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ABSTRACT

GENETIC BASIS OF ADAPTIVE MORPHOLOGICAL RADIATION

IN CICHLID FISHES 

by

R. CRAIG ALBERTSON 

UNIVERSITY OF NEW HAMPSHIRE, DECEMBER, 2002

East African cichlids are a paramount example of adaptive morphological 

radiation. The most dramatic difference among species occurs in oral jaw design and 

correlates with ecological niche partitioning. Convergent evolution of trophic forms 

between lakes suggests a common mechanism. What combination of intrinsic and 

extrinsic factors constitute this mechanism still remains to be seen. The goal of this 

dissertation was to examine the genetic basis of shape differences between two closely 

related cichlid species that employ alternate modes of feeding. This was achieved through 

a number of independent experiments. First, I used field data to characterize the way in 

which foraging habitat was partitioned between sympatric rock-dwelling species from 

Lake Malawi. Second, morphological differences between two species that employ 

alternate modes of feeding, Labeotropheus fuellebomi and Metriaclima zebra, were 

quantified via geometric morphometries. I found that specific aspects of shape predicted 

differences in feeding performance. In this experiment I also developed the phenotypic 

characters that were used in subsequent experiments. Next, the genetic bases of these 

morphological characters were biometrically estimated using the Castle-Wright 

estimator. I estimated between 1 and 11 factors to control shape differences in various
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traits. Specific traits were also shown to segregate together in hybrid progeny, suggesting 

a degree of pleiotropy among genes that underlie differences in the cichlid feeding 

apparatus. Finally, I constructed a genetic linkage map for Lake Malawi’s rock-dwelling 

cichlids, and identified quantitative trait loci (QTL) that affected shape differences in the 

cichlid head. Segregation at 136 molecular markers was studied in 173 F2 hybrids. The 

final linkage map consisted of 126 markers distributed over 24 linkage groups and 838 

cM. QTL were detected for sex, color, and 15 morphological traits that distinguish the 

shape of the feeding apparatus in L  fuellebomi and M. zebra. At every stage of this 

dissertation results are related to the developmental and functional biology of the cichlid 

head.

x
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INTRODUCTION

East African cichlids have undergone an extraordinary evolutionary radiation. 

Lakes Victoria, Tanganyika and Malawi each contain several hundred endemic species. 

Molecular and geological studies suggest that these radiations are extremely recent 

(Meyer, 1993; Kocher et al., 1995). Lake Malawi and its endemic cichlid fauna are less 

than a million years old (Meyer et al., 1990), but it contains well over 500 cichlid species, 

and much of this radiation probably occurred within the last 25,000 years (Owen et al. 

1990; Scholtz and Rosendahl 1988). Likewise, the Lake Victorian basin is thought to 

have been completely dry 13,000 years ago (Johnson et al. 1996), yet this lake now 

contains an assemblage of over 300 cichlid species (Greenwood 1974; Seehausen 1997). 

Unfortunately, little is known about the forces that have produced so many species in 

such a short time.

The advent of several molecular phylogenies has begun to shed light on the 

selective forces driving these evolutionary radiations (Albertson et al. 1999; Kocher et al. 

1995; Komfield and Parker 1997; Meyer et al. 1990). Figure 1 illustrates the proposed 

phylogenetic history of Lake Malawi’s cichlid species flock. The model suggests that 

diversification was achieved through three sequential cladogenic events, driven by 

distinct selective forces (Danley and Kocher, 2001). The first occurred in response to 

ecological pressure, establishing two distinct clades; one that occupies the sandy habitat 

and the other that is restricted to the rocky shoreline. The second cladogenic event 

occurred in response to selection on trophic biology, leading to the establishment of 

morphologically distinct genera. The most recent speciation event was likely in response 

to sexual selection, leading to diversity in reproductive behavior and male nuptial color.

1
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This general model provides a tractable framework in which to address specific questions 

as to the evolution of Lake Malawi cichlid fishes.

Recent studies have emphasized the role of sexual selection as a driving and 

stabilizing force behind East African cichlid assemblages (Dominey, 1984; McKaye et 

al., 1990; McKaye, 1991; Seehausen et al., 1997). The importance of natural selection 

has been less thoroughly examined, despite the suggestion by Liem (1974) that the 

pharyngeal jaw apparatus in cichlids represents a ‘critical innovation’ that allowed for 

rapid and extensive diversification in feeding biology. I am most interested in adaptive 

morphological radiation and this second cladogenic event in Lake Malawi’s phylogenetic 

history. This dissertation involves elucidating both the intrinsic and extrinsic factors that 

have contributed to the rise and maintenance of morphologically diversity among Lake 

Malawi cichlids.

Adaptive Radiation

Adaptive radiation is the evolutionary diversification of a lineage across a series 

of niches or adaptive zones (Futuyma 1986; Mayr 1963). Implicit to the term is that 

diversification occurs rapidly. One of several postulated causes of adaptive radiation is 

competition for food, leading to divergence in trophic morphology and resource use. 

Among of the best examples of extensive and replicate adaptive radiations are different 

groups of lacustrine teleosts, including arctic charT, the three-spine stickleback, and 

cichlid fishes on two continents.

Four sympatric morphs of arctic charr (Salvelinus alpinus) are found in 

Thingvallavatn, a small lake in Iceland. These incipient species have one of two basic 

morphologies: a benthic form with a subterminal mouth, and a pelagic form with a

2
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terminal mouth. The morphs appear to have arisen in sympatry (Volpe and Ferguson,

1996), and differences in trophic morphology have a clear genetic basis (Skulason et al., 

1989; 1996).

The marine stickleback, Gasterosteus aculeatus, has repeatedly invaded small 

coastal lakes in British Columbia (McPhail, 1994). Two species frequently arise 

following colonization: a small limnetic form and a larger benthic form (Ridgway and 

McPhail, 1984; McPhail, 1992). Schluter and McPhail (1993) suggest that ecological 

character displacement may have played a role in speciation. Hatfield (1997) and Peichal 

et al. (2001) found that relatively few genes control the stereotypical traits that 

distinguish these forms.

Crater lake cichlids on two continents also illustrate the importance of trophic 

selection in speciation. Monophyletic radiations of cichlids have occurred in three lakes 

in Cameroon (Schiewen et al., 1994). A pair of nascent species in Lake Ejagham. 

Cameroon, assortatively mate according to body size, a trait likely correlated with 

different feeding habitat. Several crater lakes in Nicaragua contain endemic cichlid 

assemblages (Midas species complex, Amphilopus spp.) that differ in diet, body size, 

head shape and pharyngeal jaw morphology (McKaye et al. 2002; Stauffer and McKaye 

2002).

The vast East African cichlid assemblages endemic to the three large lakes in the 

region represent some of the most dramatic examples of adaptive morphological radiation 

(Futuyma 1986; Fryer and lies 1972). Different trophic morphologies have arisen both 

rapidly (Owen et al. 1990; Johnson et al. 1996) and in parallel (Kocher et al 1993). 

Further, alternate feeding mechanisms correlate with feeding performance and fine-scale 

ecological niche partitioning (Bouton et al. 1997,1998; Liem 1974, 1980; Otten 1983; 

Reinthal 1990), implicating competition as the impetus of phenotypic evolution and 

maintenance.

3
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Functional Morphology of the Cichlid Head

Several studies have demonstrated the linkage between functional/morphological 

divergence and differences in feeding performance of cichlids CBouton et al. 1997,1998; 

Liem 1974, 1980; Otten 1983; Reinthal 1990). If we assume that diversification in 

feeding behavior is principal in the adaptive radiation of these assemblages, then 

understanding the function biology of the feeding apparatus is critical in any study of 

cichlid evolution.

There is a large body of literature devoted to interpreting the functional 

morphology of the cichlid head. Three major modes of feeding have been identified: 

sucking, biting, and ram feeding. These three modes are easily predicted from the 

functional design of the cichlid head (reviewed by Liem, 1991). For instance, the most 

efficient design for suction feeding is a cone-shaped buccal cavity and a highly 

protrusible upper jaw that allows for rapid expansion of the buccal volume. On the other 

hand, streamlined predators have a more cylindrical buccal cavity that cannot produce 

much suction, but is optimal for the pursuit and overtaking of prey, also known as ram 

feeding (Liem, 1991).

Most cichlids employ more than one strategy of prey capture and possess skulls of 

intermediate design. These more ‘generalized’ designs allow species to feed on a variety 

of foods. For example, Metriaclima zebra has been characterized as a hiter’ (Witte,

1984), but will often employ a 'sucking' mode when feeding on plankton in the water 

column (McKaye and Marsh, 1983; Ribbink et al, 1983; and Reinthal, 1990). Rather 

than viewing individual species as specialists, we should consider the balance each has 

struck among conflicting structural demands (Barel, 1983; Liem, 1980).

4
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Biting fish are characterized by shifts in anatomical points on the premaxilla, 

maxilla, and mandible (Otten, 1983) (Figure 2). Through extensive modeling, Otten 

(1983) identified seven ‘hot spots’ of anatomical change which distinguish species along 

the biting/sucking functional continuum. Relative shifts at these points affected the 

mechanisms of force transmission during biting. The main changes in proportion which 

increase biting force include:

1) Shortening of the premaxillary ascending arm (anatomical points 1 and 2).

2) Steepening of the premaxillary ascending arm (anatomical points 1, 2, and 3).

3) Rostrad movement of the intermaxillary ligament (anatomical point 4).

4) Lengthening of the maxillad process of the palatine (anatomical points 5 and 6).

5) Shortening of the dentary process of the lower jaw (anatomical point 7).

6) Dorsad shift of the adductor mandibulae 1 (mAl), resulting in a smaller eye or 

displacement of the eye (anatomical point 8).

7) Caudo-ventrad shift of the adductor tendonae 1 (A It) on the maxilla (anatomical 

point 9).

Otten (1983) found that these anatomical ‘hot spots’ accurately predicted where 

species aligned on the biting/sucking continuum. In every instances species that 

employed a biting mode of feeding fell on one end of the continuum, while species that 

were predominant suction feeders fell on the opposite end.

5
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Developmental Units of the Cichlid Head

Since evolution in adult form occurs via modifications during development 

(Atchley and Hall 1991; Gould 1974), it is important to understand both the 

embryological origins of the teleost jaw apparatus, as well as how genotype is translated 

to phenotype in this character complex.

The teleost head is composed of two types of bone (DeBeer, 1985). Dermal bone 

has no cartilaginous precursor and is always derived from neural crest cells (ectoderm). 

Endochondral bone has a cartilaginous precursor and may develop from either neural 

crest or mesoderm (Hall, 1999). The developmental origin of various structures that 

constitute the teleost head is shown in table 1. The maxilla, premaxilla, and the dentary 

arise from separate condensations of dermal bone. The articular and the hyoid skeleton 

are derived from endochondral bone. The neurocranium and suspensorium are derived 

from both dermal and endochondral bone (Hall, 1999).

Work in the zebrafish model has provided excellent insight as to the m ^ banisms 

of teleost head and jaw development. The pharyngeal and buccal skeleton originate from 

a series of pharyngeal arches that develop along the lateral side of the head (Schilling,

1997). The first arch (mandibular,! ) gives rise to part of the lower jaw, the second 

(hyoid, 2) forms the hyoid and associated elements, and five more posterior arches 

(branchial, 3-7) form the gill supports. Neural crest cells, which constitute the arch 

primordia, arise from specific segments of the hindbrain (the rhombomeres) and migrate 

in three major streams: 1) mandibular, rl-3; 2) hyoid, r3-5; 3) branchial, r5-8 (Lumsden 

et al., 1991). It has been demonstrated that the translocation of neural crest cells from one 

rhombomeric segment to another will result in the reorganization of the skeletal pattern 

according to their new arch primordia (Noden, 1986). This pattern implicates neural crest 

cells as inherent organizers of anterioposterior (A/P) patterning.

6
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Within different rhombotneric segments, A/P patterning appears to be established 

by differential expression of Hox genes (reviewed in Schilling, 1997). In addition, a 

number of novel genes involved in head patterning have been discovered in zebrafish, via 

random mutagenesis (reviewed in Schilling, 1997). Such genes have been found to 

differentially affect the migration of neural crest cells into their respective pharyngeal 

segment For instance, mutation of the gene sucker or schmerle, affect both the first and 

second arches, while leaving the more posterior arches unaffected (Piotrowski et al,

1996). Likewise, transplantation of neural crest cells from a wild-type donor to a mutant 

host can rescue skeletal development in the region of the transplant (reviewed in 

Schilling, 1997). Again, the potential for A/P patterning seems to reside within the cells 

of the neural crest.

Within each pharyngeal arch, neural crest cells must also differentiate along the 

dorsoventral (D/V) axis. In the first arch, this patterning leads to the development of one 

dorsal and one ventral element. Within the second arch, there are four elements separated 

along the D/V axis. Finally, the branchial arches have two dorsal and three ventral 

cartilages. In 1987, Hall proposed that interactions between migrating neural crest and 

adjacent epithelial tissue might be important in D/V patterning of the head.

Endothelin-A (ET-A) is expressed in neural crest-derived ectomesenchyme of the 

pharyngeal arches. Initial migration of neural crest cells appears normal in endothelin-A 

receptor deficient mice, however an absence of ET-A ultimately results in abnormal 

growth and differentiation in arch development (Clouthier, et al., 2000). Recently, it has 

been established that the zebrafish mutant sucker (sue) encodes an endothelin ligand (ET- 

1) (Miller, et al., 2000). Like mouse, suc/et-1 is expressed in paraxial mesoderm and arch 

epithelia. In sue mutants, expression of dHAND, dlx-2, dlx-3, msx-E, and gsc are either 

missing or reduced in the anterior arches, resulting in severe defects in the ventral 

cartilage of the first and second arch. Other zebrafish mutants that affect endoderm

7
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formation (casanova and van gogh) also affect pharyngeal arch patterning (Alexarder et 

al., 1999; Piotrowski and Nusslein-Volhard, 2000). Thus, D/V patterning within each 

arch may be the result of interactions between post-migratory neural crest and the 

surrounding epithelium.

The development of the neurocranium begins along the ventral midline of the 

skull (basicrainium) beneath the developing brain, and proceeds along the mediolateral 

axis (M/L). Phenotypes of several zebrafish mutations (i.e. chameleon, cyclops, detour, 

iguana, silberblick and you-too) are shown to disrupt the development of the 

neurocranium along the M/L axis (Schilling, 1997; Kimmel et al. 2001).

Since most of the molecular players involved in craniofacial patterning in 

zebrafish are conserved across different vertebrate taxa, it is reasonable to assume that 

most are involved in regulating development and patterning of the cichlid head. To what 

degree the mechanisms of craniofacial development are involved in the evolution of 

trophic morphology will be interesting to see.

Quantitative Genetic Studies of Complex Morphologies

A complex morphological structure is one whose final form arises from the 

integration of a number of different component parts (Atchley, 1993). One example is 

human height. Such a trait exhibits a normal distribution. In contrast to Mendel’s peas, 

which are either round or wrinkled, human height may range from four to seven feet and 

include every possibility in between. The expression of a complex or “quantitative” trait 

is the result of the action of a number of different genes.

Mutant hunts, such as those conducted in zebrafish and other vertebrate models, 

have the capacity to identify genes critical to developmental pathways. Unfortunately,

8
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these approaches have clear limitations in the realm of evolutionary biology. First, mutant 

screens are generally conducted in embryos, making defects in adult form difficult to 

infer. Further, mutant phenotypes are often dramatic (and lethal) and may provide little 

insight into the genes and mechanisms responsible for fine-scale adaptive changes. 

Hanken (1993) argues for the integration of model systems with comparative approaches 

to achieve a better understanding of the development and evolution of the vertebrate 

head.

Quantitative genetic studies are an important approach in identifying the genetic 

basis of complex morphologies. The genetic basis of morphological differences between 

populations (parental lines) can be deduced by examining the segregation of phenotype 

and genotype in their hybrid progeny. Recent studies have begun to identify the 

quantitative genetic basis for morphological differences in natural populations of several 

species (Bradshaw et al., 1998; White and Doebley, 1998). Considerable insight has 

come from experiments with Drosophila, in which the genetic basis for differences in 

bristle number (Mackay, 1996), and the shape of the male genitalia (True et al., 1997; 

Laurie et al., 1997; Zeng et al., 2000)) have been determined.

Studies of the murine mandible provide another excellent paradigm for work on 

cichlids (Atchley and Hall, 1991). Significant genetic variation for jaw' size and shape can 

be found among inbred lines of mice (Atchley et al., 1988). Particularly interesting is the 

observation that elements with a common developmental origin show genetic and 

phenotypic correlations (Cheverud et al., 1991; Mezey et al., 2001).

9
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Study Species

I examined the genetic basis of differences in jaw morphology between two 

closely related, yet morphologically divergent rock-dwelling cichlids (locally known as 

mbuna) from Lake Malawi. Metriaclima zebra (hereafter referred to as ‘MZ’) is 

characterized by a moderately sloped head, a terminal isognathus mouth, and a swollen, 

horizontally directed vomer (Stauffer et al., 1997). When feeding from the substrate, MZ 

combs loose diatoms, algae and other detritus from filamentous algae beds while oriented 

perpendicular to the substrate. MZ is also one of the only mbuna species that regularly 

feeds in the water column with a sucking mode (McKaye and Marsh, 1983; Ribbink et 

al., 1983; and Reinthal, 1990; personal observation). Labeotropheus fuellebomi ( ‘LF’) 

has a large fleshy snout and an inferior-subterminal mouth that it uses to crop algae from 

rocks while oriented nearly parallel to the substrate (Ribbink et al., 1983). LF favors 

shallow water where surge is a prominent part of the environment (Ribbink et al., 1983).

McElroy and Komfield (1993) studied the morphological differences between 

these two species and their F, hybrids. They scored 11 landmarks in the pre-orbital region 

of the head from lateral radiographs. Labeotropheus was found to have a significantly 

downtumed vomer, a sharply bent dentigerous arm of the premaxilla, and a bent maxilla. 

These observations are consistent with the principal components analysis by Reinthal 

(1990), which found that MZ and LF fell at opposite ends of PC axes II and III 

constructed from linear measurements on the neurocranium.

The initial radiation of Lake Malawi’s cichlid species flock is characterized by a 

functional divergence across three basic modes of -  biting, sucking, and ram-feeding; a 

trend reiterated in many other groups of fishes (e.g. stickleback, whitefish, arctic charr). I 

chose LF and MZ as my study species because they representative members of a 

monophyletic clade (the mbuna) that lie on opposite ends of the biting sucking
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continuum. Understanding the genetic bases of changes that differentiate LF and MZ 

should lend insight as to the genetic bases of differences along this functional/adaptive 

axis.

Specific Objectives

Each of the subsequent chapters in this dissertation stands as an independent study 

covering seemingly disparate topics and methodologies. Taken together, each chapter 

represents a facet in an integrative and comprehensive assessment of adaptive radiation in 

Lake Malawi cichlids.

The first chapter provides a glimpse into how rock-dwelling cichlids, including 

LF and MZ, partition foraging habitat. Next, 1 quantify the specific differences in oral 

jaw morphology between LF and MZ. Finally, I describe a series of experiments aimed at 

understanding the inheritance and genetic bases of these shape differences.

For reasons delineated above, I feeling that aspects of functional and 

developmental biology are critical components to any discussion of adaptive radiation in 

cichlids. Thus, wherever relevant I relate my results to the function and developmental 

biology of the cichlid head.

Chapter 1: Revisting the ‘Peaceful Condominium’: Habitat Partitioning in 

Foraging Space. There is some question as to the extent to which sympatric cichlid 

species partition habitat in foraging space. A long-standing view states that, in spite of its 

tremendous size, Lake Malawi does not provide the diversity in either habitat or food for 

speciation to be accomplished or species diversity to be maintained (Fryer 1959; Genner 

et al. 1999). I challenged this perspective with data collected in the field. Dimensions in

1 1
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which species partition foraging habitat were characterized and a stepwise model was 

postulated by which sympatric species may partition their environment in the space of 

foraging habitat. The goal of this chapter was to demonstrate the importance of habitat 

partitioning in the maintenance of species diversity, and to relate differences in trophic 

morphology to differences in feeding behavior.

Chapter 2: Assessing the Morphological Differences in an Adaptive Trait: a 

Landmark-based Morphometric Approach. To better understand the adaptive evolution of 

the oral jaw apparatus, I performed a rigorous morphological analysis on the individual 

skeletal elements that constitute the head in MZ and LF, as well as in their F[ hybrid 

progeny. I chose to employ landmark based, geometric morphometries to better relate my 

results to the developmental and functional biology of the oral jaw apparatus. There were 

two main goals of this study. First, I wanted to see how well differences in form predict 

differences in feeding performance and habitat preference (as discussed in Objective 1). 

Secondly, I wanted to develop a phenotypic assay that maximized my power to 

discriminate between MZ and LF morphology. The geometric descriptors of shape 

difference developed in this study will be the phenotypic characters assessed in Chapter 3 

and mapped in Chapter 5.

Chapter 3: Genetic Basis of Adaptive Shape Differences in the Cichlid Head. The 

effective number of genetic factors that underlie differences in the cichlid head were 

biometrically estimated through a comprehensive assessment of the morphological 

variance in MZ, LF, and their F, and F2 hybrid progeny. The genetic correlation among 

individual skeletal elements was also inferred by characterizing the structural units that 

are inherited together in the F2. This experiment also enables me to better estimate the 

power needed to detect QTL in Chapter 5.

12
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Chapter 4; A Genetic Linkage Map for [ .aIcq Malawi’s Rock-dwelling Cichlids. 

the Mhuna. A CAn microsatellite library was constructed from Metriaclima zebra DNA, 

and a mbuna linkage map was built using the F2 from the MZ x LF cross. The full 

pedigree of all F2 animals was described. The mbuna map was compared to a pre-existing 

genetic map for tilapia, as several molecular markers were used in both mapping 

experiments. Markers were identified that segregate with two Mendelian traits that 

segregate in the MZ x LF cross: color morphology and sex.

Chapter 5: Genetic Determinants and Genomic “Hot-spots” in the Adaptive 

Radiation in Cichlid Fishes. The culmination of this dissertation was a quantitative trait 

loci (QTL) analysis where shape differences between LF and MZ were mapped to 

specific chromosomal intervals. This experiment was performed on oral jaw dentition and 

eight bony elements of the head. In many instances shape differences in several elements 

mapped to a similar chromosomal region, suggesting a role of pleiotropy in the genetic 

architecture of the cichlid head.

13
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Table 1
Developmental origin of craniofacial elements in the teleost head. Dermal 
bone is always derived from neural crest cells (NCD). Endochondral bone 
develops from neural crest (NCD) and/or mesoderm (MDD).

Elements
Dermal Endochondral

NCD NCD MDD
Dentary X
Articular X
Maxilla X

Premaxilla X
Neurocranium X X X

14

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



R
eproduced 

with 
perm

ission 
of the 

copyright 
ow

ner. 
Further 

reproduction 
prohibited 

w
ithout 

perm
ission.

Figure 1
Proposed phylogenetic history of Lake Malawi cichlid fishes. The model is based on several molecular phytogenies and suggests 
that diversity was achieved via three cladogenic events in response to three distinct selective forces (after Danley and Kocher 2001).



Figure 2
“Hot spots’* of anatomical change. The relative position of anatomical points reflect 
where species lies along the biting/sucking funtional axis (after Otten 1983). PMX -  
premaxilla, IML -  intermaxillary ligament, A lt -  adductor tendonae.
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CHAPTER 1

REVISITING THE ‘PEACEFUL CONDOMINIUM’: HABITAT 

PARTITIONING IN FORAGING SPACE

Abstract

The extent to which sympatric cichlid species partition their environment in 

foraging space is an open question. It is a long-standing view that, in spite of its 

tremendous size, Lake Malawi does not provide enough variety in habitat or food to 

maintain species diversity through partitioning of diet or foraging space. I challenge this 

perspective with field data collected from a highly diverse rocky community. Six 

microhabitat characteristics were used to define the dimension in which six sympatric 

species partition foraging space. All species were separated by at least one, and in most 

cases three or more, characteristics. Moreover, certain microhabitat characters were 

partitioned according to jaw morphology. Finally, I offer a stepwise model that suggests 

microhabitat partitioning is sufficient to maintain species diversity in complex rocky 

communities.

17

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Introduction

East African rock-dwelling cichlid communities embody several characteristics 

that make them attractive models for the study of ecology and evolution. Species that live 

over the rocky habitat tend to exhibit high levels of philopatry accompanied by low rates 

of dispersal. The rocky community tends to be both highly speciose and densely packed. 

For decades evolutionary biologists have used the rocky habitat and its associated cichlid 

fauna to elucidate the factors that have contributed to both the evolution and maintenance 

of morphological diversity among East African cichlids.

In his classic study, Fryer (1959) suggested that the rock-dwelling community 

represents a “peaceful condominium,” with little or no competition for resources due to 

an apparent superabundance of algae. To Fryer, it is this attribute of the cichlid 

community that explains the coexistence among species. It has also been postulated that 

trophic specializations among cichlid species may not be adaptive (Liem 1980). In a 

series of laboratory studies, Liem found that different morphological “specialists” often 

employ the same functional repertoire (Liem 1980 and references within). The crux of 

Liem’s paradox is morphological specialization without functional divergence. In his 

own words, he asks:

If specialists are simultaneously jacks-of-all-trades, how could they have evolved 

according to the pervasive ecological theory that broadening the range of usable 

resources prevents species from specializing on individual types (Liem 1980, p. 307)?

In contrast to these classical studies, a growing body of contemporary evidence 

suggests that competition is a prominent part of the rocky habitat and that morphological
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specialization confers an adaptive advantage upon species. Reinthal (1990) identified 

four general feeding behaviors among Lake Malawi's rock-dwelling cichlids: nipping, 

brushing, mowing, and pelagic foraging. Moreover, he found that these four feeding 

behaviors broadly correlate with differences in trophic morphology, diet, and habitat. 

Bouton and coworkers (1997) showed that species with different oral morphologies 

differed in their efficiency to collect as well as process different prey items in the lab. In a 

complementary field study, both inter- and intraspecific differences in diet and 

microhabitat were shown to correspond to local and seasonal resource abundance 

(Bouton et al. 1998). Competition for food was implicated as playing a role in these 

communities since dietary overlap among species decreased with an increase in fish 

abundance and a decrease in resource availability. Microhabitat partitioning has also been 

observed among Lake Malawi’s rock-dwelling cichlids (Genner et al. 1999). However, 

because niche differentiation was not detected among all species pairs, foraging-niche 

differentiation was deemed insufficient to explain coexistence.

A common theme of these studies is that fine-scale foraging-niche partitioning 

does occur between rock-dwelling species. Determining the biological consequence of 

partitioning in foraging space remains a contentious and unresolved issue. At what point 

is partitioning of foraging-niche sufficient to explain the coexistence among species?

This report adds to the evidence that competition does occur in the rocky 

community, and that it manifests itself through microhabitat partitioning in the space of 

foraging habitat. I also bolster the argument that morphology is adaptive, by showing that 

morphology predicts differences in microhabitat and feeding performance. Finally, this is 

the first study that demonstrates that partitioning of trophic-niche has the capacity to 

maintain complex rock-dwelling communities.

I examined foraging habitat, depth distribution, and mode of feeding for six 

sympatric rock-dwelling species, locally referred to as mbuna. Species were chosen
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because they represent four different trophic morphotypes, and employ three distinct 

modes of feeding. I applied a stepwise, as opposed to an all-inclusive, model of habitat 

partitioning, which reveals patterns that facilitate the coexistence of species. Results from 

this study demonstrate that even species of the same morphotypic class, or those that are 

identical in several ecological respects, may coexist I contend that the rocky habitat is 

not a “peaceful condominium,” and that competition for trophic resources has lead to the 

establishment and maintenance of different trophic morphologies.
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Materials and Methods

Study site

Thumbi West Island is part of Lake Malawi National Park, located in the 

Southern part of the Lake. Thumbi West Island is 2 km long and 500 m at its widest 

point. It is located 2.6 km from Domwe Island, 1.5 km from Otter Point, and less than 1 

km from Chembe Beach (Figure 1.1). Its shoreline is a continuous rocky habitat with the 

exception of two small sand/weedy beaches. The rocks around Thumbi West are variable 

in size and shape.

All observations for this study were performed at the eastern most end of the 

Island, Mitande Cove. This area is characterized by slabs, boulders, and large, medium 

and small rocks. The rock-sand interface was approximately 20 m in 2001, with small 

pockets of sand and weeds occurring below 10 m. Most rocky surfaces were covered with 

a layer of sediment below 5 m. Between 40 and 50 mbuna species coexist at Mitande 

cove (Ribbink et al. 1983; personal observations).

Study species

Six species within three genera were chosen for this study. Labeotropheus 

fuellebomi ( ‘LF’) forages almost exclusively from the rocks with a “mowing” mode of 

feeding. LF’s mouth is subterminal, which allows it to crop attached algae from rocks 

while oriented parallel to the substrate. Metriaclima zebra (‘MZ’) will feed from rocks 

with a “brushing” mode, and is one of few mbuna species that regularly forages in the
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water column with a sucking motion. Four members of the Pseudotropheus tropheops 

complex were chosen for this study: red cheek (‘RC’), lilac (‘LIL’), orange chest COC’), 

and intermediate (‘IN D . All tropheops species have a steeply descending snout and a 

slightly subterminal mouth. Members of this species complex tend to feed on attached 

algae with a “nipping” action, while oriented approximately 45° from the substrate 

(Ribbink et al. 1983).

Morphology

Labeotropheus, Metriaclima and Tropheops species show discrete differences in 

craniofacial profile and mouth orientation. More subtle differences also exist in jaw 

width, especially among tropheops species.

Differences in jaw width among species were assessed by measuring the width of 

the lower jaw for 120 individuals (n=20 for each species) in animals that were 

skeletonized by dermestid beetles. Width was measured at the dentigerous (tooth bearing) 

region of the lower jaw with digital calipers to the nearest 0.01 millimeter, and 

standardized by standard length. Differences were assessed via a multifactorial ANOVA 

and a subsequent Tukey’s test for pair-wise differences.

Depth Distribution

100m transects were run parallel to the shoreline down to 25 feet at 5 foot 

intervals. Using SCUBA, the number of males and females of each species was counted 

along the transect. Individuals were counted if they were on or up to 5 feet below the 

transect. Each length was swum three times and the number of fish was averaged and
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rounded to the nearest whole number. Depth distribution was shown to violate the 

assumptions of homoscedasticity and normality; therefore differences in this variable 

were determined via Kruskal-Wallis nonparametric ANOVA (Sokal and Rohlf, 1981).

Focal Study

Focal samples were conducted between July 25th and August 7th 2001. 20 

individuals from each species were observed between 1 and 10 meters, along the same 

100m stretch of rocky habitat as the depth distribution assay. All focal samples lasted 10 

minutes between 7:00 and 16:00.

Bouts of feeding were observed for each Fish. One bout was defined as a 

continuous feeding event that was interrupted by 20 or more seconds of non-feeding, a 

change of substrate, or a social interaction (i.e., courting, defending territory). Several 

microhabitat characters were scored for each bout of feeding. Differences among species 

for each character were assayed via a Kruskal-Wallis Nonparametric ANOVA (Sokal and 

Rohlf, 1981).

Rock surface size. The length and width of the rocky surface was measured in 

inches for each bout of feeding. The surface area, rather than the size of the rock itself, 

was chosen for several reasons. Animals often showed a clear preference for one 

particular side of a rock (i.e., top instead of bottom). Moreover, when the foraging 

substrate was a slab, or when many rocks were stacked upon each other, the size of the 

entire rock was difficult to measure.
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Slope. The slope of each rocky surface was measured underwater to the nearest 

10th degree with a protractor. Scores were from 0 to 90, with OH being given to a surface 

that was an overhang.

Shelter. The shelter offered by each rocky surface was estimated as follows. A 

rocky surface was given a score of one if there were no other perpendicular surfaces 

within twelve inches of the foraging area, two if there was one other perpendicular 

surface within twelve inches, three if there were two other surfaces, four if there were 

three, and five if an animal was effectively foraging in a cave.

Sediments. For each bout, the foraging area was described as being either 

sediment-covered or sediment-free, and the proportion of each was recorded. Note that 

this variable does not measure whether the rock itself was sediment-covered, just the 

foraging area (see below).

Mode of feeding. Three modes of feeding were identified during focal samples. 

Biting entailed foraging from the rocky surface. For this character I did not discriminate 

between LF “mowing,” MZ “brushing,” and tropheops “nipping.” Sucking involved 

taking prey from the water column. Sifting was a discrete action performed exclusively 

by INT, which entailed taking mouthfuls of sand and sediments and sifting them, 

presumably through the gill rakers.
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Results

Morphology

Results from the multifactorial ANOVA revealed three discrete groupings 

according to lower jaw width (Figure 1.2). LF had the widest jaw relative to body length. 

RC and OC had very narrow jaws with distributions that could not be distinguished from 

one another. LIL, INT, and MZ had intermediate jaw widths with distributions that were 

much closer to RC and OC than to LF.

Species were assigned to one of four morphotypic classes (Figure 1.3), according 

to craniofacial profile, jaw rotation, and jaw width (as determined by the ANOVA): I) 

Subterminal/Wide - LF; II) Tropheops/Wide -  LIL and INT; III) Tropheops/Narrow -  

RC and OC; and IV) Terminal -  MZ.

Depth distribution

Results from the Kruskal-Wallis test show a discrete split between species with 

respect to depth, producing one shallow- and one deep-water group (Figure 1.4). LF, RC 

and LIL were never found below twenty feet, and were rarely observed below ten feet of 

water. OC, INT and MZ were rarely observed above 10 feet, and were most abundant 

between 15 and 25 feet.
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Rock surface size

Species partition their habitat according to foraging surface (Figure 1.5). MZ, RC, 

LIL, and INT consistently foraged from small surface areas, while LF and OC foraged 

from larger rocky surfaces.

Slope

Partitioning in terms of slope seems to recapitulate the depth grouping seen above 

(Figure 1.6). LF, RC and LIL appear to feed from surfaces with a greater slope than INT, 

OC and MZ. The deep-water assemblage tended to forage from flat surfaces (i.e., slope = 

0) more often than the shallow-water species. Within the shallow-water group, LF fed 

from surfaces with a greater slope than RC or LIL. This trend is likely due to the 

observation that LF was one of the only species that consistently fed from rocky 

overhangs.

Shelter

Species partition their habitat according to shelter offered by the foraging area 

(Figure 1.7). Both LF and INT tended to forage from surfaces that were highly sheltered. 

OC and MZ, on the other hand, fed from highly exposed rocky surfaces. OC fed almost 

exclusively from fully exposed surfaces. RC and LIL foraged from surfaces that offered 

intermediate shelter.
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Sediment

Species differed in the proportion of bouts from sediment-free versus sediment- 

covered substrate (Figure 1.8). INT and MZ seldom foraged from sediment-free rocks. It 

is noteworthy that OC did not forage from sediment-covered surfaces to the same extent 

as INT and MZ, in spite of occupying a depth distribution where most rocky surfaces 

were covered with sediments. Another notable observation is that RC fed more often 

from sediment-free substrate than did LIL. This is the only variable in which RC and LIL 

differed.

When considering only the tropheops species, differentiation in this microhabitat 

character corresponds to differences in jaw width. Of the deep-water species, OC has a 

narrow jaw and INT has a wide jaw . In the shallows, RC has a narrow jaw and LIL has a 

wide jaw. Thus, jaw width does not predict depth distribution, but rather sedimentation of 

the foraging habitat.

Mode of feeding

All species examined spent some time foraging from the substrate with a biting 

mode of feeding (Figure 1.9). However, INT and MZ fed less from the rocky surface than 

did the other four species. MZ individuals spent approximately half of their time foraging 

in the water column. Other species were rarely, if ever, observed feeding in the water 

column. INT was the only species that fed by sifting sediments through its mouth. INT 

was also the only species that employed all three modes of feeding.
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Discussion

This study shows that rock-dwelling species partition their habitat in foraging 

space, and jaw morphology predicts foraging habitat. While other studies have 

demonstrated this pattern in Lake Victoria (Bouton et al. 1998), Tanganyika (Yamaoka et 

al. 1986), and Malawi (Genner et al. 1999), the relative role of foraging-niche 

partitioning in the maintenance of species diversity remains debated.

Trophic morphology predicts foraging habitat

Species were grouped into four morphotypic classes based on craniofacial profile, 

jaw rotation and jaw width. LF has an inferior sub-terminal mouth that is both very wide 

and robust. The orientation of its jaw enables LF to crop attached algae from the substrate 

(Albertson and Kocher 2001). MZ, on the other hand, has a terminally oriented mouth, 

and a long lower jaw. MZ’s oral jaw apparatus is typical of species that employ a sucking 

mode of feeding (Liem 1991; Albertson and Kocher 2001). All four tropheops species 

were similar in terms of their slightly sub-terminal jaw rotation, and steep craniofacial 

profile (Ribbink et al. 1983). However, they differed in the width of their jaws.

RC and OC have very narrow jaws with nearly identical phenotypic distributions, 

while LIL and INT have decidedly wider jaws. Thus, both the shallow and the deeper 

habitats have one narrow-mouth and one wide-mouth tropheops species. Does this 

observation relate to the coexistence of tropheops at Mitande Cove? The segregation of 

morphology according to the presence/absence of sediments on the foraging surface 

suggests that morphological differentiation facilitates co-existence among tropheops
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species on the basis of foraging efficiency in different micro-habitats (see below). This 

argument would be supported by observations of the same pattern in other populations of 

tropheops; that is, jaw width segregating according to the degree of sedimentation of 

foraging area.

Depth as a foraging micro-habitat

Depth is important in maintaining species diversity. At nearly every rocky habitat 

throughout Lake Malawi there are discrete groupings of species according to depth 

(Ribbink et al. 1983). Members of the Pseudotropheus tropheops and the Metriaclima 

zebra complex exemplify this trend. For example, Pseudotropheus tropheops “red cheek” 

and “lilac” always occupy the shallows, whereas “gracilior” is most abundant below- 15 

meters. At many localities Pseudotropheus tropheops “orange chest” has a peak 

distribution at an intermediate depth, between the ranges of deep and shallow water 

species. Perhaps most striking is the observation that wherever more than one tropheops 

species occurs, one occupies the depths and the other the shallows (Ribbink et al. 1983; 

Albertson, personal observation). At Mitande Cove, two deep-water and two shallow- 

water tropheops species occur.

In a survey of food resource use, Genner and coworkers (1999) did not detect 

foraging-niche partitioning among particular mbuna species at Nkhata Bay (- 150km 

north of Mitande Cove). In particular, no differences were observed in the foraging 

behavior of two Metriaclima species, M. zebra and M. callainos. Genner et al. (1999) 

concluded that alternatives to niche theory should be considered to explain this 

coexistence. However, species can afford to have the same foraging behavior if they have 

distinct spatial (i.e., depth) distributions (Reinthal, 1990). For example, M. zebra and M. 

callainos also co-occur at Thumbi West Island where they have distinct depth
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distributions (Trendall 1988; Albertson, unpublished data). Thus, M. zebra and M. 

callainos may indeed have identical feeding strategies, but they still partition their habitat 

according to depth. When depth distribution is included in analyses of habitat 

partitioning, niche theory may suffice.

Habitat Partitioning

Slope. If depth is an important factor by which species partition their habitat, it 

should be correlated with other microhabitat characters. The shallow and deep-water 

groups were reiterated with divergence in slope. Shallow-water species tended to feed 

from surfaces with a greater slope than deep-water species. This may be an artifact of 

differences in the physical habitat. The shallows (> 15 feet) were comprised of small and 

medium sized rocks piled on top of one another, whereas the depths were dominated by 

large, interspersed rocks and slabs.

Sediments. Because deeper habitats tend to be sediment-covered to a greater 

extent than wave-washed rocks in the shallows, an intuitive hypothesis would be that 

deep water species feed from sediment-covered rocks more often than shallow water 

species. In general, this pattern was observed. INT and MZ tended to forage from 

sediment-covered surfaces to a greater extent that other species. Certainly, MZ fed more 

from sediment covered rocks than LF. However, when considering only tropheops 

species a more complex pattern emerges, which may be the result of a novel foraging 

behavior.

Within the deep-water assemblage, OC fed from sediment-free rocks to the same 

extent as the shallow water species. Within the shallow water assemblage, sedimentation
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is the only variable in which RC and LIL differed. RC and OC were unique among 

tropheops species in that they were regularly seen foraging with species that employed a 

brushing mode of feeding. Members of the genus Petrotilapia forage from the substrate 

by brushing loose filamentous algae, diatoms and other detritus (e.g. sediments) that have 

settled onto algal beds. RC and OC would often wait until a Petrotilapia species 

“cleaned” an area from a sediment-covered rock before feeding on the attached algae 

beneath. Even territorial males tolerated the presence of these heterospecific individuals 

within their territories, which they vigorously defended from most other fish. In this way. 

RC and OC could forage ffom sediment-free substrate even if the rock itself was covered 

by sediments. Thus, depth is not a faithful predictor of sedimentation of the foraging 

habitat.

Foraging ffom sediment-covered substrate is, however, predicted by differences 

in jaw width among tropheops species. In general, tropheops species that inhabit 

sediment-rich areas have wide mouths, such as the aptly named Pseudotropheus 

tropheops “broad mouth” (Ribbink et al. 1983). On the other hand, shallow water species 

tend to have very narrow, beak-shaped jaws used to “pluck” filamentous algae from the 

substrate.

A wider mouth may be advantageous for species foraging in sediment-rich areas, 

because the nutritional value per bite may be less when feeding ffom sediment-covered 

surfaces. A wider jaw would serve to increasing the nutritional value per bite by enabling 

individuals to exact more sustenance. A wider jaw would also allow individuals to take 

other prey that is more abundant in sediment-rich areas, such as benthic invertebrates.

Gut content analyses in both a broad survey over many localities (Ribbink et al. 1983) 

and a more focused evaluation (Reinthal 1990) showed that tropheops species that occur 

in sediment-rich areas tend to take less attached algae and more benthic invertebrates 

relative to species that inhabit sediment-free zones.
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Rock size. OC tended to feed from very large rocky surfaces, boulders and flat 

slabs. Except for LF, other species clearly preferred smaller surfaces. Again, this 

preference may be an artifact of habitat composition. However, the low variances 

associated with mean surface areas for both shallow and deep water species (RC, LIL, 

INT and MZ) suggests that animals are choosing foraging areas of a particular size.

Shelter. Discrete groupings among species were also identified by the degree of 

shelter offered by the foraging habitat. OC and MZ tended to feed from exposed surfaces, 

while LF and INT frequently fed in cracks, caves and crevices. LF appears to be very 

well adapted to its environment. The inferior, subterminal orientation of its mouth allows 

it to forage from rocky surfaces that are effectively unavailable to species with a terminal 

mouth. LF can “mow” attached algae from rocks while swimming parallel to the 

substrate, enabling it to forage within cracks and crevices. LF is also relatively large for a 

rock-dwelling species. The combination of being large and foraging in a highly sheltered 

habitat may be in response to elevated predation pressure in the shallows due to the 

presence of kingfishers and otters.

Coexistence of species

In all, six foraging microhabitats were considered. Species partitioned foraging 

habitat by at least one, and in most cases three or more characters (Figure 1.10). Previous 

studies of foraging-niche differentiation among East African rock-dwelling cichlids have 

considered all microhabitat characters simultaneously. In some cases this approach could 

explain the co-existence among the species examined (Reinthal 1990; Yamaoka et al.
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1986). In other investigations, resource partitioning was recognized as playing a role in 

the organization of rock-dwelling assemblages, however among certain species 

partitioning was either “less obvious” (Bouton et al. 1997), or absent (Genner et al.

1999). By including depth distribution as a microhabitat variable, foraging niche 

partitioning appears to have the capacity to maintain species diversity.

Figure 1.11 demonstrates how interspecific co-existence may be achieved.

Species first apportion their habitat according to depth, producing two discrete groups. 

The deep-water group then separates according to surface size and sedimentation, while 

the shallow-water species partition with respect to surface size, shelter and slope. The last 

partitioning event within the deep-water assemblage is coincident with sedimentation and 

mode of feeding. Both MZ and INT feed from the substrate. But MZ also employs a 

sucking mode of feeding, while INT actively sifts through the sediments. The last 

partitioning event within the shallow-water assemblage separates RC and LIL according 

to sedimentation of the foraging habitat.

Morphological differentiation coincides with all three levels of partitioning. 

Morphotypic classes I (LF) and IV (MZ) are separated with the first partitioning event. 

The second level of habitat divergence separates morphotype II (OC) from III (INT) and 

IV (MZ) in the deep-water group, and morphotype I (LF) from II (RC) and ID (LIL) in 

the shallow group. Finally, morphotypic classes III (INT) and IV (MZ), and II (RC) and 

III (LIL) are separated with the last round of habitat partitioning. Thus, species of the 

same morphotypic class are distinguished with respect to foraging-niche microhabitat.
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Revisiting the peaceful condominium

Fryer (1959) viewed the cichlid rock-dwelling community as a “peaceful 

condominium” that violates the Gaussian principle of competitive exclusion. In contrast, 

my data suggest that competition does exist in the rocky habitat, and that it manifests 

itself as foraging-habitat partitioning.

Two general conclusions can be drawn from this study. First, depth distribution 

should be considered in future investigations of habitat partitioning. Species clearly 

partition their habitat with respect to depth. Moreover, recent evidence suggests that 

depth has the capacity to restrict geneflow (Kellogg and Jordan, personal 

communication). I also contend that a step-wise, rather than all-inclusive, model should 

be considered in future discussions of the maintenance of species diversity. Since several 

foraging behaviors and habitats can (and likely will) be correlated with one another, not 

all should be given the same weight. If species partition foraging-habitat in one or several 

key ecological characters, they can afford to be identical in others.

This study does not offer a definitive statement on foraging-niche partitioning 

among rock-dwelling cichlids. I examined a subset of the species present at Mitande 

Cove over a short period. Seasonal and temporal fluctuations have been documented 

among species with respect to trophic biology (Bouton et al 1997). Future studies should 

endeavor to assay a greater number of species over a longer period of time. Fieldwork by 

Bouton and coworkers (1997) in Lake Victoria provides an excellent model for future 

studies.

Another future direction should include a more comprehensive morphological 

assessment (such as in Albertson and Kocher, 2001) of tropheops species at Thumbi 

West Island. It will be important to determine whether morphological divergence among 

species is the result of phylogenetic history or adaptation. There is some evidence that
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divergence in jaw width is not a consequence of phylogeny among tropheops. At a rocky 

habitat less that 20 km ffom Mitande Cove, three tropheops species co-occur, “red 

cheek”, “orange chest” and “gracilior.” Pseudotropheus tropheops “gracilior” typically 

occurs in sediment-rich areas, and is characterized by a wide mouth. A cladistic analysis 

using molecular markers united “orange chest” and “gracilior” (NJ algorithm - bootstrap 

value of 100) to the exclusion of “red cheek,” which was positioned sister to this 

grouping (Albertson et al. 1999). If mouth width among tropheops species was the result 

of phylogenetic history, small-mouthed species should group together. The occurrence of 

just the opposite merits an investigation of alternative hypotheses.

The phylogenetic relationship among other wide- and narrow-mouthed tropheops 

species should be investigated. Moreover, jaw width should be examined in the same 

species at multiple localities to determine whether this character varies in response to the 

physical habitat, or to the presence/absence of other tropheops competitors. In other 

words, can character displacement be detected? The answer to this and related questions 

would go a long way towards firmly putting to rest the question of whether competition 

for trophic resources has played a role in the adaptive radiation of this group of fish.
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Figure 1.1
Map of Thumbi West Island, Lake Malawi. The collection site (mitande cove) is on the 

East side of the island.
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Figure U
Results from the multifactorial ANOVA for jaw width, a. Histogram of the ratio between jaw 
width and standard body length. The x-axis is frequency. The y-axis is standard deviation units 
recorded as average between-group standard deviations, b. Results of the ANOVA and Tukey’s 
multiple comparison test. c. Graphical depiction of differences in jaw width among species. 
Bars indicate 95% confidence intervals.
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Figure 1.4
a. Results of Kruskal-Wallis Nonparametric ANOVA for depth distribution, b. 
Graphical depiction of differences in depth distribution. Bars indicate 95% 
confidence intervals.
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Figure 1.5
a. Results of Kruskal-Wallis Nonparametric ANOVA for foraging area. 
Graphical depiction of differences in foraging area. Bars indicate 95% 
confidence intervals.
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Figure 1.6
a. Histogram of the frequency that species foraged from surfaces with difference 
slopes. Slope was recorded in 10° intervals, with OH representing an over-hang. b. 
Results of Kruskal-Wallis Nonparametric ANOVA for slope, c. Graphical depiction of 
differences in slope. Bars indicate 95% confidence intervals.
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r i^ u iv  *
a. Results of Kruskal-Wallis Nonparametric ANOVA for shelter offered by 
foraging area. b. Graphical depiction of differences in shelter. Bars indicate 
95% confidence intervals.
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Figure 1.8 ,
a. Results of Kruskal-Wallis Nonparametric ANOVA for the proportion of 
sediment free bouts of feeding, b. Graphical depiction of differences in bouts. 
Bars indicate 95% confidence intervals.
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Figure 1.9
a. Results of Kruskal-Wallis Nonparametric ANOVA for differences among 
three modes of feeding: biting, sucking, and sifting, b. Histogram depicting 
differences in feeding mode. Stars indicate significant (p<0.05) differences 
among species.
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Figure 1.10
Summary of foraging microhabitat partitioning. Pairwise comparison of the 
microhabitat characteristics in which species differ.

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - r L  heeUebomi 1 'red cheek" Tike" • w n m i t e r ' • m b m e chest" M zebra

i
L/m U tbam  1

I 1

i :

'  i  

;  ! i

i 1

i  :
| rock Me

1

i

Tropheofu "rtdcheti"  j 1
i
■ i

| Hope 1
1

I

i

Aeiter 1 !
. . . . . . .  |

i rack Me T  "  ' : 1
i | sediment j

Tropkeops “Iliac" 1 1 1

j Hope
f dicker 1 j

depth depth depth i |
rack Me

J KdflMOt aedmait ■dnem i ]
Tropkeoas "auermeduu*] mode mode node I

f

dope slope Hope

1 te tte r shelter i i

|
| depth depth depth j r
| rack use rack site rack silt 1 rack site ,

j sedeneot I
Tropkeops "oraoft chest" ’ mode

I dupe sk*K slope i

I
te ite r te tte r teller j tek e r I

-  • 4 •
i (tepth depth depth 1 dejeh 1 i
, rack Me 1 rack sue

aedtoeat — * 4 i r — sedmeat j  | srrteumr |
U  zebra node mode mode I mode 1 mode

slope slope dope ’ j
|

I te tter te lle r dKher |  te k e r 1 teker

rc
Lf HI oc Int M i

SpadM i f f r i r t u i  p a t ta s  In A iM rtna <t fnn#ng  hnUui

45

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



R
eproduced 

with 
perm

ission 
of the 

copyright 
ow

ner. 
Further 

reproduction 
prohibited 

w
ithout 

perm
ission.

o\

Depth

l l

x * :
Lf RC L a  IN T o c  MZ

J -
* di -

Size Shelter Slope

L
i

I 1 -

HHH

I X i 1-x i H

Lf RC UL I ____ ____.___ -
LF RC LIL LF RC UL

►  LF 

“►  RC
Sediments

i
* • 

i :
rc L a

►  lil

Size

I
c  3

INT OC MZ

Sediments

i

1 1
INT OC MZ

-►oc

Shelter Sucking Sifting
► INT

I i
1

i 1 •
I•
I

I I l:X
INT MZ IWT MZ INT MZ

►  MZ

V

*

Figure 1.11
Proposed mechanism by which species partition their environment. Morphological differences among species are illustrated via jaw 
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West Island. Rather, it is a mechanism through which species may partition a locality as it is colonized.



CHAPTER 2

ASSESSING MORPHOLOGICAL DIFFERENCES 

IN AN ADAPTIVE TRAIT:

A LANDMARK-BASED MORPHOMETRIC APPROACH

Abstract

East African Cichlid fishes have evolved a stunning array of oral jaw 

morphologies. To better understand the adaptive evolution of this trait, I performed a 

morphological analysis of the jaws of two closely related species from Lake Malawi 

which have very different modes of feeding. Labeotropheus fuellebomi forages along 

the substrate with a 'biting' mode of feeding, while Metriaclima zebra feeds in the water 

column with a 'sucking' mode. I analyzed each of the four skeletal elements that make up 

the oral jaws: the dentary, articular, premaxilla, and maxilla. In addition, I performed the 

same analysis on the neurocranium, an element closely associated with the oral jaws. I 

used the thin-plate spline method to quantify morphological differences, which allowed 

us to relate our results to the functional biology of the species. I find many aspects of 

shape change that relate directly to the functional design of the cichlid head. The same 

series of measurements was made on hybrids between Labeotropheus and Metriaclima.
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For every character, hybrid progeny are statistically different from both parental species. 

These results suggest an additive mode of action of the alleles responsible for these 

phenotypes.
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Introduction

The cichlid fishes of East Africa are a spectacular example of evolutionary 

radiation. Each of the three large lakes in the region (Victoria, Tanganyika and Malawi) 

contains a 'flock' of several hundred cichlid species (Fryer and lies 1972; Echelle and 

Komfield 1984). Molecular and geological studies suggest that these radiations are 

extremely recent (Greenwood 1974; Owen et al. 1990; Mever 1993; Kocher et al. 1995; 

Seehausen et al. 1997). For instance, Lake Malawi is less than 1MY old (Meyer et al. 

1990), but contains a flock of well over 500 species (Ribbink et al., 1983), and much of 

this radiation probably occurred within the past several thousand years (Owen et al. 

1990).

The morphological diversification among Lake Malawi cichlids is of a magnitude 

normally found only among families of teleosts (Greenwood 1974). Key to their success 

has been the diversification of the oral jaw apparatus, which has allowed them to evolve 

many different specialized modes of feeding.

In this study I assess shape differences of the individual skeletal elements of the 

oral jaws in two rock-dwelling cichlids from Lake Malawi, Labeotropheus fuellebomi 

and Metriaclima zebra, and their F, hybrid progeny. I employ geometric morphometries, 

which gives us tremendous power to discriminate overall shape difference between these 

three groups. Moreover, a geometric approach maintains a closer relationship to true 

biological form than do simple linear measurements between landmarks.
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Functional morphology and adaptive radiation

There is a large body of literature devoted to interpreting the functional 

morphology of the cichlid feeding apparatus. Three major modes of feeding have been 

identified: sucking, biting, and ram feeding. These three modes are easily predicted from 

the functional design of the cichlid head (Liem 1991). For instance, the most efficient 

design for suction feeding is a cone-shaped buccal cavity and a highly protrusible upper 

jaw that allows for rapid expansion of the buccal volume. On the other hand, streamlined 

predators have a more cylindrical buccal cavity that cannot produce much suction, but are 

optimized for the pursuit and overtaking of prey, also known as ram feeding (Liem 1991). 

Biting fish require shifts in anatomical points on the premaxilla, maxilla, and mandible to 

increase the biting force (Otten 1983).

Most cichlids employ more than one strategy of prey capture, and possess skulls 

of intermediate design that will allow them to feed on a variety of foods. For example, 

Metriaclima zebra has been characterized as a ‘biter’ (Witte 1984), but will often employ 

a 'sucking' mode when feeding on plankton in the water column (McKaye and Marsh 

1983; Ribbink et al 1983; and Reinthal 1990). Rather than viewing individual species as 

specialists, I should consider the balance each has struck among conflicting structural 

demands (Barel 1983; Liem 1980).

Geometric morphometries

A geometric approach to shape analysis is based on landmark data (i.e. anatomical 

points inferred to be homologous between specimens). Landmark positions are recorded

50

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



in terms of a Cartesian coordinate system, such that each point's (x, y) position can be 

plotted on a graph.

Geometric morphometries offer several advantages over traditional 

morphometries. First, a landmark-based approach emphasizes the geometry of a given 

structure, allowing shape change to be reported relative to other structures. Moreover, 

geometric morphometric results are basis-invariant. That is, results do not depend on 

arbitrary choices, such as the selection of shape variables or the baseline to be used. 

Finally, results can be reported via pictorial representations of the structure/organism, 

rather than just tables of numerical coefficients (Rohlf and Marcus 1993).

Our approach to shape analysis of the cichlid head is unique in several ways. I 

focus on individual skeletal elements, which allows us to examine aspects of morphology 

that might otherwise be hidden or confounded when viewing the articulated skeleton or 

external morphology. I also employ a geometric approach rather than traditional methods 

of shape analysis, which provides a more precise biological representation of shape 

differences. The union of these two approaches should offer a more comprehensive 

understanding of the differences in oral jaw morphology among species.
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Materials and Methods

Animals and husbandry

Lake Malawi rock-dwelling cichlids (mbuna) are classified into 13 genera that 

differ primarily in trophic morphology (Moran et al. 1994). Metriaclima zebra and 

Labeotropheus fuellebomi (Figure 2.1), referred to as MZ and LF from here on, are two 

mbuna species which have evolved very different oral jaw morphologies.

MZ is characterized by a moderately sloped head, a terminal isognathus mouth, 

and a swollen, horizontally directed vomer (Stauffer et al. 1997). When feeding, MZ 

typically combs loose diatoms from filamentous algae beds while oriented perpendicular 

to the substrate. This species will also leave its territory in order to feed on plankton in 

the water column, where it uses a suction mode of feeding (McKaye and Marsh 1983; 

Ribbink et al. 1983; and Reinthal 1990).

LF has a large fleshy snout and an inferior-subterminal mouth that it uses to crop 

algae from rocks while oriented nearly parallel to the substrate (Ribbink et al. 1983). Gut 

analysis and direct observation reveal that the primary diet of LF is attached algae, 

removed from the rock surface using a biting mode of feeding (Ribbink et al. 1983; and 

Reinthal 1990). The orientation of its mouth allows LF to forage in shallow water where 

surge is a prominent part of the environment, and heterospecific competition is reduced 

(Ribbink et al. 1983).

Parental specimens used in this study were lab-reared F[ animals generated from 

wild-caught stock. Hybridization, which has been observed to occur among cichlids
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under no-choice conditions (Loiselle 1971; Crapon de Caprona and Fritzsch 1984; 

McElroy and Komfield 1993; personal observation), was achieved by crossing male LF 

with female MZ in 500 gallon pools containing one male for every four or five females.

All mbuna species are mouth-brooders. Brooding females were transferred to 10- 

gallon tanks to incubate their clutch. Incubation in the lab averaged about three weeks 

for both species. Females were removed from the tank after they released their young. 

Fry were reared in 10-gallon tanks for approximately three months. They were then 

transferred to 50-gallon tanks for an additional two to three months. Finally, families 

were moved to 500-gallon pools where they were allowed to grow to sexual maturity (an 

additional six to eight months). Since the primary diet of these species in the wild is 

algae (Reinthal 1990), all specimens were reared on high quality spirulina flake food 

(Aquatic Ecosystems, FL). A diet of flake food was chosen to minimize the functional 

demands on the trophic apparatus.

Preparation of specimens

Animals were collected no earlier than 12 months of age, and more typically at 18 

months. 50 specimens were used in this study, 15 of each parental species and 20 F, 

hybrids. Animals were sacrificed with MS222 in accord with a protocol approved by the 

University of New Hampshire ACUC. Specimens were then prepared for morphometric 

analysis using dermestid beetles, which cleaned and disarticulated skeletal elements of 

the head. Afterwards, elements were bleached with 10% H20 2.

Images of individual elements were captured using a SPOT digital camera 

(Diagnostic Instruments, Inc.) mounted on a Zeiss SV11 dissecting scope. Images were
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imported into NIH Image (version 2.1), and landmark positions scored as (x,y) 

coordinates. Descriptions of landmarks are found in Table 2.1.

Superimposition of landmark data

Superimposition of landmark data was performed using a Procrustes generalized 

least-squares fit (GLSF) algorithm (Gower 1975; and Rohlf and Slice 1990) in 

Morphometrika 7.0 (Walker 1999). A least-squares approach will superimpose 

configurations so that the sum of squared distances between corresponding landmarks is 

minimized. This is achieved by scaling, translating, and rotating specimens with respect 

to a mean consensus configuration. A potential disadvantage to this approach arises 

when the difference between forms is localized to one or few landmarks. In this situation, 

GLSF may distribute localized variance over multiple landmarks, making the way 

variance is allocated to individual landmarks an artifact of the method. Procrustes 

generalized resistant-fit (GRF) superimposition compensates for this problem by using a 

more complex, and computationally expensive, approach of regression using repeated 

medians (Rohlf and Slice 1990). Since LF and MZ differ dramatically over the entire 

structure for most elements, I used GLSF rather than the GRF algorithm. The only 

possible exception to this trend is found in the neurocranium, where LF and MZ differ 

most dramatically in the anterior region of the skull. I performed both GLSF and GRF 

superimposition for this structure and found no difference in the results (not shown).
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Thin-plate spline anaJvsis

Thin-plate spline (TPS) analysis was performed in Morphometrika 7.0 (Walker, 

1999). The TPS technique rigorously implements D'Arcy Thompson's concept of 

Cartesian grid deformations (Thompson 1917). A thorough description of the technique 

may be found in Bookstein (1989, 1991). In short, TPS models the form of an infinitely 

thin metal plate that is constrained at some combination of points but is otherwise free to 

adopt the target form in a way that minimizes bending energy. In morphometries, this 

interpolation is applied to a Cartesian coordinate system where deformation grids are 

constructed from two landmark configurations (Bookstein 1991).

Thin-plate spline analysis is valuable for several reasons. First, the TPS technique 

is independent of any anatomical frame of reference. That is, the position of each 

landmark is evaluated relative to all other landmarks rather than to a single point. This 

method also allows for the objective generation of deformation grids. Finally, the total 

deformation of the thin-plate spline can be decomposed into geometrically orthogonal 

components based on scale (Yaroch 1996; Rohlf and Marcus 1993). These components 

(partial warps) can be localized to describe precisely what aspects of shape are different. 

Partial warp scores are also the shape variables used in multivariate analyses.

Multivariate analysis of TPS data

For each skeletal element a discriminant function analysis was performed using 

SPSS (version 6.0 for Macintosh) on all shape variables (partial warp scores, including 

the uniform component). Results from this test were used to assess group differences for
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each skeletal element, and to estimate the magnitude of shape difference between the 

parental species. Since the first Canonical Variate axis best represents interspecific shape 

differences, results are only presented for CV1.

To estimate the relative contribution of each shape variable in the discriminant 

function analysis, a muitivate regression was performed for each skeletal element using 

TPSregr (Rohlf 1999). Regression analysis was used to assess the relationship between 

shape variables and scores on the Canonical Variate axis. In terms of partial warps, the 

model follows:

Shape (PWlx, PWly, PW2x, PW2y, ...PWOx, PWOy) = Constant + (m)CVl score 

Furthermore, TPSregr allows for the deformation of shape, as interpreted by each 

canonical variate axis, to be visualized as a deformation grid or associated vector 

displacements, allowing for a more exacting biological interpretation of the discriminant 

function analysis.
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Results

A multivariate analysis of variance (MANOVA) showed that mean differences 

among LF, MZ, and FI along the CV axis were unlikely due to chance, Wilk’s A = 

.00433, F( 12, 72) = 85.2, p < 0.0001. Likewise, univariate F-tests for each element 

revealed significant mean differences among groups (p < 0.0001 in every case).

Disarticulated skeletal elements are shown in Figures 2.2 -  2.7. Below, results 

are described both qualitatively as landmark variation after superimposition, and 

quantitatively as deformations after the multivariate analysis of shape variables (Figures 

2.9 -  2.14). Table 2.2 lists: 1) the variation explained by the first canonical variate axis: 

2) the number of standard deviation units which separate the parental species along CV1; 

and 3) the relationships between shape variables and CV1.

Lower Jaw (lateral view)

After GLSF superimposition (Figure 2.8b), landmark variation around the 

consensus configuration is distributed over most landmarks in the lateral view of the 

lower jaw. However, variation around landmarks one and four describes most 

interspecific difference.

The lower jaw in teleosts is composed of two ontogenetically distinct elements. 

The anterior portion that bears the teeth is the dentary, while the more posterior region 

that articulates with the suspensorium is the articular. These two bones are both
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developmental!y and functionally discrete. Differences revealed by the first canonical 

variate axis (Figure 2.8c and d) deal with relative shape differences between these two 

elements. In MZ, the height of the articular is reduced relative to the length of the 

dentary, which is dramatically elongated. There is also a pronounced and localized 

lengthening of the ventral process of the suspensoriad articulation facet relative to the 

rest of the articular. On the other hand, LF is characterized by a dramatic increase in the 

height of the articular relative to a pronounced shortening of the dentary.

Lower Jaw (ventral view)

Landmark variation is distributed over landmarks one, two, and five in the ventral 

view of the lower jaw (Figure 2.9b). Variation around landmarks one and two, which 

represent the mandibular symphysis and the lateral-most point of the dentary, captures 

variation in the width of the dentary. Along the anterio-posterior axis, most variation is 

observed at landmark five, which is the rostral tip of the coulter process.

The first canonical variate axis characterizes equivalent aspects of interspecific 

shape change (Figure 2.9c and d). The major aspect of shape change deals with the width 

of the lower jaw. There is a dramatic increase in the width of the lower jaw in LF relative 

to MZ. However, other more subtle aspects of shape difference are revealed by the 

analysis. For example, the most extreme difference in jaw width is localized to the 

dentary, with difference in the width of the articular being less pronounced. In LF, an 

increase in the width of the dentary is accompanied by a relative lengthening of the 

coulter region of the articular. There is also a pronounced and localized shortening of the 

ventral process of the suspensoriad articulation facet in LF. In MZ, the width of the
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dentary is reduced, the ventral process of the suspensoriad articulation facet in elongated, 

and the coulter process is shortened.

Maxilla

After GLSF superimposition (Figure 2.10b), landmark variation is distributed in 

the maxilla over landmarks one, two, and three. Most of this variation is along the 

medio-lateral axis (the palatine process is taken as lying along the medio-lateral axis). 

Landmarks two and three lie on opposite ends of this process. Variation in landmark two 

is slightly skewed towards the anterio-posterior axis. This variation captures not only the 

length of the palatine process, but also the bending of the entire maxilla. Little variation 

is observed at landmark four.

The first canonical variate axis emphasizes two aspects of shape difference in the 

maxilla (Figure 2.10c and d). The first deals with the length of the palatine process, and 

the second with the curvature of the entire maxilla. In MZ, there is a shortening of the 

palatine process relative to the length of the entire element, while in LF the same process 

is dramatically elongated. In addition, the maxilla is virtually straight in MZ, as opposed 

to LF where it is distinctly bent.

Premaxilla

Landmark variation around the consensus configuration is distributed over most 

landmarks in the premaxilla (Figure 2.1 lb). There is considerable variation around
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landmarks one and five along the anterio-posterior axis, reflecting the length of the 

dentigerous arm. Variation around landmark two is largely along the dorso-ventral axis, 

but it is also slightly skewed toward the anterio-posterior axis. This pattern captures both 

the length of the ascending arm, and the angle formed by the two arms of the premaxilla. 

There is also variation along the dorso-ventral axis at landmarks three and four associated 

with the height of the maxillad spine.

The deformation of the premaxilla along CV1 emphasizes several aspects of 

interspecific shape change (Figure 2.1 lc and d). In MZ, the rostral portion of the 

ascending arm is elongated relative to the more distal region of the same arm, with 

localized shortening of both the ascending and maxillad spines. The dentigerous (tooth 

bearing) arm is also elongated in MZ relative to the ascending arm. In contrast, the rostral 

portion of the ascending arm is shortened in LF relative to the distal portion, and both the 

ascending and maxillad spines are elongated. The dentigerous arm in LF is also 

shortened relative to the ascending arm. Finally, the angle formed by the two arms of the 

premaxilla is obtuse in LF and acute in MZ.

Neurocranium

Landmark variation (Figure 2.12b) reveals three aspects of shape variation in the 

neurocranium. Change in vomer rotation is captured by variation at landmark one. 

Difference in the length of the preorbital region is identified by variation at landmark 

two. Finally, variation in the height of the supraoccipital crest is reflected by variation at 

landmark four.
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Deformation of the neurocranium (lateral) along CV1 captures two aspects of 

interspecific shape change (Figure 2 .12c and d). The first is vomerine position, and the 

second preorbital length. LF has an expanded preorbital area relative to the rest of the 

skull, while in MZ this area is more attenuated. There is also a horizontal rotation of the 

vomerine process relative to the rest of the ethmoidal region of the skull in MZ. In LF, 

the vomerine process is rotated ventrally relative to the ethmoidal region. Deformation as 

a function of CV1 does not implicate height of the supraoccipital crest as a major source 

of interspecific shape difference.

Vomer

After GLSF superimposition (Figure 2.13b), landmark variation occurs along both 

the anterio-posterior and medio-lateral axis of the vomer. Variation at landmark two 

reflects shape change in the width of the vomer, while variation at landmark one 

identifies change in the length of the vomer. The relative distance between landmarks 

two and three also varies. This aspect of shape change captures the distance between the 

vomerine notch (landmark two) and the vomerine palatinad articulation facet (landmark 

three). There is little variation at landmark four.

The deformation of the vomer as a function of CV1 (Figure 2.13c and d) shows 

that LF and MZ differ in terms of both the width and the roundness of the vomer. The 

vomer is shown to be wider in MZ than LF. Moveover, in MZ the vomer is expanded 

(laterally) at the vomerine notch relative to the palatinad articulation facet, while in LF 

there is no difference in width between these two structures. Thus, interspecific change 

in the width of the vomer occurs at the vomerine notch, not the palatinad articulation
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process. Finally, MZ has a blunt vomerine process relative to LF, which has a more 

rounded vomer.

62

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



PiseyssLPn

During the early radiation of Lake Malawi’s cichlids, an important functional 

divergence probably occurred between the three basic modes of feeding -  biting, sucking, 

and ram-feeding (Albertson, et al. 1999). This same trend has been observed repeatedly 

in many fishes from post-glacial lakes, including stickleback (Gasterosteus aculeatus 

complex), whitefish (Coregonus complex), and arctic charr (Salvelinus alpinus complex) 

(reviewed in Schluter and McPhail 1993). I chose MZ and LF because they are closely 

related species which lie on opposite ends of the biting/sucking continuum. I find many 

aspects of interspecific shape difference that relate directly to the functional biology of 

these organisms . Several morphological characters have been identified in the cichlid 

head which predict feeding performance (Otten 1983; Liem 1991). A subset of these, 

which pertain to MZ and LF, are listed in Table 2.3, and described in greater detail 

below.

Form and Function

One important difference between MZ and LF involves the ascending process of 

the articular. This process is where the second adductor mandibulae inserts, and is an 

important lever in the action of jaw adduction (Otten 1983). LF has a substantially higher 

articular process, suggesting greater force transmission of the adductor mandibulae and 

therefore a stronger bite. The height of this lever also has major consequences in the
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speed of jaw rotation. The implications of a shorter articular process in MZ is that this 

species has a faster jaw closing motion (greater angular rotation).

Both the width and length of the lower jaw differ dramatically between LF and 

MZ. In LF the jaw is short, wide, and U- shaped. In MZ it is narrow, elongated, and V- 

shaped. The U-shaped lower jaw of LF is part of a square-shaped buccal cavity, better 

for taking large bites of algae. In fact, LF has developed pronounced lateral expansions 

(**’ in Figures. 2.3 & 2.4), just dorsal to the reentrant angle of the articular, which bear 

teeth and dramatically expand biting surface area. The V-shaped lower jaw of MZ is part 

of a more attenuated buccal cavity, better for sucking plankton from the water column.

These species also differ in the shape of the suspensoriad articulation facet, which 

is where the lower jaw articulates with the suspensorium. In MZ the ventral lip of this 

facet is long, while in LF it is quite short. Since MZ feeds with a sucking action, this 

long ventral process may be used to support the lower jaw' during mouth opening.

The maxilla is more robust in LF than in MZ, presumably because it endures 

greater force during biting. The first adductor mandibulae inserts into the buccal side of 

the maxillary shank. This muscle is larger and shifted dorsally in LF. The maxilla may 

be more robust in LF to support the action of this larger muscle.

LF also has a much longer and wider palatinad wing of the maxilla. The 

intermaxillary ligament inserts on the rostral face of this structure. A longer palatinad 

wing may allow the maxilla to articulate more securely with the premaxilla. Likewise, a 

larger wing provides greater surface area for the intermaxillary ligament to insert.

The most noticeable difference in the premaxilla involves the relative lengths of 

the ascending and dentigerous arms. A longer ascending arm in LF facilitates the ventral 

rotation of the oral jaw (see below). The length of the ascending arm is also correlated 

with the length of the maxillad spine. This process is much longer in LF than in MZ.
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The maxillad spine is associated with the maxilla as well as the rostral cartilage. A longer 

maxillad spine in LF may simply be a consequence of a longer ascending arm. 

Alternatively, this process may serve to maintain a more effective articulation with both 

the maxilla and rostral cartilage.

An obtuse angle formed by the ascending and dentigerous arms of the premaxilla 

allows for greater force transmission during biting (Otten 1983). This angle is obtuse in 

LF, and acute in MZ. Again, LF has a more efficient design for biting.

The premaxilla in LF is an excellent example of how a species evolves under 

opposing structural and functional demands. How can LF have an inferior-subterminal 

mouth, yet employ a highly specialized biting mode of feeding? A subterminal mouth 

allows LF to feed while swimming nearly parallel to the substrate. This orientation 

allows LF to forage in shallow, wave-swept habitats where competition with 

heterospecifics is minimized. Structurally, this orientation is accomplished by rotating 

the vomerine process ventrally, and elongating the ascending arm of the premaxilla. 

However, a shorter ascending arm of the premaxilla will increase force transmission 

during biting (Otten 1983). A shorter arm increases biting efficiency, in part, because the 

distance between the intermaxillary ligament and the rostral tip of the premaxilla is a 

determinant of biting force: the shorter the distance the greater the biting force (the 

intermaxillary ligament lies below the interprocess edge of the premaxilla -  landmark 3) 

(Otten 1983). Although LF has a longer ascending arm than MZ, the distance from the 

interprocess edge and the rostral tip of the premaxilla (landmarks one and three) is 

actually shorter in LF than in MZ. The length of the ascending arm in LF is increased by 

lengthening the ascending spine, not the entire arm. In other words, LF has a long 

ascending arm to facilitate the ventral rotation of the lower jaw, however this species also 

manages keep the load-bearing region of the arm short and robust.
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The robust load-bearing area of the ascending arm in LF correlates with an 

enormous intermaxillary ligament. Species in the genus Labeotropheus are characterized 

by a large fleshy "nose" which wraps around the rostral tip of the upper jaw. This "nose" 

consists predominantly of the intermaxillary ligament. This massive ligament is 

presumably needed to resist the considerable force applied as the maxillary shank is 

pulled posteriorly by the adductor mandibulae during biting.

Interspecific shape difference in the neurocranium is limited to two aspects of 

morphology: vomer position, and length of the preorbital region of the skull. MZ, like 

other species that feed with a sucking mode, has a terminal mouth and a large, 

horizontally directed vomer. This orientation facilitates jaw protrusion during suction 

feeding. During suction feeding, the ascending arm of the premaxilla slides along the 

vomerine process by way of the rostral cartilage, allowing the upper jaw to distend.

Upper jaw protrusion serves to increase the volume of the buccal cavity. LF, like other 

species with a subterminal mouth, has a vertically directed vomer. I also find that MZ 

has a short, attenuated preorbital region of the skull, while LF has an expanded preorbital 

region. These shape differences clearly reflect different modes of feeding.

The supraoccipital crest is where the epaxial musculature inserts on the skull. 

Epaxial muscles are important in head lifting, a critical aspect of suction feeding (Lauder 

1979; Liem 1980). Dorso-ventral compression of the supraoccipital crest is thought to 

occur within cichlid species that maintain close contact with the substrate (Greenwood 

1978; Barel 1983). One might expect that the supraoccipital crest would be higher in MZ 

than in LF. However, I found no difference in this trait between MZ and LF (see Figure 

2.14). Rather, this element is the source of considerable intraspecific variation. This 

result is supported by Reinthal (1990) who found that crest height showed a great deal of
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intraspecific variation among mbuna, and was not a good character to distinguish among 

species.

The neurocranium is a large and functionally dynamic structure; it is associated 

with the oral jaws via the ethmoidal region of the skull, the pharyngeal jaws by way of 

the pharyngeal apophysis, and the epaxial musculature via the supraoccipital crest. 

Interestingly, differences in skull shape between MZ and LF, which have widely 

disparate jaw morphologies, are limited to the ethmoidal region. That is, shape 

differences are limited to the region of the skull directly associated with the oral jaw 

apparatus.

The lateral aspect of the ethmoidal region is much more important in 

distinguishing MZ and LF than is the ventral aspect of the same region. LF and MZ 

differ by over 21 standard deviations in the lateral view of the skull, while in the ventral 

view, they are only separated by 5.5 standard deviations.

These results parallel Reinthal's observation (1990) that MZ and LF can be easily 

distinguished by vomer rotation, but not vomer width. Rock-dwelling cichlids can be 

separated into two broad groups based on vomer shape. The first group includes species 

that have enlarged, horizontally directed vomers, terminal mouths, and feed primarily on 

plankton either by sucking them from the water column or by brushing them from beds of 

algae. The second group includes species that have thin, vertically directed vomers, 

inferior mouths, and feed primarily on attached algae (Reinthal 1990). MZ fits well into 

the first group. However, LF does not fit well into either group, because it has a ventrally 

directed vomer like species in the second group, and an enlarged vomer like species in 

the first group.

The width of the vomer at the vomerine notch is independent of width at the 

palatinad articulation facet. There is no difference in the width of the vomer between MZ
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and LF where the palatine articulates. Rather, shape difference in the width of the vomer 

is limited to the vomerine notch, which is associated with the maxilla. Here again, only 

aspects of shape associated with the oral jaws are different in the skulls of LF and MZ.

There are several general conclusions to be drawn from the results of this 

morphological study. First, aspects of morphological change between LF and MZ support 

field obsevations that these species employ different modes of feeding. Liem (1991) 

argues that a biting design is merely an “exaggeration” of a suction design. For instance, 

both designs are characterized by an attenuated cone-shaped buccal cavity and a 

relatively small mouth gape (Barel 1983). However, biting fish also generally have 

shorter and more robust jaws. The major trend between LF and MZ, is that LF elements 

are both shorter and more robust. Finally, when examining a structure that is not part of 

the oral jaw apparatus (e.g. the neurocranium), only those aspects of shape associated 

with the jaws differ between LF and MZ. This supports the idea that cichlid 

diversification is expressed mainly in their trophic biology, while the rest of their body 

remians relatively conserved (Fryer and lies 1972; Greenwood 1974; and Liem 1991).

The geometric approach

The primary objective of this study was to demonstrate the power and utility of 

geometric morphometries in describing overall shape change in a complex structure. A 

major advantage of a geometric approach is that the analysis is not constrained by 

focusing on particular shape features a priori. Rather, the method identifies differences 

in any direction of shape space, providing a more comprehensive and biologically 

meaningful result.
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I do not contend that a geometric approach is best for quantifying specific 

functional differences between species identified a priori (e.g. the length of a specific 

moment-arm). Clearly, if this were the goal, direct measures of functionally meaningful 

characters would be most useful. However, when describing shape change as a whole, it 

is difficult to relate a series of linear measures to the biology of an organism, especially if 

any of these measures are correlated. Moreover, many functionally relevant characters 

have no reliable landmarks.

It was not the goal of this study to quantify these specific differences. Rather, 

based on mode of action, prey choice, and habitat preference in the wild, I assume that 

MZ and LF differ in terms of feeding performance (McKaye and Marsh 1983; Ribbink et 

al. 1983; and Reinthal 1990). Given these differences, I ask what aspects of morphology 

facilitate these adaptive differences? Once overall shape change is defined, one may 

wish to formulate and test more specific hypotheses. For example, based on the 

differences identified above, I would predict that LF has a stronger bite and that MZ is a 

better suction feeder. These hypotheses could be tested by quantifing the magnitude of 

difference in biting and suction performance between these two species.

Genetics

LF and MZ could be distinguished ffom one another in every analysis. Moreover, 

for every skeletal element, F, morphology could be distinguished from both parental 

species (Figure 2.14). This trend suggests an equal contribution of parental alleles to 

hybrid morphology, and I would predict an additive mode of action for most genes 

responsible for the morphological differences between LF and MZ. There does,
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however, seem to be a slight dominance component involving both the premaxilla and the 

vomer. In both cases F, morphology is skewed towards that of MZ, and there is 

considerable overlap in their distributions (Figure 2.14). Therefore, certain MZ alleles 

underlying the premaxilla and vomer may be dominant to LF.

Definitive answers of the genetic architecture and inheritance of these traits are 

beyond the scope of this study. A thorough examination of F2 morphology will shed light 

on the number and mode of action of genes responsible for differences in the oral jaw 

apparatus. However, detailed knowledge of the genetic architecture of this trait must be 

based on linking F2 morphology to molecular markers, and genetically mapping these 

traits in a quantitative trait loci (QTL) analysis.
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Table 2.1
Descriptions of the anatomical landmarks used for morphometric analysis. 
Anatomical terms follow Barel et al. (1976).

Element Landmarks Descriptions (after Barel et al. 1976)
Lower Jaw 1 rostral tip of the dentary
(lateral) 2 tip of the rostral process of the articular

3 dorsal tip of the coronoid (dentary) process
4 dorsal tip of the primorial (articular) process
5 dorsal process of the suspensoriad articulation facet
6 postarticulation process (of the suspensoriad articulation facet)
7 retroarticular process
8 rostral process of the coulter area

Lower Jaw 1 lateral-most point of the dentigerous area
(ventral) 2 oral-most point of the symphyseal facet

3 rostral process of the coulter area
4 postarticulation process (of the suspensoriad articulation facet)
5 lateral-most point of suspensoriad articulation facet

Maxilla 1 medial process of the premaxillad wing
2 medial process of the palatinad wing
3 lateral process of the palatinad wing
4 shank process

Premaxilla 1 rostral-most point of the dentigerous arm
2 dorsal process of the ascending spine
3 ventral-most point of the interprocess edge
4 dorsal process of the maxillad spine
5 caudal process of the dentiserous arm

Neurocranium 1 rostral dp of the vomer
2 caudal-most point of the preorbital ridge
3 dp of preorbital process
4 dorsal dp of the supraoccipital crest
5 ventral process of the vertebrad concavity
6 pharyngobrachiad apophysis
7 dp of postorbital process
8 caudal-most point of the vomerine-palatinad articulation facet

Vomer 1 rostral dp of the vomer
2 rostral edge of the vomerine notch
3 rostral edge of the vomerine-paladnad ardculadon facet
4 doral crest of the parasphenoid, on the line connecting the 

preorbital processes
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Table 12
Characteristics o f the first canonical variate axis identified from the discriminant function analysis, and results from the regression o f shape variables (partial warps) on C V I. 
The number o f partial warps given for each analysis is k-3, where k is equal to the number o f landmarks.

N>

Element

»  Variance 

Explained by C V 1

Vitdev units between 

parental species

Significant (p > 0 0 1) regression coefficient! demonstrating die relationship between shape variables and C V 1 

xl yl x2 y2 x3 y3 x4 y4 x5 y5 xO »o

Lower Jaw 71 13.2 0.4897 0.2363 0 2474 0.3238 03534 02378 07129 09523 0  0839 0  8262 0.2603 0933

(lateral)

Lower Jaw 90 16 1 0.5746 0  1969 09724 N/S (18167 08827

(ventral)

Maxilla 85 103 0.809 0.0785 0  9438 08923

Premaxilla 84 11 08683 0  5376 0.9352 08328 04375 0.7584

Neurocranium 55 21.3 05923 02878 0  1409 0.7167 0 787 0  1696 0 8404 0 5501 0  4834 0  6059 0.8969 N/S

Vomer 58 5.5 0 0812 06973 07068 0.596



Table 23
Functional differences in feeding performance predicted from differences in form.

Functional differences predicted by differences in form
Suction-feeding Lf Mz

llong ventral process of the suspensoriad articulation facet X

attenuated buccal cavity X

attenuated neurocranium (Liem '90) X

abbreviated preorbital region of the skull (Liem '90) X

enlarged, horizontally directed vomer (Liem '90) X

Biting
Short ascending arm of the dentary (Otten '83) X

wide, robust lower jaw (Liem ’90) X

curved, robust maxilla (Otten '83; and Liem '90) X

long palatinad wing of the maxilla X

obtuse angle formed between two arms of the premaxilla (Otten ’83) X

short load-bearing region of the ascending arm of the premaxilla (Otten ’83) X
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Figure 2.1
Specimens used in morphometric study. A. M. zebra B. Lfuellebom i C. F, hybrid.
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Figure 2.2
Lower jaw, left lateral view. The lower jaw is composed of two skeletal elements, the 
dentary and the articular. A. M. zebra B. F, hybrid C. L  fuellebomi. Anatomical terms 
follow Barel et al. (1976).
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Figure 2.3
Right and left halves of the lower jaw in the ventral view. A. M. zebra B. F, hybrid C. 
L  fuellebomi. Anatomical terms follow Barel et al. (1976). (*) Note the lateral expansion 
of the dentary in L  fuellebomi.
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Figure 2.4
Maxilla in the right rostral view. A. M. zebra B. F, hybrid C. L  fuellebomi. 
Anatomical terms follow Barel et al. (1976).
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Figure 2.5
Preraaxilla in the left lateral view. A. M. zebra B. F, hybrid C. Lfuellebomi. 
Anatomical terms follow Barel et al. (1976).
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Figure 2.6
Neurocranium left lateral view. A. M. zebra B. Generalized line drawing, showing 
three regions of the neurocranium. C. F, hybrid D. L  Juellebomi. Anatomical terms 
follow Barel et al. (1976).

79

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



t
prearbtial procas

Figure 2.7
Ethmoid region of the skull showing the vomer in the ventral view. A. M. zebra B. F, 
hybrid C. L  fuellebomi. Anatomical terms follow Barel et al. (1976).
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Figure 2.8
a. Landmark position on the lower jaw in the lateral view. b. Landmark variation around 

the consensus configuration after a generalized least-squares fit superimposition, c. 
Deformation grids as a function of the first canonical variate axis. The figure on the left 
represents the deformation when the mean form of M. zebra is the target. Likewise, the 
figure on the right represents the deformation when the mean form of L  fuellebomi is the 
target, d. Vector displacements which correspond to the deformation grids.
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Figure 2.9
a. Landmark position on the lower jaw in the ventral view. b. Landmark variation around 
the consensus configuration after a generalized least-squares fit superimposition, c. 
Deformation grids as a function of the first canonical variate axis. The figure on the left 
represents the deformation when the mean form of M. zebra is the target. Likewise, the 
figure on the right represents the deformation when the mean form of L  fuellebomi is the 
target, d. Vector displacements which correspond to the deformation grids.
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Figure 2.10
a. Landmark position on the maxilla, b. Landmark variation around the consensus 
configuration after a generalized least-squares fit superimposition, c. Deformation grids 
as a function of the first canonical variate axis. The figure on the left represents the 
deformation when the mean form of M. zebra is the target. Likewise, the figure on the 
right represents the deformation when the mean form of L. fuellebomi is the target, d. 
Vector displacements which correspond to the deformation grids.
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Figure 2.11
a. Landmark position on the premaxilla, b. Landmark variation around the consensus 
configuration after a generalized least-squares fit superimposition, c. Deformation grids 
as a function of the first canonical variate axis. The figure on the left represents the 
deformation when the mean form of M. zebra is the target. Likewise, the figure on the 
right represents the deformation when the mean form of L. fuellebomi is the target, d. 
Vector displacements which correspond to the deformation grids.
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Figure 2.12
a. Landmark position on the neurocranium, b. Landmark variation around the consensus 
configuration after a generalized least-squares fit superimposition, c. Deformation grids 
as a function of the first canonical variate axis. The figure on the left represents the 
deformation when the mean form of M. zebra is the target. Likewise, the figure on the 
right represents the deformation when the mean form of L. fuellebomi is the target, d. 
Vector displacements which correspond to the deformation grids.
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Figure 2.13
a. Landmark position on the vomer in the ventral view. Here, A’ is the line which 

connects the preorbital processes, b. Landmark variation around the consensus 
configuration after a generalized least-squares fit superimposition, c. Deformation grids 
as a function of the first canonical variate axis. The figure on the left represents the 
deformation when the mean form of Af. zebra is the target. Likewise, the figure on the 
right represents the deformation when the mean form of L. fuellebomi is the target, d. 
Vector displacements which correspond to the deformation grids.
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Figure 2.14
Histograms showing the position of M. zebra, L  fuellebomi, and their hybrid progeny 
along the first canonical variate axis. Since canonical variate loadings are arbitrary units, the 
x-axis is recorded in terms of average within-species standard deviation units.

CV1 UlMr Jva (laMrtf) CV1 loM r Ja« (vantral)
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CHAPTER 3

GENETIC BASIS OF ADAPTIVE SHAPE DIFFERENCES 

IN THE CICHLID HEAD

Abstract

East African cichlids exhibit an extraordinary level of morphological diversity. 

Key to their success has been a dramatic radiation in trophic biology, which has occurred 

rapidly and repeatedly in different lakes. In this report I take the first step in 

understanding the genetic basis of differences in cichlid oral jaw design. I estimate the 

effective number of genetic factors that control differences in the cichlid head through a 

comprehensive morphological assessment of two Lake Malawi cichlid species and their 

F, and F2 hybrid progeny. I estimate that between one and eleven factors underlying 

shape difference of individual bony elements. Interestingly, I show that many of the 

skeletal differences in the head and oral jaw apparatus are inherited together, suggesting a 

degree of pleiotropy in the genetic architecture of this character complex. Moreover, I 

find that shape differences segregate according to developmental rather than functional 

units.
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Introduction

There is mounting evidence that selection on trophic morphology plays a strong 

role in the speciation of certain groups of vertebrates. This trend has been documented in 

Galapagos finches (Grant and Grant 1997; Sato et al. 2001), North American salamanders 

(Adams and Rohlf 2000), arctic charr (Skulason et al. 1989, 1996), three-spine 

stickleback (McPhail 1992, 1994), whitefish (Schluterand McPhail 1993), as well as 

cichlids on two continents (Albertson et al. 1999; Martin and Bermingham 1998;

McKaye et al. 1998; Schliewen et al. 1994). These and other studies (e.g. Echelle and 

Komfield 1984; Nagelkerke et al. 1994; Tichy and Seegers 1999) suggest that selection 

on trophic morphology, if not causative, at least closely accompanies divergence. 

Unfortunately, the genetic basis of such morphological differences is poorly understood. 

To paraphrase a question posed by Orr and Coyne (1992): How many genes underlie the 

adaptive differences between species?

East African cichlids are a textbook example of adaptive morphological radiation 

(Futuyma 1986). The rapidity and extent of morphological divergence in this group is 

unparalleled among vertebrates. The most dramatic changes seem to involve the oral jaw 

apparatus. Freed from the constraints of prey-processing, the oral jaws have evolved 

highly specialized modes of food collection (Liem 1973), setting the stage for the 

stunning radiation in trophic biology we see in each of the three East African Great Lakes 

(Victoria, Tanganyika and Malawi). Molecular and geological studies suggest that these 

radiations are extremely recent (Greenwood 1974; Kocher et al. 1995; Meyer 1993;
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Owen et al. 1990), and remarkably similar trophic morphologies have evolved 

convergently in different lakes (Kocher et al. 1993).

This report takes the first step in elucidating the genetic architecture of the cichlid 

oral jaw apparatus. I first evaluate differences in the craniofacial skeleton between two 

cichlid species that employ different modes of feeding. Our morphometric analysis 

includes four skeletal elements that constitute the oral jaws (articular, dentary, maxilla, 

and premaxilla), two bony elements associated with the oral jaw apparatus (suspensorium 

and neurocranium), as well as oral jaw dentition. I then quantify morphological variance 

in hybrid generations, and employing the Castle-Wright Estimator, biometrically estimate 

the number of genetic factors that underlie differences in shape. Finally, I infer the 

genetic correlation among skeletal elements by identifying structural units inherited 

together in the F2. Our results provide critical insight as to the total number of 

determinants that underlie shape differences in this adaptively significant character 

complex.
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Materials and Methods

Species

Labeotropheus fuellebomi ("LF") and Metriaclima zebra ("MZ”) are two rock- 

dwelling species from Lake Malawi which shared a common ancestor less than one 

million years ago (Meyer 1993). Although both species forage on algae, they employ 

different modes of feeding (Ribbink 1990), occupy different microhabitats (Ribbink et al. 

1983), and are characterized by very different oral jaw morphologies (Albertson and 

Kocher 2001; see Figure 3.1). MZ has a moderately sloped head, a large horizontally- 

directed vomer, and a terminal, isognathus mouth (Stauffer et al. 1997). It feeds on 

diatoms and loose algae by brushing these items from algal beds or by sucking them from 

the water column (McKaye and Marsh 1983; Reinthal 1990; Ribbink et al. 1983). LF has 

a large fleshy snout, a vertically directed vomer, and a robust inferior-subterminal mouth. 

The orientation of its mouth allows LF to bite attached algae from rocks while swimming 

nearly parallel to the substrate (Ribbink et al. 1983).

Preparation of specimens

Parental specimens used in this study were lab-reared F, animals generated from 

wild-caught stock. Hybridization between the species occurs readily under no-choice 

conditions (Crapon de Caprona and Fritzsch 1984; Loiselle 1971; McElroy and Komfield
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1993). I obtained hybrids by crossing MZ females with LF males in a 500 gallon pool. 

Second generation hybrids were generated from four parental animals; two sires and two 

dams. 160 specimens were used in this study, 20 of each parental species, 20 F, hybrids, 

and 100 F2 hybrids. MZ, LF and their hybrids reach sexual maturity by 10 to 12 months. 

Animals were examined no earlier than 12 months of age, and more typically at 18 

months. Animals were sacrificed with MS-222 following a protocol approved by the 

University of New Hampshire ACUC. Specimens were then prepared for morphometric 

analysis using dermestid beetles, which cleaned and disarticulated skeletal elements of 

the head. I collected each of the four elements that make up the oral jaws (the dentary, 

articular, premaxilla, and maxilla), as well as the neurocranium and suspensorium.

Images of individual skeletal elements were captured using a SPOT digital camera 

(Diagnostic Instruments, Inc.) mounted on a Zeiss SV11 dissecting scope. Images were 

imported into NIH Image (version 2.1), and landmark positions scored as (x, y) 

coordinates.

Morphometric technique: oral jaw morphology

I assessed differences in oral jaw morphology via landmark-based morphometries. 

Landmarks used in this study are described in Albertson and Kocher (2001). 

Superimposition of landmark data was performed using a Procrustes generalized least- 

squares fit (GLSF) algorithm (Gower 1975; and Rohlf and Slice 1990) in Morphometrika 

7.0 (Walker 1999). A least-squares approach superimposes configurations so that the sum 

of squared distances between corresponding landmarks is minimized. This is achieved by
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scaling, translating, and rotating specimens with respect to a mean consensus 

configuration.

Thin-plate spline (TPS) analysis was performed in Morphometrika 7.0 (Walker

1999). The TPS technique rigorously implements D'Arcy Thompson s concept of 

Cartesian grid deformations (Thompson 1917). A thorough description of the technique 

may be found in Bookstein (1989,1991). In short, TPS models the form of an infinitely 

thin metal plate that is constrained at some combination of points but is otherwise free to 

adopt the target form in a way that minimizes bending energy. In morphometries, this 

interpolation is applied to a Cartesian coordinate system where deformation grids are 

constructed from two landmark configurations (Bookstein 1991). The total deformation 

of the thin-plate spline can be decomposed into geometrically orthogonal components 

based on scale (Rohlf and Marcus 1993; Yaroch 1996). These components (partial 

warps) can be localized to describe precisely what aspects of shape are different. Partial 

warp scores are the shape variables used in all subsequent analyses.

TPS analysis was performed on all animals (LF, MZ, F, and F2). Thus, all 

specimens were evaluated, and partial warp scores calculated, relative to the same mean 

consensus configuration. A principal component analysis was performed in 

Morphometrika 7.0 (Walker 1999) on partial warp scores (including the uniform 

component) of parental animals to identify the major axis of variation that distinguished 

LF from MZ. In all cases this was PCI. Principal component scores were then calculated 

for hybrid animals by multiplying hybrid partial warp scores by the parental eigenvectors 

in the space of partial warps. Thus, segregation of hybrid progeny was assessed in the 

dimension that distinguished parental species. A full justification for my experimental 

design is presented in figure 3.2.
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Assessing tooth morphology

F2 dentition is a continuum between the fully bicuspid dentition of MZ and the 

fully tricuspid dentition of LF. Fourteen teeth in the first row of both the upper and lower 

jaw (seven on either side of the mandibular symphysis) were given a score between 2 and 

3 (in 0.25 intervals) for 20 F, and 100 F: individuals. Tooth scores were meant to 

evaluate the relative height of the third cusp. A score of 2 was given to fully bicuspid 

dentition (MZ), while a score of 3 was given to fully tricuspid dentition, with even cusp 

heights (LF). The average tooth score for each element was used for subsequent analyses.

Calculation of effective number of factors

The number of genetic factors that underlie morphological differences was 

estimated by applying the Castle-Wright Estimator (Lynch and Walsh 1998) to PCI or 

tooth scores:

-  _  ~  X i a ) ‘ ~  c r L  ~

where n* is the effective number of genetic factors, XLF and X,^ are the parental means, 

g2xlf and C2xm2 are the variances of the parental means, and (7^, and are the 

variances of the hybrid means.

The Castle-Wright method assumes that loci are unlinked, alleles are of equal 

effect, genes with positive and negative influence are fixed in alternate lines, and most 

critically, that alleles have an additive effect on phenotype. Violations of one or more of
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these assumptions will generally lead to an underestimate of the number of effective 

factors (Zeng et al. 1990; Zeng 1992).

Analysis of line crosses enables one to estimate the relative contribution of 

additive, dominance, and epistatic effects on the inheritance of the trait(s) in question. I 

used weighted least-square regression to compare observed and expected means and 

standard errors of P,. P2, F, and F2. This approach enables one to estimate the parameters 

of an additive (A) and additive-dominance (AD) model of gene action. Formally called a 

joint-scaling test, the interested reader can refer to Lynch and Walsh (1998, chapter 9) for 

specific details. Briefly, I estimated the expected mean phenotype of the F: (Po), the 

composite additive effect (cO for the A model, as well as the composite dominance 

effect (5,c) for the AD model.

For the A model I tested the null hypothesis of purely additive gene action with a 

X2 test statistic with degrees of freedom equal to the number of lines minus the number of 

estimated parameters. Next, I evaluated the AD model to test for any contribution of 

dominance. The difference between the test statistics, X2A and X:AD is equivalent to a 

likelihood-ratio test statistic, and is denoted. A, with degrees of freedom equal to the 

difference between the degrees of freedom in the A and AD models. The likelihood-ratio 

test statistic provides a test for the hypothesis that dominance explains a significant 

proportion of the variance.

Epistasis could not be evaluated via a joint-scaling test because there were not 

enough line means available (e.g. no backcross lines). But I could evaluate epistasis with 

a simple t-test:
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In the absence of epistasis, the expected value of A is zero because at each locus the F; 

should be 25% PI PI, 50% P1P2, and 25% P2P2. The variance of the test statistic is:

<7a = a F z
P i + 0 2pz 

16

Under the assumption that the sampling distribution of A is normal, the ratio:

provides the t-test for epistasis. If the ratio is greater than 1.96, the null hypothesis of no 

epistasis can be rejected at the 95% confidence level (Lynch and Walsh 1998).

Finally, to identify skeletal elements that are inherited together in the F2,1 

performed a Pearson correlation analysis on PC 1 scores for each structure.
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Results

Skeletal morphology

Detailed descriptions of the differences in skeletal morphology between LF and 

MZ are presented in Albertson and Kocher (2001). Major aspects of shape difference 

reflect differences in feeding performance (see Figure 3.2). For example, based on its 

morphology I predict that LF is better adapted for a biting mode of feeding. 

Morphological adaptations include 1) a short, robust, U-shaped oral jaw to optimize 

biting surface area; 2) a relatively high articular process, suggesting greater force 

transmission of the adductor mandibulae when biting; 3) a robust maxilla; 4) a long 

ascending arm of the premaxilla; 5) an obtuse angle formed by the two arms of the 

premaxilla; 6) an expanded preorbital region of the skull; and 7) a down-turned vomer, 

similar to other species with an inferior subterminal mouth. On the other hand, oral jaw 

morphology and feeding performance in MZ suggests it is better adapted for a suction 

mode of feeding. Relevant aspects of morphology include 1) a longer, narrower lower 

jaw; 2) a short articular process, suggesting a more rapid jaw closing motion (greater rate 

of angular rotation); 3) a thin maxilla; 4) a long dentigerous arm of the premaxilla; 5) an 

acute angle formed between the arms of the premaxilla; and 6) a swollen, horizontally 

directed vomer, similar to other suction feeding species. F, hybrid morphology is 

typically intermediate between parental species (Albertson and Kocher 2001), implying a 

generally additive mode of action of alleles responsible for shape differences.
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Tooth morphology

As with oral jaw morphology, differences in oral jaw dentition reflect different 

modes of food collection (see Figure 3.3). LF has a row of closely spaced tricuspid teeth 

on both the upper and lower jaws. Moreover, cusp height is approximately equal. This 

dentition resembles the cutting edge of shearing scissors and is common for species that 

crop filamentous algae from the substrate. MZ has a row of intermittently spaced 

bicuspid teeth on both jaws. Cusp height is uneven in MZ, with the dominant cusp being 

closer to the mandibular symphysis. MZ dentition resembles the teeth of a comb and is 

common for species that feed on loose algae and diatoms. Both species have a posterior 

row (or rows) of smaller tricuspid teeth. F, tooth morphology is roughly intermediate 

between MZ and LF. F, hybrids have three cusps like LF; however, the middle cusp is 

large and resembles the dominant cusp in MZ and the third cusp is generally smaller than 

either of the other two cusps. F2 dentition is generally the same as that of the F,; however, 

there is much greater variation in the height of the third cusp. Indeed, some F: teeth are 

truly tricuspid, like those of LF, while others are truly bicuspid, like MZ. This variation is 

found both between and within F2 individuals (see below).

PCA of partial warp scores

Results of the principal components analysis are presented in Figure 3.4. The PC 

axis that separates the parental species (in all cases this is PCI) accounts for 81% of the 

variance between MZ and LF for the lower jaw in the lateral view, 94% for the lower jaw
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in the ventral view, 90% for both the maxilla and premaxilla, 71% for the suspensorium, 

and 69% and 65% for the neurocranium and vomer, respectively. The lower values 

associated with the skull are not altogether unexpected, as neurocranial characters are 

known to show high levels of intraspecific variation in cichlids (Reinthal 1990). It is also 

important to note that shape differences in the neurocranium are restricted to the anterior 

(ethmoidal) region of the skull (Albertson and Kocher 2001).

Depending on the element, parental species are separated along the PC axis by 5 

to 13 environmental standard deviation units (since all F, animals should be genetically 

identical, environmental standard deviation units are taken as Ft a  for each structure). For 

every skeletal element, the F, and F2 distributions falls between the parental species, 

suggesting an additive mode of inheritance. F2 morphology also exhibits much greater 

variance relative to the F,. Indeed, for several elements parental morphology is 

regenerated in the F2 (see Figure 3.4).

Inheritance

I find no evidence to reject the additive model of gene action for either oral jaw 

morphology or dentition. In all cases the chi-square statistic is not sufficient to reject the 

additive model (A). I therefore accept the null hypothesis of no difference between 

observed and expected means. For each element, the test statistic ( for the additive- 

dominance (AD) model is also not significant, so there is no statistical support for any 

contribution of dominance in the data. Finally, for every skeletal element I accept the null 

hypothesis of no epistasis. In all, these data suggest that the assumption of additive gene 

action for the Castle-Wright Estimator is appropriate in our study (data not shown).
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Castle-Wright Estimator

I find that shape differences between LF and MZ for each bony element are 

determined by fewer than 11 factors (see Figs. 3,4). For example, n, is 7.7, 9.1, and 10.5 

for the premaxilla, maxilla, and lower jaw respectively. Of the approximately 10 factors 

that control differences in the lower jaw (lateral view), 9 are responsible for differences 

in the articular, while differences in the dentary are controlled by only one. I estimate that 

4.5 factors control shape differences in the suspensorium, 4.0 affect the neurocranium in 

the lateral view, and 5.6 affect the vomerine process in the ventral view. Finally, cusp 

number seems to be determined by only one factor.

Considering the standard errors associated with our estimates, most bony 

elements appear to be controlled by a similar number of loci (4 - 10). There are, however, 

some notable exceptions. For example, nt is close to one for both the dentary and tooth 

shape. These elements seem to have substantially lower estimates than other bony 

elements of the head. There also does not seem to be a direct relationship between the 

size of elements or the number of landmarks used to evaluate shape and the estimated 

number of genetic factors that contribute to morphological differences. The neurocranium 

and suspensorium were two of the largest structures examined in the analysis, with 8 and 

6 landmarks used to describe shape change, respectively. These structures also had two of 

the lowest estimates of any bony element: 4.0 and 4.5, respectively. The maxilla, on the 

other hand, was one of the smallest structures examined, with 4 landmarks used to 

capture shape. The maxilla also has the second largest value of n*, 9.1.
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Correlation among characters in the F2

The primary objective of our correlation analysis was to gain insight as to the total 

number of determinants that underlie shape differences in the cichlid head. When each 

bony element is considered independently, the number of genetic determinants appears to 

be small (<11), however, the sum of the independent estimates for each structure is much 

larger (>50). Results from the correlation analysis show that shape of many bony 

elements are inherited together. We, therefore, expect that some loci will affect shape 

differences in multiple structures, and the total number of determinants that distinguish 

LF and MZ will be less than the sum of the independent estimates.

Twenty-three of the fifty-five possible associations are statistically significant. 

Many of these correlations are conceptually intuative, such as the strong, possitive 

correlations between the upper and lower jaw dentition (p<0.001), the lower jaw in the 

lateral and ventral view (p<0.001), and the maxilla and premaxilla (p<0.01).

Interestingly, tooth shape is not associated with the shape of either the dentary or 

premaxilla (elements within which teeth develop), but is correlated with both the articular 

and suspensorium (p<0.05). The two skeletal subunits of the lower jaw , the dentary and 

articular, are not correlated with one another, but the articular is correlated with virtually 

every other bony element in the head. The neurocranium in the lateral and ventral view is 

not correlated. The neurocranium does, however, show a strong possitive correlation with 

the lower jaw in the lateral view (p<0.001).
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Discussion

Biometricallv estimating the genetic basis of adaptation

The Castle-Wright Estimator has been employed to evaluate the genetic basis of 

adaptation in several evolutionary model systems, including stickleback (Hatfield 1997) 

and Bicyclus (Wijngaarden and Brakefield 2000). While several assumptions underlie 

this estimator, recent modeling (Otto and Jones 2000) as well as quantitative trait locus 

(QTL) analyses (Peichel et al. 2001; Westerbergh and Doebley 2002) suggests that the 

method performs quite well. In all cases the estimator is taken as a minimum number of 

genetic factors. When the actual number of genetic factors is small (< 20) (Otto and Jones

2000), or when the assumptions are met (Westerbergh and Doebley 2002), the difference 

between various approaches (e.g., Castle-Wright versus QTL) is quite small.

I use the Castle-Wright Estimator to take the first steps in understanding the 

genetic basis of differences in oral jaw morphology among cichlid fishes. During the 

early radiation of Lake Malawi's cichlids, an important functional divergence probably 

occurred between the three basic modes of feeding - biting, sucking, and ram-feeding 

(Albertson, et al. 1999; Greenwood 1974; Liem 1991) - a trend observed in many other 

groups of fishes (McPhail 1992, 1994; Schluter and McPhail 1993; Skulason et al. 1989, 

1996). I examined MZ and LF because they are members of a monophyletic clade that lie 

on opposite ends of the biting/sucking continuum.

I find that the number of factors that underlie shape differences along this 

continuum is relatively small. For example, interspecific differences in dental cuspidness
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are determined by approximately one gene. This is supported by the Castle-Wright 

Estimator as well as the roughly trimodal distribution of tooth shape observed in the F2. 

Dentition features prominently in discussions of adaptive radiation in cichlid fishes 

(Greenwood 1974; Futuyma 1986: Ribbink et al. 1983; Ruber et al. 1999), because it 

tracks extremely well with feeding performance, making it a good indicator of trophic 

niche. Moreover, differences in tooth shape have been detected both between sister taxa 

(Ruber et al. 1999), and among different populations of the same species (Streelman, in 

prep). The observation that major differences in tooth shape (i.e. cusp number) may be 

controlled by as little as one gene suggests that this character has the potential to respond 

to selection extremely quickly.

Other notable observations include the estimated number of factors for the 

dentary and articular. Collectively, these two bones constitute the lower jaw . Our 

estimates suggest that the dentary and articular have very different capacities for 

morphological change. The dentary is controlled by one factor, suggesting that it, like 

tooth shape, has the potential to quickly respond to changes in the environment. On the 

other hand, the articular seems to be under the control of several loci, suggesting that 

morphological divergence in this character may require coordinated change at multiple 

loci.

The skull is a large and dynamic structure. Unlike the pharyngeal skeleton, which 

develops entirely from cranial neural crest cells, the neurocranium is derived from both 

neural crest and paraxial mesoderm. Functionally, the skull is associated with the oral 

jaw apparatus via the ethmoidal region of the skull, the pharyngeal jaws by way of the 

pharyngeal apophysis, and the epaxial musculature via the supraoccipital crest. Given the 

developmental and functional complexity of this structure, it is noteworthy that 

differences in skull shape between MZ and LF may be explained by as few as 4 genetic
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factors. The ascertainment that shape difference is limited to the anterior-most region of 

the neurocranium (Albertson and Kocher, 2001) may help in explaining this observation.

Phenotypic correlations

Many of the associations (or lack thereof) among elements in Figure 3.5 make 

sense in the context of recent molecular and developmental advances in several model 

organisms. For example, several mutant phenotypes in mouse have been characterized 

that affect tooth development. While at least two (dlx 1 and dlx2) affect upper and lower 

jaw dentition independently, the majority result in tooth defects on both the upper and 

lower jaws (i.e. msxl, msx2, pax9, fgf8, pitx2). Therefore, it is not surprising that I find 

tooth shape in the upper and lower jaws to be highly correlated (r = 0.95). I expect that 

the same locus (loci) will affect cusp number in the upper and lower jaw of cichlids.

Tooth shape is not inherited with the bone within which teeth develop (dentary 

and premaxilla), but it is correlated with both the articular and suspensorium. These 

results suggest that the same loci may have a pleiotropic effect on tooth shape and the 

shape of the articular and suspensorium. These two elements develop from cartilagenous 

precursors within the first pharyngeal arch. Both tooth morphogenesis and 

chondrogenesis involve antagonistic signaling between FGFs (fibroblast growth factors) 

and BMPs (bone morphogenetic proteins; Peters and Balling 1999). For example, BMP4 

soaked beads implanted into Meckel's cartilage explants induce exogenous cartilage 

formation (Semba et al. 2000), while mouse mutants lacking an FGF receptor will 

develop longer vertebrae (Crossley and Martin 1995). Similarly, Noggin (a BMP4 

antagonist) beads implanted in developing incisors are responsible for a transformation of
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tooth identity (Tucker et al 1998). Thus, FGFs as well as BMPs may be good candidates 

for the genetic determinants of size and shape in both teeth and bone which develops 

from cartilagenous precursors.

The articular and suspensorium are correlated with one another. A significant 

phenotypic correlation suggests that a common set of loci underlies form in these two 

elements. Thus, selection on one element will have an effect on the other. 

Developmentally, the articular and suspensorium are derived from the dorsal and ventral 

cartilagenous sub-units of the first pharyngeal arch. Several zebrafish mutants are known 

(i.e. sue, she, stu, hoo) that disrupt the development of these elements (Piotrowski et al. 

1996; Schilling et al. 1996).

The maxilla and premaxilla are correlated with one another. Both of these 

elements are dermal bone (bone that develops without a cartilagenous ascendant) that 

likely originate from mid-brain neural crest cells (Kontges and Lumsden 1996).

Maxillary and premaxillary osteocytes also precipitate at approximately the same time 

(Albertson; unpublished data). Since most existing zebrafish mutants are lethal by 5 days 

post-fertilization, which is approximately a day before dermal bones appear, the 

developmental players involved in this process remain largely a mystery.

The lower jaw in the lateral view is highly correlated with the lower jaw in the 

ventral view , suggesting that a common set of loci affect both jaw length and jaw width. 

The lower jaw in the lateral view is also highly correlated with the neurocranium. The 

lower jaw and the skull are not adjacent to one another, and it seems difficult to imagine 

that this association is a result of steric or functional interactions. The cartilagenous 

precursors of both the lower jaw and neurocranium are among the first head structures to 

be seen in the developing teleost embryo, and a multitude of zebrafish mutants have been
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described (i.e. low,fla, bab, vgo, dol, eye) that affect both the jaw and the anterior region 

of the skull (Kimmel et al. 2001; Piotrowski et al. 1996; Schilling et al. 1996).

The dentary is not correlated with the articular (r = 0.02). Functionally, the 

dentary fuses to the articular early in development to form the functioning lower jaw. 

Developmentally, however, these two elements are quite distinct. The dentary is a dermal 

bone that originates from mid-brain neural crest cells. The articular is endochondral and 

develops from both mid- and hindbrain cranial neural crest (Kontges and Lumsden 19%). 

The articular also appears 4 days earlier than the dentary in cichlid development 

(Albertson unpublished data). Like the masseteric and alveolar regions of the mouse 

mandible (Cheverud 2001), the articular and dentary clearly show that different 

developmental units are inherited separately.

Conclusion

Our results lend support for the hypotheses that differences in the cichlid oral jaw 

apparatus are controlled by relatively few genes, and that pleiotropy figures prominently 

in the genetic architecture of the cichlid head. Moreover, I find that patterns of 

phenotypic correlation correspond to developmental rather than functional units. A 

number of genes involved in craniofacial development have been characterized in model 

organisms, most of which seem to have been conserved over vertebrate evolution. It 

remains to be seen whether these same players are also implicated in fine-scale adaptive 

variation among species.

The breadth of diversity that characterizes lacustrine cichlid assemblages make 

them ideal systems within which to study adaptive radiation and the evolution of feeding

106

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



mechanisms. Important future directions should include a more comprehensive dissection 

of the genetic and developmental architecture of the cichlid head. This knowledge will 

help identify the fundamental units upon which natural selection acts, as well as better 

facilitate an understanding of how the oral jaw apparatus responds to selection. A formal 

test of integration (i.e. -  morphological (as in Liem 1980; Zelditch 1987), genetic (as in 

Cheverud 1982, 2001; Leamy et al. 1998), or developmental (as in Mezey et al. 2000)) 

would go a long way toward this goal. Also, given the estimated number of genes 

identified here, it appears feasible to conduct an experiment to map loci underlying these 

quantitative traits. An experiment with approximately 200 F2 should have the power to 

detect most, if not all, of the genetic determinants of shape difference between MZ and 

LF (Beavis 1998).
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Figure 3.1
Craniofacial skeletal morphology o f  Meiriaclima zebra (A ) and Labeotropheus fuellebomi (B). LJ -  Lower Jaw, MX -  M axilla, NCM  
-  Neurocranium, SU S -  Suspensorium, PMX -  Premaxilla



Figure 3.2
Explanation of experimental design, a. Graphical representation of principal components 1 
through 5 for the articular, which collectively accounted for >90% of the variance. Note that 
virtually all of the interspecific variation is on pci, whereas pc2 through pc5 account for 
within group variance. Tims, the genetic basis of difference along pci is sought. Every other 
skeletal element showed the same pattern of variance partitioning, b. Since pci did not 
intersect the centroids of LF and MZ when all groups were included, a principal component 
analysis was performed on the parental species, then hybrids were assessed relative to 
parental axes 1 and 2 by multiplying hybrid partial warp scores by parental eigenvectors.
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Me triadim a zebra Labeotropheus fuelleborrti
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Figure 3J
Number of genetic factors that underlie geometric shape differences between MZ and LF.
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A. Metriaclima zebra B. Fi hybrid C. Labeotropheus fuelleborni

Lower Jaw Dentition Upper Jaw Dentition

D. ne = 1.3 io.i 1.5 t o 2

Figure 3.4
(A-C) SEM images of lower jaw dentition in MZ, F,. and LF. * is the third cusp in hybrid animals that tends to vary in size. (D) 
estimated number of factors that underlie upper and lower jaw cuspidness.
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Figure 3 i
Distribution of craniofacial characters for parental species and both hybrid generations. Note 
the regeneration of parental morphology in the F2 for several characters. The y-axis is 
frequency and the x-axis is environmental standard deviation units, taken as the standard 
deviation of the FI generation for each element.
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Figure 3.6
Pearson correlation between oral jaw characters. 23 of the 55 possible associations are significant. A. Matrix o f numerical 
coefficients o f r. B. Conceptual rendering of correlation matrix. DNT - dentary, ART - articular, U L  - lower jaw in the lateral 
view, LJV - lower jaw in the ventral view, LJD - lower jaw dentition, PMX - premaxilla. UJD - upper jaw dentition, MX - maxilla, 
SUS - palatine region of the suspensorium, NCM - neurocranium, VM - vomer.

peanon r
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CHAPTER 4

A GENETIC LINKAGE MAP FOR LAKE MALAWI’S ROCK- 

DWELLING CICHLIDS, THE MB UNA

Abstract

A genetic map for Lake Malawi rock-dwelling cichlids was constructed using 

molecular markers. Segregation at 130 microsatellite loci and six genes was studied in 

173 F2 hybrids derived from an intergeneric cross between two Lake Malawi rock- 

dwelling species. Two sires and two dams were used to produce two F, families. F; 

hybrids were generated via brother-sister matings of the F,. Linkage was detected among 

126 markers. The map spans 838 cM over 24 linkage groups, with an average interval 

size of 6.6 cM. I compared this linkage map to a genetic map of another cichlid fish, the 

tilapia (Oreochromis niloticus). Markers were identified that segregate with two simple 

traits: color and sex.
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Introduction

East African cichlid fishes are paramount examples of rapid (Owen et al. 1990; 

Johnson et al. 1996), replicative (Kocher et al 1993), and extensive evolutionary radiation 

(Futuyma 1986; Fryer and lies 1972). For close to a century scientists have endeavored to 

understand the mechanisms involved in the rise and maintenance of species diversity in 

lacustrine cichlid assemblages. Both sexual selection of male nuptial color and natural 

selection on feeding morphology have been implicated as contributing forces to cichlid 

diversity, but the genetic basis of these fitness related traits remain unknown.

The construction of a genetic linkage map for Lake Malawi cichlids is the starting 

point for mapping experiments aimed at characterizing the genetic architecture of 

adaptive radiation and speciation in these remarkable fishes. To demonstrate the utility of 

this resource, the Malawi linkage map was compared with the genetic map for tilapia, and 

the segregation of two simple traits were characterized and mapped to specific 

chromosomal regions.
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Materials and Methods

Species

Labeotropheus fuellebomi (referred to as “LF* from here on) and Metriaclima zebra 

(“MZ”) are haplochromine cichlids endemic to Lake Malawi. LF and MZ are members of 

the rock-dwelling assemblage, locally known as mbuna, which employ very different 

modes of feeding. LF is optimally designed to crop attached algae from the substrate, 

whereas MZ feeds both from the substrate and the water column.

Experimental cross

Hybridization was achieved by placing two male LF in a 500-gallon pool with Five 

MZ females. Both LF and MZ are mouth-brooding species, which means females 

incubate embryos in their mouths until they are free swimming (-21 days). Females 

holding a clutch were easily identified by their enlarged buccal pouch. Brooding females 

were removed from the breeding pool and placed in ten-gallon tanks until fry were 

released. Two F, families derived from two male LF and two female MZ were used to 

produce F2 families via brother-sister mating.
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Genomic DNA extraction

Dorsal fin clips were taken from adult animals. Clips were stored in 90% EtOH at 

-20°. Tissue was washed with sterile distilled water and placed into individual sterile 1.5 

ml microcentrifuge tubes containing 500 pi extraction buffer (10 mM Tris pH 8.0, 2 mM 

EDTA pH 8.0, 10 mM NaCl, 1% SDS, 8 mg/ml DTT, 0.4 mg/ml proteinase K). Tubes 

were placed at 37° overnight. Two phenol/chloroform/isoamyl alcohol (25:24:1) and one 

chloroform extraction were performed. DNA was precipitated with NaCl in 100% EtOH 

at -80° for two hours. Pellets were washed with 70% EtOH, and resuspended in 0.1 TE 

buffer.

Microsatellite Markers

An enriched Metriaclima zebra genomic DNA library was constructed following 

(Lee and Kocher 1996), and screened with a CA16 probe. 480 clones were sequenced, and 

primer pairs flanking 208 microsatellites with ten or more dinucleotide repeats were 

designed.

Genes

Six genes were typed in the F2: bmp4, cski, wtl, ins, prl, and clc5. Every gene 

except bmp4 had a microsatellite in an intron and LF and MZ differed in the number of 

repeat units. Using degenerate primers, genomic bmp4 was sequenced in LF and MZ. A 

silent SNP was identified in the coding region of bmp4. Specific primers were designed
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to amplify 147bps around the SNP. A restriction digest using Hpy CH4V produced 

restriction fragment length differences that were used to map bmp4 in the LF x MZ cross.

Tilapia microsatellites

The tilapia, Oreochromis niloticus, is a cichlid fish native to African lakes and 

rivers (Trewavas, 1983). Tilapia have been introduced around the globe as an important 

aquaculture species. Current world production of tilapia is — 2 million metric tons per 

year (FAO Fisheries Statistics 1999), the majority of which consists of the species 

Oreochromis niloticus.

A linkage map for 0. niloticus exists that consists of > 500 microsatellite markers 

distributed over 1200 cM and 24 linkage groups. Since this species diverged from Lake 

Malawi cichlids approximately 10 million years ago, Itested 248 tilapia-specific 

microsatellites in the LF x MZ cross. Mapping tilapia markers in a cross among Malawi 

cichlids provides an opportunity to compare both genetic maps.

Typing of microsatellites

Microsatellite genotypes were obtained with an ABI 377 (PE Applied 

Biosystems) automated sequencer, which sized fluorescently labeled alleles amplified by 

PCR. I used 20 pi PCR reactions containing 5 pM of each primer, 20 ng DNA, 16 mM 

dNTPs, 50 mM MgCl2, and 1 unit Taq polymerase. Primer pairs were multiplexed up to 

three ways whenever product size and the color of the fluorescent label allowed. When
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multiplexing, primer concentrations were 2.5 pM. Cycling conditions were: 94° for 2 

min; 30-35 cycles of 94° for 30 sec, 52° for 30 sec, 12° for 30 sec; 12° for 5 min.

For genotypic analysis 1 pi of PCR reaction was added to 0.24 pi GeneScan 500 

TAMRA size standard (PE Applied Biosystems) and 2.0 pi formamide loading buffer. 

The solution was denatured and loaded on a 4% acrylamide gel. ABI GeneScan software 

(ver. 3.1.2) was used to analyze genotypes.

Linkage analysis

A linkage map was constructed using JoinMap 3.0 (van Ooijen and Voorrips

2001). The locus file consisted of genotypes for 173 F: hybrid progeny at 136 

microsatellites. The grouping module of JoinMap assigned 126 of 136 marker loci to 24 

linkage groups using a LOD score threshold of 4.0. The mapping module of JoinMap 

built the genetic map for each linkage group using Kosambi mapping function, a LOD 

threshold of 1.0, a recombination threshold of 0.450, and a jump threshold of 5.0. A 

ripple function was performed after each marker on a linkage group was added to ensure 

optimal map order.

Phenotvpic traits

Two simple traits were scored in the F2 progeny: color morphology and sex. 

Natural populations of LF and MZ have two general color morphologies: a blue body 

with black vertical stripes (BB, for black bars) and an orange body with black blotches 

(OB, for orange blotched). The BB color morph is the more typical color pattern, and
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occurs in both sexes. The OB morph is less common and occurs almost exclusively in 

females (though, OB males of both species are observed rarely). F, family 2 was 

produced by crossing a BB LF male with an OB MZ female. F: animals from this sibship 

were scored as either BB or OB.

Cichlids do not have obvious sex chromosomes, and sex is determined by one (or 

several) sex-determining loci. The existence of sex-reversal genes (Lande et al. 2001), 

and homoplasy of sex-determination among closely related species (Crapon de Caprona 

and Fritzsch 1984), make issues of sex complex and largely theoretical, particularly in 

haplochromine cichlids. Mapping sex determining factors in different cichlid species is 

the key to unraveling this mystery. F2 progeny were scored for sex using external 

diagnostic characters, including vent size, shape, and position.

Mapping of phenotypic characters

Color and sex were analyzed with MapQTL 4.0 (van Ooijen et al. 2002) using the 

nonparametric mapping method. This approach employs the Kruskal-Wallis rank sum 

test, which is described in detail by van Oojien et al (1993). The Kruskal-Wallis test is 

performed on one locus at a time, and makes no assumption about the distribution of the 

phenotypic data. The test ranks all individuals according to their phenotypic value, and 

then sorts them by marker genotype. A QTL of large effect segregating with a marker 

locus will result in large differences in the average rank of marker genotypic classes. 

Under the null hypothesis of no segregating QTL, the Kruskal-Wallis test statistic (K) is 

distributed approximately as a chi-square distribution where degrees of freedom are equal 

to the number of genotypic classes minus one. Since the test is performed on many linked
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and unlinked loci, I only reported associations between marker loci and QTL with a 

value less than 0.0001.
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Results

Pedigree

Two LF males and two MZ females were used to produce two F, sibships (figure

4.1). In total, 14 F2 families were used in this experiment: 2 from sibship one, and 12 

from sibship 2. F2 family sizes were smaller than those for LF, MZ, and F, hybrids. F2 

family sizes ranged from 10-20 individuals, whereas LF, MZ and F, families were 

typically between 20-40 individuals. F: mortality was observed from early embryonic 

development throughout the life of animals, and was not distinctly correlated with any 

one developmental stage. Thus, smaller F2 family sizes might be the result of recessive 

lethals acting at various points in development, or segregation of traits affecting general 

fitness (i.e. growth rate, aggression, disease resistance, vigor).

Genotypes

A total of 173 F2 hybrids from the LF x MZ cross were typed for 462 molecular 

markers. Of the 208 Malawi cichlid derived markers typed, 119 (57%) amplified strong 

bands and 90 (44%) were polymorphic. Of the 248 tilapia markers tested, 146 (59%) 

amplified robust bands and 39 (16%) were polymorphic. All six genes mapped in tilapia 

were also mapped in the Malawi cross. The final data set consisted of 136 marker 

genotypes for 173 F2 progeny.
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Linkage map

126 (93%) of the markers typed in the F2 showed detectable linkage to another 

marker: 6 (100%) genes, 37 (95%) tilapia microsatellites, and 83 (91%) Lake Malawi 

microsatellites. The final genetic map spanned 838 cM (figure 4.2) over 24 linkage 

groups. The average marker interval was 6.6 cM. Linkage group size ranged from 4 to 91 

cM (average = 34.9 cM). The number of markers per linkage group varied from 2 to 16 

(average = 5.1).

Comparative mapping

22 mbuna linkage groups contained at least one tilapia marker; 14 of these had 

two or more. Marker positions were used to identify syntenic regions between tilapia and 

mbuna. In every instance, marker order was conserved. In all but three instances one 

mbuna linkage group corresponded to one tilapia linkage group. Mbuna linkage group 2 

corresponded to tilapia linkage groups 17 and 18, whereas tilapia linkage groups 1 and 2 

corresponded to mbuna linkage groups 5 and 11, and 7, 13 and 18, respectively (table

4.1).

Segregation distortion

Because this was an intergeneric cross and F2 hybrids showed increased mortality, 

I was concerned about segregation distortion due to markers being linked to deleterious 

alleles. Observed segregation was tested against the expected genotypic ratios with a X2- 

test in JoinMap 3.0 (van Ooijen and Voorrips 2001). A total of 10 (7.9%) markers
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showed significant (<0.05) segregation distortion. Markers UNH2112, UNH2120, and 

UNH2173 mapped to linkage group 13. and markers UNH2032 and UNH2117 mapped 

to within one cM of each other on linkage group 1. The remaining 5 loci map to different 

linkage groups.

Segregation of Color and Sex

Linkage between sex and color morphology breaks down in LF x MZ hybrids. Of 

the 41 F, progeny in sibship 2, 9 (22%) were OB males, 11 were BB males (27%), 9 

(22%) were OB females, and 12 (29%) were BB females. Thus, sex and color are 

segregating independently in the F,. F, progeny tended to express the phenotype of their 

F, parents (table 4.2). All BB x BB matings produced either BB males or BB females. 

OB x OB pairings produced 16 OB males, 16 OB females, 2 BB males, and 2 BB 

females. One OB male x BB female pairing produced 4 OB males, 1 OB female, 1 BB 

male, and 3 BB females. BB male x OB female matings generated 8 OB males, 24 OB 

females, 19 BB males and 11 BB females.

Color segregates with cski (K=42, p<0.0001) and UNH2139 (K=32, p<0.0001) on 

linkage group 12 (figure 4.3). Sex segregates with UNH2095 (K=31, p<0.0001), 

UNH2086 (K=36, p<0.0001) and UNH2031 (K=33, p<0.0001) on linkage group 1 

(figure 4.3).
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Discussion

Comparative mapping

To date, most comparative genomic studies have been limited to analyzing 

syntenic blocks among widely divergent taxa (Amid et al 2001; Bagheri-Fam et al 2001; 

Kappen and Salbaum 2001; Santagati et al 2001). Few investigations have examined 

genome evolution at higher taxonomic levels (although see, Lillo et al 2002; Wong et al 

2002 for exceptions in microbes). The rising field of comparative genomics would 

benefit greatly by comparing more closely related genomes. Genome evolution is of 

particular interest in cichlids with respect to identifying alterations that may be associated 

with speciation.

I find good concordance between tilapia and mbuna genetic maps. Whenever 

three or more tilapia markers mapped to an mbuna linkage group the order is preserved, 

consistent with the hypothesis that chromosome evolution is slow among these cichlids 

(Komfield 1984).

The ancestral karyotype for teleosts is thought to consist of 24 pairs of 

chromosomes (Gold 1979). Since most cichlids species examined (n = 70) also have 24 

chromosomes pairs, the ancestral condition among cichlids is believed to be n = 24 

(Komfield 1984). Among Old World cichlids, chromosomal characterization has been 

largely limited to different tilapine species. The karyotype of Oreochromis niloticus 

represents the norm for tilapia, n = 22 (Arai and Koite, 1980). Only one karyotype exists 

for a lamprologine cichlid; Lamprologus leleupi, from Lake Tanganyika, had n = 24 

(Post, 1965). The only haplochromine karyotypes come from three Lake Malawi
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endemics. Melanochromis auratus had n = 23 (Thompson. 1981), while both 

Metriaclima zebra and Labeotropheus juellebomi had n = 22 (Komfield et al 1979).

The karyotypes of MZ and LF differed from Melanochromis in having two less 

subtelocentric chromosomes, but were indistinguishable from one another. Both were 

characterized by one large pair of subtelocentric chromosomes, a series of 15 smaller 

pairs of subtelocentric chromosomes, one large pair of submetacentric chromosomes, and 

four smaller pairs of metacentric/submetacentric chromosomes (Komfield et al 1979).

The phylogenetic relationship among these three cichlid families place tilapines as 

most ancestral and haplochromines most derived (Kocher et al. 1995). Assuming an 

ancestral condition of n = 24. two hypotheses can be formulated regarding chromosomal 

evolution in Old World cichlids. Either (1) chromosomal reduction occurred early, with 

the lamprologine going through a subsequent expansion in chromosome number, or (2) 

chromosomal reduction occurred in tilapines and haplochromines independently, with 

lamprologines representing the ancestral state. Results presented above offer support for 

the later hypothesis.

The observation that one haplochromine linkage group corresponds to two tilapia 

linkage groups, while two tilapia linkage groups correspond with at least four 

haplochromine linkage groups, suggests that chromosome number was reduced 

independently in tilapia and haplochromines. Linkage maps for many other cichlid 

species need to investigated before a clear picture of genome evolution in Old World 

cichlids comes to light.
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Segregation of Sex and Color

OB in natural populations. The OB/BB color polymorphism occurs in several 

rock-dwelling species in both Lake Malawi and Lake Victoria. OB color is linked to a 

female determining factor in every species that it occurs. In both Lake Malawi and Lake 

Victoria cichlids. the OB locus seems to affect the deployment and patterning o f 

melanocytes during larval and juvenile development (Seehausen et al 1999; Albertson 

unpublished data). These observations suggest that a similar gene, if not the same locus, 

may be involved.

The OB color polymorphism does not occur among Lake Tanganyika cichlid 

species, and appears to be specific to haplochromine cichlids. The OB locus may have 

arisen in the ancestor of Malawi and Victoria cichlids. Alternatively, OB color could 

have evolved in parallel in each assemblage.

Line cross analysis in speices from Lakes Malawi (Holzberg 1978) and Victoria 

(Seehausen et al. 1999) that have the OB color polymorphism suggest that OB is sex- 

linked rather than sex-limited. Thus, OB males that occur in natural populations may 

represent recombinants between the OB and sex-determining loci. Alternatively, 

Holzberg (1978) suggests that OB males are the result of an unusually high concentration 

of male-determining factors on the autosomes. Regardless of which mechanism produces 

them, OB males seem to have extremely low fecundity.

Male and female OB MZ do not readily breed in captivity (M.C. Kidd, personal 

communication). Moreover, only 3 of 27 embryos survived when off-spring from an OB 

x OB MZ cross where reared artificially (Holzberg 1978). These observations implicate 

pre- and post-mating barriers in eliminating the OB-male allelic combination from 

natural populations.
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OB and sex in the LF x MZ cross. Color and sex segregated independently in the 

F, of LF and MZ. Further, F: animals tended to resemble the phenotypes (sex/color) of 

their F, parents (table 4.2). These observations are consistent with the hypothesis that OB 

is a sex-linked trait.

I have identified chromosomal regions that segregate with the MZ OB locus, and 

the LF male-determining locus. Two general conclusions can be drawn from our results. 

First, the OB and sex-determining locus are different in LF and MZ. Second, the MZ OB 

allele is dominant, and the LF male-determining factor is dominant.

In separate experiments, the segregation of sex and OB within MZ has 

demonstrated that female MZ are the heterogametic sex and the OB allele is dominant 

(Holzberg 1978; Kocher unpublished data). The difference in genetic sex-determination 

between MZ and LF could be as simple as WZ and XY, where the relative strength of 

alleles are: Y>W>X>Z. This is supported by the observation that when the LF x MZ 

cross is performed in the opposite direction (i.e., MZ males x LF females) all F, hybrids 

are female (n = 35). More extensive intraspecific breeding and mapping experiments 

must be performed in LF and MZ to verify the map positions of sex determination and 

color in each species. Specifically, segregation of sex and color should be assessed in LF 

to test the hypotheses that the OB locus is recessive, and LF males are heterogametic.

OB hybrids from the LF x MZ cross were generally uniform in their degree of 

blotching (i.e., the percentage of the body covered with black blotches). Although this 

trait was not quantified, several F2 were identified that had either excessive blotching or 

virtually no blotching. In every instance, individuals with reduced blotching were female 

(n = 7). Likewise, with only one exception, individuals with profuse blotching were male 

(n = 10). It has been suggested that individuals with little or no blotching in nature 

represent homozygotes at the OB locus (Holzberg 1978; Seehausen et al. 1999). In these
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individuals, the OB color patterns also develops earlier than in OB heterozygotes. 

Interestingly, all but one F2 with reduced blotching were MZ homozygotes at the c-ski 

locus. Whether OB color develops early in c-skiid c-skim  F2 remains to be seen.

It has also been postulated that an OB modifying locus is linked to the male 

determining factor in Lake Victoria cichlids (Seehausen et al. 1999). Unfortunately, sex 

segregates with three markers in the LF x MZ cross, and none of the ten profusely 

blotched F; seemed to segregate with any one marker. In order to find OB modifiers, the 

degree of blotching needs to be scored and mapped as a quantitative trait.

Candidate markers for OB and sex. Sex and color segregate with (or near) 2 very 

attractive candidate loci: wtl and c-ski, respectively. Wtl is an autosomal sex- 

determining gene in mammals. In particular, wtl encodes a zinc-finger transcription 

factor that is part of the regulatory network for gonadogenesis (Wilhelm and Englert

2002). In humans and mouse, wtl maps very closely to fshb, which encodes the beta 

subunit of follicle-stimulating hormone (FSHB), which regulates gonad function in 

mammals. Wtl, or a closely linked gene, may be worth pursuing as a candidate for sex 

determination in haplochromine cichlids.

The c-ski proto-oncogene encodes a transcription factor that binds to DNA in 

association with other proteins. C-ski has been implicated in regulating normal growth 

and development of several neural crest derivatives, including the craniofacial skeleton, 

skeletal musculature, and melanocytes. Several lines of evidence suggest c-ski acts by 

regulating the proliferation of progenitor cells. Tissue specific over expression of c-ski is 

correlated with melanoma in humans (Fumagalli et al 1993), and results in muscle 

hypertrophy in mice (Sutrave et al 1990). In contrast, mice lacking c-ski have grossly 

reduced craniofacial structures (Berk et al 1997).
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C-ski is X-linked in humans. Two classes of c-ski have been identified in tilapia: 

one is expressed predominantly in the ovaries, the other is expressed mainly in the testes 

(Huang et al 1999). Thus, c-ski, or another linked gene, may be involved in sex- 

determination in certain organisms. Given its role in melanocyte proliferation and its 

association with sex, c-ski should be pursued vigorously as a candidate for the OB/BB 

color polymorphism in MZ, and perhaps in all haplochromine cichlids.
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Table 4.1
Comparative map. Corresponding linkage groups between Lake Malawi rock- 
dwelling cichlids and tilapia. Map order is conserved whenever three or more markers 
are shared.

mbuna Tilapia
Linkage Groups________ Linkage Groups

1 3
2 17,18
3 13
4 6
5 1
6 10
7 2
8 16
9 9
10 12
11 1
12 15
13 2
14 5
15 8
16 7
17 11
18 2
19 21
20 unknown
21 unknown
22 22
23 23
24 4

Markers in common

UNH2199, GM570. UNH973. UNH896. w tl 
UNH933, bmp4 
UNH874, UNH1009 
GM198
UNH948, UNH908 
GM575
UNH875, UNH2191 
G M 150, clc5, GM204 
UNH1003, GM571, UNH906 
UNH216
ins, UNH915. UNH937, UNH932
UNH169, cski
UNH919. UNH983
UNH989
prl, UNTO 11
UNH958
UNH974, UNH362, UNH951
UNH843
GM493

UNH138 
GM128, GM385 
UNH934, GM479
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Table 42
Segregation of color and sex. The linkage between OB color and sex breaks down in 
the F, generation. F2 progeny tend to express the phenotype of their F, parents.

p LF MZ
BB male X OB female

F, OB male OB female BB male BB female I*
n = 9 11 11 12 43
% = 0.21 0.26 0.26 0.28

F, OB male X OB female

F: OB male OB female BB male BB female
n = 16 16 2 2 36
% = 0.44 0.44 0.06 0.06

F, BB male X BB female

F- OB male OB female BB male BB female l»T
n = 0 0 26 19 45
% = 0.00 0.00 0.58 0.42

F, 0B male X BB female

f 2 OB male OB female BB male BB female nr
n = 4 1 1 3 9
% = 0.44 0.11 0.11 0.33

F, BB male X OB female

f 2 OB male OB female BB male BB female nr
n = 8 24 19 11 62
%  = 0.13 0.39 0.31 0.18
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Figure 4.1
Pedigree of the experimental population, a. one LF male and one MZ female were mated to produce F, family one, which was self
crossed to generate two F2 families, b. A second LF male and MZ female were mated to produce F, family two, which in turn 
generated 12 additional F2 families.
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Figure 4.2
A genetic linkage map for Lake Malawi rock-dwelling cichlids. Microsatellites are 
coded by laboratory followed by the identifying number. UNH markers were isolated at 
the University of New Hampshire. GM markers were developed at Genomar Inc., Oslo, 
Norway.
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Figure 4.3
Segregation of sex and color. The K ruskal-W allis nonparam etric m apping m ethod w as used to  test the null hypothesis o f no 
segregating Q TL at each m arker locus. The test statistic, K, is distributed approxim ately as a chi-square distribution. A ssociations that 
are significant at the p < 0.0001 level are reported as ***.
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CHAPTER 5

GENETIC DETERMINANTS AND GENOMIC “HOT-SPOTS” IN THE 

ADAPTIVE RADIATION OF EAST AFRICAN CICHLIDS

Abstract

Cichiid fishes exhibit unparalleled diversity among vertebrate systems. Natural 

selection on feeding morphology and sexual selection on male nuptial color have played 

crucial roles in this diversification. Unfortunately, the genetic bases of these fitness 

related traits remain unknown. In this report we take the first steps in uncovering the 

genetic determinants responsible for the adaptive radiation in these remarkable fishes. A 

genetic linkage map was constructed from the F: of an intergeneric cross between two 

rock-dwelling species from Lake Malawi that employ different modes of feeding. 

Labeotropheus fuellebomi feeds by cropping attached algae from the rocky substrate, 

whereas Metriaclima zebra forages on plankton in the water column with a sucking mode 

of feeding. Quantitative trait loci (QTL) were detected for 15 morphological traits that 

distinguish the feeding apparatus of L  fuellebomi and M. zebra. A number of 

chromosomal regions were identified that contained QTL that affected several traits. We 

contend that these genomic “hot-spots” represent either pleiotropic units or units of 

genetic linkage, and may have important implications for the rapid and replicative nature
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of cichlid evolution. One such “hot-spot” contains QTL that map on or near bmp4, a gene 

known to play an important role in craniofacial development. In all, our results offer 

critical insight into the genetic basis of adaptive radiation, and present a number of 

genomic intervals that should be investigated in finer detail.
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Introduction

East African cichlids are one of the most dramatic examples of adaptive 

morphological radiation in vertebrates. Vast trophic specializations have evolved 

repeatedly within Lakes Victoria, Tanganyika and Malawi. Scientists have long 

endeavored to uncover the factors that have contributed to this evolutionary explosion. 

Several lines of evidence suggest that functional divergence in feeding morphology has 

contributed to the radiation and maintenance of cichlid species diversity (Albertson et al. 

1999; Bouton et al. 1997, 1998; Danley and Kocher 2001; Liem 1980; Reinthal 1990; 

Yamaoka et al. 1986). We submit that if functional diversification is predicted by 

changes in feeding morphology (Liem, 1991), then the genetic basis of adaptive radiation 

can be examined by mapping QTL that control salient shape differences in the cichlid 

head.

An F: mapping population was generated by crossing two rock-dwelling species 

from Lake Malawi that employ very different modes of feeding. Labeotropheus 

fuellebomi (“L F ’ from here on) has a robust sub-terminal mouth that it uses to crop 

attached algae from the rocky substrate with a specialized biting mode of feeding. 

Metriaclima zebra (“MZ”) has a relatively narrow terminally oriented mouth and is one 

of the only rock-dwelling species that collect plankton in the water column with a suction 

mode of feeding. LF and MZ coexist at nearly every rocky locality (Ribbink et al. 1983), 

and partition their environment according to diet, depth, and several other microhabitat 

characteristics (Albertson in prep; Genner et al. 1999; Reinthal 1990; Ribbink et al.

1983). We chose LF and MZ for our experimental cross because they are closely related 

species at opposite ends of the biting/sucking continuum.
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Using a genetic linkage map developed for the LF x MZ cross, we explored the 

genetic control of 15 morphological characters that distinguished LF and MZ along a 

functional axis. Shape variation in the F2 was assessed using both geometric and 

traditional linear methods. Geometric variables were used to quantify the total 

deformation of shape of individual bony elements. Linear measures were used to evaluate 

specific, functionally relevant characters defined a priori.

Our results offer critical insight into the genetic architecture of the cichlid head. 

We identified QTL that explained between 5 and 26% of the phenotypic variance (PVE). 

Most QTL were distributed across the genome. We also identified a number of genomic 

‘hot-spots’ where QTL for several characters mapped to a similar chromosomal interval. 

This observation implicates pleiotropy or genetic linkage as a prominent part of the 

genetic architecture of the cichlid feeding apparatus. Interestingly, one of the most 

dramatic hot-spots contained the gene bmp4, which is known to play an important role in 

patterning and differentiation of cartilage in vertebrate embryogenesis.
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Materials and methods

Hybridization among cichlids has been observed to occur naturally when males of 

one species are placed in a tank with females of another species (Loiselle 1971; Crapon 

de Caprona and Fritzsch 1984; McElroy and Komfield 1993; personal observation). Male 

LF were placed in a 500 gallon pool with female MZ. All mbuna females incubate their 

clutch in their mouths. Female MZ were identified as holding a clutch by an enlarged 

buccal pouch, at which point they were removed from the breeding pool and placed in ten 

gallon tanks until they released free-swimming fry (~ 3 weeks).

Two F, hybrid families were grown to sexual maturity. F2 families were generated 

via brother-sister matings of the F,. All F2 were reared in 40 gallon tanks for 3 months, 

and 500 gallon pools for an additional 6-9 months. To minimize the functional demand 

on the feeding apparatus, F; animals were fed high quality spirulina flake food (Aquatic 

Ecosystems, FL). In total, 173 F2 were used in this experiment.

Phenotypic trait measurements

F2 families were collected between 12-18 months, and sacrificed with MS222 in 

accord with a protocol approved by the University of New Hampshire ACUC. Specimens 

were prepared for morphometric analysis with dermestid beetles, which cleaned and 

disarticulated the skeleton. Craniofacial bony elements were collected and digitized using
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a SPOT digital camera (Diagnostic Instruments, Inc.) mounted on a Zeiss SV11 

dissecting scope. Images were imported into NTH Image (version 2.1) and landmark 

coordinates were captured in 2-dimensional (x,y) space.

Shape was quantified via geometric morphometries and traditional linear 

measures. Our geometric approach is described in detail elsewhere (Albertson and 

Kocher 2000; and Albertson et al. in review). In brief, landmark coordinates were 

superimposed using a generalized least-squares fit algorithm in Morphometrika 7.0 

(Walker 1999). Using the same program, a series of orthogonal geometric descriptors of 

shape difference, called partial warps, were generated via thin-plate spline analysis. A 

principal component analysis was performed on partial warp scores generated from the 

LF/MZ comparison. Hybrids were then evaluated against this axis by multiplying hybrid 

partial warp scores by parental eigenvectors in the space of partial warps. In this way, 

hybrid individuals were evaluated against the axis that differentiated LF and MZ.

Distances between landmarks were used to assess differences in four functionally 

significant characters: 1) length of the lower jaw in the lateral view, 2) width of the lower 

jaw in the ventral view, 3) length of the ascending arm of the articular, and 4) length of 

the palatinad wing of the maxilla. The distance between any two landmarks was 

calculated as:

d = yl(xa - y a)2 +(xb - y b)2

where d is distance, x, and y, are the x,y coordinates of landmark a, and xb and y„ are the 

coordinates of landmark b. Distances were calculated using both raw landmark 

coordinates, standardized by standard length, and superimposed landmark coordinates. 

Both approaches gave similar results. Data presented here are from distances calculated 

after landmark superimposition.
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Tooth shape was also evaluated in the F2. F2 dentition in the outer row of the 

upper and lower jaws is a continuum between the fully tricuspid dentition of LF and the 

fully bicuspid dentition of MZ. Differences in tooth shape were assessed by evaluating 

the height of the third cusp in every tooth following the protocol of (Albertson et al. in 

review).

Genotyping and Linkage map construction

See the previous chapter (Chapter 4) for the protocols used to genotype 

microsatellites and construct a genetic linkage map.

QTL mapping

Morphological traits were analyzed with MapQTL 4.0 (van Ooijen et al. 2002) 

using interval and multiple-QTL (MQM) methods.

Interval mapping. Interval mapping is a single-QTL model based on the 

segregation of three possible genotypes. Interval mapping calculates a QTL likelihood 

map by comparing the likelihoods of a segregating QTL (HA) and no segregating QTL 

(Hq) at each position on the genome. This comparison was achieved using a LOD 

likelihood ratio statistic.

MOM mapping. The MQM mapping method is a multiple-QTL extension of 

interval mapping. The framework is similar to multiple regression, where phenotype is
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regressed on a single putative QTL in a given marker interval, and at the same time on a 

number of other markers located elsewhere in the genome (Jansen 1994). Theoretically, 

using markers as cofactors will eliminate the variation induced by unlinked QTL (Jansen 

1994).

In our analysis the genome was first searched for putative QTL using interval 

mapping. Next, markers close to detected QTL were selected as cofactors. Marker 

cofactors that accounted for a significant amount of the phenotypic variance were verified 

using backward elimination multiple regression of phenotype on cofactors. This analysis 

was performed for every trait using the automatic cofactor selection module in MapQTL 

4.0. Markers remaining after backward elimination were used as cofactors in MQM 

mapping.

Permutation test. Significant LOD thresholds were determined for each trait by a 

permutation test. Here, phenotypic data were shuffled over individuals while marker data 

remained fixed. The maximum LOD score over the genome was calculated for each 

iteration, and the LOD frequency distribution under the null-hypothesis of no QTL was 

generated. Genome-wide significance levels of a  = 0.05 and 0.01 were identified for each 

trait from 1000 permutations of the data.

Results
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MOM mapping

Results from the QTL analysis are presented in table 5.1, figures 5.1 and 5.2 and 

appendix 1. Using the MQM model, we detected QTL that explained between 5 and 26% 

(average = 11%) of the phenotypic variance (PVE) in the F2. Significant LOD scores 

ranged from 2.60 to 10.54 (average = 4.05). We detected QTL on 17/24 linkage groups.

In addition, four traits (lower jaw in the ventral view, width of the lower jaw, maxilla, 

and the length of the palatinad wing of the maxilla) segregated with an unlinked marker, 

UNH2207. Shape of the premaxilla segregated with another unlinked marker, UNH2011. 

We refer to these ungrouped markers as linkage groups 25 and 26, respectively.

Fourteen QTL were identified that affected a single trait. In contrast, we detected 

eight genomic intervals that contained at least two overlapping QTL affecting multiple 

structures.

Dentition. Phenotypic distributions of tooth shape in the F2 were roughly trimodal, 

suggesting that a very small number of genetic determinants control tooth shape in the LF 

x MZ cross (Albertson et al. in review). We detected QTL on linkage groups 7, 12 and 16 

that affected cusp number on the upper and lower jaw.

Dentarv. Only one significant QTL on linkage group 2 was detected for the 

dentary. This observation is consistent with a biometrical study suggesting that only one 

genetic factor underlies shape difference in the dentary (Albertson et al. in review). 

Alternatively, since this QTL accounts for very little of the phenotypic variance (10%), 

there could be many other QTL of small effect that could not be detected with our 

experimental design.
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Articular. We identified QTL on linkage groups 2, 6, and 21 that affected shape of

the articular.

Lower jaw in the lateral view. Three significant QTL were found on linkage 

groups 1, 2, and 6 for shape of the lower jaw in the lateral view.

Length of the lower jaw. MZ had a long narrow lower jaw, which is typical in 

species that suck plankton from the water column (Liem 1991). LF had a relatively short 

robust lower jaw like other scraping species. We detected significant QTL on linkage 

groups 1, 2 and 10 for lower jaw length.

Length of the ascending arm of the articular. LF had a much longer ascending arm 

of the articular than MZ. This process is where the adductor mandibulae inserts and is a 

critical lever in the action of jaw adduction (i.e., biting) (Otten 1983). The height of this 

process has significant function implications. A long ascending arm will increase force 

transmission of the adductor mandibulae and is a more efficient biting design. In contrast, 

a short process will increase the speed of jaw rotation and is more typical in species that 

employ a sucking mode of feeding. We identified QTL that affected the length of the 

ascending arm of the articular on linkage groups 1, 2 and 21.

Lower jaw in ventral view. We identified QTL on linkage groups 1, 11, 16 and 25 

that affected shape of the lower jaw in the ventral view.

Width of the lower jaw. LF had a very wide, almost rectangular, lower jaw, which 

allows this species to take large uniform bits of algae. In contrast, MZ had a narrow lower
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jaw, which is a more efficient design for suction feeding (Liem 1991). We identified QTL 

that affected jaw width on linkage groups 1, 11, 14, 16, 20 and 25.

Maxilla. We detected QTL that affected shape of the maxilla on linkage groups 2, 

5 ,9 and 25.

Length of the palatinad wing of the maxilla. LF had a much longer palatinad wing 

than MZ. This bony structure supports the intermaxillary ligament that is also much 

larger in LF. The intermaxillary ligament presumably absorbs much of the force applied 

to the upper jaw as the maxillary shank is pulled posteriorly by the adductor mandibulae 

during biting (Albertson et al. 2000; Otten 1983). We identified QTL that affected the 

length of this structure on linkage groups 9 and 25.

Premaxilla. QTL were identified on linkage groups 2, 10, 16 and 26 that affected 

shape of the premaxilla. Heterozygotes for the QTL on linkage group 2 appeared to be 

overdominant (Figure 5.1). The QTL on linkage group 10 was in the wrong phase (i.e., 

the LF/LF genotype produced a MZ phenotype).

Suspensorium. We detected QTL on linkage groups 4, 5 and 18 that affected the 

suspensorium. The suspensorium did not share QTL with any other structure, suggesting 

that shape of the suspensory apparatus can be modified independently of the oral jaw 

apparatus.

Neurocranium. QTL were detected on linkage groups 1 and 8 that affected shape 

of the skull. The QTL on linkage group 8 was in the opposite phase.
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Vomer. We identified QTL on linkage groups 16 and 24 that affected shape of the

vomerine process. The QTL on linkage group 24 was in the opposite phase.

Distribution of QTL

We used a X2 goodness of fit test to assess whether QTL were distributed 

randomly throughout the genome. In total, we detected 43 QTL (not including the five 

QTL that segregated with the single markers, UNH2011 and UNH2207) over 838 cM. If 

QTL were spread randomly over the genome, we expected to find 1 QTL every -20 cM 

(838/43). We compared this expectation with the actual number of QTL detected every 

20 cM. Results from the X2 goodness of fit test suggest that QTL are not randomly 

dispersed over the genome (X2 = 62, df = 41, p = 0.019).

We also calculated the expected frequency distribution of QTL for linkage 

groups, by dividing the length of each linkage group by 20. For example, we expected 

4.55 (91/20) QTL to map to linkage group 1, 3.95 (79/20) to map to linkage group 2, and 

so on. Results from this goodness of fit test reinforce the observation that QTL are not 

randomly distributed (X2 = 36.03, df = 23, p = 0.041).

Discussion

Selective forces acting on the cichlid feeding apparatus

Most QTL detected exhibited additive effects with little or no dominance (Figure 

5.1). These observations implicate directional selection as the predominant force acting
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on the oral jaw apparatus. Strong directional selection on jaw morphology is consistent 

with the hypothesis that trophic specialization among cichlids has occurred in 

evolutionary bursts (Albertson et al. 1999; Danley and Kocher 2002). There are a few 

traits, however, that do not show this pattern of additivity.

QTL that underlie differences in the skull showed significant nonadditive effects. 

The neurocranium and the vomer each had a QTL in the opposite phase (i.e., LF/LF 

genotype produces MZ morphology), which suggest these structures are under stabilizing 

rather than directional selection. This hypothesis seems plausible given the relative 

conservation of skull shape among cichlid taxa compared to other craniofacial elements 

(Reinthal 1990; Albertson and Kocher 2000).

Alternatively, nonadditive effects could result from epistasis between QTL alleles 

and the genetic background (Tanksley 1993). In this scenario, several undetected loci 

would influence the phenotypic expression (i.e., the shape of the skull) of the QTL 

genotype. Unfortunately, the role of epistasis in producing quantitative variation in 

natural populations is largely unknown (True et al. 1997), owing mainly to the difficulty 

in detecting loci with epistatic effects (Gadau et al. 2002; Li et al. 2002). The skull is a 

large, dynamic structure derived from multiple embryological origins (Hall 1999), and 

involved in several functional pathways (Liem 1979). Given the variety of forces 

imposed upon this structure over its ontogeny, genetic background could profoundly 

influence the shape of the skull.

Detecting QTL for geometric and linear shape variables

Genomic morphometries methods are basis-invariant, such that the position of 

each landmark is evaluated relative to every other landmark rather than a single point,
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line, or plane defined a priori (Yaroch, 1996). This attribute is a major advantage when 

the total deformation of shape is sought. However, when a specific character with known 

functional or evolutionary potential is evaluated, traditional linear measures are still most 

useful. We have combined these two morphometric approaches to map QTL that affect 

the shape of the cichlid head.

In general we were most interested in mapping differences in the total 

deformation of shape that occurred between LF and MZ. However, several investigations 

have revealed a number of specific characters that affect the functional design of the 

cichlid feeding apparatus (i.e., Otten 1983). We investigated the genetic basis of these 

traits using simple linear measures.

We found that geometric and linear measures often had QTL in common, which 

underscores the biological relevance of geometric descriptors of shape difference. We 

also detected QTL unique to each type of shape variable. This observation reinforces the 

precept that a QTL analysis is only as revealing as the phenotype being measured.

Genomic hot-spots.

QTL that underlie differences in the feeding apparatus were not distributed 

randomly across the genome. Several genomic blocks contained a disproportional 

number of QTL. In total we identified 8 chromosomal regions that contained two or more 

overlapping QTL. Of these, linkage groups 16 and 25 each contained an interval with 

four QTL, linkage group 1 contained a region with five QTL, and linkage group 2 

contained an interval with six segregating QTL. These results implicate pleiotropy, or the
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cumulative action of several closely linked genes, as a prominent force in the adaptive 

radiation of cichlid fishes.

We suggest these chromosomal regions represent genomic “hot-spots” where 

selection on the shape of one element/trait will quickly propagate change to several other 

morphological characters. If these pleiotropic units are common to various cichlid taxa, 

they could help account for the rapid, even stereotypical, evolution of trophic forms in 

several East African assemblages.

Role of bmp4 in the adaptive radiation of cichlids.

Linkage group 2 contains an interval with six segregating QTL. Interestingly, 

these QTL map on or close to bmp4. Bone morphogenic protein 4 (BMP4) is a member 

of the transforming growth factor beta (TGF(J) superfamily which is involved in a variety 

of developmental processes. Of particular interest is the role of BMP4 in differentiation 

and patterning of embryonic cartilage (Monsoro-Burq et al. 1996). For example, BMP4 

shows spatially and temporally restricted expression patterns in the mouse mandibular 

process (Semba et al. 2000). Further, BMP4 soaked beads implanted in embryonic 

mouse and chicken mandibular explants induce ectopic cartilage formation (Nonaka et al. 

1999; Semba et al. 2000).

Of the six traits that segregate with bmp4, the length of the ascending arm of the 

articular is perhaps the most interesting. As described above, the length of this process 

has direct functional consequences, affecting both the speed and force of jaw adduction 

(Otten 1983). To confirm the association between bmp4 and the height of this process, F2 

individuals were grouped by their genotype at the bmp4 locus, and mean differences in 

the length of the ascending arm of the articular were assessed by a full factorial ANOVA.
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As expected, we found highly significant (p = 0.018) differences in the length of this 

process among individuals with different bmp4 genotypes.

In all, these data are highly suggestive that bmp4, or a closely linked gene or 

regulator, affects the length of this functionally relevant trait, and has a pleiotropic affect 

on several other traits. At the very least, bmp4 should be a prominent figure in future 

investigations of the molecular basis of adaptive radiation in cichlids.

Conclusions

This study offers an exciting first look into the genetic basis of adaptive radiation 

in cichlid fishes. We suggest that the rapid and replicative nature of cichlid evolution 

may, in part, be attributed to pleiotropic effects of genes that control shape of the feeding 

apparatus. These results are consistent with findings in other rapidly evolving systems 

(True et al. 1997; Bradshaw et al. 1998; Peichel et al. 2001), where QTL that affect 

different traits map to the same interval. Further, we present strong evidence that a well 

characterized gene, bmp4, plays an important role in the functional differentiation 

between LF and MZ. This observation moves BMP4 from the domain of developmental 

genetics in model systems and places it firmly within the scope of evolutionary biology.

Our results have provided a foundation for further investigations into the genetic 

architecture of cichlid evolution. Future experiments should proceed in two general 

directions. First, additional marker loci and F, progeny are needed to more accurately 

map and better estimate the effects of QTL in the LF x MZ cross (Lander and Botstein 

1989; Beavis 1998). The addition of more F2 will also facilitate the detection of QTL 

with much smaller magnitudes of effect (Bradshaw et al. 1998). Second, the genetic 

architecture of the cichlid feeding apparatus should be evaluated in other species.
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Particular attention should be given to the genomic hot-spots and candidate loci identified 

in this experiment. It will be very interesting to see if the same intervals are implicated in 

the divergence among other cichlid taxa.
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Table 5.1
Location and effect of QTL. For each QTL delected the name, linkage group, map position (cM), LOD score, percent variance 
explained (%), and effect are indicated. The phenotypic mean of L  fuellebomi and M. zebra is given as a reference. QTL were 
detected via MQM mapping. LOD thresholds were calculated via permutation test for each trait. Genome-wide significance levels were 
evaluated at the 95%* and 99%** levels.

1 Phenotypic class Trail Phenotypic mean of parental lines QTL Linkage Map LOD PVE(%) Phenotypic mean of genotypic classes

1 M. tebra L  fuellebomi Name Group Position (cM) MZ/MZ MZ/LF LF/LF

1 DENTITION LOWER JAW 
DENTITION

2 3 IJD  1 

LID 2

7

12

2 3 

0

3.31**

4.97**

7.2

128

2 52626 

2 44607

2.53667

2.64727

2.72537

284146

U D  3 16 0 6.29** 184 2.45154 2 6289 283632

UPPER JAW 
DENTITION

2 3 UJD 1 

IJJD2

7

12

2.3

0

3.43**

4.52**

5.4

189

2.54492 

2 37457

2.58911 

2.64905

2.75492 

2 88409

UJD 3 16 0 5.28** 107 2 49628 2.66656 2 83208

LOWER JAW 
IN THE
LATERAL VIEW

LOWER JAW 
(LATERAL)

-001092 0 117 LJL 1 

U L 2

1

2

68 8 

545

10.54**

6.37 ••

17 8 

114

0 0224602 

-0 00942844

-2.40E05

0.00355648

0 0200489 

0.0168462

IJL  3 6 51 8 5 08** 8.7 0 00768034 0 00216174 0.0146111

DENTARY 0 03K6 0 0414 DNT 1 2 6 2 82* 68 000475923 0 0142725 0 0205283

ARTICULAR 0 HUH -0 11II ART 1 2 64 1 2.65* 79 0 0101784 0 0108625 0 024777

| ART 2 6 2 2.84* 6 3 0.00300781 0000337266 00190248

1 ART 3 21 5 5 69** 14 00100765 00122344 0  0247945

LOWER JAW LENGTH 0.8736 0.7633 JL 1 1 738 3.25* 92 0.835058 082889 0 814656

I J1.2 2 59 5 4.02** 12 0835191 0 835044 0814137

1 JL 3 10 382 .1 43** 74 0 82082 0815355 0 831301
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Figure 5.1
Phenotypic effects of genotype at each QTL. The phenotypic mean is plotted for each genotype (MZ/MZ, MZ/LF, LF/LF) at 
every QTL. The y-axis is recorded in phenotypic untis. "LF" and "MZ" indicate the orientation of phenotypic values relative to L  
fuellebomi and M. zebra.
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Figure 5.2 1
QTL position on the mbuna genetic linkage map. Marker names are to the right of 
linkage groups, map positions (cM) are to the left. Black bars indicate 95% confidence 
intervals where QTL, or several over lapping QTL were detected. The map locations of 
QTL affecting feeding morphology are represented by illustrations. Individual bony 
elements indicate QTL affecting geometric variables. Red bars indicate QTL affecting 
linear measures. Where geometric and linear variables map to the same interval red bars 
overlay stippled illustrations. When only traditional shape variables map to an interval, 
bars are shown with line drawings.

161

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



APPENDICES

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Appendix A

Landmarks used for thin-plate spline analysis in Chapter 3.
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Appendix B

Deformation of shape along the first principal component axis. The genetic basis 
of shape difference was determined both biometrically (Chapter 3) and via QTL analysis 
(Chapter 5) for principal component scores along this axis.
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Appendix C

Results from MQM mapping organized by linkage group. Linkage groups are 
presented on the left Graphical depictions of QTL are shown to the right LOD scores 
(LOD) were plotted against chromosomal positions (cM) for every trait LOD thresholds 
at the 95% level were determine by 1000 permutations of the data. Significant LOD 
scores for each trait were as follows: lower jaw dentition = 2.4, upper jaw dentition = 2.3, 
lower jaw in the lateral view = 3.0, dentary = 2.4, articular = 2.4, jaw length = 2.7, 
articular arm length = 2.7, lower jaw in the ventral view = 2.8, jaw width = 2.8, maxilla = 
2.7, palatinad wing length = 2.3, premaxilla = 2.5, suspensorium = 2.5, neurocranium = 
2.6, vomer = 2.3.
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