200,000								21/22	1231601	19.2	5 2 4	
0000 10 1270036 10 12 71074 711 1145003 13 400 0000 10 10 12 71074 711 1145003 13 400 0000 10 10 10 10 11 1145003 13 40 0000 10 313467 10 10 710 137217 200 472 0000 10 313467 10 11 772041 711 437217 201 472 0000 10 313467 10 11 416401 711 416420 711 416420 711 416420 711 416420 711 416420 711 416420 711 416420 711 416420 711 416420 711 416420 711 416420 711 416420 711 416420 711 416420 711 416420 711 416420 711 416420 711 416420	00000 10 2200036 10 110 110503 130 00000 10 2200036 10 12 710724 711 114503 130 00000 10 2200037 10 10 710503 701 1317212 201 00000 10 314672 10 10 72660 573 1442470 201 00000 10 314675 10 11 725600 737 1442470 201 00000 10 314671 11 442470 201 00000 10 314671 11 442470 201 00000 10 314671 11 442470 201 00000 10 314671 11 442470 201 00000 10 316041 640 11 12 00000 10 317734 11 11 11 00000 10 316073 110 <			-		2	-	SUZ316	312	1511000	184	53	3
0000 10 XX24430 10 00 Q0000 11 XX2430 10 10 XX2400 10 10 XX2410 XX1 XX0 XX1 XX1 <th< td=""><td>00000 10 332,4630 10 00000 10 337,4630 10 137,217 200 00000 10 31,4472 10 10 31,4472 20 20 00000 10 31,4472 10 10 57,2660 57,360 20 20 00000 10 31,4472 10 112 77,2640 20 20 00000 10 31,4472 10 112 77,2640 21 21 00000 10 31,4472 10 112 77,2640 21 21 00000 10 31,4472 10 112 77,2640 21 21 00000 10 21,6400 12 77,2640 21 21 21 00000 10 27,2600 11 107 112 25,902 21 11 00000 10 27,162 12 27,162 12 25,902 21 26</td><th>I CZZWOOG</th><th>000</th><td>-</td><td>1280368</td><td>-</td><td>12</td><td>110724</td><td>E</td><td>1148363</td><td>13.6</td><td>400</td><td>1774</td></th<>	00000 10 332,4630 10 00000 10 337,4630 10 137,217 200 00000 10 31,4472 10 10 31,4472 20 20 00000 10 31,4472 10 10 57,2660 57,360 20 20 00000 10 31,4472 10 112 77,2640 20 20 00000 10 31,4472 10 112 77,2640 21 21 00000 10 31,4472 10 112 77,2640 21 21 00000 10 31,4472 10 112 77,2640 21 21 00000 10 21,6400 12 77,2640 21 21 21 00000 10 27,2600 11 107 112 25,902 21 11 00000 10 27,162 12 27,162 12 25,902 21 26	I CZZWOOG	000	-	1280368	-	12	110724	E	1148363	13.6	4 00	1774
60000 10 710611 7711 422371 201 501 60000 10 313467 10 10 572800 573 444230 201 501 60000 10 313467 10 12 70200 573 1444200 201 501	40000 10 3000075 10 710001 711 1422470 201 40000 10 3143675 10 11 710001 711 1422470 201 40000 10 3143675 10 12 752660 573 1444200 201 40000 10 3145000 10 12 752660 573 1444200 201 40000 10 3145000 10 11 612413 673 1444200 201 40000 10 316000 10 11 612413 673 134071 111 40000 10 316100 10 11 612413 672 134071 111 40000 10 316100 11 017 121274 111 111 111 40000 10 316000 11 01 1100000 110 110 110 110 110 40000 10 1100000<	64217972	0000	-	3024630	-	60	STARAES	5	010101			
60000 10 3134672 10 10 572850 573 144270 700 64 60000 10 3144072 10 11 416400 772 702 144200 703 64 703 64 703 144 711 64 703	40000 10 313-8672 10 10 572600 573 1484230 201 40000 10 3145025 10 112 770301 712 1775440 210 40000 10 3145025 10 112 770301 712 1775440 210 40000 10 3145025 10 11 416460 410 110 1775440 210 40000 10 3167037 110 11 475441 210 210 210 40000 10 3167037 110 11 215441 210 210 210 40000 10 3167037 110 11 216074 210 210 210 210 210 211 210 210 210 210 211 210 210 210 210 210 210 210 210 210 210 210 210 210 210 210 210 <	1902/194	0000	-	3060975	0	10	710831	112	1477470	1		
6000 10 314362 10 12 702091 702 167440 210 900 6000 10 214000 10 12 702091 702 1675440 210 900 6000 10 214000 10 11 416401 410 775341 211 900 6000 10 216731 10 11 640 126612 231 900 6000 10 27433 112 127234 121 126912 71 91 6000 10 27433 120 122134 122 231 96 41 6000 10 2110 07 1260162 231 92 92 92 6000 10 216023 120 1260166 22 92 92 92 6000 10 21603 220 2201666 23 92 96 96 6000 10 23663	60000 10 31:3625 10 12 702:001 702 105:440 21:0 60000 10 31:600 10 31:600 10 31:600 21:0 60000 10 31:600 10 11 61:6460 416 17:75:43 21:1 60000 10 20:03381 10 11 61:7 11:0 12:6460 21:0 60000 10 20:03381 10 11 61:7 11:0 12:6461 21:1 60000 10 20:03381 10 01 11:07:02 11:0 22:6602 22:1 60000 10 21:0 12 12:02 11:0 12:6602 22:2 60000 10 21:0 12 12:02 22:0 22:0 22:0 60000 10 22:0662 12:02 12:02 22:0 22:0 22:0 22:0 60000 10 23:0662 12:0 22:0 22:0	41037404	4000	0 -	3134072	10	01	677960	5	1 ADA 210			
0000 10 114 0000 10 114 0000 10 114 0000 10 114 0000 10 114 0000 10 114 0000 10 114 0000 10 114 0000 10 114 0000 10 114 0000 10 111 0000 10 111 0000 10 111 0000 0000 10 111 0000 10 111 0000 0000 0000 100 110 111 0000 0000 0000 100 110 110 100 0000 <td>0000 10 314000 10 11 414400 111 111 00000 10 314000 10 11 414400 117 211 00000 10 314000 10 11 414400 110 110 00000 10 314000 10 11 414400 110 110 00000 10 314000 10 11 414400 110 110 00000 10 314000 10 11 414400 120 110 110 00000 10 314000 10 11 414400 120 201 201 00000 10 21400 10 11 112202 120 201<</td> <th>FROT FEELD</th> <th>Amma</th> <td>-</td> <td>ACOLANC</td> <td></td> <td></td> <td>100-04</td> <td></td> <td></td> <td></td> <td>5</td> <td>3</td>	0000 10 314000 10 11 414400 111 111 00000 10 314000 10 11 414400 117 211 00000 10 314000 10 11 414400 110 110 00000 10 314000 10 11 414400 110 110 00000 10 314000 10 11 414400 110 110 00000 10 314000 10 11 414400 120 110 110 00000 10 314000 10 11 414400 120 201 201 00000 10 21400 10 11 112202 120 201<	FROT FEELD	Amma	-	ACOLANC			100-04				5	3
0000 10 272413 640 10000 110 640 0000 10 272430 10 11 612413 211 0000 10 272430 10 11 672413 672 110 0000 10 272430 10 11 672413 672 110 252 0000 10 273430 10 11 672413 673 1200 232 0000 10 27124 121 12250622 252 227 0000 10 27124 121 12250622 253 227 0000 10 28453 123 1290 600 40 0000 10 1130 12663 220 221 60 0000 10 124433 250 241 250 461 0000 10 1130 100 1130 1200 60 0000 10 1130 1130 1240 250 461 0000 10 123643 1130 1200 250 461 0000 10 1130 1130 1200 250 461 0000	00000 10		10004				• •		ž	Deeciol		B	
0000 10 11 07411 540 1206771 110 664 0000 10 110 11 07413 610 110 164 1206771 110 664 0000 10 272,330 11 072 1256672 253 229 664 0000 10 271,334 112773 112 723,337 259 261 0000 10 211,0273 229 264 2256 226 664 0000 10 214063 226 226 261 661 0000 10 21663 226 226 266 664 0000 10 21663 123 126 266 226 666 0000 10 21663 123 126 266 236 266 0000 10 21663 126 126 266 266 266 0000 10 216 127	0000 10 100 10 100					2					1 62	5	3
40000 10 316707 10 11 672413 672 1296672 17 6 47 40000 10 273436 10 11 672413 672 1296672 17 6 47 40000 10 271274 121 121274 121 1250622 253 227 40000 10 3116024 10 07 121274 121 1250622 253 227 40000 10 3116024 10 08 1266613 1266 12.56 126666 22.5 640 40000 10 244176 10 0.8 1266673 17.66 2.50 640 40000 10 246670 126 126671 1266 2.50 640 40000 10 246670 126 12667 12667 250 640 40000 10 246670 126 1266 12667 12667 261 260 </td <td>40000 10 311087 10 11 072413 672 1256672 17 40000 10 310787 10 11 072413 12 1256672 23 23 40000 10 211272 11 01 127522 11 23 24 2</td> <th></th> <th></th> <td></td> <td>20007</td> <td></td> <td>0</td> <td></td> <td>3</td> <td>11/00/11</td> <td>10</td> <td>404</td> <td>1110</td>	40000 10 311087 10 11 072413 672 1256672 17 40000 10 310787 10 11 072413 12 1256672 23 23 40000 10 211272 11 01 127522 11 23 24 2				20007		0		3	11/00/11	10	404	1110
40000 10 273401 10 00 110202 110 12002 20	40000 10 272.4481 10 03 1102/22 110 125.4062 25.2 40000 10 271.4481 10 07 1102/22 110 125.4062 25.2 40000 10 271.6462 10 07 1102/24 110 125.4062 25.2 40000 10 281.178 11 0 11 125.46 12.85 220 2011644 23.9 40000 10 286633 136633 1260 100 23.6 23.6 40000 10 2864663 10 0.6 81.36613 13.6 13.26716 23.5 40000 10 2864663 10 0.6 82.5 12.26716 23.5 40000 10 2864667 10 0.6 24.666 23.5 40000 10 28000 6 28000 2800 280166 280 40000 10 28000 6 113.00	147040A4	0000	-	3167067	2	:	612413	672	1329672	17.0	47.0	1403
0000 10 2811712 10 07 121274 121 1223027 297 548 00000 10 318024 10 07 121274 121 220 201 548 00000 10 318024 10 08 1286453 1256 12806 22 50 560 560 00000 10 386470 196 08 166670 250 50 560 560 00000 10 306075 10 08 11301 104 1420666 250 560 560 00000 10 319614 014 1420666 250 560 560 560 00000 10 319614 014 1420676 250 560	40000 10 2011372 10 07 121274 121 1553023 297 40000 10 241176 10 03 1216454 121 12530765 22.6 40000 10 241176 10 0.8 1296453 1290 1260766 22.6 40000 10 2300274 10 0.8 1296470 1260 22.6 40000 10 2300274 10 0.8 13964 914 14.00866 25.6 40000 10 2300274 10 0.8 11.02246 11.0 26 26 40000 10 276466 11.0 0.6 11.02246 12.0 26 26 40000 10 276466 12.0 0.6 10.7 27.6 27.6 27.6 40000 10 270000 10 27.6 27.6 27.6 27.6 27.6 27.6 27.6 27.6 27.6 27.6	56013AM	0004	-	2724361	<u> </u>	80	110202	011	1256662	262	100	202
40000 10 31162/4 10 0.8 1256.45 1256.56 1260/766 22.5 40.5 40000 10 3441/76 10 0.8 126653 22.6 1260 12.5 40.6 40000 10 348274 10 0.8 126653 22.0 240 25.0 40.1 40000 10 348274 10 0.8 11301 100 14.0000 40.1 40000 10 348704 1130 14.267766 25.0 40.1 40000 10 213614 0.14 14.267766 25.0 40.1 40000 10 213614 0.14 0.14 14.267766 25.0 40.1 40000 10 213614 0.14 12.267766 25.0 45.0 40000 10 213614 0.14 12.267766 25.0 45.0 40000 10 2132446 1130 14.2267766 25.0 45.0	40000 10 3116024 10 00 1256453 1256 1270766 221 40000 10 2800735 10 08 196633 1256 1270766 221 40000 10 2800735 10 08 196633 1260 220 2011644 23 40000 10 3300757 10 08 198073 100 240 240 24	5110000	0004	-	2101182	•	07	121274	121	1253023	202		ā
40000 10 2441176 10 0.8 218863 220 2011644 43.9 86.0 40000 10 3300374 10 0.8 113847 13.9 96.0 40000 10 3000374 10 0.8 113847 14.00660 25.0 461 40000 10 3166374 10 0.8 113814 91.4 14.20060 25.0 461 40000 10 3169374 10 0.8 1130246 11302 250 461 40000 10 2186476 1130 1220766 255 46.0 40000 10 29 62.6 11307766 27.5 46.0 40000 10 36000 6.25 1120796 27.5 46.0 40000 10 3.0600 6.25 1120796 27.5 46.0 40000 10 3.0 6.000 9.0 27.5 46.0 40000 10 <td>40000 10 241176 10 06 219653 200 201644 40 40000 10 2302574 10 08 219653 20 2011644 40 40000 10 3302574 10 08 113914 61 1422470 250 40000 10 313914 914 1422470 260 261 40000 10 2806975 10 08 624886 625 2205 261 40000 10 2806977 10 08 624886 625 201627 205 40000 10 2806977 10 08 20006 201627 206 40000 10 270000 10 300 9 200677 10 10</td> <th>71546729</th> <th>40000</th> <td>•</td> <td>3116024</td> <td>10</td> <td>80</td> <td>1250453</td> <td>0521</td> <td>12507065</td> <td>20</td> <td>1</td> <td>į</td>	40000 10 241176 10 06 219653 200 201644 40 40000 10 2302574 10 08 219653 20 2011644 40 40000 10 3302574 10 08 113914 61 1422470 250 40000 10 313914 914 1422470 260 261 40000 10 2806975 10 08 624886 625 2205 261 40000 10 2806977 10 08 624886 625 201627 205 40000 10 2806977 10 08 20006 201627 206 40000 10 270000 10 300 9 200677 10 10	71546729	40000	•	3116024	10	80	1250453	0521	12507065	20	1	į
40000 10 3302374 10 0.6 166670 100 1400666 25.0 461 40000 10 3066975 10 0.6 613014 914 1420470 25.0 461 40000 10 3166975 10 0.6 613014 914 1422470 250 461 40000 10 3166677 10 0.6 11300 1220766 223 466 40000 10 2666075 10 0.6 5600 625 1322970 260 223 40000 10 2605077 10 30 5600 625 1322970 201 223	40000 10 3382874 10 08 186670 190 1430666 250 40000 10 306075 10 06 13914 914 1420666 250 40000 10 31160274 10 06 1130246 11302 1222470 267 40000 10 2764666 1130246 1130246 112270766 235 40000 10 2764667 10 08 625 1322970 266 40000 10 264667 10 08 625 1322970 266 40000 10 2764666 625 1322970 266 2016 40000 10 264667 10 06 207627 266 40000 10 2700077 10 360 6 207627 10	10084447	40000	-	8211982	2	80	219963	022	2011644	20		į
40000 10 3000075 10 08 913914 014 1422410 261 201 40000 10 2916824 10 08 113014 014 1422410 261 530 40000 10 2916824 10 08 113014 120766 235 460 40000 10 2946865 10 08 113014 1222910 260 530 40000 10 2946865 100 08 613036 623 1322910 260 533 40000 10 294606 6 2016827 106 533	40000 10 3066975 10 0.6 913914 914 1422470 267 40000 10 311023 10 0.6 913914 914 1422470 261 40000 10 3110234 10 0.6 913914 914 1422470 261 40000 10 28948975 10 0.6 843896 825 3122970 261 40000 10 2894897 10 0.6 84000 6 2070827 10 40000 10 28000 6 2715 275 260 2070827 10 40000 10 28000 6 2715 276 2600 10 275 275 40000 10 270007 10 3600 6 271627 275 275 40000 10 27750 260 6 27750 260 6 275 275	10662700	40000	10	A180267.4	01		1 NORTON	ŝ			8	3
40000 10 0.0 <td>40000 1 0 200001 0 0 0 0 1110240 110 1220760 20 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0</td> <th>ATTOM A</th> <th></th> <td>-</td> <td></td> <td></td> <td></td> <td></td> <td>2</td> <td></td> <td></td> <td>.</td> <td>Į</td>	40000 1 0 200001 0 0 0 0 1110240 110 1220760 20 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	ATTOM A		-					2			.	Į
00000 10 0 11 1200 235 460 40000 10 2886075 10 0 840 450 453 40000 10 2886075 10 0 840 423 1222870 260 523 40000 10 20 5600 0 5600 52 1722870 260 523 40000 10 20 5600 6 2076827 106 816	40000 10 211044 10 00 10 21200760 2010 40000 10 211045 10 06 104410 1130 12200760 2010 40000 10 2110471 10 30 5500 6 2010627 106 40000 10 217471 10 31 5500 6 2010627 106					-	5			0/67761	R	20	121
40000 10 2006077 10 00 50 5000 6 20 1322970 260 523 40000 10 2006077 10 30 5000 6 20 2070827 106 619	40000 10 20007 10 08 02400 025 112290 260 40000 10 20007 10 30 5600 6 2070027 10 40000 10 7774071 10 31 7560 6 2070027 10					20		Decort		12/00/065	9 CZ	9	2406
				-		2			ŝ	0/6/2211		3	198
				-	1/100027	2	20	0004	ø	2070627	108	818	~

concentration	1	Ĩ	ž	2	212	1041	3		3	1000	200	1217	1410	1961	38	678		2019	8	3	3	2	1	20	-			5	:
% recovery		1	9	07	2 R	116	2	9	510	242	0 97	2	282	016	2	09	10	257	0.99	5	562	99	19	679 67	610	Ş		02	
Hurrogata racova	191	117		101	8	0.0	103	40	10.5	48	80	12	79	101	82	92	142	72	17 B	151	17.9	101	15.2	117	4 8			40	
Burrogate	1630674	1315445	1129803	1230266	1030200	BACITIC	1611517	1241212	1566456	700674	GIVE ZODO	560681	005612	787093	000660	16/0011	1124407	762801	518240	942715	1067530	1057530	1062621	BH2248	1427834	787874	1000117	156456	
concentration marker der		7	8	8	1053	5	8	90¥1	8 4	1 04	5	ş	1 0 4	ទ្តិ	Ĩ	R	3	673	5	50	8	ŝ	180 1	82	~	-	7	•	
concentration marks de	335075	243806	361086	29679	1052529	21120	106336	1407918	40000	000440	6039115	020921	404711	\$0003	AC1722	262110	204040	673361	14538	870C0C	12020	100001	911991	120142	1026	746	1500	5741	
N	-	91	•	17	15	-	20		20	20	0	15	15	15	91	17	-	-	-	-	12	-	12	51	51	50	60	58	
2	10	10	10	10	01	10	;	•	•	•	2	10	10	2	•	<u>;</u>	10	-	<u>0</u>	10	•	10	0	10	<u>0</u>	•	01	•	
ŧ	3671779	3211072	3200012	DCCOLCE	3065308	1366304	3614087	1/10040	3496056	3004000	2007161	2300017	2047718	2430227	3106766	2636313	2676026	30406	1058146	2076377	2100110	26220007	2024119	2466762	2670211	1400876	2027574	2866812	
٩	-	•	•	0	-	•	10	•	•	;	•	•	<u>-</u>	-	2	5	2	ç	2	•	-	10	•	-	•	•	01	01	
ð	0000	40000	4000	0000	4000	0000	40000	0000	40000	4000	4000	0000	40000	4000	40000	4000	0004	4000	40004	4000	0000	40000	40000	4000	4000	4000	4000	0004	
ź	CHRISTERS	14221612	36664633	3031275	1229965728	40366062	20106412	10000M34	1911921	64002176	50925675	2500M254	OBJ CEOME	300010000	24000302	M2772M	00001430	70968611	423019	10007940	1922306	13060260	13125640	10354018	673230	122100	197191	2103063	
	3	2	2	8	3	8	8	8	2	ł	2	8	3	6	8	8	2	2	2	8	8	8	8	8					
Mandrand	ž	ž	ž	ž	ž	ž	ž	ž	Ne se			New					Control	Control	Control	Control	Control	Control	Control	Control	ou pey		control	control	

								Crace and a second	Contention	and a second sec	States of the second se	A second	e concentration
	E	ž	8	٥	ŧ		PM	The of		and account			
	3	410606	16000	50	452410	0		42200	9	15000	32	961	1
Note Note <th< td=""><td>2</td><td>CANZ</td><td>16000</td><td>50</td><td>258675</td><td>10</td><td>15</td><td>45100</td><td>2</td><td>160307</td><td>-</td><td>24.0</td><td>9</td></th<>	2	CANZ	16000	50	258675	10	15	45100	2	160307	-	24.0	9
Non-solution Non-solution<	3	0234501	16000	9	314064	10	15	1531491	1531	270003	00	E R	a la
0 17/37/3 1000 1001 <td< td=""><td>8</td><td>1043600</td><td>16000</td><td>90</td><td>470044</td><td>10</td><td>-</td><td>562115</td><td>2</td><td>442200</td><td>107</td><td>1</td><td>5</td></td<>	8	1043600	16000	90	470044	10	-	562115	2	442200	107	1	5
	3	5340060	16000	9	500252	•	9	430084	3	218910	90	16.9	2500
	8	14721278	16000	50	442123	:	18	1443616	Ĩ	359463	1.4	315	4567
	ð	1703763	16000	50	607962	•	:	100794	ŝ	C7860E	00	10.5	8
No. No. <td>8</td> <td>4325622</td> <td>16000</td> <td>50</td> <td>577799</td> <td>•</td> <td>•</td> <td>\$62008</td> <td>3</td> <td>921000</td> <td>8.9</td> <td>23</td> <td>2473</td>	8	4325622	16000	50	577799	•	•	\$62008	3	921000	8.9	23	2473
		16323767	16000	99	A1634	10	15	2425671	2426	322842	00	08	1000
No. No. <td></td> <td>1005273</td> <td>16000</td> <td>90</td> <td>515000</td> <td>10</td> <td>01</td> <td>06450</td> <td>8</td> <td>338507</td> <td>40</td> <td>25.4</td> <td>9/6</td>		1005273	16000	90	515000	10	01	06450	8	338507	40	25.4	9/6
		1620271	16000	50	337805	10	15	243300	243	20107	00	300	724
1 1		4937826	10000	50	002996	•	15	411197	14	400756	07	25.7	8
District		12402610	16000	09	456363	01	15	1402509	1403	201005	00	29.0	
D CONSTRUE CO		12333275	16000	50	566791	10	15	1003603	100	478118		52	INCE
Distriction Control Contro Control Control		16050279	10000	0.9	525012	10	0	1500001		10000			101
No. No. <td></td> <td>AND LA LINE</td> <td></td> <td></td> <td>SWOWS I</td> <td></td> <td></td> <td>RTAR15</td> <td>2</td> <td></td> <td></td> <td></td> <td>į</td>		AND LA LINE			SWOWS I			RTAR15	2				į
No No<									3	1 200 10			
1 1													
7.2000 7.2000<							-		31		4	11	
C C		2441222	0000	0	ACAC/G	2	-			116292	9	16.3	1756
1 1 2		0/000/2	0000	0	21 MADG		2	007707		173062	4	132	2762
D 1130001 1000 50 444443 10 12 24000 240 24000 10 12 24000 12 24000 12 24000 12 24000 12 24000 12 24000 12 24000 12 24000 12 24000 2400		B196221	10000	00	412420	•	12	194866	8	300000	117	53	3
Description 107/2001 1000 111 20000 211 20000 211 20000 211 20000 211 20000 211 20000 211 20000 211 20000 211 20000 211 20000 211 20000 211 20000 211		100001	10000	90	100301	-	12	24/2060	2	36066	92	280	5966
District Control District Distric Distric Distric <td></td> <td>1243203</td> <td>16000</td> <td>9</td> <td>414143</td> <td>2</td> <td>12</td> <td>167210</td> <td>107</td> <td>376406</td> <td></td> <td>862</td> <td>3</td>		1243203	16000	9	414143	2	12	167210	107	376406		8 62	3
Total Total <th< td=""><td></td><td>120021</td><td>16000</td><td>50</td><td>10000</td><td>10</td><td>:</td><td>240446</td><td>240</td><td>376486</td><td>[4]</td><td>5 00</td><td>8</td></th<>		120021	16000	50	10000	10	:	240446	240	376486	[4]	5 0 0	8
No. Constraint Constraint <td></td> <td>7640400</td> <td>10000</td> <td>90</td> <td>100040</td> <td>10</td> <td>50</td> <td>004400</td> <td>ž</td> <td>244078</td> <td>20</td> <td>27.3</td> <td>1114</td>		7640400	10000	90	100040	10	50	004400	ž	244078	20	27.3	1114
Xim Constit 1000 50 30104 117 310 410 310 410 Xim Constit 1000 50 30104 10 50 4103 50 410 Xim Constit 1000 50 301175 11 317 51 4103 50 440 Xim Constit 100 50 301175 10 117 310 440 Xim Constit 2000 10 201175 10 117 311 1175 10 10 310 440 Xim Constit 2000 10 20175 10 11 20017 11 20017 11 20017 11		6013063	16000	50	534616	10	5	197616	ě	150241	C 4	8	Ā
7704007 10000 50 00000 10 45 117302		1999095	16000	50	361614	•	89	216114	216	411032	90	04	104
Constant		2704607	16000	50	40000	•	4 5	2002/11	117	006300	53	583	8
Monthle Monthle <t< th=""><th></th><th></th><th>,</th><th>ı</th><th></th><th></th><th></th><th>concentration</th><th>concentration</th><th></th><th>HUTOBOR PECON</th><th>A recovery</th><th>concentration</th></t<>			,	ı				concentration	concentration		HUTOBOR PECON	A recovery	concentration
Refines 60000 10 201375 10 11 237601 536 666603 72 286 \$5331036 60000 10 2073107 10 11 10 72 266 \$5331036 60000 10 2073107 10 17 236 611155 41 72 266 \$543110464 60000 10 2075407 10 17 233 261 23 261 23 266 244 11 72 266 244 11 72 266 244 11 71 23 261 266 244 11 23 26 26 24 11 23 26 26 24 11 23 26 26 24 12 26 26 24 12 26 26 26 26 26 26 26 26 26 26 26 26 26 26 26 26 2		Z	5	٥	ŧ	ž	ł	ł	ł	ATM ACCOUNT	ł		>
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	2	00003466	0000	2	3013775	•	9	537963	83	000003	72	28.6	1963
36/10/10/2 30/21/11 10 11 100 11 100 36/10/20/2 40000 10 20/21/0 10 10 36/11/5 41 10 30/70/20/6 40000 10 20/21/0 10 11 11/5/01/5 11 <th>2</th> <th>60727206</th> <th>0004</th> <th>-</th> <th>2306114</th> <th>9</th> <th>-</th> <th>120001</th> <th>1280</th> <th>C1484C0</th> <th>101</th> <th>98</th> <th>944</th>	2	60727206	0004	-	2306114	9	-	120001	1280	C1484C0	101	98	944
Wilchen Molichen	3	80010209	40000	10	3072197	•	-	345135	3	831158	4	10.0	1736
103170366 00000 10 3072107 10 19 268453 269 1170067 76 36 103170367 60000 10 3073107 10 10 3073107 76 36 103170367 60000 10 307013 10 11 600 11 207966 11 2	8	30410660	4000	0 -	2006636	•	17	310077	110	1568677	12.3	514	509
103114664 6000 10 3456013 10 19 603330 603 123 500 123 500 123 500 123 500 123 500 123 500 123 500 123 500 123 500 123 500 123 500 123 500 123 500 123 500 123 500 123 500 123 500 500 123 500 500 500 123 500	3	3070200	4000	0	3072197	2	01	200453	ž	1120067	76	53	202
REXUSAR CODD 10 20000 10 20000 11 20000 11 20000 11 20000 11 20000 11 20000 11 20000 11 20000 11 20000 11 20000 11 20000 11 20000 11 20000 11 20100 21 20000 21 20000 21 20000 21 20000 21 20000 21 20000 21	8	163114664	0004	-	3426013	2	10	025230	138	2067660	12.3	099	167
4.25607 40000 10 201 673 200960 147 413 1.1021607 40000 10 2020702 10 11 677565 670 100 147 413 1.10646001 40000 10 222772 10 11 677565 100 11 217 213 213 213 213 213 213 214 211	8	00033630	4000	0-	3206019	10	12	660 766	Ĩ	1175433	115	885	2483
446251 446253 446 60046 71 217 10446001 40000 10 2026021 10 11 217 117224021 40000 10 2026021 10 11 217 117224021 40000 10 1227302 440 60046 71 217 117224021 40000 10 1227302 10 11 214 214 1177520421 40000 10 127 21031 21031 2100 214 1127570421 40000 10 17 21031 21031 2104 214 1127570421 40000 10 11 21031 2103 10031 214 214 11441074 40000 10 14 2103401 2000 214 214 214 214 214 214 214 214 215 214 215 214 215 214 215 214 215 214	8	71921507	40000	÷	00001002	;	:	877896	878	1207996	147	C 14	2126
100446001 40000 10 225772 10 11 13725462 40000 10 226772 10 10 240 10 13725462 40000 10 260312 10 17 2101 10016 110 125726763 40000 10 2064302 10 14 2101 10015 110 42 11441194 40000 10 2703400 10 14 1276460 131 41 47 277334072 40000 10 2740400 1001 134600 47 47 277334072 40000 10 2740400 1001 134 47 5 277334072 40000 10 2740400 1001 134 47 5 277334072 40000 10 14 21060 106610 170 6 7 5 11 6 7 5 11 6 7 5 11 <td< td=""><td>\$</td><td>42566216</td><td>40000</td><td>10</td><td>3036030</td><td>2</td><td>12</td><td>1122944</td><td>ł</td><td>660649</td><td>12</td><td>217</td><td>2068</td></td<>	\$	42566216	40000	10	3036030	2	12	1122944	ł	660649	12	217	2068
13720628 60000 10 200250 10 110 2003 13720628 60000 10 200450 10 11 2103 100 20 12720628.4 60000 10 200318 10 15 101796 1018 1346266 110 473 12712101 6000 10 200460 107 1270600 121 12626 110 473 27733072 60000 10 270600 10 1270600 1271 126600 110 473 27733073 60000 10 270600 10 14 270600 1271 473 473 27733171 40000 10 14 270600 1271 146600 274 473 277345171 40000 10 14 27060 1271 110 126 2364186 40000 10 14 210366 127 1470 210 23441106 2	₹	109496091	40000	•	201222	10	-	201562		1301100	10.6	114	2030
1275/0563 40000 10 204.302 10 15 10/16 176406 110 424 1275/0563 40000 10 204.302 10 15 10/16 1766366 110 475 114411874 40000 10 274616 10 11 10601 120666 134 475 2773/31077 40000 10 274616 10 11 10601 131 475 27763/31 40000 10 2766061 206011 2060 266011 2760 266 131 475 27763/31 40000 10 274616 10 14 206021 2760 276 276 276 276 276 276 276 276 276 276 272 <t< td=""><td>3</td><td>137229428</td><td>40004</td><td>10</td><td>1400623</td><td>-</td><td>17</td><td>2102637</td><td>2103</td><td>1606378</td><td>24 8</td><td>104 S</td><td>2012</td></t<>	3	137229428	40004	10	1400623	-	17	2102637	2103	1606378	24 8	104 S	2012
112/12/10(6) 60000 10 7/601/6) 10 1/2/1 1/2/1 1/2/1 1/2/1 1/1 2773/0600 10 7/6000 10 7/6000 1/2 1/2/1 1/2/1 1/2/1 1/1 2773/0600 10 7/2000 10 1/4 7/2000 1/2/1 1/2/10 1/1 5/1 2773/0600 10 7/2000 10 1/4 2/10/00 1/1 5/1 5/1 2773/0601 10 1/4 7/10/00 1/2 2/1 1/1 5/1 5/1 114/1100 10 10 1/4 2/10/00 1/1 1/1/10 2/1 5/1 5/1 114/1100 10 10 1/4 2/10/00 1/1 1/1/10 2/1 5/1 5/1 114/1100 10 11 1/1/2/20 1/1 1/1/10 1/1 5/1 5/1 5/1 5/1 114/1100 10 11 1/1/10 1/1 1/1/10 1/1 5/1 5/1 5/1 5/1 5/1 5/1 5/1 5/1 5/2 2/2 2/2 2/2 2/2 2/2 2/2 2/2 2/2 2/2 2/2 2/2	8	125762624	0004	10	20MM00	10	15	1017706	1018	1366296	10	42.4	3 4 0
T131011 40000 10 2740146 10 16 1030640 10306 1440003 131 510 27733020 40000 10 204400 10 2160 234030 230 600 2773302171 40000 10 2054030 10 14 21006 234030 240 60 60 2773302171 40000 10 2054030 10 14 210306 210 60 60 61 236413074 40000 10 2054030 10 14 210306 210 61 20	3	122121061	0004	10	19/6292	10	-	1270986	1271	1200635	40	475	2075
Z7753/2002 10 14 21000 200001 15 200 260 <t< td=""><td>8</td><td>114411074</td><td>0000</td><td>-</td><td>2749146</td><td>•</td><td>•</td><td>1036480</td><td></td><td>1440003</td><td>1 61</td><td>510</td><td>2 2 2 2</td></t<>	8	114411074	0000	-	2749146	•	•	1036480		1440003	1 61	510	2 2 2 2
ZUSURY Accord 10 2000 10 2000 10 15 531 ZUSURY Accord 10 14 2000 103 1167640 110 15 531 SUBMERTS Accord 10 2005 10 14 1031 1167640 110 564 SUBMERTS Accord 10 14 112756 112 114702 1110 37 SUBMERTS Accord 10 14 152756 110 14 1170 564 SUBMERTS Accord 11 1446722 1440 060022 72 202 202 SUBMERTS Accord 11 1446722 1440 060022 72 202 202 SUBMERTS Accord 11 1446722 1440 060022 72 202 202 SUBMERTS Accord 11 1446722 1440 06002 72 202 202 202 202	8	200905/22	0000	2	2834030	0	4	2100331	2100	2834030	200	898	242
State Column Column <thcolumn< th=""> Column <thcolumn< th=""> <thcolumn< th=""> <thcolumn< th=""></thcolumn<></thcolumn<></thcolumn<></thcolumn<>	8.	117199177	4000	2		•	-	100002		1006510	15 4	2	9990
Table from Total Total <thtotal< th=""> Total Total</thtotal<>	2:	10012211	0000	0	000000	0	-		1001	1879483	17.0	3	9671
1000000000000000000000000000000000000	27			2			•	Q(77) C	210	114/1821	011	9/6	22
Without Without <t< td=""><td>8 4</td><td></td><td></td><td>2</td><td></td><td>-</td><td></td><td></td><td>ł</td><td>220800</td><td>22</td><td>22</td><td>0/12</td></t<>	8 4			2		-			ł	220800	22	22	0/12
Withold Withold <t< td=""><td>8</td><td></td><td></td><td>2</td><td></td><td></td><td></td><td>C/1011</td><td>2</td><td>434216</td><td>10</td><td>13.2</td><td>2526</td></t<>	8			2				C/1011	2	434216	10	13.2	2526
TWARFING 40000 10 270613 10 16 501340 561 56060 76 322 27361122 400000 10 211 331646 330 306025 44 118 2736118 400000 10 2743146 10 11 33166 306025 44 118 24004610 400000 10 2743146 10 11 33166 30615 65 178 24004610 400000 10 27431366 10 11 33167 361 505617 65 178 24004610 40000 10 27431366 10 50 505617 65 178	3	40706152	0000	0	19/6292	-	0	674560	675	436215	67	16.2	4174
20726/14 40000 10 2140440 10 11 24/287 249 2697 64 118 26726/16 40000 10 274046 10 11 24/287 251 50597 65 178 26806/10 40000 10 2251368 10 50 56155 55 1504150 41 514	88	1/202/02	0004	-	2786193	2		001200	5	009920	90	8	636
ZAVZANING #0000 10 Z/44/40 10 11 20/22/ 261 906 178 24444010 #0000 10 Z831946 10 50 66165 66 150150 41 614	81	20112102	0000	2	029920	-	2		8	300025		8	2874
	8	B1000/02	0000	-	2749140	-	=	1921267	Ŕ	505617	99	178	C701
			0000	2	2001300	-	0	89168	8	1504160	-	514	18 5

275

.

		ł	ė	(į	;		concentration	concentration	Surrogate 1	urrogets recove	% recovery	concentration
			3	- ;	E.	2				area account	ł	Burrogete	>
	ξ :	Magazini			NCKOL I	0	4-	100400	8	1556703	127	0.54	1961
ONCIAN	2	0/7200//0	40000	-	3611271	•	2	600679	60	1427526	113	19	1822
Nersto	2	222020	40004	0	3000671	•	ä	511532	512	2155564	214	205	2
ole the	8	66390763	4000	-	2774659	10	1 12	BCMOR 28	2	1450000			
Netwo	3	14080202	0000	-	1577874	10	187	436440	19	1474007			
Netwo	8	50600770	40000	01	2451068	10	167	426004	124	1002200		55	2
oic.W	ð	00020200	0000	-	2970856	10	155	791366	į,	LCMUMD1			
Norate	8	113113467	4000	10	2661366	0	101	1011904	1012	1784572		3	12.28
ž	2	130997522	4000	•	3743230	•	8	1006350	100	100172	9 61		004
ž	ł	20060614	0000	10	3004322	•	135	249530	952	400702			
ž	2	117006749	0004	-	2921719	•	8	622960	2	1617721	114		12
ž	8	06370M22	4000	10	29960267	•	8	706756	602	1440796	11.0	1 94	151
ž	3	64631546	0000	<u>•</u>	2776425	•	90	475196	475	1127150	0	2	1210
Z	8	90090099	0000	•	2640629	- -	8	621790	220	1764301	18.6	1	2
2	8	123060061	4000	10	2017251	01	8	1029802	1030	1528456	127	529	1001
2	8	476306674	4000	10	2860996	-	90	105504	10	1617721	137	1	9
Control	2	27022566	40000	-	4156465	•		2270006	12	1001365	4	23.3	610
Control	2	17975660	4000	•	011200	2	1 28	136518	8	1330664	10.0	â	5
Control	2	22600464	4000	•	4106471	0	8	190155	<u>8</u>	1049429	92	24.4	210
Control	8	7909092	0000	•	3080719	0-	127	210313	219	840775	12	22.0	9
Control	3	01134040	4000	•	2011874	•	187	647640	3	1305794	104	154	1 epc
Control	8	5001500	000 4	10	3730601	•	8	306403	50	1306623	7.9	8	W
Control	8	111/000	0000	•	2007303	•	115	246783	¥	600742	52	210	1000
Control	8	41964208	0000	•	3257200	•	118	421213	ą	BOOGA	5	992	194
		2004002	0004	-	2062431	•	8	06216	8	1803662	**	612	107
			0000	-	2021220	•	5	52171	3	1436609	90	3	<u>6</u>
control		51410633	0000	0	1061300	-	20	120879	121	1567047	90	5	241
CONTROL		17000/145	40000	•	10011305	•	64	81595	8	2430407	57	763	107
		4	ξ	¢	1	ł	1	CONCERTIFICATI	concentration		Intropets recover	A recovery	concentration
A North	-	K2007510	Į	,	TAL COL	2					ł		2
	} a	118063047							ī,	12/13/60		1	
	2	10071678					- 4		5				
	8	108751080	40000	2	NOTION.							2	2 2 2
	3	19191106	0000	0	CLUCK NO			100010	100	10701			
and and a	8	200000002	0000	2	000050			L'ANNA I					Į
	8	26466973	0000	2	2562344		-	101/22	â				
e l'entre	8	000011110	0000	10	2016350	80	-	370175	170	172516	0~	1	
Z	2	54441087	0000	10	2646030	80	15	STRAT2	2	363466	56	12.0	
2	2	10700013	0000	-	2430400	80	4-	1200541	1021	201028	02	2	
2	3 4	0001000	0000	-	2730000		20	001000	Ĩ	1184340	0	419	1062
2.3	8 8				2000112				3	1171036	00	418	1961 1
2	36							007700			62	0 X	2000
2 4	38							0/0795	3		9	278	
1	56	CAATIER							R.	1108022	Ē	2 9	414
Control	2	02122216		2	10112							ģ	
Control	2	16162366	4000		2400106				ŝ				
Control	1	ATTAAATC	Anno A		2000100				ē			•	
Control	8	14068030	0000	22	2674001			00001	<u> </u>	010017			
Control	3	20025727	0000	10	2917406	80		24,270	1		::		39
Control	8	17926672	40000	0	2766023	80	-	174972	2	CALL IS		2	
Control	8	6661934	0000#	10	2907567	80	-	106000	8	1014401	10.1		
Control	8	16371025	0000	•	2448944	80	12	215260	215	1280917	16.6	99	15
		5796664	0004	•	111112	80	50	15371	5	2014245	63	740	5
control		04944640	40004	•	510773	80	9	MECSA	Ē	1001042	42	9	2
control		2017549	4000	•	3736152	80	5	204	•	1740630	•	6 54	•

			ł	Į	¢	1	ł	1	concentration	concentration	-	HUTOBIN ROOM	% recovery	concentration
	Miraka	540	OMCONTRAC		2	2201162	2	2:						>
	Network	ŧ	10076743			2741454			104017	Şı		401		5
		2 4	1000001						105/2	B	111001	6 2	38	162
		lá							TNYOC/	8	200020	•	240	1062
		82						-	T TOOL	8	1128142	105	78	5
		30							241403	241	100004	191	53	3
		38	700000							5	015446	104	ê	ž
		3 ź						-		5	012290	101	9 27	270
Matrix Matrix		3			20			-	13,3000	3	902309	137	415	370
	ž	2 :			2	192/162	0	17	567566	3	1504418	140	808	916
No. No. <th>ž</th> <th>2</th> <td>0/10000</td> <td></td> <td>-</td> <td>2260810</td> <td>80</td> <td>•</td> <td>322166</td> <td>g</td> <td>1201123</td> <td>116</td> <td>562</td> <td>602</td>	ž	2	0/10000		-	2260810	80	•	322166	g	1201123	116	562	602
	2	1	40675027	0004	2	2122818	80	01	10000	Ş	1753294	10.5	79.0	3
Control Contro Control Control <th< td=""><th>ž</th><th>8</th><td>000000</td><td>0004</td><td>5</td><td>2371096</td><td>80</td><td>8 -</td><td>56480</td><td>8</td><td>1708401</td><td>15.0</td><td>22</td><td>1</td></th<>	ž	8	000000	0004	5	2371096	80	8 -	56480	8	1708401	15.0	22	1
	ž	8	102043499	0000	•	20M0075	80	17	781134	701	2561633	10.0		
Description Control Contro Control Control	ž	8	9000000	4000	2	2578254	80	+	21272	6	270072			
	Ş	8	11700031	4000	••	2367942	00		171205	2	717000		58	
No No<	z	8	00075000	0000	10	2100286	0	~	A LEVE	202	1000/11	101		
Note Note <th< td=""><th>Control</th><th>2</th><td>0000000</td><td>40000</td><td>10</td><td>2521004</td><td></td><td></td><td>10000</td><td>1</td><td></td><td></td><td>21</td><td></td></th<>	Control	2	0000000	40000	10	2521004			10000	1			21	
Tation Tation<	Control	ł	000000	0000	0	251146			ALLA	2			8	
Norm Norm <th< td=""><th>Control</th><th>2</th><td>2006075</td><td>Anno</td><td>2</td><td>2441701</td><td></td><td></td><td></td><td>5 /</td><td></td><td></td><td>~ . 3, :</td><td>ð,</td></th<>	Control	2	2006075	Anno	2	2441701				5 /			~ . 3 , :	ð,
	Cantrol	2	1282700	4000	10	A CHANNEL				8 8				6
Col TYTON: Col TYTON: </td <th>ontro</th> <th>18</th> <td>1007044</td> <td>ADDRO</td> <td></td> <td>210010</td> <td></td> <td></td> <td></td> <td>8 8</td> <td></td> <td></td> <td>R</td> <td>1</td>	ontro	18	1007044	ADDRO		210010				8 8			R	1
Non-construction Non-construction<	outro,	16	122/22/16					2:		83				21
Norme Norme <th< td=""><th>antino</th><th>18</th><td>170200</td><td></td><td></td><td>267 Parameter</td><td></td><td></td><td></td><td>8 2</td><td></td><td>ę</td><td>2</td><td>2</td></th<>	antino	18	170200			267 Parameter				8 2		ę	2	2
7740775 6000 10 700070 600 10 700070 600 10 700070 600 10 700070 70 700070 70 700070 70 700070 7	20mm	8	A TOTAL	0000		22/8/22				5		2.5		8 :
7/10/15 6000 10 7/2001 00 10 7/2001 00 10 7/2001 00 10 7/2001 10 10 </td <th></th> <th>1</th> <td>2750278</td> <td>0000</td> <td>2</td> <td>2074005</td> <td></td> <td></td> <td></td> <td>8 5</td> <td></td> <td></td> <td>8</td> <td>2</td>		1	2750278	0000	2	2074005				8 5			8	2
271000 5000 10 2000 10 2000 10 2000 10 2000 10 2000 10 2000 10 2000 10 2000 10 2000 10 2000 10 2000 <	patro		3741075	4000		2724518				2 5	1760474			D (
No. Contraction C	control		2976026	0000	•	2303004			9400	2 0				2:
No. D No. D No. D No. D No. D No. D No. No. </th <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th>1</th> <th>1</th> <th>Concentration</th> <th>concentration</th> <th></th> <th></th> <th></th> <th></th>							1	1	Concentration	concentration				
No. 1 206000 60000 10 206400 60000 10 206400 60000 10 206400 60000 10 206400 6000 10 206400 200 10 206400 200 10 206400 200<			2	ð	٩	ŧ	2	P			arte account)
R XXXXXXX MAX MAX </td <th></th> <th>3</th> <td>1366000</td> <td>4000</td> <td>10</td> <td>2070639</td> <td></td> <td>2</td> <td>ZINNEZ</td> <td>2</td> <td>967481</td> <td>185</td> <td>4</td> <td>1</td>		3	1366000	4000	10	2070639		2	ZINNEZ	2	967481	185	4	1
R 2730001 10 100000 10 10000		2		0000	-	1075110		-	00401	8	1206202	9 5 2	62 2	01
Contraint Contraint <t< td=""><th></th><th>2 2</th><td></td><td>0000</td><td>-</td><td>1004010</td><td></td><td>~ 0</td><td>146242</td><td>2</td><td>1279601</td><td>2</td><td>533</td><td>8/11</td></t<>		2 2		0000	-	1004010		~ 0	146242	2	1279601	2	533	8/11
C 1000479 10000 1 1000479 200 1 100057 200 100057 200 100057 200 100057 200 100057 200 100057 200 100057 200 100057 200 100057 200 100 101 100057 200 101 100057 200 101		88				0002702		10	CL09995	5	1460000	37.0	5 8 2	613
District Monos		36			2				240621	ž	1103457	5 R	9 0 2	198
F 5/10/10 6000 1 2/01/20 2/1 6000/11 2/1 6000/12 2/1 6000/12 2/1 6000/12 2/1 6000/12 2/1 6000/12 2/1 6000/12 2/1 6000/12 2/1 6000/12 2/1 6000/12 2/1 6000/12 2/1 6000/12 2/1 6/1 2/1 6/1 2/1 2/1 6/1 2/1		38			-	1020001		-	11524	2	1471807	292	41	ğ
No No<		SÉ	6741878 6741878			121102		-		ลิ	2/10001	ลิ	2	277
R Sensitive Concord Concord <thconcord< th=""> Concord <thconc< td=""><th>1</th><th>3 4</th><td>C STORAGE</td><td></td><td></td><td></td><td></td><td></td><td></td><td>6</td><td></td><td>N</td><td>6</td><td>ž,</td></thconc<></thconcord<>	1	3 4	C STORAGE							6		N	6	ž,
No No<	1	! 4	A LODAN									8	8	
File File <th< td=""><th>2</th><th>2</th><td>30152066</td><td></td><td></td><td>2104150</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>Ŕ</td></th<>	2	2	30152066			2104150								Ŕ
C 1180778 4000 10 187072 0 <th0< th=""> <th0< th=""></th0<></th0<>	ž	8	86103906	0000	-	2006773							- /0	
Col 30197/01 40000 10 1020773 1000 10 1020773 1000 10 10000 10 10000 10 10000 10 10000 10 10000 10 10000 10 10000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 10000 1000 10000	ž	3	41962796	0000	•	1870075			1004-000	Š		8		
Date Example Example <thex< td=""><th>ž</th><th>8</th><td>30197001</td><td>0000</td><td>0-</td><td>1029761</td><td></td><td></td><td>10M7752</td><td></td><td>STATUS I</td><td></td><td></td><td></td></thex<>	ž	8	30197001	0000	0-	1029761			10M7752		STATUS I			
Ds MXA46770 40000 110 100Xx202 010 1066X340 10605 1424815 640 1331 Ab Britisher 40000 110 100Xx001 00 100 10653 1426815 640 1331 Ab Britisher 40000 110 100Xx011 010 16653 1426815 640 1331 Ab Britisher 40000 110 113143 010 01 26551713 2666 1460005 461 1331 Bb 75000 10 113143 010 01 26551713 266 140001 101 1131 Bb 750000 10 113143 010 017 77744 710 714 400 714 400 714 400 714 400 1331 400 1331 714 400 714 710 714 400 7131 714 400 714 400 714 400 7	ž	8	62262250	0004	•	2120453			OR/WE'L		1527120	22		
Ab Bit/3277 40000 10 2006/710 2006 46 60 Ab Bit/3677 40000 10 2006/71 01 2006 460006 46 60 Bb 1566/716 20000 10 7174 200 10 739 Bb 1560/16 40000 10 1136/81 01 25571 26 460005 46 40 739 Bb 1560/16 40000 10 1136/81 01 01 25571 26 46001 314 40 739 Bb 1560/16 40000 10 1136/81 01 25571 26 460 401 739 CG 1581/46 40000 10 1136/81 01 1779 40 400 Ch 1581/46 40000 10 1135/82 01 1779 40 739 Ch 1581/76 400 1779 40 1779 <t< td=""><th>ł</th><th>8</th><td>36346270</td><td>0000</td><td>0</td><td>1035262</td><td></td><td></td><td>1066349</td><td>1066</td><td>1424515</td><td>1</td><td></td><td></td></t<>	ł	8	36346270	0000	0	1035262			1066349	1066	1424515	1		
Ab Beil/20034 40000 10 2063049 01 2556813 2566 156171 461 735 Bb 25021476 40000 10 115147 01 01 201 401 21 735 Ca 1802966 40000 10 115147 01 01 401 73 Ca 1802966 40000 10 115147 01 01 401 401 214 401 Ca 1802966 40000 10 115173 01 01 774 401 401 214 401 Ca 1802966 10 11 77744 18 567803 214 401 401 Ca 1277824 01 01 177744 18 567803 214 401 Ca 1277824 01 01 177744 18 567803 214 401 Ca 1270874 01 01 177834 <th>Control</th> <th>z</th> <td>T12001M0</td> <td>4000</td> <td>•</td> <td>7780002</td> <td></td> <td></td> <td>01/1900</td> <td>9905</td> <td>1450005</td> <td></td> <td></td> <td></td>	Control	z	T12001M0	4000	•	7780002			01/1900	9905	1450005			
Bit 1860/706 40000 10 115/474 0.6 0.4 566001 266001 266001 266001 266001 266001 266001 266001 266001 266001 266001 266001 266000 266000 266000 266000 266000 266000 2714 460 </td <th>Control</th> <th>Ł</th> <td>61756636</td> <td>0004</td> <td>•</td> <td>2062046</td> <td></td> <td></td> <td>2567675</td> <td>9952</td> <td>1567971</td> <td>- 9</td> <td>73.0</td> <td>3</td>	Control	Ł	61756636	0004	•	2062046			2567675	9952	1567971	- 9	73.0	3
Display="1">Display=100 Display="1">Display=1000 10 1130753 0.00 0.01 177744 Display=0 241 400 1200646 211 400 1200646 211 400 1200646 211 400 1200646 211 400 1200646 211 400 1200646 211 400 121 400 121 400 121 400 121 400 121 121 400 121 121 400 121 121 400 121 121 121 121 121 121 121 121 121 121 121 121 121	Dupuno.	2	10001700	4000	•	1151474			9621149	ł	56MBD1	992	40.2	1710
Cal IERUSPIG 40000 10 11/38/10 01 01/38/10 01 01/38/10 01 01/38/10 01 01/38/10 010 27.4 40.5 Cal 1513/146 40000 10 12223/1 08 07 70001 10 12223/1 40.5 27.4 40.5 Da 1276207 40000 10 17723.1 08 07 30015 47.6 37.6 40.6 Da 1276207 40000 10 17773.1 08 07 30015 47.6 37.6 40.6 Da 1276207 40000 10 114773.1 08 07 377.2 41 44.9 Da 1276207 40000 10 12773.0 08 07 377.2 11 1417440 52 737 E2116067 40000 10 1272401 57 377 10 377.2 10 40.6 20000 10 120316 </td <th>DUNO</th> <th>8</th> <td>2502140</td> <td>0004</td> <td>•</td> <td>1136763</td> <td></td> <td></td> <td>AND ACT</td> <td>ž</td> <td>56M018</td> <td>110</td> <td>8 94</td> <td>270</td>	DUNO	8	2502140	0004	•	1136763			AND ACT	ž	56M018	110	8 94	270
CD 177146 700 10 1722317 0.6 0.7 77794 7.6 647803 2.4 44.0 Cb 1776340 400000 10 174473 0.6 0.7 77794 7.6 64.0 64.0 64.0 64.0 66.0 73.7 73.7 73.7 73.7 73.7 73.7 73.7 73.7 73.7 73.7 73.7 73.7 73.7 73.7 73.7 73.7 73.7 73	Outro .	3		0004	-	1143610				8	SAMASS	27.4	5 0 4	
Da 1276240 40000 10 174733 08 07 30815 40 120066 37.6 06 0 <th0< th=""> <th0< th=""> 1 <</th0<></th0<>	Daug.	8	1001/40	0000	•	1102221			NO.LL	2	667803	241	40	5
UD 13264223 40000 10 1017243 0.6 0.9 470019 473 573756 20.8 40.0 1 132087 40000 10 1333759 0.6 57 572 1 1471440 52 737 211906 40000 10 1923579 0.6 57 572 1 1471440 52 737 201906 40000 10 1923566 0.6 57 572 1 1471440 52 737 201906 40000 10 1923566 0.6 54 70.6 2064 70.6 200000 10 123417 0.8 57 19800 20 1140005 63 80.4	Outro	8	1276240	0004	0	DET MT1			30015	¥	1200966	37.6	0 90	8
- 11400/ 40000 10 123366 06 57 572 1 141140 52 737 2211606 40000 10 123466 08 57 14403 18 122346 54 76 366566 40000 10 123417 08 57 19950 20 114006 63 69 69		8	12200221	0000	10	1167251	80		478019	478	578750	8 02	0	8
2211900 40000 10 1023006 08 57 19403 18 1522309 366869 40000 10 1234817 08 57 19860 20 1140605			190201	0000	0	1900120	80		572	-	1471440	62	151	-
3000000 40000 10 1234817 08 57 19800 20 1140905			2211000	0004	-	1923666	•	57	19493	9	1522380	54	76.6	24
	COMERCI		100000	4000	10	11224817	80	57	19860	8	1140905		60 4	8

	070	3	5 =	: 1	21	8 8	6 5	3			į	201	246	112	5	3	2	Ā	3	8	200	2	151	117	9	9	Concentration				0001	TACA	102	3	3	1244	1946			2	002	00/1	279	Z		<u>s</u> :	3	3	18	2	8 8	I
N. recovery everygene	12				5		81	32	3	912		3	124.4	739	770	015	ŝ	ŝ	ខ្លួ	87 S	57.9	53	712	107 8	123.3	40 90	A recovery			3				818	8	- 3	8			8	97.0	673	2 90 90	5 9 5	9511	8	2	33	3			
MUTORE RECOVE	i a	Ĩ							22.0	27.9	22	2	578	24.0	171	N N	25.6	0 X 0	236	182	26.7	316	1 83	99	16.2	021	HUTOPHE FOCOM					200	2	111	2	202	8	2	2		210	27	20	2	8	3	8	5	89		12.6	
	1054004	100001	144224					14474	1510000	1827429	1102000	ENCS/11	2472086	1440664	1562066	1Geedlas	1106137	1007061	1117076	E1681E1	1245006	1220051	1480096	2200221	2517406	2015/066			176000		10.001	1540149	1202301	1034601	1 PARTING	1413030	6/10801		2100153	10/00/22	2241270	2081227	1117076	10011						2444771	2323294	
CONCENTRATION THE DEF	19	5	3	1		5	i i	18	518	10	\$	574	ĝ	202	ē		8	213	ā	8	¥	2	107	8	=	<u>e</u> -			A M			2315	2307	212	2		<u>8</u>	0,00	18	8	6211		<u>8</u>	2			58	2 3	١ž	ła	2	
CONCENTRATION FINAND ON	467260	61129	Ser 7 Mil	17074		A NOC	571792	87154																			2																									
2	•	60	90	0			.0	0	:	:	:	:	80	12	18	•	0	10	0		0	80	0	0	00	0	1	:	2	2	0	-	10	60	10	12	a (22		9 -										- 0	
	80	80	80	0.0			0	80	80	80	80			80												0	ł		80		80	80	80	80	80				80	80	80										80	
ŧ	2350476	2700114	2410663	2847116	2744041	7744490	2751160	2709237	2630667	20425402	2346664	5297152	2362666	2200078	2450771	1 COMCZ	24.00000		2400010	2511401	EN21052	2450021	24/1/14		24/28/402	2414042	1	2107002	1266050	3106401	3154445	2232276	2975290	3107062	3701216	961/200Z			290000	294060	2902607	1199962			201720	ducuso.	2717103	A DAMAGE	elana.	2910000	3011560	
٥	-	•	10	10	01		0	2	•	•	10	ç	•	•	2	-	2		0	0		0	-	0	-	0	c	15	-	-	-	•	•	•	0				•	-	-	0					-			-	•	
ð	40000	40000	0000	40000	40000	4000	40000	0000	40000	40000	40000	4(000	0007	40000	0000					0000			0000		0000	0000	8	0000	0000	00004	0000	4000	0000	40000	0000			0004	4000	4000	0000	0000				A0000	4000	0000	00004	0000	40004	
ž	27200010	2362113	2744708	2500010	4555511	ZHENDALS	14166006	000000	32898012	26182411	2567414	32744869	1300001	11941100	00/0/0/	Z/AZMAT L		10000		NC200K	07000077		2200004	1/4020		1010047	4	37113392	101033618	226137666	160962030	195061667	133046676	12300405	24087733			0001217	6027634A	52747507	121616625	002112200		199/999	757 AMPT 1	1C/WOX	DEMON	2222104	70608243	8316005	4292560	
;	Š	ł	3	8	ð	6	8	â	2	z	2	8	8	8	81	3	2:	2	8 4	6	38	58	51	5				3	2	2	2	3	ð	8	8	2 4	24	8	8	8	8	8	2 4	22	l	10	8	88	8	I		
		NACION	NCM	NNTAK	Nitrie	Nitzia	NUCAN	Nerse	ž	Ž	ž	Į.	Z.	2	Z	2													-	ł	and and a	ł			ł	23	23	2	ž	ž	2	2			Continui	Control	Control	Comm	Control		control	

Concerning and the second seco
M M M M M M M M M M M M M M M M M M M
Manual Ma
Municipal States (1997) 1997 (
9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9
Correlation 14 (176) 21 (1965) 21 (1
8
All 22010864 22010864 2010864
a °°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°
0000 00000 00000 00000 00000 00000 00000
An 2016/2012 2117/802/22 2117/802/22 2010/25/22 2000/07/12 2200/06/12 2200/06/25 2201/96/12 2200/06/25 2011/22/05 2011/22/05 2011/22/05 2011/2012
} <==00562<==00562<==00566

C.1.4	TPH and	Log TPH		ations for								
Treatment	Deys	Event	Plot	Subplot	SC	LC	Arometics	TPH	Log SC meterie	Log LC	Log Arom mghgdw	Log TPH
Ar	0	1			6425	mgft.gdw 8229	markadar 6631	21285	3.8	3.9	38	43
Ār	o	1	A	6	6654	4218	376	11248	38	36	26	41
Air	0	1	8		4086 782	7170 1963	725 1599	11981 4343	36 29	3.9 3.3	29 32	4 1 3 6
Air Air	0	1	8 C	b a	6487	8309	5482	20277	38	3.9	37	43
Ār	õ	1	с	Ь	2543	4754	3361	10658	34	37	35	40
Ar	0	1	D	•	9464	7944	5497	22905 10911	40 37	39 36	37 32	44
Ar Ar	0 218	1	O A	b a	4973 964	4167 4798	1771 2058	7840	30	37	33	39
Ār	28	2	Â	• •	1124	2189	2039	5352	31	3.3	3.3	37
Ar	28	2	B	a	1762	2338	2012	6113	32	34	33	38 38
Ar Ar	28 28	2 2	BC	b	1846	2760 6672	2400 2675	7006 13107	33 36	34 38	34	41
~	28	ź	č	b	5049	4518	2032	11599	37	37	33	4.1
Ar	28	2	D	a	4774	5156	2242	12172	37	37	34 36	4 1 3 7
Air	28 47	2	0	D	265 4681	782 1678	3956 2296	5003 8655	24 37	29 32	34	39
Air Air	47	3	Â	a D	5612	4768	1582	11961	37	37	32	41
Ar	47	3	8	a	540	1174	1536	3250	27	31	32	35
Air	47	3	B	D	940 1206	1074	1518 1210	3532 3510	30 31	30 30	32	35 35
Air Air	47 47	3	с с	ab	107	128	962	1196	20	21	30	31
Ār	47	ž	D	ž	2490	2087	1952	6539	34	33	33	30
Ar	47	3	D	b	147	125	739	1011	22 36	21 37	29 36	30 41
Ar Ar	78 78	4	Å	ab	3687 4969	4488 5279	4173 3666	12346	37	37	36	41
Ār	78	4	ê	3	1958	2119	1652	5728	33	33	32	38
Air	78	4	8	6	1950	2011	1563	5523	33	33	32	37
Ar	78 78	4	с с	ab	3542 3338	4459 4135	2630 1993	10832	35 35	36 36	35 33	40
Air Air	78		ŏ	2	1122	3000	714	4836	31	35	29	37
Ar	78	4	D	0	2522	3451	1556	7529	34	35	32	39
Ar	110 110	5	A	a	1584 1141	3759 2344	916 602	6258 4087	32 31	36 34	30 20	38 36
Ar Ar	110	5	A 8	b a	669	1443	583	2695	28	32	28	34
Ār	110	5	8	Б	1763	3396	81	5242	32	35	19	37
Ar	110	5	ċ	3	2286	5181	930 1140	8399 7189	34	37 35	30 31	39 39
Air Air	110 110	5	C D	b a	3076 406	2974 725	178	1310	26	29	23	31
Ār	110	5	D	5	118	363	932	1413	21	26	30	31
Ar	138	6	A	a	721	962	1185	2867	29	30 30	31 34	35 36
Ae Ae	138 138	6	A 8	b	839 1373	921 1957	2551 1174	4310 4505	29 31	33	31	37
Â	138	ĕ	8		1016	1427	1540	4063	30	32	32	36
Ar	138	6	с	a	1126	1366	969	3461	31	31	30 32	35 36
Ar Ar	138 138	6	C D	b	1106 1292	1714 1428	1436 1931	4317	31 31	32 32	33	30
Ar	138	6	D	b	958	1301	1243	3502	30	31	31	35
Air	327	7	A	3	704	362	815	1861	28	26	29	33
Ar	327	7	Å	D	1075	1335 496	543 81	2953 977	30 26	31 27	27	35 30
Ar Ar	327 327	,	8	a D	863	1105	1033	3021	29	30	30	35
Ar	327	7	с	ă	259	326	246	831	24	25	24	29
Ar	327	77	c	٥	221	332 146	277 105	830 374	23	25 22	24 20	29 26
Ar Ar	327 327	;	0	a 0	124 152	261	353	766	22	24	25	29
Ār	359	8	Ă	à	829	1779	1244	3851	2.9	33	31	36
Air	359	8	A	0	625	1984	1946	4755	29 29	33 3.1	33 30	37 35
Air	359 359	8	8 8	a D	714 688	1340 1053	1069 1135	3123 2876	28	30	31	35
Air Air	359	ē	č	ă	368	1154	793	2316	2.6	31	29	34
Air	359	8	с	D	658	646	823	2126	26	28 30	29 31	33
Ar Ar	359 359	8	D	a b	1581 1399	1110 1403	1209 1700	3900 4502	3.2 3.1	30	32	36 37
Ar Ar	389	9 9	Ă	3	455	643	486	1586	27	2.8	27	32
Ār	389	9	A	Þ	548	521	261	1330	27	27	2.4	3.1
Ar	389	9	8	3	668 567	895 70	494 54	2057 691	2 B 2.8	30 18	27 17	33 28
Ar Ar	389 389	9	в С	0 #	307 2476	3272	1217	6965	3.4	3.5	3.1	38
Ār	389	9	с	6	1233	1043	651	2927	3.1	3.0	28	3.5
Air	389	9	0	ab	291 3733	356 3444	201 3604	847 10781	2.5 3.6	26 3.5	23 36	29
Ar	389	4	U	0	3133			10101	3.0	U. U	U . U	

Hall Bol	į	n :	-	4	97	17			•••		5.		7	3.2	80	39			n 1		2	-	90	- 6	12					2	*	9	4	1			•	•	-	99	9	3.6	32	3.0	-	12				•		5.5	2 8	25	30	21	26	22	23	4 7		0	0 i				-	4	•	32	9 P N	0	90	38	÷.	3.5	2	11	
Log Arom	ł	52	23	57	3.2				2 .	• •		- 0	77	28	28	12	: 2	•		-		29	32	27	2.8							5	36	0	-		- 0		24	00	00	28	26	4 2					- 0	3 4 V (0 0	20	24	21	29	0	•	9		da -	5	7	32	5			-	90	2.7	27		0	-	35	30	30	29	2.6	
luoj Boj	ł	-	32	36	90			•	•••	• •			-	8	35	3.5		4	-			35	90	28				•••	-	•	11	90	37					25	9	35	35		29	5								21	2.4	20	8	15	24		-		20	-	77	-	51		9	4	76	28	50	3 2	32	31	5	-	28	2.8	
Log Short	ł	32	-		3.2	20		1	•			•		24	33		, u	2	•		29	2.8	2.9	•				7 0	2		90	35		~					54	;;	32	30	27				• •		• •		1		6	8	-	12	20	\$7 •	-	0 -		20	2 2	6.7		• •	6 1	4	3.6	25	8	5 8	31	11	2.9	2.7	27	2.0	
H				10636	7057	Ş				8			2		6075	ž		2		22	3	53	6475	1146	1551			2			2944C	97 FB	MC YEL						125	6124	1995	VOX	10/00	2		2] F						8	8	28	8	1 94	ũ	8/1	162	578	8				00101	121922	23	8028	1406	58 2	223	4127	5725	3119	2877	2016	2136	
Arometics	ł	110	2	ł	1544	ş		Ì	R					ĝ	197	2		2	2127	1961	<u>1</u>	2	1619	2	2				5/8	1258	1505	2066	111	1	2			8	762	1901 280	8	3	194	022	5	ģ	5		2	23	100	8	277	Ŗ	876	3	7	£	8	8	Ş	Ŕ			8	0/0/	2247	123	ŝ	5	ž	1080	121	1100	ğ	220	200	3	
ğ	ł	22	1611	40 6 5	2000	3001				5			2128	ŝ	1121	1178		1014	111		222	9/00	4112	610	į			0/22		9262	4007	3795	1115	1784				3	712	100	3286	122		3	5	Į	3	8				151	Ř	101	8	2	ឆ	5	F	8	ē	R	Ī	Ĩ			4100	2460	1987 1987	8	8		629	1217	1410	35	8	20	
For	ł	121	941	1181	ş	1	}	2		5	5		2100	2	20802	7475		Ŗ	ā	2140	ē	2	14	5	1		5		1020	1908) 1		1901	1220	Ş		I		3	275	202	1674	8	5	X	5	15	ŗ	2		<u>8</u>	9	\$	2	8	<u>9</u>	9	8	R	2	2	2	8	ŝ	ē			29W22	2577	1090	19	8	9 5	1272	1911	90	3	ŝ	200	
Subplot		-	۵	-	-		•	•	•	0	4	0	•	٥	•	• 4	5	-10	۵	•	۵	4		• •	• 4		•	٥	•	۵	•	4	• •	• •		.	0	•	٥	-	٥	-	-		• 4		• •		•	•	•	٥	•	۵	•	۵	•	۵	•	٥	•	م	•	۵	•	٥	•	٥	•	م	•	۵	-	٥	-1	م	-	٥	I.
ž		<	<	8	•		، د	0	0	D	< ۲	<	60	60	U) (ו נ	0	٥	<	<	9		، ر) (، ر	5 (0	<	<	80	•) (2	0	<	<	80	60	U	, c) C	. .	•	•	•	00	a (υ	υ	٥	0	<	<	60	60	υ	υ	٥	۵	<	<	80	80	υ	υ	٥	0	<	<	80	60	U	υ	0	0	I
Evert		-	-	-	-		-	-	-	-	~	7	7	~	~	• •		~	7	-	-	-				- -	-	-	4	4	4	-		• •	•	•	4	'n	ŝ	ŝ	-	e en		.	•	n 9			0	¢	¢	¢	v	v	•	~	1	*	1	2	-	~	æ	•	Ð	e	•	•	•	•	œ	•	a	a			a	. 0	1
Deys		0	0	0	• c		-	•	•	•	2	2	2	2	15	3 9	R, I	2	82	47	4	1	5	5	; ;	;	•	47	84	28	78		2	2	2 ;		8	110	110	110	110	011			2 :	2	2	3	5	2	<u>6</u>	8	50	5	Ŕ	12	Ŕ	la	13	721 72	727	2	32	9 2	3	3	3	95	32	92	8	8	3	2		200	2	9	ł
Treatment		ALC: N		Niche				Nerse						otcol					AND ID	and and a		Netrate									Netace							NGTALA		Alcon	Altrain	Nitratio									a Can	Netra	Signal	Alcula		a Cin	Nurse	BICON	a curve	Network											and and			SC2N	aj Li Ji	Ninte	All the second s		

Treatment	Days	Event	Plot	Subplot	Short	Long	Arometics	TPH	Log Short	Log Long	Log Arom	Log TPH
Control	0	1			markader 6482	mghgdw 522	1098	mghgdw 8102	38	27	3.0	39
Control	ō	1	Ä	6	423	221	2861	3605	26	23	35	35
Control	0	!	8		1176	3565	1756	6497	31	36	32	38 37
Control	0	1 1	8	b	1026 263	1620 1227	2762 564	5410 2055	30 24	32 31	3.4	33
Control Control	0	÷	с с	a D	885	5010	855	6760	29	37	29	38
Control	ŏ	1	ŏ	2	1758	351	532	2641	32	25	27	34
Control	Ō	1	Ď	b	1071	439	808	2118	30	26	26	33
Control	28	2	A	a	3127	6635	1736	11498	35	38	32	41
Control	28	2	<u>^</u>	D	457 7964	775 5444	1354 7179	2585 20587	27 39	29 37	31	43
Control Control	28 28	2 2	8	a b	1454	1615	2535	5804	32	32	34	37
Control	28	2	č		3851	7073	4174	15098	36	38	36	42
Control	28	2	с	b	650	1467	1838	3965	28	32	33	36
Control	28	2	D	a	2249	3166	2874	6291	34	35	35	39
Control	28 47	2	D	D	1007 61	1320 630	1973 972	4299	30	31 26	33 30	36 32
Control Control	47	3	A A	a b	202	99	421	723	23	20	26	29
Control	47	3	ê	a	695	393	817	1904	28	26	29	33
Control	47	ž	B	0	252	934	959	2145	24	30	30	33
Control	47	3	с	3	2073	2218	1493	5784	33	33	32	38
Control	47	3	ç	Þ	2011	2373	646	5230	33	34	29 32	37
Control Control	47 47	3	0	a b	525 699	787 1175	1650 1647	2962 3623	27	29 31	32	35
Control	78	4	Ă	a	252	880	6363	7515	24	29	38	39
Control	78	4	Ä	5	513	5886	5658	12057	27	38	38	41
Control	78	4	8	3	468	1805	3367	5659	27	33	35	38
Control	78	4	8	ð	461	1297	2523	4282	27	31	34 37	36 39
Control	78 78	4	c		609 607	1885 1834	4637 776	7131 3416	28	33	29	35
Control Control	78		C D	b a	403	1150	308	1861	26	31	25	3 3
Control	78	4	ŏ	5	650	1596	425	2671	20	32	26	34
Control	110	5	Ā	i i	964	1738	125	2828	30	32	21	35
Control	110	5		b	223	619	252	1093	23	28	24	30 2C
Control	110 110	5	B	3	98 553	262 1526	86 371	447 2450	20 27	24 32	26	34
Control Control	110	5	B C	b a	209	663	74	936	23	26	19	30
Control	110	5	č	5	138	511	70	719	21	27	18	29
Control	110	5	ō	à	773	1330	564	2666	29	31	28	34
Control	110	5	D	b	206	622	174	1002	23	28	22	30
Control	138	6	A .	a	669 2771	435 3231	4425 3459	5530 9461	28	26 35	36 35	37
Control Control	138	6	A B	b a	1272	2956	1718	5946	31	35	32	38
Control	138	6	8	b	3523	1155	270	4947	35	31	24	37
Control	138	Ğ	č	3	197	1105	180	1482	23	30	23	32
Control	138	6	с	D	3900	2717	173	6790	36	34	22	38
Control	136	6	0	a	4682	3060	60	7822	37	35	18	39 37
Control Control	138 327	67	0	b	1354 22	2526 180	996 393	4877 595	31	34 23	26	28
Control	327	7	â	a b	21	190	361	573	13	23	25	28
Control	327	ż	Ê	ě	99	381	434	915	20	26	26	30
Control	327	7	8	6	52	161	138	350	17	22	21	25
Control	327	7	с	a	429	1032	802	2263	26	30	29	34
Control	127 122	7	ç	b	136	249 260	232 151	618 536	21	24 24	24 22	28 27
Control Control	327	7	D	ab	1218	200	117	415	20	23	21	26
Control	359	6	Ă	à	53	209	279	540	17	23	24	27
Control	359	6	Ä	5	26	221	264	511	1.4	23	24	27
Control	359	8	в	a	1209	2684	114	4007	31	34	21	36
Control	359	8	B	b	96 45	253 394	1943 90	2292 529	20	24	33 20	34 27
Control Control	350 359	8 8	с с	a b	45 918	1723	90 149	2789	30	32	22	34
Control	359	8	Ď	3	1261	2409	87	3756	31	34	19	36
Control	359	ě	ŏ	Ē.	478	1196	2270	3944	27	3.1	34	36
Control	389	9	Ă	à	1617	1885	1975	5477	32	3.3	33	37
Control	389	9	A	0	1879	2619	752	5250	3.3	34	29 25	37 25
Control	389 389	9	8	3	6 367	26 556	311 395	343 1337	08	14 27	25	31
Control Control	389	9	8 C	D	367	500 793	273	1099	15	29	24	30
Control	389		č	a b		366	172	639	2.0	26	22	2.8
Control	389	9	ŏ	à	162	413	229	804	22	26	24	29
Control	389	9	D	b	50	294	75	419	17	25	19	26

.	-		. .	• • • • • •			Annation	TPH	Log Short	Log Long	Los Arom	Log TPH
Treetment	Deys	Event	Plot	Subplat	Short markadw	Long mg/Lgdw	Arometics methoder	mengen	markade	markader	mehade	manada
Control	28	2		3	1672	479	1556	3706	- 3 Ž	27	32	36
Control	28	2	A	b	519	92	4815	5426	27	20	37	37
Control	28	2	8	à	1265	407	1999	3671	31	26	33	36
Control	28	ž	8	6	2567	12	713	3292	34	11	29	35
Control	28	2	č	3	932	326	2822	4080	30	25	35	36
Cantrol	28	2	č	ь	631	313	2405	3549	29	25	34	36
Cantrol	28	Z	ō	3	615	269	1932	3015	29	24	33	35
Control	28	2	ō	6	486	127	7923	8538	27	21	39	39
Control	47	3	Ā		3313	5479	20	8611	35	37	13	39
Control	47	Ĵ.	Ä	Б	1694	1692	118	3504	32	32	21	35
Cantrol	47	ž	8	à	5339	9634	107	15079	37	40	20	42
Control	47	j	ĕ	6	1385	2430	200	4015	3 1	34	23	36
Control	47	ž	č	a	3149	3717	741	7606	35	36	29	39
Control	47	3	č	b	3569	4169	605	6343	36	36	28	39
Control	47	د	Ď	ä	2309	3364	207	5900	34	35	23	38
Control	47	3	ŏ	b	1677	2640	621	4938	32	34	28	37
Control	110	5	Ă	ă	803	796	45	1443	28	29	16	32
Control	110	5	Â	6	342	506	108	956	25	27	20	30
Control	110	5	Ĝ	ä	196	244	42	481	23	24	16	27
Control	110	5	8	• b	333	653	62	1067	25	20	19	30
	110	5	č	2	244	506	75	824	24	27	19	29
Control	-	5	č	b	36	83	34	153	16	19	15	22
Control	110	5	Ď	a	40	90	31	109	17	20	15	22
Control	110	5	Ď		57	127	50	241	1.6	21	18	24
Control		6	Ă		2276	2041	474	4791	34	33	27	37
Control	138 138	6	Â	b	2652	2762	679	6313	34	34	29	38
Control Control	136	6	â		486	1053	346	1666	27	30	25	33
	130	6	8	b	761	1253	296	2309	29	31	25	34
Control	136	6	č	a	2730	3424	602	6756	34	35	28	38
Control	138	6	č	6	2663	2920	939	6521	34	35	30	38
Control	136	6	Ď	3	2056	2090	281	4427	33	33	24	36
Control		6	D	-	2454	2403	229	5086	34	34	24	37
Control	138	7		D	335	327	129	790	25	25	21	29
Control	327	'	Å	a b	214	222	114	550	23	23	21	27
Control	327	'		-	399	446	244	1086	26	26	24	30
Control	327	' '	8	ab	370	586	302	1257	26	28	25	31
Control	327	'	8	-	130	316	103	549	21	25	20	27
Control	327	<i>'</i> ,	ç	a b	460	950	193	1612	27	30	23	32
Control	327		c		555	1017	244	1816	27	30	24	33
Control	327	7	D			79	479	646	19	19	27	28
Control	327	1	D	0	69				17	19	15	22
Control	359	8	A .		55	80 73	33 19	167 145	17	19	13	22
Control	359	8	A .	b	55			1370	20	30	23	31
Control	359	8	8		112	1056	203 557	2897	2.2	33	27	35
Control	359	8	B	b	152	2166				29	20	30
Control	359	8	ç		117	630	90	1036	21	27	17	28
Control	359	8	c	þ	101	452	55	606		29	15	30
Control	359	0	D		153	748	31	933	22	27	15	29
Control	359	8	D	b	204	491	31	726	23	£ /		••

C.1.5 MPN and Log MPN data

C . [•]	1.5 MPN	and Log		ta		
Treatment	days	Event	Plot		MPN/gdw	Log MPN/gdw
Air	0	1	Α	а	14000000	8.15
Air	0	1	B	а	17000000	7.23
Air	0	1	С	а	5000000	6.70
Air	0	1	D	а	14000000	8.15
Air	28	2	Α	а	1900000	6.28
Air	28	2	В	а	20000000	7.30
Air	28	2	č	a	140000000	8.15
Air	28	2	D	a	140000000	8.15
Air	47	3	Ā	a	190000	5.28
Air	47	3	В	a	200000	5.30
Air	47	3	č	a	190000	5.28
Air	47	3	D	a	190000	5.28
Air	78	4	A	a	200	2.30
Air	78 78	4	B	a	7000	3.85
	78	4	C	a	2000	3.30
Air	78 78	4	D	a	9000	3.95
Air					700	2.85
Air	110	5	A	а	4000	3.60
Air	110	5	B	а	2000	3.30
Air	110	5	С	а		3.30
Air	110	5	D	а	6000	3.53
Air	138	6	A	а	3400	
Aır	138	6	8	а	3000	3.48
Air	138	6	С	а	90000	4.95
Air	138	6	D	а	14000	4.15
Air	327	7	A	а	700	2.85
Air	327	7	В	а	176000	5.25
Air	327	7	С	а	90000	4.95
Air	327	7	D	а	3400	3.53
Air	35 9	8	Α	а	3000	3.48
Air	359	8	В	а	2300	3.36
Air	359	8	С	а	2600	3.41
Air	359	8	D	а	90000	4.95
Air	389	9	A	а	2000	3.30
Air	389	9	8	а	2000	3.30
Air	389	9	С	а	2000	3.30
Air	389	9	D	а	50000	4.70
Nitrate	0	1	A	а	190000	5.28
Nitrate	0	1	8	а	14000000	8.15
Nitrate	0	1	С	а	30000000	8.48
Nitrate	0	1	D	а	30000000	8. 48
Nitrate	28	2	Α	а	17000	4.23
Nitrate	28	2	B	а	190	2.28
Nitrate	28	2	С	а	190	2.28
Nitrate	28	2	D	а	190	2.28
Nitrate	47	3	Ā	а	24000	4.38
Nitrate	47	3	В	а	190	2.28
Nitrate	47	3	ċ	a	800000	5.90
Nitrate	47	3	Ď	a	190	2.28
Nitrate	78	4	Ā	a	30000	4.48
Nitrate	78	4	B	a	26000	4.41
Nitrate	78	4	č	ā	220000	5.34
Nitrate	78	4	Ď	a	70000	4.85
Nitrate	110	5	Ă	a	5000	3.70
ITINGLO		5	••	-		

Treatment	days	Event	Piot		MPN/gdw	Log MPN/gdw
Nitrate	110	5	8	а	1900	3.28
Nitrate	110	5	С	а	13000	4.11
Nitrate	110	5	D	а	190	2.28
Nitrate	138	6	Α	а	3000	3.48
Nitrate	138	6	В	а	3000	3.48
Nitrate	138	6	С	а	35000	4.54
Nitrate	138	6	D	а	50000	4.70
Nitrate	327	7	Α	а	24000	4.38
Nitrate	327	7	B	a	50000	4.70
Nitrate	327	7	С	а	170	2.23
Nitrate	327	7	D	а	1700	3.23
Nitrate	359	8	A	а	300	2.48
Nitrate	359	8	В	a	2300	3.36
Nitrate	359	8	Ċ	а	27000	4.43
Nitrate	359	8	D	a	800	2.90
Nitrate	389	9	Ā	a	200	2.30
Nitrate	389	9	B	a	1800	3.26
Nitrate	389	9	č	a	2000	3.30
Nitrate	389	9	D	a	1800	3.26
Control	0	1	Ā	a	190000	5.28
Control	õ	1	В	a	190000	5.28
Control	ŏ	1	č	a	12000000	7.08
Control	õ	1	D	a	190000	5.28
Control	28	2	Ă	a	17000	4.23
Control	28	2	8	a	90000	4.95
Control	28	2	č	a	200000	5.30
Control	28	2	D	a	13000	4.11
Control	47	3	Ā	a	5000	3.70
Control	47	3	8	a	1700	3.23
Control	47	3	č	a	190	2.28
Control	47	3	D	a	3400	3.53
Control	78	4	Ā	a	2000	3.30
Control	78	4	В	a	1700	3.23
Control	78	4	ċ	a	2000	3.30
Control	78	4	D	a	3000	3.48
Control	110	5	Ā	a	2000	3.30
Control	110	5	В	a	1300	3.11
Control	110	5	č	a	1900	3.28
Control	110	5	D	a	8000	3.90
Control	138	6	Ā	3	800	2.90
Control	138	6	В	а	50000	4.70
Control	138	6	č	a	2200	3.34
Control	138	6	Ď	a	2600	3.41
Control	327	7	Ā	a	90000	4.95
Control	327	7	B	a	16000	4.20
Control	327	7	Ċ	a	90000	4.95
Control	327	7	D	а	176000	5.25
Control	359	8	Ā	a	800	2.90
Control	359	8	B	a	2300	3.36
Control	359	8	č	a	200	2.30
Control	359	8	D	a	1700	3.23
Control	389	9	Ā	a	5000	3.70
Control	389	9	B	a	180	2.26
Control	389	9	č	a	1800	3.26
Control	389	9	Ď	a	180	2.26
	003	3	U			

C.1.6 S. alternifiore Height and Density

				Sarr	npling Evi	ent 1									
			C	D	Dens.	•	8	C	D	Dens.	A		CONTROL	D	Dens.
# stems average (cm) std dev (cm)		130 158 137	00	16.0 17 7 12 5	29 0 16 6 12 8	110 320 115	21 0 24 3 6 5	6.0 33 6 19.1	37 0 40 7 12 5	750 343 134	29 0 30 7 10 4	22 0 33 7 13 6	23.0 41.1 10.8	340 334 115	108 0 34 4 12.0
h anghts (cm)		40 39 290 215 406 54 76 54 192 261 34 55		63 86 244 102 309 78 74 26 38 6 33 36 6 33 55 55		20 6 37 6 36 9 41 6 41 0 52 5 37 0 21 9 9 26 2 15 6	12 2 19 1 24 3 20 2 24 9 19 3 24 7 25 1 28 2 30 8 22 4 36 1 24 1 20 6 27 9 31 2 25 4	41 9 46 6 8 1 10 2 46 7 48 3	$\begin{array}{c} 48.8\\ 8.5\\ 2.236\\ 5.5\\ 4.4\\ 3.5\\ 5.5\\ 5.1\\ 8.6\\ 6.6\\ 6.0\\ 2.7\\ 7.8\\ 2.6\\ 8.2\\ 5.5\\ 7.6\\ 7.6\\ 7.6\\ 7.6\\ 7.6\\ 7.6\\ 7.6\\ 7.6$		348 152 310 87 5201 296 420 306 420 306 420 306 420 306 270 207 207 207 207 207 316 309 446 532 421 370 276 376 370 426 370 276 370 276 370 276 370 277 276 370 277 277 277 277 277 277 277 277 277 2	520 4612 223 360 71 108 410 108 410 108 410 108 410 410 410 410 410 410 429	47 0 480 0 27 0 350 0 41 0 550 0 40 0 23 0 23 0 25 0 55 0 35 0 45 0 45 0 45 0 45 0 45 0 35 0 45 0 45 0 46 0 49 0	29 0 47 0 46 0 61 0 32 0 36 0 43 0 36 0 31 0 36 0 37 0 37 0 37 0 37 0 38 0 31 0 31 0 31 0 31 0 31 0 31 0 31 0 31	
				Sam	spling Evi	int 2		NITRATE					CONTROL		
		•	C	D	Dens.	•		C	D	Dens.	•	•	C	D	Dens.
# siems average (cm) sid dev (cm)	14 0 12.0 9 5	110 151 56	40 78 17	70 73 21	3450 116 73	190 208 132	150 236 91	70 293 66	11 0 25 5 12 6	52 0 23 8 11 3	90 316 103	30 0 24 9 8.9	21 0 26 0 11 3	240 311 88	84 0 27 7 9 9
heights (cm)	13 0 12 0 2 0 5 0 5 0 6 0 3 0 12 0 12 0 12 0 28 0 36 0	14 0 16 0 7 0 8 0 11 0 12 0 19 0 23 0 24 0	10 0 6 0 8 0 7 0	40 60 80 110 70 80 70		14 0 14 0 60 7 0 53 0 22 0 19 0 7 0 8 0 31 0 24 0 14 0 8 0 24 0 14 0 36 0 26 0 36 0 36 0 36 0 36 0 36 0	130 130 260 300 210 110 320 320 320 320 320 320 320 320 320 32	38 0 31 0 30 0 16 0 30 0 31 0 29 0	290 350 310 200 140 470 60 260 80 80 290 370		37 0 390 0 24 0 45 0 36 0 42 0 19 0 18 0 24 0	34 0 32 0 34 0 36 0 32 0 36 0 36 0 36 0 27 0 28 0 27 0 20 0 27 0 28 0 27 0 20 0 27 0 20 0 27 0 28 0 27 0 20 0 27 0 28 0 20 0 27 0 20 0 27 0 20 0 20 0 27 0 20 0 20 0 27 0 20 0 20 0 20 0 27 0 20 0	41 0 41 0 36 0 12 0 36 0 18 0 20 0 7 0 12 0 36 0 16 0 26 0 36 0 26 0 32 0 21 0 32 0 21 0 32 0 21 0 36 0	25 0 36 0 27 0 36 0 43 0 18 0 48 0 34 0 34 0 48 0 48 0 48 0 48 0 48 0 48 0 34 0 34 0 34 0 28 0 34 0 28 0 28 0 28 0	

				San	upling Ev	ent 3							CONTROL		
			AIR C	D	Dens.			C	D	Dens.			C	D	Dens.
# stems average (cm) std dev (cm)	50 226 103	17 0 32 3 29 0	20 180 00	10 0 61 2 30 4	34 0 38 5 30.2	00	90 146 1 93	130 1335 178	12 0 47 2 25.7	34.0 106.4 46.5	320 1125 409	12.0 113.9 17.0	11 0 84 5 25 3	12.0 81.7 38.9	67 0 102 7 37 2
h eights (cm)	300 270 290 50	50 30 365 80 275 105 250 190 250 190 250 190 880 310 840	18.0 18.0	85.0 64.0 98.0 81.0 45.0 90.0 23.0 19.0 27.0			140 0 144 0 151 0 151 0 157 0 151 0 138 0 138 0 137 0 145 0	1360 1370 1360 970 1340 1290 1380 1390 1590 1590 1590 1590	310 640 710 710 360 170 120 610 470 330 210		101 0 161 0 123 0 129 0 132 0 135 0 136 0 137 0 137 0 137 0 142 0 138 0 147 0 52 0 55 0 147 0 52 0 52 0 52 0 147 0 147 0 52 0 147 0 147 0 147 0 128 0 147 0 127 0 148 0 127 0 148 0 127 0 148 0 127 0 148 0 128 0 127 0 148 0 127 0 148 0 127 0 138 0 127 0 147 0 128 0 129 0 138 0 138 0 147 0 147 0 129 0 147 0 147 0 120 0 147 0 127 0 147 0 128 0 127 0 147 0 128 0 127 0 147 0 128 0 127 0 147 0 128 0 129 0 147 0 129 0 120 0 147 0 120 0 121 0 147 0 120 0 121 0 120 0 121 0 120 0 127 0 128 0 127 0 128 0 129 0 129 0 120 0 1	136 0 146 0 134 0 98 0 99 0 104 0 127 0 106 0 106 0 106 0	95 0 98 0 85 0 85 0 76 0 108 0 108 0 110 0 33 0 44 0	137 0 140 132 0 790 340 950 950 850 850	
				Sam	pling Ev	ent 4									
			ANR C	D	Dens.			C	D	Dens.			CONTROL	D	Dens.
F stems average (cm) ski dev (cm) heights (cm)	130 866 402 700 570 1270 1340 1050 520 1220 1220 120	50 766 195 610 640 1050 890 640	14 0 104 4 18 1 131 0 133 0 101 0 100 0 76 0 123 0 123 0 123 0 96 0	130 610 350 940 1000 1040 1140 210 230 170 430	45 0 83 6 34 7	180 1174 343 1170 920 1360 1480 1480 1400 1310 1430 1180	00	00	110 468 205 630 440 370 460 370 310 160 690	290 906 456	190 1014 495 170 106 1 1440 1360 1360 1270 1400 1360	16 0 102 4 55 1 14 0 108 3 153 0 148 0 152 0 50 0 80 0 160 0	11 0 100 7 47 2 9 0 109 9 63 0 102 0 134 0 147 0 33 0 133.0	150 1041 365 130 1106 980 970 570 910 1410 650	61 0 102 2 46 6
	120 1250 1180 420 540 1980		960 960 1000 1010 950 910	450 560 530 890 260 530		127 0 125 0 149 0 146 0 31 0 120 0 123 0 116 0 119 0 32 0			410 910 400		127 0 130 0 129 0 125 0 137 0 133 0 110 0 16 0 14 0 30 0 33 0	157 0 154 0 148 0 148 0 39 0 41 0 43.0 45.0	158.0 106.0 114.0	1340 1260 1170 1310 1310 1310 1300 1200	

				Ser	n pling Ev	ent 5									
		-	ANR C	D	Dens.			NTRATE	D	Dens.			CONTROL	D	Dans
	•		6	0		•	•		U		-	-	-		
# stems	20 0	230	80	80	59 0	18.0	60	220	12.0	58 0	14 0	130	00	110	38.0
average (cm)	84.3	36.2	53 3	49 9	56 7	145 6	101 3	120 5	129.2	128.1	70.4	64.8		63.4	723
std dev (cm)	35.9	34.1	29.1	26.2	38.5	27 2	47 7	56 4	27 6	43.5	52 6	46 3		38.3	46 0
heights	102.0	715	106.0	86.0		156 0	120	122.0	149.0		164 0	123.0		95.0	
(cm)	44.0	38.5	66.0	62 5		167 0	127 0	159 0	134.0		139.0	38.0		114 0	
	1160	390	84 0	75 0		158 0	132.0	149 0	137 0		154 0	52 0		123 0	
	420	33 0	40.5	18 0		180 0	95 0	148 0	134.0		79 0	30 0		110.0	
	39 0	320	36 0	18.0		147.0	99 0	143.0	127 0		23.0	124 0		84 0	
	95 0	36 0	29 0	30.0		170 0	143.0	156 0	1180		32.0	122.0		760	
	86 0	40	25 0	66 0		140 0		162.0	157 0		56 0	140.0		77 0	
	124 0	60	40 0	44 0		148 0		163 0	1420		105.0	770		100 5 113 0	
	64 0	50				47 0		149.0	1360		800	22 0 17 0		130	
	106 0	35				167 0		00	163 0 70 0		730 210	490		12 0	
	27 0	50				133.0 164.0		37 0 16 0	63.0		190	20 0			
	37 0	51 5				158.0		230	00.0		200	29.0			
	43 0 147 0	430 960				1320		390			200				
	120 0	14.0				147 0		153 0							
	106.0	65				140 0		145.0							
	106 0	130				144 0		142.0							
	106.0	108.0				1430		158.0							
	62.0	107.0						124 0							
	107 0	790						154 0							
		130						142.0							
		10 0						164 0							
		19 0													
				Sen	n pling Evi	ent 6									
			AIR	_	_		-	NITRATE	_	_			CONTROL	D	Dens.
	•	•	с	D	Dens.	•		c	D	Dens.	•		с	0	Line in the
# siems	40	60	60	60	22 0	12.0	10 0	10 0	10 0	420	90	13 0	80	10 0	40.0
average (cm)	328	27 0	17 7	48 7	31.4	16 0	16.8	27 0	16.4	19.4	62 8	46 7	421	84 7	58 9
std dev (cm)	78	138	62	10 0	15.2	45	128	17.4	12 5	127	31.1	34.2	517	423	41.6
heights	40.0	28 0	25 0	58 0		20 0	70	10 0	120		620	730	130.0	105.0	
(OTT)	38 0	36 0	10 0	62 0		23 0	30	10 0	130		790	28.0	200	15 0	
	23 0	10 0	19 0	40.0		15.0	50	150	90		790	710	110	1120	
	30 0	38 0	12.0	40.0		130	35.0	60	70		78.0	120.0	10.0	910	
		40 0	16 0	40 0		10 0	30 0	16 0	34.0		100.0	36.0	70	330	
		10 0	24 0	52.0		15 0	33.0	33 0	160		740	560 700	110 1200	1100 1130	
						13.0	25.0	50 0	34.0		710 160	700 590	28.0	280	
						10.0	30	500	400		6.0	10.0	400.U	1300	
						15 0 15 0	12 0 15 0	400 400	90 100		0.0	80		110.0	
						200	13.0		10 0			70			
						23.0						80			
												61 0			

	Sampling Event 8 AdR NITRATE							CONTROL							
		8	ĉ	Ð	Dens.			C	D	Dens.	•	•	C	D	Dens.
# slems average (cm) sid dev (cm)	350 157 37	360 110 29	180 128 30	230 147 33	1120 127 43	70 157 37	14 0 10 3 34	10 90 35	15.0 14.6 3.2	37 0 13 3 4 0	190 152 30	140 140 40	70 100 19	20 185 92	420 136 43
heights (cm)	$\begin{array}{c} 50\\ 190\\ 110\\ 150\\ 150\\ 150\\ 150\\ 170\\ 150\\ 170\\ 160\\ 170\\ 160\\ 140\\ 240\\ 190\\ 110\\ 210\\ 0\\ 110\\ 110\\ 210\\ 0\\ 110\\ 11$	$\begin{array}{c} \textbf{80} \\ \textbf{120} \\ \textbf{90} \\ \textbf{170} \\ \textbf{110} \\ \textbf{150} \\ \textbf{110} \\ \textbf{150} \\ \textbf{100} \\ \textbf{150} \\ \textbf{100} $	70 120 150 150 170 160 160 160 160 160 1100 140 110 120 130	90 160 210 150 90 160 170 160 170 150 150 150 150 160 140 140 140		210 170 180 120 120 100 170	17 G 80 140 110 80 90 90 70 110 90 90 80	90	80 90 130 150 150 150 150 150 150 150 150 150		17 0 18 0 14 0 11 0 14 0 90 21 0 14 0 16 0 16 0 16 0 16 0 16 0 16 0 16 0 16	140 120 120 120 120 120 170 190 170 170 130 60 120	100 80 110 130 90 110 70	12 0 25 0	
		10 0													
		10 0		Sarr	ipling Evi	ent 9									
	•	10 0	AIR C	Sarr D	ipling Evi Dans.	ent 9 A	8	NITRATE C	D	Cens.	•	•	CONTROL C	D	Dens.
# siems average (cm) sid dev (cm)	A 29 0 44 2 10 5						30 293 202		D 20 0 58 1 11 9	Dens. 56 0 44 9 16 1	A 17 0 17 2 6 6	8 14 0 27 1 11 9		D 12.0 30.8 10.9	Dens. 50 0 27 1 11 1

	Nitrate	-N Concer	ntration						
Sampling				Treatment					
Event		air			nitrate			control	
		mean	std dev		mean	std dev		mean	std dev
		(mg/L)	(mg/L)		(mg/L)	_(mg/L)		(mg/L)	(mg/L)
1	0.32			0.09			0.80		
1	0.24	0.28	0.06	0.35	0.22	0.18	0.06	0.43	0.52
2	0.42			0.24			0.08		
2 2 3 3	0.00	0.21	0.30	0.00	0.12	0.17	0.21	0.15	0.09
3	0.12			0.32			0.10		
3	0.06	0.09	0.04	0.02	0.17	0.21	0.07	0.09	0.03
4	0.74			0.05			0.02		1
	0.03	0.39	0.50	0.10	0.08	0.04	0.00	0.01	0.01
5	0.13			0.06			0.06		
4 5 6 6 7	0.21	0.17	0.06	0.11	0.09	0.03	0.06	0.06	0.00
6	ND			ND			0.03		
6	ND			ND			0.01	0.02	0.02
7	ND			ND			0.01		
7	ND			ND			0.01	0.01	0.00
	ND			ND			ND		
8	ND			ND			ND		
9	ND			ND			ND		1
8 8 9 9	ND			ND			ND		

ND=not dedermined

Sampling			1	reatment	ł				
Event		air			nitrate			control	
		mean (me/L)	std dev (mg/L)		mean (mg/L)	std dev (mg/L)		mean (mg/L)	std dev (mg/L)
		(mg/L)		1.07	((1))/()/()		0.37		
1	0.02	0.57	0 77		0.72	0.49	0.12	0.25	0.18
1	1.11	0.57	0.77	0.37	0.72	0.49		0.20	0.10
2	0.13			4.73			0.87	a	
2	0.07	0.10	0.04	0.01	2.37	3.34	0.00	0.43	0.61
3	0.01			0.86			0.85		
2 2 3 3	0.03	0.02	0.01	0.13	0.50	0.52	0.24	0.54	0.43
4	0.01			3.10			0.79		
4	0.09	0.05	0.06	0.28	1.69	1.99	0.91	0.85	0.09
5	0.01			0.01			0.11		
5	0.99	0.50	0.69	0.04	0.03	0.02	2.45	1.28	1.66
6	0.00			0.01			0.01		1
6	0.00	0.00	0.00	0.08	0.05	0.06	0.02	0.02	0.01
5 5 6 7	0.00			0.00			0.01		
7	0.01	0.01	0.01	0.01	0.00	0.00	0.05	0.03	0.03
	0.01			0.34			ND		
8 8	0.01	0.01	0.00	0.34	0.34	0.00	ND		
9	0.18			0.14			0.47		
9 9	0.02	0.10	0.11	0.15	0.14	0.01	0.47	0.47	0.00

Phosphate-P Concentration

ND=not dedermined

Sampling	Amonia	-N Conce	ntration	Treatment					
Event		air mean (mg/L)	std dev (mg/L)		nitrate mean (mg/L)	std dev (mg/L)		control mean (mg/L)	std dev (mg/L)
1	12.46			1.46			0.12		
1	1.14	6.80	8.00	1.06	1.26	0.28	0.75	0.44	0.44
2	0.87			0.49			1.01		
2 2 3 3	0.00	0.44	0.62	0.00	0.24	0.35	0.38	0.69	0.45
3	3.01			0.46			1.33		
3	1.94	2.47	0.76	7.82	4.14	5.20	0.49	0.91	0.60
4	2.14			1.48			7.45		
4	0.32	1.23	1.29	1.22	1.35	0.18	3.18	5.32	3.02
5	0.29			0.33			0.47		
5	1.76	1.03	1.04	0.65	0.49	0.22	9.64	5.05	6.49
6	ND			ND			2.68		
4 5 6 6 7	ND			ND			3.50	3.09	0.58
7	0.57			0.60			1.16		
7	1.63	1.10	0.75	0.36	0.48	0.17	0.79	0.98	0.26
8	0.22			1.40			ND		
8 8 9	0.22	0.22	0.00	1.40	1.40	0.00	ND		
9	0.18			0.13			1.03		
9	0.13	0.15	0.03	0.47	0.30	0.24	1.03	1.03	0.00
	ND=	not dedern	nined						

•

APPENDIX D.1 CALCULATIONS DURING THE STUDY

D1.1 Detection Levels for the EPA Method

Sample	TPH mg/kg _{dw}					
1	30					
2	10					
3	140					
4	ND					
5	503					
6	ND					
7	300					
Mean	197					
tandard Deviation	206					

Table D1.1. TPH using EPA Method. The results are the mean and standard deviation for the CS used to calculate the MDL and LOQ.

Standard Deviation206ND = not detectedNote: The values were obtained in
two different sets of samples (1-3 Table A1.1 and 4-7 Table A1.2).

EPA (1994) specifies that:

MDL = ts

where : t = 3.75 (one tail t test, p=0.01), and s = 206 mg/kg_{dw}

 $MDL = 206 \text{ mg/kg}_{dw} \times 3.75 = 773 \text{ mg/kg}_{dw}$

Standard Methods specifies that:

LOQ = 10s

Where: $s = 206 \text{ mg/kg}_{dw}$

 $LOQ = 2,060 \text{ mg/kg}_{dw}$

D1.2 Detection Levels for the ASTM Method

Sample	Absorbance (AU)
1	0.179
2	0.198
3	0.176
4	0.179
5	0.177
6	0.177
Mean	0.181
Standard Deviation	0.0841

Table D1.2. The results are the mean absorbance and standard deviation for the lowest calibration standard (40 mg No. 2 fuel oil/L) used to calculate the MDL and LOQ.

AU = absorbance units

The MDL was calculated as 3.37 (one tailed t test, p=0.01) times the standard deviation of the lowest liquid calibration standard used (40 mg/L). Then, the concentration (mg/L) corresponding to the absorbance was determined using the line of best fit for the calibration curve data and multiplied by the solvent/sample ratio to obtain the mg TPH/kg_{dw}. MDL = 52 mg/kg_{dw}. The LOQ was calculated as 10 times the standard deviation and transformed to mg/kg_{dw} following the same procedure for the MDL. LOQ= 180 mg/kg_{dw}.

Example of MDL calculation:

 MDL_{AU} = ts = (3.37) (0.0841 Au) = 0.28 AU

From the calibration curve, 0.28 AU corresponds to a concentration of 5.2 mg TPH/L.

Using the solvent/sample ratio, this is converted to mg TPH/kgdw

MDL = 5.2 mg TPH/L x 50 mL solvent/5 g soil x 1000 g /kg x L/1000mL x 1 (dry)

weight fraction for CS)

 $\underline{MDL} = 52 \text{ mg/kg}_{dw}$

D1.3 Number of Samples for the EPA Method

The number of samples was calculated based on Equation 4.1 (See Results and Discussion) and its related figure from Standard Methods (2000). The number of samples required in estimating a mean concentration is:

$$N \ge \left[\frac{ts}{U}\right]^2$$
 (Eq. 4.1)

where: N = number of samples, t = Student's t-statistic for a given confidence level (one tail, p=0.05, n = 16 marsh samples from which s was derived), s = overall standard deviation of marsh samples (2,544 mgTPH/kg_{dw}), and U = acceptable level of uncertainty or detectable difference desired between samples (1,000 or 500 mgTPH/kg_{dw}). For a U of 1,000 mgTPH/kg_{dw}, N = ~ 25 samples For a U of 500 mgTPH/kg_{dw}, N = ~ 100 samples

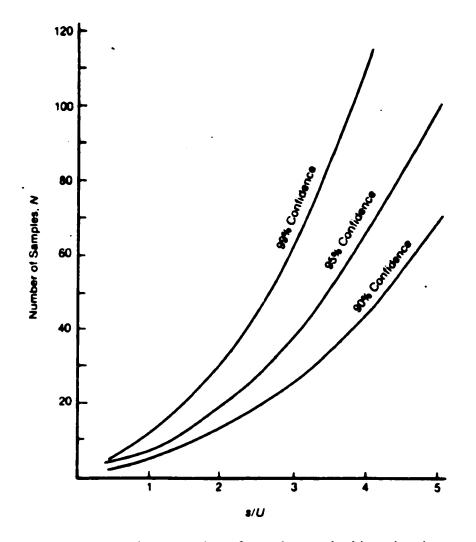


Figure D1.3. Approximate number of samples required in estimating a mean concentration. (Taken from Standard Methods, 2000).

D1.4 Plot Volume

30 ft x 10 ft x 8 in x 1 ft/12 in = 200 ft³

Assumes the radius of influence of the wells will allow penetration of the amendment to a maximum depth of 8 in. below the sediment surface.

200 ft³ x 0.0283 m³/ft³ = 5.66 m^3

Total plot volume $= 5.66 \text{ m}^3$

Liquid volume in sediment pore spaces assuming 0.4 porosity = 2.27 m^3 = (5.66m³ x 0.4) Plot volume in the top 2 in. of the sediments where the highest TPH concentrations were found:

30 ft x 10 ft x 2 in x 1 ft/12 in x 0.0283 m³/ft³ = 1.42 m^3

Liquid volume in the 2 in. assuming 0.4 porosity = 0.57 m^3

D1.5 Stoichiometry for TPH degradation Using NO3⁻ as TEA

Table D1.5. Stoichiometry for the biodegradation of SC and LC aliphatics, and aromatics using NO_3^- as TEA.

Compound	Theoretical Stoichiometry		
SC Aliphatic C ₁₄ H ₃₀	$C_{14}H_{30} + 22.4 \text{ NO}_3^- + 48.4 \text{ H}^+ \rightarrow 14 \text{ CO}_2 + 11.2 \text{ N}_2 + 39.2 \text{ H}_20$		
LC Aliphatic C ₂₈ H ₅₈	$C_{28}H_{58} + 44.8 \text{ NO}_3^- + 99.8 \text{ H}^+ \rightarrow 28 \text{ CO}_2 + 22.4 \text{ N}_2 + 78.4 \text{ H}_20$		
Aromatic C ₁₇ H ₁₇	$C_{17}H_{17} + 27.2 \text{ NO}_3^- + 78.2 \text{ H}^+ \rightarrow 17 \text{ CO}_2 + 13.6 \text{ N}_2 + 47.6 \text{ H}_20$		

Calculation for the theoretical NO₃⁻ demand during the degradation of an SC aliphatic: For one mole of an SC aliphatic molecule ($C_{14}H_{30}$ M.W= 198 g), 22.4 moles of NO₃⁻-N (Nitrogen M.W = 14 g) is needed as a TEA for a total of 313.6 g NO₃⁻-N.

Based on the stoichiometry, to degrade 0.100 g of SC aliphatics, 0.158 g NO₃⁻-N will be needed:

$$\frac{198g \text{ SC aliphatic}}{313.6g \text{ NO}_3 - \text{N}} \times \frac{X \text{ g NO}_3 - \text{N}}{0.100g \text{ SC aliphatic}} = 0.158g \text{ NO}_3 - \text{N}$$

Based on the stoichiometry, 0.159 g and 0.172 g of NO_3 -N will be needed to degrade 0.100 g of LC aliphatics and aromatics, respectively.

D1.6 Concentration of the NO₃⁻ in the amendment and expected concentration in the porewater

Concentration of the NO₃ solution added/week during the study:

430 g NaNO₃ were added. That is equivalent to 313.7 g as NO₃ and 70.8 g as N

 $NaNO_3 M.W. = 85 g, NO_3 M.W. = 62 g and, N M.W. = 14 g.$

Concentration in the total plot volume (5.66 m³ or 5,663 L)(Appendix D1.4):

 $(313.7 \text{g NO}_3 \text{ x } 1000 \text{ mg/g}) / 5,663 \text{ L} = 55.4 \text{ mg NO}_3 / \text{L}$

 $NO_3^- = 55.4 \text{ mg/L}$, and N = 12.5 mg/L

Concentration in the pore volume (2,270 L) (Appendix D1.4):

 NO_3 = 138.2 mg/L and N= 31.19 mg/L

D1.7 Mass of TPH per plot

Density of sediments ρ_s :

 $\rho_s = S_s \rho_w$

where: S_s is the sediment specific gravity. It was assumed $S_s = 1.8$ because it is a typical value for marsh sediments (Ballestero 2002), and ρ_w is the density of water (1,000 kg/m³).

 $\rho_s = 1.8 \ (1,000 \ \text{kg/m}^3) = 1,800 \ \text{kg/m}^3$

Solid fraction, S_f:

 $S_f = 1 - \phi$

Where: $\phi = 0.4 = \text{porosity}$ (assumed)

 $S_{f} = 0.6$

SC aliphatic fraction concentration in the Fore River Creek marsh:

~3,000 mg/kg_{dw} at the start of the study

Mass CS aliphatics in treatment volume = (solid fraction x TPH concentration x ρ_s x vol.

plot)

```
Mass SC aliphatics = 0.6 \times 3,000 \text{ mg/kg_{dw}} \times 1800 \text{ kg/m}^3 \times 1.42 \text{ m}^3 \times g/1000 \text{ mg}
```

Mass SC aliphatics = 4,601 mg SC/plot

Based on the stoichiometry (Appendix D1.5): ~ 0.158 g of NO3⁻-N are needed to treat 0.100 g of SC aliphatics, so for the SC (4,600 g/plot) in the Fore River Creek marsh, \sim 7,268 g of N will be needed.

For the LC aliphatics (3,200 mg/kg_{dw}) and aromatics (2,500 mg/kg_{dw})

 0.158 NO_3 -N/0.100 g CS = X g NO_3 N needed/4,600 g SC/plot

g NO₃ \overline{N} needed x 1000 mg/g = 7,268 mg NO₃ \overline{N} needed to degrade SC aliphatics in the plot

Bases on the stoichiometry (Appendix D1.5): for the LC (4,908 g) and aromatics (3,834 mg), 7,803 g NO₃⁻N and 6,594 g NO₃⁻N respectively, will be needed.

The total of N (NO₃⁻ as TEA) theoretically needed to degrade the total TPH in the Fore River Creek salt marsh (SC +LC + aromatics) will be <u>19,979 g NO₃⁻-N</u>

During the study, 70.8 g NO₃⁻-N/week were added during 30 weeks for a total of 2,124 g of NO₃⁻-N, that is ~10.6 % of the theoretical value needed to degrade the SC and LC aliphatics, and aromatics.

D1.8 Degradation Rates

	Degradation rates (mg/kg _{dw} /d ± 2s.) during the Summer and Fall, 1998			
	Control	Air	Nitrate	
SC Aliphatics	+13.1±12.8	+27.6±17.5	+20.7±10.9	
LC Aliphatics	+13.6±12.21	+22.7±14.9	+23.7±12.99	
Aromatics	+19.2±11.2	+16.9±9.9	+10.2±9.9	
	Degradation rates (mg/kg _{dw} /d ± 2s) during the Spring, 1999			
	Control	Air	Nitrate	
SC Aliphatics	-4.7±5.9	-12.1±12.8	-11.7±18.7	
LC Aliphatics	-7.6±9.9	-11.9±14.1	-17.1±25.2	
Aromatics	-3.9±7.2	-7.3±12.9	-15.5±38.2	
	Degradation rates constant (x10 ⁻³)(d ⁻¹)(± 2s) during the entire study			
	Control	Air	Nitrate	
SC Aliphatics	+8.7±3.9	+4.4±3.5	+5.0±4.9	
LC Aliphatics	+6.2±3.5	+4.1±3.5	+4.4±4.6	
Aromatics	+7.2±3.8	+4.4±4.4	+2.2±4.3	

Table D1.8 TPH fraction degradation rates for the Fore River Creek salt marsh.

(+) means that the TPH fraction concentration is decreasing. This corresponds to negative slopes on the plots of TPH concentration vs. time.