University of New Hampshire University of New Hampshire Scholars' Repository

Doctoral Dissertations

Student Scholarship

Winter 2002

Nitric oxide reduction by non-thermal plasma and catalysis

Zhongyuan Chen University of New Hampshire, Durham

Follow this and additional works at: https://scholars.unh.edu/dissertation

Recommended Citation

Chen, Zhongyuan, "Nitric oxide reduction by non-thermal plasma and catalysis" (2002). *Doctoral Dissertations*. 100. https://scholars.unh.edu/dissertation/100

This Dissertation is brought to you for free and open access by the Student Scholarship at University of New Hampshire Scholars' Repository. It has been accepted for inclusion in Doctoral Dissertations by an authorized administrator of University of New Hampshire Scholars' Repository. For more information, please contact nicole.hentz@unh.edu.

INFORMATION TO USERS

This manuscript has been reproduced from the microfilm master. UMI films the text directly from the original or copy submitted. Thus, some thesis and dissertation copies are in typewriter face, while others may be from any type of computer printer.

The quality of this reproduction is dependent upon the quality of the copy submitted. Broken or indistinct print, colored or poor quality illustrations and photographs, print bleedthrough, substandard margins, and improper alignment can adversely affect reproduction.

In the unlikely event that the author did not send UMI a complete manuscript and there are missing pages, these will be noted. Also, if unauthorized copyright material had to be removed, a note will indicate the deletion.

Oversize materials (e.g., maps, drawings, charts) are reproduced by sectioning the original, beginning at the upper left-hand corner and continuing from left to right in equal sections with small overlaps.

ProQuest Information and Learning 300 North Zeeb Road, Ann Arbor, MI 48106-1346 USA 800-521-0600

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

.

NITRIC OXIDE REDUCTION BY NON-THERMAL PLASMA

AND CATALYSIS

BY

ZONGYUAN CHEN

B.S. Tsinghua University, China, 1986 M.S. Tsinghua University, China, 1991

DISSERTATION

Submitted to the University of New Hampshire in Partial Fulfillment of the Requirement for the Degree of

Doctor of Philosophy

in

Engineering: Chemical

December, 2002

UMI Number: 3070971

UMI®

UMI Microform 3070971

Copyright 2003 by ProQuest Information and Learning Company. All rights reserved. This microform edition is protected against unauthorized copying under Title 17, United States Code.

> ProQuest Information and Learning Company 300 North Zeeb Road P.O. Box 1346 Ann Arbor, MI 48106-1346

> > .

This dissertation has been examined and approved.

Virculra K. Mattur

Dissertation Director, Dr. Virendra K. Mathur Professor of Chemical Engineering

Dr. Stephen S. . Fan, Professor of Chemical Engineering

Dr. Nivedita Gupta, Assistant Professor of Chemical Engineering

Dr. Joseph Paterno, Affiliate Professor

Dr. Christopher R. McLarnon, Director of Research and Development, Powerspan Corporation

Dec 11+2, 2002 Date

Dedicated to my parents and wife

whose expectation, encouragement and support made this work possible.

ACKNOWLEDGEMENTS

I would like to express my deepest gratitude and thanks to Professor V.K. Mathur for his guidance, experience and inspiration in directing the work presented in this dissertation. Thanks are also due to Professors Stephen S.T. Fan, Nivedita Gupta, Joseph Paterno and Dr. Christopher R. McLarnon for examining and improving this dissertation.

I would like to thank Dr. Christopher R. McLarnon and Ms. Claire Golden for their valuable advice and assistance to my experimental work of this study. Special thanks are owed to Professor Sterling A. Tomellini for his help in instrumentation. Thanks are also due to senior student James R. Carleton who helped conduct the dielectric constant measurement of barrier materials. Thanks also go to Mr. Jonathan Newell, who gave me a great amount of assistance in the assembly and maintenance of my apparatus. I would also like to express my appreciation to Ms. Nancy Littlefield for the administrative work done to support the completion of this study.

Finally, I would like to acknowledge to the Department of Chemical Engineering, UNH, whose financial support has been of great assistance.

iv

TABLE OF CONTENTS

		Page
DEI	DICATION	iii
AC	KNOWLEDGEMENTS	iv
LIS	T OF TABLES	viii
LIS	T OF FIGURES	ix
ABS	STRACT	xi
CH	APTER	
I	INTRODUCTION	1
	Regulation of NO_x and SO_2 Emissions	3
	NO _x Reduction Technologies	4
	Proposed Study	9
Π	LITERATURE REVIEW	
	NO _x Removal with Non-Thermal Plasma	
	Selective Catalytic Reduction of NO _x	
	Hybrid Plasma-Catalyst System for NO _x Removal	
	Dielectric Barrier Discharge (DBD) Reactor Design Parameters	
	Other Prospective Applications of DBD	
ш	THEORIES OF NON-THERMAL PLASMA CATALYSIS AND HYB	RID
	PLASMA-CATALYST SYSTEM	
	NO _x Reactions in Non-Thermal Plasma	
	Selective Catalytic Reduction of NO _x	
	Hybrid Plasma-Catalyst System	
IV	EXPERIMENTAL APPARATUS AND PROCEDURE	45
	Bench-Scale Dielectric Barrier Discharge Reactor and Catalytic Reactor	45
	High-Voltage Power Supply and Measurement	
	Gas Supply	
	Analytical Instrumentation	

.

.

СН	APTER	Page
V	RESULTS AND DISCUSSION	58
	Dielectric Barrier Discharge for NO _x Removal	58
	Effects of Operating Conditions	60
	NO/NO _x Conversions under Dry and Wet Conditions	67
	Effect of CO ₂ , CO, CH ₄ and C_2H_4 on NO/NO _x Conversions	74
	Effect of Packing in Plasma Reactor	78
	Reaction Kinetics and Modeling of NO Conversion under DBD Conditions	79
	Section Conclusions	83
	Selective Catalytic Reduction of NO _x	84
	Parameters and Operating Conditions	
	Effects of Catalysts on NO/NO _x Conversions	86
	Selective Catalytic Reduction of NO _x by CO	
	Selective Catalytic Reduction of NO _x by CH ₄	91
	Selective Catalytic Reduction of NO_x by C_2H_4	94
	Section Conclusions	99
	Hybrid Plasma-Catalyst System for NO _x Removal	100
	Configuration of a Plasma-Catalyst System	101
	CO Effect on NO _x Reduction with Plasma-Catalyst System	102
	CH ₄ Effect on NO _x Reduction with Plasma-Catalyst System	105
	C ₂ H ₄ Effect on NO _x Reduction with Plasma-Catalyst System	107
	NO ₂ Effect on Catalytic Reduction in the Presence of C ₂ H ₄	110
	Investigation of N ₂ O Formation	113
	Section Conclusions	116
	Dielectric Barrier Discharge Reactor Design Parameters	118
	Effects of Voltage and Frequency on SO ₂ Conversion	119
	Effect of Geometry on SO ₂ Conversion	120
	Effect of Barrier Materials on SO ₂ Conversion	121
	Effect of Barrier Thickness on SO ₂ Conversion	122
	Cost Estimates and Comparison	123
	Section Conclusions	126

•

.

CHAPTER

CHAPTER	Page
VI CONCLUSIONS	
VII RECOMMENDATIONS	
VIII LITERATURE CITED	
APPENDIX A	
APPENDIX B	
APPENDIX C	
APPENDIX D	

LIST OF TABLES

.

		Page
Table 1.1	Emissions of NO _x for Energy Production in U.S. (1998)	2
Table 2.1	Summary of Main Parameters of DBD Reactors	28
Table 3.1	Characteristics of Non-Thermal Discharges	34
Table 4.1	Properties of Dielectric Barrier Materials	48
Table 4.2	Specification of Reactors	51
Table 5.1	γ and E_i under Different Conditions	82
Table 5.2	Comparison of Maximum Conversions of NO/NO _x	. 104
Table 5.3	Composition Comparison between Original and Plasma-Conditioned	
	Feed Streams	. 104
Table 5.4	Comparison of NO/NO _x Conversions with 3000 ppm CH_4 Addition	. 106
Table 5.5	Composition Comparison between Original and Plasma-Conditioned	
	Feed Streams for 3000 ppm CH ₄ Addition	. 107
Table 5.6	Comparison of Conversions for 3000 ppm C_2H_4 Addition	. 108
Table 5.7	Improvement of NO _x Conversions by P-C System	. 109
Table 5.8	Composition Comparison between Original and Plasma-Conditioned	
	Feed Streams for 3000 ppm C_2H_4 Addition	.110
Table 5.9	Summary of N_2O Formations under Different Experimental Operating	
	Conditions	. 115
Table 5.10	Cost Comparison between DBD and Conventional Techniques	. 125

viii

LIST OF FIGURES

		Page
Figure 4.1	Schematic Diagram of Bench-Top System	46
Figure 4.2	Bench-Top Dielectric Barrier Discharge Reactor	47
Figure 4.3	Rectangular and Square DBD Reactors	50
Figure 5.1	Power Input/Efficiency vs. Frequency	60
Figure 5.2	Effect of Temperature on Dry NO/NO _x Conversions	62
Figure 5.3	Effect of Total Flow Rate on NO/NO _x Conversions	63
Figure 5.4	Effect of inlet NO Concentration on NO/NO _x Conversions	64
Figure 5.5	Effect of both Residence Time and Inlet NO Concentration on NO/NO) Sx
	Conversions	65
Figure 5.6	Outlet NO/NO _x Concentrations in the Presence of Water with He as	
	Balance Gas	66
Figure 5.7	Outlet NO/NO _x Concentrations in the Presence of Water with N_2 as	
	Balance Gas	67
Figure 5.8	Effect of Oxygen Concentration on NO Conversion as a Function of	
	Energy Density	68
Figure 5.9	Effect of Oxygen Concentration on NO_x Conversion as a Function of	
	Energy Density	69
Figure 5.10	Effect of Oxygen Concentration on NO/NO _x Conversions	70
Figure 5.11	Effect of Water Vapor Concentration on NO/NO _x Conversions	72
Figure 5.12	Effect of 1% Water Vapor and 8.3% O_2 on NO/NO _x Conversions	73
Figure 5.13	Effect of CO ₂ Concentration on NO/NO _x Conversions	74
Figure 5.14	NO/NO _x Conversions and CO Concentration vs. Energy Density	75
Figure 5.15	Effect of CH ₄ Concentration on NO/NO _x Conversions	76
Figure 5.16	Effect of C ₂ H ₄ Concentration on NO/NO _x Conversions	77
Figure 5.17	Effect of Packing on NO/NO _x Conversions for NO/N ₂ Gas Mixture	78

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

٠

.

	Page
Figure 5.18	Comparison of Experimental and Kinetic Model Results of Dry NO
	Conversion81
Figure 5.19	Comparison of Experimental and Model Results of Wet NO
	Conversion
Figure 5.20	Effect of Catalyst on NO/NO _x Conversions as a Function of
	Temperature
Figure 5.21	Effect of WO_3 Loading on NO/NO _x Conversions as a Function of
	Temperature
Figure 5.22	Effect of Inlet CO Concentration on NO/NO _x Conversions90
Figure 5.23	Effect of CH ₄ on NO/NO _x Conversions as a Function of Temperature91
Figure 5.24	Effect of CH_4 Concentration on NO/NO _x Conversions and CO
	Formation
Figure 5.25	NO/NO _x Conversions vs. Concentration of C ₂ H ₄ Added95
Figure 5.26	Effect of H_2O on NO/NO _x Conversions as a Function of Temperature97
Figure 5.27	Effect of O_2 on NO/NO _x Conversions as a Function of Temperature98
Figure 5.28	Effect of WO_3 Loading on NO/NO _x Conversions as a Function of
	Temperature
Figure 5.29	Effects of Catalysis Alone and Plasma-Catalysis on NO/NO _x Conversions
	as a Function of Temperature103
Figure 5.30	NO/NO _x Conversions vs. Concentrations of CH ₄ Added106
Figure 5.31	NO/NO _x Concentrations vs. Concentrations of C ₂ H ₄ Added108
Figure 5.32	Effect of C ₂ H ₄ Concentration on Catalytic Reduction of NO ₂ 111
Figure 5.33	Effect of C_2H_4 Concentration on NO_x Conversions for Different Feeds 112
Figure 5.34	Temperature Effect on NO _x Conversions for Different Feeds with 3000
	ppm C ₂ H ₄ Added113
Figure 5.35	SO ₂ Conversion vs. Voltage(peak values)119
Figure 5.36	Effect of Frequency on SO ₂ Conversion
Figure 5.37	Effect of Reactor Geometry on SO ₂ Conversion121
Figure 5.38	Effect of Barrier Material on SO ₂ Conversion
Figure 5.39	Effect of Barrier Thickness on SO ₂ Conversion

.

•

.

ABSTRACT

NITRIC OXIDE REDUCTION BY NON-THERMAL PLASMA AND CATALYSIS

by

Zongyuan Chen

University of New Hampshire, December 2002

Combustion of fossil fuels produces millions of tons of air pollutants such as NO_x and SO_2 . The high cost and operating difficulties of prevailing selective catalytic reduction(SCR) process are driving R&D efforts towards alternative technologies and modifications to the SCR technology. Non-thermal plasma technique has been found to be one of the most promising technologies for NO_x removal.

In the present study, a non-thermal plasma technique in the form of dielectric barrier discharge(DBD) has been extensively investigated for the removal of NO_x. The main variables including electrical parameters, chemical compounds and flow conditions are identified and studied in terms of their effects on NO/NO_x conversions. Significant increases in NO/NO_x conversions of 90% and 40% are observed in the presence of both O₂ and H₂O than in the presence of either O₂ or H₂O alone. Addition of 1000 ppm ethylene to the NO/O₂/CO₂/N₂ mixture almost promotes 100% NO oxidation to NO₂. The chemistry of plasma reactions is discussed. The DBD system is found to be effective for NO oxidization into NO₂ and HNO₃. Kinetics studies have also been made for NO-O₂ reaction under plasma conditions. A rate equation has been proposed, -d[NO]/dt = k_p

 $[NO]^{1/2}[O_2]^{1/2}$ with $k_p=0.0143\exp(-1865/E_d)$ showing that a reaction can be initiated at much lower activation energy under plasma conditions.

A hybrid plasma-catalyst(P-C) system has been developed to achieve the synergy. γ -Al₂O₃ and laboratory-prepared tungsten catalysts have been used in the hybrid P-C experiments. The improvement in NO_x removal by the P-C system is about 15% compared to by the SCR alone when 1000-3000 ppm of methane or ethylene is added to the inlet gas stream. There is no formation of N₂O(greenhouse gas) in the P-C system when inlet gas contains moisture or ethylene. DBD reactor design parameters have also been investigated in terms of SO₂ oxidation to SO₃ with respect to reactor geometry, dielectric material and thickness.

The DBD technique has the great potential to replace the prevailing combined SCR and flue gas disulfurization(FGD) processes both technically and economically. The P-C system has the potential to be used for the removal of NO_x from diesel engine exhausts.

CHAPTER I

INTRODUCTION

The U.S. Environmental Protection Agency's (EPA) most recent evaluation of status and trends of national air quality shows that the emissions of nitrogen oxides (NO_x) have increased almost 20% between 1970 and 2000 (EPA 2001a). The emissions of other principal pollutants (volatile organic compounds, SO₂, particulate matter, CO and Pb) have decreased significantly in the same period. Of the six tracked pollutants, improvement of ground-level ozone has been the least. Much of this ozone trend is due to increased emissions of NO_x , which have been well identified as a major contributor to acid rain and haze. These emissions pose potentially serious environmental and public health impacts. The growth in emissions from non-road engines, diesel vehicles and power plants accounts for most of the increase in NO_x emissions.

Both natural and anthropogenic (man-made) processes contribute to the NO_x levels. Anthropogenic emissions outweigh natural contributions such as lightning and the chemical transformation of nitrous oxide (N₂O) in the stratosphere. Therefore, emissions of NO_x are generally referred to as anthropogenic processes. It is estimated that the total emissions of NO_x in the United States for 1998 and 2000 are about 24.454 and 25.115 million tons, respectively. European Environmental Agency (EEA) reports that the total emissions of NO_x for 1998 are about 14.3 million tons in the 18 EEA member countries (15 EU Member States and Liechtenstein, Switzerland and Iceland) and 13 PHARE

Central and Eastern European countries (EEA 1999). NO_x emissions in China increased from 8.4 million tons in 1990 to 11.18 million tons in 1998 (Hao and others 2001).

The amounts of emissions of NO_x associated with fuel combustion in the United States are given in Table 1.1 (EPA 2000). The total amount of emissions of NO_x from the combustion of fossil fuel is 23.234 million tons, accounting for 95% of total anthropogenic emissions for 1998. Power plants contribute about one quarter of the total emissions of NO_x. Since the wide application of three-way converters to the automobile exhaust systems in 1980s, NO_x emissions from gasoline-engine automobiles have been significantly reduced. However, the NO_x emissions from on-road vehicles still account for one third of the total partly because of no control for the diesel engine exhausts. Diesel engines contribute 23.6% of the total emissions of NO_x. The emissions from power plants have long been the focus of regulation due to stationary nature and large unit scale in comparison with mobile and small unit-scale sources such as automobiles, trains and ships.

Emissions of NO _x	Fuel combustion, electrical power plants	Fuel combustion, industrial	Fuel combustion, others	On-road vehicles	Non-road engines and vehicles	Total
Amounts, million tons	6.103	2.969	1.117	7.765	5.280	23.234
Percent, %	26.3	12.8	4.8	33.4	22.7	100

Table 1.1Emissions of NOx for Energy Production in U.S. (1998)

Regulation of NO_x and SO₂ Emissions

The regulation of NO_x emissions in U.S. has come with the passage of The Clean Air Act Amendments (CAAAs) of 1970 and the centralization of all administrative functions by EPA. The 1970 CAAAs initially defined the first six criteria pollutants including nitrogen dioxide and sulfur dioxide. The National Ambient Air Quality Standards (NAAQSs) were established corresponding to the Amendments. However, the great progress and impact about NO_x and SO₂ regulation had not been seen until the 1990 CAAAs were adopted. The 1990 CAAAs are the most substantive regulations thus far containing 11 major divisions referred to Title I through XI. NO_x emissions are regulated both under Title I to reduce ground level ozone concentration and Title IV to reduce acid deposition. Title II calls for reductions in motor vehicle NO_x emissions. Emission limits for new vehicles constitute the majority of reductions from vehicles.

Under the 1990 CAAAs, the EPA's Acid Rain Program is being implemented in two phases: the first phase for SO₂ began in 1995 and for NO_x began in 1996. It targeted the largest and highest-emitting coal-fired power plants. The second phase for both pollutants began in 2000 and sets restrictions on the first phase plants as well as smaller coal, gas, and oil-fired plants (EPA 2001a). The goal of the second phase is to reduce emissions by over 2 million tons per year beginning in the year 2000.

The global greenhouse effect and world-wide regulation to limit carbon dioxide emissions are calling for improved fuel economy and lower emissions of carbon dioxide that will increase the demand for diesel engines. As mentioned earlier, NO_x emissions by diesel engines (on-road and non-road) are responsible for one quarter of the total NO_x emissions in U.S. Regulations on NO_x emissions of diesel engines are represented by Tier 1-3 emissions standards. Tier 3 for engines above 50 horsepower (hp) and Tier 2 for engines below 50 hp were adopted in a 1998 rulemaking, but do not begin to take effect until the middle of this decade (EPA 2001b). The 2004 model of heavy-duty diesel trucks will be required to meet new highway emission standards.

NO_x Reduction Technologies

The increasingly restrict regulations on NO_x emissions have driven electrical power producers and diesel engine manufacturers to seek for any potential and state-ofart NO_x reduction techniques. In general, pollution reduction techniques fall into two categories: pollutant prevention and pollutant abatement. Since NO_x is formed in the combustion processes, NO_x reduction techniques are divided into combustion modification (prevention) and post-combustion control (abatement). Prevention of pollutant formation is an ideal way to eradicate pollution problems. Adopting either of these two approaches or their combination, however, depends on the maximization of benefit to meet the emission standards. In other words, a combustion technique is not necessarily better than a post-combustion technique. Usually, a combustion technique is developed to reduce NO_x to some degree while a post-combustion technique is needed to finally meet the emission standards. For example, installation of low NO_x burners (combustion) in a coal-fired unit may decrease NO_x generation from 337 ppm to 225 ppm and a catalytic reactor (post-combustion) may be selected to further reduce the NO_x level.

Combustion techniques are aimed at suppressing NO_x formation. According to Zeldovich's free radical chain mechanism, a fraction of oxygen molecules (O₂) dissociate to form atomic oxygen radicals at the high temperature zones of the flame in a

combustion process. These oxygen radicals then react with nitrogen molecules (N_2) forming nitric oxide (NO), the primary NO_x constituent. Nitrogen dioxide (NO₂), the other NO_x constituent, is formed from NO in the flame region. On the other hand, there is ample evidence that fuel nitrogen contributes to the total NO_x formation especially when coal or oil is burned. The NO_x formation rate has a strong exponential relationship to temperature. Therefore, high temperatures result in high NO_x formation rates.

Any changes to combustion system that can lower the peak temperatures, the duration of time at these peak temperatures, or the partial pressures of dissociated oxygen can lower NO_x emissions. The combustion reduction methods for coal or oil-burned units include fuel switching, air staging, water injection, low-NO_x burners, flue gas recirculation, reduced air preheat and low NO_x concentric firing systems. The methods for diesel engines include charge air cooling, fuel injection rate shaping and multiple injections, injection timing retard, exhaust gas recirculation and so on (EPA 2001b).

Substantial reductions in NO_x emissions, often over 50%, can be achieved through individual or joint application of combustion reduction methods. However, thermodynamics and kinetics of NO_x formation pose a limit to the degree which a combustion control method can reach in reducing NO_x formation when the energy output of a combustion system is maintained. This is challenging the new combustion system building as emission regulations become more stringent in near future. For those existing stationary combustion systems, the retrofitting cost is usually prohibitive. Thus, postcombustion control methods become necessary because of the technical limit of combustion methods and/or economical optimization. Actually, two post-combustion techniques have found wide commercial applications in reducing NO_x from mobile and stationary NO_x sources. They are three-way catalyst system for exhaust from gasoline engines and selective catalytic reduction (SCR) system for flue gases from utility boilers. The three-way catalyst system is exclusively used for the exhaust gas containing significant amounts of hydrocarbons (HCs) and carbon monoxide (CO) with no oxygen from rich burn combustors. In the absence of oxygen, HCs and CO react with NO_x over catalysts to form N₂, CO₂ and water. Unfortunately, there is no commercial system available for lean burn diesel engines. The commercial SCR process is to selectively promote the reduction of NO_x to N₂ over proprietary catalysts when ammonia (NH₃) is injected into boiler flue gases. This can give NO_x removal rates of 80% or better with acceptable NH₃ slip.

First patented in U.S. but successfully developed and commercially used in Japan and Germany, SCR technique has recently found its applications in U.S. power plants to reduce NO_x emissions. The first six commercial SCR installations established in mid 1990s on coal-fired utility boilers, a capacity of 2 GWe in comparison with total capacity of 340 GWe in U.S. based on 1996 data. Economical evaluation was made against a new 250-MWe power plant for a 30-year project life. For a 60% removal of NO_x from inlet 0.35 lb/10⁶Btu, the capital cost is \$54/kW, with a levelized cost of \$2500 per ton of NO_x removed. The capital cost increases to \$66 /kW for a 90% removal of NO_x. It means an additional capital cost of 16.5 million dollars to remove NO_x for a new 250-MWe power plant (DOE 1997). The cost for retrofitting SCR system to an existing power plant could be significantly higher. A SCR system is being retrofitted to a 332-MWe unit in H.A. Wagner Plant at a cost of 35 million dollars (CPS 2001).

In addition to the prohibitive cost of SCR systems, there are technical problems to be solved in order to smoothen SCR application in U.S. New SCR catalysts are demanding especially for resistance to poisoning by trace metal species present in highsulfur U.S. coals. The optimum operating temperature for the SCR process using titanium and vanadium oxide catalysts is about 650-750 °F. Therefore, catalysts are required to have high activity even at relatively low temperatures. NH₃ slip is the unreacted NH₃ out of the SCR reactor. It is essential to control NH₃ slip to less than 5 ppm in order to limit the formation of $(NH_4)_2SO_4$ and NH_4HSO_4 and minimize the plugging and corrosion of downstream equipment.

The only other commercially available technology for NO_x removal is selective noncatalytic reduction (SNCR). Ammonia or urea is injected into the upper furnace to reduce NO_x into N_2 without a catalyst. Thus, SNCR has a considerably lower cost than SCR. However, the disadvantages of SNCR include low effectiveness of 30-40% NO_x removal from uncontrolled level, higher ammonia slip and limit to smaller boilers due to difficulties in achieving uniform distribution of ammonia or urea.

Technical limitations and particularly prohibitive costs of existing commercially available NO_x control techniques have driven a wide exploration of new alternative techniques for post-combustion NO_x removal. SCR with lean NO_x catalysts and lean NO_x trap are the two focuses for diesel exhaust abatement. Lean NO_x catalysts are presently under development. Those kinds of catalysts require near-zero sulfur fuels (less than 5 ppm). However, the limit of 30 ppm sulfur content in fuels proposed by EPA has already caused strong opposite responses by petroleum industry. The lean NO_x trap is a two-stage device that converts NO to NO₂ in the first stage and then reduces NO₂ into N₂ with the aid of injected hydrocarbons in the second stage. An adsorption and recirculation technique for stationary diesel engines was demonstrated by Sorbent Technologies Corp. A highly efficient sorbent bed adsorbs the NO_x and then is periodically regenerated to produce a high concentration NO_x stream. The high concentration NO_x stream is returned to the engine air intake system and NO_x is chemically reduced to N₂ and O₂ in the combustion process.

One of the most promising classes of new technologies is non-thermal plasma that has been investigated for air pollution abatement during past couple of decades. The principle is that energetic electrons initiate a series of reactions associated with NO_x removal under the plasma conditions. Two primary types of non-thermal plasmas are ebeam irradiation and electrical discharge. An e-beam irradiation process includes the generation of high-energy e-beam and its application to gas streams. The high-energy electrons collide with gas molecules and produce non-thermal plasma. Electrical discharge is a direct way to produce non-thermal plasma by applying a high voltage to a gas space and incurring gas breakdowns. The gas breakdowns generate electrons that are accelerated by electric field forming non-thermal plasma. The electrical discharges can be realized in several ways depending on the types of voltage applied and reactor specification. Glow discharge, corona discharge and dielectric barrier discharge (DBD) are of importance in dealing with air pollution. Great efforts have recently been made by Powerspan Corp., New Durham, NH in commercialization of DBD technique for a simultaneous removal of NO_x and SO₂ (McLarnon and Jones 2000; McLarnon 2002). Their pilot plant work using a slipstream from a utility boiler has been found to be

attractive both technically and economically. The latest trend is to couple DBD and SCR techniques, called plasma-aided catalysis system (Penetrante and others 1998).

Proposed Study

The research and development of non-thermal plasma DBD technology have been directed to addressing two major issues, i.e., NO_x and SO_2 control of flue gases from coal-fired power plants and NO_x control of exhausts from diesel-engine vehicles (truck, train, ship, etc.). DBD technology has a great potential to simultaneously convert NO_x and SO_2 into compounds such as NO_2 and SO_3 that can be easily scrubbed. There is still a lot of fundamental work to be done before this technology finds its commercial applications in power industry. NO_x control for diesel-engine vehicles calls for an onboard process which should be compact, reliable and able to effectively reduce NO_x into N_2 . A hybrid plasma-catalyst system may lead to such an on-board process. The conversion of NO_x to N_2 is important for NO_x removal from diesel-engine vehicles where NO_2 from a plasma DBD reactor alone would not easy to remove because of the difficulties in installing a wet scrubber. This requires extensive R&D work in both DBD and catalysis.

The objectives of this study are (i) to identify important parameters governing the operation of the DBD to gain a better understanding of DBD process for the removal of NO_x and SO_2 from flue gases, and (ii) to investigate the synergetic effect of a hybrid plasma-catalyst system on the conversion of NO_x into N_2 . The hybrid plasma-catalyst system consists of a plasma reactor followed by a catalytic reactor. This combination is to investigate an improvement in NO_x removal as compared to plasma and catalytic reactors,

individually. These objectives are achieved through conducting a systematic experimental investigation as well as theoretical analysis. There are four main tasks.

The first task is to modify the existing DBD system and conduct experiments with respect to electrical parameters and chemical compounds. Inlet gas humidifying unit, outlet gas cooling unit and tubing heating to prevent water vapor from condensing are the major modifications. Electric frequency and energy density are the main electrical parameters. Temperature and residence time (by varying total flow rate) are investigated in terms of their effects on NO_x conversion. Oxygen, water vapor and CO₂ are individually and jointly studied. Emphasis is placed on the introduction of reducing agents such as CO, CH₄ and C₂H₄ to the simulated gas stream regarding their effects on NO_x conversion. The work has been extended to investigate the NO_x reaction kinetics. Appendix A is a published paper presenting part of this work under the first task.

The second task is to build a SCR reactor and prepare lab-made catalysts for running the SCR reactor to make a comparative study with P-C system. Catalysts with different amounts of WO₃ loading on γ -Al₂O₃ are prepared. The main experimental parameters included catalysts, temperature, water vapor concentration and reducing agents (NO, CH₄ and C₂H₄).

The third task is to couple the DBD and SCR forming a plasma-aided catalysis system. Comparative experiments are conducted to investigate the synergic effect with respect to different reducing agents added. Experiments are also conducted to study the potential formation of nitrous oxide (N_2O), one of the six greenhouse gases listed in the Kyoto Protocol.

The investigation of DBD reactor design parameters is the fourth task. The study is focused on the effects of reactor geometry, barrier materials and barrier thickness on SO_2 conversion. A brief cost estimates and comparison are made based on literature information regarding removal of NO_x and SO₂ from coal-fired utility boilers.

An additional task is to explore the application of DBD to the conversion of CH_4 and CO_2 into value-added products. Both gases are among the six greenhouse gases listed in the Kyoto Protocol. This work is exploratory in nature. Some of the results are in agreement with results reported by other workers during the same time period (Gesser 1998; Zhou 1998). The experiments and results are presented in Appendix B.

CHAPTER II

LITERATURE REVIEW

This chapter is divided into five sections. The first section is focused on the NO_x removal with non-thermal plasma especially dielectric barrier discharge (DBD). The second covers selective catalytic reduction (SCR) of NO_x. Literature on hybrid plasmacatalyst system for NO_x removal is reviewed in the third section. The fourth section highlights DBD reactor design parameters. The last section is devoted to the prospective applications of DBD technique in promoting reactions of gaseous compounds such as CO_2 and CH₄.

Section I NO_x Removal with Non-Thermal Plasma

Non-thermal plasma can be defined as a gas consisting of electrons, ions and neutral particles in which the electrons have a much higher energy than the neutral gas particles. Therefore, non-thermal plasma is also called non-equilibrium plasma due to the significant temperature or kinetic energy difference between the electrons and neutral particles. The energetic electrons collide with molecules in the gas, resulting in excitation, ionization, electron multiplication, and formation of atoms and metastable compounds. The active atoms and metastable compounds subsequently collide with molecules and reactions may occur. It is expected that some gaseous pollutants such as NO_x and SO_2 could participate in the reactions and be converted into conventionally

treatable or environmentally benign substances. This is the chemistry basis on which nonthermal plasma is used to remediate air pollution. Non-thermal plasma can be generated and maintained by either electron-beam (e-beam) irradiation or electrical discharge.

E-Beam Technique

An e-beam irradiation process includes the generation of high-energy e-beam and its application to gas streams. The e-beam is generated and accelerated in a vacuum region and then injected through a thin foil window and into an atmospheric-pressure processing chamber. The high-energy electrons collide with gas molecules in the chamber and produce non-thermal plasma.

Considerable efforts have been made to investigate the application of e-beam in the treatment of combustion flue gases (Person and Ham 1988; Matzing 1991; Maezawa and Izutsu 1993; Frank 1993; Frank and Hirano 1993). The initial work was performed by Ebara Corporation in Japan in 1970 and 1971. Since then both laboratory- and pilotscale experiments have been conducted extensively in Japan and United States. For combustion flue gases, nitric and sulfuric acids are formed from NO, SO₂, O₂ and H₂O by e-beam irradiation. Ammonia or lime is injected to the gas stream to react with the acids forming dry solid products that can be collected by following electrostatic precipitators or fabric filters. Helfritch (1993) uses lime in his e-beam process and reports that NO_x removal is strongly dependent on radiation dose and SO₂ concentration. NO_x removal in the range of 80 - 90% can be achieved at 1.5 and 2.0 Mrad, respectively. Energy consumption is thought to be one of the most critical factors that hinder the commercialization of e-beam technique. E-beam approach consumes about six times less

energy than electrical discharge method (Penetrante 1997). This advantage is tempered, however, by the high capital investment of a conventional MeV-type e-beam accelerator as well as x-ray hazard.

Electrical Discharge

Electrical discharge is a direct way to produce non-thermal plasma by applying a high voltage to a gas space and incurring gas breakdowns. The gas breakdowns generate electrons that are accelerated by electric field forming non-thermal plasma.

The electrical discharges can be realized in several ways depending on the types of voltage applied and reactor specification. Glow discharge, corona discharge and dielectric barrier discharge (DBD) are of importance in dealing with air pollution. The glow discharge is generated between flat electrodes encapsulated in a tube and characterized by its low pressure typically smaller than 10 mbar that limits the glow discharge application (Eliasson Kogelschatz 1991a; 1991b). The corona discharge can be realized at atmospheric pressure by using inhomogeneous electrode geometries such as pointed electrode to a plane or a thin wire to a cylinder. A pulsed corona is referred to the corona discharge generated by a pulsed voltage. The DBD technique can be traced back to the Siemens Ozonator in 1857. Ozone is generated by discharge in the annular gap between two coaxial glass tubes at atmospheric pressure. The two glass tubes serve as dielectric barrier. The DBD integrates the large volume homogeneous excitation of the glow discharge or barrier discharge. The two popular discharges for air pollution control are pulsed corona and DBD.

Pulsed Corona. Clements et al. (1989) used a wire-to-cylinder reactor to produce pulsed corona for a combined removal of SO₂, NO_x and fly ash. The electrode configuration (wire-to-cylinder or similarly wire-to-plate) and performance of the reactor make it attractive to be retrofitted to an existing ESP or baghouse. A pilot-scale pulsed discharge system was developed for the removal of NO, SO₂ and NH₃ from flue gas (Veldhuizen 1998). The NO conversion was strongly increased by the addition of SO_2 or NH₃. The best result for initial concentrations of 300 ppm is 80% NO removal and 95% SO_2 removal with NH₃ slip of 3 ppm. Mok *et al.* (1998) evaluated the energy utilization efficiencies for SO₂ and NO removal by pulsed corona. They found that shortening pulse width is very important to the increase in energy utilization efficiency and the energy efficiencies for SO₂ and NO removal were maximized at the pulse-forming capacitance five times larger than the reactor capacitance. In a positive-pulsed corona discharge reactor, byproducts generated from propene addition were identified to be ethane and formaldehyde of negligibly small amounts (Mok and others 2000). By comparing several types of electrical discharge reactors, Penetrante (1997) reported that pulsed corona has the same energy efficiency as DBD.

<u>DBD Technique</u>. DBD technique has attracted much more attention because of its most important characteristic, i.e., DBD can be provided in a much simpler way than other alternatives such as glow discharge, pulsed corona or e-beam. DBD technique is marked for its unprecedented flexibility in reactor fabrication and operation, easy scale-up from laboratory experiments to large industrial units, and efficient low-cost power supply (Kogelschatz and others 1997). These advantages greatly facilitate the

investigation of NO_x removal via DBD at laboratory scale. Considerable efforts have been made on NO_x removal with DBD techniques.

Investigation of the electrical discharge-initiated reaction of nitrogen oxides was first undertaken by S.S. Joshi at the University College, London (Joshi 1927; 1929a; 1929b). Joshi studied the decomposition of nitrous oxide (N₂O) in a Siemens Ozonator at 6,000-12,000 voltes and 150 Hz. An excellent experimental system was set up by Visvanathan(1952; 1953) to investigate the decomposition of nitric oxide. The reaction vessel consists of an all-glass Siemens Ozonator. A batch process was used to obtain different residence times for gas exposure to discharge. Pure NO was prepared as feed gas. The time for a complete decomposition of NO changed from 2 to 188 minutes when the initial pressure of NO was increased from 2 to 31.5 cm(Hg). It was found that NO₂ was formed as an intermediate product, while N₂ and O₂ are the final products. The study of nitrogen oxides and SO₂ aimed at controlling air pollution, however, has been substantially conducted after the US federal government first enacted the Air Pollution Control Act of 1955 and the Britain government enacted the English Clean Air Act in 1956.

Since then, particularly in 1980s and 1990s, considerable work has been conducted for controlling NO_x and SO_2 using electrical discharge techniques. Henis (1976) passed an NO-N₂ gas stream through a barrier discharge with low conductivity catalyst materials in the gas space between coaxial electrodes. He found that a higher NO removal was achieved for packing non-conducting catalyst materials in the barrier discharge reactor than for unpacking. The maximum NO decomposition was reported to be 79.6% for packing zirconium silicate at inlet 1500 ppm NO, compared with the NO removal of 18% for no packing under same space velocity and power input. In addition,

 $1\% O_2 / 1\% CO / 12\% CO_2$ /balance N₂ mixtures were also used as the background gas to investigate total NO removal over different types of packing materials. The total NO removal was found to be 43.9% for packing zirconium silicate at a lower power input of 50 w (compared with 80 w for the maximum NO decomposition of 79.6% mentioned above).

Reduction of NO_x by electrical discharge in a tubular reactor has been conducted in the Department of Chemical Engineering, University of New Hampshire since 1987. The earlier investigation was focused on reactor design parameters, effect of electrical parameters and packing materials on NO_x conversion (McLarnon 1989; McLarnon and others 1990; McLarnon and Mathur 1991; Mathur and others 1992). Breault *et al.*(1993) employed a tubular reactor with fibrous dielectric packing to convert NO_x into N₂ and O₂ in the absence of water vapor and oxygen. Quartz or ceramic covering the inner electrode (steel rod) served as barrier material. Greater than 99% removal of NO_x from the flue gas was achieved. A series of chemical reactions were proposed. McLarnon (1996) conducted a series of experiments on both DBD bench-top apparatus and process development system and reported effects of electrical parameters (voltage, frequency and power), reactor size and other chemical compounds such as O₂ and H₂O on NO/NO_x conversions.

NO-N₂ mixture was used to investigate the energy consumption for NO removal by chemical reduction (Penetrante and others 1995). Penetrante *et al.* reported that the specific energy consumptions (eV per NO molecule reduced) were all similar for a pulsed corona, pulsed barrier discharge and pulsed barrier discharge with dielectric pellet packing reactors. The specific energy consumption was around 240 eV per NO molecule reduced. This corresponded to a specific energy consumption of about 240 eV per nitrogen atom produced when N_2 was dissociated by electrical discharge.

An extensive study was conducted over both bench-top apparatus and process development system (McLarnon and Mathur 2000). The reactors were each made of a pair of coaxial cylinders. The parameters investigated included applied voltage, frequency, specific energy (kJ/mole-NO_x inlet), packing, chemical composition of the gas stream, residence time, electrode spacing, temperature, gas turbulence, etc. Both simulated gas and flue gas from burning natural gas were used in the study. Most data were acquired over the bench-top DBD reactor packed with glass wool. It was reported that glass wool packing did not improve NO/NO_x conversions while it helped stabilize electrical discharge. The residence time in the reactor did not affect NO_x conversion. The change in residence time was realized by changing the length of the inner electrode, thereby changing the volume of discharge region. This actually significantly changed the capacitance of the reactor and affected the discharge. It may be better to change the flow rate for different residence times. The experimental results showed that decreasing space gap between the electrodes would increase NO_x conversion for a given specific energy.

Schluep and Rosocha (2000) used dry NO mixtures with N_2 , N_2/O_2 or N_2/Ar to study NO_x removal via a rectangular-planar DBD reactor. A NO destruction efficiency of exceeding 99% was reported for the inlet NO-N₂ or NO-N₂-Ar mixture. The addition of Ar significantly enhanced NO_x removal. The authors assumed that excited-state argon species were formed and might affect the NO and NO_x conversions. Moreover, the mean electron energy in an Ar/N₂ mixture is higher than that in a N₂/O₂ mixture, which would produce reductive N-atoms more efficiently.

In a computational investigation over a DBD reactor, Dorai *et al.* (2000) used a base gas mixture that contained $N_2/O_2/H_2O/CO_2$ of 79/8/6/7 with 400 ppm CO, 260 ppm NO, 133 ppm H₂, 500 ppm propene and 175 ppm of propane. It was a kind of simulated diesel exhaust gas. The NO_x chemistry in the DBD reactor is mainly driven by oxidation processes that convert NO into NO₂.

Section II Selective Catalytic Reduction of NO_x

Selective catalytic reduction (SCR) technology had been used extensively in Japan and West Germany to eliminate 80-90% NO_x emissions from utility boilers and industrial furnace stacks in 1980s (Hardison 1991). In the past decade, this technology has been further developed and used in the U.S. Although many improvements aimed at lowering the cost of SCR systems and expanding their range of industrial application have been achieved, both fixed investment and operating cost are still high.

The commercial practice in US power industry for NO_x reduction has been recently involved in developing new SCR catalysts. These SCR catalysts are generally oxides of titanium, vanadium and, in some cases, tungsten (DOE 1997). Many researchers in this area believe that SCR technology can be modified and applied to control of NO from diesel exhausts. Development of an inexpensive catalyst with high performance has also been intensively conducted.

γ -Al₂O₃ as a Support

Sadhankar and Lynch (1997) investigated the kinetic behavior of NO reduction by CO over a Pt/Al₂O₃ catalyst. A high-conversion steady state was obtained starting with a net

oxidizing feed composition ($[NO]_0 > [CO]_0$), and a low-conversion steady state was obtained for a net reducing initial feed composition.

Kudla *et al.* 's (1996) study was focused on increasing the acidity of γ - Al₂O₃ through the addition of WO₃ and increasing the resulting catalytic activity. It was found that WO₃-modified alumina compositions has higher NO_x removal activity under lean-burn conditions than the unmodified γ -Al₂O₃. Maximum NO_x conversion (50-60%) occurred at a 1 wt% loading of WO₃ on γ -Al₂O₃ at 580 °C. Yan *et al.*(1997) reported that the effectiveness of Co/Al₂O₃ in the SCR process depends strongly on Co loading, calcination temperature, and source of alumina.

Bethke and Kung (1997) reported that higher conversions of NO to N_2 were obtained over 2 wt% Ag/Al₂O₃ than over 6 wt% Ag/Al₂O₃. Meunier *et al.*(1999) found that the γ -Al₂O₃ and the low-loading silver material exhibited high NO conversion to N_2 whereas the high-loading sample predominantly yielded to N_2O . The promoting effect of low loadings of silver on alumina on the activity for N_2 production was attributed to the higher rate of formation of inorganic ad-NO_x species (e.g., nitrates).

Kung *et al.* (1999) reported the catalytic properties of highly active Sn/γ -Al₂O₃ for lean NO_x reduction. The activity depended on the Sn loading. For a 10 wt% Sn/Al₂O₃ at 475-500 °C, 58% conversion of 1000 ppm NO to N₂ was obtained in the presence of 10% water and 15% O₂, at a space velocity of 30,000 h⁻¹. Park *et al.* (1999) found that an unusual feature of SnO₂/Al₂O₃ is the independence of maximum NO conversion over a wide range of Sn contents (1 to 10 wt% Sn). Sn is present in the +4 oxidation state irrespective of Sn loadings. Sirdeshpande and Lighty (2000) reported a copper oxide process that could
simultaneously remove SO₂ and NO_x. This process needs regeneration using H₂ or CH₄. A reactor model was also presented for SCR of NO by NH₃ over CuO/ γ -Al₂O₃.

Almusaiteer *et al.*(2000) have examined the Rh⁺(CO) ₂ reactivity and its role in CO₂ formation over Rh/Al₂O₃. Sodium promotion enhances the performance of Rh/ γ -Al₂O₃ catalysts in the reduction of NO by propene (Macleod and others 2000). Pronounced activity enhancement is accompanied by marked improvement in nitrogen selectivity. Na also strongly suppresses CO and HCN formation. By examining the influence of various parameters over a large range of initial metal dispersion, Denton *et al.* (2000) found that only the Pt dispersion is of key importance. The dispersion does not clearly affect the selectivity.

Diffusional effects and intrinsic kinetics for NO reduction by CO over Pt-Rh/ γ -Al₂O₃ monolithic catalysts were investigated by Kyriacopoulou *et al.* (1994). A first-order kinetic rate expression with respect to NO concentration, which includes an inhibition term of second order, was found to fit the experimental data via a model which also accounts for internal transport resistances.

The presence of partially reduced molybdenum oxide improved the NO dissociation to N₂ on a Pd-Mo catalyst. Schmal *et al.* (1999) suggested a model that shows Mo^{+ δ} is a promoter in the catalytic cycle for NO reduction by CO. Their activity studies showed that the Pd8Mo catalyst is much more active and more selective to N₂ than the monometallic catalyst. The Pd-20Mo/Al₂O₃ catalyst showed better activity and selectivity for N₂ formation during the CO-NO reaction (Baldanza and others 2000).

The behavior of a series of palladium and palladium-copper catalysts supported on ceria/alumina for the CO+NO+O₂ reaction has been analyzed (Fernandez-Garcia and others

2000). The addition of copper to a palladium system leads to beneficial effects related to alloy formation in which both CO and NO elimination are enhanced. Haneda *et al.* (2000) reported that Ga_2O_3 -Al_2O_3 prepared by the sol-gel method exhibited excellent activity for NO reduction, compared with Al_2O_3, Ga_2O_3, and impregnated Ga_2O_3/Al_2O_3.

ZSM-5 as Support

Overexchanged Fe/ZSM-5 catalysts have been found to be highly active and remarkably stable for the SCR reaction in the presence of H₂O. The reaction intermediates in the SCR of NO_x over Fe/ZSM-5 with alkanes were investigated (Chen and others 1999). Long and Yang (1999a) found that, for Fe-ZSM-5 catalysts, the SCR activity decreased with increasing Si/Al ratio in the zeolites. As the Fe-exchange level in the Fe-ZSM-5 catalysts was increased from 58 to 252%, NO conversion increased at lower temperatures(e.g., 300°C). Compared with the commercial vanadia catalyst, based on the first-order rate constants, the Fe-ZSM-5 catalyst was five times more active at 400 °C.

Pd-H-ZSM-5 (Pd/Al= 0.048) has been used by Lobree *et al.* (1999) to investigate the SCR mechanism. It was found that prior to reaction most of the Pd in Pd-H-ZSM-5 is present as Pd²⁺ cations. Reduction of Pd²⁺ cations is significantly suppressed when O₂ is added to the feed of NO and CH₄. Li and Flytzani-Stephanopoulos(1999) reported on the promotion of Ag-ZSM-5 by cerium for the SCR of NO by methane. The major functions of cerium are to catalyze the oxidation of NO to NO₂, suppress the CH₄ combustion, and stabilize silver in dispersed Ag⁺ state. By comparing CoZSM-5 with CuZSM-5 in the SCR of NO_x by methane, Desai *et al.* (1999) exposed why CoZSM-5 selectively reduces NO_x with methane. Higher concentrations of metal oxides will lower the selectivity toward N₂. Cu-ZSM-5 does not appear to possess either the necessary high activity or stability under actual exhaust conditions. However, Millar *et al.* (1999) investigated its mechanism for providing a logical approach to future NO_x reduction catalyst development. Samarium was used as a promoter in Cu-ZSM-5 catalysts (Parvulescu and others 2000). The authors suggested that (i) either that samarium blocked exchange sites where copper would be trapped in a non-active form, thereby directing the implantation of copper to favorable sites; (ii) or that samarium, in close association with active copper, would adjust the oxidoreduction properties of active copper (possibly the Cu(I)–to–Cu(II) ratio), thus facilitating NO decomposition.

<u>TiO₂ as Support</u>

Kamata *et al.* (1999) made the measurements on the reaction rate for the SCR of NO by NH₃ over a V_2O_5 (WO₃)/TiO₂ commercial catalyst. The addition of WO₃ and MoO₃ is expected to improve the thermal stability and retard the oxidation of SO₂ to SO₃. Among the preparation methods for copper catalysts, the sol-gel technique offers some advantages. CuO-SiO₂ sol-gel catalysts were prepared and their characterization was achieved by Diaz *et al.* (1999). 0.5% Rh/TiO₂ was prepared by Kondarides *et al.* (2000) to investigate the activity that is hindered by accumulation of surface oxygen, originating from NO decomposition and/or gas-phase oxygen in the feed.

Long and Yang (1999b; 2000) reported that Fe-exchanged TiO₂-pillared clay catalysts showed very high activities in the reduction of NO_x by NH₃ in the presence of excess oxygen. H₂O and SO₂ further increased the activity at high temperature(i.e., above 300 °C). This kind of catalysts were about twice as active as the commercial V₂O₅-

WO₃/TiO₂ catalysts in the presence of H₂O and SO₂. Subbotina *et al.* (1999) for the first time reported that photocatalytic reduction of NO by CO over a MoO₃/SiO₂ catalyst (2.5wt% of Mo). N₂ and CO₂ are found to be the major reaction products, and the selectivity of the photoreduction is close to 100%.

Section III Hybrid Plasma-Catalyst System for NO_x Removal

Recently, a combination of non-thermal plasma and catalysis for the reduction of NO_x to N_2 has attracted attention. The approach is aimed at obtaining a higher NO_x conversion to N_2 effectively and economically than when each of the techniques is used alone. A significant advantage is claimed that plasma helps convert NO into NO_2 which is then more easily reduced to N_2 by a conversional catalytic process (Penetrante and others 1998).

In the presence of O_2 , one of the dominant reactions is that plasma oxidizes NO to NO₂. Penetrante *et al.*(1998) reported that hydrocarbons play three important functions in the plasma: lowering the energy cost for oxidation of NO to NO₂, minimizing the formation of acid products and preventing the oxidation of SO₂ to SO₃. A simulated gas mixture consisting of NO (or NO₂) was passed through a catalyst bed at 450 °C, resulting in 44% conversion of NO to N₂ (88% of NO₂ was converted to N₂). However, the simulated gas used for catalysis test excludes the two main components, H₂O and CO₂ present in large amount in real diesel engine exhausts. This might leave the conclusions open to question. The main test result for diesel engine exhaust is only combined effect of plasma and catalysis(54% NO_x conversion to N₂). No result for either plasma or SCR used alone is available for comparison. γ -Al₂O₃ served as catalyst.

The hybrid technique called plasma-assisted catalysis(PAC) is being developed in cooperation with Cummins Engine Company (Penetrante 2000). It is reported that the PAC process already has proven efficacy for relatively small diesel engines. No detailed result is available.

The combination of DBD and SCR can be realized by packing catalyst into DBD reactor (one-stage configuration) or put the SCR reactor downstream of the DBD reactor (two-stage configuration). It is reported that the same De-NO_x results are achieved over the two set-ups (Penetrante and others 1998). However, Balmer *et al.* (1998) reported that 76% and 44-56% of the NO_x are reduced to N₂ for single stage and two-stage configurations, respectively and energy efficiency is about ten times higher in the two-stage configuration. The results also showed that N₂ from NO_x reduction can be measured if background N₂ is replaced with helium. The parallel plate reactor without the catalyst did not reduce NO but simply converted it to NO₂. Although the product distribution (NO and NO_x) appears to be similar, the predominant chemical mechanisms for He and N₂ individually as a carrier gas are probably different. N₂ as a product of NO_x reduction is replaced with He, favoring the NO_x reduction to N₂. This might leave the conclusions open to question.

Hoard and Balmer (1998) developed a plate-type plasma device followed by a catalytic reactor. Two proprietary catalysts, Cu-ZSM and "A" were used at a relatively low temperature of 180 °C. It was concluded that plasma without a catalyst did not give real NO_x reduction. Instead, it produced a variety of species which could be reconverted to NO_x by Cu-ZSM catalyst. At energy deposition of 30 J/L, a NO_x conversion of 53%

was reported with plasma device followed by catalyst "A". It less than doubled the conversion of 29% when plasma used alone.

Koshkarian *et al.* (1998) also reported that conversion of NO to NO_2 was dominant reaction in the plasma reactor. HNO₃ and N₂O were detected, 8-15 ppm and 5-10 ppm, respectively. The oxidation catalyst reconverted species back to NO_x . For engine test, a greater formation of HNO₂ and HNO₃ was observed. Formaldehyde, acetaldehyde (combined 20-50 ppm) and ozone (5-8 ppm) were also detected. The low reduction (less than 10% conversion to N₂) may be mainly due to poor performance of the catalyst used. Result about SO₂ effect is unavailable from the paper.

Oda *et al.*(1998) showed that NO_x concentration was not decreased by using only pulsed voltage application because NO was oxidized into NO₂. Hydrocarbon additives, especially double-bone structure hydrocarbons significantly promoted NO_x conversion into N₂. Catalyst effect was not significant in this experiment. When the catalyst temperature is at room temperature, high NO_x removal performance is obtained compared with that of the higher temperature. Two unusual results reported in the paper: catalyst Cu-ZSM-5 helps NO_x removal and works better at room temperature than at higher temperature. It is against Hoard and Balmer's (1998) finding that Cu-ZSM reconverts species back to NO_x. There may be a flaw in the conclusion that Catalyst Cu-ZSM-5 works better at room temperature. It is most likely that Cu-ZSM-5 reconverts species back to NO_x less at room temperature than at higher temperature.

Section IV Dielectric Barrier Discharge (DBD) Reactor Design Parameters

Reactor design is an essential part of the overall R&D work of DBD. Although DBD technology was first used by Siemens in 1857 for the generation of ozone and since

then commercial ozonators have been available, developments of DBD reactors for treating gas pollutants have encountered various problems including scale-up, energy efficiency, manufacturing and operating costs, and treatment efficiency. Most efforts have been devoted towards studying operating parameters such as pollutants and their concentrations, gas mixing, voltage, frequency, etc. Little attention has been paid to reactor design parameters including geometry, size, dielectric barrier materials and catalytic packing.

The objective of this literature review is to provide information on reactor design parameters and experimental operating conditions particularly with respect to DBD plasma. Presented in Table 2.1 are main parameters of DBD reactor design used by some researchers in their experiments. For dimension and other details, the readers may refer to the original papers.

Manley(1944) used two types of geometry, plate and tubular to investigate ozonator discharge. In the plate reactor, a pair of window glass plates were used as barrier materials. In the tubular reactor, only the central high-voltage electrode was covered with a glass tube. An excellent experimental system was set up by Visvanathan(1952) to investigate decomposition of nitric oxide. The reaction vessel consisted of an all-glass Siemens Ozonator. NaCl solution served as electrodes and dielectric materials were glass. Water was used to cool the reaction vessel.

A reactor was described in Henis' (1976) patent for the removal of nitrogen oxides from gases. The reactor is typically tubular. Dielectric materials can be glass or quartz. The final products are nitrogen and oxygen. Packing materials including ceramic spheres, metal oxides, molecular sieve, etc. were tested. Gap spacing was recommended

to be 2-8 mm. The temperatures generally range from ambient to 100 $^{\circ}$ C. Dhali and Sardja (1991) reported an investigation on plasma-assisted oxidation of SO₂ to SO₃. A coaxial dielectric barrier discharge reactor is used. Only outer grounded electrode is interiorly covered with glass.

Table 2.1

Reference	Geometry, i.d.xL cm or L xW	Barrier Material	Gas Spacing (mm)	Voltage (kV)	Frequency (Hz)	Temperature (°C)
(Manley 1944)	Planar 86x56 cm	Glass	1.84-3.70	20 (peak)	60-410	26-39
	Tubular 7.9x86 cm	Glass	2.15			
(Visvanathan 1952)	Tubular 3.2x65 cm	Glass	2	5 (rms)	100	room temp.
(Henis 1976)	Tubular 1.7x33	Glass Quartz	2-8	75 (peak)	n/a	100 (mostly)
(Dhali and Sardja 1991)	Tubular 3.6x20	Glass	15.5	24 (peak)	60	room temp.
(Rosocha and others 1993)	Planar 71x18	Glass	3.3	25-35 (peak)	10-3500	room temp.
(Breault and others 1993)	Tubular 25.4x	Ceramic	n/a	10-20	60-400	150-176
(Pashaie and others 1994)	Tubular 3.5x5	Glass	3.3-15.2	20 (peak)	400	room temp.
(McLarnon	Tubular	Quartz	6-8	7-35	60-1000	room temp.
1996)	2.5x31			(peak)		
	Tubular	Quartz	11			
	2.9x122					
(Schluep and	Planar,	Pyrex	2	9-11	1000-2000	n/a
Rosocha						
2000)	31x18 cm					

Summary of Main Parameters of DBD Reactors

28

Rosocha *et al.*(1993) used a flat silent discharge plasma (SDP) cell for destruction of aliphatic hydrocarbons, CFCs, TCE and CCl₄. The SDP cell consisted of glass plate and water pool that served as HV electrode. It is a planar BD reactor. Breault *et al.*(1993) employed a tubular reactor with fibrous dielectric packing to convert NO_x into N₂ and O₂ in the absence of water vapor and oxygen. Quartz or ceramic covering the inner electrode (steel rod) served as barrier material. The ID of the outer stainless steel tube is 25.4 mm. The experimental investigation of the electrical characteristics of a coaxial dielectric barrier discharge is reported (Pashaie and others 1994). Glass serves as dielectric material adjacent to the outer electrode (SS wire mesh). By varying the inner SS electrode diameter, Pashaie *et al.* found that the ratio of the inner to outer electrode radius has a strong influence on the discharge onset voltage and generation of radicals.

A bench-scale apparatus and a process development unit were used to remove NO_x (McLarnon 1996). Experimental studies of scale-up were conducted. The reactor is typically tubular. The annular space is packed with glass wool. It was found that the packing did not increase NO_x conversion although it helped stabilize discharge. The process development reactor consisted of seven 1.22 m long each stainless steel tubes with an ID of 28.6 mm arranged in series. Schluep and Rosocha (2000) used a flat plate DBD reactor with 31 cm long and 18 cm wide. The spacing gap of 2 mm is relatively small. A high frequency of 1000-2000 Hz was employed.

Section V Other Prospective Applications of DBD

Efforts have also been made to use dielectric barrier discharge (DBD) technique for remediation of toxic gas streams in addition to NO_x . It is believed that DBD- generated oxidizing radicals would convert the toxins into treatable or exhaustible substances. The oxidation of chlorobenzene, trichloroethylene, formaldehyde, etc. by DBD techniques were investigated by several workers (Snyder and Anderson 1998; Evans and others 1993; Storch and Kushner 1993).

Rosocha *et al.*(1993) used a flat silent discharge plasma (SDP) cell for destruction of aliphatic hydrocarbons, CFCs, TCE and CCl₄. Destruction of 80% or greater was observed. Some of reaction products such as phosgene (COCl₂) were identified. A mathematical model was also presented.

In a cylindrical DBD reactor, the effect of electrical, chemical and hydrodynamic parameters on the decomposition of R-12, R-22 and R-50 were investigated (Golden 1997; Golden and Mathur 1997). The majority of experimental work was performed with pure N_2 as the carrier gas. However, it is observed that addition of a very small amount of O_2 in the inlet stream, on the order of 0.1% by volume, considerably improved percent conversion over pure N_2 as the carrier gas. A gas chromatograph was used for freons and methane analyses.

Another important investigation is to reform two greenhouse gases, i.e., CO_2 and CH_4 over a DBD reactor, resulting in formation of high-value products such as H_2 , CO or hydrocarbons. Literature review conducted so far shows that studies on methane dissociation over barrier discharge in cylindrical reactors have been conducted by several workers. Golden(1997) reported a methane conversion of 22% by passing 125 ppm methane in nitrogen through a BDR at 18,385 V(rms)and 400 Hz. The products were not identified. Nikravech *et al.* (1994) applied 90 kV (1-60 Hz) to a DBD reactor and reported conversions up to 25% and 40% for pure CO_2 and CH_4 , respectively.

Gesser *et al.*(1998) investigated the conversion of a CH₄/ CO₂ (1:1)mixture to H₂ and CO at ambient temperature in a DBD reactor. Conversions of up to 50% were achieved at 13 kV and 25 mA. Motret *et al.* (1997) also reported that DBD processing of CH₄ and CO₂ mixture could lead to the formation of synthesis gas CO and H₂. Using a mixture of CH₄/CO₂ (80/20), Zhou *et al.* (1998) reported that conversions of CH₄ and CO₂ were 64% and 54%, respectively. They also found that the amount of syngas produced strongly depends on the electric energy input.

Larkin *et al.* (2001) used a DBD reactor operated at 7 kV and 26-178 w of AC power to conduct the partial oxidation of methane. They found that the organic liquid oxygenates formed from the partial oxidation of methane were principally methanol, formaldehyde, methyl formate, and formic acid.

Catalysts have also been added to DBD reactors aimed at improving product selectivity of methane and CO_2 reactions. Eliasson and Kogelschatz (2000) presented a direct higher hydrocarbon formation from methane and carbon dioxide using DBD with zeolite catalysts. The products include alkanes, alkenes, oxygenates, and syngas. Kraus *et al.* (2001) placed ceramic foams in the annular gap of a DBD reactor to study CO_2 reforming of methane. Nickel and rhodium coatings on the ceramic foams were investigated regarding their effect on the plasma chemistry.

CHAPTER III

THEORIES OF NON-THERMAL PLASMA, CATALYSIS AND HYBRID PLASMA-CATALYST SYSTEM

The theories of non-thermal plasma, catalysis and hybrid plasma-catalyst (P-C) systems are discussed in this chapter with an emphasis on NO_x reactions. This chapter consists of three sections. The first section is focused on generation of non-thermal plasma especially dielectric barrier discharge (DBD) and its effect on chemical reactions. The theories of selective catalytic reduction (SCR) are discussed in the second section. Hybrid plasma-catalyst sytem is relatively new and its theoretical exploration is still in the preliminary stage. Several key issues about P-C system are highlighted in the last section.

Section I NO_x Reactions in Non-Thermal Plasma

Non-thermal plasma can be defined as a gas consisting of electrons, ions and neutral particles in which the electrons have a much higher energy than the neutral gas particles. Therefore, non-thermal plasma is also called non-equilibrium plasma due to the significant temperature or kinetic energy difference between the electrons and neutral particles. The temperature of gas can be in the range of room temperature. The energetic electrons collide with molecules in the gas, resulting in excitation, ionization, electron multiplication, and the formation of atoms and metastable compounds. The active atoms and metastable compounds subsequently collide with molecules and reactions may occur. It is expected that some gaseous pollutants such as NO_x and SO_2 could participate in the

reactions and be converted into conventionally treatable or environmentally benign substances. Non-thermal plasma can be generated and maintained by either electronbeam (e-beam) irradiation or electrical discharge.

E-Beam Technique

An e-beam irradiation process includes the generation of high-energy e-beam and its application to gas streams. The e-beam is generated and accelerated in a vacuum region and then injected through a thin foil window and into an atmospheric-pressure processing chamber. The high-energy electrons in the range of 300-800 keV collide with gas molecules in the chamber and produce non-thermal plasma. Positive ions such as N_2^+ , O_2^+ , N^+ and O^+ are considered to be important irradiation products in the chemical processing of NO_x and SO₂ (Matzing 1991). These positive ions undergo fast charge transfer reactions, leading to formation of radicals. This contributes to the major radical source and in particular the significant OH source in the electron beam dry scrubbing (EBDS) process. The concentrations of radicals formed are high enough to oxidize NO_x and SO₂ traces.

Electrical Discharge

Electrical discharge is a direct way to produce non-thermal plasma by applying a high voltage to a gas space and incurring gas breakdowns. The gas breakdowns generate electrons that are accelerated by electric field forming non-thermal plasma.

The electrical discharges can be realized in several ways depending on the types of voltage applied and reactor specification. Glow discharge, corona discharge and dielectric barrier discharge (DBD) are of importance in dealing with air pollution. The glow discharge is generated between flat electrodes encapsulated in a tube and characterized by its low pressure typically smaller than 10 mbar that limits the glow discharge application (Eliasson and Kogelschatz 1991a; 1991b). The corona discharge can be realized at atmospheric pressure by using inhomogeneous electrode geometries such as pointed electrode to a plane or a thin wire to a cylinder. A pulsed corona is referred to the corona discharge generated by a pulsed voltage. The DBD technique can be traced back to the Siemens Ozonator in 1857. The ozone is generated by discharge in the annular gap between two coaxial glass tubes at atmospheric pressure. The two glass tubes serve as dielectric barrier. The DBD integrates the large volume homogeneous excitation of the glow discharge with the high pressure of the corona discharge. The DBD is also called silent discharge or barrier discharge. The two popular discharges for air pollution control are pulsed corona and DBD. Table 3.1 shows the characteristics of several non-thermal discharges (Eliasson and Kogelschatz 1991a; 1991b). The item of degree of ionization in the table is the ratio of the number density of charged species to the number density of neutral species in the gas.

Table 3.1

Parameter	Glow Discharge	Corona Discharge	Barrier Discharge
Pressure (Bar)	< 10 ⁻²	1	1
Electric Field (kV/cm)	0.01	0.5 – 50, variable	0.1 - 100
Reduced Field (Td)	50	2-200, variable	1 - 500
Electron Energy (eV)	0.5 - 2	5, variable	1 - 10
Electron Density (cm ⁻³)	$10^8 - 10^{11}$	10 ¹³ , variable	10 ¹⁴
Degree of Ionization	$10^{-6} - 10^{-5}$	small, variable	10-4

Characteristics of Non-Thermal Discharges

Dielectric Barrier Discharge

The classical DBD configurations are planar or cylindrical with at least one electrode covered with dielectric materials such as glass, quartz and ceramics. In order to initiate and maintain an electrical discharge process, a high voltage is applied across two electrodes separated by dielectric materials and gas gap. The voltage applied should be high enough to establish a high electric field that causes gas breakdown, i.e., electrical discharge. The discharge-generated ions traverse the space in a pulse and accumulate on the surface of the dielectric materials. These accumulated space charges generate a reverse electric field that finally makes the discharge terminate. The short duration and limited charge transport and energy dissipation result in little gas heating. The electron temperature reaches thousands degree K while the background gas can be in the range of room temperature.

The most important property of DBDs coming with gas breakdown is a large number of independent current filaments of nanosecond duration, i.e., microdischarges. A considerable amount of such microdischarges were observed at a frequency of twice the frequency of voltage applied (Kogelschatz 1999). Eliason and Kogelschatz (1991a) discerned three separate stages during the life cycle of such a filament: the electrical breakdown; transport of charge across the gas; and the excitation of the atoms and molecules initiating the reaction kinetics. The durations of these three stages are of different orders of magnitudes. The local breakdown usually finishes within nanoseconds. The current transport takes typically 1-100 ns. The chemical process can last from nanoseconds to seconds depending on species involved. A great advantage of the DBD over many other discharge types is that one can vary the average energy of the electrons

generated by adjusting the product $(n \cdot d)$ of gas density (n) and gap width (d). In general, the lower the product $(n \cdot d)$, the higher mean electron energy. The electron energy inside the conductive filament is of a few eV.

Chemical Reactions of NO_x in DBD

Chemical reactions of NOx in DBD have been studied in the past two decades. Because of the complicated chemistry of DBD plasma reactions, our knowledge of reactions of NO_x in DBD is still limited and partially based on speculation.

Gentile and Kushner (1995) establish a model for $N_2/O_2/H_2O/N_xO_y$ gas mixture. There are 42 electron-impact processes considered. The plasma chemistry model contains 56 species and 331 reactions and uses the rate coefficients obtained from solving Boltzmann's equation. The primary radicals N, O, OH and H are produced by electronimpact dissociation of the feed gas. The six major end products are assumed: N_2 , NO_2 , H_2O , N_2O_5 , HNO_2 and HNO_3 . Two main remediation pathways for removal of NO are:

Reduction:
$$NO + N \rightarrow N_2 + O$$
 (3.1)

Oxidation:
$$NO + O \rightarrow NO_2$$
 (3.2)

$$NO_2 + OH \rightarrow HNO_3$$
 (3.3)

Electron-impact dissociations:

$$e + N_2 \rightarrow N + N + e \tag{3.4}$$

$$e + H_2 O \rightarrow H + OH + e \tag{3.5}$$

$$e + O_2 \rightarrow O + O + e \tag{3.6}$$

$$e + O_2 \rightarrow O + O(^1D) + e \tag{3.7}$$

Where, $O(^{1}D)$ is metastable excited oxygen atom. Second radicals HO₂, NO₃ and O₃ also help in the remediation of N_xO_y. They are produced by the following reactions:

$$H + O_2 + M \rightarrow HO_2 + M \tag{3.8}$$

$$O + OH + M \rightarrow HO_2 + M \tag{3.9}$$

$$NO_2 + O + M \rightarrow NO_3 + M \tag{3.9}$$

$$NO_2 + O_3 \rightarrow NO_3 + O_2 \tag{3.11}$$

$$O + O_2 + N_2 \rightarrow O_3 + N_2 \tag{3.12}$$

where M is a third collision partner (O_2, O_3, N_2) .

Section II Selective Catalytic Reduction of NO_x

Selective catalytic reduction (SCR) of NOx using ammonia (NH₃) or urea as the reducing agent has been commercially used in American power plants. As the name SCR implies, this technique selectively realizes the reduction of NO_x to N₂ over proprietary catalysts. The initial SCR technique using NH₃ was patented by Englehard Corporation in 1957. Unfortunately, the catalysts based on platinum or platinum group metals were proved unsuccessful and other base metal catalysts were found of low activity. The later development of vanadium/titanium catalysts in Japan has been successful. Considerable efforts have also been made in Germany to develop SCR catalysts. Siemens has become the major SCR catalyst supplier in American market (US DOE and SCS 1997). Tungsten trioxide(WO₃) and molybdenum trioxide (MoO₃) are also major components of the SCR catalysts. Since most SCR catalysts are proprietary and the complexity of SCR mechanism is very challenging, little detailed knowledge is available about the mechanism of individual catalysts.

The research and development of SCR technique are still undergoing along two main approaches, i.e., developing new catalysts and fining different reducing agents rather than NH₃. New specific catalysts are in demand especially for resistance to poisoning by trace metal species present in high-sulfur U.S. coals. Addition of new reducing agents such as hydrocarbons have been investigated to prevent plugging and corrosion of equipment due to reactions between SO₂, SO₃, H₂O and NH₃.

SCR of NO_x by Ammonia or Urea

The basic reactions are as follows:

$$4NO + 4 NH_3 + O_2 \rightarrow 4 N_2 + 6 H_2O \tag{3.13}$$

$$2NO_2 + 4 NH_3 + O_2 \rightarrow 3 N_2 + 6 H_2O$$
(3.14)

$$6 \text{ NO} + 2(\text{NH}_2)_2 \text{CO} \rightarrow 5 \text{ N}_2 + 4\text{H}_2\text{O} + 2 \text{ CO}_2$$
(3.15)

Side reactions:

$$SO_2 + \frac{1}{2}O_2 \rightarrow SO_3 \tag{3.16}$$

$$2 \operatorname{NH}_3 + \operatorname{SO}_3 + \operatorname{H}_2 O \xrightarrow{} (\operatorname{NH}_4)_2 \operatorname{SO}_4 \tag{3.17}$$

$$NH_3 + SO_3 + H_2O \rightarrow NH_4HSO_4 \tag{3.18}$$

The optimum operating temperature for the SCR process using titanium and vanadium oxide catalysts is about 650-750 °F. Therefore, catalysts are required to have high activity even at relatively low temperatures. NH_3 slip is the unreacted NH_3 out of the SCR reactor. It is essential to control NH_3 slip to less 5 ppm to limit the formation of $(NH_4)_2SO_4$ and NH_4HSO_4 and minimize the plugging and corrosion of downstream equipment.

The performance of a SCR process depends on the type of catalyst, the effective surface area of the catalyst, gas residence time, temperature, and the amount of ammonia injected. The kinetics of the SCR reaction is based on the assumption that the reaction is first order with respect to NO_x or NH₃. The removal efficiency (η) of an SCR reactor is defined as the amount of NO_x removed divided by the amount of inlet NO_x. It can be expressed in terms of the space velocity (SV) and the molar ratio (m) of ammonia to NO_x (Cho 1994):

$$\eta = m \left(1 - e^{-k/SV} \right) \tag{3.19}$$

The SCR process can be better represented by a modified Langmuir-Hinshelwood relationship:

$$k/SV = -\ln(1 - x/r) + \ln[(1 - x)/(1 - x/r)]/KN_{o}(1 - r)$$
(3.20)

Where x = fractional conversion of NO_x (as η in equation 3.19)

 $r = molar ratio of NH_3$ to NO_x at reactor inlet (as m in equation 3.20)

 $K = adsorption coefficient of NO_x on the catalyst$

 $N_0 = NO_x$ concentration at reactor inlet

SCR of Lean-Burn NO_x by Hydrocarbons

Development of catalysts for lean-burn diesel engines (high excess oxygen and less or no CO, HC present in the exhaust) has attracted attention in the past decade. Different forms of base and noble metal exchanged zeolites, as well as noble metals supported on γ -Al₂O₃ or TiO₂ have been extensively investigated for reduction of NO in the exhausts of lean burn diesel engines (Amiridis 1996). The earlier development and mechanism exploration of lean-burn catalysts were derived from the SCR by ammonia for flue gas as discussed above and the three-way catalysis. The three-way catalysis provides an ideal mode to abate NO with the aid of the reducing compounds, i.e., CO and hydrocarbons (HCs) already present in the exhaust from gasoline engines. Platinum group metals (Pt, Pd and Rh) serve as catalysts for stoichiometric reduction of NO by CO and HCs as follows:

$$2 \operatorname{NO} + 2 \operatorname{CO} \xrightarrow{\bullet} 2 \operatorname{CO}_2 + \operatorname{N}_2 \tag{3.21}$$

$$NO + HCs \rightarrow N_2 + CO_2 + H_2O \qquad (3.22)$$

These catalysts are designed exclusively for the rich-burn conditions where there are high enough amounts of CO and HCs while oxygen content is very low. However, lean-burn exhausts do not contain enough amounts of CO and HCs. They instead include a large excess of oxygen up to 10%, high H₂O content of 10-14% and 25-50 ppm sulfur dioxide. In addition, the exhaust temperature can be as high as 973 K. Accordingly, a commercially acceptable lean-burn catalyst should have high activity, broad temperature window of operability, good hydrothermal stability and resistance to poisoning by SO₂. (Amiridis 1996).

Ammonia is excluded from the candidate pool of reducing agents because it requires stoichiometric control of reaction, storage and transportation. It is projected that HCs can be either generated from controlling engine combustion or directly converted from fuels fed to engines. The most popular HC used for laboratory studies of lean-burn catalysts is propylene (C_3H_6). CH₄ also receives some attention due to its abundance and it could be one of the main products converted from diesel fuels.

A comparative study over barium-promoted copper chromite catalysts with various hydrocarbons provided the following findings (Ault and Ayen 1971). For a given NO conversion, an increase in carbon number in hydrocarbons results in a decrease in the required temperature. For a given NO conversion and a given carbon number, the required temperature decreases with degree of saturation. Accordingly, propylene (C_3H_6) requires a lower temperature than methane. Ethylene (C_2H_4) needs a lower temperature than methane.

Therefore, a new class of lean-burn catalysts is in demand to have the potential to carry out SCR of NO by HCs represented by C_3H_6 under excess oxygen conditions:

$$NO + HCs + O_2 \rightarrow N_2 + CO_2 + H_2O$$
 (3.23)

Numerous ion exchanged zeolites including Cu-, Fe-, Pt-, Co-, Ga-, Ce-, and Hexchanged zeolites and γ -Al₂O₃ as well as noble metals supported on it have been found to be active for reaction (3.23). Several other catalyst groups including supported transition base metals, mixed metal oxides and pillared clay have also been found to be active. Ion exchanged zeolites and γ -Al₂O₃ supported catalysts have become the two dominant series for SCR systems of lean-burn NO by HCs.

The zeolites, all containing intracrystalline pores and apertures, have dimensions approximately equal to those of many of the molecules converted in a catalytic processes (Gates 1992). ZSM-5, a member of the zeolites family, has been extensively studied for SCR of NO. The average channel size of ZSM-5 is around 0.55 nm, about the same molecular dimension of isoparaffins. Thus, it is large enough to allow small gas molecules such as NO, NO₂, C_2H_6 and CO₂ to pass. ZSM-5 has a relatively high Si/Al ratio (10 or greater), showing relatively high stability of the crystal framework. It is known that the Si/Al ratio in zeolites affects their acidity-basicity as well as cation exchange capacity related to ion exchange for preparing catalysts.

The mechanisms for SCR of NO by HCs have not been clearly understood although considerable efforts have been made for exploring different mechanisms over various developing lean-burn catalysts. Two important factors have been linked to the activity of ion exchanged zeolites for the SCR of NO by HCs. They are catalyst acidity and the presence of a metal cation associated with reduction and oxidation cycles. A mechanism proposed by Iwanoto and Mizuno is reviewed in the literature (Amiridis 1996). The mechanism involves the formation of an oxygenated intermediate. The intermediate then selectively reduces NO in the presence of excess O₂ over Cu-ZSM-5 catalysts forming CO₂, N₂ and H₂O as final products. This intermediate is believed to be generated from partial oxidation of the HCs.

Alumina (γ -Al₂O₃) is one of the most active single-metal oxides for the SCR of NO by propene. It can be further promoted with a wide range of metal oxides including cobalt, copper, silver, stannum and wolfram (tungsten). The supported noble metal catalysts, particularly those containing platinum, are active for the SCR of NO by HCs at relatively low temperature in the presence of high water content. The mechanism of SCR reaction by propene over Pt/Al₂O₃ could be that the surface of the platinum is kept reduced and a decomposition-type process carries out on the noble metal, leading to the formation of significant amount of N₂O and N₂ as well (Meunier 1999).

Another example is given about the exploration of mechanism for Ag/γ - Al_2O_3 catalysts (Meunier 1999). Meunier *et al.* reported that the γ - Al_2O_3 and the low-loading Ag/γ - Al_2O_3 catalysts exhibited high conversions to N₂. A mechanism involving the formation of organo-nitrite species followed by their decomposition/oxidation was suggested to be the main route for the formation of NO₂. The promoting role of low Ag loading was attributed to the higher rate of formation of inorganic ad-NO_x species. These inorganic ad-NO_x species further react with the reductant or a derived species to form various organo-NO_x compounds, part of which react with NO or NO₂ to yield N₂.

Section III Hybrid Plasma-Catalyst System

 NO_x control for diesel-engine vehicles calls for an on-board process which should be compact, reliable and able to effectively reduce NO_x into N_2 . A hybrid plasma-catalyst system may lead to such an on-board process. The conversion of NO_x to N_2 is important for NO_x removal from diesel-engine vehicles where NO_2 from a plasma DBD reactor alone is not easy to remove because of the difficulties in installing a wet scrubber.

The physical combination of non-thermal plasma and catalytic reactors forming a hybrid Plasma-catalyst (P-C) system can be achieved with two types of configurations. One is referred to two-stage system consisting of a plasma reactor and catalytic reactor connected in series. The other is called one-stage system with the plasma reactor space packed with a catalyst. The literature information is not very clear on whether there is any scientific benefit in keeping plasma and catalyst in one-stage configuration.

According to Penetrante *et al.* (1998), the plasma-assisted catalytic reduction of NO_x could be described in two steps. In the presence of a hydrocarbon such as propylene, the plasma effectively oxidized NO into NO_2 :

Plasma: NO + HC +
$$O_2 \rightarrow NO_2$$
 + HC-products (3.24)

where HC refers to a hydrocarbon and HC-products refers to partially oxidized hydrocarbons. Next step was that NO₂ was selectively reduced by the HCs over the catalyst γ -Al₂O₃:

Catalyst:
$$NO_2 + HC \rightarrow N_2 + CO_2 + H_2O$$
 (3.25)

It was concluded that the plasma oxidation process was partial and it did not further oxidize NO_2 to nitric acid. With the aid of HC, the plasma oxidation process was selective. This means only NO was oxidized to NO_2 while SO_2 oxidation to SO_3 was suppressed.

Catalysts used in a P-C system are not limited to γ -Al₂O₃. R&D work of a P-C system should be focused on investigation of plasma reactions and catalytic reactions and development of suitable catalysts corresponding to HCs added to the gas stream.

CHAPTER IV

EXPERIMENTAL APPARATUS AND PROCEDURE

The present study includes non-thermal plasma processing of pollutant gases, selective catalytic reduction (SCR) of NO_x and hybrid plasma-catalyst system. The apparatus was set up by designing and adding a catalytic reactor to the existing plasma system. The experimental apparatus used in the present study consists of four sections. They are high-voltage power supply, reactors, gas supply and analytical instrumentation sections as shown in order from top to bottom in Figure 4.1.

Bench-Scale Dielectric Barrier Discharge Reactor and Catalytic Reactor

Shown in the center of Figure 4.1 are the schematic diagrams of the dielectric barrier discharge (DBD) reactor and the catalytic reactor. The piping system allows the two reactors to be operated either individually or in series with the catalytic reactor on the downstream of the DBD reactor. This gives three experimental modes including DBD reaction only, catalytic reaction only, and hybrid plasma-catalytic reaction.

Dielectric Barrier Discharge Reactor

The geometry of the DBD reactor is cylindrical. Two concentric stainless steel tubes serve as the electrodes as well as the pressure boundary as shown in Figure 4.2. A high voltage is applied across the two electrodes to initiate discharges with the outer electrode grounded for safety. The outer diameter (OD) of the central electrode is 3 mm. The inner diameter (ID) of the outer electrode is 23 mm.

46

(a) Concentric Cylinder Electrodes – End View (dimension: mm)

(b) Dielectric Barrier Discharge Reactor

Figure 4.2 Bench-Top Dielectric Barrier Discharge Reactor

In order to generate the microdischarges along the length of the electrodes as discussed in Chapter III, at least one piece of dielectric barrier is needed to cover either central or outer electrode. Quartz is selected as the dielectric barrier because of its outstanding dielectric strength, low dielectric loss, high volume resistivity, and good temperature stability as well as high resistance to chemicals. The properties of quartz are listed in Table 4.1. The properties of vycor are also listed for comparison. Quartz and vycor have the same dielectric constant of 3.8. Either material can be used as a barrier to create microdischarges.

Table 4.1

Properties of Dielectric Barrier Materials

Composition	Quartz >99.9% SiO ₂	Vycor 96% SiO ₂
Thermal Expansion (m/m-°C)	5.5×10^{-7}	8x10 ⁻⁷
Density (g/cm ³)	3.6	3.5
Log ₁₀ Volume Resistivity		
25 °C	>17	17
250 °C	11.8	9.7
350 °C	10.2	8.1
Dielectric Properties		
At 1 MHz, 20 °C		
Power Factor	0.001	0.005
Dielectric Constant	3.8	3.8
Loss Factor	0.0038	0.19
Strength (V/m)	1.67x10 ⁻⁷	
Dissipation Factor (1MHz)	0.0002	. 0.0005

In the present study, two quartz tubes are concentrically placed adjacent between the central and outer electrodes as shown in Figure 4.2. The ID and OD of the central quartz tube are 4 and 6 mm, respectively. The ID and OD of the outer quartz tube are 18 and 22 mm, respectively. The annulus between the pair of quartz tubes is gas space where gas

stream is passed through and dielectric barrier discharge occurs. The gap spacing is 6 mm. Most experiments of the present study are conducted with the annular space unpacked. Dielectric packing material glass wool is used in some cases to stabilize discharge.

The effective length of the DBD reaction space is the length along which both electrodes function and generate microdischarges. It is 305 mm (12") as shown in Figure 4.2(b). The reactor volume is 69 cm³ and the residence time is 3.8 seconds when the total flow rate of a gas stream is 1000 mm³(STP)/min Two chambers are attached each to both ends of the concentric electrodes with high electrical insulation material Teflon placed between preventing discharge from occurring outside the discharge region and hurting human. The two chambers also serve as a mixing and stabilizing container for inlet gas and a mixing container for outlet gas, respectively. A view port is installed in the outlet chamber of the reactor in line with the central electrode to observe the discharge.

The DBD reactor was designed to run mostly at room temperature and atmospheric pressure. Copper tube fed with water from a constant temperature bath is wrapped over outer surface of the outer electrode, providing a limited temperature control of the DBD reactor. In addition, the entire reactor could be held in an electrical heating jacket that could be heated up to 100 °C to prevent condensation in the inlet and outlet chambers. However, it was recommended that the experiments should be run below 100 °C because of the softening of the insulation material Teflon and other sealing materials of the reactor at higher temperatures.

Same apparatus is used for the study of SO_2 removal by barrier discharge. In addition, three rectangular reactors and one square reactor are designed and built to

investigate the effect of reactor geometry as well as barrier materials. Figure 4.3 shows their geometries. Other detailed data are listed in Table 4.2.

(a) Rectangular DBD Reactor – End View (dimension: mm)

(b) Square DBD Reactor- End View (dimension: mm)

Figure 4.3 Rectangular and Square DBD Reactors

Table 4.2

Reactor Geometry	Cylindrical	Rectangular-A, B, C	Square
Electrode(high volt)	SS tube (o.d. \$\$)	SS wire(ϕ 0.5)	Aluminium wire(ϕ 0.5)
Electrode(grounded)	SS tube(i.d.\\$23)	Copper strips	Aluminum foil
Barrier covering electrode (high volt)	Quartz tube (i.d. ϕ 4x1 mm)	None	Quartz tube (i.d. ϕ 1x1mm)
Barrier covering Electrode(grounded)	Quartz tube (i.d. ϕ 18x2)	Plate- A: quartz (3.2 thick) B: soft glass(3.0 thick) C: composite mica (2.4 thick)	Soft glass (15x3.0 thick)
Gas spacing, mm	6	5	6
Cross-section area, mm ²	226	24x10	218
Length of reactor, mm	300	200	280
Volume of reactor, cm ³	69	48	61

Specification of Reactors

Catalytic Reactor

As mentioned in the beginning of this chapter, the catalytic reactor was installed downstream of the DBD reactor. However, the piping system would allow the catalytic reactor to be fed directly with gas stream bypassing DBD reactor.

<u>Catalytic reactor specification</u>. The catalytic reactor consists of a Vycor tube packed with a catalyst, a thermocouple probe embedded in the center of catalyst bed, and a tubular heater. It is shown in the center section of Figure 4.1. The ID and OD of the Vycor tube are 21 and 25 mm, respectively. The reactor tube is packed with a catalyst that is held in place with ceramic wool (Cotronics Corp., containing Al_2O_3 , CaO and Si_3N_4). The length of packed bed is 30 mm. The tubular electric heater is Type 55035 from Lindberg with maximum attainable temperature of 1100 °C.

<u>Catalyst preparation</u>. γ -Al₂O₃ as 1/16" sphere (surface area: 350 m²/g, bulk density: 0.662 g/cm³, Alcoa Industrial Chemicals) is used as a catalyst and support for WO₃ as well. Three catalysts are prepared with 1%, 3% and 12% WO₃ loading on γ -Al₂O₃ each. The precursor of WO₃ is ammonium metatungstate hydrate (AMT,

 $(NH_4)_6W_{12}O_{39}\cdot xH_2O$, Aldrich). About 15 g of γ -Al₂O₃ is taken and put in an oven at 200 °C for about 2 hours to drive away the moisture. The alumina is cooled and weighed. On the basis of this dry weight, a corresponding amount of AMT is weighed for preparing the required WO₃ loading such as 1%, 3% or 12%. The required amount of AMT is dissolved in water and the solution is then added to a porcelain dish with the dry γ -Al₂O₃. The liquid should be well spread over all spheres by stirring gently. The dish is placed above a Bunson burner and the water is evaporated slowly to prevent AMT loss. When no liquid is observed, the dish is placed in an oven first at 100 °C for 2 hours and then at 500 °C for another 5 hours to calcinate the catalyst. The three catalysts prepared in this study have not been characterized to confirm their WO₃ loading amounts and dispersion due to instrumentation limitations.

High-Voltage Power Supply and Measurement

Shown in the top section of Figure 4.1 is the system of high-voltage (HV) AC power supply. It consists of two parts – HV generation and power measurement. The detailed description can be found elsewhere (McLarnon 1996).

HV Generation

A Powertron 500S (variable 0-120 V and variable 20-20,000 Hz) power supply is used to power a Neeltran HV transformer (KVA 0.5, Frequency 60-10 k ϕ 1, primary 120V, secondary 25,000V). A set of inductors (Stancor, two C-2687 and two C-2686 units connected in series) is connected in parallel with the HV transformer to tune the circuit to the power supply.

HV Power Measurement

The high voltage supplied to the DBD reactor is monitored and measured by a Tektronix 2211 digital storage oscilloscope sampling at 20 MHz. The HV signal is first reduced with a Tektronix P6015 HV probe (1000x) in series with a Tektronix P6109 probe (10x) before being fed to channel 1 of the oscilloscope. The current in the secondary circuit of the HV transformer is indirectly measured using a resistor of 50 Ω (CP-10 Mexico 98208, 10% Dale, 10w) and a Tektronix P6027(1x) probe. This signal is fed to channel 2 of the oscilloscope.

Power consumption in the DBD reactor is calculated using the voltage and current traces recorded and stored by the oscilloscope. By multiplying the corresponding current and voltage values at the same phase angle, a curve of point power is obtained and it is averaged to give the discharge power (Manley 1944). A computer is installed on line to read the values recorded by the oscilloscope and calculate the discharge power (McLarnon 1996).

Gas Supply

The major components in flue gases or engine exhausts are nitrogen (N_2) , water vapor (H₂O), carbon dioxide (CO₂) and oxygen (O₂). NO_x are minor components present in the gas, typically of the order of hundreds ppm. Accordingly, experimental designs for NO_x removal generally need to take into account the major components. On the other hand, NO_x in simple gas mixtures (N₂, He or N₂/O₂) or even pure NO_x have been frequently used as feed gas for bench-top studies. These simplified experiments would help identify prime

reactions and understand the complicated reaction mechanisms within DBD reactors step by step.

Gas supply section is illustrated exactly under the DBD reactor in Figure 4.1. Simulated flue or exhaust gas is prepared using cylinders of nitrogen, air, carbon dioxide, NO in nitrogen, methane, etc. Hastings model ST and 200H mass flow meters are used to measure the flow rates of dry gases from each of the cylinders. Water vapor is added to the gas stream by passing the nitrogen stream through a glass bubbler containing water. The tubing used throughout the system is either stainless steel or Teflon to minimize the adsorption on the walls of NO or any of the products from the DBD reactor. Heating tapes are used to preheat the gas stream and prevent condensation before it enters the DBD reactor if experiments are conducted at temperatures above room temperature.

Analytical Instrumentation

The most analytical work is to measure concentrations of known gas components as well as to identify unknown gas products. The tubing system shown in Figure 4.1 allows to take sample from inlet gas stream, outlet gas stream from the DBD reactor(also inlet gas stream to the catalytic reactor for plasma-catalyst run mode), or outlet gas stream from the catalytic reactor. All gas samples are passed through a moisture trap (glass tube with cooling jacket fed with a refrigerator (-5 °C, Polyscience Division of Preston Industries, Inc) to minimize the water vapor before the gas streams are fed to any analytical equipment. The heating tapes are used to prevent condensation in the tubing between outlet of the two reactors and the moisture trap. Several commercial gas analyzers are used on-line. In

addition, gas sample can be taken in a 10cm gas cell that is exclusively used for FTIR to identify and measure N_2O in particular.

NO/NO₂/NO_x Analysis

A Thermo-Electron model 10A/R Chemiluminescent NO-NO₂-NO_x analyzer is used to measure the NO and NO_x (NO and NO₂ collectively referred as NO_x). The principle of analysis used in the device is the reaction: NO + O₃ \rightarrow NO₂* + O₂. The light emitted from the excited NO₂* is measured by a photomultiplier tube and the corresponding NO concentration is determined. NO_x concentration is measured by first passing the sample through a high temperature (650°C) stainless steel converter where NO₂ (N₂O₄ or N₂O₅ if any) is converted to NO, which is subsequently measured. The difference between NO and NO_x readings is taken to be the concentration of NO₂.

Nitrous Oxide (N₂O) Analysis

In the present study, Nicolet 520 FTIR Spectrometer is used to analyze the products of the gas streams from the plasma reactor and catalytic reactor. This instrument is not installed on line. A gas cell is used to transport samples. The path length of the gas cell is 10 cm. The detection limit for N₂O is found to be 3 ppm for this gas cell using a calibration standard gaseous mixture of N₂O-N₂.

Data in the literature (Wallin 1997) show that N_2O peak is well-formed around the 2270 - 2159 cm⁻¹ region using a FTIR spectrometer and good for a quantitative analysis. The peak height of a gas is given in terms of absorbance and it is in linear relationship with the gas concentration.

O2-CO2-CO Analysis

A Nova model 375 portable combustion analyzer is used to measure the O_2 , CO_2 and CO concentrations in the gas stream. The O_2 and CO analyses are performed using electrochemical cells while the CO₂ analysis is realized using an infrared cell.

Hydrogen, Methane, Ethylene and Acetylene Analysis

A Hewlett-Packard 5890 Series II gas chromatograph with a SUPELCO column packed with 60/80 Carboxen-1000 is used to analyze CH_4 , C_2H_4 and C_2H_2 in the gas stream when a reducing agent such as CH_4 or C_2H_4 is added to the simulated gas mixture. A thermal conductivity detector equipped in the GC is used with helium as carrier and reference gas. Hydrogen could be one of products from DBD reactor. The measurement of a small amount of hydrogen with TCD needs nitrogen as reference and carrier gas because the thermal conductivity coefficients of both hydrogen and helium are of the same magnitude. This arrangement has the advantage of avoiding large signal of balance nitrogen gas in the sample.

Humidity Analysis

A Traceable Hygrometer (VWR) with probe is used to measure the humidity of the gas stream. The meter is of accuracy within $\pm 2\%$ for a relative humidity (RH) range of 40-80%. It also reads temperature of the gas stream. By referring to the saturated water vapor content at the measured temperature, the water vapor concentration present in the gas stream is calculated with the RH reading.
SO₂ Analysis

A Rosemount model 880 non-dispersive infrared analyzer is used to measure SO_2 concentration in gas stream when a SO_2 -N₂ mixture is passed through the DBD reactor.

CHAPTER V

RESULTS AND DISCUSSION

This chapter is divided into four sections. The first section deals with the reactions of NO_x in a dielectric barrier discharge (DBD) reactor. The second pertains to the selective catalytic reduction (SCR) of NO_x in a catalytic reactor. Hybrid plasma-catalyst system for NO_x removal is studied in the third section. The fourth section is focused on DBD reactor design parameters.

Section I Dielectric Barrier Discharge for NO_x Removal

A systematic fundamental investigation of DBD plasma for the removal of NO_x is undertaken and the results are presented in this section. Experiments are conducted with respect to electrical parameters and chemical compounds.

Electrical Parameters:

- Electric voltage
- Electric frequency
- Energy density
- Temperature

Chemical Compounds:

- Pollutant concentration
- Total flow rate (residence time)
- Oxygen concentration

- CO₂ concentration
- Water vapor concentration
- Reducing compounds: CO, CH₄ and C₂H₄

Conversion of pollutants is measured in terms of inlet and outlet concentrations as follows:

Pollutant Conversion (%) =
$$\frac{C_{inlet} - C_{outlet}}{C_{inlet}} \times 100$$
 (5.1)

where: C_{inlet} = Concentration of Inlet Pollutant (ppmv) C_{outlet} = Concentration of Outlet Pollutant (ppmv)

NO conversion is referred as percentage of inlet NO converted to NO_2 , N_2 , HNO_3 and/or N_2O . Since NO_x represents both NO and NO_2 , NO_x conversion can be used to estimate inlet NO converted to N_2 if no HNO₃ and N_2O are formed in the process.

The discharge energy is calculated either as specific energy (kJ/mole- NO_x removed, kJ/mole- NO_x inlet or eV/molecule- NO_x removed) or energy density (J/L). The specific energy is defined as the energy supplied to the gas per mole of the removed NO_x , per mole of inlet NO_x or per molecule of the NO_x removed. The energy density is referred as the energy supplied to a unit volume of gas stream. Specific energy is only associated with the total amount of NO_x while energy density takes into account the whole gas stream. Energy density is used in this study because its concept is simple and direct.

The electrical variables, in a barrier discharge, affect the operation of the system in two major ways. First, the effective use of these parameters can enhance the efficiency of the discharge process to achieve an optimal conversion as measured by the pollutant conversion, voltage and energy requirements. Secondly, the reaction path sequence and consequently the product slate can be controlled. All of the experimental results are obtained using a simulated mixture of a pollutant and other gas(es).

Effects of Operating Conditions

<u>Electric frequency selection</u>. In a barrier discharge system with an ac power supply, the reactions are a function of the electric energy deposited into the gas passing through rather than voltage or frequency. An increase in voltage or frequency will result in an increase in energy input. Total energy consumption is the sum of discharge power and other circuit consumption (transformer, inductors, etc.).

Figure 5.1 Power Input/Efficiency vs. Frequency. Primary voltage 80 V (peak voltage 27.6 kV), test gas 1900 SCCM nitrogen at room temperature.

60

The present study investigates the effects of frequency on total energy consumption and discharge power. Power efficiency is referred to the ratio of discharge power to total power. Since N_2 serves as balance gas and it accounts for 90 - 99.9% of mixtures used in the present study, for simplicity, a pure N_2 gas is fed to the DBD reactor. It is found that the power efficiency reached the maximum at a frequency of 150 Hz for this barrier discharge system (Figure 5.1). Therefore, most of the experiments are conducted at a frequency of 150 Hz. It should note that other components such as O_2 and H_2O in particular could have strong effects on DBD plasma process. Therefore, a more appropriate frequency could exist.

Effect of temperature on NO/NO_x conversions. The temperature variation of an inlet gas stream depends on its source and operating conditions. The temperature of exhaust from an engine or flue gas from a combustion process is generally much higher than room temperature. Depending upon the materials of construction of the DBD reactor, gas temperature change can range from 25 to 65 °C. A mixture of 250 ppm NO in balance N₂ is used for this study. Figure 5.2 shows that NO/NO_x conversions at 65 °C are higher than those at 25 °C. The increase in conversion can be as high as 15 percent points at an energy density of 150 J/L.

A change in temperature would have an effect on NO/NO_x conversions because it causes changes in reaction rates, gas volume (i.e., residence time change), barrier material properties associated with DBD, etc. Within the range of temperature change (25-65 °C), gas volume increases by about 13% but the dielectric constant of quartz remains unchanged (Hippel and Robert 1954). According to reaction kinetics, higher gas

61

temperatures generally increase reaction rate. The following two main reactions can be used to explain the increase in conversion (Gentile and Kusher 1996):

NO + N ==> N₂ + O
$$k_l = 3.1 \times 10^{-11} (T/300)^{1/2} \text{ cm}^3 \text{s}^{-1}$$
 (5.2)

$$N + N + M = N_2 + M \quad k_2 = 3.9 \times 10^{-33} (T/300)^{-3/2} \text{ cm}^6 \text{s}^{-1}$$
(5.3)

An increase in temperature will favor reaction (5.2), resulting in a higher reaction rate of conversion of NO into N₂. k_2 will decrease as temperature increases, thereby limiting active nitrogen atom combination as per reaction (5.3) and leaving more N available for reaction (5.2). Therefore, higher gas temperature will help NO/NO_x conversions.

Figure 5.2 Effect of Temperature on Dry NO/NO_x Conversions. Frequency 150 Hz, total flow rate 1000 SCCM: 250 ppm NO and N₂ balance.

Effect of total flow rate (residence time). Figure 5.3 shows that NO conversion is almost the same for an increase in the total flow rates from 1000 to 2000 SCCM (i.e.,

residence time from 8 to 4 seconds) at a given energy density of less than 250 J/L. However, NO_x conversion is improved from 54% to 64% as the flow rate increases from 1000 to 2000 SCCM at the energy density of 150 J/L. Under present operating condition, higher flow rate, i.e., lower residence time is beneficial to NO_x conversion.

Figure 5.3 Effect of Total Flow Rate on NO/NO_x Conversions. Inlet NO concentration 250 ppm, N_2 balance, 150 Hz, room temperature.

This observation is in agreement with McLarnon's (1996) experimental result that the residence time in the reactor did not affect NO_x conversion. However, the methods for obtaining varied residence time were different. In the present study, total flow rate is varied to change residence time. The change in residence time in McLarnon (1996) was realized by changing the length of the inner electrode, thereby changing the volume of discharge region. It might significantly change the capacitance of the reactor and affect the discharge efficiency. Effect of inlet NO concentration. Concentrations of 250 and 510 ppm NO in N₂ are used to investigate the effect of inlet NO concentration on NO/NO_x conversions. Figure 5.4 shows that lower inlet concentration of NO leads to higher conversion under the same energy density. At an energy density of 250 J/L, 90% and 60% NO conversions are achieved for inlet concentrations of 250 and 510 ppm, respectively. Lower NO concentrations effectively give a larger excess of radicals and electrons. Therefore, there is a greater likelihood for reactions converting NO to N₂. It is also observed that the conversion for 250 ppm inlet NO at an energy density of *E* is equal to the conversion for 510 ppm inlet NO at 2*E*. In other word, twice the NO concentration requires double energy input for a given NO/NO_x conversions.

Figure 5.4 Effect of inlet NO Concentration on NO/NO_x Conversions. Total flow rate 1000 SCCM, NO and N₂. 150 Hz, room temperature.

64

Effect of both total flow rate and inlet NO concentration. Comparing Figure 5.5 with Figures 5.3 and 5.4, it is found that the two factors, inlet NO concentration and total flow rate have independent effects on NO/NO_x conversions. The NO/NO_x conversions are 40 and 50%, respectively for the feed of 510 ppm NO and 2000 SCCM at 200 J/L. This results are comparable with those for the feed of 510 ppm NO and 1000 SCCM. Therefore, the effect of inlet NO concentration on NO/NO_x conversions is dominant.

Figure 5.5 Effect of both Residence Time and Inlet NO Concentration on NO/NO_x Conversions. 150 Hz, room temperature.

<u>NO/NO_x</u> conversions in moist Mixture with He as balance gas. A literature review reveals that some workers (Luo and others 1998) investigated NO removal by employing He as carrier gas instead of N₂ (present with most flue gas or engine exhaust). Two factors should receive special consideration while interpreting experimental results:

- 1) the difference of energy absorption between He and N_2
- 2) N radicals participate in the main reaction for NO- N_2 gas mixture:

$$N + NO \rightarrow N_2 + O \tag{5.4}$$

Experiments are conducted with inlet NO concentrations of 50 and 360 ppm in the presence of moisture with He as balance gas. Results presented in Figure 5.6 show that outlet NO/NO_x concentrations approach zero as energy density is increased. It is proposed that the reactions (5.5) and (5.6) are highly dominant, accounting for the 100% conversion.

$$H_2O + e \rightarrow H + OH + e \tag{5.5}$$

$$OH + NO \rightarrow HNO_2$$
 (5.6)

Figure 5.6 Outlet NO/NO_x Concentrations in the Presence of Water with He as Balance Gas. Total flow rate 1000 SCCM, 150 Hz, room temperature.

<u>NO/NO_x</u> conversions in the presence of moisture with N₂ balance. Experiments are conducted with inlet NO concentrations of 0, 50 and 250 ppm when moisture is present with N₂ as balance gas. Results presented in Figure 5.7 show that outlet NO/NO_x concentrations for 50 ppm and 250 ppm inlet NO remain above 50 ppm even at a high energy density of greater than 500 J/L. Under the same experimental conditions without NO in the feed stream, NO/NO_x are detected from the outlet of the DBD reactor, 50 ppm NO_x at energy density of 500 J/L. This suggests that NO_x is formed in the DBD reactor. The following reaction is proposed to take place at high energy density (greater than 100 J/L):

$$N + OH \rightarrow NO + H$$
 (5.7)

Reaction (5.7) accounts for NO_x formation. It can be concluded that in the presence of moisture and N_2 only, the concentrations of outlet NO/NO_x from the DBD reactor probably cannot be reduced much below 50 ppm.

Figure 5.7 Outlet NO/NO_x Concentrations in the Presence of 1% Water with N₂ as Balance Gas. Vapor Total flow rate 1000 SCCM, 150 Hz, room temperature.

NO/NO_x Conversions under Dry and Wet Conditions

Effect of oxygen concentration on NO/NO_x conversions. Considerable amount of oxygen is present in power plant flue gases or engine exhausts, especially in exhausts

from lean-burn systems. Oxygen is a very active component and its effect on NO/NO_x conversions in a DBD reactor needs to be studied in detail. Several oxygen concentrations ranging from 0 to 10% are used to investigate the effect. Figures 5.8 and 5.9 show the effects of oxygen concentration on NO and NO_x conversions as a function of energy density, respectively. In general, the NO/NO_x conversions decrease significantly in the presence of oxygen. The effect of O_2 on NO/NO_x conversions is significant under dry conditions. When O₂ concentration increases from 0 to 6%, NO/NO_x conversions decrease significantly from 99% to 50% and from 98% to 6%, respectively at the energy density of 370 J/L. As O_2 concentration increases from 6% to 10%, NO conversion goes up while NO_x conversion keeps decreasing slowly toward zero. A detailed kinetic explanation is provided later.

Figure 5.8 Effect of Oxygen Concentration on NO Conversion as a Function of Energy Density. Total flowrate 1000 SCCM, 250 ppm NO with N_2 balance, 150 Hz, room temperature.

Figure 5.9 Effect of Oxygen Concentration on NO_x Conversion as a Function of Energy Density. Total flowrate 1000 SCCM, 250 ppm NO with N₂ balance, 150 Hz, room temperature.

<u>Chemistry</u>. At energy densities of 80, 150 and 320 J/L, data taken from Figures 5.8 and 5.9 are plotted as Figure 5.10. The result presented in Figure 5.10 shows the effect of oxygen concentration in a mixture of NO/O₂/N₂ on NO/NO_x conversions. At low O₂ concentrations(<1%), a small increase in O₂ content results in a significant drop in NO/NO_x conversions at 150 J/L. An increase in energy density to 320 J/L greatly enhances NO/NO_x conversions. At higher O₂ concentration (>1%), NO conversion increases as O₂ concentration is increased while NO_x conversion decreases close to zero. An increase in O₂ concentration from 1% to 10% leads to a significant increase in NO₂ formation. There are several reactions proposed by McLarnon and Penetrante (1998) to occur in the plasma as follows:

$$e + N_2 \rightarrow e + N + N \tag{5.8}$$

$$N + NO \rightarrow N_2 + O \tag{5.9}$$

$$e + O_2 \rightarrow e + O(^{3}P) + O(^{3}P)$$
 (5.10)

$$e + O_2 \rightarrow e + O(^{3}P) + O(^{1}D)$$
 (5.11)

$$O(^{1}D) + M \rightarrow O(^{3}P) + M$$
(5.12)

$$O(^{3}P) + NO + M \rightarrow NO_{2} + M$$
 (5.13)

$$O(^{3}P) + O_{2} + M \rightarrow O_{3} + M$$
 (5.14)

$$O_3 + NO \rightarrow NO_2 + O_2 \tag{5.15}$$

where, $O({}^{3}P)$ and $O({}^{1}D)$ are ground-state and metastable excited-state oxygen atoms, respectively and M is either N₂ or O₂.

Figure 5.10 Effect of Oxygen Concentration on NO/NO_x Conversions. Total flow rate 1000 SCCM, 250 ppm NO with N_2 balance, 150 Hz, room temperature.

Variations in NO conversions at different energy densities are due to the competition between reactions (5.9) and (5.13) or (5.15). At O_2 concentration less than

70

1%, the dominant reaction (5.9) mainly contributes to NO conversion into N₂ although the presence of O₂ competes for consuming electrons via reactions (5.10) and (5.11). At O₂ concentration greater than 1%, however, reaction (5.13) or (5.15) becomes dominant and more oxygen molecules compete for electrons, resulting in increasing amount of NO₂ formation while NO conversion via reaction (5.9) into N₂ decreases. Both reaction (5.13) at low energy density (<100 J/L) and reaction (5.15) at high energy density (>100 J/L) demonstrate dominance. When O₂ concentration is high, an increase in energy density from 150 to 320 J/L does not help NO conversion because reaction (5.13) only needs three oxygen atoms to convert one NO molecule while reaction (5.10) and (5.11) at high energy density.

Effect of water vapor. Effect of water vapor on NO/NO_x conversions is investigated with varied water compositions in the 250 ppm NO in N₂ mixture. The power frequency is 150 Hz. The DBD reactor is operated at 65 °C to prevent condensation of water vapor. Both NO and NO_x conversions significantly decrease with the addition of 1% H₂O. As the H₂O concentration is increased from 1 to 5%, however, both NO and NO_x conversions change little. NO/NO_x conversions decrease significantly from 99% to 54% and from 98% to 25%, respectively at the energy density of 400 J/L. An increase in energy density does not promote NO/NO_x conversions significantly.

In the absence of O_2 and H_2O , the dominant reaction is the reduction of NO to N_2 as shown in reaction (5.9) and Figure 5.11. However, electron-impact dissociation of H_2O competes for electrons and accounts for the conversion drop as follows:

$$e + H_2O \rightarrow e + H + OH \tag{5.16}$$

$$OH + NO + M \rightarrow HNO_2 + M \tag{5.17}$$

Fewer electrons are available for reaction (5.8) and thus fewer nitrogen atoms are available for reaction (5.9), leading to possibly lower NO and NO_x conversions. However, reactions (5.16) and (5.17) enhance NO conversion which counterbalances the effect of reaction (5.9), resulting in little overall change in NO/NO_x conversions. An increase in energy density helps N and OH formation but does not promote NO and NO_x conversions significantly as shown in Figure 5.11.

Figure 5.11 Effect of Water Vapor Concentration on NO/NO_x Conversions. Frequency 150 Hz, total flow rate 1000 SCCM, 250 ppm NO with N_2 balance, temperature 65 °C.

Effect of coexisting water vapor and oxygen. Experiments are conducted in the presence of 1% water vapor and 8.3% O_2 in the inlet NO/N₂ gas stream. Significant increases in NO/NO_x conversions are observed even at a much lower energy density of 200 J/L in the presence of O_2 and H_2O than in the presence of either O_2 or H_2O alone

(Figure 5.12). NO/NO_x conversions of 90% and 40% are achieved, compared to 50% and 4% for O_2 alone or 50% and 20% for H_2O alone. A strong acid is observed in the condensate of the moisture trap. The following reactions may provide an explanation:

$$O(^{1}D) + H_{2}O \rightarrow 2 OH$$
 (5.18)

$$NO_2 + OH + M \rightarrow HNO_3 + M$$
 (5.19)

Reaction (5.18) contributes OH radicals in the presence of O_2 . Reactions (5.17) and (5.19) account for much of the higher NO conversion because the presence of O_2 promotes NO₂ formation. NO_x conversion increases in the presence of 1% water mainly because of reaction (5.19) rather than reaction (5.9). It can be predicted that considerable increase in NOx conversion can be achieved as water concentration is increased from 1% to the level in the flue gases.

Figure 5.12 Effect of 1% Water Vapor and 8.3% O_2 on NO/NO_x Conversions. Frequency 150 Hz, total flow rate 1000 SCCM, 250 ppm NO with N₂ balance, temperature 65 °C.

Effect of CO₂, CO, CH₄ and C₂H₄ on NO/NO_x Conversions

Effect of carbon dioxide. CO_2 is added to the mixture of $NO/O_2/N_2$ to investigate its effect on NO/NO_x conversions. Addition of CO_2 decreases NO and NO_x conversions slightly as shown in Figure 5.13. NO/NO_x conversions decrease from 51 to 44% and from 20 to 9%, respectively as CO_2 concentration increases from 0 to 7.6%. A large CO formation of 400 ppm is observed due to the electron-impact dissociation of CO_2 in a mixture of $NO/O_2/N_2/CO_2$ in a plasma system:

$$e + CO_2 \rightarrow e + O + CO \tag{5.20}$$

Reaction (5.20) competes for electrons leading to fewer electrons available for radicals formation such as N and O to convert NO into N_2 or NO_2 .

Figure 5.13 Effect of CO₂ Concentration on NO/NO_x Conversions. Total flow rate 1000 SCCM, 250 ppm NO, 3% O₂ and N₂ balance. Plasma 320 J/L at room temperature.

<u>Effect of carbon monoxide</u>. Chemical compounds such as CO, CH₄ and C₂H₄ play an important role in the catalytic reduction of NO_x. Experiments are conducted to study their effects in the presence of non-thermal plasma. Figure 5.14 shows that there is only a small increase in NO conversion when energy density is increased from 150 to about 400 J/L. However, there is a significant increase in CO formation. Reaction (5.20) suggests that CO is formed in the plasma process from CO_2 present in the gas mixture. The addition of small amount of CO probably has no significant effect on NO/NO_x conversions since a large amount of CO is formed from CO_2 via reaction (5.20).

Figure 5.14 NO/NO_x Conversions and CO Concentration vs. Energy Density. Total flow rate 1000 SCCM. Inlet: 250 ppm NO, 230 ppm CO, $3\% O_2$, $7.6\% CO_2$, N_2 balance.

Effect of methane. Methane is added to the mixture of $NO/O_2/CO_2/N_2$ to investigate the effect of saturated hydrocarbons on NO/NO_x conversions. Figure 5.15 shows that NO conversion slowly increases from 44 to 66% as methane concentration is increased from 0 to 3000 ppm while NO_x conversion decreases a little. The following reactions are proposed to occur in the presence of non-thermal plasma:

Figure 5.15 Effect of CH₄ Concentration on NO/NO_x Conversions. Total flow rate 1000 SCCM. 250 ppm NO, 3% O₂, 7.6% CO₂, N₂ balance. Plasma: 320 J/L at room temperature.

 $CH_4 + e \rightarrow CH_3 + H + e \tag{5.21}$

$$CH_4 + O \rightarrow CH_3 + OH$$
 (5.22)

$$CH_4 + O(^1D) \rightarrow CH_3OH$$
 (5.23)

$$HO_2 + NO \rightarrow NO_2 + OH$$
 (5.24)

where, HO₂ is formed mainly via the following reactions (Penetrante and others 1998):

$$H + O_2 \rightarrow HO_2 \tag{5.25}$$

$$CH_3OH + O_2 \rightarrow CH_3O + HO_2$$
 (5.26)

$$CH_3O + O_2 \rightarrow CH_2O + HO_2 \tag{5.27}$$

Saturated hydrocarbon methane can undergo electron-impact dissociation reaction (5.21) at a slow rate. Therefore, reactions (5.21) and (5.22) are limited and consequently HO_2 available for reaction (5.24) is limited, resulting in a small increase in NO conversion to

 NO_2 from 56 to 66% as methane concentration is increased from 500 to 3000 ppm. NO_x conversion is almost maintained unchanged since no NO_2 is further reduced into N_2 .

Effect of ethylene. Ethylene is added to the reactor to test the effect of unsaturated hydrocarbons on NO/NO_x conversions. Figure 5.16 shows that C_2H_4 significantly enhances NO conversion to NO₂. The following two reactions are proposed to occur in the plasma process:

$$C_2H_4 + O \rightarrow CH_2CO + H + H$$
(5.28)

$$C_2H_4 + O + O \rightarrow HCO + HCO + H + H$$
 (5.29)

Figure 5.16 Effect of C₂H₄ Concentration on NO/NO_x Conversions. Total flow rate 1000 SCCM. 250 ppm NO, 3% O₂, 7.6% CO₂, N₂ balance. Temperature 60 °C, frequency 150 Hz.

Unsaturated hydrocarbon C_2H_4 consumes most of the O atoms via reactions (5.28) and (5.29). As C_2H_4 concentration is increased, more HO₂ is produced via reactions (5.25) and (5.30) (Penetrante 1998):

$$HCO + O_2 \rightarrow CO + HO_2$$
 (5.30)

The reaction (5.24) becomes dominant, leading to almost 100% NO conversion to NO₂.

Effect of Packing in Plasma Reactor

The effects of reactor packing on NO/NO_x conversion and discharge stability is investigated with an inlet NO concentration of 250 ppm in various gas mixtures. Glass wool is packed in the space between the two concentric barriers. The density of the packing is 0.3 g/cm^3 .

Figure 5.17 Effect of Packing on NO/NO_x Conversions for NO/N₂ Gas Mixture

Effect of packing on NO/NO_x conversions. Figure 5.17 shows that, at energy density less than 225 J/L, NO/NO_x conversions for packing are less than for no-packing experimental runs. At energy density greater than 225 J/L, however, NO/NO_x conversions for packing are almost the same as for no-packing. Electrical and hydrodynamic factors probably account for the difference at low energy density (<225

J/L). The glass wool packing with higher dielectric constant increases the capacitance of the reactor, probably causing a decrease in discharge efficiency. Packing also considerably shortens the gas residence time in the reactor, resulting in lower NO/NO_x conversions. At high energy density (>225 J/L), however, these factors appear to have little effect on NO/NO_x conversions.

Effect of packing on discharge stability. In a separate set of experiments, it is found that a glass-wool packing helps in stabilization of discharge especially when C_2H_4 is added to the inlet gas mixture.

Reaction Kinetics and Modeling of NO Conversion under DBD Conditions

The chemistry of NO oxidation under non-thermal plasma is very different from that of oxidation in a combustion process or under atmospheric conditions. The gaseous reactions in plasma can be very complex involving energetic electrons, ions, metastable neutral compounds, etc. resulting in tens of reactions.

<u>Kinetic rate equation for dry NO oxidation</u>. The main reactions for dry NO oxidation described earlier in this study can be simplified as follows:

$$O_2 + e \rightarrow O(^{3}P) + O(^{1}D) + e$$
 (5.31)

$$O + O_2 \rightarrow O_3 \tag{5.32}$$

$$NO + O \rightarrow NO_2$$
 (5.33)

$$NO + O_3 \rightarrow NO_2 + O_2 \tag{5.34}$$

Overall reaction:
$$NO + \frac{1}{2}O_2 \rightarrow NO_2$$
 (5.35)

The rate equation for reaction (5.35) can be expressed as follows

$$- d[NO]/dt = k_p [NO]^{\alpha} [O_2]^{\beta}$$
(5.36)

79 ·

where [NO] and [O₂] represent concentrations of NO and O₂, respectively in the plasma reactor and k_p is specific reaction rate. In addition to the effect of concentrations, the impact of all other variables such as electrical, chemical and hydrodynamic on reaction rate is accounted for by the specific reaction rate, k_p . Under non-thermal plasma conditions in which reactions are mostly conducted at ambient temperature, the effect of temperature on reaction is negligible compared with discharge energy input. It is expected that higher discharge energy input will result in higher reaction rate. Therefore, an Arrhenius-type correlation can be proposed as follows:

$$k_p = A_p \ e^{-Ea/E_d} \tag{5.37}$$

where A_p is frequency factor, E_a is effective activation energy (J/mol of NO) and E_d is energy density (discharge power divided by gas flow rate, J/mol of gas mixture) under plasma conditions.

Reaction orders α and β for equation (5.36) have been estimated to be about $\frac{1}{2}$ through regression analysis of experimental data by varying inlet NO and O₂ concentrations at a constant energy density (Appendix C). The rate equation becomes:

$$- d[NO]/dt = k_p [NO]^{\frac{1}{2}} [O_2]^{\frac{1}{2}}$$
(5.38)

Frequency factor A_p and effective activation energy E_a for equation (5.38) have been estimated to be 0.0143 and 1,865 J/mol, respectively by regression analysis (Appendix C). Therefore, equation (5.38) can be written as:

$$k_p = 0.0143 \ e^{-1865/E_d} \tag{5.39}$$

The value of E_a for NO-O₂ reaction in a conventional reactor is not available. However, the activation energy for a conventional NO-O₃ (ozone) reaction is reported to be 10,290 J/mol (Bailar and others 1984). The much lower E_a of 1,865 J/mol in the plasma specific reaction rate equation (5.39) indicates that the plasma reaction can be conducted at much lower activation energy. Shown in Figure 5.18 is the comparison of experimental and kinetic model results.

Figure 5.18 Comparison of Experimental and Kinetic Model Results of Dry NO Conversion

<u>Correlation of NO conversion in the presence of moisture</u>. As mentioned earlier the presence of H_2O vapors in plasma reactions has a major effect. Efforts have been made to obtain an empirical equation for wet conditions. For this case, following equation has been proposed:

$$[X]/[X]_{0} = \exp\{-(E_{d} - E_{i})/\gamma\}$$
(5.40)

where $[X]_0$ and [X] are inlet and outlet NO_x concentrations, respectively and γ is scale factor. This equation incorporates the term E_i , the minimum energy density required for initiating plasma reactions (Figure 5.19), a significant modification to the equation proposed by Rosocha *et al.*(1993). The equation (5.40) has also been extended to the experimental data from an earlier study (McLarnon 1996). Regression analysis of

experimental data yields the values of γ and E_i as shown in Table 5.1. For details please refer to Appendix C. Figure 5.19 shows the comparison of experimental and model results.

Table 5.1

Experiment	Present study	Earlier study (McLarnon 1996)
Feed	Simulated mixture:	Natural gas combustion exhaust:
	NO- 250ppm	NO _x - 288ppm
	O ₂ - 8.3%	O ₂ - 2.3%
	H ₂ O-1%	H ₂ O-16.6%
	N_2 balance	CO ₂ -8.7%
		N ₂ balance
Reactor	18mm IDx300 mm long	25.4mm ID x 610 mm long
	Dual barriers	Central barrier only
γ (J/L)	61	133
E_i (J/L)	45	14

 γ and E_i under Different Conditions

Figure 5.19 Comparison of Experimental and Model Results of Wet NO Conversion

82

This model work would provide an effective guidance in laboratory experiments and the commercialization of the DBD technique.

Section Conclusions

In this section, a non-thermal plasma technique in the form of dielectric barrier discharge (DBD) has systematically been investigated for the removal of NO_x . The major work has been focused on NO plasma reactions and kinetic modeling. The following main conclusions can be drawn:

- 1. Over 95% NO/NO_x conversions have been achieved in NO/N₂ mixture. They decrease to 50% and 6%, respectively in the presence of 6% O₂ and to 60% and 30%, respectively with 1-5% H₂O. The simultaneous presence of O₂ and H₂O shows up to 90% and 40% for NO/NO_x conversions.
- 2. The kinetic equation for dry NO oxidation with O₂ in DBD is established as -d[NO]/dt = k_p [NO]^{1/2} [O₂]^{1/2} with $k_p = 0.0143 \exp(-1865/E_d)$. The wet NO oxidation is modeled as NO removal rate =1-exp(-(E_d - 45)/61).
- Addition of HCs significantly promotes NO oxidization into NO₂. NO conversions are increased from 43% to 66 and almost 100%, respectively for 3000ppm CH₄ and 1000 ppm C₂H₄ additions.
- 4. Most pathways for NO conversion show that formation of O and OH radicals plays an important role.
- 5. Power consumption is key parameter in reactor performance and must be minimized for commercial operation.

83

Section II Selective Catalytic Reduction of NO_x

As discussed in preceding sections, non-thermal plasma in the DBD form is able to chemically reduce NO_x into N_2 under controlled conditions. However, the reactions in the DBD reactor significantly change as other components such as O_2 or H_2O are included in the feed gas. In the presence of O_2 and/or H_2O , NO oxidation into NO_2 becomes dominant, partly forming HNO₃. Therefore, plasma alone can not complete the task of NO_x removal. Literature review reveals that considerable effort has been made to remove NO_x via catalytic reactions. The development of De-NO_x catalysts has been carried out with focus on conversion, temperature range, life (resistance to poisons like steam, sulfur, etc.) and manufacturing cost (replacing noble metals with inexpensive metals).

Recently, coupling the plasma process with catalytic reactions for a better NO_x removal has received more and more attention primarily because of the NO_x removal from diesel truck exhausts. To gain a better understanding and knowledge of the hybrid system, it is important to first investigate catalytic effect alone on NO_x removal. Presented in this section is experimental data on NO_x removal with a catalytic process. The next section is focused on the hybrid plasma-catalyst system for NO_x removal.

Parameters and Operating Conditions

In this study, reactor variables such as catalyst and temperature are selected as major parameters for experimental investigation. Other factors of interest include components normally present in a pollution stream such as O_2 , H_2O etc. and the reducing agents such as CO, CH₄ and C₂H₄ as added to plasma reactor as discussed earlier.

Catalysts

Five catalysts are used to study their capability of converting NO_x into N₂. They are γ -Al₂O₃ (Alcoa Industrial Chemicals), 1%, 3% and 12% WO₃/Al₂O₃ catalysts (laboratory-made) and Co-Mo/0402T (Harshaw, 2.1% Si, 1.9% Co, 8.6% Mo, 37.4% Al, 1/8"). γ -Al₂O₃ has found wide applications in chemical process industries. It is used as a catalyst as well as a support for a catalyst. WO₃ loading on Al₂O₃ is thought to be helpful in increasing the activity of catalyst for NO/NO_x reduction (Kudla and others 1996).

• Temperature

A low temperature with wide range is considered the best for catalytic reduction of NO_x especially coming from exhaust gas at varied conditions from mobile diesel engines. The present study uses a temperature range of 450 - 650 °C.

• Oxygen concentration

Oxygen concentration of 3% and 6% are used in the gas mixture, individually to investigate concentration effect on NO/NO_x conversions.

• Water vapor concentration

Water vapor concentrations of 1% and 2% in the inlet gas mixture are used to study the effect of water vapor on NO/NO_x conversions.

Reducing compounds: carbon monoxide, methane and ethylene
 Addition of a reducing compound such as H₂, CO, NH₃ or hydrocarbons could significantly promote NO/NO_x catalytic reduction. CO is selected in this study because it is generally present in gasoline engine and diesel engine exhausts. CH₄ is also selected as a hydrocarbon for its plentiful and cheap supply. In addition,

 C_2H_4 is used to compare with CH_4 . The concentration effect of each compound on NO/NO_x conversions is investigated.

A simulated gas mixture is prepared with a composition-certified cylinder of $NO/CO/O_2/CO_2/N_2$ and a pure N₂ cylinder. The simulated gas feed is 250 ppm NO, 230 ppm CO, 3% O₂, 7.6% CO₂ and N₂ balance unless otherwise noted.

Effects of Catalysts on NO/NOx Conversions

<u>Control experiment</u>. An experiment is conducted to determine whether NO/NO_x get converted in the absence of a catalyst. The reactor tube is packed with ceramic wool of 10.38 cm³ (Cotronics Corp., Al₂O₃, CaO and Si₃N₄), a material used for holding a catalyst in place in later experiments. The temperature is maintained at 550 °C. Gas feed consists of 250 ppm NO, 230 ppm CO, 3% O₂, 7.6% CO₂ and N₂ balance. The flow rate is 1000 SCCM and the space velocity is 5,780/h. It is found that NO/NO_x conversions are negligible. When 3270 ppm CH₄ is added to the gas mixture, however, NO/NO_x conversions are 14% and 5%, respectively.

 CH_4 probably reacts with O_2 and produces CO_2 as well as CO at 550 °C in the form of incomplete combustion. CO may contribute to the NO_x reduction. This mechanism will be discussed later while investigating methane effect on NO_x reduction using a catalyst.

<u>Catalyst effect on NO/NO_x conversions</u>. The catalyst used for these experiments is 3% WO₃/ Al₂O₃. Gas feed composition of the simulated gas is 250 ppm NO, 230 ppm CO, 3% O₂, 7.6% CO₂ and N₂ balance. The temperature in the reactor is maintained in the range of 450 to 575 °C. Figure 5.20 shows that maximum NO/NO_x conversions are 60% and 15% at 500 °C, respectively. Obviously, the catalyst helps to increase NO oxidation to NO₂. The dominant reaction can be:

$$NO + 1/2 O_2 \rightarrow NO_2 \tag{5.41}$$

The catalyst probably enhances the chemical reduction of NO by CO as follows:

$$2 \operatorname{NO} + 2 \operatorname{CO} \xrightarrow{\bullet} \operatorname{N}_2 + 2 \operatorname{CO}_2 \tag{5.42}$$

Figure 5.20 Effect of Catalyst on NO/NO_x Conversions as a Function of Temperature. Total flowrate 1000 SCCM, 250 ppm NO, 230 ppm CO, 3 % O₂, 7.6 % CO₂, and N₂ balance. 3% WO₃ loading on Al₂O₃. Space velocity 5,780 /h.

Another type of catalyst Co-Mo/0402T (Harshaw, 2.1% Si, 1.9% Co, 8.6% Mo, 37.4% Al, 1/8") is also tested for NO/NO_x conversions. The gas feed composition is 250 ppm NO, 230 ppm CO, 3% O₂, 7.6% CO₂, 3270 ppm CH₄ and N₂ balance. Total flow rate is 1000 SCCM. When the feed is passed through the catalyst maintained at 600 °C, NO/NO_x conversions obtained are 36.5% and 1.7%, respectively. However, when a new

feed (250 ppm NO, 3270 ppm CH₄ and balance N_2) without CO and O_2 is used, no NO/NO_x conversions are observed at temperature up to 600 °C. These two experiments show that Co-Mo/0402T catalyst is not effective for NO reduction.

Effect of WO₃ loading on NO/NO_x conversions. Catalysts with 0%, 1%, 3% and 12% WO₃ loading are used to investigate WO₃ loading effect on NO/NO_x conversions. The composition of simulated gas is 250 ppm NO, 230 ppm CO, 3 % O₂, 7.6 % CO₂, 3270 ppm CH₄, 6.2% Ar and N₂ balance. Total flow rate is 1000 SCCM and space velocity is 5,780 /h.

Figure 5.21 Effect of WO₃ Loading on NO/NO_x Conversions as a Function of Temperature. Total 1070 SCCM, 233 ppm NO, 214 ppm CO, 2.7% O₂, 7.1% CO₂, 3270 ppm CH₄, 6.2% Ar, N₂ balance. Space velocity 5,780 /h.

Presented in Figure 5.21 are NO/NO_x conversions as a function of temperature at different WO₃ loadings. NO conversion reaches a maximum of 94% for both γ -Al₂O₃ and 1% WO₃/ Al₂O₃ while NO_x conversion is about 53% for both γ -Al₂O₃ and 1% WO₃/

 Al_2O_3 . The maximum NO_x conversion is found to be 59% with 3% WO_3 / Al_2O_3 catalyst. However, a higher WO_3 loading of 12% lowers NO conversion down to 76% and NO_x conversion down to 50% at 575 °C. Therefore, the catalysts with 0%, 1% and 3% WO_3 loading are selected for subsequent experimental work.

High WO₃ loading on Al_2O_3 of 12% inhibits NO/NO_x conversions probably because the excess of WO₃ occupies part of the surface of Al_2O_3 that would otherwise be available for NO/NO_x reactions.

<u>Selective Catalytic Reduction of NO_x by CO</u>

CO in the exhaust gas from automobile engines has been well studied with automotive three-way catalysts that consist mainly of platinum and rhodium as a catalyst (Kyriacopoulou and others 1994). However, development of better catalysts is still attractive for selective catalytic reduction (SCR) of NO by CO. The effect of inlet CO concentration on NO/NO_x conversions is investigated over 1% WO₃/Al₂O₃ catalyst in the present study. Total flow rate is 1000 SCCM with inlet gas mixture of 250 ppm NO, 3% O₂, 2.5-7.6% CO₂ and N₂ balance. Inlet CO concentrations are maintained at 77, 154 and 230 ppm. The space velocity is 5,780 /h. Temperature is held at 450 °C. Figure 5.22 shows that NO conversion increases significantly to 45% as inlet CO concentration increases to 230 ppm. NO_x conversion increases from zero to the maximum of 15% at inlet CO concentration of 154 ppm. Outlet CO concentration is 69 ppm corresponding to an inlet CO concentration of 230 ppm, resulting in 72.4% CO conversion. It is anticipated that NO_x conversion will increase if inlet CO concentration is increased above 230 ppm.

89

Figure 5.22 Effect of Inlet CO Concentration on NO/NO_x Conversions. Total flow rate 1000 SCCM, simulated inlet gas: 250 ppm NO, 3% O₂, 2.5-7.6% CO₂, N₂ balance. Catalysis: 1% WO₃/Al₂O₃, 450 °C, space velocity 5,780 /h.

The presence of CO promotes the reaction NO +1/2 $O_2 \Rightarrow NO_2$ leading to a high NO conversion. The mechanism for CO catalytic reaction over 1%WO₃/Al₂O₃ catalyst is proposed as follows:

$$2 \{CO\} + 2 \{NO\} \rightarrow \{CNO-NCO\} + 4 \{O\}$$
 (5.43)

Where, {} indicates active species adsorbed on catalyst surfaces. Schmal *et al.* (1999) reported that the above reaction over Pd-xMo/Al₂O₃ formed isocyanate (CNO-NCO). CNO-NCO was thought to be an intermediate in the selective catalytic reduction (SCR) of NO by C_3H_6 over Pt/Al₂O₃ (Captain and Amiridis 1999). The following reactions are proposed for the present study:

$$NO + \{O\} \xrightarrow{\bullet} NO_2 \tag{5.44}$$

 $\{\text{CNO-NCO}\} \rightarrow N_2 + 2 \text{ CO}$ (5.45)

$$CO + O_2 \rightarrow CO_2 \tag{5.46}$$

90

Reaction (5.43) is the key step to form the intermediate and active O atom. Subsequently, as CO concentration increases, reactions (5.44) and (5.45) account for the increases in NO and NO_x conversions, respectively. When inlet CO concentration is maintained at 230 ppm, about 160 ppm CO is converted finally via reaction (5.46). NO_x conversion of 15% indicates that about 19 ppm {CNO-NCO} and 4x19 ppm {O} are formed. All {O} of 76 ppm is consumed by reaction (5.44), producing NO₂ of 76 ppm. This is in good agreement with the experimental data of 75 ppm.

Selective Catalytic Reduction of NOx by CH4

Effect of methane addition on NO_x catalytic reactions over 3% WO_3 / Al_2O_3 . An experiment is conducted to investigate the effect of methane addition. The composition is 250 ppm NO, 230 ppm CO, 3 % O_2 , 7.6 % CO₂, 3270 ppm CH₄, 6.2% Ar and N_2

Figure 5.23 Effect of CH₄ on NO/NO_x Conversions as a Function of Temperature. Total flowrate 1000 SCCM, 250 ppm NO, 230 ppm CO, 3% O₂, 7.6% CO₂, 6.2% Ar and N₂ balance. 3% WO₃ / Al₂O₃. Space velocity 5,780 /h.

91

balance. Total flow rate is 1000 SCCM in both cases and space velocity is 5,780 /h. Figure 5.23 shows that addition of methane significantly increases maximum NO/NO_x conversions from 60% to 90% and from 15% to 58%, respectively.

Effect of methane concentration on NO/NO_x conversions and CO formation. Being chemically active, propylene is often used as a reducing agent by many researchers in conducting studies of selective catalytic reduction (SCR) of NO (Denton and others 2000; Kudla and others 1996). Methane, however, is attractive because of its low cost and easy availability. Especially for a natural gas combustion system, the exhaust probably contains unburned methane that could be used in a downstream catalytic process.

The effect of methane is studied by varying the concentration of the hydrocarbon. The composition of feed gas is 250 ppm NO, 230 ppm CO, 3% O₂, 7.6% CO₂, 6.2% Ar and N₂ balance with varied concentrations of methane from 0 to 3270 ppm. Total flow rate is 1000 SCCM. 3% WO₃/Al₂O₃ is used and temperature is maintained at 513 °C. Presented in Figure 5.24 is the effect of methane concentration on NO/NO_x conversion and CO formation. NO conversion increases quickly to 88% while NO_x conversion reaches 20% at methane concentration of 690 ppm only. When methane concentration is further increased from 690 ppm to 3270 ppm, NO conversion only increases by 2 percent while NO_x conversion increases linearly from 20% to 52%. It is found that a large amount of CO is formed, finally reaching 730 ppm when inlet methane concentration is 3270 ppm.

92

Figure 5.24 Effect of CH₄ Concentration on NO/NO_x Conversions and CO Formation. Total flow rate 1000-1070 SCCM, 250-233 ppm NO, 230-214 ppm CO, 3-2.7% O_2 , 7.6-7.1% CO₂, 0-6.2% Ar and N₂ balance. Catalysis: 3% WO₃/ Al₂O₃, 513 °C.

An increase in outlet CO concentration from 50 to 730 ppm suggests that incomplete CH₄ conversion takes place in the catalytic reactor. Liese *et al.* (2001) proposed a mechanism for SCR of NO by CH₄ with CeO₂-Zerolite catalysts. It may be used to explain SCR of NO by CH₄ in the present study with 3% WO₃/Al₂O₃ catalyst as follows:

$$NO + \frac{1}{2}O_2 < == > NO_{2,ads}$$
 (5.47)

$$CH_4 + \{O_s\} \xrightarrow{\bullet} CH_3^* + OH_s^*$$
(5.48)

$$NO_{2,ads} + CH_3^* \rightarrow CH_3 NO_2 \tag{5.49}$$

$$2 \text{ CH}_3 \text{ NO}_2 + \text{O}_2 \Rightarrow \text{N}_2 + \text{CO} + \text{CO}_2 + 3 \text{ H}_2\text{O}$$
 (5.50)

$$2 \text{ CH}_3 \text{ NO}_2 + 5/2 \text{ O}_2 \Rightarrow \text{ NO} + \text{NO}_2 + \text{CO} + \text{CO}_2 + 3 \text{ H}_2\text{O}$$
 (5.51)

93

CO contributes to NO_x conversion via the isocyanate (CNO-NCO) pathway (reactions 5.43, 5.44, 5.45) discussed earlier, although its effect is limited compared to CH_4 effect.

The relationship between NO_x conversion and inlet CH_4 concentration is regressed from experimental data (Figure 5.24):

$$X = 0.0143 C_i + 7.2 \tag{5.52}$$

Where, X is NO_x conversion (%) and C_i is inlet CH₄ concentration (ppm). This equation can be used to estimate NO_x conversion or inlet CH₄ concentration required for a given NO_x conversion. It is expected that the linearity could not be held in the high conversion range. The curve would turn flat as C_i is further increased. However, the equation is helpful in finding the minimum concentration of CH₄ for a required conversion NO_x. For example, if 80% conversion of NO_x is required, equation (5.52) would give C_i of 5090 ppm, which is the minimum concentration of CH₄ required.

Selective Catalytic Reduction of NO_x by C₂H₄

Effect of ethylene concentration on NO/NO_x conversions. Ethylene is added to the inlet stream to study its effect on NO/NO_x conversions. Ethylene (C_2H_4) is used rather than propylene (C_3H_6) as it is closer to CH₄ with respect to the numbers of C and H atoms. Very little information is available in the literature for its use a reducing chemical agent in the SCR reactions.

Figure 5.25 NO/NO_x Conversions vs. Concentration of C_2H_4 Added. Total flow rate 1000 SCCM: 250 ppm NO, 3% O₂, N₂ balance. Catalysis: 1%WO₃/Al₂O₃, 450 and 500 °C, space velocity 5,780/h.

The effect of C_2H_4 on NO/NO_x conversions is investigated by varying the concentration of C_2H_4 between 0 and 4000 ppm in the feed gas. Total flow rate is 1000 SCCM with 250 ppm NO, 3 % O₂ and N₂ balance. 1% WO₃/Al₂O₃ catalyst is used. Experiments are conducted at 450 and 500 °C. The results are presented in Figure 5.25. Outlet CO concentration can not be measured with the Nova model 375 portable combustion analyzer due to a strong signal of C₂H₄. The NO/NO_x conversions are 80 and 55%, respectively at 3000 ppm C₂H₄ in the inlet gas and 450 °C reactor temperature. The NO_x conversion is found to increase to 90% as temperature is increased to 500 °C. The NO_x conversion of 90% with C₂H₄ is greater than that of 50% with CH₄ under the same

experimental conditions. It can be concluded that C_2H_4 is an effective agent for chemically reducing NO into N₂.

Captain and Amiridis (1999; 2000) reported that formation of isocyanate (CNO-NCO) species are the major pathway for NO reduction over Pt/Al_2O_3 . Similarly, isocyanate as an intermediate may also provide a pathway for NO_x reduction with CO (equations 5.43-45). The second possible pathway could be that adsorbed C_2H_4 combines with NO₂, following a similar pathway (equations 5.47-51) as for methane discussed earlier. The third pathway can be the formation of hydrogen from C_2H_4 by its dissociation over catalysts. Hydrogen then contributes to NO reduction:

$$C_2H_4 + O_2 \rightarrow 2 CO + 2 H_2$$
 (5.53)

$$NO + H_2 \rightarrow \frac{1}{2}N_2 + H_2O$$
 (5.54)

The three pathways probably work together for an effective NO_x reduction with C_2H_4 .

Effect of water vapor on NO/NO_x conversions. As mentioned earlier in plasma section, water vapor is one of the basic components of flue gases and diesel-engine exhausts. It has a considerable effect on catalytic process of NO from reaction pathways to catalyst life. In the present experiments, 1% and 2% water vapors are incorporated in the simulated feed gas. Total flow rate is 1000 SCCM with 250 ppm NO, 3% O₂, 7.6% CO₂, 3000 ppm C₂H₄ and N₂ balance. Catalyst used is 1%WO₃/Al₂O₃. Presented in Figure 5.26 is the effect of water vapor on NO/NO_x conversions as a function of temperature.

Figure 5.26 Effect of H_2O on NO/NO_x Conversions as a Function of Temperature. Total flow rate 1000 SCCM: 250 ppm NO, 3% O₂, 7.6% CO₂, 3000 ppm C₂H₄, N₂ balance. Catalysis: 1%WO₃/Al₂O₃, space velocity 5,780/h.

It is seen that for 1-2% water vapor at low temperature of 450 °C, NO/NO_x conversions decrease from 89% for dry mixture to 40-44% and from 70% to 16-20%, respectively. As temperature increases to 550 °C, the NO conversion is nearly 100% and the NO_x conversion increases to 88-91%. When temperature increases to 600 °C, however, the NO/NO_x conversions reduce to about 90% and about 80%, respectively for the same water vapor content.

Effect of oxygen concentration. Oxygen effect on NO/NO_x conversion is investigated in the presence of 3000 ppm C₂H₄ and 2% water vapor content in the feed gas. Total flow rate is 1000 SCCM. The feed composition is 250 ppm NO, 7.6% CO₂, 3000 ppm C₂H₄, 2% H₂O and balance N₂. Catalyst used is bald γ -Al₂O₃. Experiments are conducted at 3% and 6% O₂ concentrations. The results are presented in Figure 5.27.

Figure 5.27 Effect of O_2 on NO/NO_x Conversions as a Function of Temperature. Total flowrate 1000 SCCM: 250 ppm NO, 3 and 6% O_2 , 7.6% CO₂, 3000 ppm C₂H₄, 2% water vapor, N₂ balance. Catalysis: bald Al₂O₃, space velocity 5,780/h.

It is found that the difference between the NO conversions for 3% and 6% O_2 decreases from 34 to 0% while the difference between the NO_x conversions is about 10% as temperature increases from 450 to 500°C. In higher temperature range of 500-600 °C, the NO conversions for both O_2 levels are held the same (90-98%) while the NO_x conversions for both O_2 levels reach the same of 85% at 550 °C. It can be concluded that the effect of O_2 concentration on NO/NO_x conversions become less significant as temperature increases.

<u>NO/NO_x</u> conversions in the presence of C_2H_4 with 1% WO₃/Al₂O₃ and bald γ -<u>Al₂O₃</u>. Separate experiments are conducted with 1% WO₃/Al₂O₃ and bald γ -Al₂O₃ to investigate the effect of WO₃ loading in the presence of C₂H₄. The composition of simulated gas feed is 250 ppm NO, 3% O₂, 7.6% CO₂, 3000 ppm C₂H₄, 1% water vapor and N₂ balance. Total flow rate is 1000 SCCM. Presented in Figure 5.28 are the experimental results. There is no difference in NO/NO_x conversions when 1% WO_3/Al_2O_3 and bald γ -Al_2O_3 are used in the presence of C₂H₄ at temperature range of 450 – 600 °C. This indicates that 1% WO₃ loading on Al₂O₃ does not increase NO/NO_x conversions in the presence of C₂H₄.

Figure 5.28 Effect of WO₃ Loading on NO/NO_x Conversions as a Function of Temperature. Total flow rate 1000 SCCM: 250 ppm NO, $3\% O_2$, 7.6% CO₂, 3000 ppm C₂H₄, 1% water vapor, N₂ balance. Catalysis: $1\%WO_3/Al_2O_3$ and bald γ -Al₂O₃, space velocity 5,780/h.

Section Conclusions

In this section, an investigation of selective catalytic reduction (SCR) of NO_x has been conducted for the purpose of comparison with P-C system and finding cheaper SCR catalysts, which may be suitable for hybrid plasma-catalyst system (details provided in next Section). No work has been reported on SCR of NO_x by C_2H_4 . The following conclusions can be drawn:

- 1. γ -Al₂O₃ is a good material to serve as SCR catalyst. Loading of WO₃ on γ -Al₂O₃ does not significantly enhance catalyst activity. 1-3% loading increases NO_x conversion by merely 5%. A high loading of 12% WO₃ instead inhibits NO_x conversion.
- An increase in CO in the gas feed promotes NO/NO_x conversions in the SCR system.
- 3. Addition of CH₄ significantly increases NO/NO_x conversions, from 60% to 90% and from 15% to 58%, respectively. The best temperature range for NO conversion in the presence of CH₄ is found to be 500-600 °C. An incomplete conversion of CH₄ in the SCR process results in up to 730 ppm CO formation.
- 4. The presence of C₂H₄ has a significant effect on NO/NO_x conversions. At 500 °C, NO_x conversion of 90% is realized when 3000 ppm C₂H₄ is added to the inlet mixture of 250ppm NO/3% O₂/N₂. The NO_x conversion drops to 55% as temperature is decreased from 500 to 450°C.

Section III Hybrid Plasma-Catalyst System for NOx Removal

As discussed in the preceding sections, the plasma reactor could effectively oxidize NO into NO₂ with CH₄ or C₂H₄ added. The catalytic reactor with γ -Al₂O₃ as a main catalyst has the potential to reduce NO_x into N₂ with the aid of CH₄ or C₂H₄ addition.

The objective of this part of study is to investigate the synergetic effect on NO_x reduction in a plasma-catalyst (P-C) system that combines non-thermal plasma in the form of dielectric barrier discharge (DBD) with a catalytic reactor. The parameters of interest are configuration of P-C system, catalyst temperature, space velocity, reducing agent concentrations (CO, CH₄ and C₂H₄), NO₂ concentration and NO/NO_x conversions. It is important to note that NO conversion is referred to percentage of NO converted to NO_2 , N_2 , HNO₃ and/or N_2O while NO_x conversion is percentage of NO_x converted to N_2 , HNO₃ and/or N_2O , if any. In addition, a series of experiments are conducted to investigate the potential of N_2O formation in the P-C system.

Configuration of a Plasma-Catalyst System

The physical combination of non-thermal plasma and catalytic reactors can be achieved with two types of configurations. One is referred to two-stage system consisting of a plasma reactor and catalytic reactor connected in series. The other is called one-stage system with the plasma reactor space packed with a catalyst. Each configuration has its own advantages and disadvantages. In a two-stage system, plasma reactor can be maintained at room temperature while catalytic reactor can run at much higher temperatures. It is also easy to fabricate and maintain as well as has more flexibility of operation as it deals with two separate reactors. The disadvantage for two-stage system is more space requirement. For one-stage system, a significant advantage is space saving. The disadvantages include temperature limit and difficulties in fabrication and maintenance. The literature information is not very clear on whether there is any scientific benefit in keeping plasma and catalyst in one-stage configuration. It is reported

that the same De-NO_x results are achieved for the two configurations (Penetrante and others 1998). Balmer *et al.* (1998) reports that the energy efficiency in the two-stage configuration is about ten times higher than in the one-stage configuration. A high energy efficiency in a two-stage system could be attributed to different conditions maintained in plasma and catalytic reactors. The catalyst packing in one-stage system could affect the capacitance of the plasma space as well as shorten gas stream residence time. The dielectric properties of the catalyst would also have a strong effect on the discharge quality.

In the present study, the DBD reactor could only run at low temperature range (room temperature to 65 °C) because the insulation and sealing materials (Teflon end caps, rubber rings) of the reactor could not be subjected to high temperatures. Taking into account the several advantages of two-stage configuration over of one-stage, a two-stage system is used for the present study (Figure 4.1).

<u>CO Effect on NO_x Reduction with Plasma-Catalyst System</u>

The experimental study in Section II shows that CO could be used for enhancing NO_x catalytic reduction. As presented in Section I of this chapter, CO can be formed via electron-impact dissociation of CO₂ in the DBD reactor. The CO concentration is about 736 ppm in the outlet gas stream from the DBD reactor at energy density of 320 J/L when inlet mixture of 250 ppm NO, 230 ppm CO, 3% O₂, 7.6% CO₂ and N₂ balance is passed through the reactor at room temperature (Section I, Figure 5.14). Experiments are conducted with the same feed gas as used for plasma alone to investigate the CO effect on NO_x reduction in the P-C system. The plasma reactor is run at an energy density of

102

320 J/L and room temperature. The concentration of CO from the plasma reactor to the catalytic reactor is about 700 ppm. The catalyst used is $1\% \text{ WO}_3/\text{Al}_2\text{O}_3$ (Section II of this chapter shows that the effect of either γ -Al₂O₃ or $1\% \text{WO}_3/\text{Al}_2\text{O}_3$ is the same on NO/NO_x conversions). The catalytic reactor temperature ranges from 350 to 575 °C. Sampling points are outlets of plasma reactor and catalytic reactor. The same feed gas is bypassed the plasma reactor and fed directly to the catalytic reactor to obtain the effect on NO/NO_x conversions by catalysis alone for comparison.

Figure 5.29 Effects of Catalysis Alone and Plasma-Catalysis on NO/NO_x Conversions as a Function of Temperature. Total flow rate 1000 SCCM, 250 ppm NO, 230 ppm CO, 3% O₂, 7.6% CO₂, N₂ balance. Plasma: 320 J/L, room temperature. Catalysis: 1% WO₃/Al₂O₃, space velocity 5,780 /h.

Presented in Figure 5.29 are the NO/NO_x conversions as a function of temperature. The catalytic reactor alone provides a maximum of NO/NO_x conversions of 66% and 9%, respectively for the above stated experimental parameters at 495 °C. When the plasma and catalytic reactors are combined, the P-C system provides a maximum of

NO/NO_x conversions of 98 % and 42%, respectively at 450 °C. The plasma helps to increase the NO/NO_x conversions even at a slight lower temperature. Table 5.2 presents the NO/NO_x conversions for three systems for comparison.

Table 5.2

Comparison of Maximum Conversions of NO/NO_x

Conversion	Plasma Alone	Catalysis Alone	P-C System
% NO	44	66	98
% NO _x	9	9	42

Table 5.3

Composition Comparison between Original and Plasma-Conditioned Feed Streams

Feed Stream	NO	NO ₂	O ₂	CO ₂	СО	N ₂
Original	250 ppm	0 ppm	3%	7.6%	230 ppm	balance
Conditioned	140 ppm	87 ppm	3%	7.6%	700 ppm	balance

The NO_x conversion of 42% by the P-C system is not a simple addition of the individual conversions by plasma and catalysis (9% each). There is a great synergy achieved with this P-C system. NO_x reduction in the P-C system can be considered due to conditioning of gas stream by plasma which significantly changes the gas mixture components and compositions (Table 5.3). A considerable increase in CO concentration from 230 to 736 ppm after plasma conditioning probably accounts for the remarkable increase in NO_x conversion to N₂. The De-NO_x pathway can be considered the same as proposed in earlier Section II, i.e., CO and NO form isocyanate as an intermediate. Table

5.3 shows that NO₂ concentration increases from 0 to 87 ppm after conditioning. It may also contribute to the increase in NO_x conversion by the catalytic reactor if NO₂ is an intermediate, indicating another pathway to NO_x reduction.

CH₄ Effect on NO_x Reduction with Plasma-Catalyst System

In order to identify CH₄ effect, experiments are conducted in the absence of CO₂ since plasma would dissociate CO₂ into CO that would enhance NO_x conversion. The feed gas mixture is 1000 SCCM of 250 ppm NO, 3% O₂ and N₂ balance. The same P-C system is used except the plasma reactor is packed with glass wool for a better discharge stability and a lower energy density. The plasma reactor is operated at the energy density of 260 J/L and room temperature. The catalyst used is γ -Al₂O₃ at 500 °C. The experiments are conducted at CH₄ additions of 0, 1000, 2000 and 3000 ppm. For comparison, the same gas feed is bypassed around the plasma reactor and is directly fed to the catalytic reactor to obtain the effect by catalytic reactor alone on NO/NO_x conversions.

Figure 5.30 shows the NO/NO_x conversions as a function of concentrations of CH₄ added to the inlet feed stream to the P-C system. Comparing the NO_x conversions between P-C system and catalysis alone, the improvement in NO_x conversion is found to be constant at 15 % in the CH₄ concentration range of 1000-3000 ppm. Presented in Table 5.4 is the comparison of conversions for CH₄ addition of 3000 ppm. The NO/NO_x conversions for the P-C system are 94% and 55%, respectively, compared with 65% and 8% for the plasma alone, 85% and 40% for catalysis alone.

Figure 5.30 NO/NO_x Conversions vs. Concentrations of CH₄ Added. Total flow rate 1000 SCCM: 250 ppm NO, 3% O₂ and N₂ balance. Plasma: 150 Hz, 260 J/L, glass wool packing. Catalysis: γ -Al₂O₃, 500 °C, space velocity 5,780 /h.

Table 5.4

Comparison of NO/NO_x Conversions with 3000 ppm CH₄ Addition

Conversion	Plasma Alone	Catalysis Alone	P-C System		
NO, %	65	85	94		
NO _x , %	8	40	55		

Table 5.5 compares the compositions of original and conditioned feeds. Plasma conditioning of the feed stream accounts for the higher NO_x conversion by the P-C system compared to the catalytic reactor alone as shown in Table 5.4. In the case of conditioned feed, there are CO and other CH₄-oxidized products due to partial oxidation of CH₄ by the plasma process. A high NO₂ concentration of 141 ppm (Table 5.5) is found in the conditioned feed. These compounds may play an important role in the selective

catalytic reduction of NO_x . One of the De-NO_x pathways can be considered the same as proposed in earlier Section II, i.e., CO and NO form isocyanate, an intermediate. CH₄ and CH₄-oxidized products probably combine with NO₂, forming CH₃NO₂, an intermediate indicating another pathway to NO_x reduction as reaction (5.50) shown in Section II:

$$2 \operatorname{CH}_3 \operatorname{NO}_2 + \operatorname{O}_2 \xrightarrow{\bullet} \operatorname{N}_2 + \operatorname{CO} + \operatorname{CO}_2 + 3 \operatorname{H}_2 \operatorname{O}$$

Table 5.5

Composition Comparison between Original and Plasma-Conditioned Feed Streams for 3000 ppm CH₄ Addition

Feed Stream	NO	NO ₂	O ₂	CH ₄	N_2
Original	250 ppm	0 ppm	3%	3000 ppm	balance
Conditioned	89 ppm	141 ppm	3%	2850 ppm *	balance

* 5% of original CH₄ is oxidized into CO and HC-oxidized products.

C₂H₄ Effect on NO_x Reduction with Plasma-Catalyst System

In order to investigate C_2H_4 effect on NO/NO_x conversions, experiments are conducted in the absence of CO₂ since plasma would dissociate CO₂ into CO that would affect NO_x conversion. The feed gas mixture is 1000 SCCM of 250 ppm NO, 3% O₂ and N₂ balance. The same P-C system is used except the plasma reactor is packed with glass wool as in previous case for a better discharge stability and a lower energy density. The plasma reactor is operated at an energy density of 260 J/L and room temperature. The catalyst used is γ -Al₂O₃ at 500 °C. The experiments are conducted with C₂H₄ additions of 0, 1000, 2000 and 3000 ppm to the inlet stream. For comparison, the same gas feed is bypassed around the plasma reactor and is directly fed to the catalytic reactor to obtain the effect by catalyst alone on NO/NO_x conversions. Figure 5.31 shows the NO/NO_x conversions as a function of concentration of C_2H_4 added to the various systems.

Figure 5.31 NO/NO_x Concentrations vs. Concentrations of C₂H₄ Added. Total flow rate 1000 SCCM: 250 ppm NO, 3% O₂ and N₂ balance. Catalysis: γ -Al₂O₃, 500 °C. Plasma: 150 Hz, 260 J/L, glass wool packing, space velocity 5,780 /h.

Table 5.6

Comparison of Conversions for 3000 ppm C₂H₄ Addition

Conversion	Plasma Alone	Catalysis Alone	P-C System
NO, %	. 92	99	99
NO _x , %	0.4	84	90

Presented in Table 5.6 is the comparison of NO/NO_x conversions with C_2H_4 addition of 3000 ppm in the inlet feed streams. The NO/NO_x conversions for the P-C system are 99% and 90%, respectively, compared with 92% and 0.4% for the plasma

alone, 99% and 84% for catalysis alone. Comparing the NO_x conversions achieved between P-C system and catalysis alone, the improvement in NO_x conversion is found to be about 6 percent for C_2H_4 addition of 3000 ppm.

Table 5.7

C ₂ H ₄ Addition, ppm	0	1000	2000	3000
Catalysis alone (a), NO _x %	2	54	76	84
P-C System (b), NO _x %	34	70	88	90
Improvement (b-a), NO _x %	32	16	12	6

Improvement of NO_x Conversions by P-C System

For both P-C system and catalysis alone, NO_x conversion to N₂ is of importance. Therefore, only NO_x conversions for different C₂H₄ concentrations are listed in Table 5.7 for comparison. The highest improvement of 32% for the P-C system without C₂H₄ addition is of little importance since the total NO_x conversion is only 34%. When 1000 ppm C₂H₄ is added, the NO_x conversion is 70% for the P-C system, 16% higher than 54% for the catalysis alone. The improvement decreases from 16% to 6% as C₂H₄ concentration increases from 1000 to 3000 ppm. Only 2 percentage advantage of NO_x conversion is achieved by the P-C system when C₂H₄ concentration is increased from 2000 to 3000 ppm.

Table 5.8 compares the compositions between original and plasma-conditioned feeds. Plasma conditioning of the feed stream accounts for the higher NO_x conversion by the P-C system compared to the conversion by the catalytic reactor alone. In the conditioned feed, there are CO and other C₂H₄-oxidized products due to partial

oxidization of C_2H_4 by the plasma process. These compounds play an important role in the selective catalytic reduction of NO_x. One of the De-NOx pathways can be considered the same as proposed in earlier Section II, i.e., CO and NO form isocyanate, an intermediate. A very high NO₂ concentration of 230 ppm is found in the conditioned feed. It may contribute to the increase in NO_x conversion by the catalytic reactor if NO₂ is also an intermediate and assists in NO_x reduction.

Table 5.8

Composition Comparison between Original and Plasma-Conditioned Feed Streams for 3000 ppm C₂H₄ Addition

Feed Stream	NO	NO ₂	O ₂	C_2H_4	N ₂
Original	250 ppm	0 ppm	.3%	3000 ppm	balance
Conditioned	19 ppm	230 ppm	3%	2640 ppm *	balance

* 12% of original C_2H_4 is oxidized into CO and other HC-oxidized products.

NO2 Effect on Catalytic Reduction in the Presence of C2H4

In the preceding experiments in the P-C system, there is a great amount of NO₂ formed by the plasma conditioning along with CO and C₂H₄-oxidized products in the first stage. In order to identify the effect of NO₂ formation on the catalytic reduction of NO_x, separate experiments are conducted with NO₂ gas mixture as feed to the catalytic reactor only. This experiment design also eliminates the effect of CO and C₂H₄-oxidized products on NO_x catalytic reduction since the feed composition is 175 ppm NO₂, 3% O₂ and N₂ balance. Total flow rate is 1000 SCCM and space velocity is 5,780 /h. The catalyst used is γ -Al₂O₃. For comparison, 175 ppm NO is also used for the same experimental conditions. Experiments are conducted under two conditions: change in the

concentration of C_2H_4 at a constant temperature of 500 °C and change in temperature at a constant concentration of 3000 ppm C_2H_4 .

Figure 5.32 Effect of C₂H₄ Concentration on Catalytic Reduction of NO₂. Total flow rate 1000 SCCM. Feed: 175 ppm NO₂, 3% O₂ and N₂ balance. Catalysis: γ -Al₂O₃, 500 °C, space velocity 5,780/h.

Figure 5.32 shows the outlet NO/NO₂/NO_x concentrations from the catalytic reactor for the C_2H_4 concentrations of 0-3000 ppm in the NO₂ gas feed. In the absence of C_2H_4 , about 8.6 % NO_x conversion is achieved in the catalytic reactor with a formation of 44 ppm NO. This can be explained by the following reversible reaction:

$$NO_2 \iff NO + \frac{1}{2}O_2$$
 (5.55)

The NO_x conversion of 8.6 % may be the result of either or both of the reactions:

$$2 \operatorname{NO}_{ads} \xrightarrow{\bullet} \operatorname{N}_2 + \operatorname{O}_2 \tag{5.56}$$

$$2 \operatorname{NO}_{2,\mathrm{ads}} \twoheadrightarrow \operatorname{N}_2 + 2 \operatorname{O}_2 \tag{5.57}$$

111

In the presence of C_2H_4 , the outlet NO concentration decreases to 6.2, 1.2 and 0.8 ppm for C_2H_4 concentrations of 1000, 2000 and 3000 ppm, respectively.

Figure 5.33 Effect of C₂H₄ Concentration on NO_x Conversions for Different Feeds. 175 ppm NO feed with 3% O₂ and N₂ balance; 175 ppm NO₂ feed with 3% O₂ and N₂ balance. Catalysis: γ -Al₂O₃, 500 °C, space velocity 5,780/h.

Presented in Figure 5.33 are the NO_x conversions as a function of C_2H_4 concentration for both NO and NO₂ feeds at 500 °C. For the catalytic reactor alone, the NO_x conversions for both feeds are found to be the same at a given C_2H_4 concentration. A direct NO₂ feed does not give a higher NO_x conversion than NO at 500 °C. It appears that NO oxidization into NO₂ is not the control reaction step for SCR of NO with C_2H_4 over catalyst γ -Al₂O₃.

112

Figure 5.34 Temperature Effect on NO_x Conversions for Different Feeds with 3000 ppm C₂H₄ Added. 175 ppm NO feed with 3% O₂ and N₂ balance; 175 ppm NO₂ feed with 3% O₂ and N₂ balance. Catalysis: γ -Al₂O₃, 400-500 °C, space velocity 5,780/h.

Figure 5.34 shows the temperature effect on NO_x conversions for both NO and NO_2 feeds with 3000 ppm C_2H_4 added. The NO_x conversions for both NO and NO_2 feed are the same at any temperature in the range of 400-500 °C. This further suggests that the control step of SCR of NO with C_2H_4 is not NO oxidization into NO_2 . NO_2 may not be considered an intermediate for NO_x reduction to N_2 under the given experimental conditions.

Investigation of N₂O Formation

Nitrous oxide (N_2O) is one of the six greenhouse gases listed in the Kyoto Protocol. Therefore, attention should be paid when a process is used to remove nitrogen oxides for the possible formation of N₂O. Literature review reveals that N₂O may be formed during plasma process. The reaction

$$NO_2 + N \rightarrow N_2O + O \tag{5.58}$$

may take place forming N₂O (Matzing 1991). The formation of N₂O in a positive-pulsed corona discharge reactor was reported and its amount was measured under several experimental conditions (Mok and others 2000). In the presence of O₂ and H₂O, Mot *et al.* reported up to 10 ppm of N₂O.

A series of separate experiments are conducted in this study to investigate the possible N₂O formation in the DBD reactor, SCR reactor and P-C system. The total inlet flow rate is 1000 SCCM. Various gas feeds shown in Table 5.9 are passed through reactors. The operating conditions of the DBD reactor are room temperature with a glass-wool packing. The SCR reactor is operated with γ -Al₂O₃ as catalyst at 500 °C. The space velocity is 5,780 h⁻¹. Table 5.9 gives the summary of NO/NO_x conversions and N₂O formation.

<u>Non-thermal plasma DBD reactor</u>. 19 ppm of N₂O is formed when 250 ppm NO in N₂ is passed through the DBD plasma reactor. In the presence of 3% oxygen, a concentration of 25 ppm N₂O is recorded. The increase of 6 ppm may be attributed to the presence of oxygen that oxidizes NO into NO₂ leading to the formation of N₂O through reaction (5.58). However, no N₂O is detected when 2% water vapor is added to the gas feed. The effect of adding reducing agents such as CH₄ on N₂O formation is investigated using the same reactor. In dry condition, addition of 3000ppm CH₄ does not reduce N₂O formation. Addition of both 3000 ppm CH₄ and 2% water vapors reduces N₂O formation from 20 to 5 ppm.

114

Operating Condition	Plasma Only (room temp., glass-wool packing)			Catalysis Only (γ-Al ₂ O ₃ , 500 °C)			P-C System			
Gas Feed*	Energy Density	N ₂ O (ppm)	NO** (%)	NO _x (%)	N ₂ O (ppm)	NO (%)	NOx (%)	N ₂ O (ppm)	NO (%)	NO _x (%)
NO + N ₂	323	19	99.6	99.4						
NO+ O ₂ + N ₂	344	25	72.8	32						
NO+ O ₂ + N ₂ + H ₂ O	309	0	46	3.2						
$NO+O_2 + N_2 + CH_4$	320	20	62	16.8	0	81.6	36	17	90.8	49.2
NO+ Q ₂ + CH ₄ + H ₂ O+ N ₂	300	5	51.2	6.8				5	62.8	23.2
$NO+O_2+C_2H_4+N_2$	200	n.a.	98	0				0	99	90.4
$NO+O_2+C_2H_4+H_2O+N_2$	288	n.a.	82.8	17.2				0	98	77.2
175ppm NO ₂ + N ₂	221	25	-18	70.3						
175ppm NO ₂ + O ₂ + N ₂	190	19	-25	12.6						

 Table 5.9
 Summary of N₂O Formations under Different Experimental Operating Conditions

* NO =250ppm, $O_2 = 3\%$, $CH_4 = 3000ppm$, $C_2H_4 = 3000ppm$, $H_2O = 2\%$, N_2 balance. ** Negative value means formation of NO. n.a.: not analyzed

175 ppm NO₂ instead of 250 ppm NO is used in gas feed to study if NO₂ is an intermediate in the formation of N₂O as per reaction (5.58). A concentration of 25 ppm N₂O in the outlet is recorded at energy density of 221 J/L, compared to 19 ppm N₂O formation when 250 ppm NO is in the feed at higher energy density of 323 J/L. This shows that NO₂ may be an intermediate in the N₂O formation. In the presence of 3% O₂, 175 ppm NO₂ feed leads to the formation of 19 ppm N₂O at a much lower energy density of 190 J/L, compared to 25 ppm N₂O formation when 250 ppm NO is in the feed at energy density of 344 J/L.

SCR reactor. NO/O₂/CH₄/N₂ gas feed is used to investigate if N₂O is formed in SCR reactor with γ -Al₂O₃ as catalyst. In the SCR reactor at a temperature of 500 °C, N₂O is not detected while NO/NO_x conversions are 81.6% and 36%, respectively. In other words, the SCR reactor does not contribute N₂O formation. More data points could not be obtained due to limited availability of FTIR equipment.

<u>Hybrid P-C system</u>. When the same feed mixture of $NO/O_2/CH_4/N_2$ is passed through the P-C system, 17 ppm N₂O is found in the outlet gas from the P-C system. However, this N₂O concentration is reduced to less than 5 ppm in the presence of 2% H₂O. Addition of 3000 ppm C₂H₄ to the mixture of $NO/O_2/N_2$ successfully suppresses N₂O formation in the P-C system even in the absence of water vapors.

In summary, about 19-25 ppm N_2O is formed when 250 ppm NO in a dry mixture of N_2 or N_2 - O_2 is passed through the DBD reactor. However, presence of 2% water vapors in the feed mixture reduces N_2O formation to less than 5 ppm in the DBD reactor. Addition of CH₄ as reducing agent does not help reduce this N_2O formed in the DBD reactor. There is no N_2O formation in the SCR reactor. No significant amount of N_2O (less than 5 ppm) is detected in the outlet gas of the P-C system. Flue gas or exhaust typically contains 5-10% H_2O vapors. Therefore, there is not likely to be any N_2O formation problem using a P-C system for NO_x removal.

Section Conclusions

In this section, experiments have been conducted with emphasis on NO_x reduction to N_2 in a hybrid plasma-catalyst (P-C) system as very little information is available in this area. The hybrid P-C experiments show more effective NO_x removal compared to the results from either DBD or SCR experiments. A mechanism that plasma preconditions the gas stream has been proposed for the synergy of the P-C system. The following main conclusions can be drawn:

- For the gas mixture of 250ppmNO/230ppmCO/3%O₂/7.6%CO₂/N₂, a maximum NO_x conversion of 42% is achieved in a P-C system with 1% WO₃/Al₂O₃ catalyst at 450 °C, compared to the NO_x conversion of 9% by either plasma or catalysis alone. Plasma preconditions the gas stream producing 700 ppm CO and 87 ppm NO₂. It is the significant increase of 700 ppm CO that promotes the overall NO_x reduction.
- 2. For the gas mixture of 250ppmNO/3%O₂ /3000ppmCH₄/N₂, the NO_x conversion for the P-C system is 55%, compared with 8% for the plasma and 40% for the catalysis, individually. Comparing the NO_x conversions between P-C system and catalysis system, the improvement in NO_x conversion is found to remain constant at 15% when CH₄ concentration in the inlet gas stream is varied in the range of 1000-3000 ppm.

- When 1000 ppm C₂H₄ is added to the gas mixture of 250ppmNO/3%O₂/N₂, the NO_x conversion is 70% for the P-C system, 16% higher than the NO_x conversion of 54% for the catalysis alone.
- 4. Comparison of experimental results obtained using NO and NO₂ feed mixtures individually show that there is no difference in NO_x conversion under the same SCR operating conditions. NO₂ may not be an intermediate for NO_x reduction to N₂ under those experimental conditions.
- 5. Passing a dry simulated gas mixture through the DBD reactor produces about 19-25 ppm N₂O. However, presence of 2% H₂O in the mixture effectively reduces N₂O formation to less than 5 ppm in the DBD. No significant amount of N₂O (less than 5 ppm) is detected in the outlet stream of the P-C system in the presence of 2% H₂O.

Section IV Dielectric Barrier Discharge Reactor Design Parameters

The non-thermal plasma reactor design parameters are studied in this section with respect to reactor geometry and barrier materials. Pollutant gas SO_2 is used as a test gas. The non-thermal experimental system described earlier is used to investigate SO_2 oxidation. The experiments have been extended to study the effect of cylindrical, square and rectangular reactor geometries on SO_2 to SO_3 conversion (Mathur 1999). The rectangular reactor is also used to compare effects of different materials and barrier thickness on SO_2 conversion. Most of the experiments are conducted with an inlet gas mixture of 770 ppm SO_2 , 4000ppm O_2 and balance N_2 at 400Hz. The SO_2 concentration measurements are made with an infrared analyzer.

Effects of Voltage and Frequency on SO2 Conversion

Effect of voltage on SO_2 conversion. Figure 5.35 shows that SO_2 conversion increases as applied voltage is increased. There is a significant increase in SO_2 conversion from 40 to 80% for a peak voltage from 21 to 25 kV. The curve shows a typical "S" shape.

Figure 5.35 SO₂ Conversion vs. Voltage(peak values). Frequency 400 Hz, room temperature, total flow rate 510 SCCM, SO₂ 765 ppm, O₂ 4118 ppm, O₂/SO₂ =5.4, balance gas N_2 .

Effect of frequency on SO_2 conversion. Figure 5.36 shows that SO_2 conversion increases linearly with frequency. Almost 100% SO_2 gets converted when frequency reaches 500 Hz.

119

Figure 5.36 Effect of Frequency on SO₂ Conversion. Voltage 30 kV(peak value), total flow rate 510 SCCM, SO₂ 778 ppm, O₂ 4118 ppm, O₂/SO₂=5.3, balance gas N₂.

Effect of Geometry on SO₂ Conversion

Figure 5.37 shows that the energy requirements of cylindrical, square and rectangular reactors for the same conversion are in an increasing order under identical experimental conditions. For the same energy density of 3000 J/L, the SO₂ conversions are 80, 33 and 22% for cylindrical, square and rectangular reactors, respectively.

Figure 5.37 Effect of Reactor Geometry on SO₂ Conversion

Effect of Barrier Materials on SO₂ Conversion

The barrier materials tested are composite mica, quartz and soft glass with dielectric constants of 2.3, 3.7 and 6.4, respectively which are experimentally measured and calculated (for details see Appendix D). Figure 5.38 shows that for the same energy density, reactor with composite mica as barrier material gives the highest conversion. It appears that lower dielectric constant may be helpful in achieving higher SO₂ conversion. The rough surface of composite mica may cause local micro sparking areas where more concentrated and energetic electrons may enhance SO₂ conversion.

Figure 5.38 Effect of Barrier Material on SO₂ Conversion

Effect of Barrier Thickness on SO2 Conversion

Composite mica is selected to investigate barrier thickness effect on SO_2 conversion. For the convenience of fabrication, a rectangular reactor is used. One, two and three layers of composite mica are used to obtain increases in thickness (0.8, 1.6, and 2.4 mm). In each case, energy density is increased till the experiment had to be discontinued due to excessive sparking. Experimental results show that barrier thickness has little effect on SO_2 conversion (Figure 5.39). However, thicker barrier could stand greater discharge power leading to higher SO_2 conversion.

Figure 5.39 Effect of Barrier Thickness on SO₂ Conversion

Cost Estimates and Comparison

Cost projections based on bench-scale experiments are risky and uncertain. However, efforts have been made in this study to present some cost figures based on the literature information comparing a non-thermal plasma process against combined conventional processes for removing NO_x and SO_2 from coal-fired power plant flue gases. Several terms used in this analysis are given below:

SCR (Selective Catalytic Reduction): It is a prevailing process for removing NO_x from coal-fired flue gases. It selectively reduces NO_x to N_2 by NH_3 over a catalyst (oxides of vanadium and/or tungsten). Basic reactions are

$$4 \text{ NO} + 4 \text{ NH}_3 + \text{O}_2 \rightarrow 4 \text{ N}_2 + 6 \text{ H}_2\text{O}$$

$$2 \text{ NO}_2 + 4 \text{ NH}_3 + \text{O}_2 \rightarrow 3 \text{ N}_2 + 6 \text{ H}_2\text{O}$$

FGD (Flue Gas Desulfurization): It is a prevailing process for scrubbing SO_2 from coal-fired flue gases. A typical FGD process uses limestone to capture SO_2 as follows:

$$CaCO_3 + SO_2 + \frac{1}{2}H_2O \rightarrow CaSO_3 \cdot \frac{1}{2}H_2O(s) + CO_2(g)$$

DBD (Non-thermal plasma Dielectric Barrier Discharge): This technique is under commercialization by Powerspan Corp. NO is oxidized into NO₂ and HNO₃ and part of SO_2 is oxidized into SO₃ and H₂SO₄ using a DBD reactor. Powerspan Corp. integrates DBD with ammonia scrubbing in one unit achieving over 90% removal of both NO_x and SO₂.

Capital Cost (\$/kW): The cost incurred for installing a pollutant control unit during the construction of a new power plant.

Retrofit Cost (\$/kW): The cost incurred for retrofitting a pollutant control unit to an existing power plant. This cost includes the expenses for installing the pollutant control unit and balance of plant (BOP) modification cost. Usually, retrofit cost in power plants is significantly higher than capital cost.

Levelized Cost (mills/kWh): It is determined by eliminating effects of time, inflation, etc. on total cost. The present value of the total cost of constructing and operating a control unit over its economic life is distributed in equal payments per kWh. Levelized cost can be split into capital charge and O&M cost.

O&M Cost (mills/kWh): Operation and maintenance cost per kWh.

Capital Charge (mills/kWh): Capital cost per kWh.

124

Cost comparison for simultaneous removal of NO_x and SO_2 between a nonthermal plasma DBD process and combined processes of SCR and FGD has been made by compiling publicly available information (DOE and SCS 1997; DOE and others 1999; McLarnon 2002). O&M cost for FGD and levelized cost for DBD have been estimated by the author of this thesis. All costs are projected for a 300-500 MWe power plant with 90% removal of both NO_x and SO_2 . Table 1 shows the comparison.

Estimation of O&M cost for FGD: The reported retrofit cost for FGD is 300 \$/kW which is about three times that for SCR (105 \$/kW). Therefore, the capital charge for FGD can be assumed as three times that for SCR (2.6-1.1 =1.5 mills/kWh), i.e., 4.5 mills/kWh. The O&M cost for FGD is estimated to be 7.5 mills/kWh by subtracting this capital charge from the levelized cost (12.0 mills/kWh).

Estimation of levelized cost for DBD: The reported retrofit cost for DBD is 200 \$/kW which is about two times that for SCR (105 \$/kW). Therefore, the capital charge for DBD can be assumed as two times for SCR(1.5 mills/kWh), i.e., 3 mills/kWh. This capital charge plus the reported O&M cost of 1.5 mills/kWh gives the levelized cost of 4.5 mills/kWh for DBD.

Technology	Capit (\$/	al Cost /kW)	CostRetrofit Cost)(\$/kW)		Levelized Cos (mills	t (O&M cost*) /kWh)		
SCR(NO _x) (DOE & SCS 1997)	66	160	105	408	2.6 (1.1)	14.6 (8.6)		
FGD (SO ₂) (DOE and others 1999)	94		300		12.0 (7.5)			
DBD						• . <u></u>		
(NO _x and SO ₂) (McLarnon 2002)]	.50	200		200		4.5 ((1.5)

 Table 5.10

 Cost Comparison between DBD and Conventional Techniques

* O&M cost in parentheses.

Data in Table 1 shows that the capital cost for using DBD technique (150/kW) is close to that of combined processes of SCR and FDG (160/kW) during the construction of a new power plant. However, the cost for retrofitting a DBD process to an existing power plant is only 200/kW, half as much as for retrofitting a combined SCR and FGD processes (408/kW). Based on retrofitting cost, the levelized cost for DBD process is only 4.5 mills/kWh, less than one third of that (14.6 mills/kWh) for combined processes. Based on the figures provided in the references it may be concluded that DBD process is more economical than the combined conventional processes of SCR and FGD for simultaneous removal of NO_x and SO₂ from coal-fired utility power plants.

Section Conclusions

Literature review has shown that little work has been done in the area of evaluation of DBD reactor design parameters. This section is focused on the effects of reactor geometry and dielectric materials in terms of SO₂ conversion to SO₃ since DBD has the similar effect on SO₂ oxidation. The following conclusions can be drawn:

- Over 80 % conversion of SO₂ can be achieved with the cylindrical DBD plasma reactor. The energy requirements of cylindrical, square and rectangular reactors for the same conversion are in an increasing order under identical experimental conditions.
- 2. For the same energy density, reactor with composite mica as barrier material gives a higher conversion than with quartz or soft glass. It appears that lower dielectric constant may be helpful in achieving higher SO₂ conversion.

126

- Experimental results show that barrier thickness has little effect on SO₂ conversion. However, thicker barrier could stand greater discharge power leading to higher SO₂ conversion.
- A DBD process is more economical than the combined conventional processes of SCR and FGD for simultaneous removal of NO_x and SO₂ from coal-fired utility power plants.

CHAPTER VI

CONCLUSIONS

The present study on NO_x remediation through non-thermal plasma and catalysis has led to a number of findings. Several conclusions are drawn from the four-section studies: DBD plasma system, SCR system, plasma-catalyst (P-C) system for NO_x removal and DBD reactor design parameters for SO_2 removal. The detailed conclusions have been presented at the end of each section. The general conclusions are given as follows:

- Non-thermal plasma DBD technology can be used to convert NO_x in flue gases and diesel-engine exhausts.
- 2. DBD is found to be effective for the oxidation of NO into NO₂ in the simultaneous presence of O_2 and H_2O .
- 3. DBD is also found to be effective for the oxidation of SO_2 into SO_3 .
- Power consumption is key parameter in reactor performance and must be minimized for commercial operation.
- 5. Two models proposed in the present study introduce two concepts for plasma reactions: effective activation energy, E_a and minimum energy density for initiating NO reactions, E_i under plasma conditions. These two models would provide an effective guidance in laboratory experiments and commercialization of the DBD technique.

128
- 6. Addition of hydrocarbons such as CH_4 and C_2H_4 substantially promotes the oxidation of NO into NO₂ in the presence of O₂ under DBD.
- γ-Al₂O₃ is an effective material to serve as a SCR catalyst. C₂H₄ is much more effective than CH₄ for selective catalytic reduction of NO.
- Plasma-catalyst (P-C) system is found to be more effective in improving NO_x reduction compared to either plasma (DBD) or catalysis alone.
- 9. P-C system does not add N_2O to the air pollution.

The DBD process for the removal of NO_x and SO_2 has the potential to replace the prevailing SCR and FGD techniques both technically and economically. The plasmacatalyst system has the potential to be used for the removal of NO_x from diesel-engine exhausts. This work has moved the plasma technique for air pollution control to firmer scientific grounds.

CHAPTER VII

RECOMMENDATIONS

Several recommendations are made as follows:

- 1. Energy consumption needs to be reduced by developing new DBD reactors. Reactor design includes electrode geometry, distance between two electrodes, barrier materials and electrode length. Data from an earlier work on the same apparatus and a process development system are examined and it is found that a smaller gap between the two electrodes and a longer length of reactor would significantly improve the energy efficiency. This is because both smaller gap and longer reactor length increase capacitance as well as improve discharge distribution.
- 2. A new DBD reactor should be designed to stand high temperatures up to 500 °C, 100 °C higher than typical temperatures of 350-400 °C of exhausts from diesel engines. This will make it possible to run the plasma reactor under real gas temperatures without water condensation. Experiments should also be conducted in a P-C system with one-stage configuration. It is important to investigate how plasma interacts with a catalyst, leading to a potential effective compact unit for the removal of NO_x from mobile sources.
- 3. More experiments need to be conducted for SO_2 conversion in a DBD reactor. SO_2 should be added to simulated gas mixture to investigate the interaction between NO_x and SO_2 in a plasma reactor.

- 4. Experiments with other reducing agents such as propylene or ethane should be conducted to study their effect on NO_x reduction for comparison.
- 5. Development of new lean-burn catalysts is necessary for the P-C system for removing NO_x in diesel-engine exhausts. Characterization of such catalysts should be undertaken by means of *in situ* X-ray absorption spectroscopy (XAS) and Fourier transform infrared spectroscopy (FTIR). XAS is an atom-specific technique sensitive to the local environment of the metal ion and its oxidation state and allows determination of both oxidation state and atomic structure parameters. FTIR may be used to collect spectra of a catalyst used for SCR and identify those intermediate species adsorbed on the catalyst, providing direct chemistry of micro reaction processes.
- 6. Study of methane and carbon dioxide reaction over plasma can be a promising subject. Identification and quantification of products should be conducted using a GC-MS analyzer. A catalyst may be installed inside the discharge space aimed at promoting methane and carbon dioxide reactions and improving the selective production of value-added products.
- 7. More study needs to be conducted to enhance the knowledge of plasma chemistry and kinetic modeling work. A molecular beam mass spectrometer (MBMS) may be used on-line to identify major species and measure their concentrations inside the plasma DBD reactor. This will significantly enrich the chemistry knowledge in the DBD process leading to better kinetic modeling.
- 8. Non-thermal plasma has strong potential to oxidize trace elements such as mercury into HgO that can be easily removed in scrubbers. If successful, this will

be the only process which can simultaneously remove NO_x , SO_2 and Hg from coal-fired utility boiler flue gases. Trace element oxidation should be studied using non-thermal plasma technology.

9. Cost is the most important factor for a pollutant technique such as non-thermal plasma DBD aimed at finding wide commercial applications. More rigorous economic analysis need to be conducted to promote the commercialization of the DBD technique.

LITERATURE CITED^{*}

- Almusaiteer K, Chuang S, Tan C. 2000. Reactivity of Ph⁺(CO) ₂ during the NO-CO and CO-O₂ reactions over Rh/Al₂O₃. J Catalysis 189: 247-52.
- Amiridis M, Zhang T, Farrauto R. 1996. Selective catalytic reduction of nitric oxide by hydrocarbons. Applied Catalysis B: Environmental 10: 203-27.
- Ault J, Ayen R. 1971. Catalytic reduction of nitric oxide with various hydrocarbons. AIChE J 17(2): 265-71.
- Bailar J, Moeller T, Kleinberg J, Guss C, Castellion M, Metz C. 1984. Chemistry. 2nd ed. Florida, Academic Press. p 569.
- Baldanza M, Mello L, Vannice A, Noronha F, Schmal M. 2000. Adsorptive and catalytic properties of alumina-supported Pd-Mo catalysts. J Catalysis 192:64-76.
- Balmer M, Tonkyn R, Yoon I, Hoard J. 1998. Nitrogen measurement from NO_x reduction for a plasma catalyst system in simulated diesel exhaust. Proceedings of the diesel engine emissions reduction workshop; 1998 July 6-9; Castine, ME. DOE/EE-0191. p193-9.
- Bethke K, Kung H. 1997. Supported Ag catalysts for the lean reduction of NO with C₃H₆. J Catalysis 172: 93-102.
- Breault R, McLarnon C, Mathur V. 1993. Reaction kinetics for flue gas treatment of NO_x.
 In: Penetrante B and Schultheis S editors. Non-thermal plasma techniques for pollution control, Part B: electron beam and electrical discharge processing. Proceedings of the NATO advanced research workshop on non-thermal plasma techniques for pollution control; 1992 Sept 21-25; Cambridge, England. NATO ASI Series. p 239-56.
- Captain D, Amiridis M. 1999. In situ FTIR studies of the selective catalytic reduction of NO by C₃H₆ over Pt/Al₂O₃. J Catalysis 184: 377-89.
- Captain D, Amiridis M. 2000. NO reduction by propylene over Pt/SiO₂: An *in situ* FTIR study. J Catalysis 194: 222-32.
- Chen H, Voskoboinikov T, Sachtler W. 1999. Reaction intermediates in the selective catalytic reduction of NO_x over Fe/ZSM-5. J Catalysis 186: 91-9.

^{*} This literature citation follows CBE style.

- Cho S. 1994. Properly apply selective catalytic reduction for NO_x removal. Chemical Engineering Progress. January: 39-45.
- Clements J, Mizuno A, Finney W, Davis R. 1989. Combined removal of SO₂, NO_x, and fly ash from simulated flue gas using pulsed streamer corona, IEEE Transactions Industry Applications 25(1): 62-9.
- CPS (Constellation Power Source, Inc.), Baltimore, Maryland, H.A. Wagner plant. 2001. http://www.powersrc.com/rightToKnow/brandon.asp.
- Denton P, Giroir-Fendler A, Praliaud H, Primet M. 2000. Role of the nature of the support (alumina or silica), of the support porosity, and of the Pt dispersion in the selective reduction of NO by C_3H_6 under lean-burn conditions. J Catalysis 189: 410-20.
- Desai A, Kovalchuk V, Lombardo E, d'Itri J. 1999. CoZSM-5: why this catalyst selectively reduces NO_x with methane. J Catalysis 184:396-405.
- Dhali S, Sardja I. 1991. Dielectric-barrier discharge for processing of SO₂/NO_x. J Appl Phys 69(9): 6319-24.
- Diaz G, Perez-Hernandez R, Benaissa A, Mariscal R, Fierro J. 1999. CuO-SiO₂ sol-gel catalysts: characterization and catalytic properties for NO reduction. J Catalysis 187: 1-14.
- DOE, Pure Air, SCS, New York State Electric & Gas Corp. 1999. Advanced technologies for the control of sulfur dioxide emissions from coal-fired boilers. Topical report, no. 12.
- DOE, SCS (Southern Company Services, Inc.). 1997. Control of nitrogen oxide emissions: selective catalytic reduction (SCR). Topical report, no. 9.
- Dorai R, Hassouni K, Kushner M. 2000. Interaction between soot particles and NO_x during dielectric barrier discharge plasma remediation of simulated diesel exhaust. J Applied Physics 88(10): 6060-71.
- EEA(European Environmental Agency). 1999. Air Emissions Annual Topic Update 1998. Topic report, no 12. http://reports.eea.eu.int/1299/en/1299.pdf>.
- Eliasson B, Kogelschatz, U. 1991. Modeling and applications of silent discharge plasmas. IEEE Transactions Plasma Science 19 (2): 309-23.
- Eliasson B, Kogelschatz U. 1991. Nonequilibrium volume plasma chemical processing. IEEE Transactions Plasma Science 19 (6): 1063-77.

- Eliasson B, Liu C, Kogelschatz U. 2000. Direct conversion of methane and carbon dioxide to higher hydrocarbons using catalytic dielectric-barrier discharges with zeolites. Ind Eng Chem Res 39: 1221-7.
- EPA. September 2001. National air quality 2000 status and trends. Summary report. http://www.epa.gov/oar/aqtrnd00/>.
- EPA. October 2001. Nonroad diesel emission standards. Staff technical paper. EPA420-R-01-052. http://www.epa.gov/orcdizux/regs/nonroad/equip-hd/r01052.pdf>.
- EPA. March 2000. National air pollutant emission trends 1900 1998. EPA454/R-00-002. http://www.epa.gov/ttn/chief/trends/trends98/chapter3.pdf>.
- Evans D, Rosocha L, Anderson G, Coogan J, Kushner M. 1993. Plasma remediation of trichloroethylene in silent discharge plasmas. J Applied Physics 74(9): 5378-86.
- Fernandez-Garcia M, Martinez-Arias A, Belver C, Anderson J. Conesa J, Soria J. 2000. Behavior of palladium-copper catalysts for CO and NO elimination. J Catalysis 190:387-95.
- Frank N. 1993. Economics of the electron beam process. In: Penetrante B and Schultheis S editors. Non-thermal plasma techniques for pollution control, Part B: electron beam and electrical discharge processing. Proceedings of the NATO advanced research workshop on non-thermal plasma techniques for pollution control; 1992 Sept 21-25; Cambridge, England. NATO ASI Series. p 27-32.
- Frank N, Hirano S. 1993. The History of Electron beam processing for environmental pollution control and work performed in the United States. In: Penetrante B and Schultheis S editors. Non-thermal plasma techniques for pollution control, Part B: electron beam and electrical discharge processing. Proceedings of the NATO advanced research workshop on non-thermal plasma techniques for pollution control; 1992 Sept 21-25; Cambridge, England. NATO ASI Series. p 1-26.
- Gates B. 1992. Catalytic Chemistry. New York: John Wiley & Sons, Inc. p 268.
- Gentile A, Kushner M. 1995. Reaction chemistry and optimization of plasma remediation of NxOy from gas streams. J Appl Phys 78(3): 2074-85.
- Gentile A, Kushner M. 1996. Microstreamer dynamics during plasma remediation of NO using atmospheric pressure dielectric barrier discharges. J Appl Phys 79(8):3877-85.
- Gesser H, Hunter N, Probawono D.1998. The CO₂ reforming of natural gas in a silent discharge reactor. Plasma Chemistry Plasma Processing 18(2):241-5.

- Golden C. 1997. Decomposition of refrigerants R12, R-22 and R-50 by barrier discharge [master thesis]. Durham (NH): University of New Hampshire.
- Golden C, Mathur V. 1997. Barrier discharge technique for destruction of CFCs. AIChE annual meeting; 1997 Nov; Los Angela, CA.
- Haneda M, Kintaichi Y, Shimada H, Hamada H. 2000. Selective reduction of NO with propene over Ga₂O₃-AL₂O₃: effect of sol-gel method on the catalytic performance. J Catalysis 192:137-148.
- Hao J, Tian H, Lu Y, He K, Duan L. 2001. The anthropogenic nitrogen oxides emissions in China in the period 1990-1998. Preprints of Symposia, Division of Fuel Chemistry, ACS. 46(1):177-181.
- Hardison L, Nagl G, Addison G. 1991. NO_x reduction by the Econ-NO_x SCR process. Environmental Progress 10(4): 314-18.
- Helfritch D. 1993. SO₂ and NO_x removal from flue gas by means of lime spray dryer followed by electron beam irradiation. In: Penetrante B and Schultheis S editors. Non-thermal plasma techniques for pollution control, Part B: electron beam and electrical discharge processing. Proceedings of the NATO advanced research workshop on non-thermal plasma techniques for pollution control; 1992 Sept 21-25; Cambridge, England. NATO ASI Series. p 33-46.
- Henis J. 1976. Nitrogen oxide decomposition process. US Patent, No. 3,983,021. Sept. 28.
- Hippel, V.; Robert, A. (ed). 1954. Dielectric materials and applications. MIT Press, Cambridge, MA. p 403.
- Hoard J, Balmer M. 1998. Plasma-catalysis for diesel NO_x remediation. Proceedings of the 1998 diesel engine emissions reduction workshop; 1998 July 6-9; Castine, ME. DOE/EE-0191. p 187-192.
- Hsieh L, Lee W, Chen C, Chang M, Chang H. 1998. Converting methane by using an RF plasma reactor. Plasma Chemistry Plasma Processing 18(2): 215-39.
- Joshi S. 1927. The decomposition of nitrous oxide in the silent electric discharge, part I. Trans Faraday Soc 23: 227-38.
- Joshi S. 1929. The decomposition of nitrous oxide in the silent electric discharge, part II. Trans Faraday Soc 25:108-17.
- Joshi S. 1929. The Decomposition of nitrous oxide in the silent electric discharge, part IV. Trans Faraday Soc 25: 137-143.

- Kamata H, Takahashi K, Odenbrand C. 1999. Kinetics of the selective reduction of NO with NH₃ over a V₂O₅ (WO₃)/TiO₂ commercial SCR catalyst. J Catalysis 185: 106-13.
- Kogelschatz U, Eliasson B, Egli W. 1997. Dielectric-barrier discharge principle and applications. Invited plenary lecture. International conference on phenomena in ionized gases (ICPIG, XXIII); 1997July 17-22; Toulouse, France.
- Kogelschatz U, Eliasson B, Egli W. 1999. From ozone generators to flat television screens: history and future potential of dielectric-barrier discharges. Pure Applied Chemistry 71(10):1819-28.
- Kondarides D, Chafik T, Verykios X. 2000. Catalytic reduction of NO by CO over rhodium catalysts. J Catalysis 191:147-64.
- Koshkarian K, Chanda A, Palekar V, Ramavajjala M. 1998. Evaluation of gas phase pulsed plasma emissions system for diesel exhaust aftertreatment. Proceedings of the diesel engine emissions reduction workshop; 1998 July 6-9; Castine, ME. DOE/EE-0191. p199-213.
- Kraus M, Eliasson B, Kogelschatz U, Wokaun A. 2001. CO₂ reforming of methane by the combination of dielectric-barrier discharges and catalysis. Physical Chemistry Chemical Physics 3: 294-300.
- Kudla R, Subramanian S, Chattha M, Hoost T. 1996. Effect of tungsten oxide addition on the catalytic activity of γ -Al₂O₃ for NO_x reduction from fuel-lean gas mixtures. Ind Eng Chem Res 35: 4394-7.
- Kung M, Park P, Kim D, Kung H. 1999. Lean NO_x catalysis over Sn/γ-Al₂O₃ catalysts. J Catalysis 181: 1-5.
- Kyriacopoulou V, Psyllos A, Philippopoulos C. 1994. Diffusional effects and intrinsic kinetics for NO reduction by CO over Pt-Rh/γ-Al₂O₃ monolithic catalysts. Ind Eng Chem Res 33:1669-73.
- Larkin D, Lobban L, Mallinson R. 2001. Production of organic oxygenates in the partial oxidation of methane in a silent electric discharge reactor. Ind Eng Chem Res 40:1594-601.
- Li Z, Flytzani-Stephanopoulos M. 1999. On the promotion of Ag-ZSM-5 by cerium for the SCR of NO by methane. J Catalysis 182:313-27.
- Liese T, Loffler E, Grunert W. 2001. Selective catalytic Reaction of NO by methane over CeO₂-zerolite catalysts active sites and reaction steps. J Catalysis 197:123-130.

- Lobree L, Aylor A, Reimer J, Bell A. 1999. NO reduction by CH₄ in the presence of O₂ over Pd-H-ZSM-5. J Catalysis 181: 189-204.
- Long R, Yang R. 1999. Catalytic performance of Fe-ZSM-5 catalysts for selective catalytic reduction of nitric oxide by ammonia. J Catalysis 188: 332-9.
- Long R, Yang R. 1999. Selective catalytic reduction of nitrogen oxides by ammonia over Fe³⁺ -exchanged TiO₂-pillared clay catalysts. J Catalysis 186: 254-68.
- Long R, Yang R. 2000. FTIR and kinetic studies of the mechanism of Fe³⁺ -exchanged TiO₂-pillared clay catalyst for selective catalytic reduction of NO with ammonia. J Catalysis 190:22-31.
- Luo J, Suib S, Marquez M, Hayashi Y, Matsumoto H. 1998. Decomposition of NO_x with low-temperature plasmas at atmospheric pressure: neat and in the presence of oxidants, reductants, water, and carbon dioxide. J Phys Chem A 102:7954-63.
- Macleod N, Isaac J, Lambert R. 2000. Sodium promotion of the NO+C₃H₆ reaction over Rh/γ-Al₂O₃ catalysts. J Catalysis 193:115-22.
- Maezawa A, Izutsu M. 1993. Application of e-beam treatment to flue gas cleanup in Japan. In: Penetrante B and Schultheis S editors. Non-thermal plasma techniques for pollution control, Part B: electron beam and electrical discharge processing. Proceedings of the NATO advanced research workshop on non-thermal plasma techniques for pollution control; 1992 Sept 21-25; Cambridge, England. NATO ASI Series. p 47-54.
- Manley T. 1944. The electric characteristics of the ozonator discharge. Trans Electrochem Soc 84: 83-96.
- Mathur V, Chen Z, Carlton J. 1999 Aug. Electrically induced chemical reactions in a barrier discharge reactor. Technical report, Zero Emissions Technolog, Inc. (Powerspan Corp.). 50 p.
- Mathur V, Breault R, McLarnon C, Medros F. 1992. NO_x reduction by sulfur tolerant coronal-catalytic apparatus and method. US Patent, No. 5,147,516, September 15.
- Matzing H. 1991. Chemical kinetics of flue gas cleaning by irradiation with electrons. In: Prigorgine I, Rice S, editors. Advances in Chemical Physics, volume LXXX. New York: John Wiley & Sons. P 315-59.
- McLarnon C. 1989. Electro-catalytic reduction of nitrogen oxides [master's Thesis]. Durham (NH): University of New Hampshire.
- McLarnon C. 1996. Nitrogen oxide decomposition by barrier discharge [dissertation]. Durham (NH): University of New Hampshire.

- McLarnon C. 2002. Update on the ECOTM process for multi-pollutant control of coalfired utility boilers. Electric power 2002 conference; 2002 Mar 21.
- McLarnon C, Jones M. 2000. Electro-catalytic oxidation process for multi-pollutant control at FirstEnergy's R.E. Burger Generating Station. Electric power 2000 conference; 2000; Cincinnati, OH.
- McLarnon C, Mathur V. 1991. Corona-catalytic reduction of nitrogen oxides. AIChE national meeting (Environmental Division); 1991 Apr 7-11; Houston, TX.
- McLarnon C, Mathur V. 2000. Nitrogen oxide decomposition by barrier discharge. Ind Eng Chem Res 39: 2779-87.
- McLarnon C, Penetrante B. 1998. Effect of gas composition on the NO_x conversion chemistry in a plasma. SAE technical paper series 982433; 1998 Oct.; San Francisco, CA.
- McLarnon C, Someshwar A, Mathur V. 1990. Electro-catalytic reduction of nitrogen oxides. AIChE national meeting; 1990 Aug 19-23; San Diego, CA.
- Meunier F, Breen J, Zuzaniuk V, Olsson M, Ross J. 1999. Mechanistic aspects of the selective reduction of NO by propene over alumina and silver-alumina catalysts. J Catalysis 187: 497-505.
- Millar G, Canning A, Rose G, Wood B, Trewartha L, Machinnon D. 1999. Identification of copper species present in Cu-ZSM-5 catalysts for NO_x reduction. J Catalysis 183: 169-81.
- Mok Y, Ham S, Nam I. 1998. Evaluation of energy utilization efficiencies for SO₂ and NO removal by pulsed corona discharge process. Plasma Chemistry Plasma Processing 18(4): 535-50.
- Mok Y, Kim J, Nam I, Ham S. 2000. Removal of NO and formation of byproducts in a positive-pulsed corona discharge reactor. Ind Eng Chem Res 39: 3938-44.
- Nikravech M, Massereau V, Motret O, Pouvesle J, Charpelle J. 1994. Treatment of gaseous wastes in a very high voltage dielectric barrier discharge. Bulletin American Physical Society 39: 1478.
- Oda T, Kato T, Takahashi T, Shimizu K. 1998. Nitric oxide decomposition in air by using nonthermal plasma processing with additives and catalyst. IEEE Transactions Industry Applications 34(2):268-72.
- Park P, Kung H, Kim D, Kung M. 1999. Characterization of SnO₂/Al₂O₃ lean NO_x catalysts. J Catalysis 184: 440-54.

- Parvulescu V, Centeno M, Grange P, Delmon B. 2000. NO decomposition over Cu-Sm-ZSM-5 zeolites containing low-exchanged copper. J Catalysis 191:445-55.
- Pashaie B, Dhali S. Honea F. 1994. Electrical characteristics of a coaxial dielectric barrier discharge. J Phys D: Appl Phys 27: 2107-10.
- Penetrante B. 1997. Effect of electrical parameters on chemical kinetics of plasma-based air pollution control. Application of electrostatics for control of gas phase air pollutants; 1997 Aug 22; Cincinnati, OH.
- Penetrante B. 2000. Stationary source emission control using plasma-assisted catalysis. http://www.Energylan.sandia.gov/ngotp/projects/ngotp.cfm?ProjectID=UET-003>.
- Penetrante B, Brusasco R, Merritt B, Pitz W, Vogtlin G, Kung M, Kung H, Wan C, Voss K. 1998. NO_x conversion chemistry in plasma-assisted catalysis, Proceedings of the 1998 diesel engine emissions reduction workshop; 1998 July 6-9; Castine, ME. p177-86.
- Penetrante B, Hsiao M, Merritt B, Vogtlin G, Wallman P. 1995. Comparison of electrical discharge techniques for nonthermal plasma processing of NO in N₂. IEEE Transactions Plasma Science 23(4): 679-87.
- Person J, Ham D. 1988. Removal of SO₂ and NO_x from stack gases by electron beam irradiation. Radiation Physics Chemistry 31(1-3):1-8.
- Rosocha L, Anderson G., Bechtold L., Coogan J, Heck H, Kang M, McCulla W, Tennant R, Wantuck P. 1993. Treatment of hazardous organic wastes using silent discharge plasmas, In: Penetrante B and Schultheis S editors. Non-thermal plasma techniques for pollution control, Part B: electron beam and electrical discharge processing. Proceedings of the NATO advanced research workshop on non-thermal plasma techniques for pollution control; 1992 Sept 21-25; Cambridge, England. NATO ASI Series. p 281-308.
- Sadhankar R, Lynch D. 1997. NO reduction by CO over a Pt/Al₂O₃ catalyst: reaction kinetics and experimental bifurcation behavior. Ind Eng Chem Res 36:4609-19.
- Schluep M, Rosocha L. 2000. NO_x removal via dielectric barrier discharge plasma. In: Topical conference proceedings of recent developments in air pollution control, AIChE spring national meeting; 2000 Mar 5-9; Atlanta, GA. p103-112.
- Schmal M, Baldanza M, Vannice M. 1999. Pd-xMo/Al₂O₃ catalysts for NO reduction by CO. J Catalysis 185:138-51.
- Sirdeshpande A, Lighty J. 2000. Kinetics of the selective catalytic reduction of NO with NH₃ over CuO/γ-Al₂O₃. Ind Eng Chem Res 39:1781-7.

- Snyder H, Anderson G. 1998. Effect of air and oxygen content on the dielectric barrier discharge decomposition of chlorobenzene. IEEE Transactions Plasma Science 26(6): 1695-9.
- Storch D, Kushner M. 1993. Destruction mechanisms for formaldehyde in atmospheric pressure low temperature plasmas. J Applied Physics 73(1): 51-5.
- Subbotina I, Shelimov B, Kazansky V, Lisachenko A, Che M, Coluccia S. 1999. Selective photocatalytic reduction of nitric oxide by carbon monoxide over silicasupported molybdenum oxide catalysts. J Catalysis 184: 390-5.
- Veldhuizen E, Zhou L, Rutgers W. 1998. Combined effects of pulsed discharge removal of NO, SO₂ and NH₃ from flue gas. Plasma Chemistry Plasma Processing 18(1): 91-111.
- Visvanathan K. 1952. The decomposition of nitric oxide in the silent electric discharge, part I. J Indian Chem Soc 29(5): 307-16.
- Visvanathan K. 1953. The decomposition of nitric oxide in the silent electric discharge, part II. J Indian Chem Soc 29(5): 836-40.
- Wallin P. 1997. FTIR analysis of gaseous emissions a report from the practice. Technical report. Olle Moberg AB, Sweden. http://www.ollemo.se/Ftir.pdf>.
- Yan J, Kung M, Sachtler W, Kung H. 1997. Co/Al₂O₃ lean NO_x reduction catalyst. J Catalysis 172: 178-86.

APPENDIX A

Nonthermal Plasma for Gaseous Pollution Control

Z. Chen and V. K. Mathur

Department of Chemical Engineering, University of New Hampshire, Durham, New Hampshire 03824

Reproduced with permission from

Industrial & Engineering Chemistry Research

Copyright 2002 American Chemical Society

142

Nonthermal Plasma for Gaseous Pollution Control

Z. Chen and V. K. Mathur*

Department of Chemical Engineering, University of New Hampshire, Durham, New Hampshire 03824

A nonthermal plasma technique in the form of dielectric barrier discharge has been studied on a laboratory scale for the removal of NO_x and SO_2 . The experimental parameters investigated are voltage, frequency, pollutant concentration, and energy density. Effect of O_2 , H_2O , and CO_2 on NO_x conversion is presented. The effect of chemical compounds such as CO, CH_4 , and C_2H_4 on NO_x conversion is also investigated. The chemistry of plasma reactions is discussed. Nonthermal plasma is found to be effective for the oxidization of NO into reactive NO_2 in the presence of O_2 and hydrocarbons. Conversions show wide variations in the presence of oxygen and moisture. Experimental results also show that nonthermal plasma can be used to convert SO_2 to SO_3 . In addition, the effect of reactor geometry and dielectric materials on SO_2 conversion is also discussed.

Introduction

During the past several years, control of NO_x and SO_x emissions has become a national priority. NO_x and SO_x emissions are a leading contributor to acid rain as well as contribute strongly to photochemical smog through the formation of ozone. Current state-of-the-art technologies for controlling NO_x either pertain to the combustion zone in an effort to control the temperature, residence time and stoichiometry, thereby lowering the NO_x formation, or provide a postcombustion reducing agent that consumes the oxygen in the NO_x molecules producing nitrogen and water. SO2 is mostly removed during combustion or by flue gas wet scrubbers. These approaches have essentially reached their maximum potential. One of the most promising classes of new technologies for the treatment of these pollutants is the use of nonthermal plasma to overcome some of the difficulties associated with current technologies.

Dielectric barrier discharges (DBD) are one of the electrical breakdowns that can be classified as nonequilibrium discharges also called nonthermal plasmas. An electrical discharge is a phenomenon wherein free electrons are produced and accelerated under the influence of an electric field. Through collisions with molecules in the gas, electrons cause excitation, ionization, electron multiplication, and the formation of atoms and metastable compounds. It is the formation of atoms and compounds that gives an electrical discharge its unique chemical environment and makes it useful for chemical processing.

Investigation of the electrical discharge-initiated reaction of nitrogen oxides was first undertaken by S. S. Joshi at the University College, London, in 1927.¹ Since then, particularly in the 1980s and 1990s, considerable work has been conducted for controlling NO_x and SO₂ using corona,²³ pulse,^{4.5} e-beam, ^{6.7} or dielectric barrier discharge.⁸⁻¹⁰ The dielectric barrier discharge technique has also been used for the oxidation of chlorobenzene, trichloroethylene, formaldehyde, etc.¹¹⁻¹³ Some workers have investigated the use of dielectric barrier discharge for the conversion of methane and carbon dioxide to

* To whom correspondence should be addressed. Telephone: 603-862-1917. Fax: 603-862-3747, E-mail: vkm@ cisunix.unh.edu.

Figure 1. Schematic diagram of benchtop system.

form more valuable chemicals.^{14,15} The research and development of dielectric barrier discharge technique have been conducted at UNH for several years.¹⁶⁻²⁰ On the basis of this work, several efforts are in progress to commercialize this technique for NO_x and SO_2 removal from utility boiler flue gas.

The present study²¹ is focused on gaining an understanding of the electrical and chemical effects in the decomposition process of nitric oxide by a DBD technique. In addition, the effects of barrier (dielectric) materials and reactor geometry on SO₂ conversion are also investigated.

Experimental Apparatus and Procedure

A schematic diagram of the benchtop reactor system for NO conversion is shown in Figure 1. It includes the barrier discharge reactor, high voltage power supply and measurement, gas supply, and gas analytical instrumentation. Details can be found in earlier publications.^{18,19}

Dielectric Barrier Discharge Reactor. The reactor geometry used to initiate a barrier discharge in a gas space containing oxides of nitrogen is two concentric stainless steel tubes. Each of these cylinders serves as an electrode while the outer cylinder also serves as the pressure boundary. A high voltage is applied between the electrodes, with the outer electrode (tube) at ground

10.1021/ie010459h CCC: \$22.00 © 2002 American Chemical Society Published on Web 04/06/2002

Table 1. Specifications of Reactors

reactor geometry	cylindrical	rectangular A, B, C	square
electrode (high volt)	SS tube (o.d. 3)	SS wire (o.d. 0.5)	aluminum wire (o.d. 0.5)
electrode (grounded)	SS tube (i.d. 23)	copper strips	aluminum foil
barrier covering	quartz tube	none	quartz tube
electrode (high volt)	$(i.d. 4 \times 1 mm)$		(i.d. 1 × 1 mm)
barrier covering	quartz tube	plate A: quartz (3.2 thick)	soft glass
electrode (grounded)	(i.d. 18 × 2)	plate B: soft glass (3.0 thick) plate C: composite mica (2.4 thick)	$(15 \times 3.0 \text{ thick})$
gas spacing, mm	6	5	6
cross-section area, mm ²	226	24×10	218
length of reactor, mm	300	200	280
vol of reactor, mm ³	69	48	61

potential for safety reasons. The distance between the two electrodes is 10 mm. Two quartz tubes are installed adjacent to the electrodes for producing barrier discharge and the gas spacing between the two quartz tubes is 6 mm. The effective length of the reaction space is what both electrodes cover and generate microdischarges along. It is 305 mm.

Gas mixture enters the inlet plenum of the reactor and exits through the outlet plenum. The outer stainless steel electrode for the benchtop reactor is wrapped with copper tubing fed by a constant-temperature bath, cooling or heating the reactor as necessary for temperature control. Same apparatus is used for the study of SO_2 removal by barrier discharge. In addition, three rectangular reactors and one square reactor are also used to investigate the effect of reactor geometry as well as barrier (dielectric) materials. Specifications of all reactors are listed in Table 1.

HV Power Measurement. The high voltage supplied to the DBD reactor is monitored and measured by a Tektronix 2211 digital storage oscilloscope sampling at 20 MHz. The HV signal is first reduced with a Tektronix P6015 HV probe (1000×) in series with a Tektronix P6109 probe (10×) before being fed to channel 1 of the oscilloscope. The current in the secondary circuit of the HV transformer is indirectly measured using a resistor of 50 Ω and a Tektronix P6027 (1×) probe. This signal is fed to channel 2 of the oscilloscope.

Power consumption in the DBD reactor is calculated using the voltage and current traces recorded and stored by the oscilloscope. By multiplying the corresponding current and voltage values at the same phase angle, a curve of point power is obtained and is averaged to give the discharge power. An on-line computer reads the values recorded by the oscilloscope and calculates the discharge power. The voltage and current signals are taken from the second circuit of the transformer where there are some inefficiencies including transformer, inductors and resistances. However, these inefficiencies are negligible compared to discharge power consumption.

Gas Analytical Instrumentation. Several commercial gas analyzers are installed on-line. A Thermo-Electron model 10A/R Chemiluminescent NO-NO₂-NO_x analyzer is used to measure the NO and NO_x (NO and NO₂ collectively referred to NO_x). A Nova model 375 portable combustion analyzer is used to measure the O₂, CO₂ and CO concentrations in the gas stream. A Hewlett-Packard 5890 Series II gas chromatograph with a SUPELCO column packed with 60/80 Carboxen-1000 is used to analyze CH₄, C₂H₄, and C₂H₂ in the gas stream when a reducing agent such as CH₄ or C₂H₄ is added in the simulated gas mixture. The thermal conductivity detector installed in the GC is used with helium as carrier and reference gas. A Rosemount model 880 nondispersive infrared analyzer is used to measure SO_2 concentration in gas stream. In addition, a Nicolet 520 FTIR spectrometer is used to analyze the gas products particularly N₂O. This instrument is not installed on line. A gas cell is used to take samples. The path length of the gas cell is 10 cm.

Results and Discussion

This study identifies the important variables in the barrier discharge process and their effects on the removal of NO_x and SO_2 pollutants. Destruction of pollutants is measured in terms of inlet and outlet concentrations as follows:

pollutant conversion (%) =
$$\frac{C_{\text{inlet}} - C_{\text{outlet}}}{C_{\text{inlet}}} \times 100$$
 (1)

Accordingly, NO conversion can be referred to percentage of inlet NO converted to NO₂, HNO₃, N₂O, and/or N₂. NO_x conversion is also calculated from eq 1. C_{inlet} is C_{NO} plus C_{NO_2} in the inlet stream while C_{outlet} is C_{NO} plus C_{NO_2} in the outlet stream. The term NO_x conversion is the measurement of removal of both NO and NO₂. NO_x conversion can be used to estimate inlet NO converted to N₂ when HNO₃ and N₂O produced are considered to be negligible. Energy density is the power deposited into a liter of gas mixture at standard conditions (J/L), i.e., discharge power divided by total gas flow rate.

In this study effect of the following experimental parameters on pollutant conversion is studied:

electric frequency energy density	CO ₂ concn in inlet gas reducing compds: CO, CH ₄ , and C ₂ H ₄
pollutant concn in inlet gas	barrier (dielectric) materials
O ₂ concn in inlet gas	reactor geom
H ₂ O (g) concn in inlet gas	packing in reaction space

The electrical variables, in a barrier discharge, affect the operation of the system in two major ways. First, the effective use of these parameters can enhance the efficiency of the discharge process as measured by the pollutant conversion, voltage and energy requirements, to achieve an optimal design. Second, the reaction path sequence and consequently the product slate can be controlled.

All of the experimental results are obtained using a mixture of a pollutant and other gases. The system is operated at atmospheric pressure and room temperature except high moist condition that is maintained at 65 °C. Chemical concentrations and discharge power are experimentally determined. The plasma startup usually needs 5-10 min to reach the steady state. A concentration reading is taken after it stays within acceptable range for 5 min. Discharge power is calculated by the

computer, and usually 3-5 readings of discharge power are taken to get one averaged data point.

Electric Frequency Selection

In a barrier discharge system with ac power supply, the reactions are functions of electric energy deposited into gas passing through. An increase in voltage or frequency will result in increase in energy input. Total energy consumption is the sum of discharge power and other circuit consumption (transformer, inductors, etc.). The present study investigates the effects of frequency on total energy consumption and discharge power. It is found that the ratio of discharge power to total energy consumption reached the maximum at a frequency of 150 Hz for this barrier discharge system. Therefore, most of the experiments are conducted at a frequency of 150 Hz.

Effects of Chemical Compounds Present in the Inlet Gas on NO/NO_x Conversions

The makeup of the gas entering the barrier discharge reactor can significantly affect the performance of the reactor and thus the products of the discharge-initiated reactions. Exhaust gas from fossil fuel combustion generally contains several compounds including N₂, H₂O, CO₂, O₂, NO_x, and SO₂, among which N₂, H₂O, CO₂, and O₂ are present in large concentrations of 1–2 digital percentage while NO_x and SO₂ are present in hundreds of parts per million levels. The amount of each compound varies depending on the fuel and the way it is burned as well as the amount of excess air used in the combustor.

Effect of Oxygen. Figure 2 shows the effect of oxygen concentration in a mixture of NO/O₂/N₂ on NO/NO_x conversions. At low O₂ concentrations (<1%), a small increase in O₂ content results in a significant drop in NO/NO_x conversions at 150 J/L. An increase in energy density to 320 J/L greatly enhances NO/NO_x conversions. At higher O₂ concentrations (>1%), NO conversion increases as O₂ concentration is increased while NO_x conversion decreases close to zero. An increase in O₂ concentration from 1% to 10% leads to a significant increase in NO₂ formation. There are several reactions proposed by McLarnon and Penetrante²² to occur in the plasma as follows:

$$\mathbf{e} + \mathbf{N}_2 \rightarrow \mathbf{e} + \mathbf{N} + \mathbf{N} \tag{2}$$

$$N + NO - N_0 + O \tag{3}$$

$$e + O_{a} \rightarrow e + O(^{3}P) + O(^{3}P)$$
 (4)

$$e + O_2 - e + O(^{3}P) + O(^{1}D)$$
 (5)

$$O(^{3}P) + NO + M \rightarrow NO_{2} + M$$
 (6)

$$O + O_2 + M \rightarrow O_3 + M \tag{7}$$

$$O_3 + NO \rightarrow NO_2 + O_2 \tag{8}$$

Here, $O(^{3}P)$ and $O(^{1}D)$ are ground-state and metastable excited-state oxygen atoms, respectively, and M is either N_{2} or O_{2} .

Variations in NO conversions at different energy densities are due to the competition between reaction 2 and reaction 6 or 8. At O_2 concentration less than 1%, the dominant reaction 3 mainly contributes to NO

Figure 2. Effect of oxygen concentration on NO/NO_z conversions. Conditions: total flow rate 1000 SCCM, 250 ppm of NO with N_2 balance, 150 Hz, room temperature.

Figure 3. Effect of water vapor concentration on NO/NO_x conversions. Conditions: frequency 150 Hz, total flow rate 1000 SCCM, 250 ppm of NO with N₂ balance, temperature 65 °C.

conversion into N₂ although the presence of O₂ competes for consuming electrons via reactions 4 and 5. At O₂ concentration greater than 1%, however, reaction 6 or 8 becomes dominant and more oxygen molecules compete for electrons, resulting in increasing amount of NO₂ formation while NO conversion via reaction 3 into N₂ decreases. Both reactions, reaction 6 at low energy density (<100 J/L) and reaction 8 at high energy density (>100 J/L), demonstrate dominance. Comparing NO conversions, when O₂ concentration is greater than 5%, an increase in energy density from 150 to 320 J/L does not help NO conversion because reaction 8 needs three oxygen atoms to convert one NO molecule while reaction 6 only needs one oxygen atom. This counterbalances the effect of reactions 4 and 5 at high energy density.

Effect of Water Vapor. In the absence of O_2 and H_2O , the dominant reaction is the reduction of NO to N_2 as shown in reaction 3 and Figure 3. However, both NO and NO_2 conversions significantly decrease with the addition of 1% H_2O . Electroimpact dissociation of H_2O competes for electrons and accounts for the conversion drop as follows:

$$e + H_2O \rightarrow e + H + OH$$
 (9)

$$OH + NO + M \rightarrow HNO_2 + M$$
 (10)

As H_2O concentration is increased from 1.to 5%, both NO and NO_x conversions change little. Fewer electrons

Figure 4. Effect of 1% water vapor and 8.3% O₂ on NO/NO_x conversions. Conditions: frequency 150 Hz, total flow rate 1000 SCCM, 250 ppm of NO with N₂ balance, temperature 65 °C.

are available for reaction 2 and thus less nitrogen atoms are available for reaction 3, leading to possibly lower NO and NO_x conversions. However, reactions 9 and 10 enhance NO conversion which counterbalances the effect of reaction 3, resulting in little overall change in NO/NO_x conversions. An increase in energy density helps N and OH formation but does not promote NO and NO_x conversions significantly as shown in Figure 3.

Effect of Water Vapor and Oxygen. Experiments are conducted in the presence of 1% water vapor and $8.3\% O_2$ in the inlet NO/N₂ gas stream. Higher NO/NO_x conversions are observed in the presence of combined O₂ and H₂O than in the presence of either O₂ or H₂O alone (Figure 4). The following reactions may provide an explanation:

$$O(^{1}D) + H_{2}O \rightarrow 2 OH$$
 (11)

$$NO_2 + OH + M - HNO_3 + M$$
(12)

Reaction 11 contributes OH radicals in the presence of O_2 . Reactions 10 and 12 account for much of the higher NO conversion because the presence of O_2 promotes NO₂ formation. NO_x conversion increases in the presence of 1% water mainly because of reaction 12 rather than reaction 2.

Effect of Carbon Dioxide. Addition of CO_2 decreases NO and NO_x conversions slightly as shown in Figure 5. A large CO formation is observed due to the electroimpact dissociation of CO_2 in a mixture of NO/ $O_2/N_2/CO_2$ in a plasma system.

$$e + CO_2 \rightarrow e + O + CO \tag{13}$$

Reaction 13 competes for electrons leading to less electrons available for radicals formation such as N and O to convert NO into N_2 or NO_2 .

Effect of CO, CH₄, and C_2H_4 in the Inlet Gas Mixture on NO/NO_x Conversions

Chemical compounds such as CO, CH₄, and C₂H₄ have played an important role in the catalytic reduction of NO_x. Experiments are conducted to study their effects in the presence of nonthermal plasma.

Figure 5. Effect of CO₂ concentration on NO/NO_x conversions. Conditions: total flow rate 1000 SCCM, 250 ppm of NO, 3% O₂, and N₂ balance. Plasma: 320 J/L at room temperature.

Figure 6. NO/NO_x conversions and CO concentration vs energy density. Conditions: total flow rate 1000 SCCM. Inlet: 250 ppm of NO, 230 ppm of CO, 3% O₂, 7.6% CO₂, and N₂ balance.

Effect of Carbon Monoxide. Figure 6 shows that there is only a small increase in NO conversion when energy density is increased from 150 to about 400 J/L. However, there is a significant increase in CO formation. Reaction 13 suggests that CO is formed in the plasma process from CO_2 present in the gas mixture. The addition of small amount of CO probably has no significant effect on NO/NO_x conversions since a large amount of CO is formed from CO_2 via reaction 13.

Effect of Methane. Methane is added to the mixture of $NO/O_2/CO_2/N_2$ to investigate its effect on NO/NO_x conversions. Figure 7 shows that NO conversion slowly increases as methane concentration is increased while NO_x conversion decreases a little. The following reactions are proposed to occur in the presence of nonthermal plasma:

$$CH_4 + e \rightarrow CH_3 + H + e$$
 (14)

$$CH_4 + O \rightarrow CH_3 + OH$$
 (15)

$$CH_4 + O(^1D) \rightarrow CH_3OH$$
 (16)

$$HO_2 + NO - NO_2 + OH$$
 (17)

Figure 7. Effect of CH₄ concentration on NO/NO_x conversions. Conditions: total flow rate 1000 SCCM. 250 ppm of NO, 3% O₂, 7.6% CO₂, and N₂ balance. Plasma: 320 J/L at room temperature.

Figure 8. C_2H_4 concentration effect on NO/NO₂ conversions. Conditions: total flow rate 1000 SCCM. 250 ppm of NO, 3% O₂, 7.6% CO₂, and N₂ balance. Temperature 60 °C; frequency 150 Hz.

Here, HO₂ is formed mainly via the following reactions:²³

$$H + O_2 \rightarrow HO_2 \tag{18}$$

$$CH_3OH + O_2 - CH_3O + HO_2$$
(19)

$$CH_3O + O_2 - CH_2O + HO_2$$
 (20)

Saturated hydrocarbon methane can undergo electronimpact dissociation reaction 14 at a slow rate. Therefore, reactions 14 and 15 are limited and consequently HO_2 available for reaction 17 is limited, resulting in only a small increase in NO conversion from 56 to 66% as methane concentration is increased from 500 to 3000 ppm.

Effect of Ethylene. Figure 8 shows that C_2H_4 significantly enhances NO conversion to NO₂. The following two reactions are proposed to occur in the plasma process:

$$C_2H_4 + O \rightarrow CH_2CO + H + H \qquad (21)$$

$$C_2H_4 + O + O \rightarrow HCO + HCO + H + H \quad (22)$$

Unsaturated hydrocarbon C_2H_4 consumes most of the O atoms via reactions 21 and 22 that might otherwise

react with NO to form NO₂. As C_2H_4 concentration is increased, more HO₂ is produced via reactions 18 and 23:²³

$$HCO + O_2 \rightarrow CO + HO_2$$
 (23)

$$HO_2 + NO \rightarrow NO_2 + OH$$
 (17)

The reaction 17 becomes dominant, leading to almost 100% NO conversion to NO₂.

Byproduct N₂O Formation

Nitrous oxide (N_2O) is one of the six gases listed by the Kyoto Protocol. Literature review reveals that N_2O may be formed during plasma process. The reaction

$$NO_{2} + N \rightarrow N_{2}O + O \qquad (24)$$

takes place and produces N_2O as a stable product.²⁴ In the presence of O_2 and H_2O , up to 10 ppm of N_2O is formed in a positive-pulsed corona discharge reactor.²⁵

In this study, a series of experiments are conducted to investigate the possible N₂O formation in the DBD reactor. The total flow rate is 1000 SCCM. Table 2 gives the summary of NO/NO_x conversions and N₂O formation. Then 19 ppm of N₂O is formed when 250 ppm of NO in N₂ is passed through the DBD plasma reactor. In the presence of 3% oxygen, the concentration of N₂O is 25 ppm. The increase of 6 ppm is attributed to the increase in energy density. However, no N₂O is detected when 2% water vapor is added to the gas feed.

The effect of adding reducing agents such as CH_4 and C_2H_4 is investigated in the same reactor. Under dry conditions, addition of 3000 ppm of CH_4 does not reduce N_2O formation whereas with 2% water vapor addition, a reduction in N_2O formation from 20 to 5 ppm is observed.

Effect of Packing in Plasma Reactor

The effects of reactor packing on discharge stability and NO/NO_x conversion are investigated using an NO concentration of 250 ppm in inlet gas mixtures. Glass wool is packed in the space between the two concentric barriers (dielectric). The density of glass wool packing is 0.3 g/cm³. It is found that a glass wool packing helps in stabilization of discharge.

Figure 9 shows that at energy density less than 225 J/L, NO/NO_x conversions for packing are less than for no-packing experimental runs. At energy density greater than 225 J/L, however, NO/NO_x conversions for packing are almost the same as for no packing. Electrical and hydrodynamic factors probably account for the lower conversions at low energy density (<225 J/L). The glass wool packing with higher dielectric constant increases the capacitance of the reactor, probably causing a decrease in discharge efficiency. Packing also considerably shortens the gas residence time in the reactor, resulting in lower NO/NO_x conversions. At high energy density (>225 J/L), however, these factors appear to have little effect.

Sulfur Dioxide Oxidation in Barrier Discharge

The nonthermal experimental system described earlier is used to investigate SO_2 oxidation. The experiments have been extended to study the effect of cylindrical, square and rectangular reactor geometries on

 NO_x

convn (%)

 N_2O

(ppm)

NO

convn (%)

energy

Table 2. S	ummary of N ₂ C) Formations for	Various Feeds
------------	----------------------------	------------------	---------------

Figure 9. Effect of packing on NO/NO_x conversions for NO/N2 gas mixture.

Figure 10. Effect of reactor geometry and energy density on SO2 conversion.

SO₂ to SO₃ conversion.²⁶ A rectangular reactor is also used to compare effects of different barrier (dielectric) materials and their thickness on SO2 conversion. Most of the experiments are conducted with an inlet gas mixture of 770 ppm of SO₂, 4000 ppm of O₂ and the balance N₂ at 400 Hz. The SO₂ concentration measurements are made by an infrared analyzer.

Effect of Geometry on SO₂ Conversion. Figure 10 shows that the energy requirements of cylindrical, square and rectangular reactors for the same conversion are in an increasing order under identical experimental conditions. For the same energy density of 3000 J/L, the SO₂ conversions are about 80, 33, and 22% for cylindrical, square and rectangular reactors, respectively.

Effect of Barrier(Dielectric) Materials. The barrier materials tested are composite mica, quartz and soft glass with dielectric constants of 2.3, 3.7, and 6.4, respectively. Reactor geometry used is rectangular.

Figure 11. Effect of barrier materials and energy density on SO2 conversion.

Figure 12. Effect of barrier thickness and energy density on SO2 conversion.

Figure 11 shows that for the same energy density, reactor with composite mica as barrier material gives the highest conversion. It appears that lower dielectric constant may be helpful in achieving higher SO₂ conversion. The rough surface of composite mica may have caused local microsparking areas where more concentrated and higher energy electrons may have promoted SO₂ conversion.

Effect of Barrier (Dielectric) Thickness on SO₂ **Conversion.** Composite mica is selected to investigate barrier thickness effect on SO₂ conversion. For the convenience of fabrication, a rectangular reactor is used. One. two, and three layers of composite mica are used to obtain increases in thickness (0.8, 1.6, and 2.4 mm). Experimental results show that barrier thickness has little effect on SO₂ conversion (Figure 12). However, a thicker barrier could stand a greater discharge power, leading to higher SO₂ conversion. In each case, energy 2088 Ind. Eng. Chem. Res., Vol. 41, No. 9, 2002

density is increased until the experiment had to be discontinued due to excessive sparking.

Commercialization Efforts

Our work on the removal of NO_x and SO_x has been extended from laboratory scale to commercialization at several companies. Powerspan, Inc., New Durham, NH, is currently conducting laboratory and field testing of a barrier discharge system for the NO_x and SO_x removal at a utility plant.²⁷ The test system consists of one dry ESP, two parallel barrier discharge reactors, and one wet ESP, processing up to 4000 cu ft/min of flue gas drawn from the exhaust of a 125 MW coal-fired power plant. The inlet flue gas contains SO_2 and NO_x about 1700–1800 ppm and 240–400 ppm, respectively. The gas is at 300 °F. Conversion efficiencies of about 50 and 80% have been achieved for SO_2 and NO_x , respectively.

Conclusions

A nonthermal plasma technique in the form of barrier discharge has been studied on a laboratory scale for the removal of NO_x and SO₂. The NO_x conversion is investigated in the presence of other gases such as O2, H2O, CO_2 , CO_1 , CH_4 , and C_2H_4 . NO undergoes chemical oxidization into NO2 or reduction into N2 depending upon the inlet gas composition. High O₂ content and energy density promote NO oxidization but when O2 concentration is greater than 5%, an increase in energy density from 150 to 320 J/L does not help NO conversion. The presence of H₂O has a strong effect on NO conversion. It is found that the effects of 1-5% H₂O on NO/NO_x conversions are the same. Addition of C₂H₄ significantly improves NO oxidization into NO2. As C2H4 concentration is increased from 0 to 3000 ppm, almost 100% NO conversion to NO₂ is observed. The effect of CH4 addition on NO oxidization is limited. Experimental results also show that passing a dry gas feed of 250 ppm NO through the DBD plasma reactor produces about 20 ppm of N₂O. In the presence of 2% water vapor, however, no N₂O is detected.

Plasma reactor performance is also studied with respect to geometry and dielectric materials for SO_2 oxidation. Cylindrical reactor is of significant advantage over square and rectangular rectors in terms of SO_2 conversion. Barrier (dielectric) materials composite mica, quartz and soft glass with dielectric constants of 2.3, 3.7, and 6.4, respectively, are evaluated as barrier materials. Experimental results show that a lower dielectric constant material provides higher SO_2 conversion.

Acknowledgment

Z.C. is thankful to the Department of Chemical Engineering, UNH, for financial support.

Literature Cited

(1) Joshi, S. The Decomposition of Nitrous Oxide in the Silent Electric Discharge. *Trans. Faraday Soc.* **1927**, *23*, 227.

(2) Chang, J. Simultaneous Removal of NO_x and SO_x from a Combustion Flue Gas by Corona Discharge Radical Shower Systems. *Applications of Electrostatics Workshop*; University of Cincinnati: Cincinnati, OH, August 22, 1997.

(3) Matteson, M.; Stringer, H.; Busbee, W. Corona Discharge Oxidation of Sulphur Dioxide. Environ. Sci. Technol. 1972, 6, 895. (4) Clements, J.; Mizuno, A.; Finney, W.; Davis, R. Combined Removal of SO₂, NO₂, and Fly Ash from Simulated Flue Gas Using Pulsed Streamer Corona. *IEEE Trans. Ind. Appl.* **1989**, 25 (1), 62.

(5) Veldhuizen, E.; Zhou, L.; Rutgers, W. Combined Effects of Pulsed Discharge Removal of NO, SO₂ and NH₃ from Flue Gas. *Plasma Chem. Plasma Process.* **1998**, *18* (1), 91.

(6) Maezawa, A.; Izutsu, M. Application of e-Beam Treatment to Flue Gas Cleanup in Japan. In Non-Thermal Plasma Techniques for Pollution Control, Penetrante, B. M., Schultheis, S. E., Eds.; NATO ASI Series, Volume 34, Part B: Electron Beam and Electrical Discharge Processing; Springer-Verlag: Berlin, 1993; pp 47-54.

(7) Frank, N.; Hirano, S. The History of Electron beam Processing for Environ. Pollut. Control and Work Performed in the United States. In Non-Thermal Plasma Techniques for Pollution Control; Penetrante, B. M.; Schultheis, S. E., Eds.; NATO ASI Series, Volume 34, Part B: Electron Beam and Electrical Discharge Processing; Springer-Verlag: Berlin, 1993; pp 1-26.

(8) Kogelschatz, U.; Eliasson, B.; Egli, W. Dielectric-Barrier Discharges Principle and Applications. printed plenary lecture, International Conference on Phenomena in Ionized Gases (ICPIG XXXIII); Toulouse, France, July 17-22, 1997.

(9) Penetrante, B.; Hsiao, M.; Merritt, B.; Vogtlin, G.; Wallman, P. Pulsed Corona and Dielectric-Barrier Discharge Processing of NO in N₂ Appl. Phys. Lett. 1996, 68, 3719.

(10) Urashima, K.; Chang, J.; Ito, T. Reduction of NO_x from Combustion Flue Gases by Superimposed Barrier Discharge Plasma Reactors. *IEEE Trans. Ind. Appl.* **1997**, 33 (4).

(11) Snyder, H.; Anderson, G. Effect of Air and Oxygen Content on the Dielectric Barrier Discharge Decomposition of Chlorobenzene. *IEEE Trans. Plasma Sci.* **1998**, *26*, 1695.

(12) Evans, D.; Rosocha, L.; Anderson, G.; Coogan, J.; Kushner, M. Plasma Remediation of Trichloroethylene in Silent Discharge Plasmas. J. Appl. Phys. **1993**, 74, 5378.

(13) Storch, D.; Kushner, M. Destruction Mechanisms for Formaldehyde in Atmospheric Pressure Low-Temperature Plasmas. J. Appl. Phys. 1993, 73, 51.

(14) Eliasson, B.; Liu, C.; Kogelschatz, U. Direct Conversion of Methane and Carbon Dioxide to Higher Hydrocarbons Using Catalytic Dielectric-Barrier Discharges with Zeolites. *Ind. Eng. Chem. Res.* 2000, 35, 1221.

(15) Larkin, D.; Lobban, L.; Mallinson, R. Production of Organic Oxygenates in the Partial Oxidation of Methane in a Silent Electric Discharge Reactor, *Ind. Eng. Chem. Res.* 2001, 40, 1594.

(16) Mathur, V.; Breault, R.; McLarnon, C.; Medros, F. NO_x Reduction by Sulfur Tolerant Corona-Catalytic Apparatus and Methodology. U.S. Patent 5,147,516, 1992.

(17) Breault, R.; McLarnon, C.; Mathur, V. Reaction Kinetics for Flue Gas Treatment of NO_x. In *Non-Thermal Plasma Techniques for Pollution Control*. Penetrante, B. M., Schultheis, S. E., Eds.; NATO ASI Series, Volume 34, Part B: Electron Beam and Electrical Discharge Processing; Springer-Verlag: Berlin, 1993; pp 239-256.

(18) McLarnon, C. Nitrogen Oxide Decomposition by Barrier Discharge. Ph.D. Dissertation, University of New Hampshire, Durham, NH, 1996.

(19) McLarnon, C.; Mathur, V. Nitrogen Oxide Decomposition by Barrier Discharge. Ind. Eng. Chem. Res. 2000, 39, 2779.

(20) Mathur, V.; Chen, Z.; Carlton, J.; McLarnon, C.; Golden, C. Barrier Discharge for Gaseous Pollution Control. Proceedings of the 3rd Joint China/USA Chemical Engineering Conference; Beijing, China, September 25-28, 2000.

(21) Chen, Z. Nitric Oxide and Sulphur Dioxide Remediation by Non-Thermal Plasma and Catalysis. Ph.D. Dissertation to be submitted, University of New Hampshire, Durham, NH, 2002.

(22) McLarnon, C.; Penetrante, B. Effect of Gas Composition on the NO_x Conversion Chemistry in a Plasma. *SAE Technical Paper Series 982433*; SAE: San Francisco, CA, October, 1998.

(23) Penetrante, B.; Brusasco, R.; Merritt, B.; Pitz, W.; Vogtlin, G.; Kung, M.; Kung, H.; Wan, C.; Voss, K. NO_x Conversion Chemistry in Plasma-Assisted Catalysis. *Proceedings of the 1998 Diesel Engine Emissions Reduction Workshop*; Maine Maritime Academy: Castine, ME, July 6-7, 1998.

(25) Mok, Y.; Kim J.; Nam, I.; Ham, S. Removal of NO and Formation of Byproducts in a Positive-Pulsed Corona Discharge Reactor. *Ind. Eng. Chem. Res.* 2000, 39, 3938.
 (26) Mathur, V.; Chen, Z.; Carlton, J. Electrically Induced Chemical Reactions in a Barrier Discharge Reactor. Technical Report, Zero Emissions Technology, Inc., August, 1999.

(27) McLarnon, C.; Jones, M. Electro-Catalytic Oxidation Process for Multi-Pollutant Control at FirstEnergy's R. E. Burger Generating Station. Proceedings of Electric Power 2000 Conference in Cincinnati; 2000.

> Received for review May 23, 2001 Revised manuscript received December 17, 2001 Accepted February 13, 2002

> > IE010459H

APPENDIX B

REACTION OF CH₄ AND CO₂ IN DBD REACTOR TO FORM VALUE-ADDED PRODUCTS

The objective of this study is to investigate the reaction of CH₄ and CO₂, two inexpensive gases, in a DBD reactor to explore the possibility of forming high-value products such as olefins, hydrogen, CO, etc. Converting CO₂ into valuable products has long been pursued especially since the "greenhouse effect" attracted worldwide attention. The present investigation includes three steps, namely methane dissociation, carbon dioxide dissociation, and reaction of methane with carbon dioxide in a DBD reactor. The apparatus used is the same as has been used for NO_x and SO₂ studies. Experiments are carried out at atmospheric pressure and room temperature. A gas chromatograph equipped with thermal conductivity detector (TCD) and flame ionization detector (FID) is used for feed and product identification and quantitative analysis.

Analysis Method

A suitable detection method for GC is essential for the identification and quantitative analysis of methane, carbon dioxide and related products. TCD and FID are used due to their wide responses to various gases. In addition to usual helium, nitrogen is used as a carrier and reference gas.

Apparatus

Hewlett Packard 5890 Series II Gas Chromatograph with accessories:

- FID and TCD detectors
- SUPELCO column (Cat. No. 1-2390): 60/80 Carboxen-1000
- Hewlett Packard HP3396 Series II integrator
- Two sampling loops: small (original, 0.25ml) and large (self-made, 0.62 ml)

TCD and Reference Gas Selection

Working of TCD is based on the difference of thermal conductivity coefficients, K for various gases. It can be described by the following equation:

K = (density)(velocity)(mean free path)(specific heat)/2

K is almost independent of pressure because the density and mean free path vary in the opposite directions with change in pressure (Mann and others 1994).

In general, a reference gas needs to be of much higher K so that the signal for the component to be detected can be large enough. Helium with a much greater K value is the best candidate to serve as a reference gas(see Table 1). In order to get a steady signal output, the same gas is used as both carrier and reference gas.

Table 1

Gas Thermal Conductivity Coefficients (at 500 K) (Perry and Chilton 1073: Change 1073) Unit: 100 y/mK

		iry and Ci	<u>inton 197</u>	J, Chang	1975)		
Gas	Air	Ar	CO ₂	He	H_2	CH4	N_2
К	4.07	2.66	3.25	21.8	26.2	6.68	3.89
Gas	O ₂	H ₂ O	СО	C ₂ H ₆	C ₂ H ₄	C ₂ H ₂	
К	4.12	3.58	3.80	5.2	5.0	4.4	

Some workers in this area used helium (instead of nitrogen) as balance gas in their simulated gas mixtures fed to DBD reactors. By doing so, they could measure nitrogen gas produced in the outlet stream from a DBD reactor. However, nitrogen accounts for up to 90% of flue gas from power plants and exhaust from engines. N₂ plays an important role in DBD process because of electron-impact dissociation of N₂. Therefore, using a simulated gas mixture without N₂ would make experimental reaction paths far different from the real situation.

In the present study, nitrogen is used as balance gas in the simulated gas feed. Hydrogen could be one of products from DBD reactor. The measurement of a small amount of hydrogen with TCD needs nitrogen as reference and carrier gas because hydrogen K is of the same magnitude as helium K. This arrangement has the advantage of avoiding large signal of balance nitrogen gas in the sample.

Retention Time Used for Identification of a Gas Peak

GC provides peak area and retention time (RT). Peak area is dependent on the amount of a gas component and is used to calculate the gas concentration. Peak RT is the time taken for a component band to pass through the column and reach the detector. Peak RT and its sequence can be used to identify products.

Figure 1 is a standard chromatogram of gases and C_2 hydrocarbons provided by SUPELCO (SUPELCO 1995) for the column used in this study. Calibration gases are used with 1% each in N₂ balance and helium serves as reference and carrier gas for the chromatogram. Every RT in Figure 1 may not been used to identify individual gas in this study because of different flow rate, carrier gas and oven temperature. However, the RT sequence can be used as a guide for identification of feed and product gases. As shown in Figure 1, carbon monoxide peak appears after but close to nitrogen peak. Methane follows the carbon monoxide. Then comes the peak for carbon dioxide. RTs of acetylene, ethylene and ethane are in increasing order.

Figure 1 Chromatogram of Calibration Gases and C₂ Hydrocarbons. Column:60/80 Carboxen-1000, TCD (SUPELCO 1995)

Dissociation of Methane

The DBD reactor used in this study has limitation of power that can be applied, and therefore a low inlet CH_4 concentration to provide a high specific energy (kJ/mole- CH_4 inlet) is used for the experiments. Dissociation of CH_4 is investigated at concentration of 100 and 5000 ppm levels.

Low Concentration Methane Dissociation(124 ppm)

A gas mixture of 124 ppm methane and balance N_2 is fed to the DBD reactor and subjected to various power inputs. The total flow rate is 1.86 SLM. A large sampling loop of 0.62 ml is used to enhance the peak signals of GC. Presented in Figure 2 and Table 2 are the results obtained using TCD that are in good agreement with those reported earlier with FID (Golden 1997). At an energy density of 593 J/L (peak voltage 26.4 kV), the conversion of methane is found to be 23.7%.

Figure 2 Methane Conversion vs. Voltage. Frequency is 400 Hz. Room temperature.

Table 2

Methane Conversion Under Different Voltage Applied					
Peak Voltage (V)	24,804	26,403			
Energy Density (J/L)	250	380	482	593	
Conversion (%)	6.0	12.3	18.5	23.7	

Identification and Quantification of Product H₂

Hydrogen molecule is regarded as the most likely product from methane dissociation. Since the thermal conductivity coefficient of hydrogen is higher than that of helium, nitrogen is used as a carrier and reference gas instead of helium for GC-TCD analysis. By injecting a calibration hydrogen gas, an RT of 1.528 minutes is obtained for the large sampling loop of 0.62 ml. Similarly, RTs of other gases are obtained by injecting calibration gases.

The chromatograms of the products of methane dissociation show that a new peak appears with RT of 1.50 minutes and the peak area increases as applied voltage is

increased. When this RT of 1.50 minutes is compared with calibration data of RT 1.528 minutes, the peak is found to be that of hydrogen.

Dissociation results of 124 ppm methane mixture are presented in Table 3. The experimental results show the ratio of H_2 produced to CH_4 converted is 1.5. Based on this ratio, the following reaction may be proposed:

$$2x \operatorname{CH}_4 \to 3x \operatorname{H}_2 + (2x \operatorname{H} + 2x \operatorname{C}) \tag{1}$$

Where item (2 x H + 2 x C) is the mixture of possible products C, C₂H₂, C₂H₄ and/or C₂H₆. The stoichiometric theoretical ratio of H₂/CH₄ for Equation (1) is 1.5.

Table 3

Methane Converted and Hydrogen Yields

Applied Vpeak	Methane Converted	Hydrogen Yield	Ratio of H ₂ /CH ₄
24,804 v	23.0 ppm	33.4 ppm	1.5
26,403 v	29.4 ppm	42.9 ppm	1.5

Identification and Quantification of Product Hydrocarbons

Equation (1) suggests that other products may be hydrocarbons such as acetylene (C_2H_2) , ethylene (C_2H_4) , ethane (C_2H_6) or carbon (C).

To check if acetylene could be present in the products, an experiment is conducted to verify the stability of acetylene under DBD experimental conditions. A mixture of 2 ppm acetylene is passed through DBD reactor. Flame ionization detector (FID) is used to analyze acetylene and its plasma products. Presented in Table 4 are the results of acetylene dissociation under different applied voltages. Acetylene RT is found to be 14.4 minutes. As the power increases, acetylene concentration in the outlet stream decreases, dropping to zero at the power of 16.4 w. In addition, trace methane is identified in the product stream according to its RT of 4.2 minutes. It can be concluded

Table 4

Compounds	Peak Areas under Different Voltage					
in Product	No voltage	27,149 V	28,850 V	35,073 V	37,334 V	
Stream		1.1 w	3.1 w	10.7 w	16.4 w	
Acetylene	2,766	2,463	320	50	0	
	(2.0 ppm)	(1.8 ppm)	(0.02 ppm)	(0.003 ppm)	(0 ppm)	
Methane	0	20	202	397	529	
(product)	(0 ppm)	(0 ppm)	(0.3 ppm)	(0.7 ppm)	(1 ppm)	

Acetylene Dissociation under Different Voltage (peak value)

C₂H₂ scale: 0.00074 ppm/area; CH₄ scale: 0.0017 ppm/area.

that acetylene is easily dissociated in DBD and therefore it is probably not one of products of methane dissociation under the experimental conditions.

Similarly, ethane could be one of C_2 products. To check if ethane could be present in the products, a separate experiment is conducted with a mixture of CH₄ (130 ppm) and N₂. The total flow rate is maintained at 2 SLM with a peak voltage of 31.6 kV and power of 20.3 w. A conversion of 38% is achieved for methane. Results presented in Table 5 show that there is an unknown peak with an average RT of 19.341 minutes. By referring to the sequence of Figure 1, this unknown peak is probably ethylene peak.

Table 5

Methane Dissociation under 31.6 kV

	Peak Areas					
Compounds	No voltage	Run 127	Run 128	Run 129	Average	
Methane	1,298	812	808	779	800	
	(130 ppm)				(80 ppm)	
Unknown	0	124	100	142	122	
Product		(RT: 18.990)	RT: 19.980)	(RT: 19.052)	(RT: 19.341)	

High Concentration Methane Dissociation(5298 ppm)

A mixture of 5298 ppm methane and 0.1% argon in N_2 balance is prepared with a standard methane source (5% methane mixture in balance argon, Airgas). The same GC TCD with N_2 as carrier and reference gas is used for analyzing gas composition. A calibration hydrogen gas gives a RT of 0.997 minutes for a small sampling loop used (0.25 ml). With nitrogen as reference and carrier gas, a negative peak of hydrogen in the product is clearly detected when a suitable voltage is applied to the reactor. Its retention time is 0.999-1.000 minutes matching the calibration hydrogen RT. Results are presented in Table 6.

Table 6

Methane converted and Hydrogen Yields (methane feed: 5298 ppm)

Applied Voltage	Methane converted	Hydrogen yield	Ratio of H ₂ /CH ₄
22,000 v	304 ppm	158 ppm	0.52
24,900 v	430 ppm	223 ppm	0.52

Based on the ratio of H_2 produced to CH_4 converted, i.e., 0.52, the following reaction may be proposed:

$$2x \operatorname{CH}_4 \xrightarrow{} x \operatorname{H}_2 + (6x \operatorname{H} + 2x \operatorname{C}) \tag{3}$$

Where (6 x H + 2 x C) is the mixture of products C, C₂H₄ and/or C₂H₆. The stoichiomistric theoretical ratio of H₂/CH₄ for Reaction (3) is 0.5. Hsieh *et al.* (1998) used FTIR and identified C₂H₂, C₂H₄ and C₂H₆ from a radio-frequency(RF) plasma system with a feed of 5-20% CH₄ in Ar.

Mechanism for Methane Dissociation in DBD

Specific Energy (SE) is used to compare the energy efficiency in the DBD process. SE is defined as the electric energy consumed per inlet mole of methane. Table 7 shows that under the same applied voltage, methane in low concentration with much greater SE undergoes higher decomposition of 18.5%. On the other hand, methane in high concentration shows a conversion of only 8.1%. In the DBD reactor, methane undergoes electron-impact dissociation:

$$CH_4 + e \rightarrow CH_3 + H + e \tag{4}$$

Table 7

Comparison between Low and High Inlet Concentrations of Methane

Methane	Voltage	Flow rate	Specific Energy	Conversion	Products
Inlet, ppm	V	L/min	KJ/mol(inlet)	%	
124	24,804	1.86	87,200	18.5	H_2, C_2H_4*
5298	24,900	2.00	1,663	8.1	H_2, C_2H_6*

* Compounds have not been identified due to instrumentation limit.

In the case of 124 ppm methane feed, a methane molecule get a higher probability to be dissociated as reaction (4) compared with in the case of 5298 ppm methane feed. Therefore, a higher methane conversion can be achieved for a feed of lower methane concentration. In addition, part of CH_3 radicals may undergo further electron-impact dissociation depending on the availability of energetic electrons:

$$CH_3 + e \rightarrow CH_2 + H + e \tag{5}$$

$$LH_2 + e \not \rightarrow CH + H + e \tag{6}$$

$$CH + e \rightarrow C + H + e \qquad (/)$$

Meanwhile, part of CH_3 radicals form ethane as reaction (8) and hydrogen radicals form hydrogen molecule as reaction (9):

$$CH_3 + CH_3 \rightarrow C_2H_6 \tag{8}$$

H + H \rightarrow H₂ (9)

The overall reaction for Reactions (4)-(9) could be described as follows:

$$CH_4 \rightarrow k H_2 + m C_2 H_6 + n C \tag{10}$$

157

Reaction (10) is well comparable with Reaction (2), 50 CH₄ \rightarrow 75 H₂ + 8.46 C₂H₆ + 33 C, which is proposed based on experimental results.

On the other hand, in the case of 5298 ppm methane feed under the same energy density as used for 124 ppm methane feed, most energetic electrons are consumed by Reaction (4), $CH_4 + e \rightarrow CH_3 + e$. No excess electrons are available for CH_3 radicals to undergo further dissociation. Accordingly, Reactions (8) $CH_3 + CH_3 \rightarrow C_2H_6$ and (9) $H + H \rightarrow H_2$ become dominant. The overall reaction can be described as

$$CH_4 \rightarrow m H_2 + n C_2 H_6 \tag{11}$$

Reaction (11) is the same as Reaction (3) proposed according to experimental results.

Dissociation of Carbon Dioxide

Experiments on CO_2 dissociation are conducted at 100 ppm and 10,000 ppm levels to check CO_2 conversion and the possible existence of carbon monoxide (CO) in product stream.

Low Concentration CO₂ Dissociation (100 ppm level)

Like methane, 100 ppm CO₂ is used to investigate CO₂ dissociation in the DBD reactor. Under 32,000 V(peak value), the conversion of CO₂ is about 3.2%. Based on the retention time of CO (about 2.33 min), CO peak is observed although the peak is not well separated from nitrogen peak. The GC column fails to separate CO due to the presence of large component of N₂. CO peak probably can be separated if helium is used as balance gas.

High Concentration CO₂ Dissociation (10,000 ppm level)

In order to obtain a separate CO peak, a high inlet concentration (10,000 ppm) of CO_2 with N_2 balance is passed through the DBD reactor. Under the same peak voltage of 32,000 V, the area of CO peak obtained appears larger than that for a low concentration CO_2 dissociation. It shows that more CO is formed for the high concentration CO_2 feed. Unfortunately, the CO peak is not well separated from nitrogen peak. Peak area could not be measured for the estimation of product CO.

The mechanism for CO₂ dissociation in the DBD reactor is proposed as follows:

$$CO_2 + e \rightarrow CO + O + e \tag{12}$$

Reaction of Methane and Carbon Dioxide

Experiments on the reaction of CH_4 and CO_2 are also conducted at two concentration levels of 100 ppm and 10,000 ppm with balance N_2 .

Low Concentration (100 ppm each) of $CH_4 + CO_2$ in Nitrogen Mixture

A CH₄-CO₂ mixture (100 ppm each in nitrogen) is used to investigate reactions of CH₄+CO₂. Results are presented in Table 8. CO₂ conversion is found to be 10% compared to 3.2% in the absence of CH₄ under the same peak voltage of 31,600 V and flow rate of 1.8 SLM. The conversion of CH₄ in the presence of CO₂ is 26.3% compared with 38.4% when treated alone. An important finding is that the CO peak is clearer and larger than obtained for CO₂ dissociation alone. These results suggest that CO₂ reacts with CH₄ under the plasma conditions.

Table 8

CH₄ and CO₂ Conversions for Different Feed Mixtures at Voltage of 31,600 V

High Concentration(10,000 ppm each) CH₄+ CO₂ in Nitrogen Mixture

In order to obtain a separate and complete CO peak, the inlet concentrations of CH_4 and CO_2 are maintained about 10,000ppm each. Under the same power condition as for 100 ppm mixture, the area of CO peak in the product stream appears larger than that for the low concentration of CH_4 and CO_2 mixture. However, the CO peak is not well separated from nitrogen peak. No peak area could be measured for the estimation of product CO.

Proposed Mechanism for the Reaction of CH₄ and CO₂

Results in Table 8 show that the presence of CH_4 enhances CO_2 dissociation. On the other hand, CH_4 conversion decreases due to CO_2 competition for energy or energetic electrons. Hydrogen and CO are the main products. The mechanism for CH_4 reaction with CO_2 could be proposed as follows:

$CH_4 + e \rightarrow CH_3 + H + e$	(13)
$CH_3 + e \rightarrow CH_2 + H + e$	(14)
$CH_2 + e \Rightarrow CH + H + e$	(15)
$CO_2 + e \rightarrow CO + O + e$	(16)
$H + H \rightarrow H_2$	(17)
$CH_3 + CH_3 \rightarrow C_2H_6$	(18)
CH₄ + O → CH₃OH	(19)
$CH + O \rightarrow CO + H$	(20)
O + H → OH	(21)
$OH + H \rightarrow H_2O$	(22)

Reactions(19)-(21) might account for more CO_2 dissociation by enhancing Reaction (16) and contributing additional CO formation via Reaction (20).

Conclusions

The following conclusions are drawn from the investigation of methane and carbon dioxide reactions in the DBD plasma reactor:

- 1. 38.4% conversion of methane can be achieved when a mixture of CH_4 and N_2 is passed through the DBD reactor at 31.6 kV and 400 Hz (20 w). Hydrogen gas is one of the products. Ethane could be the main C_2 product.
- 2. Only 3.2 % conversion of carbon dioxide can be achieved when a mixture of CO_2 and N_2 is fed to the DBD reactor at 31.6 kV and 400 Hz (20 w). CO is one of the products.
- 3. Conversion of carbon dioxide is increased from 3.2 % to 10% when it is mixed with methane. Hydrogen gas and CO are amongst the products. The following reaction probably occurs in the DBD reactor:

$$CH_4 + CO_2 \rightarrow 2CO + 2H_2$$

This work was discontinued due to lack of analytical facilities such as a high sensitive pair of Dual-Module Microgas Chromatographs (Eliasson and others 2000).

References

- Chang H. 1973. Thermal conductivities of gases at atmospheric pressure. Chemical Engineering April, 16.
- Eliasson B, Liu C, Kogelschatz U. 2000. Direct conversion of methane and carbon dioxide to higher hydrocarbons using catalytic dielectric-barrier discharges with zeolites. Ind Eng Chem Res 39:1221-7.
- Golden C. 1997. Decomposition of refrigerants R12, R-22 and R-50 by barrier discharge [master thesis]. Durham(NH): University of New Hampshire.
- Mann C, Vickers T, Gulick W. 1994. Instrumental analysis. Harper & Row, Publishers. p183.
- Perry P, Chilton C. 1973. Chemical engineers' handbook. 5th ed. McGraw-Hill Book Company. p 3-215.

SUPELCO. 1995. Chromatography products. Supelco, Inc. p 768.

APPENDIX C

KINETICS AND MODELING OF NO CONVERSION UNDER NON-THERMAL PLAMSA CONDITIONS

Development of correlations for

- (1) Kinetic equation for dry NO oxidation
- (2) Correlation of NO conversion in the presence of moisture

Kinetic Equation for Dry NO Oxidation

The reactions for dry NO oxidation can be simplified as follows:

Overall reaction:
$$NO + \frac{1}{2}O_2 \rightarrow NO_2$$
 (1)

The rate equation for reaction (1) can be expressed as follows

$$\mathbf{r} = -\mathrm{d}[\mathrm{NO}]/\mathrm{dt} = k_{p} [\mathrm{NO}]^{\alpha} [\mathrm{O}_{2}]^{\beta}$$
(2)

<u>Reaction orders α and β </u>. Experiments have been conducted by varying inlet NO and O₂ concentrations at a constant energy density of 100 J/L. [NO] is estimated by averaging inlet and outlet NO concentrations. [O₂] is assumed constant (3% or 5%) due to its large excess. This technique has been used earlier for other reactions (Seigneur and others 1994). The logarithmic form of equation (2) is

$$\ln (\mathbf{r}) = \ln (k_p) + \alpha \ln ([\text{NO}]) + \beta \ln ([\text{O}_2])$$
(3)

Where $\mathbf{r} = d \ge c$ and $\ln(\mathbf{r}) = \ln(d) + \ln(c)$. *d* is the amount of NO converted (ppm) and c is a conversion factor. The equation (3) can be rewritten as

$$\ln (d) = \alpha \ln ([NO]) + \ln (k_p) + \beta \ln ([O_2]) - \ln (c)$$
(4)

Where $\ln (k_p)$, $\beta \ln([O_2])$ and $\ln (c)$ are constant. The regression analysis of two sets of data yields slopes, 0.62 and 0.35 of the fitting straight lines (Table 1& Figure 1, Table 2 & Figure 2). Therefore, the value of α is taken as $\frac{1}{2}$.

NO inlet	NO outlet	Converted, d	Avg.[NO]	In([NO])	ln(d)		
ppm	ppm	ppm	ppm				
250	186	64	218	5.38	4.16		
309	217	92	263	5.57	4.52		
358	258	100	308	5.73	4.61		
458	360	98	409	6.01	4.58		

Table 1 Data Set 1

Figure 1 Data Set 1

Table 2 Data Set 2

NO inlet	Outlet	Converted, d	Avg.[NO]	In([NO])	ln(d)
ppm	ppm	ppm	ppm		
100	56	44	78	4.36	3.78
250	180	70	215	5.37	4.25
300	222	78	261	5.56	4.36
350	280	70	315	5.75	4.25
450	372	78	411	6.02	4.36

Figure 2 Data Set 2

Similarly, β value is estimated by varying O₂ concentration while keeping the inlet NO concentration constant. The values for β are 0.70, 0.32, 0.44 and 0.35. Therefore, β can be assumed to be $\frac{1}{2}$. The rate equation becomes:

$$\mathbf{r}_{NO} = -d[NO]/dt = k_p [NO]^{\frac{1}{2}} [O_2]^{\frac{1}{2}}$$
 (5)

In the present study, the rate constant correlation is proposed as follows:

$$k_p = A_p e^{-Ea/E_d} \tag{6}$$

162

Where E_a is effective activation energy (J/mol of NO) and E_d is discharge power or energy density (J/mol of gas mixture). A_p is frequency factor under plasma conditions.

Derivation of correlation between k_p and conversion rate x:

Assumption: ideal plug-flow reactor for the DBD reactor Reactor volume (V): 69 cm³ Total gas flow rate (Q): 1 liter/min C_{NOO} : inlet concentration of NO, ppm $x = (C_{NOO} - C_{NO})/C_{NOO}$ $C_{NO} = C_{NOO}(1 - x)$

For ideal plug-flow reactor, we have the following equation:

$$V/(Q C_{Noo}) = \int_{0}^{x} (1/\mathbf{r}_{No}) dx$$
(7)

Substitution of C_{NOO} and \mathbf{r}_{NO} expressions into equation (7) and integration yield

$$k_{p} = V/Q \left(C_{02}/C_{NOS} \right)^{\frac{1}{2}} / \left(2 - 2(1-x)^{\frac{1}{2}} \right)$$
(8)

By defining

V/Q = t, residence time in the reactor

 $C_{0}/C_{NO} = m$, ratio of O_2 concentration to inlet NO concentration

equation (8) is written as:

$$x = k_p t m^{\frac{1}{2}} - \frac{1}{4} m k_p^2 t^2$$
(9)

Check: 1) At t = 0 (inlet point):

x = 0 (no conversion)

2) At $k_p \rightarrow 0$ (extremely low energy density or high activation energy): x = 0 (no conversion)

Equation (8) is used to calculate the values of k as shown in the following table. The logarithmic form of equation (6) is $\ln(k_p) = E_a (-1/24.4E_d) + \ln A_p$, where E_d is expressed as J/L.

		Inlet NO	O2			
		258	4%			
Ed	Out NO	NOx	x, NO conv	k _p	ln(k)	-1/(24.4Ed)
J/L	ppm	ppm				mole/J
288	132	228	0.49	1.10E-02	-4.506	-0.00014
432	125	216	0.52	1.18E-02	-4.440	-9.5E-05
540	121	207	0.53	1.22E-02	-4.404	-7.6E-05
678	114	195	0.56	1.30E-02	-4.342	-6E-05

Table 3

163

From Figure 3, E_a and A_p are found to be 1865 J/mol and 0.0143, respectively.

Figure 3

Correlation of NO Conversion in the Presence of Moisture

The following equation has been proposed: $[X]/[X]_{0} = \exp \{-(E_{d} - E_{i})/\gamma \}$ (10)

The logarithmic form of equation (6) is

$$E_d = \gamma \left(-\ln([X]/[X]_0) \right) + E_i$$
(11)

Regression analysis of present experimental data yields the values of γ and E_i , 61 J/L and 45 J/L, respectively (Table 4 & Figure 4).

Table 4							
250 ppm NO/8.3%O ₂ /1%H ₂ O/N ₂							
		Conversion		-ln([X]/[X]₀)=			
Ed	NO%	NOx%	Ed	-In(1-NO%)			
81	41.3	8.9	81	0.532			
104	57.4	11.9	104	0.853			
116	83.4	30	116	1.795			
208	89.4	40	208 ·	2.244			

Regression analysis of experimental data from an early study (Mclarnon 1996) yields the values of γ and E_i , 133 J/L and 14 J/L, respectively (Table 4 & Figure 4).

Figure 4

References:

McLarnon C. 1996. Nitrogen oxide decomposition by barrier discharge [dissertation]. Durham (NH):University of New Hampshire. p 87.

Seigneur C, Wrobel J, Constantinou E. 1994. A chemical kinetic mechanism for atmospheric inorganic mercury. Environ Sci Technol 28:1589-97.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

APPENDIX D

MEASUREMENT OF DIELECTRIC CONSTANTS

The objective of this study is to determine the dielectric constants of barrier materials used for fabricating dielectric barrier discharge reactors. A dielectric constant can not be directly measured. An indirect measurement method is developed and the effects of two parameters on the measurement are investigated. The two parameters are the thickness of the dielectric material and the area of the electrodes used to measure capacitance across the dielectric material.

Principle of Dielectric Constant Measurement

The dielectric constant of a material, K, is used to quantitatively describe the property of the dielectric material that increases the capacitance between a pair of plates (conductors) as follows:

$$\mathbf{K} = \mathbf{C}/\mathbf{C}_0 \tag{1}$$

where C is the capacitance across the dielectric material, and C_0 is the capacitance across the same distance in a vacuum. Since the difference between air and a vacuum is negligible in electrostatics, C_0 may be approximated by the capacitance across the same distance of air.

A capacitance meter connected to a pair of parallel plates may be used to measure the capacitances.

$$C_0 = \varepsilon_0 A/d \tag{2}$$

$$C = K \varepsilon_0 A/d$$
(3)

where ε_0 is the permittivity of free space, 8.854×10^{-12} F/m. A is the area of each conductor, and d is the distance between the two plates. Equation (3) shows that the capacitance is a function of dielectric constant of a dielectric material measured, plate area and plate separation. The reliability of measurement thus depends on meter quality and geometrical factor, A/d for the case of parallel plates.

Factors Affecting the Measurement

The measured capacitance may need to be corrected to account for edge capacitance and ground capacitance. Edge capacitance is an excess reading due to the perimeter of the plates, and, for equal circular plates which are smaller than the dielectric material, is given by:

$$C_e = P[-0.225 + 0.050K + 0.153 \log(P/t)] \quad (pF)$$
(4)

where P is the perimeter of the plates, measured in inches. Ground capacitance is an excess reading due to charge passing to ground, and, for equal circular plates, is given by:

$$C_g = 0.105d^2/h + 0.65t$$
 (pF) (5)

where h is the height above surrounding grounds. The corrected capacitance then becomes:

$$C_{corr} = C_{meas} - C_e - C_g \tag{6}$$

where C_{meas} is the measured capacitance (Hippel and Robert 1954).

It should be noted that the plate separation d would have a significant effect on capacitance measurement for the case of a thin sample used. Typically, the measured dielectric constant of a thin sheet of material is less than the actual. An increase in thickness of the material leads to the measured value closer to the actual. This difference might result from the existence of space between plate and sample due to incomplete contact. It may be described as follows:

$$1/C_{\text{meas}} = 1/C_{\text{air}} + 1/C_{\text{actual}}$$
(7)

Substitution of equations (2) and (3) gives:

$$1/C_{meas} = 1/(\epsilon_0 A) (d_{air} + d/K)$$
 (8)

The item d_{air} contributes to the increase in $1/C_{meas}$, i.e., lower C_{meas} . It suggests that a greater distance between plates is good to achieving better measurements. Therefore, if a sample of a given dielectric material available is too thin, an indirect measurement may be conducted by using the thin sample together with a thick sample of another material. The capacitance across two dielectric materials in series follows the relation:

$$1/C_{\text{tot}} = 1/C_{\text{thin}} + 1/C_{\text{thick}}$$
(9)

1

where C_{tot} and C_{thick} can be measured individually. C_{thin} may be calculated using equation (9).

Apparatus for Capacitance Measurement

The equipment used to measure capacitance includes an Electro Scientific Industries Impedance Meter 253 and a pair of circular aluminum parallel plates (conductors). A series of paired thin disks of aluminum foil with varying diameters are also prepared to allow a study of observed capacitance in relation to electrode diameter. The aluminum foil disks are lightly pasted onto thick sheets of composite mica to provide flatness, strength, and insulation. The thickness of the dielectric samples is measured using a Lufkin micrometer. Figure 1 is the schematic diagram of capacitance measurement.

Figure 1 Schematic Diagram of Capacitance Measurement

Dielectric Materials

Several dielectric materials are used in this study to measure their dielectric constants. They are soft glass, composite mica, natural mica (S & J 1998) and quartz (QSI 1998) with different thickness (Table 1).

	Table 1	Thickness of Several Dielectric Materials				
Dielectric Material	Thick Soft Glass	Thin Soft Glass	Composite Mica	Natural Mica	Quartz	
Thickness (mm)	4.0	3.0	0.8	0.2	4.0	

Results of Dielectric Constant Measurement

Large conductors are used to measure the capacitances since the edge effect could be reduced significantly. Dielectric constants are calculated via equation (1): $K = C/C_0$. Presented in Table 2 are the measured dielectric constants of several materials as well as their literature values available.

1 able 2 Dielectric Constants of Several Dielectric Materials						
Dielectric	Thick Soft	Thin Soft Glass	Composite	Natural	Quartz	
Material	_Glass		Mica	Mica		
Measured K	6.4	6.0	2.3	5.8	3.7	
Literature	5-9	5-9	n.a.	6-7	3.75	
Value	(O'Dwyer	(O'Dwyer		(S&J	(QSI	
	1990)	1990)		1998)	1998)	

Table 2 Dielectric Constants of Several Dielectric Materials

References:

O'Dwyer J. 1990. College physics. 3rd ed. Brooks/Cole Publishing Company. P 476.

QSI (Quartz Scientific, Inc.). 1998. Public release of physical properties of products.

S & J Trading Inc. 1998. Public release of physical properties of products.

Hippel V, Robert A. (ed). 1954. Dielectric materials and applications. MIT Press, Cambridge, MA.