University of New Hampshire

University of New Hampshire Scholars’ Repository

Doctoral Dissertations Student Scholarship

Spring 2002

Diagnosing interoperability problems and
debligging models by enhancing constraint

satisfaction with case -based reasoning

Mohammed Houssaini Sqalli
University of New Hampshire, Durham

Follow this and additional works at: https://scholars.unh.edu/dissertation

Recommended Citation

Sqalli, Mohammed Houssaini, "Diagnosing interoperability problems and debugging models by enhancing constraint satisfaction with
case -based reasoning” (2002). Doctoral Dissertations. 79.
https://scholars.unh.edu/dissertation/79

This Dissertation is brought to you for free and open access by the Student Scholarship at University of New Hampshire Scholars' Repository. It has
been accepted for inclusion in Doctoral Dissertations by an authorized administrator of University of New Hampshire Scholars' Repository. For more

information, please contact nicole hentz@unh.edu.

https://scholars.unh.edu?utm_source=scholars.unh.edu%2Fdissertation%2F79&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholars.unh.edu/dissertation?utm_source=scholars.unh.edu%2Fdissertation%2F79&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholars.unh.edu/student?utm_source=scholars.unh.edu%2Fdissertation%2F79&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholars.unh.edu/dissertation?utm_source=scholars.unh.edu%2Fdissertation%2F79&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholars.unh.edu/dissertation/79?utm_source=scholars.unh.edu%2Fdissertation%2F79&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:nicole.hentz@unh.edu

INFORMATION TO USERS

This manuscript has been reproduced from the microfilm master. UMI films
the text directly from the original or copy submitted. Thus, some thesis and
dissertation copies are in typewriter face, while others may be from any type of
computer printer.

The quality of this reproduction is dependent upon the quality of the
copy submitted. Broken or indistinct print, colored or poor quality illustrations
and photographs, print bleedthrough, substandard margins, and improper
alignment can adversely affect reproduction.

in the unlikely event that the author did not send UMI a complete manuscript
and there are missing pages, these will be noted. Also, if unauthorized
copyright material had to be removed, a note will indicate the deletion.

Oversize materials (e.9., maps, drawings, charts) are reproduced by
sectioning the original, beginning at the upper left-hand comer and continuing
from left to right in equal sections with small overiaps.

Photographs included in the original manuscript have been reproduced
xerographically in this copy. Higher quality 6° x 9" black and white
photographic prints are available for any photographs or illustrations appearing
in this copy for an additional charge. Contact UMI directly to order.

ProQuest Information and Leaming
300 North Zeeb Road, Ann Arbor, Ml 48106-1346 USA
800-521-0600

®

UMI

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

DIAGNOSING INTEROPERABILITY PROBLEMS AND
DEBUGGING MODELS BY ENHANCING CONSTRAINT
SATISFACTION WITH CASE-BASED REASONING

BY

Mohammed Houssaini Sqalli
Ingénieur d’Etat. EMI, Rabat, Morocco, 1992
M.S., University of New Hampshire, 1996

DISSERTATION

Submitted to the University of New Hampshire
in Partial Fulfillment of
the Requirements for the Degree of

Doctor of Philosophy
in
Engineering - Systems Design

May, 2002

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

UMI Number: 3045339

®

UMI

UMI Microform 3045339

Copyright 2002 by ProQuest Information and Learning Company.

All rights reserved. This microform edition is protected against
unauthorized copying under Title 17, United States Code.

ProQuest Information and Learming Company
300 North Zeeb Road
P.O. Box 1346
Ann Arbor, MI 48106-1346

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

This dissertation has been examined and approved.

//-'/;;A_

<

Dissertation Director, Eugene C. Freuder, Professor

of Computer Science, Former Professor of Computer
Science UNH, Director, Cork Constraint Computation
Centre Science Foundation Ireland Research Professor

e
David W. Aha, Head of NCARAI’s Intelligent
Decision Aids Group, Naval Research Laboratory

Dove b

Radim Bartos, Assistant Professor
of Computer Science

.//) 7 //‘ 7
Robert D. Russell, Associate Professor
of Computer Science

o B 5

William H. Lenharth, Associate P?ofessor
of Electrical and Computer Engineering

Ou-29-02
Date

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Dedication

To my mother Maria and

my father Brahim

“Thy Lord hath decreed that ye worship none but Him,

and that ve be kind to parents.”

The Holy Quran. 17:23

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

iv

Acknowledgments

All thanks are due to Allah, God Almighty. Because of Him, I was able to complete
this work.

[am indebted to my supervisor. Professor Eugene C. Freuder, whose advice and en-
couragements have inspired and shaped much of my academic work.

I am grateful to Dr. David W. Aha. Professor Radim Bartos, Professor Robert D. Rus-
sell. and Dr. William H. Lenharth. the dissertation committee, for their careful review of
my dissertation and valuable feedback.

I would like to thank all my colleagues at the UNH Constraint Computation Center
(CCC) for discussions and feedback on this dissertation and earlier related research, namely
Richard Wallace, Daniel Sabin. Mihaela Sabin. Peggy Eaton, Charles Elfe, and Paul Snow.

Special thanks to Scott Valcourt. Robert Blais, Adrian Stavish, Jonathan H. McKinney,
Fred Mansfield. Joshua Bertoulin. and TJ Beach from the University of New Hampshire In-
terOperability Laboratory (UNH-IOL) for their support and their evaluation of the ADIOP
system.

And last but not least, [owe a special debt to my wife Lamiae for her patience, con-
stant support and comforting encouragement. to my son Abdoullah for sacrificing some of
his time and joy to allow me to work on my dissertation, and to my little daughter Sarah
who just turned one year old and did not get all the attention she deserves.

[am particularly grateful to Siemens Canada Ltd. - Telecom Innovation Centre, for
providing me with support and leave of absence periods to complete my dissertation. I am
also thankful to the Moroccan-American Commission for Education and Cultural Exchange
(MACECE) for supporting me with a four year Fulbright grant. This material is based in
part on work supported by MACECE. UNH-IOL and by the National Science Foundation
under Grant No. IRI-9504316.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Table of Contents

Dedication
Acknowledgments
Table of Contents
List of Figures
List of Tables

Abstract
1 Introduction

1.1 Motivations e e e
1.1.1 Interoperability Testing

1.1.2 Modeling L

1.1.3 Diagnosis
114 ModelDebugging.

1.2 Constraint Satisfaction Problems
1.2.1 Definition e

1.22 Overview e e e e

1.3 Interoperability Testing
1.3.1 Problem Statement

1.3.2 Environment: ATM Networks
-1.3.3 Current Problem Solving Techniques
1.3.4 Proposed Problem Solving Technique

1.4 CSP Modeling for Interoperability Testing
1.5 Diagnosis of Interoperability Problems
16 Debugging CSPModels
1.7 EBwvaluation. e
1.8 Contributions
1.8.1 Interoperability Testing

1.8.2 Constraint Satisfaction Problems

1.83 Case-BasedReasoning

1.9 Dissertation Qutline

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

iii

iv

2 CSP Modeling Using Object-Oriented Programming -

2.1 Modeling and Constraint Satisfaction Problems
2.2 Modeling Interoperability Testing
2.2.1 One Model Architecture
2.2.2 Many Models Architecture
2.3 Object-Oriented Programming
2.4 Description of the CSP Modeling Process
2.5 ModelingwithObjects
25.1 Modelingof Packets
2.5.2 Class Hierarchy and Inheritance
253 Decoder e
2.6 ModelingInterface
26.1 Variables o .

26.3 Comstraints e e e
2.7 Test CasesasObjects couo....
2.8 ModelingLanguage
2.9 Example of CSP Modeling for One Test Case
2.10 Application of CSP modeling
211 Evaluation L. e e e
2.11.1 Evaluation Setup,
2.11.2 ADIOP Modeling Component Evaluation
2113 Limitations
212 Related Work
213 Summary e e e e e e e e e e e e e

3 Constraint-Based Diagnosis of Interoperability Problems

3.1 Definitions. e e e
3.2 Modeling, Decoding and Diagnosis
3.3 Diagnosis of Interoperability Problems
3.4 Algorithmsfor Diagnosis
_3.4.1 Constraint Satisfaction Methods
342 Search e
3.4.3 Inference and Consistency Checking

35 Explanation e
36 TestCaseExecution
3.6.1 Automate MenusCreation.
36.2 ReportsGeneration
363 Algorithms L.

3.7 Algorithms Evaluation
3.71 Solvability
372 Explanation

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

vi

vii

3.73 Complexity e e e e e e e e 128
3.8 Evaluation Performed by Testers 128
381 Decoder e 129
382 Diagnoser e e e e e e 133
3.8.3 ADIOP’s General Survey Analysis 142
384 Limitations 145
385 Conclusion 147
39 Related Work e 149
3.10 SUmMMArYyt e e e e e e e e e e e e e e e e 153
4 Case-Based Reasoning and Model Debugging 154
4.1 Motivations and Contributions 155
42 Advantages e 157
4.3 Incompleteness and Incorrectness in the CSPmodel 158
4.4 Taxonomy of Types of Model Incompleteness and Incorrectness 159
4.4.1 Practical Examples of Incompleteness/Incorrectness in Interoperabil-
ity Testing 160
4.4.2 Types of Incomplete and Incorrect Models 165
4.4.3 One Type of Model Inconsistency 169
4.5 Case-BasedReasoning 170
46 CSP/CBRImtegration 173
4.7 CBR/CSP Integration Components of ADIOP 175
4.7.1 Advisor e e e 175
4.7.2 Development Process and Case Collection 177
4.7.3 CaseRepresentation 179
474 CaseRetrieval 182
4.7.5 Case Reuse/Adaptation 191
476 CaseRevision. 193
4.7.7 Case Retainment - Learning 194
48 UpdatingCSPModels 195
4.9 Improving Explanations 199
4.10 Experiments and Evaluation.o oL 0oL 201
4.10.1 Experiments 201
4102 Solvability 204
4.10.3 Evaluation of the CBRsystem 205
4.10.4 Evaluation of Explanation Improvement 207
4105 Model Updates 0..... 208
411 Related Work e 209
412 SUIMMATY o i e e e e e e e e e e e e e e e e e e e 213

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

5 Conclusion -
51 CSPModeling
5.2 Constraint-Based Diagnosis
53 CSP ModelDebugging,
5.4 Directions for Future Work
5.5 Comclusion e e

Test Case Layout
Testers Evaluation Questionnaire of ADIOP

ADIOP V2.0 User Manual

g a w »

Approval of Protocols from the Institutional Review Board (IRB)

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

215
215
217
219
221
222

230
232
248

279

2.100
2.11
2.12

3.1
3.2
3.3
3.4
3.5
3.6
3.7

List of Figures

Map Coloring Problem
Comstraint Graph
CSP Solution e e e
CSP for Problem Representation and Problem Solving
Interoperability Testing of Devices AandB
Physical Setup of Interoperability Testing
CSP Modeling and Diagnosis for Interoperability Testing
AModelingExample
Diagnosis Example using an Explanation Template
Integration of CSP Model and CBR for Interoperability Testing
Initial CSP Model of the Time Variables of Test Case ID: V4302H__005 . .
Retrieved Similar Case Example
Updated Test Case CSPModel
Corrected CSP Model of Figure 1.11

One Model Architecture,
Many Models Architecture
CSP Variable Assignment
AModeling Example
Packet’'s Parameters List
Directory Structure of the packet Package
Class Hierarchy of the Packet Class
Protocols List in the Test Suite Builder Window
Packet Types List in the Test Suite Builder Window
The testsuite Directory Hierarchy
Test Suite Menu
The Test Suite Builder Window

Diagnosis of Interoperability Problems
Statement of Interoperability Problems
Modeling, Decoding and Diagnosis Components
ADIOP's Main Window00cu...
List of Protocol Analyzers Supported
The Decoder/Diagnoser Window
TestSuite Menu

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

3.8 CSP for Problem Representation and Problem Solving - 99
39 Backtrack Algorithm o . 103
310 Check Function 105
3.11 GetValue Function 106
3.12 Solver Function 106
3.13 The Test Cases (Objects) Hierarchy 107
3.14 The testsuite Directory Hierarchy 107
3.15 ADIOP’s Result Window of a Successful Test Case 108
3.16 Protocol Preprocess Function 112
3.17 Packet Type Preprocess Function 113
3.18 ADIOP’s Result when packets of a packet type are fewer than required . . . 118
3.19 ADIOP’s Result a “Pass With Warning” Test Case 119
3.20 ADIOP’s Result Window Showing a Test Case Model 121
3.21 ADIOP’s Test Cases Report of One Section 122
41 Initial CSPmodel 165
4.2 CSP model updated when variable X becomes optional. 166
4.3 CSP model updated when variable X isremoved 167
44 Imitial CSPmodel 167
4.5 CSP model updated when there is a false constraint 168
4.6 CSP model updated when a constraint isremoved 168
4.7 Case-Based Reasoning Cyclical Process 171
4.8 Case-Based Reasoning Process 172
4.9 Integration of CSP Model and CBR for Inteioperability Testing 174
4.10 Test Case Result containing an ‘Advisor’ button 175
4.11 Advisor/CBRWindow 176
4.12 A Partial Viewof the Case Base Table 178
4.13 A case displayed using the ADIOP'sGUI 182
414 Cases’ Types e e e 189
4.15 Retrieve Similar Cases Menu 190
4.16 Similar Cases Table 190
4.17 Case Adaptation Window 191
4.18 Case Adaptation Menut 192
4.19 Window for Case Revision of the Adapted Case 193
4.20 Update Test Case Model Menu 196
4.21 Updated Test CaseModel 197
422 RunUpdated Test Case0...... 198
4.23 Result of Running an Updated Test Case 198
4.24 Explanation Generated for Test Case V4301H.003 199
4.25 Similar Cases for the failure in Test Case V4301H. 003 200
4.26 Relevant Retrieved Cases 204

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

3.1
3.2
3.3
3.4

4.1
4.2
4.3

List of Tables

Summary of Explanation Templates 120
Results of Running Test Cases on Capture capt001 124
Summary of Results of Running Test Cases on Different Captures 126
Summary of results for manual vs. ADIOP testing 135
Results of Advisor on Capture capt001 202
Results of Running Test Cases on 10 Captured Data 203
Useful Explanation vs. Relevant Retrieved Cases 208
xi

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Abstract

DIAGNOSING INTEROPERABILITY PROBLEMS AND
DEBUGGING MODELS BY ENHANCING CONSTRAINT
SATISFACTION WITH CASE-BASED REASONING
by
Mohammed Houssaini Sqalli

University of New Hampshire. May, 2002

Modeling, Diagnosis. and Model Debugging are the three main areas presented in this
dissertation to automate the process of Interoperability Testing of networking protocols.
The dissertation proposes a framework that uses the Constraint Satisfaction Problem (CSP)
paradigm to define a modeling language and problem solving mechanism for interoperability
testing, and uses Case-Based Reasoning (CBR) for debugging interoperability test cases.

The dissertation makes three primary contributions:

1. Definition of a new modeling language using CSP and Object-Oriented Programming.
This language is simple, declarative, and transparent. It provides a tool for testers to
implement models of interoperability test cases. The dissertation introduces the no-
tions of metavariables, metavalues and optional metavariables to improve the modeling

language capabilities. It proposes modeling of test cases from test suite specifications

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

that are usually used in interoperability testing performed manually by testers. Test
suite specifications are written by organizations or individuals and break down the
testing into modules of test cases that make diagnosis of problems more meaningful

to testers.

2. Diagnosis of interoperability problems using search supplemented by consistency in-
ference methods in a CSP context to support explanations of the problem solving
behavior. These methods are adapted to the OO-based CSP context. Testers can
then generate reports for individual test cases and for test groups from a test suite

specification.

3. Detection and debugging of incompleteness and incorrectness in CSP models of inter-
operability test cases. This is done through the integration of two modes of reasoning,
namely CBR and CSP. CBR manages cases that store information about updating
models as well as cases that are related to interoperability problems where diagno-
sis fails to generate a useful explanation. For the latter cases, CBR recalls previous

similar useful explanations.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 1

Introduction

This dissertation is on modeling using Constraint Satisfaction Problems (CSPs). constraint-
based diagnosis, and CSP model debugging. The domain of application used is interoper-
ability testing of networking protocols. This dissertation has been motivated by the work
done at the University of New Hampshire InterOperability Laboratory (UNH-IOL).

Modeling, diagnosis, and debugging cover the process through which a problem (i.e.,
an interoperability test case) is implemented, corrected. executed. and its results explained.
Interoperability testing involves testing whether two or more networking devices connected to
each other and implementing the same protocol are operational. This is done by monitoring
the data between these devices using analyzers. and then comparing the data observed with
what is expected, i.e.. what is stated in the specifications of the protocol tested.

This is a proof-of-concept dissertation where we show how CSP is used to successfully
model test cases. diagnose interoperability problems, and generate useful explanations for
interoperability testing. We also show how Case-Based Reasoning (CBR) supports CSP for

debugging CSP models and improving on the explanations generated for interoperability

testing. CSP has been proposed as a paradigm for modeling and diagnosing real-world

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

problems. In this dissertation, modeling and diagnosis are enbanced through the use of
a simple modeling language based on Object-Oriented Programming (OOP) for modeling,
and the generation of human-like explanations for diagnosis. Since CSP models can be
incomplete or incorrect, CBR is integrated with CSP to provide the ability to debug these
models. CBR is also used to improve on the explanations obtained in the diagnosis phase.
CBR is useful here because similar problems tend to recur and have similar solutions.

This dissertation is focused on testing protocols that run over ATM (Asynchronous
Transfer Mode) networks, and most of the examples used are taken from the PNNI protocol.
In these examples, we have changed the names of some captured data files to remove
company names and preserve privacy. We used instead a generic name such as 'capt00x’.
We have also modified the real names for analyzers and used generic names such as ‘Analyzer
X". ADIOP (Automated Diagnosis of InterOperability Problems) is a tool that was designed
and implemented to prove the feasibility of the work presented and claims made in this
dissertation. A Graphical User Interface (GUI) is used by the ADIOP system and provides
a user-friendly interaction with testers.

In the following, we present the motivations for the topics of this dissertation. Then,
the con;:ept of CSP and interoperability testing are introduced, followed by sections for the
three main topics of this dissertation. We then present the major contributions and give an

outline of the dissertation.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

1.1 Motivations :

1.1.1 Interoperability Testing

One of the main challenges in interoperability testing at the UNH-IOL is how to debug and
diagnose interoperability problems in a timely manner. At the present this is done manually
at the UNH-IOL, which can be an exhausting task since there can be a large amount of
data to check.

In summary, there are two major concerns to address:

1. Checking manually a large amount of decoded data to find out where there is a

mismatch between what is expected and what is observed.

2. Spending a considerable amount of time in manually diagnosing problems that may
have been diagnosed before at the UNH-IOL or in solving problems that are very
similar to previous problems solved. Some numbers are provided in the evaluation
sections on how long diagnosis takes. Traces of how previous problems have been

solved are not usually kept for future reference.

This shows that there is a need to make the process of diagnosing interoperability
problems easier, quicker and more efficient. The work we present in this dissertation aims
at solving some of these problems by automating the process of running and debugging
interoperability test cases and diagnosing interoperability problems through a user friendly

interface. Evaluations included in the next chapters measure some of these statements.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

1.1.2 Modeling

In this dissertation, we are using CSP modeling to provide a simple language for creating
CSP models, including variables and constraints, of interoperability test cases. This includes
a user-friendly interface that is menu-driven and allows testers in the lab to automate test
suites and generate reports.

CSP provides a declarative and transparent modeling language that allows for test cases
to be modeled without knowledge of the details of the objects involved in this modeling.
Only information about the functionality of these objects is needed by testers. This makes
it easy to create models for test cases and. when necessary. to correct and update them.
This also means that CSP models are concise since they do not include any details of imple-
mentation. The language used is easy to learn and use by testers. This language is also very
expressive since it is based on CSP. In other formalisms used in similar application domains.
there is a need to extend such formalisms to be able to represent fully and adequately all the
information in a model. For example, the Finite State Machine (FSM) formalism has been
extended and used in combination with CSP to provide a representation for such models
(Riese 1993b).

CSP modeling provides testers with the ability to model test cases using interoperability
test suite specifications, some of which are approved by standard bodies (e.g.., ATM Forum).
These are the same test cases used manually to check the interoperability of devices. These
test cases are arranged using the same structure provided in the test suite specifications,

including individual test cases and test groups, and thus are made easily accessible and

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

ot

usable by testers. This is the same structure used by testers for manual testing and it is
familiar to them.

CSP modeling is domain-independent, which allows testers to model test cases for many
ATM networking protocols. Since CSP is a framework that provides modeling functionality
as well as problem solving methods, it is possible to model test cases as CSPs and then
diagnose problems using these CSP models.

Modeling test cases means that they can be reused as often as necessary for diagnosing
interoperability problems with no extra effort for testers. This makes modeling of test cases
very useful for testers in the lab. New testers may also use test cases implemented by others
who may have left the UNH-IOL and whose expertise is kept in the form of these automated

test cases.

1.1.3 Diagnosis

The motivation for automating diagnosis in interoperability testing is to save time, to reduce
repetitive manual testing, to store and reuse knowledge, to automate report generation, and
in general to make testing easier and more efficient. The main focus in this dissertation
is on how to generate a human-like explanation for interoperability testing results because
this is the main goal of a tester.

Constraint-based diagnosis takes advantage of the structure of CSP representation in
solving and diagnosing interoperability problems. In this dissertation, CSP methods, includ-
ing search and inference, are improved and adapted to provide solutions to interoperability

problems and to generate human-like explanations of test case results. The explanations

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

obtained provide useful information on the causes of success and failure of test cases, and
are easy to check and verify by testers.

The algorithms used for diagnosis are of acceptable degree of complexity. Constraint-
based diagnosis provides the ability to complete the execution of test cases quickly. This
reduces the amount of time needed by testers to do testing. In interoperability testing,
usually many test cases pass, and the human tester needs a lot of time to check just for this
result. This makes an automated tool even more efficient when testing is successful.

The efficiency of diagnosis is increased by the re-usability of test cases available to testers
and the consistent results obtained. If problems that occurred in the past were detected
using an automated tool. it would be possible to reproduce the same results and thus the
same diagnosis. But. it is possible for a tester to forget how the same problem was resolved
in the past. or a tester with that experience may not be in the lab at the time and thus the
knowledge of a diagnosis might be lost. In addition, less expertise is needed when using an
automated tool to diagnose interoperability problems, and no previous knowledge of test
cases is necessary for new testers in the lab to perform an automated diagnosis. Many ATM
protocols can be used for diagnosis by the same automated tool. Automated diagnosis also
'mcreaseg efficiency by solving more problems that may not have been solved by already
existing methods including manual testing.

A decoder is also needed to make this diagnosis possible. A decoder allows testers to
get complete, correct and reliable decodes of data captured by different analyzers, and to

check and compare specific fields of different packets decoded. This is provided through a

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

user friendly interface for testers. The decoder decodes off-line the data captured by other
analyzers used by testers at the UNH-IOL.

In summary, testers need a tool that improves interoperability testing through automa-
tion, and whose interface and results are accepted by testers as useful. An automated tool
allows for less human intervention and hence decisions made about diagnosis are usually
more objective. It is possible for testers to automate many tasks through its friendly user in-
terface, including execution and report generation for individual test cases and test groups.
The reports produced are understandable by the lab customers (i.e., vendors), because they

follow the same structure defined in a test suite specification.

1.1.4 Model Debugging

Our objective is to have a system that detects and debugs inconsistencies in CSP models
built by testers. These inconsistencies originate from different sources. They may be in-
consistencies in the protocol specification document, in the test suite derived from it, or
from the modeling of test cases performed by testers. Independently of the origin of these
inconsistencies, we want to provide a way of detecting and resolving them. These incon-
sistencies are manifested as incompleteness or incorrectness of CSP models built by testers
for different test cases.

This leads to another important motivation, and that is to provide a general framework
for model acquisition and debugging. The idea is to develop automated ways to compensate
for incompleteness and incorrectness of models. This is very useful for debugging models.

It includes detecting inconsistencies and resolving them by either storing the information

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

about them for later use or by updating the model. Part of this motivation is to find a
taxonbmy of these inconsistencies. This provides a formal way for addressing different cases
of incompleteness and incorrectness. We use both a bottom-up approach where examples
from the domain of application are used as a starting point to come up with part of this
taxonomy, and a top-down approach where we look at the concept of CSP modeling and how
incompleteness and incorrectness can be manifested in these models. The development of a
taxonomy of deficiencies and associated fixes was also motivated by a similar architecture
in the work of (Winston 1975) on learning.

CBR implements the process of finding similar past occurrences and adapting them to
new situations. CBR supports debugging by providing a retrieval function that recalls how
previous problems were solved when a similar new problem is encountered. Cases that
represent incompleteness and incorrectness models of test cases are stored and include how
the debugging of these models is achieved.

The integration of CSP and CBR provides a framework where interoperability test
cases are modeled as CSPs and enhanced with debugging capabilities through the use of
CBR. In this dissertation, CBR is used with CSP and provides a module for updating and
debuggi;lg CSP models. CSP models represent the core of the system, and CBR adds the
missing elements in this model. CSP models are easier to use at first because of their
generalization. The effectiveness of CSP models increases as more problems are solved
because these models get updated by CBR as needed.

CSP model debugging enhances the correctness and completeness of test cases imple-

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

mented by testers that are represented as CSP models. This allows the refinement of these
models to become more robust for future testing. More details are provided in Chapter 4.

A model is debugged and updated through user interaction. This interaction with testers
assures the system'’s accuracy in reporting results. The adaptation of previous cases to new
ones is a major part of this interaction. The debugging component advises a tester by
retrieving the most similar cases from a case base, and provides the tools to revise the
retrieved cases. It also allows testers to make the final decision about how cases will be
adapted, reused, and eventually stored.

Testers expect easy access to model debugging and CBR components when a failure of
an interoperability test case occurs. For this reason, a friendly user interface that hides
many details of the CBR system from the user is also key to the success of this application.

The information on updating CSP models is represented in cases using a CSP language.
This assures uniformity of representation between the CSP models and the updating process.
The language used for updating CSP models is simple and is based on the same syntax of
the CSP modeling language. This makes it easy to understand by testers, to integrate with
the modeling language, and to use for updating models.

Deb;xgging also improves on diagnosis by generating useful explanations when diagnosis
does not. This is achieved through other types of cases that are stored in a case base to
represent actual explanations of interoperability problems when the explanation generated
by diagnosis is not useful. A new explanation of these problems is also stored in these

cases and can be recalled when future similar situations occur. These cases may not be

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

10

related to the incompleteness or incorrectness of CSP models because they may not include
information for updating models.

The cases stored in the case base are even more useful when the authors (i.e., testers) of
these are not available. Other testers can then make use of these cases. Cases for debugging

models from different protocols can be stored and reused.

1.2 Constraint Satisfaction Problems

1.2.1 Definition

Constraint satisfaction is a powerful and extensively used artificial intelligence paradigm
(Freuder & Mackworth 1992). It is a natural way of representing problems because the user
needs only to state the variables and constraints of the application domain to be modeled.
An n-ary constraint is a constraint involving n variables (e.g., a binary constraint involves
two variables).

In addition. CSP is applied in many different domains because of its simple but rich
representation. Constraint Satisfaction Problems (CSPs) involve finding values for variables
subject-to restrictions on which combinations of values are acceptable. A constraint graph
is a representation of the CSP where the vertices are variables of the problem. and the
edges are constraints between variables. Each variable has labels that are the potential
values it can be assigned. CSPs are solved using search (e.g., backtrack) and inference (e.g.,
arc consistency) methods. CSP representations and methods can be used for modeling and

solving many problems including interoperability testing.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

11
1.2.2 Overview -

One example that shows how CSP works is the coloring problem. A map coloring problem
can be stated as follows: ‘Given a map with NV regions bordering each other and M colors
that can be used to color each region. The problem is whether there is an assignment of
one of the colors to each region such that no two neighbors (i.e., regions that share at least

one border) have the same color.’ Figure 1.1 shows a map coloring problem.

Figure 1.1: Map Coloring Problem

This problem can be represented as a Constraint Satisfaction Problem. The variables of
this CSP represent the regions (X. Y and Z), the values are the different colors (red, blue
and green), and the constraints are that no neighboring regions have the same color (i.e.,
no two variables representing two neighboring regions can be assigned the same value).

The constraint graph of this CSP is shown in Figure 1.2. The nodes represent variables,
the labéls for each node represent the domain of values for the corresponding variable, and
the edges represent the constraints between different variables/nodes.

Many other toy problems such as the Queens problem can also be represented and solved
using CSP, and these problems have helped in developing methods and tools that are used
in real world applications. Many real world applications have used CSP for problem repre-

sentation and modeling as well as for problem solving. These applications include: design

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

12

Figure 1.2: Constraint Graph

(Bilgic & Fox 1996) and configuration (Sabin & Freuder 1996) (Weigel & Faltings 1998), di-
agnosis (Sabin et al. 1995a) (Sabin et al. 1995b), debugging, verification, graphics, decision
support, scheduling, planning (Avesani, Perini, & Ricci 1993), and resource allocation.

Different methods can be used to solve a CSP independently of the context of the
application. The main two problem solving techniques are: Search and Inference. There
are many algorithms that use search exclusively such as backtracking. Backtracking search
may have to explore the entire tree of possibilities to find a solution. Other algorithms
make use of inference such as Node Consistency (NC) and Arc Consistency (AC). Please
see Section 3.4.3 for more details.

Research and experience have shown that the most successful techniques for solving
CSPs are the ones that combine both search and inference. (Wallace 1996) states that
arc-consistency techniques and backtrack search have sufficed for a number of practical
applications of constraint programming. The question is then how and when do we combine
these two to get the best results. That depends on the domain of application, the size of
the problem. and the available resources (e.g.. memory, etc).

Figure 1.3 shows one solution of the map coloring problem of Figure 1.1.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

13

Figure 1.3: CSP Solution

The advantage of CSP is that it is a reasoning mode that provides both modeling and
problem solving within the same framework (Figure 1.4). CSP provides a very simple and
convenient way of representing problems since it is a natural and declarative approach to
modeling. CSP is also domain independent, because it can hide many domain specific issues
and be used at a more abstract level. When an application is represented as a CSP, it can
be solved independently of the initial context or domain of application. The CSP methods

are applied to the CSP representation of the problem. which hides the context used.

Variables

Problem Values ‘ Csp
Statement Algorithm

Constraints

[0[E[E]

CSP Representation

Figure 1.4: CSP for Problem Representation and Problem Solving

CSP provides many advanced algorithms to simplify or solve hard problems. CSP has

been used in many real world applications as a modeling and a problem solving tool. In fact

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

14

commercial constraint programming systems have moved “beyond the black box” (Puget &
Leconte 1995) and (Wallace 1996). Examples of problems that can naturally be expressed
in terms of constraints include scheduling, configuration, design and diagnosis problems.
These applications have improved the CSP paradigm and made it more widely used.
Because of the different applications and domains where the CSP paradigm has been
used, there were also some extensions to it such as Partial CSP (Freuder & Wallace 1992),
Dynamic CSP (Mittal & Falkenhainer 1990) and Composite CSP (Sabin & Freuder 1996)
that enhance CSP capabilities. The CSP has a solution if there is an assignment of values

to variables such that all the constraints are satisfied.

1.3 Interoperability Testing

One mission of the University of New Hampshire InterOperability Laboratory (UNH-IOL) is
to provide testing services for vendors of computer communications devices. The UNH-IOL
is mainly used by a community of over 200 vendors to verify the interoperability and/or
conformance of their computer communications products. This service of the UNH-IOL
is perfoxrmed through independent focused interest groups in the lab, namely consortiums.
The UNH-IOL currently has consortiums in operation to test many computer communica-
tions technologies, including Asynchronous Digital Subscriber Line (ADSL), Fast Ethernet
(100Base-T), Fibre Channel, Gigabit Ethernet, IPv6, MPLS, SHDSL. Voice over Broad-
band, Wireless, and others. Check http://www.iol.unh.edu for more information on the

UNH-IOL.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

http://www.iol.unh.edu

1.3.1 Problem Statement -

Networking Protocols are needed to specify how devices should behave in a specific envi-
ronment. The protocol specification is a standard that many companies agree to implement
on their hardware to assure compatibility with other vendors. One would assume that
when two vendors implement the same protocol using the same specification, their prod-
ucts supporting this protocol will interoperate without any problems. However, experience
has shown that this tends to be a false statement. because two devices that implement the

same protocol may not behave in the same way. This can happen for many reasons, some

of which are:
e The interpretation of the specification can be different from one vendor to another.

e The hardware used is different. The speed and memory size can affect the interaction

between two devices and may cause problems such as delays in sending messages.

o The tools used for implementation can be different. The programming language and

the operating system used can be different.
e Human error in coding and development of the implementation.

Interoperability testing is a diagnostic procedure that detects and debugs interoperabil-
ity problems. An interoperability problem is defined as a problem that occurs because the
two or more devices involved implement the same protocol but cannot communicate ap-
propriately. Figure 1.5 shows how interoperability testing is done. Devices A and B are

interoperable if the observations match the protocol specifications.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

16

Specifications (what should happen)

Observations (What really happens)

Interoperability Testing <=> Compare (Specifications, Observations)

Figure 1.3: Interoperability Testing of Devices A and B

The primary focus of interoperability testing is to monitor the ability of a product to
co-exist in a multiple vendor environment and operate with other products. In an industry
that has many products from different manufacturers, companies need to ensure that their
products are interoperable and remain competitive.

To make interoperability testing easier and more efficient. many organizations and com-
panies develop and maintain interoperability test suites. The test suites are a vehicle by
which vendors can verify that their products are interoperable and consistent with other
vendors’ products for the same technology. A test suite for a specific protocol is based on
that protocol specification. It usually breaks down the testing into basic and small tests,
each of which allows the testing of a particular issue in the corresponding protocol specifi-
cation. The idea of a test suite is to make it easier to pinpoint where the problem is without
having to test the whole protocol at once.

Another assumption that is frequently made is that the protocol specification and the

test suite specification are correct and consistent. However, both of these types of specifica-

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

17

tions may be incomplete, inconsistent, ambiguous or incorrect. -This may happen because

of the following:
e A statement in the specification may be incorrect because of a human error.

e Statements in one section may be inconsistent with statements in another one in the

protocol specification.

e Statements may be interpreted incorrectly when developing a test suite.

1.3.2 Environment: ATM Networks

The application domain used in this dissertation is interoperability testing of protocols
in ATM networks. The protocol we mainly used is the PNNI (Private Network-Network
Interface) protocol. The domain is generalized to many other ATM protocols such as MPOA
(Multiple Protocol Over ATM). LANE (Local Area Network Emulation), and others. This
shows that the system we developed can be used for other ATM protocols. Some results
of the evaluation of data for different protocols is presented in the evaluation sections of

different chapters.

e Asynchronous Transfer Mode

Asynchronous Transfer Mode (ATM) has emerged as a networking technology capable
of supporting all classes of traffic (e.g., voice, video. data). ATM uses fixed-size cells,
each having 5 bytes header and 48 bytes payload. This allows the switching and

multiplexing function to be done quickly and easily. ATM is a connection-oriented

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

18

technology. Thus, for two end systems to communicate, they need to establish a fixed
path through which they will send their data. Each connection is called a virtual
channel (VC). The virtual path identifier (VPI) and the virtual channel identifier
(VCI) are associated with a particular channel. Every cell will have this information
(VPI and VCI) in the header. In ATM, the network can guarantee a certain quality

of service (QoS) requested by the user.

o Private Network-Network Interface

The PNNI (Private Network-Network Interface) protocol provides dynamic routing,
supports QoS, hierarchical routing, and scales to very large networks (PNNI-1.0 1996).
Two devices (switches) running PNNI are able to send data to each other either via
a direct link or by using a route. More than two devices might be running the PNNI
protocol in the same network. but testing is usually performed using only two of these
devices. The PNNI protocol is composed of PNNI routing that includes discovery
of the topology of the network and becomes ready to route to different points in
the network, and PNNI signaling, which is responsible for dynamically establishing,
maintaining and clearing ATM connections between two ATM networks or two ATM
nodes (PNNI-1.0 1996). The PNNI routing protocol starts when the link is up. Ev-
ery switch should send HELLO packets (information about itself) during the Hello

Protocol phase.

¢ Interoperability Testing of the PNNI protocol in ATM Networks

Interoperability testing of PNNI allows us to detect problems that arise when two

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

19

or more devices supporting the PNNI protocol are conneeted. The network can be
large with many devices connected. But, for simplicity we propose to work on a two-
device network and perform interoperability testing on them. We assume that the two
devices have passed conformance testing to exclude problems that may be detected
by testing each device separately. Conformance testing checks whether a device reacts
to specific events as it is described in the protocol specifications. We base our work
on the ATM Forum document “AF-TEST-CSRA-0111.000" which provides the test

suite for performing PNNI interoperability testing (PNNI-IOP 1999).

The monitor gets all the data (observations) necessary to test the interoperability
of the devices attached to it. An observation is the data representing an event that
occurred. After we get the results of monitoring all the traffic between the two devices.

we analyze the data obtained and determine if both devices are interoperable.

1.3.3 Current Problem Solving Techniques

Interoperability testing is done by analyzing the data collected using monitors. These are
usually connected to a device being tested. Figure 1.6 shows the physical setup and the
steps fc;r interoperability testing.

When two devices that implement the same protocol are being tested. a monitor is placed
in the physical link that connects them. These two devices might be connected directly or
through a network connecting other devices. This monitor allows the collection of the data

that flows between the two devices. The monitor also provides the decoded version of

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

20

Device A Monitor

Figure 1.6: Physical Setup of Interoperability Testing

this data using the format of the protocol being tested. This decoded information is then
analyzed manually by the tester to check whether the two devices are interoperable. The
two devices are interoperable if the data observed by monitoring matches what is expected
(what is stated in the specifications of the protocol tested). In the case where they do not
match. an interoperability problem is suspected and the tester tries to explain what the
problem is, possibly why there is such problem. and how to solve it.

At the present. these tasks are done by the testers who work at the UNH-IOL. Do-
ing these steps manually has many disadvantages such as the large amount of time and
effort spent for the analysis of interoperability testing and in solving similar problems if
infom;tion on how they were solved in the past is not retained.

Test suites have been written to help in diagnosing the interoperability problems. But,

using a test suite manually does not solve the above mentioned issues.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

21
1.3.4 Proposed Problem Solving Technique

We want to provide a system that automates the process of analyzing data and debugging
the protocol and test suite specifications. This system should allow the user to easily state
the model of the test case to be performed using a constraint representation.

First, each test case from the test suite is modeled as a Constraint Satisfaction Problem
(CSP). CSP provides more flexibility than other formalisms in the representation of the
packets and constraints that must be satisfied. In addition. CSP is declarative, meaning
that the user can just state the test case packets (i.e., metavariables) and the constraints
relating them. Chapter 2 discusses this in more detail.

Second. the diagnosis is done by checking whether all the constraints are satisfied. If a
diagnosis of the problem is found, then it is reported. This is discussed in Chapter 3.

When the system is unable to correctly diagnose the problem. CBR is applied to debug
what is missing in the model of the test specification. because the model may be incomplete
or incorrect. CBR is also used to remember how previous problems were solved. This is
the subject of Chapter 4. where we expand more on the debugging component of ADIOP

and the integration of CSP and CBR.

1.4 CSP Modeling for Interoperability Testing

In this dissertation we are interested in modeling interoperability testing using CSPs. We
developed a simple modeling language that allows testers to build CSP models of inter-

operability test cases. This is a declarative language based on CSP and Object-Oriented

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

22

Programming (OOP). We use metavariables and metavalues for the representation of pack-
ets and their assignments for a range of ATM protocols. Each field in a packet is a CSP
variable that can be used alone or with other variables to define constraints in CSP models.

CSP models are derived from test cases in a test suite based on a protocol specifica-
tion. A CSP model of one test case can then be used to test the interoperability of one
functionality of two devices by checking the observations (i.e., captured data) against this
model (Figure 1.7). In this dissertation, each test case is modeled as a CSP. This guarantees
that the CSPs obtained are small and can be solved efficiently. This is also closer to how
interoperability testing is done in industry since the companies testing their devices prefer

to get a report of specific test cases and failures.

Figure 1.7: CSP Modeling and Diagnosis for Interoperability Testing

We also propose to use the Object-Oriented approach to model these test cases. The

choice of this approach for implementation is detailed in Chapter 2. ADIOP is implemented

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

23

using the Java language that provides the development tools for OOP including GUl-based
applications. In this approach. each packet is represented as an object. An object defines
a set of variables and implements methods for decoding the packet it represents. For each
test case, a CSP model is generated and represented as an object with metavariables and
constraints as its parameters and methods respectively.

The modeling interface is a Graphical User Interface (GUI). A user-friendly interface is
important for the ADIOP application so the tester can find it easy to use. This also allows
us to obtain an evaluation from the testers on this application. The GUI used for modeling
allows testers to declare efficiently metavariables. domains, and constraints. The user does
not have to know the details of the objects defined in a CSP.

A CSP model is stated in a declarative way. The user needs to define the packets that
are expected to be observed for the test case to pass. These packets are represented as
objects. An example of a CSP model for test case V4301H__001 from the PNNI Rout-
ing interoperability test suite document (PNNI-IOP 1999) is stated in Figure 1.8 where
1WayIn(A) and 1WayIn(B) are the metavariables and Type. Time, etc. are the vari-
ables. The variables presented in this figure are only a subset of all this model’s variables.
We use 'here a simple example to be able to show the modeling process without too many
details that may prevent the understanding of how this is done in ADIOP. In this example,
device A is expected to send a packet of type Hello, namely 1WayInA. to device B. And
device B is expected to send a packet of type Hello, namely 1WayInB, to device A. These

two devices must be in the same peer group. This is the first step of the PNNI routing

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

24

protocol when the two devices belong to the same peer group. -A PNNI network forms a
hierarchy where the lowest-level nodes (i.e., devices) are organized into peer groups. A peer
group is a collection of nodes, each of which exchanges information with other members of
the group, such that all members maintain an identical view of the group. PGID used in

Figure 1.8 stands for Peer Group [Dentifier. More details can be found in (PNNI-1.0 1996).

1Wayln(A) 1Wayin(B)

Figure 1.8: A Modeling Example

The following is a CSP representation of this test case using the modeling language

defined in this dissertation:

$CSP
$PROTOCOL PnniRout
" $PACKET OneWayInA Hello
SPACKET OneWayInB Hello
$BINARY _CONSTRAINT OneWayInA.source != OneWaylnB.source
$BINARY_CONSTRAINT OneWayInA.time < OneWayInB.time
$BINARY_CONSTRAINT OneWayInA.peer_group_id == OneWayInB.peer_group_id
$ENDCSP

The constraints may be either unary or binary. The unary constraints are the restrictions

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

25

on the variable’s domain. For example, in the 1WayQOut(A) packet, the variable Type can
only be assigned the value “Hello”. The binary constraints are restrictions on the relation
between two variables’ domains. For example, there is a < constraint between the Time

variable of the 1WayOut(A) packet and the Time variable of the 1WayOut(B) packet.

1.5 Diagnosis of Interoperability Problems

In this dissertation we are interested in how CSP models are used to diagnose interop-
erability problems. Figure 1.7 shows how diagnosis of interoperability problems interacts
with modeling. The use of CSP for modeling allows us to take advantage of methods
and algorithms that already exist for solving CSPs. These algorithms are adapted to take
advantage of the specialized problem domain structure. This provides a better diagnosis
of the interoperability problems including a useful and concise explanation of the testing
performed.

The decoding component is responsible for taking the data captured by one analyzer
and decoding it to a format that can be used by ADIOP for diagnosis. The outcome of
decoding is the decoded observations that represent one input for the diagnosis component.
The other input is one CSP model (See Figure 1.7).

The diagnosis component takes the decoded observations from the decoding component
and checks if they match the CSP model of the test case being used. In terms of CSP,
this means that the decoded observations are metavalues that metavariables can be as-

signed. The model includes the metavariables that are defined in the test case as well as

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

26

the constraints that need to be satisfied. -

Different algorithms are being used for this purpose. There are many CSP methods
that one can make use of when the problem is represented as a CSP. The problem solving
methods in CSP have ranged from pure search (e.g., backtrack) to inference (e.g., arc
consistency). The first algorithm we make use of in our application is simple backtracking.
This algorithm is adapted to the OO-based CSP presented in this dissertation. Hence, we
use metavariables and metavalues instead of variables and values. Section 2.4 describes in
more details the concepts of metavariables and metavalues.

We propose to use search supplemented by consistency inference methods in a CSP
context to support explanations of the problem solving behavior that are considerably more
meaningful than a trace of a search process would be. Constraint satisfaction problems are
typically solved using search. augmented by general purpose consistency inference methods.

Our focus in this dissertation is on how to provide testers with a human-like explanation
for interoperability testing. When using only search and there is no solution to the test
case being executed. the explanation reported for the interoperability problem detected is
not very meaningful to the user. We propose to use some specialized inferences, using CSP,
that a.ré related to the problem domain structure to generate human-like explanations for
the diagnosis of interoperability test cases.

Inference is used mainly to reduce the domains of metavariables. One of these specialized
inferences is node consistency at the metavariable level. Node Consistency checks whether

constraints involving one variable, (e.g., V' < 3)) are satisfied. We call this MetaVariable

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

27

Consistency (MVC). The different results that the inference leads to are used as the input
to some predefined templates used for different kinds of explanations. The user then gets a
useful explanation for the outcome of a test case execution.

After a user runs a test case, a report is generated. Reports are generated for individual
test cases and test groups. Both reports can be printed by the user and they provide the
information that the customer needs for the interoperability testing of their equipment.

In addition to the reduction of time and effort for solving the problem, the inference
process allows for explanations in some cases when no solution is found. The time reduction
is even greater when the preprocessing leads to solving the problem since no backtracking
is necessary in this case.

An example of the diagnosis and explanation generated for test case V4301H__007
from the interoperability test suite document (PNNI-IOP 1999) of the PNNI Routing pro-
tocol. where an explanation template generated by an inference is used, is shown in Figure
1.9. The purpose of test case V4301H_007 is to verify that after receiving a Hello (1-
WaylnsideReceived) that the System Under Test (SUT) acknowledges the remote identifi-
cation information. Four packets are required in this test case, but only three were observed

in the czlptured data.

1.6 Debugging CSP Models

A CSP model of a test case can be incomplete or incorrect because:

e The interactions with the external world are unknown,

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

28

L A - i .
é}i&f«xﬁ‘?«-’l«:‘v&s s

% ! e .
e ol L S N P

Figure 1.9: Diagnosis Example using an Explanation Template

e The modeling is done by a human being, who may miss or interpret incorrectly some

information.

In addition. the protocol and the test suite specifications may be incomplete, inconsis-
tent, ambiguous or incorrect. And if many protocols are running at the same time between
two devices, they may cause the wrong behavior of one protocol due to the external inter-
actions with the other. For example. when we enable one ATM protocol on a device, the
behavior of another ATM protocol on the same device changes.

We suggest debugging models of interoperability test cases by integrating two modes of
reasoning: constraint-based and case-based. The first step is modeling a test case as a CSP.
This model may be incomplete or incorrect. We propose to compensate for incompieteness
and incorrectness by using the expert’s knowledge about this domain, this domain’s external

interactions, and the flaws it may contain.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

29

We represent interoperability test cases as CSP models supported by a case base to com-
pensate for incompleteness and incorrectness. In Figure 1.10, we show how CBR and CSP
are combined to solve these problems. If the results obtained using CSP are inconsistent,
CBR is then used to check and debug the CSP model. This model is eventually updated

and a new case is stored in the case base.

Figure 1.10: Integration of CSP Model and CBR for Interoperability Testing

We 'are also interested in contributing in terms of the larger CSP domain by acquiring
a taxonomy of types of model incompleteness and incorrectness. and associated ways to
identify and fix them.

The reliance on past experience that is such an integral part of human problem solving

has motivated the use of case-based reasoning (CBR) techniques. A CBR system stores its

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

30

past problem solving episodes as cases which later can be retrieved and reused to help solve
a new problem.

The process by which a case-based reasoner operates has been described by (Aamodt &
Plaza 1994) as a cyclical process comprised of the four REs: RETRIEVE the most similar
case(s), REUSE the case(s) to solve the problem, REVISE the proposed solution if necessary,
and RETAIN the new solution as a new case. The application of this CBR cycle to real
problems raises a common set of issues, regardless of the domain of application. These issues
include case representation. indexing, storage, retrieval method, and adaptation method.
We can abstract the CBR process as one of recalling an old similar problem. and adapting
that problem to fit the new situation requirements.

A case is usually composed of a problem description and its solution. Whenever there
is a new problem. it is matched to what is already in the case base using similarity metrics
such as n-grams for string matching. This will be detailed in Chapter 4. Then the useful
cases are retrieved and adapted to the new problem to provide a solution. The new case
(problem and its solution) will be stored in the case base if it provides new information.

Some of the cases stored in the case base originate from the incompleteness and incor-
rectness of the CSP model. In this case, the case stored contains statements for updating
the CSP model and making it complete and correct. These cases can then be used in the
future to help with similar problems and update other incomplete or incorrect models.

Search and inference methods may fail to generate useful explanations for some interop-

erability problems. We suggest to store these problems in the case base with an explanation

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

31

of the solution provided by experienced testers. Each problem and its solution constitute
one case. These cases originate from interoperability problems with a non-useful, incorrect,
or incomplete explanation. These cases can then be reused to provide testers with a better,
correct, and more compiete explanations for future similar interoperability problems.

Different CBR phases are addressed in this dissertation including case retrieval, case
adaptation, case revision and case storage.

We use a structural CBR approach for case representation where we decide manually
ahead of time what features will be relevant when describing a case, and then we store the
cases according to these.

When a new failure occurs, the CBR system (ADIOP’s Advisor) constructs a new case
and retrieves old cases from the case base that are similar to it. Case retrieval deals with
finding ways to match and compare different cases and measure similarity between them,
to come up with a solution similar to old ones. This requires the use of algorithms for
comparing different features’ values and measuring distances between them, defining weights
for these features, and methods or formulas for computing the global similarity between old
and new cases. We combine both syntactic and semantic similarity measures depending on
each fee;ture. For each feature, we provide a distance function. Some features are not used
for computing the global similarity and thus have no distance functions associated with
them. The distance between two strings is computed using n-grams (Damashek 1995). The
weight describes the relative importance of each attribute/feature. We have used different

values for the weights. The weights are chosen by an expert using this system and can

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

32

be adjusted later as needed. The global similarity is computed-using a Nearest Neighbor
Retrieval equation, which is explained in Chapter 4. If there is a similar case to the new
case in the case base, then the user may manually choose this one as the case to be reused
and adapted in the new situation.

For adaptation, there are few basic rules that the ADIOP system uses to adapt the case
and the user has to confirm this or makes updates to this adaptation. When the user has
made all the changes and adapted the new case using a similar case, she/he can revise the
adapted case.

If the new revised case is different from old cases in the case base. then the user may
choose to retain this case in the case base. If the similarity between all the old cases in
the case base and the new one is less than a certain threshold value, then the user should
consider adding the new case to the case base. Chapter 4 provides more details on these
CBR phases.

ADIOP provides functionality to update the model of a test case that led to a failure
caused by incompleteness/incorrectness of this model. The statements on the “Update
Model” feature of a case are used for this purpose. These can be either: add, delete. or
update étatements. A statement can be a constraint, a variable, etc. stated using the same
CSP modeling language presented earlier.

Using test case V4302H--005 from the interoperability test suite document (PNNI-IOP
1999) of the PNNI Routing protocol. Figure 1.11 represents the time variables and the

constraints between them of the corresponding CSP model. The purpose of test case

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

33

V4302H__005 is to verify that the SUTs determine that they are in different peer groups.
Four packets are required in this test case to check that the two devices are in different peer
groups. In this example we want to demonstrate how a CSP model of a test case is updated

using the CBR process. We show how we can compensate for an incorrect model.

1WayOut(A) 1WayOui(B) 2WayOut(A)

2WayOuy(B)

Figure 1.11: Initial CSP Model of the Time Variables of Test Case ID: V4302H._005

For the model in Figure 1.11, the following are some of the results we may observe:

e Observation X: Where no packets are observed between the two devices tested. It
can be concluded from this observation that the test case fails as we expected to

observe four packets.

e Observation Y: Where all four packets showing in the CSP model are observed in
the captured data. These packets also satisfy all the constraints of this model. Then,

it can be concluded from this observation that the test case passes.

¢ Observation Z: Where only three packets of the four showing in the CSP model
are observed in the captured data. 1WayOut(B) is not observed. According to this

observation, it can be concluded that the test case fails because one packet is missing.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

34

The tester wants to check whether the conclusion made about the test case failure in
Observation Z is correct or whether there is an inconsistency in the model. The tester uses
the CBR process in ADIOP to perform this. ADIOP looks in the case base for a previous
similar case to check whether the CSP model of this test case is incorrect. The similar case

retrieved from the case base and reused for solving this problem is presented in Figure 1.12.

1ndex: Cae packet xnissisg
type: lacorrect Nedsl
protocel paairout
section: 430
testcase: V4302E__002
testpurpose : VYerify that a FNEI versien mumber i3 agreed upem.
testprevequisite: Both SUTs are S50 and ia differest lowest level peer groups.-
dasa: other/PENI.PRN
failurecanse: There aTe fower chaerved packets sf typs Nello than what is stated ia the model of this tess.
probles: The second Bello packet (Bellold) is missiag
solutiom: The secosd Bello packet (Nelleid) is mede optismal
outceans: Hedel up ag added, ble bt set cemformast
sodelupdats ADD SUBARY_CONSTRAINT louoll status == D_Optiemal
ADD: SEINARY_CONSTRAINT Sellotd.time <= Sellolh.time
ADD: SBINARY_ CONSTRAINT Bellels.sime <= BollolB.time
orD: Belloll.pesr_group_id Relleld.peer_grosp._id
aDD SCONSTRAINT Belle2h.time BellolS.time D_NMand Y. (.Bellots.)l

Compare.compare(.Bol1028.t2m0, “<o, _Bello2.tise)
Figure 1.12: Retrieved Similar Case Example
CSP/CBR integration is applied to compensate for incompleteness and incorrectness in
a CSP model and to debug it. When the example of Figure 1.11 is found to be incorrect,
CBR is applied. With the user confirmation, the test case model is updated using the
statements from the revised/retained case.
The updated test case CSP model contains the statements of update adapted from Case

1 (Figure 1.12) and shown in Figure 1.13.

uiun_msmm OnedayQuta.peer_group_id 'c TweliayOuth.peer_group.id $ Autemated Nedel Update (Statemeat Update) usiag Case:
SiaCaselium: 1 8

SUNARY _CONSTRAZNT M.yonln.m-nmunx 8 Autemsted Nodel Update (Statemsat Additien) using Case: SiaCaseliwm: i 8

SBINARY_CONSTRAINT (» A.time <o Twellay time 8 Nodel Update (Statemeat Additiom) usiag Case: SimCasellwm: 1 8
SEINARY, mm Onsliay tine <- TvellayOutl.tine ¢ lh‘ox Mu (Statemsnt Additiem) uuc Case: SisCaselhwm: 1 #
SCONSTRAINT yOutd.time T Y 8.time D, ¢ } |l Compate.csmpare(.’ y .time,

“cu”, _TwellayOuth.time) 8 d Nedel Update (:uu-n Mditios) using Case: SiaCaselm: 2 8

Figure 1.13: Updated Test Case CSP Model

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

35

Using Case 1, the initial CSP model of Figure 1.11 is updated, and becomes as follows:

Figure 1.14: Corrected CSP Model of Figure 1.11

This problem happened because of misinterpretation of the specifications that caused an
incorrectness in test V4302H__005 of the test suite. When the model was corrected (Figure

1.14). the two observations Y and Z pass this test case.

1.7 Evaluation

The goal of the evaluation is to obtain empirical support for some of the claims made in
this dissertation. The evaluation sections of the different chapters present more detailed
comparisons of manual versus automated interoperability testing gathered from a question-
naire used by testers (See Appendix B). The testers also provide a survey rating ADIOP
on its different aspects. In addition. we present evaluations of the different methods used

including the diagnosis algorithms and the CBR system.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

36

1.8 Contributions

The main contribution of this dissertation is in the applicability of CSP modeling, Constraint-
based diagnosis, and CSP model debugging using CBR in the domain of interoperability

testing of networking protocols.

1.8.1 Interoperability Testing

o We present a partly automated system, namely ADIOP, to perform interoperability
testing. It provides a user friendly interface for testers to create test cases for different
types of protocols and to diagnose decoded data captured from different analyzers.
This makes it more general than many of the existing tools used in the UNH-IOL.
These tools are usually an extension to a specific analyzer and can only work on data
captured using it. The addition of more types of protocols and decoders to the ADIOP
system is also possible. ADIOP provides the lab with a tool for storing test cases and
past experiences. This makes it possible to perform testing and generate reports at
any time by testers even if they do not have expertise with the protocol being tested.
ADIOP is useful for the UNH-IOL since the experience from testers is kept even after

they leave, and can be reused.

o Inconsistencies in the protocol and/or test suite specifications can be detected and

debugged through the use of a CSP/CBR integration to update inconsistent models.

o We developed a prototype, namely ADIOP, that uses many types of protocols and

analyzers. ADIOP provides a time efficient solution to interoperability testing. It

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

37

has capabilities to generate human-like explanations of the cause of success or failure
using specialized methods and algorithms, and to generate reports for sections of the
interoperability test suites as requested by UNH-IOL customers. All the protocols and
test cases are dynamically loaded in ADIOP which makes it possible to have more
protocols and/or test cases added with minimal changes to the code. We have also

performed surveys and evaluations on ADIOP that supports these claims.

1.8.2 Constraint Satisfaction Problems

e We define a new modeling language using CSP and OOP that can be used by testers
to implement interoperability test cases. This language is simple, declarative, and
transparent. The OO approach provides a natural, concise, scalable and reusable
framework for model building. ADIOP provides a GUI for building models with

minimal knowledge of the content of protocols and packets being used.

e A major part of the process of model acquisition is automated. Once testers have a
high level understanding of the test case description, they can state it in terms of the
CSP modeling language. The GUI of ADIOP makes it even easier to state a CSP
n;odel since it shows all the different options testers can use including packets to be

observed between devices and constraints to be satisfied for interoperability purposes.

e Another contribution in modeling is a novel use of Object-Oriented programming
in conjunction with CSP modeling. The notion of Metavariable is introduced and

allows more flexibility of representation of variables encapsulated in an object. This

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

38

provides an easier definition of variables within objects that have already been stored

in a library of objects. Values are also represented as objects, namely Metavalues.

e We introduce the notion of an optional variable and adapted the algorithms used to

include the processing of optional variables.

e We improve and adapt the algorithms used in CSP to allow for the diagnosis of inter-
operability problems and the generation of useful human-like explanations. We use
search supplemented by consistency inference methods in an OO-based CSP context
to support the generation of explanations of the problem solving behavior that are

considerably more meaningful to testers.

o We describe how CBR is used to debug and eventually update CSP models. To our
knowledge, previous CBR-CSP integrations do not include this kind of integration.
This provides a framework for adding CBR to CSP. This also provides ways of com-
pensating for incompleteness and incorrectness in CSP models. CSP is enhanced by
the CBR results. The effectiveness of the model increases as more problems are solved.

because the CSP model gets updated as needed.

e We acquire a taxonomy of types of CSP model incompleteness and incorrectness and
how to identify and fix one of these types. We describe how CBR is used to update

CSP models and debug interoperability test cases.

e The ADIOP system implements and supports many of these claims. From a test case

model definition that hides detailed information. a tester can build a CSP model for

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

39

this test case, run it, and generate reports to deliver to UNH-IOL customers. The

evaluations included in the different chapters support many of the claims made here.

1.8.3 Case-Based Reasoning

e In this dissertation. CBR supports CSP by providing a module for updating and
debugging CSP models. CBR recalls previous cases when a similar problem is en-
countered. Cases that represent incompleteness and incorrectness in the model are

stored in addition to the ways these are solved.

e CBR is also used to store and retrieve cases that are related to interoperability prob-
lems where the explanation provided is not complete. Thus, CBR is used to recall

similar previous useful explanations.

e The use of CSP provides models for test cases and thus gives a general view of these
test cases. If CBR was used exclusively. we would need to gather initial test cases
for many situations that then have to be generalized to capture the same information
captured in a CSP model. The use of CSP is simpler and models all the information
of an interoperability test case in one CSP. CBR captures new interoperability expe-
riences including those for correcting and completing CSP models. This means that
CSP is used as first layer of reasoning and CBR as a second one. CBR then takes

advantage of the generalities provided by CSP.

e We describe how cases in the case base are defined to include information about

updating models. This information is stated using a CSP language similar to the

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

40

CSP modeling language used in ADIOP. This provides a uniformity of representation

between CBR and CSP to simplify their integration.

o We developed a working prototype as part of ADIOP that uses CBR to generate

better explanations and update inconsistent models.

1.9 Dissertation Outline

In Chapter 2. we describe the CSP modeling process in the interoperability testing domain
and the use of object-oriented programming. We present a simple modeling language that
allows the user to build models of the interoperability test cases. We discuss the use of
Object-Oriented Programming (OOP) in conjunction with CSP. Each test case is modeled
as a CSP using a many-models architecture and represented as an object.

In Chapter 3. we discuss how we use CSP models to diagnose interoperability problems.
CSP algorithms are adapted to take advantage of the specialized problem domain structure.
This provides a better diagnosis of the interoperability problems including the generation
of human-like explanations of the testing performed.

In Chapter 4. we present a taxonomy of types of incompleteness and incorrectness and
how to debug one of them. We discuss the CBR process for debugging and updating
models. We describe two types of cases stored in CBR. There are cases that originate
from the incompleteness and incorrectness of CSP models. Other cases originate from
interoperability problems with a non-useful, incorrect or incomplete explanation. All these

cases are reused when future similar situations occur.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

41

Chapter 5 concludes this dissertation and gives directions for future research.

ADIOP (Automated Diagnosis of InterOperability Problems) is the implementation of
a system that includes CSP modeling using OOP, case-based diagnosis and CSP model
debugging. A Graphical User Interface (GUI) is used by the ADIOP system and provides a
user-friendly interaction with testers. Appendix C includes the User Manual for ADIOP v2.0
including an overview of the different components implemented. In all the main chapters, an
evaluation is performed using ADIOP, and its results are presented and analyzed. Appendix

B includes the questionnaire used by testers for evaluating ADIOP.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 2

CSP Modeling Using Object-Oriented Programming

In this chapter we present a simple modeling language that allows the user to build models
of the interoperability test cases. Interoperability testing involves checking the degree of
compatibility between two networking devices that implement the same protocol. The

" Constraint Satisfaction Problem (CSP) paradigm provides a uniform framework based on
a declarative language for an accurate representation of the model.

We discuss the use of Object-Oriented Programming (OOP) in conjunction with CSP.
The notion of Metavariable is introduced and allows increased representational flexibility of
variables encapsulated in an object. Values also are represented as objects namely Metaval-
ues.

Each test case is modeled as a CSP and represented as an object with metavariables
and constraints as its parameters and methods respectively. These objects inherit all the
information on how to construct metavariables from a class hierarchy.

ADIOP (Automated Diagnosis of InterOperability Problems) is the implementation of a
system that includes CSP modeling using OOP. A modeling interface based on a Graphical

User Interface (GUI) is used by the ADIOP system and provides a user-friendly interaction

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

43

with the tester. The diagnosing part of ADIOP is addressed in detail in Chapter 3.

2.1 Modeling and Constraint Satisfaction Problems

A Constraint Satisfaction Problem (CSP) consists of a set of variables, a set of constraints
relating these variables and a set of domains of values for the variables. A solution to the
CSP is an assignment of domains’ values to variables such that all constraints are satisfied.
In our domain of application, CSP is used as a modeling tool and as a problem solving
mechanism. One of the main contributions of this dissertation is in modeling interoperabil-
ity test cases. CSP is useful in modeling because it is declarative and powerful in expressing
and describing many application domains. (Wallace 1996) states that “One major contri-
bution of constraints is to problem modeling. It has been claimed that ‘constraints are the
normal language of discourse for many applications.” Whilst this advantage pays off in all
applications. it is central to the design and verification of VLSI circuits and to the specifi-
cation. development, and verification of control software for electro-mechanical systems.”
There are two sides to our modeling work: one is how we model efficiently the problems
and second how to make this model a better one by debugging it. In this chapter. we discuss
the first part which involves CSP modeling using Object-Oriented Programming (OOP).

Model debugging will be discussed in Chapter 4.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

2.2 Modeling Interoperability Testing -

A protocol specification is usually written by an organization such as a standardization
body (e.g., ISO) and others (e.g.. ATM Forum (ATMF)). Most specifications used to im-
plement ATM protocols are taken from the ATMF. From this protocol specification a test
suite might be written by one of these organizations. The protocol we are using in this
dissertation is PNNI (Private Network-Network Interface), and ATMF provides both the
protocol specification and the interoperability test suite documents.

The interoperability test suite is a set of test cases organized into sections. Each section
allows for the testing of a part of the protocol. Each section contains a set of interoperability
test cases. Each test case tests for a specific issue in the protocol. Each test case is described
in detail as to what configuration should be used, what are the steps to follow in testing
and what is the verdict criteria to use in deciding whether this test case passes or fails.
Creating manually a test suite is a major first step before modeling and automating test
cases. In this dissertation. we use a test suite that has been specified and approved by
ATMF. A detailed description of a test case layout taken from (PNNI-IOP 1999) can be
found in Appendix A.

Each test case’s result provides very specific and limited information about the devices
being tested. When all the test cases are combined, the result is a detailed interoperability

testing of each aspect of the protocol.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

2.2.1 One Model Architecture -

In interoperability testing, we want to test whether two devices when connected behave
correctly according to the statements in the protocol specification. One way of doing this

is by modeling the entire protocol specification as one CSP (Sqalli & Freuder 1996a) (Riese

1993a) (Riese 1993b).

Definition 2.1 (Observations) : Observations can mean either monitored observations
or decoded observations. They represent the same data in different format. Monitored
observations are the packets/frames that are captured between two devices using an ana-
lyzer. The data flow between two devices is captured by analyzers as binary, converted into
Hezadecimal format and then decoded to tert according to the protocol specification (e.g.,
(PNNI-1.0 1996)). Decoded observations are data in tert format that is used by testers for

checking the interoperability of devices.

This CSP model can then be used to test the interoperability of two devices by checking
the observations against the CSP model (Figure 2.1). One assumption made here is that
the observations captured by the different analyzers are correct.

There are advantages and disadvantages to this modeling approach. The advantages are

that:
e There is only one model to use

e The model is taken from the protocol specification directly, so there should be fewer

inconsistencies in this model than if the model were built from a test suite that is

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

46

LY.; No J

Figure 2.1: One Model Architecture

itself derived from the protocol specification

o There is no duplication of testing as occurs in test suites where two different test cases

may have a common testing part

The disadvantages of this approach are:

The model is too complex to state and to use since it must represent the behavior of

all the steps in a protocol

If there is a problem in the observations, it is hard to pinpoint the cause of the failure

It is more convenient/preferred by vendors and testers alike to use different test cases

for different parts of the same protocol than to have just one large test case

It is difficult to create interoperability testing reports and to explain what happened

in testing

It is difficult to update the model in case of an error in its statement

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

47
2.2.2 Many Models Architecture -

In this design, the CSP models are derived from the test cases in the test suite written
from the protocol specification. We use a test suite that has been specified and approved
by ATMF. A test case CSP model can then be used to test the interoperability of one
functionality of two devices by checking the observations against this model (Figure 2.2).

In this dissertation, we use this form of modeling, where each test case is represented as a

CSP.

Figure 2.2: Many Models Architecture

The observations represent a set of packets captured. Each packet has many fields as
defined in the corresponding protocol specification. The data contained in these fields rep-
resent the values that are assigned to the corresponding variables in the model (See example
in Figure 2.3). The constraints defined in the CSP model are checked for consistency. If all
the constraints are satisfied for an assignment. then the interoperability test case passes.

This is then repeated for each test case in the test suite.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

48

A captured PNNI Hello packet
Offset 0 10 2
Data(Hex) .es ..
Field same

.
.
]
'
]
[
t
'
'
'
'
]
[
'
v

The CSP Metavariable for a PNNI Hello packet type
(refers to the packet’s structure)

Figure 2.3: CSP Variable Assignment

The advantages of this form of modeling are that:

o It is easy to create models for specific test cases

e Models are easy to work with (i.e., use. debug, etc) because they are small
e It is easier to generate reports for interoperability testing

e This is closer to how interoperability testing is done

° It.is easier to give explanations using small models

There are disadvantages to this form of modeling:

e We need to write as many models as there are test cases. This is alleviated in our

system ADIOP by providing a tool that makes it easy to create models

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

49

e More inconsistencies might be added to the model, since there are errors that might
originate from the protocol specification or from the interoperability testing docu-
ment. In ADIOP, the debugger, presented in Chapter 4, addresses inconsistencies

independently of their origin

e Some parts of testing might be included in more than one test case causing redundant
testing. One example of this is that the initial part of a protocol might be included
in more than one test case. This is not a major concern since we can copy parts of

one model into another one.

2.3 Object-Oriented Programming

Object-Oriented Programming (OOP) has become a very widely used paradigm in software
development. Its success can be attributed to its natural way of modeling real-world objects.
Many languages are OO such as C++ and Java. Java has combined the benefits of many of
its predecessor programming languages. Java also conveniently provides the development
tools for GUI-based and web-based software. Our system ADIOP is implemented using
Java. In this section, we define some of the OO terms we use in this dissertation.

(Booch 1994) states that: “An object has state, behavior, and identity; the structure
and behavior of similar objects are defined in their common class; the terms instance and
object are interchangeable”. More programming-oriented definitions of objects and classes

are stated in (Campione & Walrath 1998) as the following:

Definition 2.2 An object is a software bundle of variables and related methods.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

50

Definition 2.3 A class is a blueprint, or prototype, that defines the variables and the meth-

ods common to all objects of a certain kind.

In the OO terminology, a particular object is called an instance of a class. In the same
way we use the term instance variables and instance methods. A class is a set of objects
that share a common structure and behavior.

The difference between classes and objects is often the source of confusion. In the real
world, it’s obvious that classes are not themselves objects they describe: A blueprint of
a bicycle is not a bicycle. However, it's a little more difficult to differentiate classes and
objects in software. This is partially because software objects are merely electronic models
of real-world objects or abstract concepts in the first place. But it’s also because the term
“object” is sometimes used to refer to both classes and instances (Campione & Walrath
1998).

In this dissertation, we refer to class as the implementation of a class of objects. and to
object as one instance of this class. For example, when we refer to the Hello class. we mean
the implemented Hello class, and when we refer to a Hello object, we mean a particular
object defined to be from the Hello class, which may have a name such as OneWayInA.
We also use the name “parameter” to refer to an object’s variable so that there is no
confusion between CSP variables and object’s variables.

There are many properties in OOP that make modeling more efficient. Two of which
we are interested in here are: Encapsulation and Inheritance. (Coad & Yourdon 1991)

defines: “Encapsulation (Information Hiding). A principle, used when developing an overall

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

51

program structure, that each component of a program should encapsulate or hide a single
design decision... The interface to each module is defined in such a way as to reveal as little
as possible about its inner workings. [Oxford, 1986]"

Encapsulating related variables and methods into a neat software bundle is a simple yet
powerful idea that provides two primary benefits to software developers: modularity and
information hiding (Campione & Walrath 1998). Modularity means that objects can be
created and maintained independently of other objects. This makes it easy to use the same
object by different components of the system. Information hiding means that an object
can have private information that other objects cannot access but they can still use its
functionality.

Inheritance is the ability to define classes in terms of other classes. A subclass inherits
variables and methods from a superclass. Subclasses can add variables and methods of
their own to the ones they inherit, and they can override inherited methods. This is called
specialization. Superclasses can be of abstract nature. An abstract class defines the behavior

that subclasses can inherit. Inheritance can be of many levels to constitute a class hierarchy.

2.4 Description of the CSP Modeling Process

In terms of modeling, we propose to model each test case from the test suite as a CSP.
This guarantees that the CSPs obtained are small and can be solved efficiently. This is also
closer to how interoperability testing is done in the real world since the companies testing

their devices prefer to get a report of specific tests and failures. The breakdown of the

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

52

interoperability testing into small test cases provided by a test suite, written manually by
experts, allows us to do incremental testing and to easily detect problems at each level of
this testing.

We also propose to use the Object-Oriented methodology to model these test cases.
In interoperability testing, an analyzer is usually used to collect data between the two
devices being tested. The data collected is then decoded as packets. Hence, it is natural
to represent the CSP in term of packets. Each packet contains many fields that should be
checked against other packets’ fields to test for interoperability. Since the constraints exist
between the packets’ fields, we represent each field as a variable in the CSP. The constraints
represent restrictions on these variables.

However, it is tedious work to state each one of these variables separately because a
packet may contain a large number of fields and a tester may not remember all of these
for each type of packet. The idea is then to represent a packet definition as a metavariable
in the CSP representation and each observed packet as a metavalue. A metavariable or a
metavalue is respectively an object or instantiation of an object representing a packet.

For each packet type. a class of objects is defined. Each packet is an object of one of
these cla;sses that corresponds to its type. Each class of objects includes parameters, some
of which are the packets’ fields, and methods needed by these objects to manipulate the

packets’ data.

Definition 2.4 (Metavariable) : A metavariable in the CSP model refers to the repre-

sentation of a packet that encompasses many variables. Some of these variables are the

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

53

packet’ fields describing the content of the packet. Four other variables are taken from the
captured data and added to the metavariable structure are: time, source, protocol, and
status. A variable of this metavariable can be itself a metavariable encompassing many

other variables. This can be ezpanded down hierarchically.

Definition 2.5 (Metavalue) : A metavalue in the CSP model refers to the data captured

in a packet. This data is used to instantiate a metavariable.

Definition 2.6 (Metaconstraint) : A metaconstraint is a set of constraints relating vari-
ables belonging to one or more metavariables. The concept of metaconstraint is an abstract
one for representation and design purposes. Constraints are defined using variables as their

arguments.

In this dissertation, we use only unary and binary constraints. A unary metaconstraint
is a set of unary constraints belonging to the same metavariable. A binary metaconstraint
is a set of binary constraints relating variables belonging to two metavariables. The concept
of metaconstraint is an abstract one for representation and design purposes only.

There has been some work combining OO and Constraint Satisfaction (Roy & Pachet
1997) (Paltrinieri 1994a) (Paltrinieri 1994b) (Stone 1995). To our knowledge, no one has
used this integration in the same way we present it in this dissertation. The closest work to
ours is what has been done in (Paltrinieri 1994a) (Paltrinieri 1994b). More details on this
can be found in the related work section of this chapter.

Another advantage of this CSP representation, besides its declarative nature, is that one

can state an object in the model without having to know all the fields of that object. This

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

54

allows for a very concise CSP model statement. From this CSP model statement, the ADIOP
system generates an object corresponding to this CSP model with CSP metavariables as
its parameters and constraints as its methods. We use here the name “model” rather than
“object” to distinguish between the different types of objects used in ADIOP. This model
is then integrated into the system and used for testing.

The CSP model is stated in a declarative way. The user needs to specify the packets
that are expected to be observed for the test case to pass. These packets are represented
as objects (i.e., metavariables). An example of a CSP model is shown in (Figure 2.4),
where 1WayIn(A) and 1WayIn(B) are the metavariables and Type, Time. etc are the

variables. The variables presented in this figure are only a subset of all the variables.

1WayIn(A) 1WayIn(B)

Figure 2.4: A Modeling Example

The following steps show how the CSP modeling of interoperability testing is performed:

1. Identify uniquely each packet using the packet’s type. In the case where we have more
than one packet with the same type, other parameters (e.g.. Source (A or B)) can be
used to identify each of them. Each packet is represented as a metavariable (i.e.. an

object or a set of variables).

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

35

2. Represent the packets into a constraint graph where the variables are fields (e.g.,
NodeD, Status, Time, ...) of the packets (e.g., 1WaylIn, ...). The variable labels are
the values that may be assigned to these variables (e.g., A or B for variable Source),
and the edges are the constraints we need to satisfy such as the order of captured

packets, or the value a field must have.

3. Get the input data by monitoring the traffic between the devices tested (e.g., A and
B). These are called Observations. These are stored as metavalues using the same

structure as for the metavariables. (See example in Figure 2.3).

4. Use the packet identifier (e.g.. 1WayIn(A)) to map the packets’ fields into variables,

and assign values to them (i.e.. assign metavalues to metavariables).

[}

. Test if all the constraints are satisfied after instantiating all the variables.

6. Report the results (Pass/Fail).
The following is an example of the modeling language:

e SPROTOCOL PnniRout: states that this CSP model implements a test case of the

PNNI Routing protocol.

o SPACKET OneWayInA Hello: This states that the model contains a packet (metavari-
able) of type Hello named OneWayInA. The Hello class is created and stored in
ADIOP as part of the decoder. This is done by a tester at the UNH-IOL. Java is

the language used to create the decoder and the classes for different types of packets.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

56
Each metavariable in the model is a representation of one packet with all its fields.
When a metavalue (i.e., actual packet observed between devices) is assigned to this
metavariable, all the fields of this packet are assigned the respective values from the
observed packet. Since t‘:he Hello class is already stored and contains all the infor-
mation about this type of packet, this statement creates all the necessary parameters

(variables) for the metavariable OneWayInA, including the Time, Source, Status,

and Type variables.

e The domains are declared in a similar fashion: $DOMAIN D_Source DTE DCE. This
declares two sources of where the data can be sent from. These represent the two

devices being tested.

e Unary constraints state the name of the variable and the domain of values or one value

restricting this variable: SUNARY_CONSTRAINT OneWayInA .source == D_Source

o Binary constraints are declared as relations between two variables: $SBINARY_CONSTRAINT

OneWaylnA.time < OneWayInB.time

o General constraints allow for a larger scope of constraint declaration. They can be

either unary or binary: SCONSTRAINT OneWayInA .time OneWayInB.time

f(OneWayInA . time.OneWayInB.time) where f(x.y) is a Java statement that returns a

boolean and has x and y as its parameters.

More details of the modeling language are provided in a later section of this chapter.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

57

After defining packets using the SPACKET statement, there isno need to state each vari-
able (packet’s field) separately. When a packet is defined, the ADIOP application provides
a list generated dynamically from the packet’s fields, listing all the variables belonging to
this packet (Figure 2.5). This list can be used for stating constraints between these different

variables.

Figure 2.5: Packet’s Parameters List

2.5 Modeling with Objects

2.5.1 Modeling of Packets

Interoperability testing of equipment uses packets captured for a specific protocol to deter-

mine if a test case passes or fails. These packets contain a number of fields. The values of

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

58
these fields are checked against some constants or against fields’-values from other packets
to determine if the test case passes. It is natural to represent this problem using the OO
approach, where a packet is represented as an object.

Because fields are used to state constraints, it is natural to represent these as variables.
This way, an object defines a set of variables. The object also implements methods for
decoding the packet it represents.

The use of OO gives us many advantages:

o Each object is a separate entity with its own functionality

¢ Information hiding of the objects definition as the users do not need to know the

details but only the functionality of these objects.

e Inheritance between object allows for a hierarchical definition of packets that matches

the way protocols are specified

e The CSP model obtained using objects is concise and expressive

The implementation of these objects as classes uses packages. adiopz is the main package
in the ADIOP application. and thus it is the name of the root of the whole ADIOP directory
structure. Under this directory there is one subdirectory called packet that includes all the
classes needed for representing packets. One of these is the class Packet. which is the
parent of all other classes under the packet’s directory. This class implements the common
parameters and methods for all types of packets. Figure 2.6 shows a representation of the

directory structure of the packet package. This is created, using the Java language, by a

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

59
tester at the UNH-IOL; and this hierarchy uses the structure of protocols as defined in their
respective specification documents.

adiop
adiopx

packet

T~

Packet pnnirout mpoa

N\

PnniRout Hello Dbs

Figure 2.6: Directory Structure of the packet Package

One advantage of this representation is that each class is used for decoding and CSP

modeling, which saves us resources and provides a clean implementation (no redundancy of

functionality).

2.5.2 Class Hierarchy and Inheritance

The classes are stored under the packages as described earlier. These classes are defined in
a hierarchical manner to allow for more flexibility of extension and scalability of protocols
and packet types being used by the application. The class Packet defines the common
parameters and methods of all types of ATM packets. As shown in Figure (Figure 2.7), the
class Packet is the parent of all the classes included in the package packet.

In the next level of hierarchy, classes represent a particular protocol type, e.g.. PnniRout

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

60

Packet
PoniRout Mpoa

L\

Figure 2.7: Class Hierarchy of the Packet Class

which stands for PNNI Routing protocol. The class PnniRout defines the common param-
eters and methods of packets of type PNNI Routing. The class PnniRout is a subclass of
the class Packet. This level inherits from the class Packet parameters and methods used
by ADIOP.

The classes that are children of this protocol type class are the leaves of the class
hierarchy and represent the packet types within this protocol (e.g., Hello. Dbs). They
inherit parameters and methods that are common to all these protocol packets from their
parent PnniRout. Each one of these classes implements specific parameters and methods
for its own type.

The. parameters can be of a more complex definition if they are themselves classes.
Examples of such parameters are One WayInA.aggreg Token.length and
OneWayInA.aggreg Token.status. This is an example of a metavariable (aggregToken) within
another metavariable (OneWayInA).

This hierarchy makes it easy to add/remove classes. We can add more protocols and

more packet types within protocols. We only need to add the decoder for each one of

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

61

these packet types to have them available for use by the decoder and the CSP modeling
component. Testers can do this using the Java language. Actually, parts of the hierarchy
that are already in ADIOP have been implemented by testers at the UNH-IOL.

When all the hierarchy of packets is defined. including parameters and methods, the
user can declare an expected observation in a test case model to be one of these types and
does not need to know or specify all the details of these packets. These details are defined

as part of the decoder written for this type of packets.

2.5.3 Decoder

The Decoder uses the same hierarchy of classes defined in the previous subsection. Adding
the decoding functionality of a new packet type to ADIOP is a matter of adding one class
to the hierarchy.

This can be made even simpler if a generator of these objects is implemented, because all
these objects have the same general functionality. The main difference between these objects
is in the parameters being used and the way the packets are decoded from Hexadecimal
format to text format. The Hexadecimal format is provided by the different analyzers used
at the UNH-IOL.

This decoder is used with the monitored observations between two devices to generate
the decoded observations, which is a set of packets. Each packet is an instantiation of one
of the classes in the bottom of hierarchy (leaves). The same classes are used to state the
CSP models. A packet is defined in the CSP model by its type, which is a leaf in the class

hierarchy.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

62

Each decoding class contains parameters that represent the-specific fields of one type
of packets. It also inherits fields from parent decoding classes. This class also contains
methods that perform different decoding functions. The advantage of tlis representation
is that the classes used for decoding are also used for modeling, and it provides a concise

representation of CSP via objects.

2.6 Modeling Interface

The modeling interface is a Graphical User Interface (GUI). A user-friendly interface is
important for the ADIOP application so the tester can find it easy to use. This allows us
as well to obtain an evaluation from the tester on this application.

The Test Suite Builder (TSB) component of ADIOP provides the functionality for mod-
eling a test case as a CSP. The GUI used for modeling allows the user to declare metavari-
ables, domains. and constraints in a very efficient manner.

From the main menu of the TSB window, the user can choose which protocol they want
to use. The list of protocols as shown in Figure 2.8 is constructed from the structure of
ADIOP_ directories implemented by testers as part of the decoder. If the decoder for a new
protocol is added by testers to this directory, this protocol type will be dynamically loaded
and shown in this menu.

Each test case object is built as a file with the .iop extension. This file may contain
a description of the test case taken usually from the interoperability specification docu-

ment. This file’s main section is the CSP model defining the variables and constraints for

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

63

Figure 2.8: Protocols List in the Test Suite Builder Window

this test case. The CSP model is defined between two ADIOP keywords (i.e., $CSP and

SENDCSP).

2.6.1 Variables

Variables are not declared individually, but rather when a packet is declared using the
S$PACKET statement, a metavariable representing this packet is created and with it all the
corresponding variables. Hence. the declaration of a metavariable is sufficient for defining
all the variables within. ADIOP provides a functionality to automatically update the .iop
file with the variable declaration using the appropriate format when the user presses the
corresponding button in the GUIL

The -pa.cket types shown in Figure 2.9 are also dynamically loaded from the protocol
directory structure. For example, if we choose PnniRout as the protocol to be used, the
packet types list will show: Dbs, Hello. etc. But, if we choose Mpoa instead to be the

protocol. then the packet types list will show: Cache_Imp_Req, Cache Imp_Rpl, etc.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Figure 2.9: Packet Types List in the Test Suite Builder Window

2.6.2 Domains

The domains can be declared as a set of discrete values. These are used to declare unary

constraints.

2.6.3 Constraints

A window is provided to add constraints by choosing from existing lists of variables and
constraint operations. Constraints can be declared as unary or binary. ADIOP provides a
list with all the variables that can be used for this purpose (Figure 2.5). These variables
are dynamically loaded using the structure of the metavariable (packet) they are part of.
ADIOP also provides a flexible way to declare general constraints. These are unary or
binary constraints that can be of a more complex definition than what is provided in the
GUI through the list of available constraint operations. The constraint in this case can

be any Java function using one or two variables as its arguments. The constraints can be

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

65

added to the CSP model definition using the update function. -

In addition, this GUI is used to decode packets from Hexadecimal format generated by
different analyzers to readable text format. It also provides the tools for running interoper-
ability test cases that have been implemented and generating reports of testing results. We

will expand on this in Chapter 3.

2.7 Test Cases as Objects

When the model definition is completed and the .iop file is stored, the user can generate
an object from this file. The parameters of this object are the CSP metavariables and the
methods are the constraints. This object represents the CSP model of the test case declared,
and it will be dynamically added to the Decoder/Diagnoser window menu. By choosing this
itemn from the menu. the user is able to execute this test case on any decoded observations
shown on the main Decoder/Diagnoser window. More details on this are presented in
Chapter 3.

The set of objects representing test cases are stored under the testsuite directory under
the a.pp_ropriate protocol name using a test suite hierarchy (See Figure 2.10).

ADIOP constructs a menu in the Decoder/Diagnoser window from the structure of the
directories under the testsuite directory. If a new protocol is added or more test cases
are generated. the menu will get updated. Figure 2.11 shows the menu generated in the

Decoder/Diagnoser window.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

V4301H 001

66

V4301H 002 V4301H 003

Figure 2.10: The testsuite Directory Hierarchy

114584890072 [OTE [0

2 145848904657 _|DTE |0

3 14:58:4 9. 558857 DCE [0

4 [145848572573_|DTE [0

5 |14:5842608201 _|OCE [0

6 [14:5849:632150 |OTE (0

T ['4:5k4e670450 |OCE |0

8 |14:5849:67058 |OCE [0

S |14:58:50:561268 OCE |0

10114 58 505811 STE

4

S T rr———"— ._._._._.42:.;,,._.,, Lo A g SIS SO SS 0eeS N 00
Proxocol PRniRout

.Packet Type PNNI Routing Hello

Figure 2.11: Test Suite Menu

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

67

2.8 Modeling Language

The model is stated in a very simple language. The following syntax including keywords

and their meaning is used:

o $CSP: This states that the CSP model declaration starts at this point. This statement

is added automatically when a test case is created.

o SENDCSP: An optional statement that means that the CSP model declaration ends
at this point. If not used, the EOF is used to detect the end of the model declaration.

This statement is added automatically when a test case is created.

e SPROTOCOL protocolTested: states that this CSP model implements a test case
of the ‘protocolTested’ protocol. This statement is added automatically when a test

case is created.

e SPACKET packet_name packet_type: This statement states that this test case
being modeled contains a packet of type packet_type which was given the name
packet_name. The packet_type has to be a leaf of the class bierarchy. {(e.g., Hello,

DBS). This statement generates an object of type packet.type and name packet_name.

From the way objects are implemented, there is no need to know details about packet
types when they are being used in the CSP model. The declaration of one packet
in the CSP model using SPACKET packet_name packet_type implicitly defines
all the parameters and methods that belong to this packet including its fields (CSP

variables) that can be used for stating constraints.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

68

¢ $SDOMAIN domain_name value_1 value_2 ... value:n: This states that a do-
main is declared with name domain.name and contains values: value_l, ... value.n.

All these values are declared as strings.

¢ SUNARY_CONSTRAINT variable_name operation domain_name
#print_statement#: This states that the value that can be assigned to vari-
able_name must satisfy the operation constraint on the domain.name. For example
if the operation is ==, then the value assigned to this variable must be in the do-
main_name set. variable_name must be one of the parameters in one of the objects
declared by $SPACKET. domain_name must have been declared in SDOMAIN or
in one of the predefined domains in ADIOP. The predefined domains are domains that
are always included in all the models and cannot be modified (e.g., D_Optional and
D_Mandatory to state that the existence of a packet in the captured data is optional or
mandatory). Alternatively, the user can use a single value instead of a domain_name.
operation can be one of the following operations: ==, ! =, <=, >=, < or > ifa
single value is used, and only == or ! = if a domain_name is used. print_statement
isva statement which will be printed as part of the diagnosis report if this constraint

is violated when this test case is used.

e $SBINARY_CONSTRAINT variablel_name operation variable2_name
#print_statement#: variablel_.name and variable2_name must be different and

both have to be parameters in one or two of the objects declared with SPACKET.

operation can be one of the following operations: ==,! =,<=,>=,<,0r >.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

69

e SCONSTRAINT variablel_name variable2_name -
f(variablel_name,variable2_name) #print_statement#: f(v1,v2) is a Java state-
ment that returns a boolean and it is a function with two arguments: vl and v2, where
vl may be the same as v2. This means that this can be a unary or binary constraint.
The idea behind this kind of declaration is to allow for broader constraint statements.
The function used here can be made reusable by storing it under the “util” directory

of ADIOP. This also allows for the use of more complex functions.

e Comments can be included using the *// comments”

2.9 Example of CSP Modeling for One Test Case

The following is an example of a test case (Test Case ID: V4301H__001) from the PNNI (Pri-

vate Network-Network Interface) Interoperability Test Suite document (PNNI-IOP 1999):

Test Case ID: V4301H__001
Update Versiomn: 0
Test Description:
Test Case ID: V4301H__001
Test Purpose: Verify that the Hello Protocol is running
on an operational physical link.
Reference: 5.6
" Pre-requisite: Both SUTs are SS_M and in the same lowest
level peer group.
Test Configuration: #1
Test Set-up:
1. Connect the two SUTs with one physical link.
Test Procedure:
1. Monitor the PNNI (VPI/VCI=0/18) between SUT A
and SUT B.
Verdict Criteria: Hello packets shall be observed in both
directions on the PNNI.
Consequence of Failure: The PNNI protocol camnot operate.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

70

The following is a CSP representation of this test case using-the language presented in

the previous section and created using the TSB window from the GUI presented earlier:

$CspP
$PROTOCOL PnniRout

$PACKET HelloA Hello
$PACKET HelloB Hello

$BINARY_CONSTRAINT HelloA.source '= HelloB.source

$BINARY_CONSTRAINT HelloA.time <= HelloB.time
$BINARY_CONSTRAINT HelloA.peer_group_id == HelloB.peer_group_id

$ENDCSP
Figure 2.12 shows the actual TSB window including the CSP modeling example.

ADIOP generates an object representing this test case with HelloA and HelloB metavari-
ables as its parameters and the three binary constraints as its methods. A menu item with
the name of this test case is added to the Decoder/Diagnoser window. This menu item is
used to execute this test case by calling its corresponding object. Chapter 3 explains how
the captured data between two devices is used with a CSP model to perform interoperability

testing.

2.10 _ Application of CSP modeling

The CSP models are used to diagnose and solve interoperability problems (Figure 2.2). All
the test cases implemented using the ADIOP’s modeling component are accessible through
the menu in the Decoder/Diagnoser window of ADIOP (Figure 2.11).

The diagnosis component takes the decoded observations from the decoding component

and checks if they match the CSP model of the test case being used. In terms of CSP, this

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

71

est Case ID: V4301E_ 001
pdate Version: O
Test Description:
Test Case ID: Vv43018_ 001
Test Purpose: Verify that the Hello Protocol is rumning on an operational physi
Reference: 5.6 '
Pre-zequisite: Both SUTs are SS_M and in the same lowest level peer group.
Test Configuration: #1
Test Set-up:
1. Connect the two SUTs with one physical lank.
Test Procedure:
1. Monitor the PUNI (VPI/VCI=(0/18) between SUT A and SUT B.
Verdict Crateria: Hello packets shall be observed in both directions or the PNNIJ
Consequence of Faxlure: The PNNI protocol can not operate.

{scse

§PROTOCOL PnniRout

§PACKET HelloA Hello

$§PACKET HelloB Hello

$BINARY_CONSTRAINT HelloA.source '= HelloB.source
$BINARY_CONSTRAINT BelloA.time <= HelloB.taime
§BINARY_CONSTRAINT HelloA.peer_group_ad == HelloB.peer_group_id

Packets

MaVeriD T Type | vari | Varo :
HelioA Heilo HelloA time HelloA. source iHelloA] © =
HeiloB Hello -‘HelloB.time HelloB. source ‘HelloB]- -

e
W g

oo S S

Verishin TID: 'L'.m““ ‘ A |-

Figure 2.12: The Test Suite Builder Window

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

72

means that the decoded observations are metavalues that metavariables can be assigned.
The model provides the metavariables that are defined in the test case as well as the
constraints that need to be satisfied.

Our motivation for automating the diagnosis of interoperability testing is to save time,
reduce repetitive testing, store and reuse knowledge, automate reports generation, and in
general to make testing easier and more efficient. Our focus is on how to get a “good”
explanation to the problem we are solving. This is detailed in Chapter 3.

The advantage of CSP is that it is a reasoning mode that provides both modeling and
problem solving within the same framework. Chapter 3 discusses the problem solving part
of CSP. The use of CSP for modeling allows us to take advantage of methods and algorithms
that already exist for solving CSPs including search and inference. These algorithms are
adapted to take advantage of the specialized problem domain structure. This provides a
better diagnosis of the interoperability problems including an accurate and concise human-
like explanation of the testing performed.

ADIOP uses search supplemented by consistency inference methods in a CSP context to
support explanations of the problem solving behavior that are considerably more meaningful
than a trace of a search process would be. Constraint satisfaction problems are typically
solved using search, augmented by general purpose consistency inference methods.

More details about the Diagnoser component of ADIOP, including its evaluation, are

presented in Chapter 3.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

73

2.11 Ewvaluation

The purpose of this evaluation is to support our claims about the performance of ADIOP,
and to show that it is doing what it was intended for. This evaluation includes 3 ADIOP
components: Decoder, Diagnoser, and Test Suite Builder. The Test Suite Builder is the CSP
modeling component and the Diagnoser is the CSP solver component. Appendix B contains
the questionnaire that the testers used for the evaluation of these three components.

We are interested in the evaluation of different aspects of these components. Some of
the common aspects are that a component does what it is intended to do, is user-friendly,
flexible, reusable. useful, and fast. And for each component, there are specific aspects we
are interested in. such as accuracy of test case execution results, clarity of explanation,
report generation of results, and execution time for the Diagnoser. As for the Test Suite
Builder. we are more interested in the modeling language ease-of-use and the correctness of
the models generated. In addition, we collect from testers a general survey on the overall
performance of ADIOP. how it enhances the way interoperability testing is done, and how
it can be improved.

For each component. there are two types of evaluation. One is the evaluation of the
component behavior. whether it matches the intended description, and how it compares to
other methods including manual testing. The second evaluation type is a survey of each
component capabilities and performance.

The evaluation is performed using different data sets and test cases. The testers were

given the same data sets and test cases to work with. These were chosen in a way to provide

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

74

an evaluation of different situations.

The outcome of this evaluation allows us to confirm our claims about ADIOP, its success
and its contribution. This includes that ADIOP’s Diagnoser outperforms manual diagnosis
and other tools, ADIOP’s Test Suite Builder outperforms other tools, the CSP modeling
language capabilities and ease-of-use, and the ability to generate correct and useful expla-
nations.

In this section. we present the results obtained for the Modeling component of ADIOP.

The evaluation results of the other two components are presented in Chapter 3.

2.11.1 Evaluation Setup

Three testers performed the evaluation of ADIOP. According to the survey collected from
them, their knowledge of the protocol used in this evaluation ranges from moderate (2) to
high (1). Their knowledge of interoperability testing ranges from moderate (1) to high (2).
They all had a moderate knowledge of the interoperability test cases of the protocol they
used in this evaluation. None of the testers rated low on any of the above questions. This
shows that the choice of testers was appropriate. Actually, there were not many testers in
the lab with such knowledge and we believe that the most knowledgeable among them in
this area were involved in this evaluation. The testers that participated in this evaluation
were also chosen by the lab manager as the ones that have the most experience with the
protocol and the test cases we used in this evaluation.

All of them had no knowledge of the ADIOP system and its functionality when they

started this evaluation. This was their first encounter with this system. They were provided

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

75

with an ADIOP user manual to help them in the evaluation. This manual is presented in
Appendix C. This shows that the testers did not have any bias towards ADIOP because
the tool was new to them. It also shows that it is not so difficult to use by new testers.
This will be further supported by the results of this evaluation.

They were all experienced testers and two of them had over 2.5 years of experience.
They have been at the UNH-IOL, respectively, for periods of 10 months, 2.5 years, and
more than 3.5 years.

This evaluation included practical use and surveys of the 3 components of ADIOP,
namely the Decoder, the Diagnoser and the Modeling component (Test Suite Builder). In
this section, we report the results obtained for the Modeling component. The results of the
evaluation of the other two are reported in Chapter 3.

The evaluation also included a general survey of the ADIOP performance including all
three components. The results of this will be reported in the conclusion chapter of this

dissertation.

2.11.2 ADIOP Modeling Component Evaluation

Test Case Modeling Analysis

Each tester was given the task to implement test case objects using the Test Suite Builder
of ADIOP. One tester used 4 test cases to do this. The other two testers used only 2. This
leads to a total of 8 (4 1 + 2 = 2) test case objects used for this evaluation. These test

case objects were from 4 different protocols: 3 from PNNI Routing, 3 from LANE, 1 from

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

76

MPOA, and 1 from Q2931. All these test cases were chosen by the testers themselves, and
each tester has chosen the same set of test cases as the other testers.

The one test case used from the PNNI Routing protocol was the only one implemented
successfully by all three testers. This was counted as three test cases. The testers reported
that it took 6 seconds to open the test suite builder window, open a new test case, define
the CSP model using ADIOP menus, generate the test case including its compilation, open
the test case and run it successfully. This test case did not require any debugging. However,
6 seconds seems too short for this. I suspect that it may have taken 6 minutes which is
more realistic for all the tasks above. or the 6 seconds may have referred to the final task
which is the execution of the test case.

As for the other three protocols, the test case objects were created using the CSP mod-
eling language and the ADIOP GUI. But they all failed to compile and generate runnable
test case objects.

The data provided by the testers does not allow for a thorough investigation of what
the problem was. But what we can suspect is the fact that the decoders for the three
protocols (LANE, MPOA. and Q2931), wkich are also used by the test suite builder, were
not con;pletely implemented and not fully debugged. I was, however, able to create sample

test cases using these protocols that are working.

CSP Modeling Survey Analysis

Each tester also answered questions of a survey on rating the Modeling component, that is

the Test Suite Builder (TSB). The survey contained 13 questions. The questionnaire was

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

7

built based on a likert scale (Likert 1932) that ranges from 1 to-5, with 5 being “Strongly
Agree” and 1 being “Strongly Disagree”. (Trochim 2000) states that “... to use your Likert
scale. Each respondent is asked to rate each item on some response scale. For instance,

they could rate each item on a 1-to-5 response scale where:

1. = strongly disagree
2. = disagree

3. = undecided

4. = agree

5. = strongly agree”

The ADIOP attributes that got the higher marks according to the respondents were

that:

e ADIOP TSB is friendly: this had three subquestions on whether it has an easy GUI
interaction, it is easy to use. and easy to build test cases with. They were all answered
with an average score of 4.67 out of 5. This shows that the ADIOP TSB is easy to

use and interact with. and that building test cases is simplified for the tester.

e The ADIOP language: this had two subquestions on whether it is easy to model a test
case using ADIOP and easy to understand the CSP model definition of a test case.
They were all answered with an average score of 4.67 out of 5. The learning curve
usually represents an issue when new languages and tools are introduced to testers.
But the score obtained here shows that the ADIOP modeling language is easy to learn

and use by testers and that the learning period can be very short.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

78

e ADIOP is flexible: that it is possible to correct a test case’s definition. The score is
also at 4.67. Testers will usually need to update their test cases and correct them. If
this means that the tester has to redo everything from scratch, it will mean a lot of
work to them. But ADIOP has proven to testers that it is flexible and that it allows

them to update their test cases without creating new ones.

e ADIOP is easier to use for automating test cases than other languages (e.g., TCL/TK.
C. etc) got a score of 4.67 as well. It can be argued that testers can write their test
cases with many other programs. That is true but it is not always easy to do so and
it takes time and experience. ADIOP makes this task very easy for the testers who
do not need to know much about programming languages to create their test cases

and run them.

e ADIOP TSB is a useful tool for the lab also got a score 4.67. It is not enough to just
show that ADIOP works. But it is equally important to find out whether it can be

deploved and used regularly by testers.

Other statements about ADIOP TSB are:

e The ADIOP TSB will help testers do more interesting work got a score of 4.33. One of
the benefits of test automation is the fact that testers can finish their testing quickly

and have time to do more interesting work, and this was also confirmed by the testers.

e ADIOP TSB is fast, that the test case objects are built in a reasonable amount of

time got also a score of 4.33. One of the things that makes a tool useful is its ability

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

79
to do the task in a reasonable amount of time and this was-the case for ADIOP TSB.

e ADIOP TSB generates a correct test case object (i.e., you can execute the test case
object and it reports the correct diagnosis) scored 4. This is very important because

there is no usefulness of a tool that builds test cases generating false reports.

o Re-usability of ADIOP TSB scored 4 as well, and it states that it is useful to have
these test cases stored so there is no need for the testers to know all the details.
Testers come to the lab and leave but test cases stay. So, capturing the knowledge of
testers leaving is crucial to the lab. ADIOP TSB allows the lab manager and testers
to create and store test cases that can be used by new testers even if their knowledge

of these test cases is minimal.
The item that scored the least was:

e The new test case is added to the menu on the Diagnoser/Decoder window under the
appropriate protocol scored 3.67. I was not able to reproduce this problem. This could

be a bug in the program that needs to be fixed, but it does not affect the functionality

of ADIOP.

One of the positive points in this evaluation is that the testers’ evaluations were all on
the positive side. except three that were neutral and one that was negative. The neutral
scores were all from only one tester on different questions, and were supported by positive
marks from the two other testers. For the only negative mark where one tester responded to

the question of re-usability with “Disagree” (i.e., score of 2), the two other testers responded

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

80

with a “Strongly Agree” and the average score for this question was 4.

The overall average score of ADIOP TSB was at about 4.44.

2.11.3 Limitations

This evaluation included only three testers and they only had to use ADIOP in brief sessions.
Thus, we cannot generalize the results obtained. But this was the extent of the help we could
get from the UNH-IOL to perform this evaluation due to the limited number of available
testers and the tight schedule at the lab. However, the fact that all three testers consistently
rated ADIOP high on its different attributes strengthens the resuits even though the sample
is tiny.

The test cases used were few in number because of time constraints in the lab. We
would have better analysis with more test cases being used. However. another tester. not
involved in this evaluation. and I have used ADIOP to implement more than 60 test cases
of 5 different ATM protocols: PNNI Routing, PNNI Signaling, LANE, MPOA. Q2931.
These test cases contained between 1 and 25 constraints. The evaluation in Chapter 3 gives
detailed numbers for different test cases. All of these test cases were compiled and executed.

The original plan for the evaluation included a second step involving judges who will
perform a blind review and compare results obtained from manual testing to the ones
obtained using ADIOP. But since the evaluation we obtained from the three testers did
not include a substantial amount of subjective information to be reviewed by independent

judges, we opted for the analysis of this information as it was provided by the testers.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

81

2.12 Related Work

There has been some related work on using the Object-Oriented approach with CSP.

e (Stone 1995) presents an Object-Oriented Constraint Satisfaction Planning for whole
farm management. A whole-farm planning system (CROPS: Crop ROtation Plan-
ning System) has been developed and tested on Virginia farms. The implementation
is object-oriented and employs partial arc-consistency algorithms, variable ordering,
and constraint relaxation. The paper describes the constraint-based scheduler (CBS),
its representation, and how it handles constraint relaxation. This system implements
classes for CSPSolver, ConstraintManager. and a hierarchy of constraint objects all
descended from Constraint, CSPNode, and CSPSolution. The CSPSolver object in-
cludes methods to solve a CSP by several different algorithms. The nodes are repre-
sented by CSPNode objects. Each CSPNode object has a domain and a list of unary
constraints. Each CSPSolver includes a ConstraintManager that keeps track of all the
constraints in the CSP: unary. binary, and n-ary. The Constraint class has many sub-
classes: UnaryConstraint. BinaryConstraint, NAryConstraint which themselves can

be superclasses for other classes.

The difference between this and our work is that variables are represented as objects
in the former and as object’s parameters in ours. Constraints also are represented
as objects while in our work they are methods of the objects. As explained in this
chapter, our application uses packets containing many fields and it will not be practical

to use variables (i.e.. fields) as objects in this case like what is done in this work. So,

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

82

depending on the domain of application and structure of objects used, one way would

be more suitable than the other.

e (Puget & Leconte 1995) propose to give access to the constraints as first class citizens
of the CLP (Constraint Logic Programming) language. They implemented their ap-
proach into an OO language, where constraints are explicitly represented by objects.
Their implementation, ILOG Solver, used an abstract machine that is implemented in
an object oriented programming language, namely C++. Each finite domain variable,

each constraint, and even each non deterministic goal is represented by a C+-+ object.

This work represents variables and constraints as objects while in ours variables and
constraints are respectively represented as the parameters and methods of the objects.
As explained in the previous related work, this is suitable for different applications

than the one we used in this dissertation.

e (Roy & Pachet 1997) discuss the problem of representing constraints in an object-
oriented programming language. They present a class library that integrates con-
straints within an object-oriented language. The library is based on the systematic
reification of variables, constraints. problems, and algorithms. The library is imple-
mented in Smalltalk. and is used to state and efficiently solve complex constraint
satisfaction problems involving Smalltalk structures. BackTalk is a constraint solver
written in Smalltalk-80. BackTalk can be seen as a class library for stating and solv-
ing constraint satisfaction problems in Smalitalk. The implementation is based on

the systematic reification of the main concepts of constraint satisfaction program-

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

83

ming: Domains are implemented using a proprietary representation. Varigbles are
organized into a hierarchy of classes, including integer, Boolean and general purpose
constrained variables. Constraints are also organized into a hierarchy of classes. Many
predefined constraints are provided and user-defined constraints are supported. Prob-
lems are also represented as abjects, thus allowing one to state, and to solve, several

problems simultaneously.

This work also represents variables and constraints as objects while in ours variables
and constraints are respectively represented as the parameters and methods of the
objects. As explained in the previous related work, this is suitable for different appli-

cations than the one we used in this dissertation.

o (Paltrinieri 1994b) has abstracted both variables and constraints as defined in the
classical CSP to a new, more compact model, called an object-oriented constraint sat-
isfaction problem (OOCSP), by introducing several notions, such as attribute. object.
class. inheritance. and association. A visual environment for constraint programming
based on the OOCSP model has been developed. An attribute is a feature taking
values from a domain. An object is a collection of attributes. Object attributes cor-
respond to variables in CSP’s. The set of attributes of an object defines the structure
of the object. Objects sharing the same structure are grouped into classes. Classes
are organized into a hierarchy. Constraints can be defined both on object and class
attributes. A solution to an OOCSP is an assignment of domain values to object

attributes such that all the constraints are satisfied. The OQCSP is converted into an

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

84

equivalent CSP, which is then solved through a traditional constraint-programming
language.

The definition of CSP is enhanced through concepts derived from the object-oriented
paradigm. The main difference is that here objects do not have methods (but just

data members) since their state is updated by the constraints (Paltrinieri 1994a).

This work is the most closely related to ours as it models a set of variables as an object.
However, objects do not include methods while in our work, there are objects that
are used for decoding and stating models and these include decoding methods. We
also present objects that represent test cases and have constraints as their methods.
Another difference is that this work converts an OOCSP into an equivalent CSP, while

we use OOP for defining CSP models and for generating them.

In this work, objects do not have methods and this is not sufficient in our domain
because methods are needed for decoding different types of packets and packets’ fields.
Test cases are also represented as objects and methods are also needed here to rep-
resent constraints. So our approach is more suitable for the domain used in this
dissertation. In addition, it provides the ability to include any required functionality

within the different objects through the inclusion of methods.

There has been some related work on modeling protocol testing as well.

e In (Marrero, Clarke, & Jha 1997). Model Checking is used for verifying hardware

designs, security protocols, etc. By modeling circuits or protocols as finite-state ma-

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

85

chines, and examining all possible execution traces, model checking is used to find

errors in real world designs. This work uses finite-state machines for representation.

A model checker accepts a logic model and a logic formula, and through exhaustive
analysis determines whether or not the formula holds in the model (Atlee 1992).
Security protocols can have bugs that are difficult to find. By examining all possible
execution traces of a security protocol in the presence of a malicious intruder with well
defined capabilities, it can be determined if a protocol does indeed enforce its security

guarantees. If not, a sample trace of an attack on the protocol can be provided.

This presents model checking using exhaustive search to check whether there is an
inconsistent instance before using this model. In this dissertation, model checking
is done after a test case model execution using non-exhaustive search. We take an

instance. that is the model with observed data, and check whether it is consistent.

¢ A model-based approach has been used in (Riese 1993a) for interpreting observa-
tions and diagnosis. The model, called the system description SD. includes (possibly
extended) finite-state machine (FSM) rules or constraints modeling agent communi-
cation behavior. In (Riese 1993b), a protocol is represented as a set of constraints
derived from an Extended FSM (EFSM). Several existing approaches to protocol di-

agnosis and testing are characterized in terms of the EFSM and the CSP formulation.

In these contributions FSM is still used to represent the protocol specification. Also,
the CSP techniques are an extension to this approach, which may carry some disad-

vantages. Our work shows how to model the protocol specifications from a test suite

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

86

as CSP models in a declarative way. This represents a new contribution in this field.
The CSP formulation of a protocol is derived from the test cases’ specifications rather

than from some other formalism.

2.13 Summary

In this chapter we discussed CSP modeling of interoperability testing using Object-Oriented
Programming. CSP modeling was introduced in Section 2.1. The different modeling archi-
tectures were presented in Section 2.2 and our motivation for using a many-models architec-
ture. The CSP modeling process using OOP was outlined in Section 2.4. A more detailed
description of how objects are used in modeling is provided in Section 2.5. In Section 2.5.2,
the class hierarchy and inheritance that we used in CSP modeling is presented. The model-
ing GUI is covered in Section 2.6. Section 2.7 described how the test cases that are modeled
as CSPs are converted into usable objects with metavariables and constraints, respectively
representing their parameters and methods. The more detailed language specification was
the subject of Section 2.8. A full example of CSP modeling of an interoperability test case
was shqwn in Section 2.9. Section 2.10 presented an overview of the applications of CSP
modeling. The evaluation results of the ADIOP modeling component were presented in
Section 2.11. We covered related work in Section 2.12 including work on the integration of

CSP and OO as well as work on modeling of protocol testing.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 3

Constraint-Based Diagnosis of Interoperability Problems

As shown in Chapter 2, the ADIOP (Automated Diagnosis of InterOperability Probiems)
system provides a modeling language based on CSP that allows the user to implement
test cases. We use Object-Oriented Programming (OOP) to implement ADIOP, and we
explained why we have chosen this approach and how it is being used. Each test case is
represented as an object that is the corresponding CSP model. We have also shown how
this is used in a many-models architecture.

In this chapter, we discuss how we use these models to diagnose interoperability prob-
lems. The use of CSP for modeling allows us to take advantage of methods and algorithms
that already exist for solving CSPs. These algorithms are adapted to exploit the specialized
problem domain structure. This provides a better diagnosis for interoperability problems.
including developing an accurate and concise explanation of the testing being performed.

In the following sections, we give some definitions related to diagnosis, we define and
demonstrate the diagnosis of interoperability problems, and what are the algorithms and
methods used for diagnosis, including search and inference. One section is dedicated to ex-

planation and what templates are being used. We then discuss test case execution including

87

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

88

reports generation. An evaluation of the performance of the different algorithms used is
then presented, followed by an analysis of results obtained from an evaluation performed
by the testers of ADIOP.

The main contributions to CSP presented in this chapter include solving CSPs that are
represented using OOP, using some specialized inference methods that are related to the

problem domain structure and generation of human-like explanations.

3.1 Definitions

In the literature. there are many definitions to diagnosis as well as many ways to perform
this diagnosis. Diagnosis has been applied to physical devices, software testing, networking
protocols, etc. For each one of these fields, there are many methods for diagnosing problems,
representing problems, diagnosis steps, and reports. In the related work section. we talk
about some of these issues.

Diagnosis in general can mean many things. The diagnosis we are presenting in this
dissertation addresses one area of diagnosis related to testing of networking protocols. Al-
though .others have dealt with the area of network diagnosis, such as (Riese 1993a), (Riese
1993b), (Sabin et al. 1995b), and (Leckie 1995), their motivation and goals differ from ours.

The following definitions are taken from (ATMF-TestSpec 1994):

Definition 3.1 (Implementation Under Test (IUT)) : The part of the system that is

to be tested.

Definition 3.2 (System Under Test (SUT)) : The system in which the IUT resides.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

89

Definition 3.3 (Conformance Testing) : Testing the eztent to which an IUT conforms

to a specification.

Definition 3.4 (Interoperability Testing) : Testing the degree of compatibility between

two different implementations based on features that both have implemented.

Definition 3.5 (Test Event) : An indivisible unit of test specification (e.g., sending or

receiving a single PDU (Protocol Data Unit)).

Definition 3.6 (Test Step) : A named subdivision of a test case, constructed from test

events and/or test steps.

Definition 3.7 (Test Case) : A series of test steps needed to put an IUT into a given

state to observe and describe its behavior.
Definition 3.8 (Test Group) : A named set of related test cases.

Definition 3.9 (Test Suite) : A complete set of test cases, possibly combined into nested
test groups, that is necessary to perform conformance testing or interoperability testing for

an IUT-or a protocol within an IUT.

In summary, conformance testing attempts to evaluate an implementation against a spe-
cific protocol specification, and interoperability testing attempts to evaluate an implementa-
tion against other implementations; regardless of how well it meets the protocol specification

(ATMF-TestSpec 1994).

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

90

In this dissertation, we are interested in diagnosing interoperability problems in network-
ing devices. Figure 3.1 shows the physical setup for performing interoperability testing. Two
devices A and B are said to be interoperable according to a networking protocol P if they
both implement protocol P and if the data flow between the two devices conforms to the
specifications of protocol P. Usually an analyzer is used as a monitoring device between the
two devices to capture the data flow sent and received by both. This data flow is a set
of observations or packets that are decoded by the analyzer and provided to the user in a
readable format. These observations are compared to the protocol specifications to check
if they conform. The two devices pass the interoperability testing if the observations and

specifications match.

Figure 3.1: Diagnosis of Interoperability Problems

Usually an interoperability test specification (test suite) derived from the protocol spec-
ification is used for interoperability testing. Test suites are written manually by testers or

organizations and it takes a considerable amount of effort to create them. ADIOP provides

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

91

testers with a tool to implement test cases included in these test suites. In this dissertation,
we use the words ‘protocol specification’ or ‘specification’ to mean the interoperability test
specification for that particular protocol, unless we make a distinction.

The logical setup of interoperability testing is shown in Figure 3.2. More details on how

the diagnosis of interoperability problems is performed are provided in the next section.

Specifications (what should happen)

Device A Communication line

Observations (What really happens)

Interoperability Testing <=> Compare (Specifications, Observations)

Figure 3.2: Statement of Interoperability Problems

The following is the definition we use for the word Diagnosis in the context of this

dissertation.

Definition 3.10 (Diagnosis) : of interoperability problems is the detection of problems
that occur when two devices running the same networking protocol are connected to each
other through a network. The devices are assumed to have passed conformance testing, which
states that each device by itself is conformant in its behavior to the protocol specification.
Otherwise, a problem that is due to conformance of one device to the protocol specification

may show up as an interoperability problem between two devices, which would be misleading.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

92

3.2 Modeling, Decoding and Diagnosis -

Figure 3.3 shows the three components of ADIOP, namely the modeling, decoding, and di-
agnosis components. Modeling and decoding are two steps that are needed before diagnosis

takes place. The Figure shows the interrelation between these three components.

Figure 3.3: Modeling, Decoding and Diagnosis Components

Since we plan to use the test suite specification for diagnosis instead of the protocol
specification, we need to diagnose problems using test cases taken from the test suite speci-
fication. This is why we have chosen for modeling the many-models architecture instead of
the one-model architecture (refer to Section 2.2 for more details).

The modeling component was detailed in Chapter 2. ADIOP provides a Graphical User
Interface (GUI) that uses a simple modeling language allowing the user to build a CSP model
for each test case. We also discussed the use of Object-Oriented Programming (OOP) in

conjunction with CSP. Objects are used to define CSP models as well as representing test

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

93

cases. The outcome of this modeling is a number of objects each representing one test
case with packets (metavariables) as its parameters and constraints as its methods. All
the test case objects built using this component are accessible through the menu in the
Decoder/Diagnoser window of ADIOP. One input for the diagnosis component is the set of
objects (CSP models) representing test cases.

The decoding component is responsible for taking the data captured by one analyzer
and decoding it into a format that can be used by ADIOP for diagnosis. Figure 3.4 shows

the main ADIOP window with an example of the data captured.

Figure 3.4: ADIOP’s Main Window

Figure 3.5 shows the protocol analyzers supported by ADIOP. The names shown here
are different from the real names used in ADIOP to maintain the anonymity of vendors.

This list can be extended as needed if more analyzers are being used in the lab by adding

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

94

the corresponding decoder. Testers do not need to know what deeoder to use. ADIOP picks
the appropriate decoder type according to the extension of the file containing the captured

data.

Figure 3.5: List of Protocol Analyzers Supported

Figure 3.6 shows the Decoder/Diagnoser window of ADIOP. It shows the summary of
decoded observations as its data, and the test case objects that were built by the modeling
component as its menu list (see Figure 3.7). The lower panel in the window shows the
details of the packet highlighted in the upper panel that contains the summary of the
packets observed.

Figure 3.7 shows the menu generated in the Decoder/Diagnoser window that includes
all the test case objects built using the modeling component. This fizure shows the menu
of test cases for Section 4301H of the PNNI Routing Protocol.

The diagnosis component takes the decoded observations from the decoding component
and checks if they match the CSP model of the test case being used. In terms of CSP, this

means that the decoded observations are metavalues that metavariables can be assigned.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

1 }14:5848 9007

2 145840 900857
3 | 145840 55005
4 }14:5R4Q 572573
5 14 S 45 60201
8

F

8

9

14:5848 632150

14: 5B 49.670853
14. 58 50 361208

95

DTE |o 1

DTE |o 18 |ivmw ILMI Gat_ sysUpTime 000404494 C4D40A0 19020
DCE |G 16 [hem ILMI Get StmfAbML .. 10004 044 S4CADLGADIE!
DTE [0 16 i] MMIAL .. OUOOM4S4 CADIIA2 1F 2
OCE |0 16 Jlime ILMI Got. atAtmL .. 0802010004044 94 CAO4SATBE -
OTE [0 18 [item ILME SRIWAL. .. 1201000404494 CAD4
. . ' N

DCE |0 5 SSC0D SSCOP .| 0000000101000010

OCE [0 16 [l 1LV Get Tim... 0004044 24 CADLSADSE!

") 4
¥

14. 5848 JO4657

14: 58:49. 558857

LT L e PRS-
5020100040444 C4 0494 -
Q201000404494C4D4SA0 192

T MRS N,
PG 77

——

O

14:5849.572513__|DTE

14:58.49. 600201
14.58:49.632150

14.58:49. 670583

01000404494 CAD4BAD 1 EQRQ
. 10004044 MCADOA2 1F 2T -
‘RO108CR201000404494CAD4SA08 -.
12102010004044S4CAD49A26 -

101000010

145850561268
h]

OODQOOODODS

01000404484 C4D4SAGLE

B1

- U, T LTS . b

A L o o A Y A DRI ol I e XA P XA O

PrniRout

PNNI Routing Hello

Figure 3.7: Test Suite Menu

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

96

The model provides the metavariables that are defined in the test case as well as the
constraints that need to be satisfied.

Different algorithms are being used for this purpose and these are presented in Section
3.4. ADIOP also generates an explanation of the diagnosis, which is the subject of Section
3.5. A report can be generated for one test case or a set of test cases from the same test

group (section), and this will be detailed in Section 3.6.2.

3.3 Diagnosis of Interoperability Problems

In (ATMF-TestSpec 1994). it is stated that: “The problem of interoperability arises when
end-users need to interconnect equipment from different manufacturers and to have a certain
confidence level that these pieces of equipment can interoperate. The purpose of interoper-
ability testing is to confirm the degree of interoperability. Interoperability testing is used to
measure the condition under which two or more systems with separate and different imple-
mentations will interoperate and produce the expected behavior. Interoperability testing
can be bound to specific protocols within the stack. It involves testing both the capabili-
ties anq the behavior of an implementation in an interconnected environment and checking
whether an implementation can communicate with another implementation of the same or
of a different type.”

In this dissertation. the scope of interoperability testing involves detecting and analyz-
ing problems of non-interoperability that exist between two devices. Other methods and

tools have been used for checking the interoperability of devices, including manual/visual

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

97

testing using monitors and expertise. There are some proprietary software packages that
implement some test cases of certain protocols. These are usually implemented using known
programming languages but they do not attempt to provide the tester with the flexibility
to easily implement more test cases. In contrast, we have shown in Chapter 2 how ADIOP
provides a user-friendly interface so that the tester can easily implement and run new test
cases.

Qur contribution to diagnosis has two parts. First, we provide a modeling language that
allows the user to implement test cases to perform different steps of interoperability testing.
Chapter 2 expands on this subject. Second, since we use CSP for modeling, this allows us to
take advantage of methods and algorithms that already exist for solving CSPs. Section 3.4
tackles this issue in more detail. Some of these algorithms can be tuned to respond to some
specificities of this problem domain. and allow for a better diagnosis of the interoperability
problems. including to accurately and concisely explain the detected problems. Section 3.5
is devoted to this subject.

ADIOP automates part of the process of interoperability testing by providing a useful
tool for the user to create reports of interoperability testing for different devices. These
reports_are now created manually by looking at the monitored data through an analyzer.
Our goal is to simplify this task and provide an easy-to-use user interface that supports
decoding and the analysis/diagnosis of the observed data, as well as reports generation.
First, each test case from the test suite is modeled as a Constraint Satisfaction Problem

(CSP). Second, the diagnosis is done by checking whether all the constraints are satisfied.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

98

The evaluation section (3.8) of this chapter presents a more detailed comparison of
manual versus automated diagnosis of interoperability testing gathered from a questionnaire

used by testers (See Appendix B).

3.4 Algorithms for Diagnosis

The advantage of CSP is that it is a reasoning mode that provides both modeling and
problem solving within the same framework. As mentioned earlier, there are many CSP
methods that one can make use of when the problem is represented as a CSP. The problem
solving methods in CSP have ranged from pure search (e.g., backtrack) to inference (e.g..
arc consistency). While each has its advantages and shortcomings, they both have evolved
and depending on what applications we are dealing with and what our goals are, one or the
other or a combination of both would be more advantageous.

Our focus in this dissertation is on how to get a “good” explanation to the problem
we are solving. As we show later, there is a limited concern on the time it takes to solve
the problem even when only search is used to find a solution. This is somehow obvious
if we lo_ok at the small size of the problems we are dealing with. As we explained in the
modeling section, each test case is represented as a separate CSP model. The number of
metavariables is usually very limited in each test case. The captured data can be very large,
but it is easy to prune many of its metavalues by a simple and fast preprocessing of packets.

This will be discussed in more detail later in this section.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

3.4.1 Constraint Satisfaction Methods .

When we have the CSP representation of a system, we can use different methods to solve
it independently of the context of the application. Figure 3.8 shows how CSP is used for
problem representation and problem solving. The main two problem solving techniques
are: Search and Inference. There are many algorithms that use Search exclusively such as
backtracking. (Kumar 1992) states that: “Backtracking involves instantiating each variable
(that is. giving it a value from its domain) sequentially, and checking to see if the set of
instantiated variables satisfies all constraints involving the variables instantiated so far. In
other words, it behaves as a depth first search in the space of potential CSP solutions.
Backtracking is still an imperfect search method. as it suffers from a phenomena called
thrashing, in which search in different parts of the problem space keep failing for the same
reasons.” Backtracking search may also have to explore the entire tree of possibilities to

find a solution.

R

Variables
|

Problem | Values csp
| Statement Algorithm

r—‘—
Constraints

—
—

CSP Representation

Figure 3.8: CSP for Problem Representation and Problem Solving

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

100

Other algorithms make use of inference such as Node Consistency (NC) and Arc Consis-
tency (AC). AC checks whether the values of two variables are consistent with each other,
and deletes a value from the domain of the first variable if it has no support from any
value of the second variable. i.e., there is no value in the second variable that is consistent
with the value from the first variable. This value is deleted because it cannot participate in
any solution. Node consistency is the lowest type of consistency. It checks whether unary
constraints (constraints involving one variable) are satisfied.

Arc Consistency makes all the values of every 2 variables consistent. Path consistency
makes all the values of every three variables consistent. As the consistency level gets higher
we get closer to the solution, but it gets more complex to perform.

In general. a graph is K-consistent if the following is true: Choose values of any K-1
variables that satisfy all the constraints among these variables and choose any K** variable.
Then there exists a value for this K** variable that satisfies all the constraints among these
K variables. A graph is strongly K-consistent if it is J-consistent for all J < K. Node
consistency discussed earlier is equivalent to strong l-comsistency and arc-consistency is
equivalent to strong 2-consistency (Kumar 1992).

It I{as long been known (Freuder 1978) that CSPs can be solved by pure inference,
involving higher and higher order consistency processing. For some problem structures it
has been proven that limited higher order consistency processing is sufficient to leave only
backtrack-free search (Dechter & van Beek 1995). However, the efficiency of obtaining even

moderately high order consistency processing can be problematic in practice.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

101

The drawback of search is that the time to explore all the possibilities grows exponen-
tially with the number of variables. The drawback of inference is that lower consistency
checking, such as NC and AC, is usually not enough to solve the entire problem. For solv-
ing the entire problem using only inference, one needs to perform higher order consistency
checking that includes many variables, but that leads again to the same problem of higher
complexity as with search.

Research and experience have shown that the most successful techniques for solving
CSPs are the ones that combine both search and inference. Nevertheless, arc-consistency
techniques and backtracking search have sufficed for a number of practical applications of
constraint programming (Wallace 1996). The question is then how and when do we combine
these two to get the best results. That depends on the domain of application, the size of
the problem. and the available resources (e.g.. memory, etc).

CSP provides many advanced algorithms to simplify or solve hard problems. Some
surprising successes have been achieved by the simple combination of constraint propagation
and search. For example. constraint propagation techniques have recently enabled interval
reasoning to achieve some spectacular results (Van Hentenryck, McAllester, & Kapur 1995).
Constraiint reasoning takes advantage of many mathematical methods and algorithms that
were improved to work on CSPs. CSP has been used in many real world applications
as a modeling and a problem solving tool. In fact commercial constraint programming
systems have moved “beyond the black box™ (Puget & Leconte 1995) (Wallace 1996). These

applications have improved the CSP paradigm and made it more widely used.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

102

Because of the different applications and domains where the CSP paradigm has been
used. there were also some extensions to it. Partial CSP (Freuder & Wallace 1992) involves
finding values for a subset of the variables that satisfy a subset of the constraints. PCSP can
be used to solve over-constrained problems by allowing the violation of some constraints.
Dynamic CSP (Mittal & Falkenhainer 1990) can be applied in domains where the set of con-
straints and variables involved in the problem evolves with time. Composite CSP (Sabin &
Freuder 1996) unifies several CSP extensions, providing a more comprehensive and efficient
basis for formulating and solving configuration problems. An example of these extensions
is the hierarchical domain CSP where a value may itself be another CSP.

The CSP has a solution if there is an assignment of values to variables such that all
the constraints are satisfied. A solution in CSP can mean different things depending on
the context and the goal to be achieved. The goal can be to find any solution. an optimal
solution. a solution with specific characteristics. to find whether there is a solution, how
many solutions the problem has. or why a solution cannot be found. In this dissertation.
we are interested in finding whether one solution exists. The first solution found, if there
is one. is presented to testers as an explanation of the successful result of interoperability
t&sting: If no solution exists, ADIOP uses other methods. which will be discussed later in

this dissertation, to provide testers with a useful explanation.

3.4.2 Search

The first algorithm we make use of in our application is simple backtracking. This algorithm

is adapted to the OO-based CSP we are using. Hence, we use metavariables and metavalues

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

103

instead of variables and values. Figure 3.9 shows the algorithm for backtracking to find the

first solution if it exists.

Backtrack (MetaVariables, MetaValues, Assignment, Solution)

1
2
3
4.
5.
6
7
8
9

10.
11.
12.
13.
14.
15.
16.

Begin

If MetaVariables is empty

| Solution <- Solution + Assignment;
| Solutions_Nbre++;

| return;

EndIf

For i <- 0 to MetaValues.size() - 1

If (Check (Assignment, MetaVariables[0], MetaValues([i]))

MetaVariables <- MetaVariables - {MetaVariables[0]};

MetaValues <- MetaValues - {MetaValues[i]};

Assignment <- Assignment + {[MetaVariables[0], MetaValues([i]l};
Backtrack (MetaVariables, MetaValues, Assignment, Solution);

If (Solutions_Nbre !'= Q)

| return; // This returns after the first solution is found
EndIf

EndIf

Figure 3.9: Backtrack Algorithm

Solqtions_Nbre is a variable that stores the number of solutions found. This variable

is declared in the class “Model”, and initialized in the Solver function (see Figure 3.12).

When this variable has a value of 1, the backtrack function exits because it searches for

the first solution. The parameter Solution stores the solution found. It contains a set of

assignments of metavalues to metavariables. The parameter Assignment contains the set

of assignments of metavalues to metavariables made at each step of the search algorithm.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

104

The algorithm uses the metavariables declared in the model of the test case being used.
The metavalues are the packets contained in the decoded observations. The algorithm
searches the tree of possibilities for a solution where there is an assignment of one metavalue
to each metavariable so that all the constraints are satisfied.

The Check function checks if one metavalue assigned to one metavariable is consis-
tent by itself and whether it is consistent with the previous assignments made to other

metavariables from the same model. The algorithm is presented in Figure 3.10.

mv is a local array to store the metavalues (i.e., packets captured). type is a local
variable that stores the packet type and is used with inference methods. The CONS array
stores names of the constraints as they appear in methods of the class corresponding to a
test case model generated by ADIOP.

Lines 6-9 check whether a metavariable is optional and whether it can be assigned an
empty packet (i.e.. no packet). If the metavariable is optional, line 8 returns true. If no
constraint is defined in the CSP model about the status of a metavariable, then it is assumed
that it is mandatory and thus these statements return false. An optional metavariable can
be assigned either an observed packet or no packet at all.

Lines 10-12 check that no two metavariables are assigned the same observed packet.
Lines 13-15 check unary constraints. Lines 16-20 check binary constraints within the same
metavariable. Lines 21-29 check binary constraints that involve this metavariable and other
metavariables already assigned.

The CONS array stores the names of constraints defined in a test case as methods of

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

105

Boolean Check (Assignment, metaVariable, metaValue)

1. Begin

2 index <- Assignment.size();

3 mv[index] <- metaValue;

4. type <~ fillMetaVar (index, mv(index]);

5. If (type == null) return false;

6 If (mv[index].status == ABSENT)

7 | If (CONS[index] [STATUS] [index] [STATUS] == null) return false;
8 | Else return getValue(CONS[index] [STATUS] [index] [STATUS]);

9

. EndIf
10. For i <- O to Assigmnment.size() - 1
11. | If (Assignment.mv[i] == mv[index]) return false;
12. EndFor
13. For i <- 0 to maxVariables
14. | 1If (getValue(CONS([index][i] [index] [i]) == false) return false;
15. EndFor
16. For i <- 0 to maxVariables
17. | For j <- i+l to maxVariables
18. | | 1If (getValue(CONS[index][i][index][j]) == false) return false;
19. | EndFor
20. EndFor

21. For i <- 0 to index

22. | fillMetaVar(i, mv[i]);

23. | If (mv(i].status == ABSENT) continue;

24. | For j <- 0 to maxVariables

25. | | For k <- 0 to maxVariables

26. | | | If (getValue(CONS[i]([j][index][k]) == false) return false;
27. | | EndFor

28. | EndFor

29. EndFor

30. return True;

31. End

Figure 3.10: Check Function

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

106

the corresponding object. These methods are invoked using the getValue function that
shows in Figure 3.11.

Boolean getValue (Constraint_Function)
Begin
If (Constraint_Function == null) return True;
constraintChecks++;
return invoke_method(Constraint_Function);
End

D> W N -

Figure 3.11: GetValue Function

The fillMetaVar(index, mv) method is implemented in each test case object. This

method assigns a ‘packet’ from the observations to the metavariable of position ‘index’ in

the test case model.

Before we make use of the Backtrack function, there are some initializations to be

made. The Solver function makes these initializations as shown in Figure 3.12.

Integer Solver (MetaValues)

1. Begin

2. For each mv in MetaValues
3. | mv.status <- PRESENT;
4. EndFor

5. Solutions_Nbre <- O;
6. emptyMetavalue.status <- ABSENT;

7. MetaVariables // Get assigned by each test case

8. MetaValues <- MetaValues + emptyMetavalue;

9. Assignment <- empty

10. Solution <- empty

11. Backtrack(MetaVariables, MetaValues, Assignment, Solution);
12. End

Figure 3.12: Solver Function

Lines 2-4 state that all observed packets are packets that can be assigned to a mandatory

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

107

or an optional metavariable. Line 6 creates one empty packet (i.e., no packet). Line 8 adds
it to the set of observed packets to constitute the set of metavalues. This empty packet can
be assigned to an optional metavariable if there is no observed packet to be assigned to it.

All these methods are part of the object Model which is the parent of all objects
modeling test cases. All the test cases are children of the Model object and thus they

inherit all the methods mentioned above for solving the CSPs (see Figure 3.13).

Model

N

V4301H 001 V4301H 002 V4301H 003

Figure 3.13: The Test Cases (Objects) Hierarchy

The set of objects representing test cases are stored under the testsuite directory under

the appropriate protocol name using a test suite directory hierarchy (See Figure 3.14).

adiop
adiopx
. testsuite
lane panirout mpoa

V4301H 001 V4301H 002 V4301H 003

Figure 3.14: The testsuite Directory Hierarchy

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

108

Since the problems are small, search returns very quickly with a solution if one exists.
If there is a solution, it is reported to the user with an explanation of which packets satisfy

the constraints of the test case. One example of this is shown in Figure 3.15.

Figure 3.15: ADIOP’s Result Window of a Successful Test Case

The user is not usually interested in learning how ADIOP found the solution. How-
ever the user may want to have the metavalues (observed packets) that were assigned to
metavax:iabl&s to be able to understand the presented solution. Multiple solutions are not
important for the user because the outcome of diagnosis is based on whether there is a so-
lution (i.e., whether the test case passes or fails) rather than the number of solutions found.
This is why, when a test case fails and no solution is found, diagnosis and explanation
becomes more crucial for the tester and requires more investigation by ADIOP.

When using only search and there is no solution to the test case being executed, it fails

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

109

and the solution reported is not very meaningful to the user because it just states what
constraints have been violated. While this may give some hints to the tester if the number
of constraints violated is small, it is not very useful.

One way to provide a better explanation is the use of inference or some specialized
methods that check for certain conditions, allowing the system to report some meaningful

explanation of the diagnosis of interoperability problems.

3.4.3 Inference and Consistency Checking

In interacting with human users it may not be enough to simply supply a solution to a
problem. The user may want an “explanation™: how was the solution obtained or how
is it justified? The computer may be functioning as a tutor or as a colleague. The user
may want to consider alternative solutions, or need to relax constraints to permit a more
complete solution. In these situations it is helpful if the computer can think more like a
person. and people tend to use inference to avoid massive search (Sqalli & Freuder 1996b).

Tracing through the search process of backtracking would result in an explanation of the
form: “I tried this and then I tried that, and it didn’t work, then I backed up and tried the
other, ...". A more useful explanation to the user is an inference-based one with statements
of the form: “X cannot be v because ...”

The use of “pure inference” problem solving in the domain of logic puzzles is presented
in (Sqalli & Freuder 1996b). The focus of that work was on the support that inference
methods provide for explanation. It was also demonstrated how surprisingly powerful the

inference methods can be.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

110

We propose to use search supplemented by consistency inference methods in a CSP
context to support explanations of the problem solving behavior that are considerably more
meaningful than a trace of a search process. Constraint satisfaction problems are typically
solved using search, augmented by general purpose consistency inference methods.

Even when inference does not provide a complete solution, it can still be used as a
preprocessing step and the results obtained from this can be then be given to a search
engine. If a combination of inference methods fails to completely solve a problem, the

progress made in the form of domain reductions might be exploited by subsequent search.

Node Consistency

Node consistency (NC) is the lowest type of consistency. It checks whether unary con-
straints (constraints involving one variable, (e.g.. V' < 3)) are satisfied. Node consistency is
equivalent to strong l-consistency.

As stated in Chapter 2, ADIOP provides a way of defining unary constraints. These
constraints are stated using variables and not metavariables. For example we can state that
the variable source of the metavariable 1WayInA has to be equal to D_Source, where
D_Source is a domain containing DCE and DTE. We are not interested in the NC where
a node is a variable because these inferences are not useful for explanation in this domain.

Instead, we are interested in the NC where a node is a metavariable.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

111
Specialized Node Consistency Inference for an OO-based CSP

We propose to use Node Consistency at the metavariable level. We call this MetaVariable
Consistency (MVC) as it differs from the NC presented earlier. A metavariable represents
a packet with many fields. Each field is a variable in the CSP. The CSP model we use is
defined in term of metavariables. The observed packets are the metavalues that represent
the domains for the metavariables. For each metavariable we have to assign a metavalue
satisfying all the constraints to obtain a solution. All metavariables have the same domains
of metavalues initially. This set of metavalues is the domain of all observed packets.

There are some variables that can be used to reduce the domain of metavalues for
metavariables. We use two of these to perform some preprocessing and obtain some useful
explanation in addition to problem solving time reduction. These are protocol and pack-
etType. We make use of some inferences that ADIOP can check by looking at these two
variables. The protocol variable is set to the same value for all metavariables of a CSP
model representing one test case because a test case belongs to a test suite written for the
same protocol.

Our first inference is that if there are no packets observed that match the protocol
defined in the CSP model of a test case, then there is no solution to the problem. The

algorithm for domain reduction using the protocol variable is shown in Figure 3.16.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

112

ProtocolPreprocess (protocolFromModel, MetaValues)

1. Begin

2. For each mv in MetaValues

3. | If (protocolFromModel != mv.protocol)

4. | | MetaValues <- MetaValues - mv

5. | EndIf

6. EndFor

7. If (MetaValues.size() 0)

8. | Report that there are no observed packets
| of the protocol type used in the model

9. EndIf

10. End

Figure 3.16: Protocol Preprocess Function

In addition, the value of the packetType is used to reduce the domains of metavalues
for the metavariables. For instance, all the observed packets of types different than the ones
defined in the CSP model can be deleted from the domain of metavalues. The algorithm

for this preprocessing is shown in Figure 3.17.

The algorithm is made more efficient by assigning the same domain of metavalues to all
the metavariables of the same type (Lines 10-16). domain(i}{0] stores the packet type for
the metavariable MV{i]. The aliDomainsEmpty indicates whether all the domains for all
the metavariables are empty. This would be one explanation to the failure of a test case. If
only one metavariable’s domain is reduced to become empty with this preprocessing, then

the explanation given to the user would state that this metavariable cannot be assigned any

metavalue (packet).

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

113

PacketTypePreprocess (MetaVariables, MetaValues, Domains)

1. Begin

2 allDomainsEmpty = True;

3 For each MV[i] in MetaVariables

4. | domain(i] <~ null;

5. | For each mv[j] in MetaValues

6 | | type = fillMetaVar(i, mv[jl);
7 | | If (type !'= null)

8 Il | | domain([i] <- domain(i] + {mv([jl};
9. I | | allDomainsEmpty = False;

10. 1 1 | For k <~ 0 to i-1

11. | | | | If (domain(k].size() !'= O &k domain(k][0] == domain[i] [0])
12. | | | | | domain(i] = domain(k];
13. I I 1 | | done = True;

14. I I 1 | | break;

15. I I | | Endlf

16. I | | EndFor

17. | | Endlf

18. | | If (done)

19. | | | done = False;

20. I | | break;

21. | | EndIf

22. | EndFor

23. EndFor

24. End

Figure 3.17: Packet Type Preprocess Function

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

114

A more interesting situation is when the size of the domain shared by n metavariables is
reduced to r with r < n, then there is no possible solution. This can be seen as a clique of
metavariables where all of them have to be assigned a different metavalue but the number
of metavalues is not sufficient.

Appropriate explanations are generated for these situations through the use of templates.

Templates for the different kinds of explanations used in ADIOP are stated in Section 3.5.

Limitations

The inference methods we use in this dissertation show that we can obtain better and more
buman-like explanations. However, we do not claim that these methods cover all of the
cases we may have.

Partial CSP can be used to relax some of the constraints. This would yield a better
explanation if only one constraint is violated. In this case the system can report to the user

that this constraint is the one that caused an interoperability problem.

3.5 Explanation

As stated earlier. (Sqalli & Freuder 1996b) present some specialized inferences that are
useful for explanation. It was obvious that a trace of standard search techniques would not
produce anything like a satisfactory explanation. This led to the use of inference methods.
and the transformation of individual inferences into bits of explanation.

Inference is used mainly to reduce the domains of metavariables. The different results

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

115

that inference leads to are used as the input to some templates-so that the user receives a
useful explanation for the outcome of a test case execution.

Some of these templates are used with the search algorithm. Although some of these
are not very useful explanations for the user when a test case fails, we include them here
(see template 7) for a complete list of all types of explanation that the user may receive.
The previous section discussed the different algorithms used to obtain an explanation of the
execution of an interoperability test case. Inference methods are used first to check whether
the captured data fulfill certain conditions that allow ADIOP to get an explanation of the
interoperability problem without using search. We showed the algorithms used with the
different inference methods. The outcome of these methods determines which template is
to be used, and what specific values are to be included with this template to generate an
explanation. For example. when there is an over-constrained clique ADIOP gets the tem-
plate to be used and the packetType value that caused the over-constraint (see template
4). These two are merged together to form an explanation of the interoperability problem.
If inference methods are not successful, search is used. If there is a solution. search gener-
ates the assigned observed packets to the metavariables in the test case CSP model. This
is repo;'ted as an explanation of the interoperability test case. If there is no solution, all
the constraints violated during search are reported in the explanation. This last one is not
useful to testers. and that is why we use CBR. as detailed in Chapter 4, to provide better

explanations in this case.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

116

Explanation Templates .

The results obtained using search and inference are used with the templates presented
in this section to provide the user with an explanation of the results of running a test case.
These templates are specific to this domain, but the inferences used to generate them are not.
For example the use of inference with an over-constrained clique to generate explanations is
not domain specific, but the template we use in this section is. It will be possible to write
templates for other domains using the same inference methods. We have done more work
on this in (Sqalli & Freuder 1996b) where we used the same generic templates to obtain
explanations for different domains using logic puzzles. In this dissertation, these templates
are used with different ATM protocols. One way to improve on this is to have two levels
of templates. The first level generates generic templates from the inference. and the second
level takes these generic templates and applies them to a certain domain by using specific

keywords to obtain a final explanation.

1. There is no observed packet from the protocolTested protocol: this template is used
when the value assigned to the variable protocol does not match the protocol type
of any of the packets observed. As stated in Chapter 2, there is a statement in
the CSP model of each test case that indicates what protocol is being tested. This
statement is of the form “$PROTOCOL protocolTested”. The protocol variable for

each metavariable is assigned this protocolTested value.

o

There are no observed packets matching any type of the ones stated in the model

of this test: this template is used when domain reduction from metavariable con-

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

117

sistency (MVC) using the packetType variable leads to-empty domains for all the
metavariables defined in the CSP model of this test case. It means that for all these

metavariables there are no packets to be assigned from the ones observed.

3. There is no observed packet matching the type packetType as it is stated in the model
of this test: this is used when domain reduction from MVC using the packetType
variable leads to empty domains for all the metavariables of one type of packets defined
in the CSP model of this test case. It means that there are no packets observed
that have the type packetType and so there is no assignment possible for all the

metavariables of this type.

4. There are fewer observed packets of type packet Type than what is stated in the model
of this test: this template is used when the number of metavariables of one type of
packet stated in the model of a test case is less than the number of packets observed
of this type. It means that there are not enough packets observed of such type to be
assigned to all the metavariables of the same type. This is equivalent to a clique of
metavariables with the same domain of metavalues that has a size smaller than the

number of metavariables in the clique.

An example of this explanation is presented in Figure 3.18.

5. One Matching Solution: [[Packet Name: packetName, Packet Type: packetType,
Packet Assigned: packetObservedNumber/, ..., [...]]: this is used when the search

algorithm is executed and there is a solution to the execution of this test case.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

118

Figure 3.18: ADIOP’s Result when packets of a packet type are fewer than required

An example of this explanation is presented in Figure 3.15.

6. One Matching Solution: [WARNING: There is a missing packet, [packet Name: packet-
Name. Packet Type: packetType, Packet Assigned: packetObservedNumber/,
[packet Name: packetName. Packet Type: packetType, Packet Assigned: None
(Optional)], ..., [...[/: this is used when the search algorithm is executed and there is
a solution to the execution of this test case. However, the solution found contains an

optional metavariable that was not assigned a packet.

An example of this explanation is presented in Figure 3.19.

=~

One or more of these constraints declared in the model of this test is/are violated:
violatedConstraints: this is used when the search algorithm is executed after the

preprocessing has not lead to one of the explanations mentioned earlier, and there is

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

119

ST
R G St
P

Figure 3.19: ADIOP’s Result a “Pass With Warning™ Test Case

no solution to the execution of this test case. This is the least useful explanation for
testers because it only presents the constraints violated when search is executed. This
may not provide a meaningful explanation to testers, but Chapter 4 presents one way

to resolve this in some cases and help testers find a useful explanation to this test case

execution.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

120

A summary of the explanation templates used here is shown in Table 3.1.

Table 3.1: Summary of Explanation Templates

[Summary of Explanation Templates |
1 | There is no observed packet from the protocolTested protocol
2 | There are no observed packets matching any type of the ones stated in the model of this test
3 | There is no observed packet matching the type packet Type as it is stated in the
model of this test -
4 | There are fewer observed packets of type packetType than what is stated in the
model of this test - ﬁ
5 | One Matching Solution: [[Packet Name: packetName, Packet Type: packetType,
Packet Assigned: packetObservedNumber], ..., [...]]
One Matching Solution: [WARNING: There is a missing packet,
[packet Name: packetName, Packet Type: packetType,
6 | Packet Assigned: packetObservedNumber],
[packet Name: packetName, Packet Type: packetType,

Packet Assigned: None (Optional)}, ..., {...]]
7 | One or more of these constraints declared in the model of this test is/are violated:
violatedConstraints

3.6 Test Case Execution

3.6.1 Automate Menus Creation

The Decoder/Diagnoser window contains menus that are generated from the directory of
implemented test cases. Figure 3.14 shows this structure and Figure 3.7 shows the menus
generated for the lowest level in the hierarchy.

The menus used for testing the interoperability are automatically generated. The user
does not need to search for test cases to be able to run them. ADIOP stores test case
objects that are built using its Test Suite Builder component under one directory according

to the protocol they belong to. This makes it possible for ADIOP to extract dynamically

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

121

the names of these test cases and construct menus that the user can use for their testing.

More details of the Test Suite Builder and some of these issues were presented in Chapter

2.

3.6.2 Reports Generation

After the user runs a test case, a report is generated. There are two kinds of reports:

individual test case reports and section test cases reports.

e Individual test case reports are displayed when the user runs one test case. The report
contains a window that provides the user with the option to show the test case model

or the result of its execution. (See examples in Figures 3.15 and 3.20.)

Test Case (0 Va301t4__001
Uae Yersion
Test Descrouon
Test Case (D V4AIOIM_ 00T
Test Pumose Venty that the HeliG PrELacal is AuNMING O 8N QDELONS! Dhysical hnk
Reference: 56
Pre-mquists: Ban SUTs are SS_M anc n the same IOMeS level Deer §roud.
Test Configuration: #1
Test Sot-ux
1 Connact the two SUTS with ane physical knk.
Test Procscune
1 MONRIr the PNNI (VPI/VC2(r18) twtween SUT A and SUT 8.
vertict Cena: Hesc MRCKets shill D CDSErVeC In DILh AWSCTAns on e PN
Conssquence of Fasure The PNNI OrEIaca can nat ODEMRtE

]

$sP
PROTOCAL PrmiRan
SPACKET HOlOA Heto
WPACKET HelcB Heto
SBINARY_CONSTRAINT HeiOA scurte '= HellaB. sourte
SBINARY _CONSTRAINT HOiiOA time <= HeldB.tme
SBINARY _CONSTRAINT HelloA peer_Jroup_d == He#oB peer_group_d

Figure 3.20: ADIOP’s Result Window Showing a Test Case Model

[

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

122

e Section test cases reports (i.e., Test Group Reports) are generated when the user
runs a batch of test cases that belong to the same section in one action. This report
shows the test cases that were run, the result and the explanation of the diagnosis

obtained.(See example in Figure 3.21.)

_TostName . "~ T Vemlet . | o . - . Exension . - S
E4301H_008 |Not implemenad af
VA0IM_001 |Pass Il Puciet Name: MelicA, Paciet Typs: Melio, Paciet
Assigasd: 7 |, [Paciut Nams: MiinB, Paciet Type: Halio,
Puciut Assigned: 30 [
V4I0IN_002 |Pass (Il Paciwt Name: MIlio1A, Paciut Type: Maito, Peciet

Assigasd: 7 | [Paciet Name: 018, Pectet Typs:
Mo, Puciet Assigned: 30 | | Peciet Nome: HeND2A,
Paciut Type: Falio, Paciet Assigned: 46 |, | Paciat
Nown: FeioZB, Paciet Typs: Failo, Paciet Assigned:
an

Va1M_003 [Pass {ll Pachet Name: FRNOA, Paciet Typs: Matio, Paciet
Acsigned: 7 | | Pactat Name: MaiioB, Paciut Typs: HEND,
Paciat Assigned: 3

V4201H_00¢ |Pass (Il Peciwt Name: HefioA, Paciat Type: Halo, Paciat
Assigued: 7), [Paciet Name: FatioB, Paciat Typs: Feiio,
Puaciut Assigned: B I

VAIH_005 |Pass (Il Peciut Name: initisl_20ayinA, Peciut Type: Faiio,
Paciut Assiged: 40 | | Peciut Neme: initisi_2Wayin®,
Pachet Type: Falio. Pechet Assigned: 41 |, [Peciet

@~

Figure 3.21: ADIOP’s Test Cases Report of One Section

LI

Both reports can be printed by the user and they provide the information that the

customer needs about the interoperability testing of their equipment.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

123

3.6.3 Algorithms -

We have shown earlier in this chapter how the test cases that were implemented using the
ADIOP modeling component can be run and how the reports are obtained. When a test
case is implemented, its corresponding object is added to the library of objects. Each one of
these objects models one test case and is a descendent of the object Model, which includes
all the algorithms for solving the CSP models. The different algorithms using search and
inference are used and the result is a solution to the CSP, if it does exist. If no solution is
found, it indicates that the test case fails and inference may provide an explanation to this
failure. In addition. the reports generated provide an explanation of the diagnosis.

In Section 3.7. we gathered some data from multiple execution of different test cases.
The comparison factor in these runs is the execution time for finding a diagnosis of the

problem with and without preprocessing.

3.7 Algorithms Evaluation

3.7.1 Solvability

In this section, we present an evaluation of the algorithms presented earlier in this chapter.
We used four captured data sets (observations). Three observations are for the PNNI
Routing protocol and one is for the LANE protocol. We have used captures from real-world
data obtained at the UNH-IOL. We run only test cases that belong to the protocol used
when capturing the observations. We compare the time it takes to solve the problem using

preprocessing then backtracking to the time it takes to solve the problem using backtracking

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

124

only. .

Table 3.2 shows the results obtained for one captured data set. Each test case execution
is repeated 5 times so the numbers shown in the table averages 5 runs. The test cases are
taken from (PNNI-IOP 1999) using their actual names in the document. The result of the
execution of each test case is shown in the “Res” column. The “MV#" column shows the
number of metavariables defined in each test case. In all the test cases used in this table
the maximum number of variables in metavariables is 41. The “Con#” column shows the

number of constraints defined in each test case.

Table 3.2: Results of Running Test Cases on Capture capt001

| Captmei Data: capt001.aa |

Test Res | MV | Con | Pre | BtPre | Pre+BtPre | Bt | Ratio (Pre+

Case # | # | T(ms) | T(ms) T(ms) T(ms) | BtPre/Bt) |
V4301H_001 | Fail | 2 3 20 101.2 121.2 105.6 115%
V4301H_002 | Fail { 4 | 13 7 96 103 108.6 95%
V4301H_003 | Fail | 2 7 4.4 134.8 139.2 147 95%
V4301H_004 | Fail | 2 7 42 33.4 37.6 51.4 73%
V4301H_005 | Fail | 4 19 44 74.8 79.2 71.2 111%
V4301H_006 | Fail | 4 9 6.2 91.2 97.4 102 95%
V4301H_007 | Fail | 4 11 4.4 90.8 95.2 104.8 91%
V4302H_001 | Pass | 2 17 | 218 6.6 28.4 3.2 888%
V4302H 002 |Pass | 4 | 25 9.4 11.4 20.8 19.2 108%
V4302H_003 |Pass| 2 | 24 16 4.2 8.8 4.8 183%
V4302H_004 | Pass | 2 3 44 3.2 76 4 190%
V4302H_006 | Pass | 4 13 4.6 10.4 15 14 107%
V4302H_007 | Pass | 4 7 4.2 44 482 81.6 59%
V4302H_008 | Pass | 4 7 4.4 20.6 25 15.8 158%
V4401DBS001 | Fail | 6 11 23 0 23 107 21%
V4401DBS002 | Fail | 7 19 6.6 0 6.6 93.2 7%
V4401DBS003 | Fail { 7 8 5.6 0 5.6 96.2 6%

Total 1392 | 722.6 861.8 1129.6 76%

Total

without 1174 | 716 833.4 1126.4 74%
V4302H_001

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

125

The “Pre” column shows the preprocessing time. Preprocessing uses the inferences we
introduced earlier in this chapter. The “BtPre” column shows the time it takes to find a
solution or none using backtracking after preprocessing. These two numbers are summed
up in the next column. The “Bt” column shows the time it takes to find a solution or none
using backtracking from scratch. The last column “Ratio” shows the percentage of time
that a preprocessing+backtracking uses compared to backtracking alone. A ratio of less
than 100% shows that time was saved using preprocessing.

The results obtained for the ratio are between 6% and 190% except for one where it is
of 888%. If we exclude this one from the overall statistics, because it may bias the results,
the total ratio is 74%. The total ratio for executing all the test cases is 76% when all results
are included. We can see that this exclusion did not greatly affect the final result. This
means that using both inference and search to perform diagnosis took only 76% of the time
it took to do the same using only search for these test cases.

However, only half of the test cases presented in Table 3.3 give a clearcut improvement
due to preprocessing. An open question here is why improvement was so sporadic and
apparently unpredictable. The results are significant anyway because, in addition, there is
an extt; benefit of generating useful explanations, which is certainly worth the added cost
sometimes incurred.

Table 3.3 shows the summary of the results obtained for many captures. The “Dom
Size” column shows the number of packets observed in each capture. The protocol tested in

each captured data is shown in the “Protocol Tested” column. If we look into the result for

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

126

capture “capt002”, excluding one test case makes the overall result jump from 232% down

to 67%. We were not able to find out why we obtained such poor results for this test case.

Table 3.3: Summary of Results of Running Test Cases on Different Captures

['_:STxmmary of rulis for different captures

Captured | Dom | Protocol TCs | Pre | BtPre | Pre+BtPre | Bt Ratio(Pre+
Data Size | Tested | Run | (ms) | (ms) (ms) (ms) | BtPre/Bt)
capt001 72| PoniRout | 17 | 139.2 | 7226 861.8 11206 | 76%
capt002 91 | PoniRout | 17 49 | 1212.6 1261.6 543.2 232%
capt002
excluding 91 | PnniRout | 16 | 42.2 | 291.2 3334 495.6 67%
v4401dbs002
PNNI 103 | PoniRout | 17 | 101.4| 87.4 1888 452.2 2%
Lane 77 Lane 18 | 2858 | 174.4 460.2 998.4 6%

The overall results show a reduction of effort to between 42% and 76% for each captured
data set, except for capt002, which yields 232%..

The test cases we ran were all related to the protocol of the data captured. If the user
runs test cases on observations that do not contain any packets belonging to this protocol,
the preprocessing will solve this and the explanation will be straight forward. We did not
execute these test cases because we knew the protocol used for each capture, and because
the users would usually make sure that the test cases being run are for a capture of the
same protocol. This preprocessing using the “Protocol” value is useful when the user is
not sure of what data she/he is testing, and it will save a lot of time not having to search
the whole tree space for a solution. For instance, we tried one test case from the “Pnni
Signaling™ protocol on a capture from the “PNNI Routing” protocol and the savings were

about 100%. This is explained by the fact that preprocessing time is linear and there is no

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

127

backtracking performed, while when backtracking alone is used-a search of the whole tree

of possibilities occurs because no solution exists.

3.7.2 Explanation

In addition to the reduction of time for solving the problem, preprocessing allows for better
explanations in some cases with no solution. The time reduction is even greater when
preprocessing yields solutions because no backtracking is necessary in this case. Three
examples of this are shown in Table 3.2 with test cases V4401DBS001, V4401DBS002, and
V4401DBS003. In the execution of these test cases, no packets of type “DBS” were found.

In the PNNI capture shown in Table 3.3 we had many test cases where preprocessing was
enough to solve the problems because there were test cases requiring 4 packets (MetaVari-
ables) of type “Hello” but only three were found in the captured data. In all these cases
where preprocessing was enough to solve the problem, the explanation that was produced
was more meaningful to the users.

Out of the 69 test cases we ran, 36 passed and 33 failed. The ones that passed pro-
duced a meaningful explanation for the user. Qut of the 33 that failed, 14 were solved by
preprocessing alone, thus producing a meaningful explanation for the user. In summary, 50
test cases out of 69 produced a meaningful explanation, which makes about 73% of the test
cases.

For the other 27% of the test cases, which resulted in failures with no meaningful ex-
planation, ADIOP’s Advisor was used to further reduce this percentage, as discussed in

Chapter 4.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

128
3.7.3 Complexity :

Let s be the size of the domain of metavalues (observations), r be the reduced size of the
domain of metavalues after preprocessing, and n be the number of metavariables defined in
the model. In the worst case, r is equal to s.

The complexity of “Backtrack” is O(s"). Thus when search is performed alone the
complexity is exponential.

The complexity of “ProtocolPreprocess™ is O(s), and that of “PacketTypePreprocess” is
O(n®s). Thus, the complexity for performing the preprocessing is O(n2s). The complexity
of search after preprocessing is O(r") with r < s. When preprocessing solves the probiem,
then the complexity is of O(n%s). When it does not, then the complexity is of O(r") with
r < s. So. in the worst case, the complexity is the same O(s™) whether we use preprocessing
or not. But in other cases, complexity can be reduced with successful preprocessing and

may even become linear.

3.8 Evaluation Performed by Testers

An overview of the evaluation performed by testers is included in the evaluation section of
Chapter 2. In this chapter, we analyze the results collected from testers for the Decoder and
Diagnoser components of ADIOP. Appendix B contains the questionnaire that the testers
used for the evaluation of these components. Testers were also provided with an ADIOP

User Manual (Appendix C).

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

129

3.8.1 Decoder -

The evaluation of this component includes one part for the practical use of the Decoder and
another part for a survey of the Decoder’s performance. Both parts were performed by 3
testers. 86% of the data sets used in this evaluation were predefined in the questionnaire.
We opted for predefined data sets to be able to test different types of decoders and to be

able to combine the results obtained from testers from the same set of data.

Analysis of Data Decoding

Each tester used ADIOP for decoding 4 to 5 observations (captured data). These observa-
tions are all obtained from 4 different analyzers widely used in the lab. One tester stated in
the questionnaire that: “Definitions for ‘a particular’ Analyzer captures would be useful.”
Data captured using this analyzer was not used in this evaluation since the appropriate
decoder for it was not implemented in ADIOP. Some of the decoders were implemented in
ADIOP by other testers in the lab and some by myself. One tester used 4 predefined ob-
servations for the 4 different analyzers. The other 2 testers used an additional observation
they captured on their own. This yields a total of 14 (4*1+5*2) decodes performed in this
evaluat;on.

For all predefined observations, the captured data were successfully and correctly de-
coded by all three testers using ADIOP for the protocol being tested and using the correct

type of decoder.

As for data that was captured and used by two testers, ADIOP recognized the appropri-

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

130

ate decoder type for this data but did not decode it correctly. The problem might be that
the data was not saved in the proper format from the analyzer so that ADIOP could decode
it. Another explanation is that the ADIOP decoder for this particular type of captures has

bugs in its implementation.

Decoder vs. Analyzers Analysis

The testers were asked to compare the decodes obtained from ADIOP vs. those obtained
from each analyzer. For the analyzers, the complete decodes were obtained 6 out of 14
times, and they include all that is needed for the protocol being tested. As for ADIOP.
the same was achieved 12 out 14 times. Even though the analyzers capture all the packets
between devices, the decodes they provide to testers, for example through a GUI, may not
be complete. ADIOP uses the Hexadecimal format and provides more complete decodes.
This was confirmed by the survey results obtained from testers. ADIOP also provides a
functionality that allow testers to open the decodes of many packets, each in a different
window for an easy comparison of their contents.

We also wanted to find out whether the decodes contained all the information needed.
The testers were asked about whether the decodes lack information that might be needed by
the protocol being tested but should not affect the diagnosis, or may affect the diagnosis, or
lack all the information needed by the protocol being tested. The analyzers did not lack any
such information. For ADIOP, 12 out of 14 times it did not lack any kind of information,
and in 2 out of 14 it lacked all three kinds of information. This was because the data could

not be decoded for these, as stated earlier in this section.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

131

As for whether the decodes obtained are usable, the testers’ response shows that the
analyzers provide decodes that are usable only 8 out of 14 times, compared to 12 out of 14
for ADIOP. Again ADIOP failed for the data that could not be decoded.

We can conclude that, on average, ADIOP outperformed the analyzers in providing
the complete decodes and all that was needed for the protocol being tested, as well as in
providing decodes that are usable. However, ADIOP performed worse than the analyzers
when captures were not decoded. As explained earlier, this was caused by the fact that two
captures were not decoded at all by ADIOP so it was not possible to get any information

out of these captures.

The Decoder Survey Analysis

Each tester also answered questions in a survey on rating the Decoder component of ADIOP.
The survey contained 8 questions. The questionnaire was built based on a likert scale
(Likert 1932) that ranges from 1 to 5, with 5 being “Strongly Agree” and 1 being “Strongly
Disagree”. More information on the likert scale used here can be found in the evaluation
section of Chapter 2.

All ADIOP’s Decoder attributes received the same marks from the respondents (testers)
for an average score of 4.13. For each attribute, the testers answered all the questions with
“Strongly Agree” for 12 decodes and “Strongly Disagree” for 2 decodes. This shows that
the responses were all affected by whether ADIOP was able to decode the captured data.

The ADIOP’s Decoder attributes used in this survey are the following:

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

132

e ADIOP Decoder includes decodes of all the packets needed for the protocol being

tested.
e Decodes given are correct for the packets needed for the protocol being tested.
e Decodes given are complete for the packets needed for the protocol being tested.

e ADIOP Decoder is friendly: this had three subquestions on whether it had an easy
GUI interaction, it was easy to read the decoded information, and it was easy to
compare two or more decoded packets. This shows that the ADIOP Decoder is easy

to use by testers, and makes it easy to read and compare decoded data.

o ADIOP Decoder is a useful tool for the lab.
e Fast - the data is decoded in a reasonable amount of time.

The overall average score of ADIOP Decoder was 4.13. Again this score was mainly
affected by the two captures that ADIOP failed to decode. This can be avoided by debugging
the problem of the decoder that caused these failures.

Notwithstanding this. we can say that the Decoder received a score of 5 on all the
attribu;es for the data that was decoded and this is a very positive result. This is also
supported by the tester with the longest experience at the UNH-IOL, who stated in the
general comments section of the questionnaire that: “ADIOP is the 1% tool we have

had that can reliably analyze decodes and produce reports”.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

133
3.8.2 Diagnoser -

The evaluation of this component includes one part for the practical use of the Diagnoser
where the testers compare manual interoperability testing with the automated testing using
ADIOP. The second part includes a survey of the Diagnoser’s performance. Both parts were

performed by 3 testers (see questionnaire in Appendix B).

Manual vs. ADIOP Automated Testing

The testers were given 36 predefined data sets in addition to some optional ones to evaluate.
A total of 11 data sets were received. Only 6 out of the 36 predefined data sets and 1 from
the optional ones were received from testers. In addition. there were 3 responses from non
predefined data sets and one response where the data set was not clearly stated. 2 out of
the 11 responses did not include any information about the manual testing and thus cannot
be used. One of these 2 was because the tester was unable to decode the trace file using
ADIOP. Another 2 responses have conflicting information between test cases executed and
ADIOP results and cannot be used.

As aresult only 7 data sets could be used in this evaluation, and of these 4 are predefined.
1 optiox;al, and 2 not predefined. If we consider the optional one as predefined and add it
to the set of the total predefined data sets, then 5 out of 7 data sets, that is 71%, used
in this evaluation were predefined. And the predefined data sets used by testers represent
only about 14% (5 out of 37) of all the predefined data sets included in the questionnaire.

These were test cases from the PNNI Routing and LANE protocols. We opted for more

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

134

predefined data sets to be able to test different test cases from different protocols using
different decoder (analyzer) types, and to be able to test and evaluate different situations
of pass and fail results that ADIOP can handle. This makes it also possible to combine the
results obtained from testers about the same set of data tested.

These data sets can be regrouped into 5 groups of different data used. Two test cases
were performed by 2 testers and 3 by one tester (7=2*2+3*1). Since the results obtained
from 2 testers about the same test case were similar in terms of result status and timing
ratios, we include the average of these results into one group. Table 3.4 presents the results
obtained from the questionnaire. All the information in this table was provided by the
testers. MV <- mv in the “Explanation” column of this table means that, in the solution
found, the observed packet mv is assigned to the metavariable MV of the test case CSP

model.

The “Data sets™ column contains the name of the file containing the captured data, the
protocol. and the test case being used. All of the captured data were obtained using the
same analyzer. namely, “Network General”. The “Actors” column states whether a test
case was executed manually by testers or using ADIOP. The “Rslt” column indicates the
results of a test case execution. The “Explanation” column states the explanation that
was provided as the outcome of a test case execution and diagnosis. The “Time” column
states the time in seconds it took to execute one test case. The “# TCs” column shows
the number of test cases in the section in which this test case belongs. The“Rep” column

states the time in seconds it took to generate a report of the execution of all test cases in

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

135

Table 3.4: Summary of results for manual vs. ADIOP testing

{ Summary of results for manual vs. ADIOP testing]

1 Test Case TCs Section
Data sets Actors | Rslt Explanation Time | # | Rep | Pre
(s) TCs (s)
capt002 2 Testers | Pass Hello packets 31 8 1350
PaoniRout observed on link Yes
V4301H_001 ADIOP | Pass HelloA <- 7 3 8 42
HelloB <- 39
(Figure 3.15)
(PNNI | 2 Testers | Pass T - 300 9 | 1800
PnniRout Yes
V4301H_002 ADIOP | Fail Less Hello 3 9 60

Packets (Figure 3.18)
PNNI 1 Tester | Pass Hello packets sent 25 11 900

PnniRout in both directions No
V4302H.001 ADIOP | Pass HelloA <- 41 H 11 46
| HelloB <- 77
capt003 1 Tester | Pass - 20 8 900
PnniRout No
V4301H.004 ADIOP | Pass HelloA <-1 3 8 42
‘ HelloB <- 8
LANE 1 Tester | Pass LAN Destination 15 4 900
Lane field is 16 bytes Yes
V100_LEC Config- [ADIOP | Pass Framel <- 36 5 4 40 (Opti-
ure_Request_003 onal)

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

136

this section. The “Pre” column shows whether the data set was predefined or not in the
questionnaire.

To avoid contamination effects due to learning, the first thing the testers do is the manual
testing and then they use ADIOP. The timing and results of ADIOP will not depend on
the knowledge the testers have of the data. If the testers use ADIOP first, which is not
the case, they may learn things about the problems being diagnosed and their results from
manual testing might be affected and thus biased.

The number of test cases in a section and the predefinition of data sets did not have any

influence on the results obtained in this table and thus will not be included in the analysis

that follows.

Comparison of Results

In one out of the five data sets, the testers’ results (“Rslt” column) and ADIOP results do
not match. There was no explanation provided by the testers about this test case. As for
ADIOP. the explanation provided is similar to the one shown in Figure 3.18 where ADIOP
finds that there are fewer packets of type Hello than what is declared in the model of the
test case used. To analyze this mismatch. we have checked the description of the test case
V4301H_002 in which it is stated that the verdict criteria is to “Observe that the value in
the version field in the next exchanged Hello packets is the same in both directions ...". This
means that there are at least two initial Hello packets exchanged between the two devices
tested, and there are two more Hello packets (one from each device) with the version field

value set as specified in the verdict criteria- By looking into the PNNI capture, we found

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

137

that there are only 3 Hello packets out of a total of 103 packets in this capture. This means
that the test case should fail.

The explanation to this can be that the testers checked the last 2 Hello packets of this
capture for the information on the version field and that is why it passed. But this may
not be always the case with other captures. And, if the test case is modeled as it is defined
in (PNNI-IOP 1999), then it must fail.

For all the other 4 data sets, the results obtained were the same between testers and
ADIOP. We can say that 80% of the time ADIOP and the testers reported the same results.

And ADIOP successfully reported the correct diagnosis 100% of the time.

Comparison of Explanations

The testers provided an explanation in 3 out of 5 data sets. ADIOP provided an explanation
for all data sets. The content of this explanation was different between the testers and
ADIOP. We found that the explanations provided by testers is similar to the “Test Purpose”
defined within the test case used (see Appendix A). In ADIOP, however. the explanation
states which packets in the captured data were used to verify this test case when it passes,
or what is the cause of the problem encountered when it fails.

With ADIOP. it is still possible for the tester to check what is the “Test Purpose” of this
test case just by clicking one button on the same window showing the result of its execution
(see example in Figure 3.20).

In summary, ADIOP has provided a more detailed explanation on the diagnosis in all

cases while, with manual testing, either no explanation or only a general explanation (i.e.,

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

138

“Test Purpose™ of a test case) was provided. Other testers cannot check the validity of this
explanation unless they go through the whole capture, while with ADIOP’s explanation,
any tester can easily determine and check manually why a test case passed or failed.

We can still make the explanation of ADIOP much more useful and easy to understand

by the tester by pasting the “Test Purpose™ of a test case with the result provided.

Comparison of the Execution Times for 1 Test Case

As expected, ADIOP was faster in providing the result of a test case execution. There was
one value that can be considered as an outlier compared to the other values and that is 300
seconds to perform manual testing for V4301H_002. However, this value seems to be more
realistic than the others for a tester to go through a capture and get the result. If this value
is included. then testers have taken on average 78 seconds to perform 1 test case. If the
outlier is excluded. then the average is 22.75 seconds. ADIOP took 5 seconds to perform
the same task. This means that ADIOP took 22% of the time it took a tester to diagnose
one test case. a savings of 78% of the time. In other words. it will take the same amount
of time for a tester to diagnose 1 test case as it takes for ADIOP to diagnose more than 4.
Thus. ADIOP is more than four times faster than the UNH-IOL testers in diagnosing these

test cases.

Comparison of the Times to Generate a Report for a Section of Test Cases

The time shown for ADIOP in the “Rep” column comprises the time to generate and print

a report for the execution results of test cases of one section. For the testers, it represents

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

139

the time to write a similar report. All the sections used in this evaluation included between
4 and 11 test cases and on average 8 test cases.

For ADIOP., it took an average time of 46 seconds to generate a report for one section.
For the testers, it took an average of 1179 seconds to create and write a similar report.

This means that ADIOP took 3.9 % of the time it took a tester to generate a report, a
saving of 96.1%. In other words. it took the same amount of time for a tester to generate
a report for one section as it takes for ADIOP to generate more than 25 reports.

As for the quality of the report. all the testers agree that the reports generated by
ADIOP are useful for the lab. This will be further discussed in the Diagnoser survey
analysis section.

The tester with the longest experience at the UNH-IOL stated. when asked about the
usefulness of ADIOP for the lab, that: “ADIOP would allow for faster completion of tests
and vendors could obtain a report while still in the lab.” Another tester, when asked about
how much better is ADIOP than what we had before, stated that: “ADIOP is the first test

tool that can generate reports.”

The Diagnoser Survey Analysis

Each tester also answered questions from a survey on rating the Diagnoser component of
ADIOP. The survey contained 19 questions. The questionnaire was built based on a likert
scale (Likert 1932), as discussed in Chapter 2.

The ADIOP Diagnoser attributes that received the highest marks according to the

respondents were:

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

140

e The Diagnoser is friendly got an average score of 4.33. This contained 4 subquestions:
easy to execute test cases individually scored 5, easy to execute the test cases of one
section scored 5, easy GUI interaction scored 4.33 and easy to read the diagnosis
scored 3. This means that diagnosing test cases is made easy for the tester with a

friendly interface.

e The Diagnoser is flexible scored on average 4.33. This contained 2 subquestions. It is
possible to diagnose data from different analyzers using ADIOP scored 4.66, and it is
possible to diagnose data for different protocols scored 4. This shows that the testers
agree that ADIOP successfully diagnoses data captured from different analyzers and

for different types of protocols.

e The Diagnoser is fast, meaning the data is diagnosed in a reasonable amount of time
scored 4.33. The analysis of this was detailed in a previous section where we compared

ADIOP to manual testing.
Three other attributes scored an average of 4 (i.e.. Agree):
e The reports generated by ADIOP are useful for the lab.
o Re-usability - the storage of the diagnosis obtained is useful.
e ADIOP diagnoser is a useful tool for the lab.

As for the quality of the explanations provided by ADIOP, the following was gathered

from the survey:

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

141

e “The explanation given by ADIOP is correct” scored 4.33 for test cases that pass and

4 for test cases that fail.

e “The explanation given by ADIOP is complete™ scored 3 for test cases that pass and

3 for test cases that fail.

o “The explanation given by ADIOP is useful” scored 2.66 for test cases that pass and

3.33 for test cases that fail.

This shows that the testers agree that the explanation provided by the Diagnoser is
correct. However. they were undecided on whether this explanation is complete or not.
The usefulness of the explanation was also undecided on average, and that there is more
usefulness of the explanation for the testers when a test case fails than when it passes. This
can be explained by the fact that ADIOP provides explanations that do not include the
“Test Purpose” statement of the test case description. which represents for the testers the
explanation they expect. This can be seen as a useful feedback from testers as to what to
include in the diagnosis of a test case. ADIOP includes this information as part of the test
case description. which can be viewed by the testers from the result’s window (e.g., Figure
3.15).

To resolve this issue we can either state how to access this information in the ADIOP
user manual (Appendix C) or add the “Test Purpose” statement to the result. This last
resolution means that there will be redundant information accessible from the same window,
but will be considered by the testers as more useful for a better understanding of the testing

results.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

142

In case of failures, the explanation provided by ADIOP can be very useful when inference
is successful and less useful when it is not. That could explain why testers agree more on the
usefulness of the explanation when test cases fail. The testers were also undecided about
whether ADIOP’s Diagnoser generates the correct result (Pass/Fail).

Again one positive point in this evaluation is that the individual scores of testers were
negative in only two statements. The usefulness of ADIOP’s explanation when test cases
pass scored 2 (i.e., Disagree) by one tester and scored 2.66 on average by all testers. There
was also a score of 2 by one tester on whether it is possible to diagnose data for different
protocols but the other two testers responded with a score of 5 (i.e., Strongly agree).

The overall average score of ADIOP’s Diagnoser was at about 3.86.

3.8.3 ADIOP’s General Survey Analysis

Each tester also answered questions of a general survey on rating ADIOP including Mod-
eling, Decoding, and Diagnosing components. This survey did not include the debugging
component of ADIOP. Model debugging is the subject of Chapter 4. The survey contained
24 questions (Appendix B). The questionnaire was built based on a likert scale (Likert
1932). as discussed in Chapter 2.

The ADIOP attributes that received the highest marks according to the testers were:

o Re-usability scored 4.67. It states that ADIOP provides a good way to store test cases

and re-use them later.

o “Fast” scored 4.67. It states that ADIOP provides solutions in a reasonable amount

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

143

of time. -

Other statement that scored 4 (i.e., Agree) or more and thus were in average agreed

upon by the testers are:

o Testers can find problems quickly using ADIOP compared to manual diagnosis scored

4.33.

e ADIOP is friendly scored 4.33 as well. This contained four subquestions all of which
scored 4.33 in average. These are: an easy GUI interaction in ADIOP, easy to learn

ADIOP. easy to use ADIOP. and easy to find what we are looking for in ADIOP.

o Test cases can be accessible and executed by anyone without much knowledge on how

they were created scored 4.33.

e Testers expect ADIOP to be even more useful for large data sets with hundred of

frames (packets) scored 4.33.
e Testers can automate interoperability test cases using ADIOP scored 4.
e ADIOP saves time for testers scored 4.
e Testers recommend using ADIOP in the lab wherever applicable scored 4.

Other statements scored more than 3. and thus were still toward the agreement side of

the likert scale:

e Testers can diagnose more interoperability problems using ADIOP scored 3.67.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

144
o Testers know more about protocols when using ADIOP scored 3.67.
e ADIOP is a useful tool for the lab scored 3.67.

o Testers prefer to work with ADIOP rather than without it for interoperability testing

scored 3.67.

e ADIOP is flexible scored 3.58 in average. This contained 4 subquestions, namely, it
is possible to use many decodes on different windows at the same time, it is possible
to perform many diagnoses on different windows at the same time, it is possible to
create many test cases on different windows at the same time, and it is possible to
do all these tasks with no problem of conflicts in the application. Three of these

subquestions scored 3.67, and one scored 3.33.

e It is better to remember how old problems are diagnosed using ADIOP than manually

scored 3.33.
o Testers know more about interoperability testing when using ADIOP scored 3.33.

e ADIOP will help testers do more interesting work scored 3.33.

The statement that scored the lowest with a value of 3 and thus it was undecided by
testers whether they agree or not is that: “The explanation generated by ADIOP is useful.”

The overall average score of ADIOP was at about 3.90.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

145
3.8.4 Limitations .

This evaluation included only three testers and thus we cannot generalize the results ob-
tained because the sample is very small and thus no significant statistical inference can be
used. But this was the extent of the help we could get from the UNH-IOL to perform this
evaluation due to the limited number of available testers and the tight schedule in the lab.
However. the fact that all three testers consistently rated the ADIOP components high on
their different attributes strengthens the results even though the sample is small.

For the decoder, the captured data used were predefined. The purpose of this was to
obtain results from different decoders and to be able to compare results obtained from
different testers for the same set of data. For the Diagnoser, however, some data sets were
predefined and others were not.

The data sets used were few in number and that is because of time constraints in the
lab. We would have obtained a better analysis with more data sets involving all different
decoders, using different protocols, and for different testing situations. However. we have
used ADIOP’s Decoder to decode more than 20 captures of 4 different analyzers. More
than 10 of these captures were used in the evaluation of the other components of ADIOP.
We have also used the Diagnoser for testing more than 60 test cases. Some of the results
obtained with these test cases can be found in Section 3.7 on the evaluation of algorithms
and in Table 3.3.

One tester stated that “ADIOP in general is a great tool. But in the lab we would have

to implement entire test suites before it could be used which takes too much time.” It is

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

146

expected that some time will be spent to create test cases and implement test suites, but
this is only needed once for each test case. After that the same test case can be run as many
times as the tester wants with no need to do manual testing or create reports manually.
So, the savings with the ADIOP tool are clearer when we think of the long term impact on
testing.

He also stated that “ADIOP can be made better by implementing more test suites,” and
that “The ADIOP tool works well but needs to be implemented more completely before it
proves useful. The concept and functionality are great. Once fully implemented, ADIOP
could prove to be extremely useful.” This is true and so far we have implemented few test
suites to evaluate ADIOP’s performance. And the first feedback on this prototype has been
positive and suggests that ADIOP can be used in the lab but needs further improvements.

Another tester stated that “ADIOP can be made better and more useful if it is made of
a client/server model so that test cases can be accessed from any workstation.” This can
be investigated further as needed by testers. and the fact that ADIOP was implemented
using Java makes it easy to upgrade it to a client/server version either by using a CORBA
interface or some other architecture. In any case, it is feasible if deemed to be useful.

He also stated that: “on various tasks ADIOP would crash.” This is true because there
was no quality assurance performed on ADIOP as we did not have enough resources for
that and the main goal was to support the ideas presented in this dissertation.

Another tester stated that: “ADIOP can be made better and more useful if it allows test

cases to be generated for LANE and Q2931. It was unable to generate test cases for protocols

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

147

other than PNNT”, and that “generating some test cases for PNNI caused ADIOP to crash.”
As stated earlier, there are some test cases already implemented using these protocols but it
is possible that not all the functionality of the protocol is implemented and thus it was not
possible for testers to create some test cases. A complete implementation of the different
protocols would allow for better results as was proven through the PNNI Routing protocol,

where testers had fewer problems in creating test cases and executing them.

3.8.5 Conclusion

As stated at the beginning of this chapter, our motivation for automating the diagnosis of
interoperability testing is to save time, reduce repetitive testing. store and reuse knowledge,
automate reports generation, and in general to make testing easier and more efficient. Many
of the claims we made about modeling and diagnosing using ADIOP were confirmed by the
testers. Testers agreed that ADIOP is user-friendly, flexible, fast, saves time, provides
reusable diagnosis and useful reports, that it is a useful tool for the lab, and that it helps
testers know more about the protocols. They also agreed that the knowledge required to
run test cases is minimal, that testers can automate test cases using ADIOP, and that more
interoperability problems can be diagnosed using ADIOP. ADIOP was also recommended
by testers to be used in the lab, and that testers prefer to work with ADIOP than without
it.

The scores obtained by all the components also show that ADIOP is a tool testers would
want to use because of all its attributes presented earlier. We evaluated each component

by itself as well as the overall performance of three ADIOP components. In summary,

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

148

the Modeling component presented in Chapter 2 scored 4.44,-the Decoder scored 4.13,
and the Diagnoser scored 3.86, All these three ADIOP components together scored 3.90 in
the ADIOP’s general survey. All of these scored above or close to Agree (i.e., score of 4)
which supports our earlier statement about ADIOP. This also shows that the components’
behavior matches their intended functionality.

Some of the positive statements provided by the testers in the questionnaire are the

following:

e One tester stated that: “ADIOP would allow for faster completion of tests and vendors
could obtain a report while still in the lab.” and that: “ADIOP is the 1 test tool

we have had that can reliably analyze decodes and produce reports.”
o Another tester stated that: “ADIOP is the first test tool that can generate reports.”

e The third tester stated that: * Testing PNNI using the ATM Forum’s Test Suite is
much easier to complete using ADIOP.”. and that: “Overall, a very friendly interface.

It will make PNNI testing much more efficient and easier.”

The above statements also confirm the thesis we support in that CSP modeling and
methods are suitable for many applications including interoperability testing. In addition,
the testers in the general survey on the overall performance of ADIOP agree that it enhances
the way interoperability testing is done, and that they recommend it as a useful tool for
the lab. They also stated that ADIOP is a better tool than what testers had before.

There are also some areas of improvements that were pinpointed by the testers, some of

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

149

which were mentioned in the limitations section. There was also the explanation provided
by the Diagnoser that testers found not to be very useful and we explained how it is possible
with a small modification in ADIOP to solve this issue.

The outcome of this evaluation confirms our claims about ADIOP, its success and its
contribution. This includes the statements that ADIOP Diagnoser outperforms manual
diagnosis and other tools, and that ADIOP Test Suite Builder outperforms other tools.
This includes also the CSP modeling language capabilities and ease-of-use, and the ability

to generate correct and useful explanations.

3.9 Related Work

e (Abu-Hakima 1993) argues that causal explanations in diagnostic tasks are more easily
obtained using fault-based or failure-driven reasoning versus model-based reasoning.
Fault-based or failure-driven diagnosis is more of a contextual task and can more easily
be used to support user interaction through explanation than model-based diagnosis.
The diagnostic hierarchy (classification tree) branches into more specific hypotheses
tl.lat explain the more detailed symptoms provided by the user. As the system is
used, the diagnostic hierarchy forms the basis for a dynamically generated explanation
hierarchy that holds both successful and failed branches of the reasoning tree. Her
paper elaborates on explanations in RATIONALE, a fauit-based diagnostic system.
RATIONALE is a workstation diagnosis system that establishes context in reasoning

so that it may support the user with sophisticated explanations of diagnoses that help

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

150

Jjustify system behavior and clarify reasoning (Abu-Hakima 1988). It uses template-
based explanations. Templates connect pieces of text to variables that are instantiated
from the knowledge in the system. This allows explanation templates to be domain
independent. Templates also simplify the task of generating dynamic explanations

according to the current context.

(Abu-Hakima 1994) states that fault-based reasoning (FBR) is used in many diag-
nostic systems. Knowledge in FBR is largely based on maintenance manuals and
interviews with experts intended to capture heuristic knowledge about the mainte-
nance and repair of a device or process. In the same paper, Abu-Hakima also states
that model-based reasoning (MBR) for diagnosis concentrates on reasoning about the
expected and correct functioning of a device. A device is modeled based on its com-
ponents and their expected behavior (Hamscher & Struss 1990). (Abu-Hakima 1994)
presents the DR (Diagnostic Remodeler) algorithm for automating model acquisition
for diagnosis. She states that humans use failure-driven reasoning for successful device
diagnosis and repair, argues that MBR for diagnosis can detect novel faults but can
lead to a combinatorial explosion in producing a diagnosis, and FBR uses the faults
in. the functioning of a device rather than its actual behavior but cannot detect novel
faults. The DR algorithm was implemented to combine model-based diagnosis (MBD)
and fault-based diagnosis (FBD) by automating the generation of a model of a device
by the re-use of its fault knowledge. This implies the automated generation of MBR

knowledge from FBR knowledge.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

151

In the MBR type of diagnosis, once a device model is stabilized then a device’s ob-
served behavior can be predicted from the model. If a discrepancy in behavior is
detected then possible fault candidates are generated based on assumptions that de-
scribe correct model behavior. In MBR, the definition of models range from causal
models to numerical simulations. In this work, a device’s behavior is modeled and
used for diagnosis. In interoperability testing, we need to model and diagnose the
interaction between devices. Thus, modeling a device's behavior is not suitable for
the domain of interoperability testing. The application of each approach is different

according to the goal to be achieved in diagnosis.

e One approach to model-based diagnosis has taken diagnosis to be a constraint sat-
isfaction problem (CSP) (Fattah & Dechter 1992). (Sabin et al. 1994) implement
a refinement of this approach using Partial Constraint Satisfaction Problem (PCSP)
to diagnose distributed software systems. PCSPs were introduced for applications
that settle for partial solutions that leave some of the constraints unsatisfied (Freuder
& Wallace 1992). Regarding components as constraints, and faulty components as
fa_iled constraints, minimal diagnoses naturally correspond to PCSP solutions that

leave minimal sets of constraints unsatisfied.

The same technique is applied and extended to the diagnosis of some configuration
problems involving FTP and DNS network software (Sabin et al. 1995a), where diag-
nosis is considered as a Dynamic Partial Constraint Satisfaction Problem (DPCSP).

The finite-state machine specification of a protocol is translated to a standard CSP

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

152

representation and configuration tasks are modeled as dynamic CSPs (DCSP) (Sabin
et al. 1995b). We take Diagnosis a step further by fixing CSP models and improving
explanation of diagnosis using CBR. The integration of CBR and CSP improves on
the CSP modeling by debugging and updating models and improves on explanations

generated by CSP.

o (Leckie 1995) presents an application designed to automate the tasks of performance
monitoring and fault diagnosis of transmission equipment for a special purpose tele-
phone network. The large volume of data collected daily made it impossible for the
experts to check every aspect of the network. They developed a connectionist data
filter that could quickly detect abnormalities in large volumes of raw data. Then, they
introduced a rule-based expert system to perform more detailed diagnosis based on
the output of the data filter. In interoperability testing, there are many test cases to
model, and they differ from each other in terms of packets and types of constraints to
be checked. Also, we need to have the flexibility to implement test cases for different
protocols. A rule-based system is not adequate for this type of application because it
does not provide this flexibility. We have shown in this dissertation how the integra-
tion of CSP and CBR allow this flexibility of modeling and diagnosing in addition to

model debugging.

e (Novak et al. 1993) extend the DFT (Design-for-Test) methodology by using CLP(R)
to model analog circuits and by a model-based diagnosis approach to implement a

diagnostic algorithm. CLP(R) is a constraint logic programming language which

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

153

combines symbolic and numeric computation. -

3.10 Summary

In this chapter, we discussed how we use CSP models to diagnose interoperability problems.
We showed how the use of CSP for modeling allows us to take advantage of methods and
algorithms that already exist for solving CSPs. These algorithms are adapted to take
advantage of the specialized problem domain structure. This provides a better diagnosis of
the interoperability problems including an accurate and concise explanation of the testing
performed.

We gave some definitions related to diagnosis, we presented the diagnosis process for
interoperability problems, and the algorithms and methods used for diagnosis, including
search and inference. Section 3.5 is dedicated to explanation and explanation templates.
We then discussed test case execution including menus and reports generation.

An evaluation of the performance of the different algorithms used was then presented
and showed that some of the specialized algorithms can lead to better results in terms of
time and explanation. Then an evaluation performed by testers supported some of the
claims we made about ADIOP such as its usefulness. friendliness. flexibility, time saving,
re-usability. Testers also recommended the use of ADIOP in the lab. These attributes of
ADIOP were agreed upon by testers in the evaluation and most of them scored high. There

are also some areas of improvements that were pinpointed by the testers.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 4

Case-Based Reasoning and Model Debugging

In the previous chapters, we discussed how interoperability testing is performed in ADIOP
using CSP for modeling test cases and for diagnosing problems. We showed that the diag-
nosis of interoperability problems using search and inference generates useful explanations
in most cases. However, ADIOP’s search and inference methods may fail to generate useful
explanations for some problems/failures. In this case, we suggest having a case base where
these problems are stored. along with an explanation of the solution provided by the ex-
perts. Each problem and its solution constitute one case. These cases can then be reused
in the future to help the testers with similar problems.

Some of these cases originate from the incompleteness and incorrectness of the CSP
model. In this case. the ADIOP system provides the functionality to store the case in
addition to statements for updating the CSP model and making it complete and correct.
These cases can then be used in the future to help with similar problems and update other
incomplete or incorrect models.

Other cases originate from interoperability problems with a non-useful, incorrect or

incomplete explanation. These cases are reused to provide better, correct, and complete

154

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

155

explanation for future problems. -

4.1 Motivations and Contributions

Some of the motivating issues for the work presented in this chapter are:
o Learning from previous cases
e Debugging: Compensate for incompleteness and incorrectness

e User Interaction and Advising

In summary, we want to have a system that detects and debugs inconsistencies in the
CSP model built by the user. These inconsistencies may originate from different sources.
They may be inconsistencies in the protocol specification document, in the test suite derived
from it or in the modeling of these tests by the user. Independently of the origin of these
inconsistencies. we want to provide a way of detecting and resolving them.

This leads to another important motivation, and that is to provide a general framework
for model acquisition and debugging. The idea is to develop automated ways to compen-
sate for-incompleteness and incorrectness of models. This can be very useful for debugging
models. It includes detecting inconsistencies and resolving them by either storing the infor-
mation about them for later use or by updating the model. Part of this motivation is to find
a taxonomy of these inconsistencies. This provides a formal way for addressing different

cases of incompleteness and incorrectness.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

156

We used both a bottom-up approach, where we collected the examples from the appli-
cation as a starting point to come up with part of this taxonomy, and a top-down approach,
where we started looking at the concept of CSP modeling and how incompleteness and
incorrectness can be manifested in these models.

Our approach is to debug the model when some of these inconsistencies are present.
The model is debugged through user interaction, and CBR is used as the learning tool.

The integration of CSP and CBR in the way presented in this dissertation is novel.
CBR is not part of the CSP solving mechanism but rather is an addition to it. So there
is less interaction between the two than in other integrations. CBR is used to remember
old cases when a similar problem is encountered. Cases that represent incompleteness and
incorrectness in the model are stored along with the ways these are solved.

Other types of cases are also stored that represent failures and explanation of these fail-
ures. and can be recalled if a test case fails. They may not be related to the incompleteness
or incorrectness of the CSP models.

Another important contribution is the use of CBR to debug and eventually update the
model. To our knowledge CBR-CSP integrations that were researched and implemented
do not ‘include this kind of integration. We wrote a survey on CBR-CSP integrations in
(Sqalli. Purvis, & Freuder 1999). where more information can be found about these. For
some domains, updating the model is not an option because that may add inconsistencies to
the model and make it inadequate for use. In contrast. this is a useful task in our application

because it allows us to obtain more robust models.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

157

In our approach CBR adds to CSP in that it allows the use of CBR as an addition and
a learning tool with CSP, and it also provides a good module for updating and debugging

the CSP model.

4.2 Advantages

The claimed advantages of this approach are as follows:

e The modeling of the protocol specifications as a CSP is easier to start with than
gathering a set of cases. If we use only CBR then we will need to store many cases.
Instead. we choose to reduce the number of cases by using the CSP model. The CSP

model represents the core of the system. and CBR adds the missing elements in this

model.

There is no need for CBR use at first but only after CSP fails. The CSP model is

easier to use at first because of its generality.

CSP is enhanced by the CBR results. The effectiveness of the model increases as more

problems are solved, because the CSP model gets updated as needed.

CSP is used to represent the information on updating models in cases. This assures

uniformity of representation between the CSP models and the updating process.

The system is open to new expertise and easily updated. The expert can add cases

as needed by the system.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

158
4.3 Incompleteness and Incorrectness in the CSP model

A model is incomplete if it is missing some knowledge about the system’s behavior. This
means that this incomplete model suffices to answer questions not involving the missing
knowledge. Otherwise. the behavior will be unpredictable. A model is incorrect if it repre-
sents wrong knowledge. This model will be sufficient for and will answer correctly questions
that do not involve the incorrect knowledge. Otherwise, the answer given might be wrong.
The problem in all these scenarios is that it is hard to know where the missing or the
incorrect information is, so it may not be possible to tell whether the answer provided by
these models is correct. An example of an incomplete model is a CSP problem where a
constraint or a variable is missing. An example of an incorrect model is a CSP problem
where a constraint is incorrect.

A model can be incomplete or incorrect because:
e The interactions with the external world are unknown,

e The modeling is done by a human being, who may miss or interpret incorrectly some

information.

An assumption that is frequently made is that the protocol specification and the test
suite specification are correct and consistent. However, both of these types of specifications
may be incomplete. inconsistent, ambiguous, or incorrect. This may happen because of the

following:

e A statement in the specification may be incorrect because of a human error.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

159

e Statements of one section may be inconsistent with statements in another one in the

protocol specification.
o Statements may be interpreted incorrectly when developing a test suite.

In addition, if many protocols are running at the same time between two devices, they
may cause the wrong behavior of one protocol due to the external interactions with the
other. Specifications can be incomplete because they represent the behavior of a specific
domain application and may not include all the interactions with the external world.

We are interested in contributing and evaluating in terms of the larger CSP domain by
acquiring a taxonomy of types of model incompleteness and incorrectness. and associated

ways to identify and fix them.

4.4 Taxonomy of Types of Model Incompleteness and Incor-

rectness

The first step in acquiring this taxonomy involves collecting some of these inconsistencies
in the c.ioma.in of interoperability testing of networking protocols. We use a bottom up
approach to collect some examples, gathered in the lab, from the real world application
of interoperability testing to different protocols in ATM, and these are shown in the next
section. This allows us to gather types of incompleteness and incorrectness found in this
domain. From these, we identify the first part of this taxonomy.

The second step consists of a top down approach to derive some more model incom-

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

160

pleteness and incorrectness that my occur in this domain. This allows us to analyze the
CSP models in a broader sense and identify types of incompleteness and incorrectness that
may appear in other situations not included in the first part.

The third step consists of debugging these models by associating different procedures
for fixing each problem of incompleteness or incorrectness. We provide more details on one
type of these problems that was implemented and tested, and more empirical results on it

are presented in this dissertation.

We used only one type of what will be presented in this section in the evaluation of the

Advisor component. This is due to the fact that:
e Available captures do not include all the different cases presented here.

e Decoders are not implemented in ADIOP for all protocols.

4.4.1 Practical Examples of Incompleteness/Incorrectness in Interoper-

ability Testing
This section contains examples of problems encountered when testing different ATM pro-
tocols. .The purpose is to show why there may be incomplete/incorrect models.
1. LANE 1.0:
The LANE 1.0 Specification (LANE-1.0 1995) states that:
5.3.1.1 Configure Request (p61): The requester MUST issue an

LE_CONFIGURE_REQUEST to the LE Configuration Server containing at least the

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

161

primary ATM Address of the prospective LE Client in the SOURCE-ATM-ADDRESS

field. Other information MAY be included ...

5.3.1.3 Successful Configure Response (p62): ... In this case, the ..., and

ELAN-NAME parameters MUST be copied to the prospective LE Client ...

According to the specification, when no ELAN-NAME is specified in the ‘Configure
Request’, the LECS (LE Configuration Server) should send a ‘Successful Configure

Response’ with the ELAN-NAME set.

But if there are many ELANs in the same ATM network and there is no ELAN-
NAME specified in the ‘Configure Request’ packet. then the LECS has no way of
determining which ELAN-NAME to send in the ‘Configure Response’. To avoid this
situation. some devices implemented this protocol in a way that the LECS rejects the
‘Configure Request’ if it does not contain an ELAN-NAME. Some vendors want to
have this feature of rejecting requests with no ELAN-NAME for security reasons. so
that if the requester does not know which ELAN to connect to. she/he will not get a

successful response.

These devices are not conformant to the specification but are interoperable with other

devices.

(3]

. MPOA 1.0:

In the MPOA 1.0 Specification (MPOA-1.0 1997), page 61 (Section 5.3.2.4) states

that:

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

162

MPOA Control messages may have the same Eztensions as an NHRP packet.

In the NHRP Specification (NHRP 1998). page 37 (Section 5.3.0) reads:
When eztensions ezist, the eztensions list is terminated by the End of Extensions/Null

TLV

NHRP does require the End of Extensions/Null TLV when extensions are used, but
MPOA does not specifically make any such requirement. Some MPCs (MPOA Clients)
will not terminate the extensions list with the End of Extensions/Null TLV (claim-
ing they are conformant to the specification). And the MPS (MPOA Server) may
reject it because it expects the last four bytes of the extensions list to be the End of

Extensions/Null extension (in conformance with the specification).

In this case. the two devices are conformant to the specification but are not interop-

erable with each other.

3. MPOA 1.0: (MPOA-1.0 1997)

In the MPOA 1.0 Specification (MPOA-1.0 1997), it is stated in page 70 (Section
5.3.9) about Extensions: An MPOA Keep-Alive Lifetime Ezrtension must be added as
fo}lows:

Type: 021003

Length: Two Octets

Keep-Alive Lifetime [Value|: duration of time ...

The following is what we see in an example of testing SUT A and SUT B (values are

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

163

in HEX):

SUT A: Type = 1003, Length = 0002, Value= 0067

SUT B: Type = 1003, Lengtk = 0004, Value= 09000035

SUT A assumes that the Length is always 2 Octets since the maximum value “Value™
can take can fit in 2 bytes. Because of this, SUT A decodes “Value” from SUT B as

0000 (not 0035), which is a bad value and rejects it.

SUT B uses 4 bytes to represent a value that always fits in 2 bytes. (Implementation

choice)

The issue that caused the problem here is the decision to represent “Value™ as 2 or 4
bytes. Both were valid interpretations from the vendors of the protocol specification,
since the protocol specification does not state how to represent “Value”. But this

caused the non interoperability of the two devices.

The two devices are conformant to the specification but are not interoperable with

each other.

4. UNI 4.0: (UNI-4.0 1996)

Information Elements like the ‘Minimum Traffic Descriptor’ are necessary to negotiate
traffic parameters. Hence, some devices require that they be present. Other devices

may not supply them and reject the call if they are present. (UNI4.0 8.1.1.1 p61)

These devices are neither conformant nor interoperable.

5. PNNI 1.0: (PNNI-1.0 1996)

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

164

A switch may not send 1Wayln (required event in PNNI) at all, but still interoperate

with other switches because it sends the messages that follow 1WayIn.

This switch is not conformant to the specification but is interoperable with other

switches.

6. PNNI 1.0: (PNNI-1.0 1996)

Because of a race condition at the monitoring point, 1WayIn may be captured by the

analyzer instead of the expected 2WayIn.

The devices in this case are conformant and interoperable.

-~

. PNNI 1.0: (PNNI-1.0 1996)

Some devices that are running PNNI do not work when ILMI (Interim Local Manage-
ment Interface) (UNI-3.1 1994) is enabled on one switch and disabled on the other.

In the PNNI specification no such requirement is made.

These devices are conformant but are not interoperable.

Summary

As a summary to this section, we can have one of four scenarios when testing two devices:

1. They are conformant and interoperable
2. They are conformant but not interoperable
3. They are not conformant but interoperable

4. They are neither conformant nor interoperable

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

165
4.4.2 Types of Incomplete and Incorrect Models

In this section, we use a top-down approach to derive more ideas on model incompleteness
and incorrectness by looking at the structure of some CSP models.

Figure 4.1 represents an initial CSP model. This model is an illustrative example used
here in order to provide insights on the different types of model incompleteness and in-
correctness. This section is not intended to provide a detailed analysis of these types but
rather an introduction for future work on this subject. In the following examples. we state
some initial actions that can be taken by a tester to make changes in a CSP model, and we

look at what impact this would have on the whole model.

Y X Z

Figure 4.1: Initial CSP model

Note: Adding transitivity constraints involving a variable X means that, for every

variable pair Y and Z that have constraints with X. a constraint between Y and Z is added.

Examples of this are shown in the following:

e if Y<X and X<Z then Y<Z is added.
if Y<X and X=2 then Y<Z is added.

if Y=X and X=Z then Y=Z is added.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

166

e if Domain(X) = Domain(Y) = Domain(Z) = {a,b}

and if Y#X and X#Z then Y=Z is added.

We have identified two main categories of model inconsistencies:
1. Deletion of a constraint/event or event becoming optional,
2. Addition or modification of a constraint

We have broken these up into sub-categories presented in the following:

1. Variable becomes optional: missing value, missing constraint

If a variable X becomes optional, then we need to add the transitivity constraints.
The idea here is that if X is not observed, which is OK (because X is optional), then
the constraint between Y and Z should be preserved. Figure 4.2 shows the result of

updating the CSP model of Figure 4.1 in this case.

One real example related to this category is the one presented in item 5 of the previous

section.

Figure 4.2: CSP model updated when variable X becomes optional

2. Extra variable: variable removed

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

167

If a variable X has to be removed, first we need to add the transitivity constraints
then remove it. The idea here is that variable X is not involved in this model, but
some constraints may have been initially omitted because they are captured in other
constraints involving X. Figure 4.3 shows how the model of Figure 4.1 is updated to

account for this problem.

Y Z

Figure 4.3: CSP model updated when variable X is removed

3. False constraint: constraint updated
Figure 4.4 shows a CSP model involving three variables and three constraints.

<

Figure 4.4: Initial CSP model

If there is a false constraint in the CSP model, we need to update the model so that
there is no inconsistency in it. If the CSP model in Figure 4.4 has a false constraint
between X and Y and that the constraint should be Y>X, then the constraint between

Y and Z has to be updated too by changing Y<Z to Y>Z. Figure 4.5 shows the result

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

168

of this update. -

Figure 4.53: CSP model updated when there is a false constraint

4. Extra constraint: constraint removed

If a constraint is removed, some information may have to be captured. If the constraint
between X and Z does not exist in Figure 4.1, then the constraint between Y and Z

should be added. Figure 4.6 shows how this is done.

<

Figure 4.6: CSP model updated when a constraint is removed

. Missing constraint: constraint added

If a constraint is added, we may need to add the transitivity constraints and check for

the model consistency, because this new constraint may conflict with another existing

one.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

169
4.4.3 One Type of Model Inconsistency

We present in this section one type of model inconsistency that is implemented and tested
in this dissertation. This is the type presented in sub-category 1 of the previous section and
is related to item 5 of the examples section.

The following states the problem presented by this type of model inconsistency and the
actions taken, as implemented using CBR, to debug this problem. This problem is found
the first time by a tester at the UNH-IOL, and by CBR in future similar cases. This is
detailed throughout the rest of this chapter. The “Actions” are taken by the tester and
may be stored as a case in the case base.

Problem: Event not mandatory (Missing event)

Actions taken:

1. Update the status of the variable of the missing event to become ‘Optional’

2. Add transitivity constraints involving the time variable of this event

In this chapter, we will show how this type of inconsistency (i.e., Event should not be
mandatory) is fixed and debugged using CBR. The expert’s approval is needed to confirm
that this model debugging is valid, and more actions may be added by the expert. The
expert also checks that correct solutions are not lost in the new updated model by executing
the updated test cases with other data sets. The actions taken by ADIOP may not be
sufficient, and manual checking by an expert might be needed. More empirical results are

provided in the evaluation section showing that these actions taken are justified for this

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

170

type. -

We worked with this type of inconsistency to prove that model debugging works in the
interoperability testing domain using a CBR-CSP integration. We defined a framework for
CBR and its integration with CSP. This is detailed throughout the rest of this chapter. The
implementation of this framework also led to the use of CBR for improving problem solving
and explanation even when models are consistent. CBR has been implemented and tested
with a case base containing these two types of cases: a case related to model inconsistency
and cases for improving problem solving and explanation. This chapter covers more about
how to use CBR in different types of cases, but it does not cover many types of model
inconsistencies. However, it exemplifies how the CBR process can work in both the domain
of debugging models and in the domain of improving problem solving and explanation, and
that similar conclusions can be drawn for both domains.

Further work is needed in this area to include more types of inconsistencies and identify

ways to fix them. and to generalize these findings to more model debugging cases.

4.5 Case-Based Reasoning

The reliance on past experience that is such an integral part of human problem solving has
motivated the use of case-based reasoning (CBR) techniques. A CBR system stores its past
problem solving episodes as cases, which later can be retrieved and used to help solve a
new problem. CBR is based on two observations about the nature of the world: that the

world is regular, and therefore similar problems have similar solutions, and that the types of

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

171

problems encountered tend to recur (Leake 1996). When these two observations hold true,
it is worthwhile to solve new problems by reusing prior reasoning. Much of the original

inspiration for the CBR approach came from the role of reminding in human reasoning

(Schank 1982).

Lonfirmec Suggestec
Sotution Solution

Figure 4.7: Case-Based Reasoning Cyclical Process

The process by which a case-based reasoner operates has been described by (Aamodt

& Plaza 1994) as a cyclical process comprised of the four REs: RETRIEVE the most

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

172

similar case(s), REUSE the case(s) to solve the problem, REVISE the proposed solution if
necessary, and RETAIN the new solution as a new case. This process in shown in Figure
4.7 taken from (Aamodt & Plaza 1994). The application of this CBR cycle to real problems
raises a common set of issues, regardless of the domain of application. These issues include
case representation. indexing, storage. retrieval method, and adaptation method. We can
abstract the CBR process as one of recalling an old similar problem, and adapting that

problem to fit the new situation requirements, as shown in Figure 4.8, taken from (Maher,

Balachandran, & Zhang 1995).

New (mblem

Index

Recall
Case Base

Retrieve

Select

Adapt Modify

——————— New Solution

Evaluate

Figure 4.8: Case-Based Reasoning Process

A case is usually composed of a problem description and its solution. Whenever there
is a new problem., it is matched to what is already in the case base using similarity metrics

to determine how close an old case in the case base is to the new problem. Then the useful

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

173

cases are retrieved and adapted to the new problem to provide a solution. The new case

(problem and its solution) will be stored in the case base if it provides new information.

4.6 CSP/CBR Integration

We have presented in (Sqalli, Purvis, & Freuder 1999) a survey of the various applications
integrating constraint satisfaction and case-based reasoning. This exploration provides in-
sight into how CSP can be enhanced by combining it with CBR, thereby enabling its usage
in an even broader spectrum of applications. Although there has been a lot of work done
combining CBR and MBR (Model-Based Reasoning) including CBR with CSP, our ap-
proach to this integration is novel in the way the two paradigms are integrated. We propose
to represent our system as a CSP model supported by a case base to compensate for in-
completeness and incorrectness. This section focuses more on the CBR/CSP interface and
how CBR is used to compensate for the incompleteness and incorrectness of a CSP model.
In Figure 4.9. we show how CBR and CSP are combined to solve these problems.

Cases are represented using a flat table with feature/value pairs. Cases that are used for
updatix_xg CSP models have a feature for this purpose that is represented using CSP. This
allows ADIOP to easily update CSP models using the value stored in this feature. In the
example that follows in this section we show how this representation is done for one case.

CBR checks if there is a similar case in the case base. If one or many similar cases
are found. then they are retrieved and adapted to solve the new problem. The adaptation

process is simple in many cases because of the tests’ similarity within the same test suite.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

174

Figure 4.9: Integration of CSP Model and CBR for Interoperability Testing

It is based on some simple rules that will be described later in this chapter. Finally, the
user checks whether the adaptation is appropriate.

The new case, consisting of the problem and solution. is eventually stored in the case
base if the tester decides to do so. The new solution can also be used to update the CSP
model. and make it more adaptable to new situations. The process of updating the model
is done manually for the first case. As the system learns more cases, there is less interaction
with thg user on the model update process. A set of general rules are used to update the

model from a case. Some examples of these rules are:

1. Add or remove the constraints from the case’s UpdateModel feature to the model.

2. Modify variables in the model using the case’s UpdateModel feature to make the

constraints consistent.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

175

In the next section, more explanation will be given on how to apply this reasoning in a

practical example.

4.7 CBR/CSP Integration Components of ADIOP

4.7.1 Advisor

If the diagnosis result of a test case is a failure, then an “Advisor” button is shown in the
test case result’s window (Figure 4.10). More on the ADIOP’s Diagnosis component can be

found in the previous chapter.

Figure 4.10: Test Case Result containing an ‘Advisor’ button

The Advisor is the CBR component of the ADIOP system (Figure 4.11). It provides
the user with the functionality to recall previous similar problems and reuse them to solve

new problems. This is done through user interaction and advising. More details will be

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

176

provided later in this chapter. -

OPREBENS:* COPIRIY U - .5 < -y S
. PR A JE . - o WL

> R a % S
1 Onn maint supony : agosiaat Mvtel Igmneput AI02N_ VAKIIN_00I vedy Guta M08 wan. o0 RTsen S5_0 o . otnd0lPEN . Thas an
2 Waag foula G ... Pr. alwt AXRRN_ VA 0t vody GutSe ol Fr. et LUTsas S5 D o gDl ee ‘Ous ormae of
3 Vang Salen or Py et VesCIDREDY vodly Bt e Dataln... oS 75 el 2o & . SRS PRN Tl e
d Pohe aeut .. OBy Pr.. B 1 90_LE. . veO0_LEC_C.. - hd gl a0 Nen s »

_Teoom: . NOOW_o@ L ot

Tostiwspsan: - |Venty that a PNNI version number s agreed upon -

' SUTS are SS_M ana in the S8ME IOWES 18Vl DIET GrOuD. ~
CARODS a8 R -
378 fower ODB&TVEC DRCKOLS Of typR HOAO UGN what (s Stle0 mthe maDei g tesL.~ ~ - -

!
4. - = u e - N . - L e v . =3 ;
—m — maea I S] 1 |

1 W76 % One chokm mam Y™ .

: "N]
0 6427085 % CaplurS MG OIA OF___ INerODMADIRy Probiem
i3 S6 350088 %, WONG SECUON o7 PRCK _ IntarODRMRGIy PYODRM
: 0 310004)

- Opetwm | | emanpon | | PestUsiaf Simier Come ! |

Figure 4.11: Advisor/CBR Window

The Advisor is used only when a test case fails. If a test case passes. the user gets a
matching solution as was explained in detail in the previous chapter, and there is no need
for the Advisor.

Another way to access the Advisor/CBR window is from the main ADIOP window.

This is useful for checking the CBR component of ADIOP, adding cases, updating cases,

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

177

etc. without having to execute test cases and debug failures. -

The Advisor window shows all the cases stored in the case base in the top panel (Figure
4.11). The middle panel shows the information about a new case. If the Advisor was called
from the result’s window of a failed test case, then the ‘New Case’ will contain information
generated from this test case’s result. If the Advisor window is called directly from the
main ADIOP window, then the new case will have empty fields/values. The third panel in
the Advisor window contains the cases stored in the case base sorted by their similarity to
the new case. More details are provided later in this chapter.

There are two kinds of failures stored in the case base. The first is related to incomplete
or incorrect CSP models. These CSP models are eventually updated through the Advisor
component. The second kind of failure are those due to interoperability problems in the
devices being tested. The purpose of using the Advisor here is to get a useful, correct. and
complete explanation of the cause of a test case’s failure. This case base is stored in a file

as a flat table (Figure 4.12).

4.7.2 Development Process and Case Collection

The general development process of a case-based system as described in (Bergmann et al.

1999) page 17 is to:
o Build and maintain a case base
o Customize the user interface

e Tune the way the information system operates.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Figure 4.12: A Partial View of the Case Base Table

ADIOP follows loosely this process. as it is meant to be a prototype.

178

Cage: 1
index: One packst missing
type: IscorTect Nodel
1:

sectiea: 43023 __

testcase: VA302__ 002

testpurpose: Verify that a PNEI versies sumber is agreed upea.-

testpreTaquisite Both SUTa are SS_B aad ia differeat lovest level pesr grewps.-

data: other/PUNI.PRE

fajlurecanse: There are fever ohserved packets of type Belle tham vhat is stased iz the medel of tais test

prodlem: The second Bello packst (BelleiS) is missiag

solution: The second Bello packst (Nellell) is mede optiesal

outcems : Rodel up g added, P le dut aet

usdelupdate: ADD: SUNARY_CONSTRAINT Nelloll.status == D _Optieasl
ADD: SBINARY_CONSTRAIET Sellold.time <= Bello2A.time
ADD: SIINARY CONSTRAINT Bellold.time <= Nello2d.time
urs: Sellell.poer _greup_i¢ NellolB.pesz_group. id
ap0: SCONSTRAINT Belle2A.time NellolB.time DN 3 (Belloll.)

Cempare.compare(_NellolB.time, "<=", _RelloZA.time)
Case: 3

index: Uromg Sectioa for this captured data

type: Isteroperadility Prodles

protocol: PpaRlITOUt

section: 43028

testcase: V4302N__001

testpurpose: Verify that the Nello Protocol i3 rummiag om am ocperstiomal physical liak.-

testprerequisite: Both SUTs are SS_B and i differemt lowest level peer groups.-

data: capt00l.aa

failurecause: Ose or sore of these comstraists declared ia the model of this test is/are violated:
~[Bellod.peer group.id ‘s Belled.peer group._id :: , Bellod.source '= BelloB.source :: ,
Belloh.time <o Belled.time :: J-with the following respective occurremces:-{9, 6, 18]

prodlen: The data captured i3 from devices 1a the same peer greuwp (Sectaon 4NIE_.). Mut, the test
case ruk 1s for devices 1a differest pear groups (Sectiom 402 _.).

solution: Use test cases fres amother section (i.e., 4302K_.) to rum with this captured data.

outcems : The probles is solved.

ssdelupdate:

The case base

is organized inside the computer memory using a well known CBR format that is a flat

database (Figure 4.12). We will discuss case representation in the next section. To improve

the system, we need to look at the maintenance issue as well as the information system

where this operates.

As for case collection. ADIOP allows the user to add new cases from scratch. The new

case is given a new number to be used if stored in the case base. ADIOP also provides the

functionality for the tester to get all cases from the case base file displayed in the GUI.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

179
4.7.3 Case Representation .

The representation problem in CBR is primarily the problem of deciding what to store in
a case, finding an appropriate structure for describing case contents, and deciding how the
case memory should be organized and indexed for effective retrieval and reuse (Aamodt &
Plaza 1994).

What is a case? A case is a contextualized piece of knowledge representing an experience
that teaches a lesson fundamental to achieving the goals of the reasoner (Leake 1996).

“The first step in building a case-based application is to decide how to represent a case
inside the computer... In commercially available systems, there are different approaches to
case representation and. related to that, different techniques for case-based reasoning: the
textual CBR approach. the conversational CBR approach, and the structural approach ...
In the structural CBR approach. the developer of the case-based solution decides ahead
of time what features will be relevant when describing a case and then stores the cases
according to these.” (Bergmann et al. 1999), page 19.

“In different structural CBR systems. attributes may be organized as flat tables, or as
sets of tables with relations, or they may be structured in an object-oriented manner ...
This approach always gives better results than the two others, but it requires an initial
investment to produce the domain model ... The domain model specifies a set of attributes
(also called features) that are used to represent a case.” (Bergmann et al. 1999), page 21.

The Advisor uses the structural CBR approach described above. The way the cases are

represented and stored is very important because these cases will be reused in future similar

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

180

occurrences and we need to capture the main features of these cases.
In ADIOP, each case includes a set of features and their associated values (e.g., Protocol:

ponnirout). There is a total of 14 features per case:

1. Case: this is a sequential number assigned to cases in the case base.

)

Index: this is a short English text description of this case.

3. Type: describes the type of this case. It can be either “Interoperability problem™ for
test case failures or “Incomplete Model” or “Incorrect Model” for test case bugs. The

user may add other types to the three provided by ADIOP.

4. Protocol: states which protocol was used when this case was generated.

(4]

. Section: states the section of the test case that caused a failure and the generation

of this case.

6. Test Case: states the name of the test case that caused a failure and the generation

of this case.

-~

. Test Purpose: states the purpose of the test case that caused a failure and the
generation of this case. This is taken from the test case description stored in the

Modeling component of ADIOP.

8. Test Prerequisite: states the prerequisites needed to run the test case that caused a
failure and the generation of this case. This is also taken from the test case description

stored in the Modeling component of ADIOP.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

10.

11.

12.

13.

14.

181

. Data: this is the name of the data captured that was being diagnosed when this case

was generated.

Failure Cause: this is the message generated by ADIOP’s Diagnosis component

when running the test case stated in the “Test Case” feature of this case.

Problem: this is a description of the stored problem as viewed by the tester who

detected it when using ADIOP’s Diagnosis.
Solution: this is a description of how this problem was dealt with by the tester.

Outcome: this is a description of what is the outcome of this case such as “The
model has been updated using this case”, general advice from the tester who solved

this problem, etc.

Model Update: contains statements on how to update the CSP model of the test
case stated in the “Test Case” feature using this case. It is a set of statements (mainly
constraints) to be added, removed. or updated in the CSP model. More about the

language used in this field will be detailed later in this chapter.

Figure 4.13 shows the GUI used for displaying one case. We will use this case as an

example throughout the rest of this chapter.

The case base in ADIOP is expected to remain small since CSP is sufficient for test

cases that pass and usually in interoperability a high percentage of test cases pass. The

case base is used only in case of failures and many of these will be similar. For the case

base storage we use a flat table format. (Kitano & Shimazu 1996) state that in CBR, one

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

182

qun.: vmunnﬂuummumwm- -
> ’-q-th B3Bath SUTs are SS_ anmmmnmwm-
-} ‘.m- |. ’.'_ by - “-,_ “; bt

Lol e

'mnmrmrmnmmaw kS Tan whet 5 STBL8C 1 the Toow o s et
.. T [The secang Hellc oacket (Hefio13) s missing

- [The Secona Hetlo packet (Hefio18) 1 mace ootional
" |Mae! upated, Wammmung ances, nterperabie Bt it cONfaTAnt

. ADD: SUNARY_CONSTRAINT Hei018.stys == D_Optionad
‘ ADD: SBINARY_CONSTRAINT HelloTA time <= HeRA. Ume
_ ADD: SBINARY_CONSTRAINT HellotA Ume <= HeficeB.ume !
Updem: ep: Kello18. peer_group_o Hellc2B. peer_group_a A
ADD: SCONSTRAINT Hellc2A time HeNC2B.Ume 5_Mandetory. contams(_Hello18. status) {| Comonr. :anunu |

Figure 4.13: A case displayed using the ADIOP’s GUI

of two methods are usually used for case base storage, structured indexing or a flat-record

style database. We plan to use the latter.

4.7.4 Case Retrieval

When a new failure occurs. the CBR system (ADIOP’s Advisor) constructs a new case and
retrieves old cases from the case base that are similar to it. As (Leake 1996) states. “Similar
problems have similar solutions.”

Case retrieval deals with finding ways to match and compare different cases and measure
similarity between them, to derive a solution similar to old ones. This requires the use
of algorithms for comparing different features’ values and measuring distances between

them, defining weights for these features, and methods or formulas for computing the global

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

183

similarity between old and new cases.

As stated in (Aamodt & Plaza 1994), while some case-based approaches retrieve a
previous case largely based on superficial syntactic similarities among problem descriptors
(e.g., CYRUS (Kolodner 1983), ARC (Plaza & Lopez de Mantaras 1990), and PATDEX-
1 (Richter & Weiss 1991)), some approaches retrieve cases based on features that have
deeper, semantic similarities (e.g., the PROTOS (Bareiss 1988), CASEY (Koton 1989),
GREBE (Branting 1991), CREEK (Aamodt 1991), and MMA (Plaza & Arcos 1993)). We
combine both syntactic and semantic similarity measures depending on which feature is

being compared.

Comparing Feature’s Values: Distance and Local similarity

The goal is to be able to assign distances between individual values of the same feature.
Some features are not used for computing the global similarity and thus have no distance

functions associated to them.
The following is a description of how distances are computed for different features.

If both values are empty (null), then the distance is 1. If both values are equal then the
distance is 0.
e Case: no distance is computed for this feature.

e Protocol: Semantic similarity is used for this feature. If the two values are the
same (same protocol), then the distance is 0 (=0/4). If they are of the same type

of protocol (e.g., signaling protocols: UNI and PnniSignal) then the distance is 1/4.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

184

If there are many common packets between the protocols (e.g., LANE and MPOA)
then the distance is 2/4. If there are few common packets between the protocols (e.g.,
LANE and UNI) then the distance is 3/4. If there are no common packets between
the protocols (e.g., PnniRout and UNI) then the distance is 1 (=4/4). We used only
ATM protocols in this dissertation, but one can update these numbers if other types

of protocols are defined.

e For the other 12 features, we use syntactic similarity by computing the distance be-
tween two strings (i.e., distance between values of the same feature for the old and

new case).

For computing the distance between two strings, we use a widely known method based
on n-grams that is used for computing similarities between documents.

“Instead of representing documents as sets of index terms, CBR EXPRESS uses an even
simpler matching based on n-grams of common characters for comparing documents. More
precisely, the text contained in a document is cut into sequences of n subsequent letters
(most often n=3) and the set of all the sequences is used as a representation of the original
document ... Compared to [some] models of IR [(Information Retrieval)], this is firstly less
computationally expensive and secondly appears to be very robust against minor changes in
the test as, for example, grammatical variations and misspellings. As with the IR models,
this kind of document matching does not permit the integration of additional knowledge
sources, such as domain specific thesauri, glossaries, etc.” (Lenz, Hubner, & Kunze 1998)

This method also takes partial matching of words into account (e.g., packet vs. packets).

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

185

As for n, the more commonly used values found in the literature are 3 and 5. We use the

value 5 in ADIOP.

N-grams Distance

The distance between two strings is computed using n-grams. Each string is first trans-
formed into a set of n-grams. The exhaustive set of constituent n-grams comprises all
n-character sequences produced by an n-character-wide window displaced along the text
one character at a time, and contains many duplications (Damashek 1993).

A reference n-grams vector, we call it REF, represents the set of n-grams of the union
of both strings. Each string is then represented with a vector of relative frequencies of its
distinct constituent n-grams using REF as its baseline.

Let REF contain k distinct n-grams, with m; occurrences of the i** n-gram. Then the
value (weight) associated to the i** vector component as stated in (Damashek 19953) is:

z; = m;/E5_ m; where £f_,z; =1 [Eq 4.1]

For example, if REF = “Hello World Hello”, then we obtain 13 5-grams: (‘Hello’, ‘ello *,
‘llo W', ..., * Hell’, ‘Hello’). The 5-gram ‘Hello’ is the only one that is repeated twice. The
weight associated with this 5-gram is 2/13, and that associated with all the other 5-grams
is 1/13.

Hash-tables are used for storing these vectors. Each element of the table is represented

with:

¢ A hash key which is an n-gram from the REF vector, and

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

186
o the frequency of occurrence of this n-gram in the string. -

In the above example, the hash table will contain 12 elements as stated in the following:
{(2/13, ‘Hello’), (1/13, ‘ello *), ... (1/13, * Hell’)}

The following is a summary of n-grams representation of a string taken from (Damashek
1995):

(1) Step the n-gram window through the document, one character at a time.

(ii) Convert each n-gram into an indexing key.

(iii) Concatenate all such keys into a list and note its length.

(iv) Order the list by key value [efficient algorithms will do this in linear time].

(v) Count and store the number of occurrences of each distinct key while removing
duplicates from the list.

(vi) Divide the number of occurrences of each distinct key by the length of the original
list.

In ADIOP, step (iv) is skipped. because the list is usually small and will not be affected
by the order of its elements.

The number of distinct n-grams will initially closely track the document size in characters
(Damashek 1995). This is true because each character (with the exception of the last n-1
characters) is the initial character of some n-gram.

The following equation is used in (Damashek 1995) to compute the similarity between
two strings represented by two n-grams.

Smn = £5=1Zm;Zn;/ (2§=13§u 2?:1-7"12-.1)1/2 = Cos fmn (Eq 4.2]

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

187

Zm; is the relative frequency with which key j (out of a total of k possibilities) occurs
in document m. The score given by [Eq 4.2] is the cosine of the angle ., between two
vectors in the high-dimensional document space as viewed from the absolute origin.

(Damashek 1995) improves this algorithm by translating the origin of the vector space
to a location that characterizes the information one wishes to ignore, so that words such as
“is the”, “and the” ... do not influence the similarity. This is not implemented in ADIOP.

A cosine value of 1.0 indicates that the document and reference vectors are perfectly
correlated (or identical), a value of minus 1.0 that they are perfectly anti-correlated (or
antithetical), and a measure of 0.0, that they are uncorrelated (or orthogonal) ... (Huffman
1995)

Another way to compute the distance is by using the Cluster Euclidean distance:

d(zm,.zn) = \/2§=1(sz -z,.J)Q. However, this is not widely used, and the results we

obtained using this method were worse than the ones obtained using [Eq 4.2].

Weights

The weight describes the relative importance of each attribute/feature. We have used
different values for the weights that are manually set. The following weight values are what
worked better for us after few trials.

W(Case)= 0. W(Index)= 0, W(Type)= 1, W(Protocol)= 3, W(Section)= 0, W(Test
Case)= 3. W(Test Purpose)= 3, W(Test Prerequisite)= 3, W(Data)= 1, W(Failure Cause)=
15. W(Problem)= 0, W(Solution)= 0, W(Outcome)= 0, W(Model Update)= 0.

In this configuration, only 7 attributes are used. But, we retain the other 5 attributes

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

188

for an eventual future improvement of ADIOP, because we believe they provide useful
information about cases. More empirical studies are needed to derive the most suitable
weights for this application. However, the evaluation section of this chapter shows that

these values lead to good similarity measures.

Global Similarity

The global similarity is computed using the following Nearest Neighbor Retrieval equation:

where:

e oc: old case. This contains a problem and its solution.
¢ nq: new query. This contains the current problem with no solution.

e w;: weight of the i*? feature.

® Sieing, is obtained from {Eq 4.2] to compute the similarity between the same features

of both cases: oc and nq.

We take the example when Case 2 is retrieved as the most similar case when using test
case V4301H_003. Section 4.9 discusses in detail this example.

In this example, the values obtained for similarity for different features are: S(Type) =
1, S(Protocol) = 1, S(Test Case)= 0.55, S(Test Purpose)=0.33, S(Test Prerequisite)= 0.75,

S(Data) = 0, S(Failure Cause) = 0.97.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

189

Using [Eq 4.3] and the weights introduced above, the global-similarity is computed as
follows: S = W(Type)*S(Type) + ... + W(Failure Cause)*S(Failure Cause) = 1*1 + 3*1

+ 3*0.55 + 3*0.33 + 3*0.75 + 1*0 + 15%0.97 = 0.81

Retrieval Process

By default, ADIOP uses the new case’s values to match against existing cases in order
to compute their respective similarity values. The user may change the values of certain
features and then retrieve similar cases using these changed values. One feature that can
be very useful to the user is the “Type” feature. The user can try the different types of
cases including the ones related to model incorrectness/incompleteness or to interoperability
problems and failures (Figure 4.14). The similarity scores in using different values of this

feature will allow the user to better judge what type best matches the new case.

-—7". L B LN j’ LI
oNew Case
Camnl: 0 '
Typ: (wwropsratiity Provmem w1 ' R
.. ool - = L o

- ; |
= TemtPepow: : 1$ agreeC upOn. - - -]

Tast PresequisimBah SUTS are SS_M anc in the same lowest ievel peer group. - T

Demc jcaniD0s aa S R b
Pallwre Causs: There are fewer oDServec DRCKELS Of type HellO than what 13 Stated in the madel OF this test. o
Problem: ’

Figure 4.14: Cases’ Types

The user may retrieve similar cases through the GUI (Figures 4.15 and 4.16). The cases

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

190

are displayed according to their similarity. The lower panel of ADIOP’s Advisor window

shows this list. The similarity value is a percentage representing how close the new case is

to the old cases.

V4302H__002 |Verify thate PNNI versi
¥4302H__001 | Verify thatthe Hald Pr.
¥440108S001 | Verfy that the DataBe..

19838 - RI8: ..I1¥100_LEC C... i~
15 lF-aun isas nm& InteOpesbility Pr... pnn-out mm V4301H__005 | Verfy thetaflermceivi.
1s Captum mor dela...|inlerOpanbility Pr.. panout 4801PGL | Y4801PGLOOY | Verify that the nodes p.
4 Faium isas mport.. |InteOpembilty Pr.. |pnniout 4302H__ |v4302H__102 :v.mmu PNNI versi.

S ', OSmiarCasas
Casil | Sy | e T!E T Protoctl.
1 191.104126 % mmgL Incorect Mode! ~ ipnniront. af:
16 59.02729 % ' Caplure more deta or ... InterOperakility Problem _pnnirout
8 53. 25264 % Ogtional packet missing. mmmmy Probiem pnnirout .
3 - -l -
RN
y (Opna. i fme-. | l muuuwc—»

Figure 4.16: Similar Cases Table

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

191

4.7.5 Case Reuse/Adaptation -

“The reuse of the retrieved case solution in the context of the new case focuses on two
aspects: (a) the differences among the past and the current case and (b) what part of a
retrieved case can be transferred to the new one” (Aamodt & Plaza 1994).

If there is a similar case to the new case in the case base, then the user may choose this
one as the case to be reused and adapted in the new situation. For adaptation, ADIOP
uses few basic rules to adapt the case and the user has to confirm this or make updates to
this adaptation (Case Revision).

The “Case Adaptation” window in ADIOP (Figure 4.17) shows features of the new
case. the similar case chosen for reuse, and the adapted case generated in addition to the
similarity value for each feature between the new and similar case and the weight used for

each feature to compute the global similarity between the two cases.

pr——

Cand 0 T 08 c BeCagsmun 3

[Ong paciat sustmg [-1] -] Ong gROtt "ustng

Tym Incp K My mapanet Medwi ©00 1]
jreem: [L W0 3 i

L) 201 __ AMRM_ ST w280 Q AaWIN__

TexCam VaJOTM_ 002 waI02I_ 002 ranrr 3 vaIDT__OR

Tost Pumom Varly Sata PR WARA AeaBert agRet «... Vedy Gate PN aaDe susiere gt u... 100 3 Vel Sute PIOL WIEBS AunBarS WgEed ...
Ton Puaquain Sor RTsan S5_Mest & 90 Ase buantl. So® RTsan S5 0 ond o sEDGR pwRD.. 7481299 3 ot UTsan SE_Mend & %o A bwmstt..
Oatn e SR IPIOR PN (2] 1 eagiDOs 90

Falvm Coump Thom am yeurs@ned MOiBtE of Yee Mal. Nad om Suertd mred gaatnt of yue *al.. 100 13 Then an eersd el ments of Yo Ml
{resam The seond Folh sactat PONI0) & g 0O 0 The movat 'Ol sustir 0ol 18) & msang
Sowon The seend Ml momd FRB1H) & vate ost.. 00 o The maned i saciet Pob 15) s suie OBt ..
|Ovan MR epiotil. Wameng e, shamas.. 00 [] e el
esiveme g TADD: SUNARY_COMETRAINT b t0. s .. 0.0 0 ADO: SUNARY_CONSTRANT 18, St .
Towmt 91 081W %

S - 0

4

- [T T T I = P ¥ L R R L T Y RN WYY S vy 2

Figure 4.17: Case Adaptation Window

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

192

The user has the option to make changes to values of two columns: the ‘New Case’ col-
umn and the ‘Adapted Case’ column. The user may then invoke the “Compute Similarity”
function to compute the new similarity values or call the “Reuse/Adapt Case” functionality

to appropriately update the ‘Adapted Case’ values (Figure 4.18).

| Gemsnal” S
" Featy - [Simiarit
fcasnr 0.0
§incex ‘One paciat missing ‘0.0
Tyee _ shaar Inconmct Mode! 1108.0
Potoco! pansOUt ‘paniout 100.0
Secton 4301H__ 4302H__ 157.14280
{TestCam v4301H__002 v4302H__002 r2.72727
Test Purgose Verify thata PNNI varson numderis agmed u... - Verify thate PNNI verson numberis ageed u... - 100.0
Test Prmouisie Both SUTsem SS_Mand in the same bwestL.. Both UTsem SS_B and in difemnt bweste... 74.81258

S [P

Figure 4.18: Case Adaptation Menu

The adaptation rules used in ADIOP are the following: for the Case number. if the new
case does not have a case number then the value “SimCaseNum: * + <similarCaseNumber>
is temporarily assigned to it until the user decides whether to add it to the case base. If
so, a sequence number is assigned to it. For all other features. if a value of the new case is
empty(null) then the most similar case’s value is assigned to the adapted case, otherwise it
is the new case value that is assigned in the adapted case.

The adaptation rules can be improved further to make this phase in ADIOP more
efficient and to derive a more useful adapted case that will need less effort during the

revision phase. With the rules we have implemented in ADIOP, the user has to spend more

effort during case revision.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

193
4.7.6 Case Revision .

This phase is called case revision and consists of two tasks: (1) evaluate the case solution
generated in the case adaptation phase. If successful, record the success (case retainment,

see next section). Otherwise, (2) repair the case solution using domain-specific knowledge

(Aamodt & Plaza 1994).

7 [simCaseNum: 1

_ (One sacket missing
“Imcormct Mode! -} i .
4301H_ - ,!
F va301H__Om SO l
\ Venty that a PNNI versian number s agreed upon. -) e I;
‘JrestPew Bath SUTs are SS_M ana in the same lowest level peergroup - ;
o [acote R . !
® Coume: [There are fewer GDSSIVEG CACKELS O type HEIIO than what 1S StRed in the Mase) of Uhs test *
: [The secang Heflo cacket (Helo1B) 13 missing ,.
|

[The secons Hello cacket (Helio1B) s made coUCHY
iMane! upoated, VWaIMING acced, intertoembie Bul Aot confaTmant

ADD SUNARY _CONSTRAINT Heil018. status == O_Optional

ADD: SBINARY_CONSTRAINT HelIo1A ume <= MeliRA ume

i . ADD SBINARY_CONSTRAINT HellO1A ime <= Hell2B.ume
i P Helio18. oeer_group_c Heik2B. peer_groun_o :
ADD SCONSTRAINT Hell2A ume Hell2B.ume D_Manastory. contans(_Hello18. status) | Comemre.comomre(_|
1

a0l

aw - PRI Sy RO . I

Figure 4.19: Window for Case Revision of the Adapted Case

When the user has made the initial changes and adapted the new case using a similar
case, she/he can revise the adapted case (Figure 4.19). This will update the features’ values
of the new case in the “Advisor” window. At this stage, the user has to evaluate this
new adapted case by making sure that the case is adapted correctly and checking that the

“Model Update™ value is set to the right statements if the test case model is to be updated

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

194

using this case. This can be done through applying this new adapted case to a real problem.
If the outcome is successful, then the user can step to the next phase. Otherwise, the tester
may repair the case solution in the “New Case” panel of the Advisor window (Figure 4.19).

Although it is always possible to correct these statements later, it is recommended to

do it earlier in this process.

4.7.7 Case Retainment - Learning

This is the process of incorporating what is useful to retain from the new problem solving
episode into the existing knowledge. The learning from success or failure of the proposed
solution is triggered by the outcome of the evaluation and possible repair (Aamodt & Plaza
1994).

If the new revised case is different from old cases in the case base. then the user may
choose to retain this case in the case base (Figures 4.12 and 4.19). Usually, if the similarity
between all the cases in the case base and the query is less than a certain threshold value,
then the user should consider retaining the new case. In ADIOP. we suggest using 70% as
an initial threshold value, because we need more statistical data to come up with a more
meaningful number. This is not in the scope of this research. However, we show in the
evaluation section that the 70% value gives good results.

The user then can fill any empty features with values (e.g., the “Update Model” feature).
The “Index” feature should give a summary of what the case is all about so as to make it
easy to understand in future uses of this case. The user can then store this case in the case

base. ADIOP will assign a new sequential number to this case and add it to the case base

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

195

4.8 Updating CSP Models

ADIOP provides functionality to update the model of a test case that led to a failure
caused by incompleteness/incorrectness of this model. The statements on the “Update
Model” feature of a case are used for this purpose.

These can be either: ‘ADD’. ‘DEL’, or ‘UPD’ statements: (Figure 4.19)

e An ‘ADD’ statement adds a new statement (usually a constraint definition) to the
CSP model.
Example: ADD: $BINARY_.CONSTRAINT Hello1A.time <= Hello24.time.
This statement will add the following line in the CSP model:
$BINARY_CONSTRAINT HellolA.time <= Hello2A.time # Automated Model Up-

date (statement Addition) using Case: “Case Number” #

e A ‘DEL’ statement deletes a statement (usually a constraint) from the CSP model if
it does exist. This statement is simply commented out so it is easier for the user to

know which statements have been deleted.
Example: DEL: $BINARY_CONSTRAINT Hello1A.time <= Hello2A.time
This statement will comment out the following line in the CSP model:

// SBINARY_CONSTRAINT HellolA.time <= Hello2A.time # Automated Model

Update (statement Deletion) using Case: “Case Number” #

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

196

o An ‘UPD’ statement replaces one variable with another in all occurrences an a test

case.
Example: UPD: HellolB.peer_group_id Hello2B.peer_group_id.

This statement will update all occurrences of Hello1B.peer_group.id by Hello2B.peer_group_id

in the CSP model:

$BINARY_CONSTRAINT HellolA.peer_groupid == Hello2B.peer_group_id # Au-

tomated Model Update (statement Update) using Case: “Case Number” #

For all these statements, a comment using the # Comment # format as stated above is
inserted in the CSP model so the user can track down these updates. When updating the
model. these statements are applied in the order they are defined. These three statements

are sufficient to cover all kinds of updates.

Index . - -Case | ‘- TestPu
1 1One packet missing |Inconect] = H__002 !vVerify theta P
2 'wiong Section for... | IneOpembilty Pr... |pnniout |4302H__ | ¥4302H__001 | Verify thatthe

Figure 4.20: Update Test Case Model Menu

When the user chooses to update a CSP model using a case (Figure 4.20), the test suite
builder window will appear with the test case model updated using the statements from the
“Update Model” feature of the revised/retained case (Figure 4.21).

The user may then update the ‘Test Case ID’ and the ‘Update Version’ of the new

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

sammmu value.
Connoquence of Paslure:
& egreed t.
posy
bl - - 2
mixT miisld
alxyT Reolsll
T wmilela
oacmrer Beliald

INIIBT_ICHITRALES

0P Bl Wut; Fanlams LT 5.0 L - ~ X C oWy
eldust- and INERIT-VRTIASS FEPPerted tisld. end i3 The valzs the Aigdest -
i

The PEBI pratacs. con AST SPATARY UALOEE & SI3Qie VRTrSIsN

b
ramadou '«
=il !
Sl
=iie
Bells

Seilelh.zim < Nallsli.Cims

Wellelb.cime < Mo lalh. time

BelislB.timw < Erolell. tum
Sellala.veTaien % Nellsld.vessise
Beilelh.sieant_versisn & Mellsdh versisa
Sullald.vernion < Neilelh.aewsnt_vermise
ellsls.sldest_versiss < ZRllsll.versisa
BRllsll.7eCEiee B NelislD.MumBt_versiss

Belinlh.puurse 'S Neiisld.soutse
Bellalh.peuzes *5 Nellsll.source
Mi.alh.pourse '* Y llnlD.peurse

Dein A JEET_STTUP 18 *% Ealell.pecr_sTeup_id4 0 AuSemsted JOet. Jpdats (STAEVARRC UPRASS! umiag Iase:

ICIBTTAALIT Telali. newmst_verzisa Bellsld. Bewedt Versida _Mei.eli.versize % meth. oAl RellolA.sewee:_wversise, Sella2d,
TURAXT_ISESTIASYY BellslB.stacus - 2 Jptised. # svtensted odel Opiata (Sestemant Additisal msing Cape: SinCaselumr I 8
SDIEREY_SCESTRAINT Wmilela.iime < Sallall. zame ¢ Jutsmatec Jode. Upiate (JTACCSEREY LAiTiSAI iag Case: Zialaselum: 1 B
I TBARY_CORITRAINT BRoinlh. 213w < Ballall. time 0 Adtsmates Yodsl Updete (Statemmst AME .81 Miog Caft: 3.8Cepelum: : 8
ICCEITRASYY Dellsld time Eelleld.time 3| Y (_BaliolR.statur! ' Cowpare.comgars Rellsld.tagm, =%, Neelslld. T
=
=
of
-
o Paciots =

Figure 4.21: Updated Test Case Model

197

updated test case. The user can then save this new test case, usually in a different file, so

that it can be tested for some time before becoming part of the set of test cases that are

frequently used. Then the user can generate the test case as an object corresponding to

this new updated CSP model by using the “Generate Test From CSP Model” menu item in

the Test Suite Builder Window. The new test case will then be available through ADIOP’s

decoder window (see Chapter 3 for more details on Diagnosis using generated test cases)

(Figure 4.22). The outcome of the execution of this updated test case model is shown in

Figure 4.23).

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

198

r-_.—ﬁ =,) > - X a i
14:13:07:100808 |OTE [0 < >110084010101 00000080804 7 00000
3 [141308311048 |CTE [0 008481010 100000080804 7 000000
4 [14:13:08319196 [DTE |0 001001010 10080000000000000 14§
5 14130833730 [OTE |0 0010101000 000000000004 SR
6 |13 0mIRIR |DCE |0 006¢ 01010 10000000000000000 141
7 41300390123 |OTE |0 c01010100C201002400004 7 00
8 114:13.00407428 |DCE |0
I’g_'u:u:atzm DTE 10
¢ NIRRT 1] I
- 5 A A S N AR R M AR A AR MY, A ks nd KSR s Lo mns 1 100 Vs b Yo 250 TS5

o=

Figure 4.22: Run Updated Test Case

AT

r

B e

R

Figure 4.23: Result of Running an Updated Test Case

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

199

4.9 Improving Explanations .

Explanations generated by ADIOP’s Diagnoser may be incorrect, incomplete, or not useful.

This can happen because:

e Incorrect CSP models generate incorrect explanations

o If inference does not lead to an explanation, the explanation provided by search in
case of failure contains the violated constraints and is not useful. An example of this

is shown in Figure 4.24.

o The explanation provided by ADIOP’s Diagnoser may be incomplete when only the
problem is diagnosed, but no remedy is suggested. Cases can store information about

how to resolve the interoperability problem found.

Figure 4.24: Explanation Generated for Test Case V4301H_.003

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

200

ADIOP’s Advisor provides useful explanations in these cases by retrieving similar pre-
vious situations. First, Advisor retrieves similar cases for the above failure as shown in
Figure 4.25. This figure shows that Advisor retrieves Case 2 as the most similar case to the
new problem with a similarity value of about 81%. Case 2 is stored in the case base shown

in Figure 4.12.

2 80.74764 % Wrong Section for this .. InterOperability Probiem 'pnnirout af
5 '48.857 % Failure is as reported B... InterOperability Problem :pnnirout

1 (48.796646 % One packet missing ‘incorrect Model pnnirout

[re mare data or ... InterOperability Probiem . pnni -
4 - - 1ot

Figure 4.25: Similar Cases for the failure in Test Case V4301H._.003

Case 2 is used in this situation. and the new explanation generated for this problem
is that “the data captured is from devices in the same peer group (Section
4301H_.). But, the test case run is for devices in different peer groups (Section
4302H_.).” The solution proposed here by ADIOP is to “use test cases from another
section (i.e.. 4302H__) to run with this captured data.”

In this case ADIOP provides an explanation of the interoperability problem and a so-
lution to the problem. Likewise, there are other cases where even when the explanation
provided by ADIOP’s Diagnoser (through inference methods) is useful, using Advisor allows

testers to obtain a solution to the problem by providing them with the actions to be taken

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

201

after a failure is encountered. -

4.10 Experiments and Evaluation

4.10.1 Experiments

In this section, we present an evaluation of the Advisor component of ADIOP. The Advisor
is the ADIOP component that integrates the CSP and CBR. We used 10 captured data
(observations) to perform this evaluation. These captures are from real-world data obtained
at the UNH-IOL. All of these are for the Pnni Routing and Pnni Signaling protocols. We
only run test cases that belong to the protocol used when capturing the observations.

All Poni Routing test cases are taken from (PNNI-JOP 1999) using their actual names
in the document. In addition. we used one Pnni Signaling test case to check the basic
functionality of this protocol. Only test cases that fail are being used in this evaluation
since the Advisor is only called when there is a failure, and we have shown that the Diagnoser
is sufficient when test cases pass.

There are a total of 202 test cases that we could run if we used all of the test cases
available for all captured data. We have chosen to run only once test cases that produce the
same diagnosis in two or more different captures because these will have exactly the same
results generated by the Advisor. This leads to running a total of 90 test cases instead.

The case base contains a total of 6 cases learned from running 6 different test cases. We
ran the 90 test cases using 1 case (i.e., case 1) in the case base and collected results about

how well the Advisor (CBR) performs. Case 1 was selected first because it involves updating

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

202

models, and we were interested in the performance of this case in debugging models. This,
however, should not affect the final results as we use all 6 cases in the final experiment to
check the overall performance of Advisor. Then we reran the same test cases while we have
2 cases in the case base, and collected results. Finally, we reran the same test cases while
we have all 6 cases in the case base.

Only case 1 is related to model incompleteness and incorrectness. The other cases were
learned by the Advisor to correct, complete or confirm the explanation provided by the
Diagnoser.

Table 4.1 shows the results obtained for one captured data set. The test cases are
taken from (PNNI-IOP 1999) using their actual names in the document. The resuit of the

execution of each test case is shown in the “Res” column.

Table 4.1: Results of Advisor on Capture capt001

Captured Data: capt001.aa

~Test Res | Similar | Similarity Useful Relevant

Case Case Score Explanation | SimCase
V4301H_001 | Fail | Case 2 92% No Yes
V4301H_002 Fail | Case2 7% No Yes
V4301H_.003 Fail | Case 2 83% No Yes
V4301H_004 Fail | Case 2 1% No Yes
V4301H_.005 Fail | Case 5 94% No No
V4301H..006 Fail | Case 2 1% No Yes
V4301H_007 Fail | Case 2 69% No Yes
V4401DBS001 | Fail | Case 3 97% Yes Yes
V4401DBS002 | Fail | Case 3 93% Yes Yes
V4401DBS003 | Fail | Case 3 94% Yes Yes
V4601PGL001 | Fail | Case 6 100% Yes Yes
Vtest001(Signal) | Fail | Case 4 7% Yes Yes

The “Similar Case” column contains the case most similar to the actual problem (ac-

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

203

cording to ADIOP’s Advisor) retrieved from the case base. The “Similarity Score” column
states the similarity percentage generated by ADIOP that shows how similar the retrieved
case is to the actual problem. The “Useful Explanation” column states whether the expla-
nation provided by the Diagnoser of ADIOP is useful to the tester. This is determined by
checking whether the explanation provides the correct diagnosis and is easy to understand
by testers. The “Relevant SimCase” column states whether the Similar Case retrieved is
relevant to the actual problem. A retrieved case is relevant for the new problem if it provides
the correct solution.

Table 4.2 shows the results obtained for 10 captured data sets using 90 test cases. The
first column lists the six training cases. Each of the next three columns represents the
number of relevant retrieved cases for each case in the case base. The ‘Case 1’ column
shows this number when the case base contains only ‘Case 1’. The ‘Case 1&2’ column
shows this number when the case base contains ‘Case 1’ and ‘Case 2'. The ‘Cases 1-6

column shows this number when the case base contains all 6 cases.

Table 4.2: Resuits of Running Test Cases on 10 Captured Data

[Summary of 10 Captured Data

Similar Case 1 | Cases 182 | Cases 1-6
Case
Case 1 12 12 12
Case 2 - 31 27
Case 3 - - 8
Case 4 - - 6
Case 3 - - 6
Case 6 - - 5
| Total 12 43 64
Percentage | 13.3% 48% 1%

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

204

Figure 4.26 shows a graph that summarizes the above table-

8100 T

& 80

g 60

& 20

(]

[+ 4 0" T T T 1 T
0 1 2 3 4 5 6
Total Cases in the Case

Base

Figure 4.26: Relevant Retrieved Cases

In this dissertation, we have used a single training set. For a thorough evaluation of
our system, more training sets should have been used. One issue we had was the limited
availability of data from the lab, as we had to rely on testers in the lab to send us such
data. Another issue is that testers did not have time to perform an evaluation of this part
of ADIOP which could have helped us in getting a better information on the performance

of the system.

4.10.2 Solvability

The results obtained above show that as more cases are learned the ADIOP system is able
to retrieve more relevant similar cases from the case base. This increases the solvability of

problems that were not solved by CSP alone or where the explanation generated by CSP

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

205

may have been incomplete or incorrect. -

Although only one case of the case base is used for debugging models, the results of this
section show that if more cases are added to the case base, then the solvability increases
including the solvability for debugging models.

The main difference between cases related to model debugging and cases related to
the explanation of interoperability problems is the ‘Update Model’ field, which allows the

updating of a test case.

4.10.3 Evaluation of the CBR system
Precision and Recall

(Daniels & Rissland 1997) state that most retrieval systems are judged on the basis of
precision and recall. These measure what percentage of the retrieved items are relevant
(precision) and what percentage of the relevant items are retrieved (recall), respectively.
A retrieved case is relevant for the new problem if it provides the correct solution. Recall
is computed by dividing the relevant retrieved cases by the relevant cases. Precision is
computed by dividing the relevant retrieved cases by the retrieved cases. The higher the
values c->f precision and recall, the better the system is in retrieving relevant cases.

For the experiments we conducted (90 test cases executed, and 6 cases in the case base),

the following results were obtained:

o Relevant retrieved cases = 64

o Relevant cases = 73

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

206
e Retrieved cases = 90
e Recall = (Relevant retrieved cases)/(Relevant cases) = 64/73 = 88%

e Precision = (Relevant retrieved cases)/(Retrieved cases) = 64/90 = 71%

These numbers show that the CBR is retrieving relevant cases in most situations. We
do not claim that these numbers are sufficient to give us a final answer on the performance
of our system, but it is an indication that the pattern of behavior is the one we expected.
More evaluation has to be done in addition to what we have performed on our prototype

to validate this claim.

Similarity Measures

We have used 70% as the threshold for the tester to decide whether the case retrieved by
the Advisor as the most relevant is a correct assertion. Out of the 64 relevant retrieved
cases. 51 had a similarity percentage of more than 70%. 13 had a similarity percentage
of less than 70%. The average similarity percentage value of these 13 cases is 61%. This
shows that for 80% of the cases, the Advisor made the correct decision for the tester, and
in 20% of cases. it made the incorrect decision and was in average off by less than 10% of
the expected 70%.

Out of the 26 non-relevant retrieved cases, 14 had a similarity percentage of less than
70%, and 12 had a similarity percentage of more than 70%. The average similarity percent-
age value of these 12 cases is 79%. This shows that for 54% of cases, the Advisor made the

correct decision for the tester, and in 46% of cases, it made the incorrect decision and was

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

207

on average off by less than 10% of the expected 70%. -

If we combine both numbers from all the retrieved cases (relevant and non-relevant),
then out of 90 total retrieved cases, the Advisor made the correct decision for the tester in
65 cases, that is 72%, and made the incorrect decision for the tester in 25 cases, that is 28%
but was only off by 10% on average.

So in summary, the value of 70% seems to be realistic and the fact that it was off by plus
10% in one case and minus 10% in the other case shows that it is the closest value to a real
threshold. More evaluation can be performed. including the analysis of more data, to be
able to make a more informed decision on this threshold. For the purpose of our prototype

it shows that the idea presented in this dissertation is viable.

4.10.4 Evaluation of Explanation Improvement

In this section, we investigate the performance of Advisor and how it improves performance
compared with using only the ADIOP Diagnoser.

Table 4.3 shows that, out of 54 test cases with non-useful explanations, 33 can be
explained using the Advisor by retrieving a relevant case from the case base. This means that
more than in 60% of test cases for which the Diagnoser did not give a useful explanation the
Advisor provided an explanation. This is an improvement over the Diagnoser in generating

useful explanations.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

208

Table 4.3: Useful Explanation vs. Relevant Retrieved Cases

Useful Explanation vs. Relevant Retrieved Cases
for 90 test cases

Relevant Retrieved Cases | No | Yes | Total

Useful Explanation
No 21 | 33 54
Yes 5 31 36
~ Total 26 | 64 90

4.10.5 Model Updates

Case 1 was used to update 12 test case models. Most of the problems we found were
related to interoperability problems where the explanation given is incorrect or insufficient.
The case base was then used to store cases that are used to complete and correct these
explanations in addition to a case related to model debugging.

We found only one case that is related to model incompleteness and incorrectness. Our
analysis of the problems found is not that of an expert and a more in-depth analysis of the
problems has to be done to extract the real problem of incompleteness and incorrectness
in models. However. our experiment with one type of incompleteness and incorrectness has
proven to be successful.

The evaluation of the Advisor was performed using different kinds of cases, one of which
is related to model debugging. The types of cases used does not affect the results of this
evaluation but rather these results are influenced by the CBR structure and implementation
of the components. This is true because the evaluation shows that there is no difference

between case 1 and other cases in terms of performance and outcome of the Advisor. It

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

209

is also true because the main difference between the two types-of cases presented in this
dissertation is the ‘Model Update’ feature.
However, more evaluation needs to be done for a longer period of time involving many

captures, protocols, etc, to validate these claims with a stronger assertion.

4.11 Related Work

(Karamouzis & Feyock 1992) show that the integration of CBR and MBR enhances CBR
by the addition of a model that aids the processes of matching and adaptation, and it
enhances MBR by the CBR capacity to contribute new links into the causality model.
In this dissertation, the result obtained from the CBR process is used to update models.
This is similar to what has been done in (Karamouzis & Feyock 1992) for integrating CBR
and MBR to update causality models. The difference is that we are using CSP models,
taking advantage of the CSP representation and applying that to the interoperability testing
domain.

In (Huang & Miles 1996), CBR was used to enhance CSP in problems characterized
by largg cardinality, and heavy database searches. In this paper, CBR was mainly used to
reduce the search space. In this dissertation, the integration is used to debug CSP models
and improve explanations. In our case, the CSP models are small and the search space
is manageable through search and inference. Our main concern however was to generate
useful explanations for interoperability testing.

(Bartsch-Sporl 1995) presents a way to bridge CBR and MBR by using schema-based

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

210

reasoning. A case is enhanced by adding to it generic knowledge (rules and constraints).
In this dissertation, cases include information about updating models using a CSP rep-
resentation. We can imply from both findings that constraints can improve on the CBR
representation of cases.

In (Purvis & Pu 1995), case adaptation in assembly planning problems was formalized
as a CSP. Each case is represented as a primitive CSP, and then a CSP algorithm is applied
to combine these primitive CSPs into a globally consistent solution for the new problem.
CBR s used to fill in the values of the problem, then CSP is used to make the problem
consistent. In this work, CBR is supported by CSP while in ours CBR supports CSP. In
both, CSP was used in the representation of cases. Depending on the domain of application,
CBR or CSP will be more appropriate to start with. In our case, CSP provides models for
test cases that we have shown are easy to create and use for diagnosis. These models and
their results are then improved by the use of CBR.

(Bilgic & Fox 1996) present the case-based retrieval for engineering design as a set of
constraints. They state that knowledge. constraints and goals change over time. In this
work also, CSP supports CBR by using constraints for case-based retrieval.

(Poi'tinale & Torasso 1995) stated that approaches combining MBR and CBR can be
roughly classified into two categories: approaches considering CBR as a speed-up and/or
heuristic component for MBR, and approaches viewing CBR as a way to recall past experi-
ence in order to account for potential errors in the device model. Their proposal was in the

first category by means of the development of ADAPtER, a diagnostic system integrating

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

211

the model-based inference engine to AID (a pure model-based diagnostic system), with a
case-based component intended to provide a guide to the abductive reasoning performed by
AID. In this work, the CBR supports MBR, which is used for modeling device behavior. In
our case, CBR supports CSP, which is used for modeling the interaction between devices.
The choice between MBR and CSP depends on what type of diagnosis is performed. In (Van
Someren, Surma, & Torasso 1997), CBR is used as a form of “caching” solved problems
to speedup later problem solving. The approach taken is to construct a “cost model” of a
system that can be used to predict the effect of changes to the system. Their CBR-MBR
architecture is essentially the one used previously in ADAPtER. They state that in general
model-based diagnosis is very expensive from a computational point of view since the search
space is very large.

(Lee et al. 1997) developed a case and constraint based expert system for project plan-
ning of an apartment domain. This large scale, case-based, and mixed initiative planning
system integrated with intensive constraint-based adaptation utilizes semantic level meta-
constraints and human decisions in order to compensate for incomplete cases embedding
specific planning knowledge. The case and constraint based architecture inherently supports
cross-cl;ecking cases with constraints during the system development and maintenance. In
this work. CSP supports CBR by compensating for incomplete cases. In our work, CBR
compensate for incomplete CSP models. The choice of the type of integration is again
driven by the application and the structure of the problem.

(Hastings, Branting, & Lockwood 1995) describe a technique for integrating CBR and

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

212

MBR to predict the behavior of biological systems characterized both by incomplete models
and insufficient empirical data for accurate induction. They suggest using multiple, indi-
vidually incomplete, knowledge sources to accurately predict the behavior of such systems.
They state that precise models exist for the behavior of many simple physical systems. How-
ever, models of biological, ecological, and other natural systems are often incomplete, either
because a complete state description for such systems cannot be determined or because the
number and type of interactions between system elements are poorly understood. In their
paper. MBR is mainly used to determine values for variables in cases, and to compute new
values from old cases’ values. MBR is used to adapt cases (MBR is used within the CBR
formalism). In this work MBR supports CBR in the adaptation of cases, which is different
from what drives our application where CBR supports CSP.

In (Marrero, Clarke, & Jha 1997), Model Checking is used for verifying hardware designs,
security protocols. and other components. By modeling circuits or protocols as finite-state
machines. and examining all possible execution traces, model checking is used to find errors
in real world designs. This work uses finite-state machines for representation., which we
have shown in (Sqalli & Freuder 1996a) to be less expressive than CSPs. The way the
model 1s checked is also different from what we do; we take an instance and check whether
it is consistent. while in model checking the whole space is searched to check if there is an
inconsistent instance.

Our focus is to automate interoperability testing and show how we can get better results

by enhancing the CSP model with the case-base reasoner. First, CSP is used to solve the

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

213

problem. If the CSP model is insufficient, then CBR is used. This way CBR will not be
used unless CSP fails. The result obtained from the CBR process is then used to update
the model.

In many of the publications reviewed in this section, we found that CSP supports CBR.
This dissertation covers the other type of integration where CBR supports CSP and which
did not receive as much attention as the other type. CBR provides support for CSP model
debugging and explanation improvement. In addition, we have used CSP to partially sup-

port CBR in the representation of cases.

4.12 Summary

In this chapter we presented a taxonomy of types of model incompleteness and incorrect-
ness and how to fix and debug one of these types. We then presented the CBR system
and its integration with CSP to debug and update test case models and compensate for
incompleteness and incorrectness.

We presented an example throughout the different sections to show how this works.
An eva{uation of the Advisor component of ADIOP, which integrates CBR and CSP was
performed. The results show that this improves on the Diagnoser component of ADIOP.

Even though our original goal for the Advisor component was mainly to debug models.
we were able to achieve more through the integration of CBR and CSP. We showed that
models can be updated efficiently by the Advisor. The Advisor helps the testers identify

more incorrect and incomplete models. It also improves on the Diagnoser performance and

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

214

generates better explanations. .

The cases used in the CBR system of the Advisor are of different types and may include
any information that can be stored to help the tester learn from experience in new similar
situations.

Actually, there are two kinds of failures stored in the case base. The first is related to
incomplete or incorrect CSP models. These CSP models are eventually updated through the
Advisor component. The second kind of failures are those due to interoperability problems
in the devices being tested. The purpose of using the Advisor here is to get a useful, correct

and complete explanation of the cause of failure of a test case.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 5

Conclusion

In this chapter, we conclude this dissertation by highlighting the contributions made and
outline directions for future research for the three main chapters. In this dissertation.
we presented a proof-of-concept of how CSP is used to successfully model test cases and
diagnose interoperability problems. and how CBR supports debugging of CSP models and

the generation of useful explanations for interoperability testing.

5.1 CSP Modeling

The main contribution in Chapter 2 is the definition of a new modeling language using
CSP and OOP. This language is simple, declarative. transparent. It provides an automated
tool for testers to implement interoperability test cases. We introduced the notions of
metavariables. metavalues and optional metavariables to improve the modeling language
capabilities. We proposed to model test cases defined in test suite specifications. These test
suites are manually written by individuals or organizations. They break down testing into
modules and make diagnosis of problems more meaningful to testers and lab customers. We

have used this break down in ADIOP to benefit from the advantages it provides.

215

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

216
Open Research Issues: -

o The modeling language defined in this dissertation includes how to state metavariables
and constraints. One issue that is raised here is the level of completeness of this
language to model different test cases’ requirements. We use the notion of ‘general
constraint’. which allows testers to state any constraint that they are not able to state
using the other predefined utilities for Unary and Binary constraints. This can be
improved by looking at the general constraints used in practice by testers and add
them to the predefined utilities to provide a simpler definition for similar constraints
definition. This will increase the capabilities of the modeling language and will provide

testers with an even easier interface for modeling test cases.

e Modeling is domain-independent as it is possible to model test cases using different
types of packets from different ATM protocols. This can be advanced further to cover
new domains such as planning and scheduling where tasks, subtasks and optional tasks

can be defined as metavariables, variables, and optional metavariables respectively.

o Many test cases are defined in an incremental fashion. So. some test cases can be
modeled starting from others instead of starting from scratch. This introduces the
idea of hierarchy in model definition. The use of this type of hierarchy to model test
cases will save time and space since new test cases can be modeled based on other

existing ones.

e The use of OOP adds many advantages to CSP modeling. We need to investigate

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

217

whether there are other aspects of OOP that were not discussed in this dissertation

that can benefit CSP modeling.

5.2 Constraint-Based Diagnosis

The major contribution of Chapter 3 is to diagnose interoperability problems using search
supplemented by consistency inference methods in a CSP context to explain problem solving
behavior. These methods were also adapted to the QO-based CSP context. Testers can then
generate reports for individual test cases and for test groups, from a test suite specification,
that are useful for UNH-IOL customers. We also presented a decoder that provides utilities
for decoding data captured on different analyzers. This makes the diagnosis available for a

range of analyzers.

Open Research Issues:

e We use specialized inference methods to provide more meaningful explanations to
testers. Testers stated that the explanation generated by ADIOP are not always
useful. We can explore the use of other types of inferences by looking at the structure of

test cases and types of explanations for interoperability problems that testers generate

manually.

e The explanation generated in ADIOP uses templates that we developed from some
interoperability problems. We can look at the possibility to generate these templates

from some cases stored in the case base where a tester may have added a new type of

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

218
explanation. .

e We have adapted CSP algorithms to OOP. We may further investigate how to benefit
from the structure of test cases modeled using OO-based CSP to develop new algo-
rithms for improving problem solving mechanisms and the generation of human-like

explanations.

o Partial CSP (PCSP) (Freuder & Wallace 1992) can be used to solve over-constrained
problems by allowing the violation of some constraints. In the case when search and
inference fails to provide a solution, PCSP can be used to detect, in some instances,
the constraint that is violated and that may be the cause of failure of the test case
being used. This will provide an explanation to testers and is mainly useful even when

CBR does not provide this explanation.

e For decoding, we have to implement decoders for the different packets being used for
automated testing. To minimize the overhead of this task. it will be more efficient
to define a language where a high level definition of the packets used is provided and
from which decoders for these packets are generated. Natural language processing
ca~n make this more interesting by using the parts of the protocol specifications that
define the different packets as an input for generating decoders for different packets

of this protocol.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

219

5.3 CSP Model Debugging -

The major contribution of Chapter 4 is to detect and debug incompleteness and incorrect-
ness in CSP models of interoperability test cases. This is done through the integration of
two modes of reasoning, namely CBR and CSP. CBR manages cases that store information
about updating models as well as cases that are related to interoperability problems where

diagnosis fails to generate a useful explanation. In the latter, CBR recalls previous similar

useful explanations.

Open Research Issues:

e The adaptation of cases is mainly done manually by testers. This can be improved
by automating or semi-automating the adaptation phase of CBR. The tester can then
get more useful solutions to the problem they have with less intervention into the

process. This is a first step into automating the model updating process.

¢ Similarity metrics including distance measurements and weights can be improved fur-

ther by checking results obtained from testers using different values.

e The integration of CSP and CBR was used in a specific way. There is a need to
investigate other possibilities of integration in this domain that will allow us to make

more informed decisions about the best way to integrate these two paradigms.

o The case base used in this dissertation stores two types of cases, the ones related to

model debugging and the ones related to the explanation of interoperability problems.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

220

We can take further advantage of this case base by storing other types of cases that

testers may want to recall later.

e The updating of models is done on a one-on-one basis when an inconsistency is de-
tected in a model. We want to investigate the possibility to debug and update models
that have not been used yet for testing but that we suspect of being inconsistent
because of their similarity to other models that were found to be inconsistent. This
will be a more pro-active form of model debugging compared to the reactive model

debugging that we present in this dissertation.

e The case base used in this dissertation was small but improved considerably the results
obtained. If testers decide to store many more cases in this case base without control
of what is being stored. then how this will affect the CBR resuits. including updating

models?

e We have shown that the structure of CSP/CBR integration we used is valid for the
interoperability domain investigated in this dissertation. One question is to what
extent this is valid for other domains of application, and what updating of models

means in other contexts.

e We have not explored the synergies that may exist in the area of CBR-OOP integration

in this dissertation. More work needs to be done in this area.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

221

5.4 Directions for Future Work -

There are some challenges for making the three main areas presented in this dissertation
accessible to other applications. We need to show the usefulness of these challenges in the

interoperability testing domain as well as in other real-world applications.

e Automated Model Acquisition: In this dissertation, we automated a major part
of the process of model acquisition. Once testers have a high level understanding of the
test case description, they can state it in term of CSP modeling language. However,
testers have to read test cases from test suite specifications and define models of these
before using the modeling language to model test cases. This modeling is partly
subjective since testers have to define what they understand about a test case. This
can be improved by automating further the process of model acquisition. A graphical
interface that shows the CSP graphs (i.e.. nodes and vertices) of models generated

can provide testers with a more useful tool for building these models.

¢ Inference-Based Explanation: We have used a few inferences to generate useful
explanations to testers. There is a need to investigate further the inference-based

algorithms and to come up with a general framework for detecting different types of

inferences that will generate useful explanations.

e Model Debugging and Learning: The automation of more CBR tasks including
adaptation can further automate the model debugging process. CSP models can then

be debugged and updated with less human interaction. The goal is to obtain robust

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

222
CSP models that have fewer inconsistencies through this learning process.

e On-line Diagnosis: In this dissertation, we investigated off-line diagnosis since data
is captured on-line through different analyzers, saved into a file and then decoded
and diagnosed by ADIOP. We can investigate the possibility of performing on-line
diagnosis by integrating ADIOP with the different analyzers. This will provide real-

time diagnosis of interoperability problems.

e Client/Server Architecture: We developed ADIOP as a stand-alone application
using the Java language. One tester who evaluated ADIOP suggested that the use
of the client/server architecture will make interoperability testing using ADIOP even
more useful for the UNH-IOL. Because Java provides the framework for client/server
architecture, we believe that it can be adapted to this environment. Also. we need to
investigate the implication of using this architecture on all the areas presented in this

dissertation.

5.5 Conclusion

Modelix—1g, Diagnosis, and Model Debugging are the three main areas presented in this
dissertation to automate the process of interoperability testing of networking protocols. In
this dissertation, we presented a framework that uses CSP to define a modeling language
and problem solving mechanism for interoperability testing, and uses CBR for debugging

models of interoperability test cases.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

223

We defined a new modeling language using CSP and OOP.-It provides an automated
tool for testers to implement models of interoperability test cases.

We presented how to diagnose interoperability problems using search supplemented by
consistency inference methods in a CSP context to generate explanations of the problem
solving behavior.

We discussed how detecting and debugging incompleteness and incorrectness in CSP

models is performed using an integration of two modes of reasoning, namely CBR and CSP.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

224

References

Aamodt, A., and Plaza, E. 1994. Case-Based Reasoning: Foundational Issues, Method-
ological Variations, and System Approaches. A] Communications 7(i):39-59.

Aamodt, A. 1991. A Knowledge-Intensive Approach to Problem Solving and Sustained
Learning. Technical Report PUB 92-08460, Ph.D. Dissertation, May 1991, University of
Trondheim, Norwegian Institute of Technology.

Abu-Hakima, S. 1988. RATIONALE: A Tool for Developing Knowledge-Based Systems
that Ezplain by Reasoning Ezplicitly. Ottawa, Canada: Masters Thesis, Carleton Univer-
sity.

Abu-Hakima, S. 1993. A perspective on explanation in diagnosis. In Proceedings of the
IJCAI Workshop on Ezplanation and Problem Solving, 7T7-87.

Abu-Hakima, S. 1994. Automating Model Acquisition by Fault Knowledge Re-use, DR,
the Diagnostic Remodeler Algorithm. In International Workshop on the Principles of
Diagnosis, 1-6.

Atlee, J. M. 1992. Automated Analysis of Software Requirements. Ph.D. Thesis, Depart-
ment of Computer Science, University of Maryland.

ATMF-TestSpec. 1994. Introduction to ATM Forum Test Specifications. The ATM Forum.
Technical Committee. AF-TEST-0022.000.

Avesani. P.: Perini, A.; and Ricci, F. 1993. Combining CBR and Constraint Reasoning in
Planning Forest Fire Fighting. In In Proceedings of 1st European Workshop on Case-Based
Reasoning, Kaiserslgutern.

Bareiss. R. 1988. PROTOS: a Unified Approach to Concept Representation, Classifica-
tion and Learning. Technical Report AI88-83, Ph.D. Dissertation, University of Texas at
Austin, Dep. of Computer Sciences.

Bartsch-Sporl, B. 1995. Towards the Integration of Case-Based. Schema-Based and Model-
Based Reasoning for Supporting Complex Design Tasks. In Veloso, M., and Aamodt, A.,
eds., Topics in Case Based Reasoning, Proceedings of the First International Conference
on Case Based Reasoning, LNAI Series, 145-156. Springer Verlag.

Bergmann, R.; Breen. S.; Goeker, M.; Manago, M.: and Wess, S. 1999. Developing
Industrial Case-Based Reasoning Applications: The INRECA-Methodology. (LNAI-1612).
Springer.

Bilgic, T., and Fox, M. S. 1996. Constraint-Based Retrieval of Engineering Design Cases:
Context as constraints. Artificial Intelligence in Design 269-288.

Booch, G. 1994. Object-Oriented Analysis and Design with Applications, 2nd Ed. Benjamin
Cummings.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

225

Branting, K. 1991. Exploiting the Complementarity of Rules and Precedents with Reci-
procity and Fairness. In Proceedings from the Case-Based Reasoning Workshop. Sponsored
by DARPA, 39-50. Washington DC, USA: Morgan Kaufmann.

Campione, M., and Walrath, K. 1998. The Java Tutorial, Second Edition: Object-Oriented
Programming for the Internet (Java Series). Addison-Wesley Pub Co.

Coad, P.. and Yourdon, E. 1991. Object-Oriented Analysis, 2nd ed. Prentice Hall.

Damashek, M. 1995. Gauging Similarity with n-Grams: Language-Independent Catego-
rization of Text. Science 267:843-848.

Daniels, J. J., and Rissland, E. L. 1997. What You Saw Is What You Want: Using Cases
to Seed Information Retrieval. In Leake, D. B., and Plaza, E., eds., Case-Based Reasoning
Research and Development: Second International Conference on Case-Based Reasoning,
ICCBR-97 (LNAI-1266). 325-336.

Dechter, R.. and van Beek, P. 1995. Local and global relational consistency. In Principles
and Practice of Constraint Programming - CP ’95, Montanari and Rossi, eds. LNCS 976,
240-257. Springer.

Fattah. Y. E.. and Dechter. R. 1992. Empirical Evaluation of Diagnosis as Optimiza-
tion in Constraint Networks. In Working Papers of the Third International Workshop on
Principles of Diagnosis (DX-92).

Freuder, E.. and Mackworth, A. 1992. Constraint-Based Reasoning, Special Volume.
Artificial Intelligence 58.

Freuder, E.. and Wallace, R. 1992. Partial Constraint Satisfaction. Artificial Intelligence
58:21-70.

Freuder. E. 1978. Synthesizing constraint expressions. Communications of the ACM
21:958-966.

Hamscher, W.. and Struss, P. 1990. Model-Based Diagnosis. In AAAI-90 Tutorial Notes,
Eighth National Conference of Artificial Intelligence. 1-179.

Hastings, J. D.; Branting, L. K.; and Lockwood. J. A. 1995. Case Adaptation Using an
Incomplete Causal Model. In Veloso, M., and Aamodt. A., eds., Topics in Case Based
Reasoning, Proceedings of the First International Conference on Case Based Reasoning,
LNAI Series. 181-192. Springer Verlag.

Huang, Y.. and Miles, R. 1996. Using Case-Based Techniques to Enhance Constraint
Satisfaction Problem Solving. Applied Artificial Intelligence, an International Journal
10(4):307-328.

Huffman, S. 1995. Acquaintance: Language-Independent Document Categorization by
N-Grams. In Harman, D. K., and Voorhees, E. M., eds., Proceedings of TREC-4, 4th Tezt
Retrieval Conference, 359-371.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

226

Karamouzis, S. T., and Feyock, S. 1992. An Integration of Case-Based and Model-Based
Reasoning and its Application to Physical System Faults. In Belli, F., and (Eds.), F. R.,
eds., Industrial and Engineering Applications of Artificial Intelligence and Ezpert Systems,
Lecture Notes in Artificial Intelligence 604. Springer-Verlag.

Kitano, H., and Shimazu, H. 1996. The Experience-Sharing Architecture: A Case Study
in Corporate-Wide Case-Based Software Quality Control. In Leake, D. B., ed., Case-Based
Reasoning: Ezperiences, Lessons and Future Directions, 235-268.

Kolodner, J. 1983. Maintaining Organization in a Dynamic Long-term Memory. Cognitive
Science 7:243-280.

Koton, P. 1989. Using Experience in Learning and Problem Solving. Technical Report
MIT/LCS/TR-441, Ph.D. Dissertation, October 1988, Massachusetts Institute of Technol-
ogy. Laboratory of Computer Science.

Kumar, V. 1992. Algorithms for Constraint Satisfaction Problems: A Survey. AI Magazine
13(4):32-44.

LANE-1.0. 1995. LAN Emulation Over ATM, Version 1.0. The ATM Forum, Technical
Committee. af-lane-0021.000.

Leake, D. B. 1996. Case-Based Reasoning: Ezperiences, Lessons, and Future Directions.
AAAI Press.

Leckie, C. 1995. Experience and Trends in Al for Network Monitoring and Diagnosis. In
Proceedings IJCAI-95 Workshop on Al in Distributed Information Networks.

Lee, K. J.: Kim, H. W_; Lee, J. K.; Kim, T. H.; Kim, C. G.; Yoon, M. K.; Hwang, E. J.; and
Park. H. J. 1997. Case and Constraint Based Apartment Construction Project Planning
System: FASTrak-APT. In Proceedings of IAAI-97.

Lenz, M.; Hubner, A.; and Kunze, M. 1998. Textual CBR. In Lenz, M.; Bartsch-Sporl, B.;
Burkhard, H.-D.; and Wess, S., eds., Case-Based Reasoning Technology: From Foundations
to Applications (LNAI), volume 1400, 115-137. Springer.

Likert, R. 1932. A Technique for the Measurement of Attitudes. Archives of Psychology
140(June).

Maher, M. L.; Balachandran, M. B.; and Zhang, D. M. 1995. Case-Based Reasoning in
Design. Lawrence Erlbaum.

Marrero, W.; Clarke, E.; and Jha, S. 1997. Model Checking for Security Protocols. Tech-
nical Report CMU-CS-97-139, Carnegie Mellon University, School of Computer Science,
Pittsburgh, PA 15213.

Mittal, S., and Falkenhainer, B. 1990. Dynamic Constraint Satisfaction Problems. In
AAATS0, 25-32.

MPOA-1.0. 1997. Multi-Protocol Over ATM, Version 1.0. The ATM Forum, Technical
Committee. af-mpoa-0087.000.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

227

NHRP. 1998. NBMA Nezt Hop Resolution Protocol. Network Working Group, Request
for Comment: 2332. RFC 2332.

Novak, F.; Mozetic, I.; Santo-Zarnik, M.; and Biasizzo, A. 1993. Enhancing Design-for-
Test for Active Analog Filters by Using CLP(R). Joumnal of Electronic Testing: Theory
and Applications 4:315-329.

Paltrinieri, M. 1994a. On the Design of Constraint Satisfaction Problems. In Principles and
Practice of Constraint Programming, Second International Workshop (PPCP94) - Lecture
Notes in Computer Science Vol. 874: Alan Borning (Ed.), 299-311. Rosario, Orcas Island,
Washington, USA: Springer.

Paltrinieri, M. 1994b. Visual Environment for Constraint Programming. In 11th Interna-
tional Symposium on Visual Languages, 118-119.

Plaza, E., and Arcos, J. L. 1993. Reflection and Analogy in Memory-Based Learning. In
Proc. Multistrategy Learning Workshop, 42-49.

Plaza, E., and Lopez de Mantaras, R. 1990. A Case-Based Apprentice that Learns from
Fuzzy Examples. In Ras, Z.; Zemankova, M.; and Emrich, M. L., eds., Methodologies for
Intelligent Systems, 420-427.

PNNI-1.0. 1996. Private Network-Network Interface Specification Version 1.0 (PNNI 1.0).
The ATM Forum, Technical Committee. af-pnni-0055.000.

PNNI-IOP. 1999. Interoperability Test for PNNI Version 1.0. The ATM Forum, Technical
Committee. AF-TEST-CSRA-0111.000.

Portinale, L., and Torasso, P. 1995. ADAPtER: An Integrated Diagnostic System Combin-
ing Case-Based and Abductive Reasoning. In Veloso, M., and Aamodt, A., eds., Topics in
Case Based Reasoning, Proceedings of the First International Conference on Case Based
Reasoning, LNAI Series. 277-288. Springer Verlag.

Puget, J.-F., and Leconte, M. 1995. Beyond the Glass Box: Constraints as Objects. In
Logic Programming, Proceedings of the 1995 International Symposium (ILPS): John W.
Lloyd (Ed.), 513-527. Portland, Oregon: MIT Press.

Purvis, L., and Pu, P. 1995. Adaptation Using Constraint Satisfaction Techniques. In
Veloso, M., and Aamodt, A., eds., Topics in Case Based Reasoning, Proceedings of the
First International Conference on Case Based Reasoning, LNAI Series, 289-300. Springer
Verlag.

Richter, A. M., and Weiss, S. 1991. Similarity, Uncertainty and Case-Based Reasoning
in PATDEX. In Boyer, R. S., ed., Automated Reasoning, Essays in Honour of Woody
Bledsoe, 249-265. Kluwer.

Riese, M. 1993a. Diagnosis of Communicating Systems: Dealing with Incompleteness and
Uncertainty. In Proceedings IJCAI-93, 1480-1485.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

228

Riese, M. 1993b. Diagnosis of Extended Finite Automata as a Constraint Satisfaction
Problem. In Proceedings of the Fourth International Workshop on Principles of Diagnosis
(DX-93), 60-73.

Roy, P.. and Pachet, F. 1997. Reifying Constraint Satisfaction in Smalltalk. Journal of
Object-Oriented Programming 10(4):51-63.

Sabin, D., and Freuder, E. 1996. Configuration as Composite Constraint Satisfaction. In
Proceedings of the AI and Manufacturing Research Workshop.

Sabin, D.; Sabin, M.; Russell, R.; and Freuder, E. 1994. A constraint-based approach to di-
agnosing distributed software systems. In Proceedings of the Fifth International Workshop
on Principles of Diagnosis (DX-94).

Sabin, D.; Sabin, M.; Russell, R.; and Freuder, E. 1995a. A constraint-based approach to
diagnosing configuration problems. In Proceedings of International Joint Conference on
Artificial Intelligence (IJCAI-95).

Sabin, D.; Sabin, M.; Russell, R.; and Freuder, E. 1995b. A constraint-based approach
to diagnosing software problems in computer networks. In Proceedings of Principles and
Practice of Constraint Programming (CP-95).

Schank, R. 1982. Dynamic Memory: A Theory of Learning in Computers and People.
New York: Cambridge University Press.

Sqalli, M., and Freuder, E. 1996a. A Constraint Satisfaction Model for Testing Emulated
LANs in ATM Networks. In Proceedings of the 7** International Workshop on Principles
of Diagnosis (DX-96). 206-213.

Sqalli, M.. and Freuder, E. 1996b. Inference-Based Constraint Satisfaction Supports Ex-
planation. In Proceedings of the Thirteenth National Conference on Artificial Intelligence
(AAAI-96), 318-325.

Sqalli, M., and Freuder. E. 1998. Diagnosing InterOperability Problems by Enhancing
Constraint Satisfaction with Case-Based Reasoning. In Working Papers of the Ninth In-
ternational Workshop on Principles of Diagnosis (DX-98), 266-273.

Sqalli. M., and Freuder, E. 2001a. Constraint-Based Modeling of InterOperability Prob-
lems using an Object-Oriented Approach. In Proceedings of the Thirteenth Annual Con-
ference on Innovative Applications of Artificial Intelligence (IAAI-01).

Sqalli, M.. and Freuder, E. 2001b. Solving InterOperability Problems Using Object-
Oriented CSP Modeling. Technical report, IJCAI, Seattle, Washington, USA.

Sqalli, M.: Purvis, L.: and Freuder, E. 1999. Survey of Applications Integrating Constraint
Satisfaction and Case-Based Reasoning. In PACLPY9: The First International Confer-
ence and Ezhibition on The Practical Application of Constraint Technologies and Logic
Programming.

Stone, N. D. 1995. Object-Oriented Constraint Satisfaction Planning for Whole Farm
Management. AT Applications 9(1).

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

229

Trochim, W. M. 2000. The Research Methods Knowledge Base. Atomic
Dog Publishing, Cincinnati, OH. or Internet WWW page, at URL:
<http://trochim himan.cornell.edu/kb/index.htm>, 2"4 edition.

UNI-3.1. 1994. User-Network Interface (UNI) Specification, Version 3.1. The ATM Forum,
Technical Committee.

UNI-4.0. 1996. ATM User-Network Interface (UNI), Signalling Specification, Version 4.0.
The ATM Forum, Technical Committee. af-sig-0061.000.

Van Hentenryck, P.; McAllester. D.; and Kapur, D. 1995. Solving Polynomial Systems
using a Branch and Prune Approach. SIAM Journal on Numerical Analysis.

Van Someren, M.: Surma, J.; and Torasso, P. 1997. A Utility-based Approach to Learn-
ing in a Mixed Case-Based and Model-Based Architecture. In Proceedings of the Second
International Conference on Case Based Reasoning.

Wallace. M. 1996. Practical Applications of Constraint Programming. Constraints - An
International Journal 1(1-2):139-168.

Weigel. R.. and Faltings. B. V. 1998. Interchangeability for Case Adaptation in Configu-
ration Problems. Technical Report SS-98-04, AAAI, Stanford University.

Winston, P. 1975. Learning Structural Descriptions from Examples. In The Psychology
of Computer Vision. McGraw-Hill.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

http://trochim.himan.comell.edu/kb/index.htm

Appendix A

Test Case Layout

This test case layout is taken from (PNNI-IOP 1999)):

Each Test case has the following parts: Test Case ID, Test Purpose, Reference, Pre-
requisite, Test Configuration, Test Set- up, Test Procedure, Verdict Criteria, and Conse-
quence of Failure*.

Test Case ID:

This is the test case identifier. Layout is ABBBBCCCDDD. The following table pro-
vides detailed information.

Test Case Identification Layout and Description
"Positions Meaning Current Values
A Type of test V=Valid or E=error
BBBB Section number in | See this document
this document
CCC Abbreviated H__= Hello,
description of the | DBS= DataBase Synchronization,
protocol or part of | FLD= Flooding,
protocol being PGL= Peer Group Leader Election,
tested BPI= Border Node PGL Interactions.
LGN= Logical Group Node,
EST= Call Establishment,
REL= Release call,
CRK= Crankback,
DTL= Designated Transit List,

RST= Restart
DDD Number of the test | See this document
case within the
particular section

Test Purpose:
Defines the reason for running the test.

230

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

231

Reference: .
The section from the PNNI v1.0 Specification that supports this test case.

Pre-requisite:
Listed is the information that must be known before the test can be run.

Test Configuration:
Lists which of the test configurations should be used.

Test Set-up:

Describes the devices and physical connections needed for this test.

NOTE: The term connect two devices does not necessarily imply that the systems are
on and operational when the physical connection is made. The test being run will determine
the situation.

Test Procedure:

Lists the steps necessary to carry out this test. Items in parenthesis, “()”, mean that
the item occurs at either the A or C monitoring point. Items in brackets, “[|, provide
necessary information on coding of messages or information elements.

Verdict Criteria:

Lists the observations that must occur in order for this test case results to be successful
(i-e. satisfy the Test Purpose). Items in parenthesis. “()”. mean that the item occurs at
either the A or C monitoring point. It is given here as additional information. but is not
required for determination of pass or failure of the test case.

Consequence of Failure*:
Reason for including this test case as a necessary part of this interoperability test suite.

*Note - not all test cases have this, at this time

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Appendix B

Testers Evaluation Questionnaire of ADIOP

232

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

233

Tester Evaluation of ADIOP

(Automated Diagnosis of Interoperability Problems)
Version 1.0

Mohammed Sqalli
January 30, 2001
Table of Contents

1. Setup 234
2. Survey of the Tester 234
3. Comparison and Survey of ADIOP performance 236
3.1. DECODER 236
oL L SHEPS.........oniomeitet et e et 236
B L2 SUPVEY ...t e ts e et s et b b e et e sttt b et e nenes b benen 236
3 L3 DAIQ SIScnooveenreieeceeceieae e cesaeeeeeeasseeseese s sare st e s ebe st s et se s et b aa b et e e sr b e b e raesarrenres 237
3.2. DIAGNOSER....... 238
B2 L SIEPS.........ocnoceiei e et e ettt ettt s n s a s e s 238
3L2.2 SUPVEYconeoeenieteceeeeer ettt et s e e s et e st s ta st e e e sneteans 240
323 DIQIA SEESoeveeeeeeeeeereneeeeeeereveseeevetssesess s s e e e e e s eesasbesseane s sebe st e mae et bens et e senseneebenareen 241
3.2.4. Oplional DQIQ SISoenoeeeeeeereereererereeesereenisaeseasssnsasassnns rteneeentnnees 241
3.3. TEST SUITE BUILDER 242
e B L SHEDS.......eeee ettt s et ee et s st ee s e ana b e s e asnserrasebenen 242
332 8UPVEY ...t e s ettt esesae st ne 242
333 DQIasers.....ccoomeieeeeeeee s - - 244
3.3.4. OplONAI DAIG SIS ...ttt emcnta s s sessemens e seestasaame e aen 244
4. General Survey 245

Mohammed Sqalli Tester Evaluation of ADIOP

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

234

1. Setup
Before you start the evaluation, please make sure you have the following:
v" ADIOP manual.

v" ADIOP program. Run “clean” and then “make” to build ADIOP (See Manual for
more details).

v" Data/capture(s) to be used is available on ADIOP. The path is “/adiop/Data’”
The Informed Consent Format (ICF) document to sign.

In addition you may have to check this if you have any problems decoding or diagnosing
data:

v" Protocol(s) to be used are available on ADIOP in the path “/adiop/packet”’

v" Test Cases to run are available on ADIOP in the path “./adiopAestsuite”

v' Analyzers’ types to be used are available on the main menu on the main ADIOP
window.

The Data sets (not including the optional ones) provided here are the optimal number we
want to achieve. The optional data sets are additional for people willing to perform a
more extended evaluation.

If you have any comments on any question in this document, please feel free to include it
in as part of your evaluation. Please record any issues/problems you have with ADIOP
and report them at the end of this form. If you need any help, please contact Mohammed
Sqalli at msqalli@cs.unh.edu

When you finish the evaluation, please fill electronically this document, email it to
Mohammed Sqalli (msgalli@cs.unh.edu)

Thank you for taking the time to complete this evaluation.

2. Survey of the Tester
Please answer the following questions to the best of your knowledge:

v" How would you rate your knowledge of the protocol you are testing?
Low Moderate High

v" How would you rate your knowledge of interoperability testing?
Low Moderate High

v How would you rate your knowledge of the interoperability test cases of the protocol
you are testing?

Low Moderate High
v How much do vou know about ADIOP?
Nothing Familiar Very Familiar
Mohammed Sqalli Tester Evaluation of ADIOP

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

mailto:msQalli@cs.unh.edu
mailto:msQalli@cs.unh.edu

v' Any other information you would like to add.

v" For how long you have been at IOL?

Mohammed Sqalli Tester Evaluation of ADIOP

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

236

3. Comparison and Survey of ADIOP performance
3.1. Decoder

3.1.1. Steps

Please fill the following information for each captured data: (make copies of this page as
needed)

e Data:

e Protocol:

e Analyzer type:

Tasks Yes No
Open a captured data using ADIOP. Was the task completed?
Check if the analyzer type in the main ADIOP window menu
matches the capture type. Does it match?
Decode the data. Was it decoded?
Was the decoding done correctly for the protocol being tested?

Evaluate the ADIOP decode and the one given by the analyzer/sniffer (please state which
statement is correct for each one of them): [Add your comments]

Analyzer ADIOP
Statements Correct | (1o | Commeat | o

Includes the complete decodes.

Includes all what is needed for the protocol

being tested.

Lacks information that might be needed by

the protocol being tested but should not affect

the diagnosis.

Lacks information that might be needed by

the protocol being tested, and it can affect the

diagnosis.

Lacks all the information needed by the
rotocol being tested.

Decode not usable.

3.1.2. Survey
How do you rate the Decoder?

(Please answer with: Strongly Agree, Agree, Disagree, or Strongly Disagree) [Add your
comments}

Mohammed Sqalli Tester Evaluation of ADIOP

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

thr

Statements

Strongly
)

@

Disagree
@

i

m

Includes decodes of all the packets needed for
the protocol being tested.

Decodes given is correct for the packets needed
for the protocol being tested.

Decodes given is complete for the packets
needed for the protocol being tested.

Easy GUI interaction.

Easy to read the decoded

Friendly information.

Easy to compare two or more
decoded packets. (Use the double-
click feature on a decode row).

ADIOP decoder is a useful tool for the lab.
Explain why?

Fast - The data is decoded in a reasonable
amount of time.

3.1.3. Data sets

Data: ./adiop/Data/capt002.aa
Protocol: PNNI Routing
Analyzer type: Analyzer |

Data: ./adiop/Data/PNNIL.bb
Protocol: PNNI Routing
Analyzer type: Analyzer I1

Data: ./adiop/Data/other/capt005.ee
Protocol: PNNI Routing
Analyzer type: Analyzer V

Data: ./adiop/Data/dir/capt006.cc
Protocol: Lane
Analyzer type: Analyzer III

Data: "One that you captured yourself”
Protocol: "One that is implemented in ADIOP"

Analyzer type: "One of the types defined by ADIOP"

Mohammed Sqalli

Tester Evaiuation of ADIOP

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

3.2. Diagnoser
3.2.1. Steps

iy

Please fill the following information for every test case (make copies of this page as

needed):

Data:

Protocol:
Analyzer Type:
Test Case:

Analyze manually or using a sniffer the captured Done Not Done
data.

Check manually if a test case passes or fails using | Pass Fail

this data.

Please give an explanation of why it passed or failed:

...

...

...

...

...

...

...

the results for every test case.

Record the time (in seconds) it took to analyze and explain

Case Name, Result, Explanation).

Write a report of all the test cases from one section and record
the time (in seconds) it took to complete this report. The
report must include the section name and three columns (Test

Repeat the same steps above using ADIOP. In addition, run all test cases of one section
(when applicable) in one step and record the time it took to finish the whole section.

Analyze the captured data using ADIOP. Done Not Done
Check using ADIOP whether a test case passes or | Pass Fail
fails using this data.

Mohammed Sqalli Tester Evaluation of ADIOP

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

239

Print the explanation generated by ADIOP of why it passed or failed:

...............................

...
...
...
...
...

...

Record the time (in seconds) it took to analyze and explain
the results for every test case.

Record the time (in seconds) it took to analyze and explain
the whole section to which this test case belongs.

Record the number of test cases that exist in this section

Print the report generated by ADIOP of the results of all the
test cases in this section, and record the time (in seconds) it
took to get this report.

Mohammed Sqalli Tester Evaluation of ADIOP

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

240

3.2.2. Survey

How do you rate the Diagnoser?

(Please answer with: Strongly Agree, Agree, Disagree, or Strongly Disagree) [Add your
comments]

Strongly . Stroagty
Statements Agree | Af | | DTS | Disagree
®) m

Generates the correct result [Pass/Fail]

The diagnosis (explanation) given
is correct.

The explanation given by ADIOP
If the is complete. There is no need to
result is investigate the problem further.
PASS The explanation giyen by ADIOP
is useful, but there is a need to
investigate the problem further.
The explanation given by ADIOP
is not useful.

The diagnosis (explanation) given
is correct.

The explanation given by ADIOP
If the @s cou!plete. There is no need to
result is investigate thf: problem further.
FAILL The explanation gi_ren by ADIOP
is useful, but there is a need to
investigate the problem further.
The explanation given by ADIOP
is not useful.

Easy GUI interaction.

Easy to execute the test cases
individually.

Easy to execute the test cases in
batch mode (one section).

Easy to read the diagnosis.

It is possible to diagnose data
from different analyzers.

It is possible to diagnose data for
different protocols.

The reports generated by ADIOP are useful for
the lab.

Reusability - The storage of the diagnosis
obtained is useful

Friendly

Flexibility

Mohammed Sqalli Tester Evaluation of ADIOP

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

ADIOP diagnoser is a useful tool for the lab.
Explain why?

Fast - The data is diagnosed in a reasonable
amount of time.

3.2.3. Data sets

Data: /adiop/Data/capt002.aa

Protocol: PNNI Routing

Analyzer type: Analyzer I

Individual Test Cases: V4301H__001, V4301H__002, V4301H__003, V4301H__ 004,
V4301H__005, V4301H__006, V4301H__ 007, and V4401DBS001.

Section Test Cases: V4301H__

Data: ./adiop/Data/other/PNNI.PRN

Protocol: PNNI Routing

Analyzer type: Analyzer I

Individual Test Cases: V4301H__002, V4401DBS001, and
V100_LEC_Configure_Request_001 (from LANE test suite)

Data: ./adiop/Data/capt003.aa
Protocol: PNNI Routing

Analyzer type: Analyzer I

Individual Test Cases: V4301H__005

Data: "One that you captured yourself"

Protocol: "One that is implemented in ADIOP"
Analyzer type: "One of the types defined by ADIOP”
Test Cases: "Your choice”

3.2.4. Optional Data sets

Data: ./adiop/Data/other/LANE.PRN

Protocol: Lane

Analyzer type: Analyzer |

Section Test Cases: V100_LEC_Configure_Request_, V200_LEC_Configure_Request_

Data: ./adiop/Data/capt001.aa
Protocol: PNNI Routing
Analyzer type: Analyzer |
Section Test Cases: V4302H__

Data: ./adiop/Data/mpoa_csp.aa
Protocol: MPOA

Analyzer type: Analyzer I
Section Test Cases: test

Mohammed Sqalli Tester Evaluation of ADIOP

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

242

3.3. Test Suite Builder

3.3.1. Steps

Please fill the following information for every test case to be created (make copies of this
page as needed):

e Protocol:

e Test Case:

e Document:

Tasks Yes No
Open the Test Suite Builder Window. Was the task
completed?
Open a new test case. Was the task completed?
Define the CSP model of this test case using “State CSP
Model” menu. Was the task completed?
Generate the test case. Was the test case compiled
correctly?
Open the Decoder/Diagnoser window and check if the test
case run correctly. Did the test case run as expected? If not,
please explain:

..

..

..................

..

..

..................

Record the time (in seconds) it took to do this for every test
case.

3.3.2. Survey

How do you rate the Test Suite Builder (TSB)?
(Please answer with: Strongly Agree, Agree, Disagree, or Strongly Disagree) [Add your

comments]
Strongly . Stroagly
Statements Agree | 8 Dis8re | Disagree
5 @ & @ s
It is easier to automate a test case using
ADIOP than using other programs (e.g.,
TCL/TK, C, etc)
Generates a correct test case, (i.e., you can
Mohammed Sqalli Tester Evaluation of ADIOP

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

execute the test case and it reports the correct

diagnosis)

The new test case is added to the menu on the
Diagnoser/Decoder window under the
appropriate protocol.

Easy GUI interaction.

Friendly | Easytouse

Easy to build a test case.

Flexible - It is possible to correct test case
definition

Reusability - It is useful to have these test
cases stored so there is no need for the testers
to know all the details.

The TSB will help the testers do more
interesting work

Easy to model a test case using
ADIOP

Language Easy to understand the CSP model

definition of a test case

ADIOP TSB is a useful tool for the lab.
Explain why?

Fast - The test cases are built in a reasonable
amount of time.

Mohammed Sqalli Tester Evaluation of ADIOP

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

244

3.3.3. Data sets

Protocol: PNNI Routing
Test Cases: V4301H__001.
Document: ./adiop/adiopx/testsuite/pnnirout/af-test-csra-0111.000.txt

Protocol: "One that is implemented in ADIOP”
Test Cases: "Your choice”
Document: "Interoperability document for the protocol chosen"

3.3.4. Optional Data sets

Protocol: PNNI Routing
Test Cases: V4401DBS001.
Document: ./adiop/adiopx/testsuite/pnnirout/af-test-csra-0111.000.txt

Mohammed Sqalli Tester Evaluation of ADIOP

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

245

4. General Survey

How do you rate the ADIOP system in general?

(Please answer with: Strongly Agree, Agree, Disagree, or Strongly Disagree) [Add your
comments]

Strongly " Stroagly
Statements A(z;)ee *(‘,'," . "‘(‘2')"‘ Dis(alg)m

We can automate interoperability test cases
using ADIOP

We can diagnose more interoperability

problems using ADIOP

We can find problems quickly using ADIOP

compared to manual diagnosis

Reusability — ADIOP provides a good way to

store test cases and re-use them later.

It is better to remember how we diagnosed

old problems using ADIOP than manually

ADIOP saves time for testers

ADIOP will help the testers do more

interesting work

We know more about protocols when using

ADIOP

We know more about interoperability testing

when using ADIOP

Easy GUI interaction in ADIOP

Easy to leam ADIOP

Friendly | Easy to use ADIOP

Easy to find what you are looking

for in ADIOP

It is possible to use many decodes

on different windows at the same

time

It is possible to perform many

diagnoses on different windows at

. the same time.

Flexible - -

It is possible to create many test

cases on different windows at the

same time

It is possible to do all the above

tasks with no problem of conflicts

in the application.

Mohammed Sqalli Tester Evaluation of ADIOP

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Test cases can be accessible and executed by
anyone without much knowledge on how
they were created.

The explanation generated by ADIOP is
useful.

Fast — ADIOP provides solutions in a
reasonable amount of time.

ADIORP is a useful tool for the lab. Explain
why?

..

[prefer to work with ADIOP rather than
without it for interoperability testing

I recommend using ADIOP in the lab
wherever applicable

I expect ADIOP to be even more useful for
large data sets with hundreds of frames.

Mohammed Sqalli Tester Evaluation of ADIOP

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

247

How much better is ADIOP than what we had before?

How can we make ADIOP better and more useful?

Is ADIOP useful for other types of activity that we have not mentioned here? Can you

think of other problems we can resolve or be helped with using ADIOP?

What are some of the issues/problems you had when using ADIOP?

Final Comments:

Thank you for taking the time to evaluate ADIOP.

Mohammed Sqalli Tester Evaluation of ADIOP

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Appendix C

ADIOP V2.0 User Manual

248

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

249

Manual for using ADIOP
(Automated Diagnosis of Interoperability Problems)
Version 2.0

Mohammed Sqalli
March 14, 2001
Table of Contents

1. INSTALLATION GUIDE 251
2. ADIOP V2.0 ADDITIONS OVER ADIOP V1.0 252
3. ADIOP IMPLEMENTATION 253
4. USERS GUIDE 254
4.1. DECODER 254
4.1.1. ChoOSe the ANGIYZET LVPEcouoreeeeeeeecreneere e eesees e s ene s sneeimeosssrssssrssesemen 254
4.1.2.Open capPIUred data......................oooeooecurecneenreieeree e saseeeeee e sastes st ettt st ne e 255
4.1.3.DecoOdiNG Atc..couuoenniiirieieeeee ettt st e sttt sttt et 256
4.2. DIAGNOSER 257
4.2.1. Choosing the protocol being testedccoeeuneene... ceerveverennens 237
4.2.2. Running one test case.................ceuvuueeeeeenne... ettt et et r s s e oot e e e enens 258
4.2.3. Running all 1est cases Of ONE SECLION....................cooveeoerevrerierneesnsreeseeeseeesasasiesasssesessnsseees 258
4.2.4. Close Decoder/DIiGERosercoeeerreeseeiesseresesieseesesesssssssesssnsessasssssantemscnsassnsessssess 259
4.3. DEBUGGER 259
4.3.1. Open AQVISOr/CBR WildOWcoooucememnerreeeeasaresisseecsessassssss e sessasnestassstsssssnssseseesnens 259
4.3.2. REtrieVe Simil@r CaSES............oocoemeeeeeeeeeeeiereeeseeeeeesasasssreeesssnessssesostesnssssasasotsmsnesseessssesesenns 261
4.3.3. Reuse/Adapiation of a Case...............u..veeeeeeeeecncoreeevereecnsensiannenans 262
4.3.4. Revise Adapted Case ettt e e ettt s aee s st na s s eememeas 263
4.3.5. Update Test Case Mode............................... - 264
4.3.6. Re1Qin G New ReVISEA CaSe...........neoveeueererecrmeeriensresesesesesssrssessssasssssssssstsssssssensessnssines 267
4.3.7. Other Advisor menus eeetirt bttt ettt sttt s et et ee s s aereset it eaeraren 267
4.4. TEST SUITE BUILDER 268
4.4.1. Open Test Suite Buiider Window rereeratenere e e e senasaeaen 268
4.4.2. CROOSE the ProtOCOL............c.coomrevirrneeeeeetete e eeresnestecanronaenas 268
Open a test case. .. 269
4.4.4. State the CSP Model................. . 269
4.4.4.1. Start CSP Model 269
4.4.42. Declaring Packets 270
4.4.4.3. Domains 271
4.4.4.4. Unary Constraints mn
4.4.4.5. Binary Constraints 2713
4.4.4.6. General Constraints 275
4.4.4.7. End CSP Model 275
4.4.5. Save a test case 275
Get CSP Model 276
4.4.7. Generate Test from the CSP Model 276
4.4.8. Close a test case 277
ANNEX: DESCRIPTION OF THE CSP MODELLING PROCESS 277

Mohammed Sqalli ADIOP V2.0 Manus!

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

250

List of Figures

FIGURE | - ADIOP V2.0 IMPLEMENTATION 253
FIGURE 2 - MAIN ADIOP WINDOW 254
FIGURE 3 - PROTOCOL ANALYZERS 255
FIGURE 4 - MAIN MENU 255
FIGURE 5 - OPEN TEST CASE 255
FIGURE 6 — DECODER/DIAGNOSER WINDOW 256
FIGURE 7 - ONE FRAME DETAILED DECODE 257
FIGURE 8 - RUNNING TEST CASES 257
FIGURE 9 - ONE TEST CASE EXECUTION RESULT 258
FIGURE 10 - RESULTS OF TEST CASES EXECUTION FROM ONE SECTION 259
FIGURE 11 - TEST CASE RESULT CONTAINING AN 'ADVISOR' BUTTON ... 259
FIGURE 12 - ADVISOR/CBR WINDOW 260
FIGURE 13 - ACCESS TO ADVISOR FROM MAIN ADIOP WINDOW 260
FIGURE 14 - CASES' TYPES 261
FIGURE 15 - RETRIEVE SIMILAR CASES MENU... 261
FIGURE 16 - SIMILAR CASES TABLE 262
FIGURE 17 - CASE ADAPTATION WINDOW 262
FIGURE 18 - CASE ADAPTATION MENU 263
FIGURE 19 - REVISE ADAPTED CASE 264
FIGURE 20 - UPDATE TEST CASE MODEL MENU 264
FIGURE 21 - UPDATE TEST CASE MODEL 265
FIGURE 22 - VERSION OF UPDATED TEST CASE 265
FIGURE 23 - SAVE UPDATED MODEL 266
FIGURE 24 - GENERATE UPDATED TEST CASE 266
FIGURE 25 - RUN UPDATED TEST CASE 266
FIGURE 26 - ADVISOR MENU. 267
FIGURE 27 - NEW EMPTY CASE 268
FIGURE 28 - TEST SUITE BUILDER PROTOCOLS.. 268
FIGURE 29 - AN EMPTY TEST CASE 269
FIGURE 30 - INITIAL TEST CASE DECLARATION 270
FIGURE 31 - PACKET TYPES 270
FIGURE 32 - LIST OF PACKETS TO ADD 27N
FIGURE 33 - PACKETS ADDED TO CSP DECLARATION 27
FIGURE 34 - DOMAIN DECLARATION 272
FIGURE 35 - DOMAINS AVAILABLE FOR UNARY CONSTRAINTS 273
FIGURE 36 - UNARY CONSTRAINTS DECLARATION 273
FIGURE 37 — VARIABLES FOR BINARY CONSTRAINTS DECLARATION 274
FIGURE 38 - CONSTRAINTS ADDED TO THE CSP MODEL 274
FIGURE 39 - BINARY CONSTRAINTS DECLARATION 274
FIGURE 40 - GENERAL CONSTRAINTS DECLARATION 275
FIGURE 41 - GET CSP MODEL 276
FIGURE 42 - RESULT OF GENERATE TEST FROM CSP MODEL 276
Mohammed Sqalli ADIOP V2.0 Manual

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

251

1. Installation Guide

v" Get the file adiop.tar.gz.
In Unix, type “gzip adiop.tar.gz”. Then type “tar xvf adiop.tar”.
In Windows, use WinZip to unzip the file adiop.tar.gz.

v A directory called “adiop” will be created under your actual working directory. It
contains all the files needed to generate documentation for backup, compile and run
ADIOP.

v" The Home directory for ADIOP is “./adiop/”

v" To delete all the “.class™ files:
In Unix, run clean.
In Windows, run clean.bat.

v To delete all temporary files:
In Unix, run clean_temp.

v To compile ADIOP:
In Unix, run make. This uses the “makefile” file. You can also use the “compile-

testsuite” command to compile all test cases created using the Test Suite Builder
(See 4.4).

In Windows, run make.bat.

v To generate documentation:
Make necessary changes in the “javadocgen™ file to where you want to put
documentation. Then run javadocgen.

v To make a backup:

Make changes to the file “backup”. Then, run backup. This command deletes all
“.class” files under “./adiop/”, makes a backup using tar and gzip in a file called
“adiop_today.tar.gz” which is stored in “/adiop-backups/”’, then run the make
command to re-build adiop. This process takes about 3 minutes.

v To get the tree of all “.java” files in ADIOP:
Run gentree.

v “/adiop/Data/” contains all the captures that we want to test using ADIOP. This
directory is the default captured data directory for ADIOP.
v “Jadiop/adiop.java” is the file that contains the main java function for ADIOP.

Mohammed Sqalli ADIOP V2.0 Manual

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

252

v “Jadiop/adiopx/” is the directory that contains all the *“.java” files needed to build
and run ADIOP. More information about the implementation of ADIOP can be found
under “www.cs.unh.edu/~msqalli/adiopx.docs/”.

2. ADIOP V2.0 additions over ADIOP V1.0

v" There is a constant DEBUG defined in adiopx/util/Constants.java that can be set to
true or false. If set to true, there will be more debugging messages printed on the
screen when running ADIOP. It is being used so far only for the java files added in
ADIOP-V2.0. The plan is to have it for all debugging messages.

v All the files under adiopx/debug are new for version 2.0 and they all deal with Case-
Based Reasoning and CSP model debugging.

v The whole Debugger section (See 4.3) is new in this version of the manual.

v The initial case-base contains 8 cases in the file: *“./adiop/adiopx/debug/casebase™
defined as CASEBASE_FILE in “/adiop/adiopx/util/Constants.java” file.

v’ The ADIOP Implementation figure is updated to reflect the new implementations. All
planned modules have been implemented as of version 2.0.

Mohammed Sqalli ADIOP V2.0 Manual

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

http://www.cs.unh.edu/~msQal1i/adiopx.docs/%e2%80%9d

3. ADIOP Implementation

ADIOP
(Automated Diagnosis
of InterOperability
Problems)
Test Suite Decoder Disgnoser
Builder
) Test Test Execution Menus and
Debugger (Algorithms) Reports
CSP Model Search Automate
(hard Menus
expianation) Creation
Inference Reports
(better Generation
explansation)
Eometlljpdai
Notes:
g 11
Implemented
e {| || arewusedby ([} | 0 omm—a..
Java fi r Fobe =
v | _implemented |
Java Class RoTm———— -
(used by |1Not unplenenud:
L_Diasngser) | F, -
Figure 1 - ADIOP V2.0 Implementation
Mohammed Sqalli ADIOP V2.0 Manual

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

254

4. Users Guide

You must have Java (JDK1.2) or newer version installed. After compiling ADIOP

using the make command, type “java adiop” from “./adiop/’ directory to start the
ADIOP application.

: -=— Interin Locel Nanagement Intexface Protocol

I: Vexsion = Q
: Commmicy » ILNI

I: Command = Txap

I: Racerprise = (1.3.6.1.4.1.2.6.33.2.3)
: Neteork sddress = [0.0.0.0}

X: Gameric tzap = 0 {Cold stare)
s Specific txap =0

DR M ASCIT
B00 30 2A 0201 00080449 4C O VM IFO0S0A B O°.....ILH....+
0 0601040102062102 03 400400000000 02'..0...... !

0 01000201L004830300 PF67C3V00 = C...I0.
---------------- frale 2 - - -~ c - -~ e o m e e
Ad3 Tise Delts T Destination Source

2 10:16:29.9512218 0.0038664 DTE DCE.zlal

Intecface Protucol =----

e

Figure 2 - Main ADIOP Window

4.1. Decoder
4.1.1. Choose the Analyzer type
In the main menu, you may choose from a list box the analyzer type that was used

to capture the data. This is an optional step because ADIOP uses the extension of
the file when it is opened to update this field automatically.

Mohammed Sqalli ADIOP V2.0 Manaual

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

25§

- ew e - - -—- -

r 1 10:16:29.8

Ez: ~=ee- Interis local Nanegeament Interface PLOTOCOLl ~=o== r
E:mn: Version = O

Figure 3 - Protocol Analyzers

4.1.2. Open captured data

From the main menu, choose File <> Open. By default, ADIOP opens a file
dialog box with a default directory of “./adiop/Data/". This can be changed if the
data is stored in a different location. Click on the file you want and press the

“Open” button. You should see the data captured in the text area of the main
window.

ILHI: --——— Intezis lLocal Banagement Interfac» ~

Figure 4 — Main Menu

ms“w i-‘,-.'nml‘-.'.n 'I% Q” !

Figure § - Open Test Case

Mohammed Sqalli ADIOP V2.0 Manual

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

256

Note: Data has to be initially captured using the text format and not the internal
analyzer’s format, and it should include the Hex bytes. ADIOP uses some of the
information from the header and the Hex bytes to decode the frames. For more
information, check some of the captured data under “./adiop/Data/”.

4.1.3. Decoding data

From the main menu, choose File > Decode. A new window will open showing
all the frames decoded. You can click on any of the frames to see more details of
its decoded data. If the decode is not implemented for some types of frames, you
will only see the header. You can press the “Print” button in the same panel as
the detailed decoded data to print the content of this frame to a printer or a file.

You can also print the summary of all the frames decoded by using the menu Test
Suite > Print.

g apes @91 pukipwl swles e
Prim _Tme wi | ver ! _PxcietType e Hex Oact
29947365 [DCE [0 16 Jom: M T Coid stat_|302A0201000404484C4048441F 000K«
2995127 JOcE [6__ 116 jum LW Get_sysUpTime__|30240201000406434C 404840180201
E® Sogesess oce [0 |16 m ILMt Get]30270201000404484C4048AD1 C020
4 1101632732267 _JOTE [0 |5 |sseas SSCOP in_|00000C010100001E l
5]1016:32733333 _[DTE_ [0 |18 [Proiowt (PN Hello 000100640131 0100000080A039C,
§_ 1101833718202 _|OTE Jo__ |5 _ |Sscoe SSCOP END 1000000081 3600000
7_]101645339177 _[OTE 0|16 |PnmRout _ |PNNI Rouding Hello 0001606481010100000060A390000
8 |1016:46630106 |OCE |0 116 Jum ILMI Get__atmiPorey_ |30280201000404434C4D4A01ED
S |1C15AEENEES |OTE Jo 116 Jume ILM GetReply No such n. | 30290201000404484C4048A21 E0201__
T -
q . »
;’ Sret .
Packet Number s =
Time) (10:18.32733333 i ' :‘3
Sourte OTE ;
VPt g ')
vei L o o -
Pratacot “PrimRout o ’
PxckatTwe PNNI Routing Hello o S 3
Troe T memo }
|Packetiength 1o o E:]
- |Protocciversion L l
Newest varsion sugporee 1 o - |
Oigestversion supportes L - o o i
Reserves - o0 - i
L
2

Figure 6 - Decoder/Diagnoser Window

You can also double-click on one frame to get the decoded data of this frame in a
new window.

Mohammed Sqalli ADIOP V2.0 Manual

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

257

|ATM Eng Sysem Agcress 3900000060000000000002072A82658285828500
{Peer Group 10 5839000000000000000000020000

:Remcte Node 10 80000000000000000006000000000C00000000000000
(PortiD 11744051

Remote Pert 1D o

He¥C e RE

Reserves 0000

— ” e , > TR =, e a m}r.;;':_,s.":’.: e ok -'g ll

Figure 7 - One Frame Detailed Decode

This is useful if you want to see the decoded data of more than one frame at the
same time.

4.2. Diagnoser

4.2.1. Choosing the protocol being tested

In the window showing the decoded frames, there are menus for running different
test cases either in one at a time or all test cases of one section at once. For
example, if you want to test PNNI Routing, you can go to the menu “pnnirout”
and choose from one section the test case(s) you want to run. You can choose a
specific test case or all the test cases of one section.

TotSulls apes 2931 psige [
4 L] Memam_ | L
28 101546788778 |OCE [0 SortemaIE__ b = 1]20270201000404434C 4044A01 CO20T e
23 1101848770871 __|OTE [0 —,; WM o0 0BAOMRC DT GO
30_[101648787228_|OCE 0 Sl aNR_ > veaem_
3110184674392 IOTE [0 IBMASTNE . weww_e2
32_l101844 79681t [DCE 0 UMD vowpw_o
33 101648797151 |OTE 10 Papee— . veey_gee
34 _[101646916738 _ JOCE (8 Secomus b
35 101846017588 __|OTE o . VN_es
™ (101647814531 |OCE 0 10 [Pendiot |- VEIRUA_S0S
48] S vaa_sw
VN2
-~
@~ 3
Figure 8 - Running Test Cases

ADIOP constructs this menu from the structure of the directories under
“Jadiop/testsuite/”. So, if a new protocol is added or more test cases are
Mohammed Sqalli ADIOP V2.0 Manual

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

258

added/deleted, the menu will get updated when this window is closed and opened
again.

4.2.2. Running one test case

If you run one test case, a new window appears with the result of executing this

test case. It has one text box showing the detailed solution colored in blue (pass),

green (pass with warning), and red (fail).
r;l B TMIRI O adn podtatn T iy

@

Cause of Failure:

Hrﬂ[‘j

_eot

i One or more.of these constraints declared in
the model of this test is/are violated: @
. [HelloA.source != HelloB.source ::, Advisor
. HelloA.peer_group_id == HelloB.peer_group_id '
P o, HelloAtime <= HelloB.time ::]
. with the following respective occurences:
L 19,12, 21]
@ =

Figure 9 - One Test Case Execution Result

The window also contains up to three buttons. The first one shows the name of the
test case, and if pressed the test case specification plus its CSP model will be
shown in the text box. The second button shows the overall result: Pass, Pass with
warning, or Fail, and if pressed the detailed result will be shown in the text box. A
-third button appears only when the result is “Fail”. This is called “Advisor” and it
is used for debugging the problem. “Advisor” is not implemented yet.

4.2.3. Running all test cases of one section

Choose “All tests ...” from the section submenu. A new window showing the test
results of all test cases of this section appears. It has three columns “TestName”,
“Verdict”, and “Explanation”. “Verdict” shows the result of a test case execution.
It can be either Pass, Pass with waming, or Fail. “Explanation” shows the detailed
solution of a test case. This window also has a “Print” button for printing the
result of all test cases of one section.

Mohammed Sqalli ADIOP V2.0 Manual

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

259

'WJ0IN_081 |Pess Name: HelleA, CPuckst Type: Halle, CPackst

. Assignad: 7C3, (CPecket Nurne: Halle8, CPachet Type: Hallo,
; CPecket Assighet MO

VEIW_082 |Pess _{ECPecket iame: Hae 14, CPecist Type: Halle, CPucht

Assignaet 70, (CPacket Resme: Halls 18, CPuchet Type:
Hella, CPackst Assignos: 300, [CPuckat Mame: Hallo2A,
CPacket Type: Hate, CPachat Assignes: 450}, (CPechst
Mame: Hela2B, CPPackst Type: Halla, CPeckst Acsignes:
4

VOXM_083 [Pess CPeckst Name: Hated, CPucket Type: Hats, CPackat .
Assigneg 70}, ICPackst Name: Hotel, CPackat Type: Helio, i
VAXOW_004 |Pass _ICPuckst Name: HolloA, CPuckat Type: Hals, CPuckat
Assignest 70, [CPachat Name: Hutol, CPechat Type: Hetlo,
CPechat Assignes: 39018

VAOH_005 |Pess _Puckst Name: inkisl_2Wayb, CPuchnt Typs: Hells,
CPuckat Assigned: SO0, [CPeckat Name: Iviinl_2Weytnd,
Chuckst Type: Hate, CPachet Assignes: 410L, KPuchst

@)=

Figure 10 - Results of Test Cases Execution from One Section

- L" S

i (1o

4.2.4. Close Decoder/Diagnoser

From the main menu, choose Test Suite <> Close
Note: The menu Test Suite > Exit will close all the windows of the application
ADIOP.

4.3. Debugger

4.3.1. Open Advisor/CBR window

If the result of a test case is a failure, then an “Advisor” button will be shown in
the result’s window (see 4.2.2.) (Figure 11).

2

Cause of Failure:

of type Hello than what is stated in
the model of this test.
@

Figure 11 - Test Case Resuit containing an ‘Advisor’ button

Mohammed Sqalli ADIOP V2.0 Manual

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

260

You can click on this button to get more help from the ADIOP system on the
cause of this failure. The Advisor/CBR window appears (Figure 12).

’ : | 1S3 X1
CassGose CHROpurstinns C3P Ml thous

T ke T T J [N |
0 One pasnt mem sonieet ABN__ WANN_OI2 Vesly B¢ 8 100 wes.. Bed SUTS 50 35_0 o olhesPRi PR Thew oo fomes o
L__‘_-_.!o‘-h Pr. stmined IIW_ VENDN_(B¢ ey Bgte tefs P B SUTImRSS B0 B2 202000 Osewmeme
3 WeeagSedener . Op iy P prasedt GDTIDS WARITDHEDT ety Bt e Doula. Do SUT muit b0 10 . oedPual PN Thosm 5 »e o0m-
4 Prelscoi pame ... mn_x- B ULL.V-JJCC- . . LY] __ Yowse 8 20 stml

T T B D »

Casey:

[!

we S Opw ailly Pratiom © |
Pratocot {o—en !

Sectuon: 4301 |

Test Casez Vaz0im_082

TestPurpese: Vanly Rat 3 PNINL version numbder i ageed upon.-
tnmmm:nﬁ_lamnnmmuwwm

Date: ;:_qmu-

falure Cause: Mnmowwmmmmummmmumw

Protlerr:
SORIONY:
rgCowNe:
Model Upesate:
o Similar Cases
M nges 3 * Protoeot
1 B703750S% One pachat misaing Intorectiioder _snnrowt - e |
] M NENS® _ CINNE MOMS SMB Orwr . NMIORSraBNY PTODIeT DANNONT A
3 S53008'S mmum mmuom onrout oy P
on A4 .
P

Figure 12 - Advisor/CBR Window

Another way to access the Advisor/CBR window from the main ADIOP window
is to use the main menu as described in (Figure 13).

SOANCE

Help | Analyzer t AR

Test Suilte Bullder
AdvisorCase-Based Reasoner

Figure 13 - Access to Advisor from Main ADIOP Window

The Advisor Window (Figure 12) shows all the cases stored in the case-base in the
top panel. This <case-base «content can be found in the
*/adiop/adiopx/debug/casebase™ file. The middle panel shows the information
about the new case. If the ‘Advisor’ was called from the result’s window of a
failed test case, then the ‘New Case’ will contain information generated from this

Mohammed Sqalli ADIOP V2.0 Manual

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

261

test case’s result. If the ‘Advisor’ window was called directly from the main
ADIOP window, then the new case will have empty fields.

The third panel (bottom panel) of the ‘Advisor’ window contains the cases stored
in the case base ranked by their similarity to the new case.

4.3.2. Retrieve Similar Cases

The user may want to change the ‘Type’ field and retrieve similar cases just so
they have a better idea of what type of case they have at hand. The similarity
value will be higher for the closer type of cases.

The type can be chosen from the list of provided items (Figure 14) or the user
may add a new type. However, it is better not to add too many types so as to make
it easy to track cases by type. The types provided by ADIOP should be sufficient
for most cases to be stored. If there is an error in the model and it needs to be
debugged, we will usually use ‘Incorrect Model’ or ‘Incomplete Model’. For
almost all other cases, we will use ‘Interoperability Problem’ as this means that
the issue has to do with the data captured and not with the model of the test case.

o New Case

Cases: ‘0
index |
Type: WearOpershilly Prodiem |
Protocol:
Section:
Test Case:

Prabiam
Test Purpose: N pYrTIOTTRORY IS 3g7eeC upon.-
Test PretequusiteiBoth SUTS are SS_M and in the sams iowest leve! Do Groun.-
Data: capt004.23]

p—

Fakre Cause: [There are fewer 00served packets Of type Hello han what is stated i the mogel of tus st

Figure 14 - Cases’ Types

When the type is chosen, the user may retrieve similar cases by clicking on the
Tight menu item under ‘CBR Operations’ (Figure 15).

3 ST e LT T e T AT v N T IO P PN - e .
R R V- 11 S
N RS SRR Joully o L{o) ORI

Section! TestCase | TestPupose | Te
; D2K__ V4302H_(02 verly thata PNN wersi.. Both
02 VaX2M__001 Verly hatthe ab Pr.. Toth
40108S V4401089001 Verty thatthe Dambe.. Both
Poox GetAll Cases From Cass BRS® '00_LE. vIOD_LECC. - e

1

2

3

.

L] Faivm ises mport... IneOpmeubillly Pr.. praiout 4301H__ V4301M_00S vedy thatefarmcei.. Both
. e B

[

3

VCC‘! mom det... IneOpeabllly Pr... pnaimut 4001PGL v4801PGLO0T Vedly thatthe m&u.. - 8o

Figure 15 - Retrieve Similar Cases Menu

Mohammed Sqalli ADIOP V2.0 Manual

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

262

Then the user can check the bottom panel for the new sil;lilarity values an
ranking.

aw - . PP S OYe P P PR S S T O VPO UP

Casel | Simemrt, | inex
SINREK_ One mcat miswng

Comecm | ! Rewispon | Print Lintef Simies ome |

Figure 16 - Similar Cases Table

The user can then click on one of the test cases (Figure 16) that they think
are the most similar to the new situation (failure). Then click on the “Reuse/Adapt
Case’ button to reuse information from this similar case into the new case. A new
window appears containing information about case reuse and adaptation (Figure
17).

4.3.3. Reuse/Adaptation of a Case

The “Case Adaptation’ window (Figure 17) shows features of the new case, the
similar case chosen, and the adapted case generated in addition to the similarity
value for each feature between the new and similar case and the weight used for
each feature.

The weights are defined in “./adiop/adiopx/util/Constants.java”. It is
recommended that these values are only modified by the person responsible for
the CBR component of the ADIOP system, so as not to cause any inconsistencies
on how the similar cases are being ranked.

- e Salmetem: 1 —
"o . R Qeepometmamrg 00] _a _Cas poont mamng
Tee | memamse . meeses %08 1 seeasee —
Srement ot o ‘s 3 somrent o
Semen e -mw_ AL N @t
TomCam mw_xm g _oez - RT3 weow_ o2 B
Tomt Pumae VO 1at 4 PYL comen nemter @ opesd u Verty ot s PUAI samen rumber @ speed . W08 3 Vory Bt 4 P veman mumber € 0greet u.. |
Tost Premquate 000 SUTS pon $3_8 00¢ 1a Be aome i L Do SUTs o $3_D 004 1 Clloront lamemt e ST 3 Som SUTe om0 $5_ 0n¢ 14 e s0me tomeet '
Sata . _seCDtes u-ﬂ-.m I u R m
Faiur Coute ?m—'-u-mn.nlmm YI-:--uE:nm.m__n_g _93 “'_n Mn-v--nn-umm I
[Praviem o L TrmmerestmuteiNemamag G0 O Thessead Meis pecmi 0% ~
| Selvtion L ?nm”uﬂouﬂ"ll-m-_ a0 _8 Theamemed vaie ouln‘n-m._.
[Cvtmeme o | . etel weame. Wamaung s00ec. marnpes gn_ L -nm-uh&
WeeeiUodew 7 000000 . mmmu& a8 e mwmmm
L S .00 » — !

aw

Figure 17 - Case Adaptation Window

Mohammed Sqalli ADIOP V2.0 Manual

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

263

The user can make changes to values of two columns: the ‘New Case’ column and
the ‘Adapted Case’ column.

It is possible to ‘Compute Similarity’ if the user makes changes to the ‘New Case’
values. There is a menu item for this purpose (Figure 18). This action will
appropriately update the ‘Similarity’ column values.

El Cane f‘\.duplfmnn
General
Fe Compute Simitarity | Case | Similar Cas
Cases Reuse/Adapt Case !
Index One packet missing
Type Revise m Case incomect Mode!
Protocol pnnirout pnnirout _
Section 4301H 43021

Figure 18 - Case Adaptation Menu

It is also possible to “Reuse/Adapt Case” if the user makes changes to the ‘New
Case’ values. There is a menu item for this purpose (Figure 18). This action will
appropriately update the ‘Adapted Case’ column values.

4.3.4. Revise Adapted Case

ADIOP-V2.0 provides only a simple adaptation method. So the user may choose
to revise the adapted case to the new situation at hand.

When the user has made all the changes and adapted the new case using a similar
case, they can “Revise Adapted Case™ by choosing the appropriate menu item
(Figure 18). This will update the features’ values in the “New Case” Panel (Figure
19) of the “Advisor” window.

At this stage the user has to make sure that the case is adapted correctly and
mainly check that the “Model Update™ value is set to the right statements if the

test case model is to be updated. Although, there is always a chance to correct
these statements at later stages, it is more convenient to do it here.

Mohammed Sqalli ADIOP V2.0 Manual

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

264

< s . T T T Y T S R v TR T T e T T BT Ny v T S T T T T et T T N I T N T S Sy YRR YA YR YT

Va301H_002
st Prwpose: MM.MMWNWM
ckmmmns U“mummnnmm
2 'ca0C04.23
MSe e Thars 568 lwer 00S8NET SACHNTS OF WEE HElo 1han what IS Stated in the Moast Of s 98t
2 The secona Hello caciet (Heta1 B) s mussing
-The $8CONC Mello cacet (<eso1 §) 13 made donal

DugCowe: Moos! upames, g 30C0E. IMETETAratie tas not sorformant
ADO: SUNARY_CONSTRAINT Hetic18.5tmss == O_Ootonat
ADD SBNARY_CONSTRANT HeICIANME «x MHEIO2A MM
Untae ADC: SOINARY_CONSTRAINT HUSTARME <= Mgl 28 me
UPo: He#io1 B.o8er_group_d Helc28.0eer_proup 8

ADD SCONSTRAINT HeRl0ZARmMe Hello28 dme O_uangatory. toms(_mmlm § Compare compane(_Meito18.0me, “«=", |

Figure 19 - Revise Adapted Case

4.3.5. Update Test Case Model

The user may want to update the model of the test case that led to the failure if
they decide that the model is incorrect or incomplete. For cases with the “Type”
feature set to “Interoperability Problem”, the “Model Update™ feature is empty
and not being used.

The statements in the “Model Update” field are used to update the model (Figure
19). They can be either: ‘ADD’, ‘DEL’, or ‘UPD’ statements. The statements are
executed in the order they are defined. An ‘ADD’ statement adds a new statement
(usually a constraint) to the CSP model. A ‘DEL’ statement would delete a
statement (usually a constraint) from the CSP model if it does exist (The
‘statement is rather commented out so it is easier for the user to know which
statements are unused/deleted). An ‘UPD’ statement replaces one variable with
another.

NS OR R

[Qeed e | T uu-ma.mu BtCase | TestPupose | Te
1 One paciet missing oo mRct WERIT——JRNEIUC IUZW_VRI02H__002 ' Verfy thata PNNI versi.. Soth

f2 Wiong Section for... IneOpembily Pr.. paniout 4302H_ Ve302H_001 Very thatthe Hab Pr.. Both
[3 PMT’M ineOpeubilly Pr.. paniout 440108S V440108501 Verfy thatthe Ontala... Both
e Potcn| caciets . IveOpsmbilty Pr.. e 100 LE.. V100 LEC C... - -

Figure 20 - Update Test Case Model Menu

Mohammed Sqalli ADIOP V2.0 Manual

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

265

To update the model using these statements, the user can click on CSP Model
Update > Update Test Case Model menu item (Figure 20).

The Test Suite Builder Window appears with the test case model updated using
the statements from the revised case (Figure 21).

‘l

Tost NuCIPlnint Genpnts Vost 'Pufast

|

- ol o -

$BIRARY_COBSTRAINT Sllold.source ‘s Nellols.source —f

SEIEAPY_CORSTRAINY Rllolh.peet_grocp_id 32 ¥elliols.peer_group_id § Autcmated Moded l

|

SCONSTRALET BelloZh.sewmst_vession Nellold.agwsst version _Belloli.version !

t

f

SUBARY_COSSTRAINT Selloll.stetus = D_Optional § Autemated Nodel Update | !

SBIEARY_CONFTRALINT SelislA.came <x Nello2d.time » d Model Upd t . |
$BIEARY COESTRAINT Tmilold.came < NBellolS.tame L d Model Tpd

$CORSTRAINT Sello2a.came Bellold.zime D) O (_ellols. il Camp Lo

ol

. |

=

| o Packets 3

Figure 21 - Update Test Case Model

The user may update the ‘Test Case ID’ and the ‘Update Version’ of the new
updated test case (Figure 22).

(= - Test-Amars/tnsqalii/adiop/adiopa/ irout
Test Ste C3P Mode! Genennts Test | Panifout

est Case ID: V4301H_ 1p2

pdate Version: 1, by Mohammed Sqall:i on Mar 14, 2001

[Test Description:
Test Case ID: V4301E 002
Test Purpose: Verafy that a PENI version nwmber .
Reference: 5.6.1

Figure 22 - Version of Updated Test Case

_The user can then click on Test > Save to save the new updated model (Figure
23). It is recommended that the updated test case model be saved in a different
file so that it can be tested for a period of time before becoming part of the set of
test cases frequently used/run.

Mohammed Sqalli ADIOP V2.0 Manual

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

= LS SaVE - & i RS RN
ook jn: MRS |

3 emp E

D) e4301H__008.in0

() e4aeH_o10icp

[} va301H_001.class
[va3oiH_oot.iop

[va301H__001.ava
) va3o1H_om cass

D va3niH_ o imn <!
File rame: [V4301H__IQ.icp | sew
} Filesofypme: Al Piles () v] i Cancel
]
Figure 23 - Save Updated Model

The user can then click on Generate Test > Generate Test From CSP Model
to generate the new updated test case. More information can be found in section
4.4.7 (Figure 24).

e

'[Z[T Test/usersimagaiii/adiop/adiop/teS Ui te banit out/V 43K
¢ Tast State CSP Mods! SENSSE

Al J

@ . "'*' = HelloZK.Sourc

X = ol :
- 2 1= .
_ $BIIAR!_COI£ ey Test From CSP Mods! 1;— Hello2B.sourc

CATWADYV FANCTODA THMT Rallatld naar svrAaun sl == Walla?

Figure 24 - Generate Updated Test Case

The user can then click on File < Decode in the main ADIOP window to get the
“Decode™ window and run the new updated test case as explained in earlier
sections of this manual (Figure 25).

T

falo[<w[alnlalu]o]-

| |000100840101010000008030470000¢ 3
i 5

. | 080400Sc01 01010000003000000000 1%
VOO0 T 005002:0101010002010024808047 0"
VEWM_O85 T5004005:01010100200000000000001w

Figure 25 - Run Updated Test Case
Mohammed Sqalli ADIOP V2.0 Manual

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

267

4.3.6. Retain a New Revised Case

If the new case is different from old cases in the case base. Usually if similarity
between all the old cases and the new one is < 70% then the user should consider
adding the new case to the case base.

The user has to fill all the features with the appropriate values. The “Index:”
feature should give a summary of what the case is all about so as to make it easy
to understand in future uses of this case. The user must carefully decide on what
value to put for each feature (specific or general) according to how this case is
going to be used in the future. Then the user can click on CBR Operations >
Retain Case in “Advisor” window. The new case is given a new number in the
case-base and added to the file “adiopx/adiop/debug/casebase™.

It is usually better to work with fewer cases in the case-base library. That is why it
is recommended not to add more cases unless they really add more information
to the already existing cases in the case-base.

4.3.7. Other Advisor menus

The first menu allows for general operations on the case base table and the
Advisor window (Figure 26).

Print Listof All Casss | Type {Protocal| Section| Tes

i 4
ppambilty Pr.. pnnisout 4302H__ v43Q

Exit Ppambiity Pr.. paniout 4401D8S ve40
4_ Protoco! paciats - _IQ.!OQQ& Pz..__ ane 1W*LE_... ij,
5 Faium isas mpot.. IneOpambilty Pr.. panmout 4301H__ V430

- Figure 26 - Advisor menu.

The CBR Operations > New Case allows the user to add a new case from
scratch. The new case is given a new number to be used if stored in the case-base
(Figure 27).

Mohammed Sqaili ADIOP V2.0 Manual

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

o New Case

C—
mpse v]
}

Test Purpose: !
Test Prerequisite :
Data:

Failure Cause: |
Problem:
Solution:
Outcome: ‘ i

SRR
SIALL

Mode! Updatw:

Figure 27 - New Empty Case

The CBR Operations 2> Get All Cases From Case Base menu allows the user
to retrieve all cases from the case-base. This is useful if the case-base has changed
manually. This is useful if the user needs to make changes to an existing case or
delete a case (in this case, the sequential numbring of cases has to be set again) in
the case-base *./adiop/adiopx/debug/casebase™ as there is no GUI actions
performing this. This is not recommended uniess necessary.

4.4. Test Suite Builder

4.4.1. Open Test Suite Builder Window

From the main ADIOP window choose the menu Operations <> Test Suite
Builder and a new window appears that allows the creation of new test cases.

4.4.2. Choose the protocol
Optionally, you can choose a different protocol from the list box in the menu.

s I e et -~ Test Sulte Sullder L I N S 1
{Temt S CIP Mums Geasnt Tew | Pusifomt

{

Figure 28 - Test Suite Builder Protocols

ADIOP constructs this list box and many data structures in this window that are
related to the protocols and their implementation (e.g.., type of packets) from the
structure of the directories under “./adiop/packet/”. So, if a new protocol is added

Mohammed Sqalli ADIOP V2.0 Manual

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

269

or more packet types are added/deleted, the list box and other data structures will
get updated when the protocol is chosen.

4.4.3. Open a test case
i; . = e . .':: . _.“.‘._ "".;M‘ - R :,'::.: o I&’m’ s'.m"t!ez":_ L TE LT S -
Tet Sus CSP Ml Oovomn
et Case ID:
te Version:
Test Description:
Test Case ID:
Test Purpose:
Reference:
Pre-Tequasite:
Test Coafiguration:
ZTest Set-up:
3.
o Packets
PacketiD: - ! Pacict Types DB - LI
e var 10 T Type var 1 i var2 :
|
TH D
Onlow Fow | Upmints Verisates ‘ cmw
® Binary Constraints
Variabie 110 -
Canstratnt: ey ey
Yanabie 2102 -
Ao v vart ID Constrant var2 18
Oeom Fow
Figure 29 - An Empty Test Case

From the menu choose Test > Open to open an existing test case or Test 2
New to create a new one.

4.4.4. State the CSP Model
See Annex 1 for more detailed information about the CSP model.

Note: “Delete Row™ and “Close” buttons functionality is not implemented.

4.4.4.1. Start CSP Model

From the menu choose State CSP Model 2> Start CSP Model to include the
statement $CSP to the test case which means this is where the test case
declaration (CSP model of this test case) starts. It also adds an SENDCSP
statement at the end of the script which means this is where the test case
declaration ends.

Mohammed Sqalli ADIOP V2.0 Manual

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

———
<
1. ’—1
Verdict Craiteria:

Consequence ¢f Parluce: % ’
)
1

jscse

SPROTOCCT Penzhout B
pCSP i

- w

@ Packets

Figure 30 - Initial Test Case Declaration

4.4.4.2. Declaring Packets

From the menu choose State CSP Model -> Packets to declare packets in the
CSP model. A new panel called “Packets™ appears and which allows for the
addition of more packets into the CSP model.

The different fields shown in this panel are:

v “Packet ID:” field is the name to be used for a packet.

v “Packet Type:” field is a list of packet types from the protocol being used to
choose from. This list is dynamically loaded from the structure of the
**./adiop/packet/protocolName” directory.

I

® Packets
PackrtiD: Mglio! i Paciet Tvix; D88 | L A
Meta Var 1D “Tyoe
1q ¥
" oewwfow Uit Varishios s
Figure 31 - Packet Types
Mohammed Sqalli ADIOP V2.0 Manual

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

o Packsts

|__—— N f—
PacietiD: Packat Typms D88 vl . -
! Meta variD _Type | vart : var2]]
T _ __Heio HeRo1. tam ___ _Hetiolsoute MHemol]
o - S _Hewg Hell2 me _Hel sgate Hﬁq
I i
i i
:1@ 0]

* Dotnw Raw | " Umiew Variehles | . Clow |

r~ -

Figure 32 - List of Packets to Add

v “Update Variables™ button is used to add the set of declarations to the CSP

model.

=l Test ImavgngWadlgggmlM' rout/atest000.iop

[Test Swe CSP Mudel Gonemte Test | PaniRput

-

$CSP

1] B (N

$PROTOCOL PaziRout
SPACIKET Xellel Nello -
SPACKRT Hellod Nello -'F
SEEDCSP E"-:
¢ Domains
Figure 33 - Packets Added to CSP declaration
4.4.4.3. Domains

-A domain is a set of discrete values. A domain can be used to declare a unary
constraint. From the menu choose State CSP Model > Domains to declare
domains in the CSP model. A new panel called “Domains” appears and which

allows for the addition of more domains into the CSP model.

Mohammed Sqalli ADIOP V2.0 Manual

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

$PACKET
SPACKET

SR

$SADCSP

Rellol
Bello?

DR -
Bello

Souzce DTE DCB

e Domains

Oomain 1D: Saurs List of Values{OTE OCE . o
S srnre—
i Coman ID : vae 1 H Vaiue 2 vae 3 Vaiue 4 v3
[sawrce OTE_ OCE __ __ _ - 1
f ;
| Ostem Rver - | Cew

Figure 34 - Domain Declaration

The different fields shown in this panel are:
v “*Domain ID:” field is the name to be used for a domain.

v “List of values:” field is a list of domain values to be the set of this domain.
v “Add” button is used to add the domain declared to the list of domains.
v

~
~
(]

“Update Domains™ button is used to add the set of declarations to the CSP

model.

Some domains (i.e. D_Mandatory and D_Optional) are declared by default and
can be used with the status variables to state that a packet or an information
element is mandatory or optional.

4.4.4.4. Unary Constraints

Unary constraints are constraints involving only one variable (packet’s field).
From the menu choose State CSP Model <> Unary Constraints to declare unary
constraints in the CSP model. A new panel called “Unary Constraints” appears
and which allows for the addition of more unary constraints into the CSP model.

The different fields shown in this panel are:

v “Variable ID:" field is the name of the variable (packet’s field) to be used.

v “Constraint:” field is a list of constraints (operations) to choose from.
v" “Domain ID or Value” field can be either a domain declared using SDOMAIN
(See 4.4.4.3) or a value.

Mohammed Sqalli

ADIOP V2.0 Manaual

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

273

Figure 35 - Domains Available for Unary Constraints

v" *“Add Row” button is used to add the unary constraint declared to the list of

unary constraints.
v “Update Unary Constraints™ button is used to add the set of declarations to the
CSP model.
o Unary Constraints
Yarabie 10: Constaint M

Figure 36 - Unary Coastraints Declaration

4.4.4.5. Binary Constraints
Binary constraints are constraints involving two variables (packets’ fields). From
the menu choose State CSP Model > Binary Constraints to declare binary
constraints in the CSP model. A new panel called “Binary Constraints™ appears
and which allows for the addition of more binary constraints into the CSP model.

The different fields shown in this panel are:

v" “Variable 1 ID:" field is the name of the first variable (packet’s field) to be
used.

v “Constraint:” field is a list of constraints (operations) to choose from.

v *“Variable 2 ID:” field is the name of the second variable (packet’s field) to be
used.

Mohammed Sqalli ADIOP V2.0 Manual

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Cx 2 = —
o Binary Constraints
Varable 1 Dz ey To
Constraint ien t ot
Variabte 2 10: o=y ~
i Ontete Rw

Figure 37 — Variables for Binary Constraints Declaration

v “Add Row” button is used to add the binary constraint declared to the list of

binary constraints.
=l T Y testAmers | T
| Test Swm cSP Masnt Consme Temt : Punifest v
W
SDOMAIE Source DTE DC®
SUNARY_CONSTMAINT Bellol.source == Soucce
STEARY_COBSTRAINT Rellnl. == D_Mand \ 4
SBINARY_CONSTRAINT Helosl.Time ¢ Nellol.time
SBIKARY_COESTRAINT Hellsl.source '= Hellol.source
SERDCSP
g

Figure 38 - Constraints Added to the CSP Model

v “Update Binary Constraints” button is used to add the set of declarations to

the CSP model.
o Binary Constraints g
Verianie 1 1 TR -: %;
consmint I :
Variabie 2 1D N2 muwe . gi
—— :
| e Vert 1D ‘Constnd_ var2 ID] §
e HeRo1 Ume < HeA Ume] i
_Dems e Meclsowte = wek@sowca L
X i =

Figure 39 - Binary Constraints Declaration

Mohammed Sqalli ADIOP V2.0 Manual

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

275

4.4.4.6. General Constraints

General constraints are constraints involving one or two variables (packets’ field).
From the menu choose State CSP Model <> General Constraints to declare
general constraints in the CSP model. A new panel called “Constraints™ appears
and which allows for the addition of more general constraints into the CSP model.

Figure 40 - General Constraints Declaration

The different fields shown in this panel are:

v’ “Variable 1 ID:" field is the name of the first variable (packet’s field) to be
used.

v’ “Variable 2 ID:” field is the name of the second variable (packet’s field) to be
used.

v" “Constraint (Java function):” field is constraint that is represented using Java
functions and involving one or two of the variables declared.

v *Add Row” button is used to add the general constraint declared to the list of
general constraints.

v" “Update Constraints” button is used to add the set of declarations to the CSP
model.

Warning: There is a bug in the general constraints functionality. After you

‘generate the test case, if you get an error message, you may have to add the *_”
character at the beginning of some packet names used in the “java function™ part.
You will know which ones from the error message.

4.4.4.7. End CSP Model

From the menu choose State CSP Model <> End CSP Model to include the
statement SENDCSP to the test case which means this is where the test case
declaration (CSP model of this test case) ends. This step is usually not needed
since “Start CSP Model” will add it as well.

4.4.5. Save a test case

From the menu choose Test -> Save to save a test case. A test case must be saved
using “.jop” extension and under “./adiop/testsuite/protocoIName™

Mohammed Sqalli ADIOP V2.0 Manual

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

4.4.6. Get CSP Model

From the menu choose Generate Test > Get CSP Model. This will get the CSP
model declared in the text window and put the variables (packets) declared in the
“Packets” panel under the list of packets.

- R Y adion/adiop R s S 2
Tost Sue CIP Mods! Goner Test | Panifewt -l
SDCMALN Source DTE KB r‘
i
SURARY_COBSTIRAINT Nellol.sourece == Spource i
SUNARY_CONSTRAINT Sellol = p_masdacory k ;
SBIRARY_CONSTRAINT Beliol.tame <= Helln?.time [;
$BIBARY_CONSTRAINT Sellsl.soucce '= Bello2.source
=
segDCsHy %
-l
== '
® Packets ‘
Paeket iD: \ Pac ket Type i 088 L 4 L] f
f Meta Var IO Tyoe var 1 var2 |
etia railo HeNo1 Ume HellaT source Heto1,
[rwnce Hallo HeH tme Hede2 sourte N | i
eix] | i
—_—_— _
_ Duwts Rew ¢ et Vasleline Cam
« Binary Constraints |
Figure 41 - Get CSP Model

4.4.7. Generate Test from the CSP Model

From the menu choose Generate Test <> Generate Test from the CSP Model.
This will create a “java” file with the same name as the “.iop” file, then it will
compile it to create the “.class” file. This is the file that will be loaded when this
test case is run from the Decoder/Diagnoser Window.

= . = -CompherResalt:. . _ oo 4

5. Success:
% Jussremepili/adiop/adioprestsuite'praiout'atest00t.jave
successfuly genssuted and compiied.

oK

Figure 42 - Resuit of Generate Test From CSP Model
If there are errors in the compilation, you will get them in the above “Compiler

Result” Window.
Refer to sections 4.2.1, 4.2.2, and 4.2.3 for more information on how to run this
test case.

Mobhammed Sqalli ADIOP V2.0 Manual

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

4.4.8. Close a test case]
From the menu choose Test > Close to close the test case that is opened.

Annex: Description of the CSP Modelling Process

In terms of modeling, we propose to model each test from the test suite as a CSP. This
guarantees that the CSPs obtained are small and can be solved efficiently. This is also
closer to how interoperability testing is done in the real world since the companies testing
their devices prefer to get a report of specific tests and failures. The breakdown of the
interoperability testing into small tests allows us to do incremental testing and detect
easily problems at each level of this testing.

We also propose to use the object-oriented methodology to model these tests. In
interoperability testing, an analyzer is usually used to collect the data between the two
devices tested. The data collected is then decoded as packets/frames, each representing an
event. Thus, it is natural to represent the CSP in term of events. Each event contains
many parameters which should be checked against other events' parameters to test for
interoperability. Since the constraints exist between the events' parameters, we choose to
represent each parameter as a variable in the CSP. The constraints represent restrictions
on these variables. However, It is a tedious work to state each one of these variables
separately.

The idea is then to represent an event as a metavariable in the CSP representation and
each observed event as a metavalue. A metavariable or a metavalue is an object or
instantiation of an object representing an event including all the parameters (fields in the
object), and methods to manipulate data in these events. A binary metaconstraint is a set
of constraints relating variables belonging to two metavariables. The concept of
metaconstraint is an abstract concept of representation and design purposes.

Another advantage of this is that one can state an object in the model without having to
know all the parameters of that object. This allows for a very concise CSP model
statement. From this statement, the system generates the CSP model which is an object
with variables as fields and constraints as methods. This model is then integrated to the
system and used for testing.

The CSP model is stated in a declarative way. The user needs to specify the events that
are expected to be observed for the test to pass. These frames/events are represented as
objects.

e SPACKET OneWaylnA Hello: This states that the model contains a packet of
type 'Hello’ named ‘OneWayInA'. Since the "Hello' class is already stored and
contains all the information about this type of packets, this statement creates all
the necessary fields for the metavariable ‘OneWayInA', including "time', "source’,
“status', and “type'.

The domains are declared in a similar fashion: SDOMAIN D_Hello Hello
Unary constraints state the name of the variable and the domain of values of this
variable: SUNARY_CONSTRAINT OneWaylnA. type D_Hello

¢ Binary constraints are declared as relations between two parameters:
$BINARY_CONSTRAINT OneWaylnA time < OneWayInB.time

Mohammed Sqalli ADIOP V2.0 Manual

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

278

¢ General constraints allow for a larger scope of constrains declaration. They can be
either unary or binary: SCONSTRAINT OneWayInA .time OneWayInB.time
f{OneWaylnA .time,OneWayInB.time) where f(x,y) is a Java statement that
returns a boolean and has x and y as its parameters.
By defining packets, there is no need to state each variable separately. And when the
packets are defined, the system provides a menu with all the variables belonging to these
packets. This menu can be used for stating constraints between these different variables.

Mohammed Sqalli ADIOP V2.0 Manual

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Appendix D

Approval of Protocols from the Institutional Review Board (IRB)

279

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

UNIVERSITY OF NEW HAMPSHIRE

Office of Sponsared Research
Service Building

51 College Road

Durham, New Hampshire 03824-3585
(603) 862-3564 FAX

LAST NAME Sqalk FIRST NAME Mohammed
DEPT Engineenng (Systems Design) Computer Science ORIG APP'L 11/13/2000
RB 2436
OFF-CAMPUS 234-344S Uplands Dr.
ADDRESS Ottawa, Ontario KIV-9N6, Canada REVIEW LEVEL EXE
(if applicable)
DATE OF NOTICE 12/7/2001
PROJECT Dragnasing interOperability Problems and Debugging Modets by Enhancing Constraint Satisfaction with Case-Based
TITLE Reasoning

Thank you for returning 10 the Institutional Review Board (IRB) your completed Exempt Project Final Report form indicating the above

project 1s closed. Thank you also for enciosing a report of findings for this study

For the IRB.

/ill'u(ﬁ“[Cgmff———

'\ Jugie F. Simpson
\dlgularory Comgpliance Manager

Office of Sponsored Research

C€C. Fiie

Prot. Eugene C. Freuder. Computer Science

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

UNIVERSITY OF NEw HAMPSHIRE

Office of Sponsored Research

Service Buildin

51 College Roa

Durham, New Hampshire 03824-3585
(603) 862-3564 FAX

LAST NAME Sqalli FIRST NAME Mohammed
DEPT Engineering (Systems Design) Computer Science APP'L DATE 11/13/2000

21 Hogan Street, Apt. $10 R0 » 2436

Nepean, Ontano K2E-5E8, Canada

OFF-CAMPUS REVIEW LEVEL EXE
ADDRESS

(it applicable) DATE OF NOTICE 11/13/2000
PROJECT Diagnosing InterOperability Problems and Debugging Models by Enhancing Constraint Satistaction: with
TITLE Case-Based Reasoning

The Institutional Review Board for the Protection of Human Subjects in Research has reviewed the protocols for your project as
Exempt as descnbed in Federal Reguiations 45 CFR 46, Subsection 46.101 (b), category 2

Approval ts granted to conduct your project as descnbed in your protocol. Changes in your protocol must be submitted to
the IR8 for review and approval prigr to their implementation. Also, if you experience any unusual or
unanticipated results with regard to the participation of human subjects, piease report such events to this
office promptly as they occur. Upon completon of your project or after one year, whichever is shorter. please complete the
enclosed pink Exempt Project Status Report form and retum it to thus office.

The protection of human subjects 1n your study is an ongoing process for which you hold pnmary responsibiiity. In receiving IRB
approval for your protocol, you agree to conduct the project m accordance with the ethical pnnciples and guidelines for the protection
of human subjects in research, as descnbed in the following three reports: Belmont Report: Title 45, Code of Federal Requlatons,
Part 46; and UNH's Multipie Project Assurance of Complkance. The tull text of these documents s avasable on the OSR mformation

server at hitp/www ynh edwost/comphance/Regulatory Compliance him! and by request from the Office of Sponsored Research

It you have questions or concerns about your project or this approval, please leel free 1o contact our otfice at 862-2003. Please
reter to the IRB & above in all correspondence related to this project. The IRB wishes you success with your research

For(pe IR8. E
:‘_,‘ B ‘777_‘ -

Kathryn B Catanec
Executive Director
Othce ot Sponsored Research

Ic Fie

Prot Eugene C Freuder. Computer Science

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

	University of New Hampshire
	University of New Hampshire Scholars' Repository
	Spring 2002

	Diagnosing interoperability problems and debugging models by enhancing constraint satisfaction with case -based reasoning
	Mohammed Houssaini Sqalli
	Recommended Citation

	tmp.1520442727.pdf.NwOqX

