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ABSTRACT

MAGNETOACOUSTIC CHEMICAL SENSORS 

BASED ON SWELLABLE POLYMER MICROSPHERES

By

Huqun Liu 
University of New Hampshire, May 2002

The goal of this dissertation was to investigate chemical applications of 

magnetoacoustic sensors based on swellable polymer microspheres. The 

magnetoacoustic sensor was used to monitor viscosity of starch solution, water loading, 

and 2-hydroxyethyl methacrylate polymerization.

Poly(vinylbenzyl chloride) (polyVBC) microspheres were prepared by suspension 

polymerization and then derivatized to introduce dicarboxylate groups onto the polymer 

backbone. Poly(vinylbenzyl chloride-trichlorophenyl acrylate) (polyVBC-TCPA) 

microspheres were prepared by dispersion polymerization and then derivatized to 

introduce amine groups onto the polymer backbone. These derivatized polymer 

microspheres swell and shrink with changing pH. They were entrapped in a hydrogel 

membrane and the membrane turbidity was investigated by UV/Vis spectrophotometry. 

Membrane turbidity increased with pH from 6.0 to 8.0 for entrapped aminated polyVBC- 

TCPA microspheres, and decreased with pH from 2.0 to 8.0 for entrapped dicarboxylated

xiv
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polyVBC microspheres. The change in turbidity with pH was subject to hysteresis that 

decreased with increasing water content o f the hydrogel membrane.

A magnetoelastic ribbon coated with a layer of hydrogel membrane with 

entrapped aminated polyVBC-TCPA or dicarboxylated polyVBC microspheres was used 

to monitor pH. A thin layer o f polyurethane was pre-coated on the ribbon to prevent it 

from rusting and increase its adhesion to the pH sensitive membrane. The resonance 

frequency o f the sensor increased as pH changed from 6.0 to 8.0 when aminated 

polyVBC-TCPA microspheres were used, or decreased as pH changed from 2.0 to 8.0 

when dicarboxylated polyVBC microspheres were used. The magnitude of the frequency 

shift was linearly proportional to the particle concentration in the hydrogel membrane.

PolyCvinyl alcohol) (PVA) and HYP AN hydrogels were used to make hydrogel 

membranes. HYP AN hydrogels are hydrophilic acrylate derivatives. They are good for 

magnetoacoustic sensors due to their high water content, high mechanical strength, and 

good adhesion to the polyurethane coated ribbon.

The new magnetoacoustic sensors do not require any physical connections to the 

sensing elements. They are ideally suited for applications where physical connections are 

undesired or not possible.

xv
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CHAPTER 1

INTRODUCTION

1.1 Chemical Sensors

A sensor is a device that can continuously and reversibly record a physical 

parameter.1,2 Although some devices called probes can be used only once, they have also 

been considered as sensors. If the recorded physical parameter is related to the quantity 

of a chemical species, this device is called a chemical sensor. An ideal chemical sensor 

can be used directly inside the sample and responds rapidly to concentration changes. 

There is growing interest in developing real-time, automatically operated chemical 

sensors.

Generally, a chemical sensor consists of a physical transducer and a chemically 

selective membrane, film or layer at the sensing tip.3 The performance of the chemical 

sensor, such as sensitivity, lifetime, and response time, depends on the composition o f the 

sensitive layer. Usually, ligands or functional groups that are contained in this sensitive 

layer recognize the analyte and produce signals. The recognition process can be a surface 

interaction or a bulk interaction depending on how the analytes partition between the 

sample phase and the sensor. Selectivity is defined as the ability of a sensor to respond to 

the analyte in the presence of other chemical species.

In the 1930s, the first true chemical sensor was developed. This was the glass 

electrode selective for hydronium ions. In the 1960s, other ion-selective electrodes and

I
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semiconductor detectors appeared. In 1970, the ion-sensitive field-effect transistor 

(ISFET) was developed through the union of microelectronics and chemical sensor 

science. In 1980, Peterson introduced the first optical fiber sensor to detect changes in 

pH. There are many advantages to optical fiber sensors, such as remote sensing. In

1982, a surface plasmon resonance sensor was used to analyze anesthetic gases. When a 

sample gas absorbed on a gold coated sensor surface, the resonance angle shifted. In

1983, the first international conference on chemical sensors was held in Fukuoka. A 

number o f books, journal reviews, and conference proceedings that concentrate on 

chemical sensors have been appeared since the mid- 1980s. Journals, such as Sensors 

and Actuators B (chemical sensors) and Biosensors and Bioelectronics, are devoted to 

sensor technologies.4*5 A series of papers written by Janata6 since 1988 has closely traced 

the recent development of chemical sensors. They reviewed the new trends, features, and 

distribution of effort in the entire chemical sensor field. Clearly, great progress in both 

the theoretical and practical aspects of the chemical sensor field has been made and will 

continue in the future.

1.2 Classification of Chemical Sensors

Generally, chemical sensors are classified according to the transduction principle 

as thermal, electrochemical, optical, or mass sensors.3 Sometimes, the term “acoustic 

wave sensor” is used instead of “mass sensor”, but it refers to the same kind of sensor.4

2
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1.2.1 Thermal sensor

The analytical information obtained from thermal sensors is the heat absorbed or 

evolved by a chemical reaction. According to the first law o f thermodynamics, the 

generated heat is related to the changes o f the internal energy o f the system. Usually the 

chemically sensitive layer is placed on the top of a thermal probe to measure the 

temperature changes of the sensing element or the heat flux through the sensing element. 

This is a nonequilibrium process and the measurement is taken in a steady-state 

situation.3

1.2.2 Electrochemical sensor

The analytical information obtained from electrochemical sensors is voltage, 

current, or conductivity. Therefore, electrochemical sensors are divided into 

potentiometric sensors that measure voltage, amperometric sensors that measure current, 

and conductimetric sensors that measure conductivity. These devices are the largest and 

oldest group of chemical sensors. Their measurement process is based on chemically 

modulated electrode reactions. The charge transport can be electronic, ionic, or mixed.3

1.2.3 Optical sensor

When light interacts with matter, it can be partially or totally transmitted. If  it is 

absorbed, its intensity will decrease. It can be reflected, refracted, or scatted at an 

interface. It can also coupled to other nonoptical effects, for example, changes of 

temperature, pressure or electrical conductivity. All o f the above phenomena can be used 

to design optical sensors. The general strategy is to guide the light beam out of the

3
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spectrophotometer to interact with the sample and then back to the spectrophotometer for 

processing. A typical optical sensor consists of a source, monochromator, chopper, 

sample space, detector, and other modules. Light is guided with cylindrical optical fibers 

or planar waveguides between different modules.2,3

1.2.4 Mass sensor

Piezoelectric materials have the property of producing an electric potential if 

mechanical stress is applied. Conversely, these materials will mechanically deform if an 

electric potential is applied across them.4 A wide range o f technologies has used these 

two properties, such as quartz crystal oscillators in timepieces and strain gauges in 

seismometers. In chemistry, they have been used in microscopic devices to precisely 

position a probe and in mass sensors. Thompson and Stone have provided the history of 

the development o f piezoelectric devices.4 Based on their description, Table 1-1 

summarizes landmarks in the development of acoustic wave devices, and Table 1-2 

summarizes landmarks in the development of acoustic wave devices as chemical sensors. 

There are two kinds of acoustic wave chemical sensors: bulk acoustic wave (BAW) 

sensors and surface acoustic wave (SAW) sensors. They differ in their two-dimensional 

and three-dimensional structure. BAW sensors are also called thickness-shear mode 

(TSM) sensors and quartz crystal microbalance (QCM). King7 first introduced the BAW 

sensor in 1964 as a detector in gas chromatography. Thompson4,8 and co-workers 

reviewed the applications of BAW sensors in contact with gas and liquids. O’Sullivan 

and Guilbault9 have reviewed commercial quartz crystal microbalances in an article that 

included theory, applications, and recent developments. Moreover, the main

4
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commercially available quartz crystal microbalances were compared. Wohltjen and 

Dessy10 first reported a gas sensor based on SAW in 1979. Kowalski11'12 and co-workers 

first studied arrays of polymer-coated TSM resonators in 1986. Albert13 and co-workers 

reviewed developments in this field. Grate14 presented a more detailed review on 

acoustic wave microsensor arrays for vapor sensing.

The analytical information obtained with mass sensors is mass changes when 

chemical species interact with the sensors.3 Therefore, mass sensors are sometimes 

called microbalances. However, standard scales and balances used in laboratories are not 

regarded as sensors. In recent years, it has been recognized that the response o f the 

sensor is related to the properties of the film and their mass, for example, conductivity 

and elasticity of the deposited films on the sensor surface.15,16 There are many 

advantages of mass sensors, such as small size, light weight, simplicity o f construction 

and operation, low power requirement, high sensitivity, stability, and relatively low cost. 

Frequency shift measurements are very accurate compared with measurement o f other 

physical parameters.3 But the physics is so complex that it is sometimes difficult to 

obtain a simple relationship between the mass changes and the output signals. Especially 

in the liquid phase, frictional effects at the sensor-liquid interface in addition to the mass 

effects affect the energy loss which influences the output signal of the sensors.

5
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Table 1-1.Landmarks in the development of acoustic wave devices

Year Scientist Landmark

1880 P. Curie; 
J. Curie

First announcement of confirmation o f  piezoelectricity by 
recording electrical effects through applying pressure on various 
crystals, including quartz

1881 W. G. Hankel First introduce the term piezoelectricity

1881 G. Lippmann Prediction of the converse piezoelectric effect

1881 P. Curie; 
J. Curie

Verification of crystal mechanical deformation through the 
application of electrical energy

1885 Lord Rayleigh Confirmation of the existence o f elastic vibrations o f the surface 
o f the surface o f solid materials

1890 W. Voight A rigorous theory involving electric vectors and elastic tensors

1893 Lord Kelvin A theory of piezoelectricity based on thermodynamic concepts

1921 W. G. Cady Produced the piezoelectric resonator

1937 A. Langevin; 
A. Moulin

One of the first piezoelectricity applications showed that 
piezoelectric plates emitted and received acoustic waves 
propagating under water. Led to ultrasonics as a discipline.

1950s Development o f bulk wave devices based on Love, Lamb, or 
Stonely waves

1960s Combination of piezoelectricity with microelectronics

1965 R. M. White; 
F. W. Voltmer

Deposit interdigital transducer using photolithographic 
techniques on piezoelectric substrates to excite and couple 
surface waves. Initiated surface acoustic wave engineering
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Table 1-2.Landmarks in the development of acoustic wave devices as chemical sensors

Year Scientist Landmark

1895 Marie and Pierre 
Curie

The first application o f piezoelectric material as a 
chemical sensor, which was termed as “quartz electric 
balance”, during the discovery of the new element radium

1959 G. Sauerbrey Directly deposited films on the surface o f a bulk acoustic 
wave (BAW) sensor. Introduced the Sauerbrey Equation.

1960s

1970s

See Reference [10] A number o f gas phase and liquid phase theoretical 
models on BAW sensors were published.

1964 W. H. King The first application o f a BAW device as a selective 
analytical sensor.

1979 H. Wohltjen; 
R. Dessy

First application o f a surface acoustic wave (SAW) 
chemical sensor with a deposited sorptive film

1980 T. Nomura;
G. J.Bastiaans

Firstly successfully used a BAW sensor in contact with a 
liquid

7
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1.2.4.1 Bulk acoustic wave sensor

Figure 1 -1 shows the configuration of a quartz crystal microbalance with a pair of 

facing metal film electrodes placed on opposite sides of the crystal.1’17 Thickness shear 

mode mechanical oscillations are excited between the electrodes and propagate through 

the bulk o f the material. The oscillations are perpendicular to the parallel faces o f the 

thin quartz crystal piezoelectric element. They cause the atomic displacements parallel to 

the crystal surface. The chemically sensitive films are placed on the surfaces of the 

crystal or the metal films where they interact with the species of interest to cause some 

change that can be detected by the sensor. These changes include mass, viscosity, and 

modulus. The sensor response is a result of the frequency shift. Sauerbrey1’4 first 

quantitatively investigated the response of a BAW sensor. He found that the acoustic 

wavelength at resonance increased as the device thickness increases. Based on this, he 

derived the following relationship between the frequency shift and the mass change:

A ( 1- 1)

In this relationship, Af (Hz) is the frequency shift, fo (Hz) is the fundamental resonance 

frequency o f the unloaded piezoelectric crystal, |0 s is the shear modulus of the crystal, ps 

is the crystal density, A (cm ) is the surface area of one face of the crystal, ms is the total 

mass of the rigid thin film that deposited on the crystal. After calculating the constants 

and letting AM = itu/A, the following equation results:

A / = -C l *AM  (1-2)

Equation (1 -2) shows that the frequency shift is linearly proportional to the mass change. 

This is the reason that bulk acoustic wave sensors are also called quartz crystal

8
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microbalances. The negative sign means that the frequency decreases as the added mass 

increases. The proportionality constant is calculated under the assumption that the film is 

thin and mechanically rigid enough to neglect any changes in these characteristics when 

it binds with analytes. Recently, a number of theoretical models have been published to 

consider the acoustic impedance of the added film.17,18

If the crystal is in contact with liquid, the viscosity o f the liquid has to be 

considered. Kanazawa and Gordon19'22 derived an equation to express the oscillation 

frequency shift of a quartz crystal when the quartz crystal contacts a liquid.

A/ =  - / oK
r

'A
(1-3)

*W>)

In this relationship, Af is the resonance frequency shift, fo is the resonance frequency for 

the dry crystal, p. is the elastic modulus of the quartz crystal, p is the density o f the 

quartz, r|i is the absolute viscosity of liquid, and pi is the density of the liquid. Equation 

(1-3) considers the viscosity and density of the liquid, but not the interfacial effects.23 

Thompson8 reviewed and compared a number of the bulk acoustic wave sensors in the 

liquid phase.

B AW sensors have been used for chemical vapor sensing by coating a sensitive 

film on the crystal surface. This film selectively binds the species of interest and causes 

its mass to change, which can be detected by the sensors.24,25 Various gases in ambient 

air, such as sulfur dioxide, ammonia, hydrogen sulfide, hydrogen chloride, carbon 

monoxide, phosgene, have been detected using BAW sensors.26 Recently molecularly 

imprinted polymers have been used as sensitive films.27,28 Ji et al.29,30 developed 

piezoelectric odor sensors to detect 2-methylisobomeol. Haupt et al.31 developed an

9

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



selective acoustic sensor to detect S-propranolol. After coating the crystal with a layer of 

derivatized silica substrate with aminopolycarboxylate ligand, Cox32 detected lead (II) 

and silver (I) in aqueous solution using a BAW sensor. Shana22 fabricated a novel 

continuous flow cell to monitor liquid viscosity.

1.2.4.2 Surface acoustic wave sensors

In 1965 using photolithographic techniques, White and Voltmer4 deposited 

interdigital transducers on piezoelectric substrates to excite and couple to elastic surface 

waves. This initiated the new field of surface acoustic wave engineering. The simplest 

form is to induce oscillating electrical fields between a pair o f electrode fingers. This 

results in atomic displacement in a piezoelectric material of correct crystal orientation.

The signal is a surface acoustic wave (SAW) that possesses longitudinal and shear 

components. A second interdigital transducer is used to detect the wave. Surface 

acoustic wave sensors have great design flexibility. Their sensing parts, which are the 

waveguides, are separate from the piezoelectric transducer/receiver. In 1979, the first 

SAW chemical sensor was developed.10 Because the SAW sensors can be operated at a 

higher frequency, typically in a range from 30 to 160 MHz, they have higher mass 

sensitivity than bulk sensors.1

Figure 1-2 shows the configuration of a SAW sensor.1'17 The input end is a pair 

o f electrodes that are adjacent and separated by V* of the acoustical wavelength. An AC 

potential bias is applied between the electrodes to produce undulatory surface 

oscillations, i.e., surface waves. The oscillations propagate toward the output end that is 

a pair o f electrodes similar to that in the input end. Their speed is determined by the

10
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properties o f the crystal and by the sample mass added on the crystal in the region 

between two sets o f electrodes. Any changes in the surface wave propagation rate are 

detected as changes in the resonance frequency. The response o f the sensor is given as:33

t f  = -*C mf i h p  (1-4)

In this relationship, Af is the frequency shift, fo is the unperturbed oscillation frequency, h 

is film thickness, and p is the film density. Cm is a constant representing the mass 

sensitivity of the device, k = 1 when the entire surface area o f  the device is covered with 

a film. The film in equation (1 -4) is thin, rigid, nonpiezoelectric, and nonconducting. Its 

thickness is small compared to the acoustical wavelength. If it is thicker, its elastic 

properties may affect the frequency shift.33 The frequency shift may also be affected if 

the film has appreciable elasticity or the film elasticity changes after binding the target 

molecules.

SAW sensors have a wide variety of applications in analytical chemistry. 

Ballantine1 studied the elastic properties of thin polymer films by varying temperatures 

spanning the polymer glass transition temperatures. Frye1 studied thin-film properties, 

such as diffusion, surface area, and pore size distribution, by measuring the mass changes 

due to N2 absorption on thin porous sol-gel glass films. Galipeau34 studied water uptake 

and release using both cured and uncured polyimide films on the crystal surface. The 

results suggested the possibility of using a SAW sensor as a cure indicator and a humidity 

sensor. Many inorganic gases and organic vapors have been selectively detected with 

SAW sensors.4 The future development o f SAW sensors will proceed in several 

directions, such as reducing sensor noise and temperature drift, increasing sensitivity by 

using higher frequency SAW devices, and developing new selective films.4

11
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Figure 1-1 Quartz crystal microbalance configuration, (a) top view, (b) side view, (c) side 
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Figure 1-2 SAW sensor configuration, (a) top view, (b) side view, (c) side view o f wave 
mode
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1.3 Chemical Sensors Based on Polymer Swelling

A cross-linked polymer swells rather than dissolving in a compatible solvent. It 

reaches an equilibrium between the swelling forces arising from solvation and the 

retractive forces arising from the cross-linked polymer network. The extent o f swelling 

depends on the affinity o f the polymer backbone for the solvent if the polymer is 

uncharged. Additional swelling caused by the electrostatic repulsion forces should be 

considered if the polymer contains charged sites. Considering swelling as an osmotic 

pressure effect, the difference in the charge density o f the polymer network and the 

solution is equalized by solvent entering the network. This occurs if the charge density 

on the polymer is higher than the charge density o f the solution, i.e. the ionic strength.35

Seitz35 has recently reviewed swellable polymer microspheres for chemical 

transduction. This kind of work has been carried out in our research group for several 

years.36"40 Derivatized lightly cross-linker polymers swell and shrink as a function of 

analyte concentration. They can be prepared as membranes41,42 or microspheres43,44, and 

coupled to different transduction methods, such as optical fiber sensors based on changes 

in refractive index,45"48 and pressure sensors based on changes in physical displacement.49 

Dispersion polymerization, suspension polymerization, and seeded emulsion 

polymerization have been used to prepare 0.3 to 3 pm diameter microspheres.35 These 

microspheres include poly(vinylbenzyl chloride), (poly(4-acetoxy-styrene), and co­

polymers of 2,4,5-trichlorophenylacrylate (TCPA) and vinylbenzyl chloride (VBC). The 

purpose o f adding TCPA units into polyVBC microspheres is to increase hydrophilicity 

and porosity o f the polymer after the microspheres are aminated. In this case, the 

chloromethyl group of VBC is converted to an amine that is pH sensitive. The TCPA is

14
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converted to an amide that is hydrophilic, which causes the polymer to swell slightly in 

aqueous media introducing microporosity. Additional microporosity is introduced in the 

polymer after a small amine group displaces the large leaving group 2,4,5- 

trichlorophenol. Increasing microporosity and hydrophilicity in the backbone of the 

polymer results in fast diffusion of analyte in the microspheres, which in turn results in 

fast sensor response.50

Most o f the chemical transducers in our group have been used for pH.45-48 For 

example, polyVBC microspheres are derivatized with diethanolamine or diethylamine to 

introduce amine groups on the polymer backbone. The amine groups are protonated at 

low pH and deprotonated at high pH. If the derivatized microspheres are entrapped in a 

hydrogel membrane, in most cases, swelling causes the refractive index of the 

microsphere to decrease so that it is closer to the refractive index of the hydrogel 

membrane. This results in a decrease in membrane turbidity, which can be measured 

either as a change in transmitted or reflected intensity. Figure 1-3 illustrates the sensing 

principle.35 For example, the hydrogel membrane is polyvinyl alcohol (PVA) with a 

refractive index o f 1.34. The swellable microspheres are diethanolamine derivatized 

polyVBC. They swell in acid with a refractive index o f 1.43 and shrink in base with a 

refractive index o f 1.46. Because diethanolamine derivatized polyVBC microspheres 

swell over a pH range from 6.5 to 7.8, they can be used for many applications including 

biological measurements. Swellable polymers can also be implemented for metal ion 

sensing.40 One approach is to change the charge density on the polymer backbone 

through binding with metal ions. Another approach is to combine ion pairing chemistry 

with polymer swelling. This is demonstrated using poly(4-hydroxy,3-nitrostyrene)

15
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microspheres containing dibenzo-18-crown-6 (DB18C6) to detect potassium in a pH 7.0 

buffer. The formation o f potassium DB18C6 complex is accompanied by deprotonation 

of the hydroxy group on the polymer backbone, which causes the microspheres to swell.

In this dissertation, we explored the use o f the swellable microspheres in 

magnetoacoustic sensors in collaboration with Dr. Craig Grimes and his research group at 

Pennsylvania State University. Figure 1-4 illustrates the sensing element configuration.

A layer of hydrogel membrane containing swellable microspheres is coated on a 

magnetic ribbon that can be interrogated remotely. The polyurethane layer is used to 

prevent the ribbon from rusting and improves the adhesion of the hydrogel membrane to 

the ribbon. The changes o f the magnetic properties o f the ribbon during membrane 

swelling and shrinking are measured as a change o f the frequency shift.

IT

OH"

O °  o o o
o o  O

Bead (m) Membrane (m) Bead (n2) Membrane (m)

Shrunken state Swollen state

Figure 1-3 Schematic of sensing response mechanism. For diethanolamine derivatized 
polystyrene, ni and n2 is 1.46 and 1.43, respectively. For PVA membrane, n3 is 1.34.
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Figure 1-4 Side-view of the sensing element configuration for magnetoacoustic sensor
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1.4 Summary of Work

The primary objective of my work was to develop a new kind of magnetoacoustic 

sensors to monitor pH. Because this is a completely new research field, we have 

compared the principles of magnetoacoustic sensors with those of acoustic wave sensors. 

Based on the introduction provided in this chapter, we know that some aspects of 

acoustic wave sensors have only recently been applied in the liquid phase. Therefore, we 

have proposed models to study possible factors affecting frequency shift with 

magnetoacoustic sensors. These models indicate that viscosity, mass loading, and 

configuration of the sensing element are all involved components. In configuring sensing 

elements, we should consider the types of pH sensing particles, modulus o f the sensitive 

membranes, concentration of particles, types of hydrogel membranes, adhesion o f the 

sensing membrane on the ribbon, thickness of sensitive membrane, corrosion o f the 

ribbon, positions of the sensitive membranes on the ribbon, and ribbon bending that could 

be caused by swelling and shrinking of the sensitive membranes. One successful model 

is that used to monitor HEMA polymerization. The resonance frequency peaks disappear 

and appear according to our predictions.

Making pH sensitive microspheres is the first important step. These become the 

sensing reagents for the magnetoacoustic sensors. Two kinds o f microspheres, 

polyTCPA-VBC containing amine groups and polyVBC containing carboxylic groups, 

were prepared by dispersion and suspension polymerization, respectively. A new 

technique called Shirasu Porous Glass (SPG) emulsification has been introduced to 

prepare a monomer emulsion. These pH sensitive microspheres are entrapped in a 

hydrogel to make a pH sensitive membrane. The optical properties o f the membrane are

18
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studied using UV/Vis spectrophotometer. Response is based on the change o f the 

membrane turbidity that is caused by a change in the refractive index o f the microspheres 

as they swell. If  a magnetoelastic ribbon is coated with a layer of pH sensitive 

membrane, it can be used as chemical sensor to monitor pH.

In this dissertation, Chapter 2 provides the background on magnetoacoustic 

sensors, including theory and instrument setup. Background on polymer chemistry and 

radical polymerization techniques used in this dissertation are also discussed. Chapter 3 

discusses experimental methods to make and study pH sensitive microspheres. Chapter 4 

studies the optical properties of pH sensitive microspheres and the effects that hydrogel 

membranes have on the optical measurements. Chapter 5 considers the application of a 

resonance meter as a sensor for monitoring viscosity, mass changes, and polymerization. 

Many factors that affect the frequency shifts are studied in this chapter. Chapter 6 

describes the results of using the resonance meter as a chemical sensor to monitor pH 

changes. The configuration of the sensor elements, sensor response, and frequency shift 

factors are all considered. Chapter 7 summaries the entire work o f this dissertation. 

Appendix A, B, and C presents detailed information and operating instructions for the 

resonance meter.
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CHAPTER 2

THEORY

2.1 Magnetoacoustic Chemical Sensors

When a time varying alternating-current (AC) magnetic field is applied to thick- 

film ribbons o f magnetoelastic amorphous ferromagnetic alloys, the magnetic energy is 

converted into elastic energy that deforms the material greatest along the length o f the 

ribbon. This mechanical deformation exhibits a resonance vibration at a frequency that is 

inversely proportional to the length of the ribbon. It also excites a magnetic flux inside 

magnetostrictive materials that are widely used as disposable identification and antitheft 

markers. Recently a new remote query sensor was developed using these 

magnetostrictive ribbons.51 Figure 2-1 shows a schematic drawing o f the sensor 

measurement system.52’53 The whole system can be divided into two main circuits: the 

driving coil circuit and the pick-up coil circuit. The driving coil circuit consists of the 

signal generator, AC amplifier, ammeter, DC power supply, and a pair of driving coils. 

The driving coils include a pair o f Helmholtz coils that apply a constant 5.50e DC field, 

and a pair o f wire coils that apply a 50 mOe AC field sweeping over a pre-determined 

frequency range. The DC field is used to offset the ribbon’s magnetic anisotropy and 

enhance the magnetoelastic properties of the sensor. All devices are controlled with a 

programmed computer. The magnetoelastic ribbon used as the sensing element is located 

in the test region, the center of the pick-up coil. Figure 2-2 illustrates the operational
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principle o f magnetoelastic sensors.53 An externally applied AC magnetic field excites

magnetoelastic waves in the magnetostrictive ribbon, which, in turn, emits a magnetic 

flux. The time rate of change of the emitted magnetic flux is monitored with a pick-up 

coil. The response is transferred to a low noise preamplifier, lock-in amplifier, and the 

computer. We measure the resonance frequency o f the sensor instead o f the relative 

amplitude o f the measured response. Figure 2-3 is a picture of the sensor measurement 

system. The standing unit holds all meters. The driving coils and pick-up coil are placed 

on the bench. Figure 2-4 is a picture of the driving coils, pick-up coil, and bucking coil. 

The pair o f big circles is the driving coils, including a pair o f AC drive coils and a pair o f 

DC bias field coils. The upper square coil is the pick-up coil. The sample is placed in 

the center o f the pick-up coil.

A magnetoelastic resonance occurs when the frequency of the AC field is equal to 

the frequency of the mechanical resonance of the sensor. For a thin, strip-like ribbon 

vibrating in its basal plane the resonance frequency is given by51

In this relationship, fn is the resonance frequency, E is elastic modulus, p is the density of 

the ribbon material, a  is the Poisson ratio, L is the long dimension of the ribbon, and n 

denotes an integer. Elastic modulus is a ratio o f the stress to the stain, which is a 

measurement o f the stiffness o f the material. Stress 5 is defined as the applied force F per 

unit of area A in the x direction, in which direction the material is stretched. Strain e is 

defined as the length in the x direction (L-L0) divided by the initial sample length L0.

Their relationships are shown in the following equations:54

(2- 1)

n = 1,2,3,
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The definition o f Poisson ratio can be described as following. When a sample is 

stretched in the x direction, its cross-sectional area decreases. This means that the sample 

has a negative strain in the y direction, which is perpendicular to the stretching direction. 

Here the Poisson ratio a  is defined as the ratio o f  the strain in y direction to that in the x 

direction, shown in the equation:54

e ycr = — (2-3)
**

In most cases, we only measured the fundamental resonance frequency where n is equal 

to 1 because of the larger amplitude. A mass load on the sensor surface also affects the 

resonance frequency of the magnetoacoustic sensor. Crimes and Stoyanov studied the 

response of the sensor to mass loading and derived the following relationship:51’52

V -  (2-4)

In this case, Af (= fn -  fo) is the frequency shift, fo is the resonant frequency o f a bare 

sensor, M is the mass of the sensor, Am is the mass loading that is less than M. Af < 0 

means that the frequency shift is downward.

When immersed in liquid, the frequency shift is correlated with the square root o f 

the liquid viscosity and density product as shown in Equation (2-5).51,52

4T = - ^ ( w > , ) *  (2-5)2 npd
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In this relationship, Af is the frequency shift, fo is the resonance frequency o f a bare 

sensor, p is the sensor material density, pi is the liquid density, d is the thickness of the 

sensor ribbon, r| is the coefficient o f dynamic viscosity o f the liquid. It is noticed that 

equation (2-4) and (2-5) are similar to equation (1-2) and (1-3), respectively. For mass 

load, the frequency shift is linearly proportional to the mass change. For liquid contact, 

the frequency shift is proportional to the square root of the liquid viscosity and density 

product. This similarity reminds us that these new sensors are similar to acoustic wave 

sensors that have been studied for many years.

The important advantage o f the magnetoacoustic sensor is that no physical 

connection to the sensing element is required. The sensor response is remotely monitored 

with a pick-up coil located outside the testing area. Therefore, this kind o f sensor is ideal 

for applications where physical connections are undesirable or not possible, such as 

monitoring gastric pH, bloodstream glucose levels, or chemical concentration in a sealed 

container.55-56 In addition, the whole measurement system is low cost. The 

magnetoelastic ribbon is very cheap and can be used on a disposable basis. At a result, 

magnetoacoustic sensors promise new applications for remote query sensor technology.
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Figure 2-1 Schematic drawing of the sensor measurement system
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Figure 2-3 Picture o f the sensor measurement system.
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Figure 2-4 Picture of the driving coils, pick-up coil, and bucking coil.
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2.2 Polymer Chemistry

A polymer is a large molecule that is made up o f simple repeating units. The 

word “polymer” combines the Greek “poly”, meaning “many”, with “mer”, meaning 

“part” . Simple molecules that form the repeating units are called monomers, and the 

process that synthesizes the polymer is called polymerization.57 The molecular weights 

o f polymers vary from several thousand to several million atomic mass units.

A homopolymer is a polymer prepared from a single monomer. A copolymer is a 

polymer prepared from two or more monomers. Copolymers are divided into random, 

alternating, and block polymers, where the monomeric units are distributed randomly, in 

alternating fashion, and in blocks, respectively. A graft polymer consists of a polymer 

branching from the backbone of another polymer. These type polymers are illustrated in 

Figure 2-5 with A and B representing different monomers.57 Polymers can also described 

as linear, branched, and network as shown in Figure 2-6.57 A network polymer is formed 

by covalently crosslinking linear or branched polymer chains.

Traditionally, polymers are classified as addition polymers and condensation 

polymers based on whether the repeating unit o f the polymer and monomer have the 

same atoms.54’57 If the atoms are same, the polymer is called an addition polymer and 

corresponding synthesis is called addition polymerization. If the polymer contains fewer 

atoms, it is called a condensation polymer and the corresponding synthesis is called 

condensation polymerization.

Currently, the polymerization mechanisms are classified as step-growth and 

chain-growth.54,57 In step-growth polymerization, monomer molecules react with each 

other to form Iow-molecular-weight polymers, which in turn react with each other to

28

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



form the polymer chains in a stepwise fashion. In chain-growth polymerization, polymer 

chains are built up by adding monomer molecules to the active centers o f growing chains. 

According to the nature o f the active centers, chain-growth polymerization is further 

classified as radical, cationic, anionic, and coordination.58 Our work will focus on radical 

polymerization that takes place in three distinct steps, initiation, propagation, and 

termination. Usually the free radical initiators used in initiation step are classified into 

four major types: peroxides and hydroperoxides, azo compounds, redox initiators, and 

photoinitiators. The three steps in radical polymerization are shown in Figure 2-7 using
< o

styrene as the monomer and benzoyl peroxide as the initiator. ' The initiation step 

consists o f two elementary reactions. First, benzoyl peroxide is thermally decomposed 

into benzoyloxy radicals that then break down into phenyl radicals and carbon dioxide. 

Second, the phenyl radicals react with vinyl groups on the styrene to form active centers. 

In the propagation step, monomer molecules rapidly add to the active centers to from 

growing chains. In the termination step, the polymer chain radicals are destroyed by 

combination or by disproportionation. In combination termination two chain radicals 

combine together to form an inactive chain. In disproportionation termination one chain 

radical gives its unpaired electron to the other and both polymer chains become 

inactive.54
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Figure 2-5 Structure of homopolymer and copolymer

Figure 2-6 Structures of (a) linear, (b) branched, and (c) network polymers.
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Figure 2-7 Free radical polymerization o f styrene using benzoyl peroxide as the thermal 
initiator
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2.3 Techniques of Free Radical Polymerization

Polymer microspheres with uniform sizes are receiving considerable attention in 

the industries o f chemistry, biology, medicine, and electronics. For example, they can be 

used as stationary phases packed in chromatographic columns.59'60 Free radical 

polymerization is divided into homogeneous and heterogeneous systems.57’61 

Homogeneous polymerization means the initiator, monomer, and polymer are all 

mutually soluble in a single phase. Heterogeneous polymerization means the initiator, 

monomer, and polymer are not mutually soluble and the polymer forms a discrete 

separate phase. Homogeneous polymerization includes bulk polymerization and solution 

polymerization. In the former case the initiator, monomer, and polymer are mixed 

together in one phase without adding solvent. In the latter case an inert solvent is used to 

lower the viscosity of the system and help to remove heat. Heterogeneous 

polymerization includes suspension, emulsion, inverse emulsion, and dispersion 

polymerization. In suspension polymerization, the monomer is dispersed by vigorous 

stirring into the continuous phase as droplets typically 100 pm to 10 mm in diameter.61 

The continuous phase usually contains small amounts of stabilizer to prevent droplets 

from coagulating. Oil-soluble initiator is used to initiate polymerization in the monomer 

droplets. Emulsion polymerization differs from the suspension polymerization in several 

ways. The most important characteristic is that the water-immiscible monomer is 

emulsified in an aqueous continuous medium using an oil-in-water emulsifier. The 

initiator is water soluble. The monomer droplets are from 0.05 to 5 pm in diameter, but 

the final polymer particles are usually smaller that 0.5 pm. Inverse emulsion involves 

dispersing an aqueous solution o f monomer in a nonaqueous phase using a water-in-oil

32

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



emulsifier. In dispersion polymerization, the monomer, oil-soluble initiator, and 

polymeric stabilizer are dissolved in an organic solvent to form a homogeneous solution. 

The polymerization starts as a solution polymerization but becomes heterogeneous, 

because the polymer particles are insoluble in the oil medium and precipitate out to form 

a colloidal dispersion with the aid of the stabilizer. The polymer particles are in the size 

range in diameter from 1 to 5 jam.35 This covers the particle size gap between emulsion 

and suspension polymerization. They can be monodisperse or in a narrow size 

distribution under favorable conditions. Dispersion and suspension polymerization were 

used in this work to prepare polymer microspheres.

2.4 Shirasu Porous Glass (SPG) Emulsiflcation Technique

In suspension polymerization, the particle size and distribution are important 

quality parameters. They are extremely dependent on reactor geometry and agitation.62 

Reactors are classified as batch, semibatch, tubular, homogeneous continuous-flow 

stirred-tank, and semicontinuous reactors depending on existing flow conditions.54 The 

batch reactors in our laboratory are round three-neck glass flasks, in which all reagents 

are charged initially and polymerization is carried out to the desired time. Usually a 

round three-neck flask with a magnetic stirring bar works very well for dispersion 

polymerization. However, for suspension polymerization, a flask with rough inner 

surface is needed. A mechanical stirring motor with high rotating speed and a specially 

shaped stirring rod are also required. The requirements for suspension polymerization 

are based on its reaction mechanism. Vigorous stirring and high frictional force are
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needed to break the dispersed phase into small drops. The stirring speed affects not only 

the product shapes but also the molecular weight distribution.62

Considering an attractive approach, a stable monomer emulsion can be made 

before all materials are put into the reactors. Here the reactor requirements for 

suspension polymerization are less stringent. In this research, a new technique called 

Shirasu Porous Glass (SPG) was used to make monomer emulsions.63'65 SPG is actually 

a microporous glass membrane made from Ca0 -Al2 0 3 -B2 0 3 -Si0 2  by washing out CaO- 

B2 O3 with acid leaving Al2C>3-Si02 to form uniform microporous structures. Under 

applied pressure, the dispersion phase permeates through the membrane into the 

continuous phase to produce an emulsion of uniform particle size. Figure 2-8 shows the 

relationship between the applied pressure and droplet formation.66 In Figure 2-8, Pa is the 

applied pressure. Pc, called the critical pressure, refers to a pressure under which the 

dispersion phase just permeates into the continuous phase. There are three situations that 

are a consequence of applied pressure: Pa < Pc, Pa -  Pc, and Pa > Pc. When Pa is smaller 

than Pc, the dispersion phase can’t pass through the membrane. When Pa is larger than 

Pc, the dispersion phase passes through the micropores and forms emulsion droplets. The 

following equation describes the critical pressure Pc.66

4 rco se  
Dm

In this relationship, y is the interfacial tension 0 is the interface contact angle, and Dm is 

the micropore size. When using the same membrane, the most important factor is the 

composition of the continuous phase and dispersion phase. This determines the 

interfacial tension and then the critical pressure. Usually we set the applied pressure 

slightly higher than the critical pressure. The flux of the dispersion phase increases with
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the applied pressure. The emulsion is transferred to a three-neck flask and suspension 

polymerization starts when the emulsion is heated to 70 °C.

Continuous phase

F.mnlsion dronlet

Microporous membrane 

Dispersion phase

Figure 2-8 Relationship between the applied pressure and droplet formation
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CHAPTER 3

EXPERIMENTAL

3.1 Regents

Aldrich Chemical Company. Inc.. Milwaukee. WI 53233

Acryloyl chloride, F.W. 90.51, b.p. 72-76°C

2,4,5-Trichlorophenol (TCP), F.W. 197.45, m.p. 67-69°C

Divinylbenzene (DVB), 55% mixture o f isomers, remainder mainly 3- and 4-

ethylbenzene, F.W. 130.19, b.p. 195°C

Poly(vinyl alcohol) (PVA), 100% hydrolyzed, Av. M.W. 14,000 

Poly(vinyl alcohol), 87-89% hydrolyzed, Av. M.W. 85,000-146,000

2.2-Azobisisobutyronitrile (AIBN), 98%, F.W. 164.21, m.p. 103-105°C

2.2-Dimethoxy-2-phenyl-acetophenone (DMPAP), 99%, F.W. 256.30, m.p.67-70°C 

Ethylene glycol dimethacrylate (EGDMA), 98%, F.W. 198.22, b.p. 98-100°C 

2-Hydroxyethyl methacrylate (HEMA), 97%, F.W. 130.14, b.p. 67°C 

Diethylamine, 98%, F.W. 73.14, b.p. 170°C

Toluene, 99%, F.W. 92.14, b.p. 110.6°C

Methyl sulfoxide (DMSO), 99%, F.W. 78.13, b.p. 189°C

Acetic acid

2-Hydroxyethyl acrylate (HEA), 96%, F.W. 116.12, b.p. 90-92°C 

N-(2-acetamido)-2-aminoethansulphonic acid (ACES), F.W. 182.20
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Dichloromethane (CH2C12), 99%, F.W. 84.93, b.p. 40°C

Starch powder, soluble up to 10% in cold water

Schweizerhall Inc.. 3001 Hadley Rd.. S. Plainfield. NJ 07080

Triethylamine, 99%, F.W. 101.19, b.p 88.8°C

Sigma Chemical Company. P.O. BOX 14508. St. Louis. MO 63178

Polyvinylpyrrolidone (PVP), Av. M. W. 40000,

The Dow-Chemical Company. Midland. MI 48674

Vinylbenzyl Chloride (VBC), mixture of 3- and 4- isomers, F.W. 152.62, b.p.229°C

Fisher Scientific Company. Fair Lawn. NJ 07410

Glutaraldehyde, 50% w/w solution in water, F.W. 100.12

Sodium bicarbonate, ACS, F.W. 84.01

Acetone, F.W. 58.08, b.p. 56.01°C

Sodium acetate, F.W. 82.03, m.p. 324°C

Sodium hydroxide

Hydrochloric acid

Sodium chloride, F.W. 58.44, m.p. 801°C 

HYMEDIX International. Inc. Dayton. NJ 08540 

HYP AN HN30, HN50, and HN80 Structural Hydrogel 

Baver Corporation. Pittsburgh. PA 

Bayhydrol 110 waterborne polyurethane

Unless otherwise specified, two series of buffers are used. One is 0.1 M buffer 

concentration with 0.3 M ionic strength, and the other is 0.05 M buffer concentration

37

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



with 0.05 M ionic strength. All ionic strength is adjusted with sodium chloride. Doubly 

deionized distilled water is prepared with a Coming Mega-Pure distillation apparatus.

3.2 Apparatus

A Fisher laboratory centrifuge (3400 rpm) was used to separate polymer 

microspheres. A Branson model 1210 sonicator was used to suspend the particles in 

water when cleaning them, or in dimethyl sulfoxide when making HYP AN hydrogel 

membranes. An Orion 901 digital analyzer with an Orion 91/55 combination pH 

electrode was used to measure pH when preparing buffers. An Amray 3300FE scanning 

electron microscope (SEM) was used to measure microsphere diameters. A Perkin-EImer 

Model 2400 CHN analyzer was used to determine the carbon, hydrogen, and nitrogen 

content of the derivatized microspheres. X-ray photoelectron spectroscopy spectra were 

obtained with a Kratos Axis HS XPS. A Cary 500 UV/Vis/NIR spectrophotometer was 

used for turbidity measurements. Plastic membrane holders for Cary 500 UV/Vis/NIR 

spectrophotometer and testing cells for resonance meter were fabricated by the Machine 

Shop in the University o f New Hampshire. A 400 Watt UV lamp was used for photo­

polymerization of the HEMA and HEA. Brookfield viscometer (Model DV-I+, Version

2.0) with UL Adapter from Brookfield Engineering Laboratories, Inc. was used to 

measure viscosity. 500 ml three neck reaction vessels, mechanical stirring apparatus, and 

hot plates with magnetic stirring system were purchased from VWR. A Specialty 

Coating Systems Spin Coater Model P6204-A was used for coating membranes on 

ribbons.
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A set of SPG emulsification apparatus was purchased from SPG Technology Co., 

Ltd in Miyazakiken, Japan. The pore sizes o f porous membranes are 0.1 pm, 0.2 pm, 0.5 

pm, and 1.5 pm, respectively.

A Resonance Meter that is the measuring system of the magnetoacoustic sensor 

was fabricated in Dr. Craig Grimes’ research group in Department o f Electrical 

Engineering at the Pennsylvania State University. Magnetoelastic ribbons are 

METGLAS® magnetic alloy 2826MB (iron nickel-based) from Honeywell which were 

cut to a 38.0 x 12.5 x 0.035 mm size with a pair o f scissors.

3.3 Procedures

3.3.1 Preparation of 2,4,5-trichlorophenyl acrylate (TCPA) monomer38,39

Figure 3-1 shows the reaction o f  2,4,5-trichlorophenol (TCP) and acryloyl 

chloride to make TCPA. In this case, 0.25 mol TCP and 75 ml dichloromethane are 

mixed in a 500 ml of three-neck flask that is immersed in an ice bath and stirred with a 

magnetic stirrer until TCP is completely dissolved. Dropping funnels are put on the two 

necks o f the flask, one containing a mixture o f 0.25 mol of triethylamine and 75 ml of 

dichloromethane, and the other containing a mixture of 0.25 mol o f acryloyl chloride and 

75 ml o f dichloromethane. The two solutions are added drop wise while stirring. This 

step may take about 40 minutes. After mixing all reagents, the solution is stirred in an ice 

bath for 3 hours and then at room temperature for 6 hours. The raw product is filtered 

through glass wool to remove the precipitated triethylammonium chloride salt. The 

filtrate is washed in a 1000 ml separatory funnel with 100 ml deionized water, 100 ml 

saturated sodium bicarbonate, and 100 ml deionized water. The solution is dried
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overnight with anhydrous sodium sulfate in a capped flask. After that, the product is 

filtered to remove sodium sulfate. The filtrate is put in a rotary evaporator to remove 

dichloromethane and obtain solid TCPA. The solid TCPA is re-crystallized with ethyl 

acetate. The final product is dried in a vacuum oven overnight at 35 °C, and stored in a 

capped bottle.

h c = c h 2

c = o
OH I

triethylamine
:0 +  (CH2CH3)3NH +  Cl

0°C

Figure 3-1 Synthesis o f 2,4,5-trichlorophenyl acrylate (TCPA) monomer
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3.3.2 Preparation of po!y(vinylbenzyl chloride)-(2,4,5-trichlorophenyI acrylate) 

(polyVBC-TCPA) microspheres by dispersion polymerization50

PoIyVBC-TCPA microspheres were made by dispersion polymerization. Table 3-

1 shows a typical formula for a 500 ml batch size. VBC and TCPA are used as co­

monomers in a 1:1 mole ratio. AIBN is the initiator, polyvinylpyrrolidone (PVP) is the 

steric stabilizer, and ethanol is the solvent. All reagents are placed in a 500 ml three-neck 

flask and stirred with a magnetic stirrer until the TCPA completely dissolves. This 

reaction mixture is purged with nitrogen for about 10 minutes, and then the flask is put in 

a water bath at 70±2 °C. It takes about 8 hours for the polymerization to finish. Figure 3-

2 shows the reaction o f polymerization of VBC and TCPA.

Table 3-1 A typical formula for synthesis of polyVBC-TCPA microspheres

Reagent Amount

VBC 4.70 g

TCPA 7.70 g

DVB 0.32 g

PVP 2.88 g

AIBN 0.25 g

Ethanol 240 ml

41

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



AIBN

Figure 3-2 Polymerization o f VBC and TCPA
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3.3.3 Operation of the SPG apparatus to make Oil/Water emulsion66

A porous membrane is placed in a large test tube filled with deionized water and 

sonicated to drive air from the porous membrane which must be completely wetted 

before starting the SPG. The water-wetted porous membrane tube is installed inside the 

membrane module sheath, as shown in Figure 3-3. The dispersion phase is placed in the 

dispersion phase storage tank and continuous phase in the emulsion tank. The nitrogen 

gas inlet valve and the gas-releasing valve are opened a little. The dispersion phase 

gradually fills in the space between and membrane module sheath and the porous 

membrane tube. Both gas valves are closed when the dispersion phase starts coming out 

o f the gas-releasing valve. Those two valves are closed for 5 minutes under a small 

pressure. It indicates no leakage for the dispersion phase circulation system if the reading 

o f the applied pressure gauge doesn’t change during this period of time. The circulation 

pump is then turned on. The applied pressure is gradually increased until it is slightly 

higher than the critical pressure. As defined in equation (2-6), the critical pressure refers 

to a pressure under which the dispersion phase just permeates into the continuous phase. 

In practice it is the pressure point at which the continuous phase becomes slightly milky. 

When the dispersion phase passes through the porous membrane, the continuous phase 

becomes milky and an emulsion is formed with uniform droplet size. After 

emulsification, the emulsion is directly poured into a three-neck flask to start the 

suspension polymerization. The porous membrane tube is removed and cleaned 

separately. Other parts are circulated with water 3 times and methanol once to clean the 

system.
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(a) Nitrogen gas inlet valve
(b) Applying pressure gauge
(c) Dispersion phase storage tank
(d) Membrane module sheath

(e) Porous membrane tube
(f) Gas releasing valve
(g) Emulsion tank
(h) Circulation pump

Figure 3-3 Schematic diagram of SPG emulsification apparatus
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3.3.4 Cleaning procedure of the SPG porous membrane66

A completely cleaned porous membrane is essential to make emulsions with 

uniform droplet size. Hydrophilic membranes are cleaned with water and methanol. 

Membranes are placed in a capped test tube filled with water or methanol and sonicated 

for 10 minutes. The membranes are washed 3 times with water, methanol, and water. A 

clean membrane means no residual dispersion phase and air bubbles inside the 

micropores. The cleaned membrane is stored in a capped test tube filled with water.

3.3.5 Preparation of poly(vinyIbenzyl chloride) (polyVBC) microparticles by 

suspension polymerization44

An emulsion of VBC and DVB in water was made using the SPG technique. The 

dispersion phase includes VBC, DVB, BPO, xylene, and dodecane. A typical 

formulation is shown in Table 3-2. These materials were mixed in a 50 ml beaker and 

stirred with a magnetic stirring bar until BPO was completely dissolved. Then the 

dispersion phase was transferred to the dispersion phase storage tank. The continuous 

phase includes SDS, Na2 S0 4 , 0.5% wt/wt PVA, and water. The applied pressure is set 

0.05 kgf7cm2 higher than the critical pressure depending on the composition o f the 

dispersion and continuous phases. In this experiment, the applied pressure is 1.50 to 1.80 

kgficm2 for a porous membrane with 0.5 pm pore sizes. It takes about 30 minutes to 

finish the emulsification of 50 ml of dispersion phase.

The emulsion was placed in a three-neck flask equipped with a mechanical stirrer 

at the center neck. The other two necks were stopped with plastic stoppers. Before 

polymerization, the emulsion was purged with nitrogen gas for 15 minutes to remove
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dissolved oxygen. Then the flask was placed in a water bath heated to 70±2 °C. 

Polymerization was continued for 12 hours.

3.3.6 Microparticle cleaning

After polymerization and derivatization procedures, all particles are cleaned with 

water, methanol, and water repeatedly. The basic method is to isolate the particles from 

solution matrix using a centrifuge and re-suspend them into water or methanol by 

sonication. The particles are dried in an oven at 40 °C and then stored in a glass bottle.

3.3.7 Derivatization of poly VBC-TCPA microspheres with diethylamine37’38

PolyVBC-TCPA microspheres are pre-swollen in acetone for one hour. Then a 

mixture o f diethylamine and acetone in a 1:1 volume ratio is added and stirred at room 

temperature for three days. Figure 3-4 shows the derivatization reaction. The 

diethylamine displaces the phenolic ester and the chloride from the chloromethyl carbon. 

After the microspheres are washed with water and methanol, they are washed with 0.1 M 

HC1 to remove un-reacted diethylamine. Finally they are washed with water and stored 

in a glass bottle. Some particles are dried in an oven at 35 °C and used for the 

magnetoacoustic pH measurements.

46

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Table 3-2 A typical formula for making poly VBC particles by suspension polymerization

Dispersion phase Continuous phase

VBC 40.28 g PVA 2.50 g

DVB 1.37 g SDS 0.17 g

BPO 0.62 g Na2S04 0.11 g

Xylene 8.60 g Water 500 ml

Dodecane 3.75 g
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Figure 3-4 Derivatization of polyVBC-TCPA microspheres with diethylamine
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3.3.8 Derivatization of poly VBC particles with diethyl malonate

Derivatization o f polyVBC with diethyl malonate was based on previous work.67

11.2 g of diethyl malonate and 60 ml of N, N-dimethylformamide (DMF) are added to a 

125 ml addition funnel. This funnel is inserted into a 500 ml three-neck flask containing

1.5 g o f sodium hydride and 140 ml o f DMF. The mixture o f diethyl malonate and DMF 

is added dropwise to the flask. The solution is stirred at 60 °C for 1 hour followed by 

addition o f 4.0 g o f polyVBC particles and stirred at 80 °C for 3 days. Figure 3-5 shows 

the derivatization reaction. After derivatization, the particles are centrifuged and washed 

with ice-cooled distilled water, hot distilled water, and methanol.

3.3.9 Hydrolysis of diethyl malonate derived polyVBC particles

Many methods of hydrolyzing dicarboxylic esters have been reported.68'71 The 

hydrolysis can be done in water or a mixed aqueous - organic solvent. The organic 

solvents include dimethyl sulfoxide (DMSO), ethanol, acetonitrile, and dioxane. Usually 

acid or base is added to the solution as a catalyst. Here we hydrolyzed diethyl malonate 

derived polyVBC particles in water-DMSO using NaOH as the catalyst. A typical batch 

o f mixture contained 0.5 g o f derived particles, 8 ml o f DMSO, and 32 ml of 6 M NaOH. 

The mixture was refluxed at 50 °C for 3 days. After hydrolysis, the particles were 

centrifuged and washed with distilled water 3 times. The cleaned beads were dried in an 

oven at 50 °C.
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Figure 3-5 Derivatization of polyVBC particles with diethyl malonate
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3.3.10 Polymerization of HEMA

14.75 g of HEMA, 0.222 g of EGDMA, and 0.225 g o f DMPAP were added to a 

glass bottle. HEMA is the monomer and EGDMA is the crosslinker. Polymerization was 

initiated under a 400 Watt mercury lamp using DMPAP as the photo-initiator. Figure 3-6 

shows the structures o f HEMA, EGDMA, and DMPAP. The polymerization was 

monitored magnetoacoustically.

3.3.11 Preparation of hydrogel membranes

3.3.11.1 Poly (vinyl alcohol) membranes

A 10% (wt/wt) PVA solution was prepared by dissolving 5 g of PVA (MW

14,000) in 45 g o f water. A 10% glutaraldehyde solution was prepared by diluting from a 

50% stock solution. These two solutions were stored in plastic bottles at room 

temperature. Figure 3-7 shows the structures of PVA and glutaraldehyde. First, 1.0 ml 

o f the PVA solution, 25 pL of glutaraldehyde, and an appropriate amount of particles 

were mixed together in a small beaker. This mixture was sonicated to get a homogeneous 

suspension of particles. Second, 50 pL of 4 M HC1 was added to this suspension to 

initiate PVA crosslinking. This polymer solution was quickly transferred to a mold, 

which was made of two microscope slides and a piece of Teflon tape. The Teflon tape, 

which center had been cut out, was placed on one microscope slide to form a cavity. This 

cell was covered with another microscope slide after it was filled with the polymer 

solution. It took about 30 minutes to finish the crosslinking. The membranes were easily 

removed from the mold when they were put in water. The thickness of the membrane 

was controlled by the thickness of the Teflon tape. There are two kinds of Teflon tapes
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that were used in our group. One is 76 pm, and the other one is 51 pm. Unless otherwise 

specified, the 51 pm thick Teflon tape was used in all experiments.

3.3.11.2 PolyHEA membranes

The same mold for making PVA membranes was used for making HEA 

membranes. DMPAP (1.5wt% HEA), HEA, and EGDMA (1.5mole% o f HEA) were 

mixed together in a small glass bottle. Figure 3-6 and Figure 3-7 show the structures o f 

EGDMA, DMPAP, and HEA. This mixture was added to the mold, and then placed 

under a 400 Watt mercury lamp for 10 minutes to induce polymerization.

3.3.11.3 HYPANpolymer membranes

For the preparation o f HYPAN polymer membrane, 0.0020 g o f dry particles were 

added to 0.2000 g of DMSO in a small glass bottle, and sonicated to form a homogeneous 

suspension. Then 0.8000 g of 10% HYPAN polymer solution in DMSO was added to 

this bottle. This mixture was continuously stirred with a magnetic stir bar until a 

homogeneous suspension o f particles formed. This suspension was transferred to the 

same mold used to make PVA membranes. However, instead o f covering the Teflon cell 

with another microscope slide, the polymer mixture in the cavity was leveled with a razor 

blade. The cell was quickly immersed into water in a beaker. HYPAN membranes 

formed in water and easily came out o f the cavity.
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Figure 3-6 Structures o f HEMA, EGDMA, and DMPAP used for HEMA polymerization
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Figure 3-7 Structures of HEA, PVA, and glutaraldehyde
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3.3.12 Spin-coating sensing membranes on magnetoelastic ribbons

A magnetoelastic ribbon was sonicated in 2% Micro-90 water solution for 15 

minutes. Then it was washed with distilled water 3 times and acetone 3 times. The 

ribbon was blown dry with nitrogen gas. One side of the ribbon was spin coated with a 

layer o f polyurethane waterborne dispersion and dried in an oven at 50 °C for 20 minutes. 

This step was repeated to coat polyurethane on the other side of the ribbon. 0.040 g of 

dry particles were suspended in 1.000 grams of 4% HYPAN polymer solution in DMSO. 

This suspension was spin coated on one side of the polyurethane-coated ribbon. The 

coated ribbon was dried in air for 24 hours. The spin coater was set at a speed o f 2500 

rpm with quick start and stop o f acceleration for 20 seconds. Sometimes, experience 

plays an important role to make a good sensitive ribbon, especially when spin-coating the 

sensitive membrane. Due to the rapid evaporation of DMSO, the suspension o f  the 

HYPAN and microspheres becomes viscous quickly. Therefore, it requires quickly 

transferring the suspension from the glass bottle to the ribbon surface. The transferred 

amount should be enough to coat the whole ribbon surface, but not so much as to form 

droplets at the ends of the ribbon. Usually 0.5 ml of the suspension was transferred.

Care should be taken to avoid air bubbles in the membrane.

3.4 Characterization

3.4.1 Scanning electron microscopy (SEM)

A drop of the particle suspension in ethanol was placed on the surface o f  graphite 

SEM platform and left to dry in air. Then a layer of gold/palladium alloy was coated on 

the particle layer to a thickness o f about 300 A under vacuum.
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3.4.2 CHN analysis

The aminated microspheres were washed with 0.1 M HC1 and deionized water to 

remove unreacted diethyl amine. Then they were dried in an oven at 35 °C overnight. 

The dried microspheres were ground with a mortar and pestle and submitted for analysis.

3.4.3 Membrane thickness measurements

A layer of waterborne polyurethane dispersion was spin-coated onto the surface 

o f a magnetoelastic ribbon and dried in an oven at 150 °C for 20 minutes. One third of 

the polyurethane layer was carefully scratched off using a razor blade to obtain a sharp 

edge. The thickness was measured with Alpha-Step 100 profilometer.

3.4.4 Optical microscopy

A drop of SPG emulsion was placed between two microscopy slides during or 

after emulsification. The sizes of the emulsified monomer droplets and their distribution 

were observed using a Nikon optical microscope.

3.4.5 Turbidity measurements

A piece of hydrogel membrane with entrapped swellable microspheres was tightly 

held in a plastic holder. This holder was then placed in a standard cuvette. A piece of 

blank hydrogel membrane without microspheres was also held with the same kind o f 

holder and placed in a cuvette. This blank membrane was used as the reference. A Cary 

500 UV/Vis spectrophotometer was used to measure the turbidity changes of the sample 

membrane when changing pH. The wavelength was scanned from 400 nm to 1000 nm.
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3.4.6 Operation of the resonance meter

A resonance meter was used to monitor viscosity, mass load, curing 

polymerization, and pH. Appendix A describes the unit functions of the resonance meter. 

Appendix B describes the button functions o f the operational program MERM 3.03b. 

Appendix C describes the operational instruction for the resonance meter. A typical 

measurement is as follows. First, turn on all units: DC power supply, Mackie power 

amplifier, SR 830 Lock-in Amplifier, Keithley 2000 Voltmeter, Hewlett-Packard 

Function Generator, Earthworks preamplifier. The right toggle switch on the Earthworks 

Preamplifier is turned to the ON position. All units are warmed up for 15 minutes before 

measurements. Second, the controlling computer is turned on. The operational program 

MERM 3.03b is loaded. Usually we accept most of the default values in the program 

except for the Start and Stop Frequency, Points, and Time Control. The Start Frequency 

is the starting frequency for the measurement, and the Stop Frequency is the stopping 

frequency for the measurement. The Points indicates how many data points will be 

collected. These three values determine the response rate and accuracy o f the 

measurement because the current resonance meter in our group can only sweep a pre­

determined frequency range one frequency at a time. In order to set a narrow frequency 

range to decrease the response rate, we always run a preliminary measurement to 

determine the shift between the resonance frequencies at lowest and highest analyte 

concentrations. The resonance frequency shift is less than 2 kHz in most o f cases. As an 

example, we can set 56 kHz at Start Frequency, 58 kHz at Stop Frequency, and 400 

measurement points. Running time is about 3 minutes for these parameters. There are 

two buttons, Start and Time Start, in the Control Panel. Start is clicked if we sweep the
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pre-determined frequency range only once. We prefer to use this function to find out the 

rough resonance frequency shift. Time Start is clicked if we would like to run multiple 

scans for a period o f time. We can designate how long we want to run the scans in the 

Time Control. Mechanical vibrations of the workbench should be avoided during the 

measurement. All metallic parts should be moved away from the pick-up coil area. All 

saved data during measurements can be re-opened using KaleidaGraph 3.09 from 

Synergy Software. The resonance frequency can be read from the data point series or 

from the maximal peak.

3.4.7 pH monitoring with resonance meter

Two kinds of microspheres were used for pH measurements. One was 

diethylamine derivatized polyTCPA-VBC. The other one was carboxylate derivatized 

polyVBC. A suspension containing 4%  beads in 4% HYP AN polymer in DMSO was 

used to prepare the sensitive membrane. The membrane was conditioned by placing it in 

low and high pH buffers twice. This causes the water content o f the polymer to be 

repeatable. Then the membrane was placed in a Teflon cell, which in turn was placed at 

the center of the pick-up coil of the Resonance Meter.

3.4.8 Viscosity measurement

The viscosities o f the starch solutions were measured at 28 °C with a YTJLA-15 

UL spindle. The viscometer speeds were programmed into the standard DV-I+. In this 

study, the speed was 100 RPM.
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3.4.9 Mass change monitoring with resonance meter

DMPAP (1.5 wt% HE A) was dissolved in a mixture o f HE A and EGDMA (1.5 

mole% o f HE A) in a 25 ml glass bottle. PolyHEA membranes were prepared using two 

microscope slides as shown in Figure 3-8. The surfaces of the two slides were covered 

with Teflon tape. A piece o f Teflon tape was cut in the center to form a frame. This 

Teflon frame was placed on one slide o f a microscopy slide to form a cell. The depth of 

the cell was 51 urn. 0.5 ml o f solution was added into the cell. The second slide was put 

on the frame. The two slides were tightly held with two clamps, and exposed to a 400 W 

mercury lamp for 10 minutes to form a polyHEA membrane. After polymerization, the 

membrane was put in distilled water for one hour to swell. A piece o f 5x37 mm swollen 

polyHEA membrane was cut and bonded to the magnetoelastic ribbon with Superglue. 

The resonant frequency of the sensor was monitored after adding water to a bare ribbon 

and a ribbon coated with polyHEA.

Microscope slide 

Teflon tape

Teflon frame

Teflon tape 

Microscope slide 

Figure 3-8 Schematic o f mold for polymer membrane preparation
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CHAPTER 4

PREPARATION AND OPTICAL PROPERTIES OF pH SENSITIVE

MICROSPHERES

4.1 Introduction

The goal o f this dissertation was to develop a new kind of magnetoacoustic 

chemical sensor. The first objective was to develop a chemical response system. This 

was then combined with the Resonance Meter to create a new kind of magnetoacoustic 

chemical sensor. This chapter describes the development o f a chemical response system.

We started with a relatively simple but very important chemical response system: 

measuring solution pH. The method of measuring solution pH is based on polymer 

microspheres swelling and shrinking with changing solution pH. The principles o f this 

method have been discussed in Chapter 1. The first pH sensitive microspheres that we 

describe in this chapter are polyTCPA-VBC prepared by dispersion polymerization.

These microspheres were derivatized with diethylamine to introduce amine groups on the 

microspheres. The aminated microspheres change from their swollen state to shrunken 

state when the pH changes from 6.0 to 8.0. Later, dicarboxylated microspheres were 

prepared to measure gastric pH from 2.0 to 8.0. We prepared polyVBC particles by 

suspension polymerization. These particles were derivatized with diethyl malonate and 

then hydrolyzed to introduce carboxylate groups. The derivatized particles responded to 

pH from 2.0 to 8.0. There are two new developments involved in making polyVBC

60

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



particles. First, we use suspension polymerization rather than dispersion polymerization 

to make the polyVBC particles. This allows us to use a porogen during polymerization to 

form micropores inside the particles. Porous particles respond more rapidly to pH 

changes. Second, we use the SPG technique to make the emulsion which overcomes 

some drawbacks in the traditional method of making emulsions, resulting in large particle 

sizes and broad size distribution.

The pH responses of all derivatized microspheres were tested by turbidity 

measurements as described in Section 3.4.5. These results helped us to understand the 

properties o f the derivatized particles before we applied them to the resonance meter. 

They also helped us to identify possible problems if we failed to obtain responses from 

the resonance meter. Finally, these results can be compared with those obtained with the 

resonance meter when we make the magnetoacoustic chemical sensors.

Different hydrogel membranes were used to investigate possible membrane 

effects on the pH responses o f derivatized particles. These hydrogels include PVA and 

different HYP AN polymer types. The composition of HYP AN hydrogels is discussed in 

detail in Section 6.2.2. HYP AN polymers are plasticized with water. Therefore, it is a 

simple process to convert the HYP AN polymer solution into a high-performance 

hydrogel. There is no chemical reaction involved in the coagulation step. The mold with 

the filled polymer solution is quickly immersed into a water bath. This process must be 

performed very carefully to prevent air bubbles from adsorbing at the surface o f the 

coagulated film. Both the hard and soft blocks in the HYP AN polymer are solvated in 

the solvent. The solvent is replaced by water during the coagulation process. Water 

solvates the soft blocks, but precipitates the hard blocks. These hard blocks form a new
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phase and cause the polymer to solidify. HYP AN polymers keep their properties after 

multiple hydration-dehydration cycles.

Unless otherwise specified, the pH 2.0 buffer was made from chloroacetic acid. 

Buffers from pH 3.0 to 5.0 were made with acetic acid. Buffers from pH 6.0 to 8.0 were 

made with N-(2-acetamido)-2-aminoethansulphonic acid (ACES). The buffer 

concentrations were 0.05 M. The ionic strengths of buffers were adjusted to 0.05 M with 

NaCl.

4.2 Preparation and Derivatization of PoIyTCPA-VBC Microspheres

Figure 4-1 is a SEM picture of the polyTCPA-VBC particles prepared by 

dispersion polymerization. These particles were small and uniform, which is consistent 

with results usually obtained from dispersion polymerization.39,50 The average particle 

sizes was about 0.3 pm. This size is good for magnetoacoustic chemical sensors because 

we want to entrap these microspheres in the hydrogel membrane and increase the 

membranes adhesion to their substrates. The TCPA to VBC mole ratio is 1:1. The 

particles are lightly crosslinked with DVB at 2% (mole/mole monomer). As described in 

Section 1.3, the purpose of preparing copolymer o f TCPA and VBC is to increase the 

hydrophilicity and porosity o f the polymer after the microspheres are aminated. When 

derivatizing the particles with diethylamine, the secondary amine displaces a chloride on 

the VBC group to form a pH sensitive tertiary amine. The secondary amine also 

displaces the 2,4,5-trichlorophenoI to form an amide. Table 4-1 shows the CHN analysis 

o f the diethylamine derivatized polyTCPA-VBC particles. The nitrogen percentage is 

8.55% in theoretical calculation and 5.94% in CHN experiment. Therefore, it shows that
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about 69%, i.e. the experimental value over the calculated value, o f the functional groups 

have been aminated.

Figure 4-1 SEM picture of the polyTCPA-VBC microspheres prepared by dispersion 
polymerization

Table 4-1 CHN analysis o f the diethylamine derivatized polyTCPA-VBC particles

Content Theoretical Calculation CHN Experiment

C% 74.52 63.20

H% 10.49 9.37

N% 8.55 5.94
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4.3 Optical Properties of Diethylamine Derivatized PolyTCPA-VBC Microspheres

4.3.1 pH effects on the turbidity measurements

Figure 4-2 shows protonation of the aminated polyTCPA-VBC particles. It 

should be noted that only the tertiary amine on the VBC groups are protonated. 2,4,5- 

trichlorophenol, a large leaving group, is displaced with smaller diethylamine to 

introduce microporosity into particles. This decreases the response time. Figure 4-3 

shows the turbidity changes o f the sensitive membrane as a function of pH. The 

reference was a particle free HYP AN HN50 hydrogel membrane. Turbidity was 

measured as absorbance at 400 nm. The instrument was zeroed at pH 6.0. The sample 

membrane was prepared from a suspension of 0.2% microspheres in 8% HYP AN HN 50 

solution in DMSO. In curve (a) un-derivatized polyTCPA-VBC microspheres were 

entrapped in the sample membrane. The turbidity of this membrane does not change as 

the pH changes. In curve (b) diethylamine derivatized polyTCPA-VBC microspheres 

were entrapped in the sample membrane. The turbidity of this membrane increases as the 

pH increases. The reason is that the derivatized microspheres deprotonate with 

increasing pH. They gradually shrink and lose water, which causes their refractive index 

to increase. Therefore, the swellable microspheres are responsible for the turbidity 

changes.
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Figure 4-2 Protonation of the diethylamine derivatized polyTCPA-VBC particles.

0.16

0 .14-

0.12-

0 .1 0 -

©Oc 0 .08- 
co
■§ 0.06 - 
CO

<  0.04 -

0 .0 2 -

0 .0 0 - '■=!

- 0.02
6.0 7.0 7.56.5 8.0

PH

Figure 4-3 Turbidity measurements using HYP AN HN 50 membranes with entrapped (a) 
underivatized and (b) diethylamine derivatized polyTCPA-VBC microspheres.
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4.3.2 Effects of different HYP AN types on turbidity measurements

During the pH measurements, we found that the swelling curve differs from the 

shrinking curve. This phenomenon is called hysteresis. Figures 4-4, 4-5, 4-6 show pH 

measurements using different HYP AN types as the hydrogel membrane. The pH 

sensitive particles are diethylamine derivatized polyTCPA-VBC. The sensitive 

membranes are prepared from a suspension o f 0.2% particles in 8% HYP AN solution in 

DMSO. These figures clearly show that hysteresis is lowest when using HYP AN HN 80. 

HYP AN HN 80 has the smallest elastic modulus and largest water content o f these three 

HYP AN polymers. We use the percentage o f hysteresis to describe the effects of 

different HYP AN types. The percentage o f hysteresis is defined as a ratio o f the 

shrinking and swelling turbidity difference at a specified pH to the total turbidity gap.

The total turbidity gap is defined as the turbidity difference between pH 8.0 and pH 6.0. 

Figure 4-7 shows the relationship between the percentage of hysteresis and water content 

o f the HYP AN membrane. The percentage of hysteresis decreases as the water content 

of the membrane increases. Figure 4-7 also shows that the hysteresis at pH 7.0 is larger 

than at pH 7.5.

Figures 4-4 through 4-7 show that membrane response is subject to hysteresis.

The degree of hysteresis increases as the water content o f the membrane decreases. The 

dependence o f hysteresis on membrane properties indicates that this is a mechanical 

effect. When a particle swells, it has to push against the outside membrane. Membranes 

with lower water contents are stiffer with higher elastic moduli. These membranes do not 

reach mechanical equilibrium in the time scale o f the measurements described here. The 

hysteresis at pH 7.0 is larger than the hysteresis at pH 7.5 because the particles are more
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Figure 4-4 pH measurements using HYP AN HN 30 as the hydrogel membrane
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Figure 4-5 pH measurements using HYP AN HN 50 as the hydrogel membrane
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Figure 4-6 pH measurements using HYP AN HN 80 as the hydrogel membrane
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4.3.3 Effects of HYPAN type on response time

HYP AN type also affects the rate of response to pH changes. The upper curve in 

Figure 4-8 shows the response time when the pH sensitive membrane is transferred from 

pH 6.0 to pH 8.0 buffer. This is a shrinking curve. The lower curve shows the response 

time when the pH sensitive membrane is transferred from pH 8.0 to pH 6.0 buffer. This 

is a swelling curve. HYPAN HN 30, HN50, and HN 80 are used in Figure 4-8, Figure 4- 

9, and Figure 4-10, respectively. If we compare the three shrinking curves, we find that 

the response becomes faster when the water content o f the membrane increases. In 

Figure 4-10, the turbidity changes immediately when the sensitive membrane is placed in 

the pH 8.0 buffer. The same trend is observed in the swelling curves.
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Figure 4-8 Response time when the pH sensitive membrane is placed in pH 6.0 and pH 
8.0 buffers. HYPAN HN 30 is used as the hydrogel membrane.
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Figure 4-9 Response time when the pH sensitive membrane is placed in pH 6.0 and pH
8.0 buffers. HYPAN HN 50 is used as the hydrogel membrane.
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Figure 4-10 Response time when the pH sensitive membrane is placed in pH 6.0 and pH
8.0 buffers. HYPAN HN 80 is used as the hydrogel membrane.
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4.3.4 Effects of PVA membrane on the turbidity measurements

PVA, a widely known hydrogel, has been used for a long time in our group.72 

Although PVA is not suitable for magnetoacoustic sensors due to its poor adhesion to the 

magnetic ribbons, it is good for turbidity measurements. Figure 4-11 shows the response 

time when entrapping the pH sensitive particles in PVA membrane. It takes about 5 

minutes for the shrinking curve to level off. The swelling curve levels off more quickly 

when the membrane is placed in pH 6.0 buffer. Figure 4-12 compares the effects o f the 

PVA and HYPAN HN 50 on the response times. It shows that the response is faster 

using PVA, especially for the swelling curve. The PVA membrane responds immediately 

after it is placed in pH 6.0 buffer. This means the swelling process is completely 

dominated by the swelling force o f the particles. The PVA membrane, which contains 

ca. 90% water, has less effect on particle swelling and shrinking.

Figure 4-13 and 4-14 show the hysteresis of turbidity measurements. In Figure 4- 

13, the PVA membrane is equilibrated in buffer for 2 minutes before each measurement.

In Figure 4-14, the PVA membrane is equilibrated in buffer for 15 minutes before each 

measurement. The hysteresis decreases as the equilibration time increases. As shown in 

Figure 4-11, the sensitive membrane has reached shrinking equilibrium after it sits in pH

8.0 buffer for 15 minutes. Therefore, equilibration time is a factor affecting hysteresis.
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Figure 4-11 Response time when the membrane is placed in pH 6.0 and pH 8.0 buffers. 
PVA is used as the hydrogel membrane.
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Figure 4-12 Response time when the membranes are placed in pH 6.0 and pH 8.0 buffers,
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Figure 4-13 Turbidity vs. pH when the PVA membrane is equilibrated in buffer for 2 
minutes before each measurement
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Figure 4-14 Turbidity vs. pH when the PVA membrane is equilibrated in buffer for 15 
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4.4 Preparation and Derivatization of PolyVBC Microspheres

PolyVBC particles were prepared by suspension polymerization. However, we 

use the SPG technique to prepare the emulsion rather than the traditional method, which 

requires vigorous stirring and special reactors to suspend the monomer as droplets in the 

continuous phase. The principle and operation o f the SPG emulsification technique have 

been described in Section 2.4 and Section 3.3.3, respectively. Usually large particles and 

a broad size distribution are obtained by traditional methods.

Figure 4-15 shows a SEM picture of polyVBC particles that were made by SPG 

technique. At that time, we didn’t operate the SPG instrument very well. For example, 

the porous membrane was not completely cleaned and wetted, and the applied pressure 

was set too high. Therefore, we obtained large particles and a broad size distribution. 

These particles are very similar to those made by traditional suspension polymerization.

Figure 4-16 shows polyVBC particles with small sizes and narrow size 

distribution. These particles were obtained after we were experienced in operating the 

SPG instrument. It shows that SPG is a good technique to make emulsions with small 

droplet sizes. The pores inside the particles are due to the addition of porogenic solvent 

during polymerization. A typical formulation is shown in Section 3.3.5. The porogenic 

solvent is a mixture of xylene and dodecane with volume ratio o f 2 to 1. The volume 

ratio o f porogenic solvent to monomer and crosslinker is 4:10. The solvent is removed 

after polymerization leaving pore space. The affinity o f the solvent for the polymer 

determines the pore size. If a solvent has low affinity to the polymer, it separates into a 

distinct phase as polymerization proceeds and forms large pores. In our cases, the poor 

solvent that has less affinity to the polymer is dodecane. The good solvent is xylene.
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In this study polyVBC particles were derivatized with diethyl malonate in a non- 

aqueous system as described in Section 3.3.8. These particles were then hydrolyzed to 

obtain the final derivatized particles. We tried different methods to hydrolyze the diethyl 

malonate groups. One o f them was to put the particles in 6 M NaOH in a flask and reflux 

at 100 °C for three days. Another one was to hydrolyze the particles in a mixture of 

DMSO and 3 M HCI with a volume ratio of 1:1. But the hydrolyzed particles obtained 

by the above two methods did not respond to pH changes. Finally we hydrolyzed diethyl 

malonate groups in a mixture of DMSO and 6M NaOH with a volume ration of 1.4. The 

mixture was refluxed at 50 °C for three days. The response o f these particles to pH 

change is described in the next section.

Figure 4-15 PolyVBC particles with large sizes and a broad size distribution prepared 
before we were experienced with SPG emulsification.
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Figure 4-16 PolyVBC particles with small sizes and a narrow size distribution prepared 
after we were experienced with SPG emulsification.
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4.5 Optical Properties of PolyVBC Microspheres Containing Carboxylate Groups

Figure 4-17 shows the turbidity spectra for derivatized polyVBC particles 

containing carboxylic groups. The turbidity o f the membrane was different in pH 2.0 and 

pH 8.0 buffers. The membranes were prepared from a suspension o f 1.0% derivatized 

particles in 8% HYPAN HN 50 solution in DMSO. The membrane thickness was 51 urn. 

The glitch at 800 nm is not the response o f the membrane because the instrument changes 

detectors there. This figures shows that the membrane turbidity at pH 8.0 is smaller than 

that at pH 2.0. The reason is that protonation of the particles at low pH neutralizes the 

negative charge o f the carboxylates, causing the particles to shrink. This trend is in 

contrary to the results obtained with diethylamine derivatized polyTCPA-VBC particles. 

Figure 4-18 shows the response time when the membrane is placed in pH 2.0 and pH 8.0 

buffers. It takes less than 5 minutes for the derivatized particles to reach swelling and 

shrinking equilibrium. Figure 4-19 shows the membrane turbidity as a function o f pH. 

Malonic acid has two pKa’s, one at 2.847 and one at 5.696. But they are not resolved in 

Figure 4-19. Probably not all carboxylic groups are hydrolyzed, which results in a 

continuous turbidity change. Figure 4-19 also shows that the pH response of the 

carboxylated microspheres is subject to a high degree of hysteresis.
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Figure 4-17 Turbidity spectra for derivatized polyVBC particles containing carboxylate 
groups. The hydrogel is HYP AN HN 50.
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Figure 4-18 Response time when the membrane is placed in pH 2.0 and pH 8.0 buffers.
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4.6 Conclusions

The purpose o f the research described in this chapter was to make micro spheres 

that swell and shrink with changing pH. These were required to develop 

magnetoacoustic chemical sensors. These derivatized polymer microspheres were used 

to prepare pH sensitive ribbons for chemical sensors. Therefore, it was necessary to 

obtain such pH sensitive particles before we could move forward.

Basically this chapter was divided into two parts. The first part discussed the 

preparation, derivatization, and optical properties of diethylamine derivatized polyTCPA- 

VBC particles. These microspheres were prepared using dispersion polymerization. 

Usually we obtained small and uniform microspheres through this method. Here we used 

TCPA as a co-monomer. The big 2,4,5-trichlorophenol groups are displaced with small 

diethylamine groups. This forms micropores in the particles that greatly decrease the 

response time. Both PVA and HYP AN polymers were used to make hydrogel 

membranes for turbidity measurements. However, only HYP AN polymers can be used 

for magnetoacoustic chemical sensors because they adhere well to the magnetic ribbon. 

Hysteresis was observed during turbidity measurements. We use the percentage of 

hysteresis to describe the effects of different HYP AN types on the hysteresis. It shows 

that the percentage of hysteresis decreases as the water content in the hydrogel membrane 

increases. O f course, larger water content means higher analyte permeability. In 

addition, the material modulus may also affect the turbidity measurement. A thin layer of 

sensitive membrane was coated on the ribbon in order to decrease the membrane modulus 

effects. This is be discussed in Chapter 5.
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The second part of this chapter discussed the preparation, derivatization, and 

optical properties of the derivatized polyVBC particles containing carboxylate groups. 

The polyVBC particles were prepared by suspension polymerization. However, a new 

technique called SPG was used to prepare the emulsion. It generates small and uniform 

emulsion droplets compared to those obtained from the traditional method. We used a 

mixture of xylene and dodecane as the porogenic solvent. Here xylene was used as a 

good solvent that has high affinity to the polymer. The space occupied by the porogenic 

solvent becomes small micropores after polymerization and the solvent is removed. 

Dodecane is used as a poor solvent that leaves large pores in the particles after it is 

removed. The pore size can be controlled by varying the ratio of xylene to dodecane.

The purpose of forming pores in the particles is to decrease the response time. The 

derivatized particles were studied by turbidity measurements. As with diethylamine 

derivatized polyTCPA-VBC particles, the turbidity of the membrane decreases when the 

particles swell and increases when the particles shrink. In other words, the turbidity 

decreases when the particles take up water and increases when the particles lose water.

In summary, we have prepared two kinds of pH sensitive polymer microspheres. 

Their responses to pH have been studied through turbidity measurements. The results are 

positive. This means that a chemical response system has been built. We have 

accomplished the first step required to develop magnetoacoustic chemical sensors.
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CHAPTER 5

STUDY OF MAGNETOACOUSTIC CHEMICAL SENSORS

5.1 Introduction

The next two chapters investigate magnetoacoustic sensors. The goal of this 

research was to develop a new kind of chemical sensor. Three main fields were involved 

in this study. First, we need to understand not only the operation of the resonance meter, 

but also its physical principle. Second, we need to build a chemical response system that 

can determine analytes in a chemical environment. In our group, this chemical response 

system is a hydrogel membrane with entrapped polymer particles that swell and shrink 

with changes in analyte concentration. Third, we need to solve the interface problem 

when we combine the resonance meter with the chemical response system. This step is 

critical since the chemical response system has to generate a magnetoacoustic signal.

In our first experiments, we monitored the viscosity o f a starch solution, using a 

bare, untreated magnetoelastic ribbon. The purpose of these experiments was to study 

resonant frequency shifts when the sensor was used in a simple chemical environment.

We found that resonance frequency varied with the square root o f the product of viscosity 

and density of the starch solution. The resonance frequency shifts were proportional to 

the starch concentration. This result was useful in the development o f a sensor to follow 

polymerization processes, because the monomer mixture becomes viscous during 

polymerization. However, as the working frequency range is from 35 to 75 kHz, our
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instrument can only determine limited viscosity change. So, we can’t monitor 

polymerization by directly putting a magnetic ribbon in the monomer mixture. This is a 

typical interface problem that is encountered when resonant meter is coupled to a 

chemical response system.

In this chapter, other factors that affect the resonance peak shifts were also 

studied, like bending the ribbon, positioning the membrane on different places on the 

ribbon, and the effect o f membrane modulus changes. Usually we constructed a 

theoretical model first, and then tested the model with experiments. The purpose of these 

experiments was to help us understand the factors that affect the resonance peak shift.

5.2 Characteristics of the Magnetoelastic Ribbon

Magnetoelastic ribbons were METGLAS® magnetic alloy 2826MB from 

Honeywell. The ribbon is 12.50 mm width, 0.035 mm thickness, and hundreds of meters 

long. In our research, we cut the ribbon to a length of 38.00 mm with a pair o f scissors. 

The length was measured with a vernier caliper.

Table 5-1 shows the elemental analysis o f the ribbon surface by X-ray 

photoelectron spectroscopy (XPS) measurement. The ribbon is an iron-nickel alloy. The 

bright side and the dull side have almost the same elemental composition.

Figure 5-1 (a) shows the frequency-dependent response o f a 38.00 mm x 12.50 

mm x 0.035 mm ribbon in the frequency range from 10 to 80 kHz. There are two peaks 

in this range, one around 30 kHz and the other around 57 kHz. The signal around 30 kHz 

is due to background o f the magnetic field. Figure 5-1 (b) shows that the 30 kHz peak is 

observed when there is no ribbon inside the pick-up coil. All our measurements
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monitored the resonance frequency shifts of the 57 kHz peak. Amplitude changes were 

not considered because they are affected by the outside magnetic field. Unless otherwise 

specified, the magnetic ribbon was placed in the Teflon cell shown in Figure 5-2 (a) and

(b). Figure 5-2 (a) is a top-view of the cell, and Figure 5-2 (b) is a cross-section view. 

The dimensions of the cell are 10.0 mm high, 47.2 mm long, and 16.1 mm wide. There 

are two crossbeams 1.2 mm high, 16.1 mm long, and 1.5 mm wide at the bottom o f the 

cell. They are 27.90 mm away from each other. The test ribbon was placed on the 

crossbeams, and the cell was filled with the test solution. Typically 2.5 ml o f solution 

was added to the cell, just enough to cover the ribbon. Figure 5-3 shows the frequency 

shifts for a ribbon in contact with different media. The peak measured in air was at 

58.525 kHz. When the ribbon was immersed in distilled water, the resonance frequency 

downshifted to 58.175 kHz, a very small shift. When a piece of Scotch tape was stuck on 

one side of the ribbon, the resonance frequency shifted to 52.129 kHz, a much larger 

shift. These experiments give us two kinds of information. First, the responses o f the 

Resonance Meter are resonance frequency shifts. One resonance peak shows up in the 

frequency range from 35 to 75 kHz no matter whether the ribbon is free to vibrate in air 

or the ribbon is bonded to some material. The bonded material changes the frequency by 

changing the mass and modulus of the system. These results are consistent with the 

principle o f magnetoacoustic sensors that was described in Section 2.1. This means that 

magnetoacoustic chemical sensors can be developed by coating a sensitive membrane on 

the ribbon. Second, it is better to bind the reacting reagents on the ribbon than to put 

them in the solution because larger signals or a larger frequency shifts will be obtained 

when the analytes interact with reagents bonded to the ribbon.
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Table 5-1 Elemental analysis of a magnetic ribbon by XPS

Element

Bright side Dull side

Atomic conc% Mass cone % Atomic cone % Mass cone %

C 24.02 11.99 16.46 7.57

Mo 0.87 3.46 0.90 3.30

B 11.49 5.17 7.72 3.2

Ni 9.61 23.47 10.29 23.13

Fe 12.06 28.00 15.21 32.53

O 41.96 27.91 49.42 30.27
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92

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Figure 5-2 (a) Top-view of the Teflon measurement cell

Teflon cell

Magnetoelastic
ribbon

Two crossbeams at 
the bottom o f the cell

Figure 5-2 (b) The cross-section view o f the Teflon cell
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5.3 Viscosity Monitoring

The effect o f viscosity on the resonant frequency of the magnetoelastic ribbon 

was evaluated by using starch powder that was soluble up to 10% (w/w) in cold water. 

The viscosity measurement was described in Section 3.4.8. Figure 5-4 shows how 

viscosity increases with starch concentration. The density changes are negligible 

compared to the viscosity changes when the starch concentration increases from 0% to 

10%. Therefore, the viscosity change is equivalent to the change o f the product o f 

viscosity and density of starch solution. Figure 5-5 shows how the resonance frequency 

o f the ribbon varies with the square root o f the viscosity and density product o f the starch 

solution. The frequency shift appears to depend on the interface between the ribbon and 

the starch solution. At high levels above 6.00 g/lOOml, starch molecules deposit onto the 

magnetoelastic ribbon forming an adsorbed layer. This affects both the surface area and 

the interfacial tension between the ribbon and the external medium. Therefore, the slope 

at low starch concentration differs from the slope at high starch concentration.

Figure 5-6 shows the resonant frequency shifts as a function o f starch 

concentration. The frequency shift Af is the difference between the frequencies measured 

before and after the ribbon was immersed into the starch solution. The linear regression 

equation for the relationship between the frequency shift and the starch concentration 

is Af = 19.98C -10.73, where C is the concentration of the starch solution. The 

correlation coefficient is 0.997. This means the new sensor can directly monitor analytes 

that affect viscosity.
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Figure 5-4 Viscosity vs. starch concentration
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the starch solutions
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5.4 Mass loading Monitoring

The effect of mass loading on resonant frequency was studied by adding water to 

free ribbon and ribbon coated with poly(hydroxyethyl acrylate) (polyHEA). This 

experiment was described in Section 3.4.9. Figure 5-7 shows the frequency response 

versus water loading on the free ribbon and ribbon coated with polyHEA membrane. 

When loaded water was under 1.5 mg, there was no response for the free ribbon. When 

mass loading was increased from 1.5 to 8.4 mg, the resonance frequency shifted slightly. 

Only when mass loading was larger than 8.4 mg did the free ribbon respond to water 

loading. However, after the ribbon was coated with polyHEA membrane, its sensitivity 

to water loading was greatly increased. The frequency shift was detectable when the 

mass loading was 0.5 mg. This may be caused by the modulus change of the polyHEA 

membrane when it takes up water. This implies that modulus is a more important factor 

than mass loading in causing the resonance frequency to shift.

5.5 Polymerization Monitoring

Bao73 studied the hydrolysis of starch catalyzed by of a-amylase using a bulk 

acoustic wave viscosity sensor. Muramatsu21 monitored viscosity changes in a liquid 

using a piezoelectric quartz crystal to determine endotoxin concentration by gelation of 

limulus amebocyte lysate. A piezoelectric quartz crystal was also used to study 

hemorheological phenomena.74 Therefore, after we demonstrated that the resonance 

frequency shifts with viscosity and mass change, the possibility of following 

polymerization processes was investigated. The system used to investigate this involved 

the polymerization of 2-hydroxyethyl methacrylate (HEMA) as monomer, ethylene
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glycol dimethacrylate (EGDMA) as crosslinker, and 2,2-dimethoxy-2-phenyI- 

acetophenone (DMPAP) as photoinitiator. A typical formulation included 14.75 g of 

HEMA, 0.222 g of EGDMA, and 0.225 g o f DMPAP. These components were mixed 

together and sonicated to dissolve DMPAP. The starting experiments were to put 25 pi 

o f monomer solution on a bare ribbon. Then the ribbon was placed under a 400 W 

mercury lamp to polymerize for a period of time. The resonance frequencies were 

measured at different time. Figure 5-8 shows how resonance frequency shifts during 

polymerization. There was only one single peak in Figure 5-8 (a) to (d). A small peak at 

58.880 kHz appeared besides the peak at 59.848 kHz in Figure 5-8 (e). The amplitude of 

this peak became larger in Figure 5-8 (f). At the same time, the curve between 60 and 70 

kHz became more irregular compared to Figure 5-8 (a) to (d). Several peaks appeared in 

Figure 5-8 (g). The variation of amplitude with frequency became more complicated.

The resonance frequency is plotted vs. time in Figure 5-9 assuming that the highest peak 

is the resonant peak.
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Figure 5-7 Frequency shifts of the coated and bare ribbons after water loading
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It is hard to explain the data point trend in Figure 5-9. It is known that many 

factors, not only mass, viscosity, and elasticity but also surface stress, and adhesion, can 

affect the resonance frequency shifts. Recently, some investigations have considered 

these factors. For example, Yang23 explained the influence of surface stress on the 

resonance frequency. Most important, we found that the results reported by Shou-Zhuo74 

for hemorheological phenomena using a piezoelectric quartz crystal were very similar to 

our results shown in Figure 5-9. Even the experimental procedures were similar to ours. 

They added a drop of venous blood to the surface of a quartz crystal maintained at 37 °C 

and monitored the frequency. The results were divided into three regions. In the initial 

stage, the resonance frequency shifted slightly downward. In the second stage, the 

resonance frequency increased quickly. In the last stage, the resonance frequency 

gradually decreased again. To explain this, Shou-Zhuo74 adopted the electrical 

equivalent circuit model75 shown in Figure 5-10. In this model, the capacitance C 

represents the mechanical elasticity o f the vibrating body. The inductance L corresponds 

to a measurement o f the vibrating mass. The resistance R represents the loss in 

mechanical energy dissipated to the surrounding medium and the supporting structures. 

The parallel capacitance C0 comes from the electrodes on the quartz plate.
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Figure 5-10 Electrical equivalent circuit for an AT-cut piezoelectric crystal oscillator
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According to Shou-Zhuo’s explanation, the increasing viscosity, which 

corresponds to the increasing resistance R in the equivalent electrical circuit, was the 

main factor causing the resonance frequency to decrease in the initial stage. The increase 

o f the resistance R suggested that more energy was dissipated to the blood clot during the 

biochemical reaction forming fibrin at this period o f time. In the second and third stage, 

the rheological character was controlled by the water amount inside the coagulated blood 

film after fibrin generation was complete. In other words, the mass effect dominated. In 

the equivalent electrical circuit, this corresponded to an increase of the inductance L in 

the second stage and a decrease o f the inductance in the third stage. On the other hand, 

the water content dominated the adhesion of the coagulated blood film on the crystal.

The water content was larger in the second stage than in the third stage because of 

evaporation. The adhesive force of blood film was larger in the second stage, too. This 

resulted in larger surface stress. Therefore, the resonance frequency increased rapidly 

during this period of time. The maximum resonance frequency was even larger than 

without coagulated blood film. In the third stage, the water content decreased because of 

evaporation. This decreased the adhesive force, and then the surface stress. During this 

period of time, the resonance frequency gradually decreased. This explanation was 

proved by experiments varying humidity inside the sensor chamber. It took a longer 

period of time to decrease the surface stress in higher humidity. Shou-Zhuo’s 

explanation was adapted to describe the results shown in Figure 5-9. In Figure 5-9, the 

points can be divided into two regions. The region between 0 to 3 minutes corresponds 

to the second stage in Shou-Zhuo’s results. The region between 3 to 8 minutes 

corresponds to the third stage. It is noticed that the initial stage where the resonance
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frequency decreased disappeared in Figure 5-9. The reason is that the HEMA 

polymerization is faster than blood clotting. Therefore, resonance frequency was 

dominated by the mass effect. From 0 to 3 minutes, the resonance frequency rapidly 

increased. The liquid monomer solution became solid. It was found that the product 

strongly stuck on the ribbon surface. This caused large surface stress. As shown in 

Figure 5-8 (b) to (d), there was only one resonance frequency peak appearing. The shape 

of the peak was very sharp. This demonstrated that the ribbon together with the 

monomer solution or the product vibrated as an entirety. From 3 to 8 minutes, the 

resonance frequency began to decrease due to unreacted monomer and crosslinker 

evaporating from the polyHEMA membrane. The adhesive force decreased, which 

resulted in surface stress decreasing. As shown in Figure 5-8 (e) to (g), the frequency 

spectrum became complicated. Some small peaks showed up. This demonstrated that 

the ribbon didn’t vibrate with the polyHEMA membrane as an entirety. This became 

worse at the end o f the polymerization. The drying process may have generated some 

cracks at the interface of the ribbon and the polyHEMA membrane.

Although the above results demonstrate that HEMA polymerization can be 

monitored by the magnetoacoustic sensor, we were not very satisfied with it. First, it is 

not an in-line monitoring method. A sample has to be taken out from the monomer 

solution. Because the sample amount is very small, its components may change if 

evaporation occurs. Second, the surface stress depends on contact area. It is difficult to 

keep the same contact area every time when dropping the sample on the ribbon. Third, 

the sample’s position on the ribbon affects the resonance frequency. This is discussed
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later in this chapter. Therefore, we tried to find another sensing method to monitor 

polymerization.

Equation (2-1) in Section 2.1 describes the resonance frequencies of a ribbon that 

freely vibrates in its basal plane. When the integer n is 1, it gives the fundamental 

resonance frequency. The realistic boundary conditions include:76

1. a fixed, fixed ribbon when both ends of the ribbon are fixed.

2. a fixed, mass-loaded ribbon when one end is fixed, and the other end is 

terminated with some kind of inertance that behaves like a mass

3. a fixed, resistance-loaded ribbon when one end is fixed, and the other end is 

attached to a dashpot that constrains its motion.

In our Resonance Meter, the frequency spectrum can be obtained by sweeping the 

ac magnetic interrogation field over a pre-determined frequency range. So far in the 

system discussed in this chapter, the ribbon has uniformly contacted the surrounded 

media, air or liquid. There is no resonance frequency peak observed in the working 

frequency range from 30 to 70 kHz if the ribbon is entrapped in a solid or even in a very 

viscous liquid. This was observed in our previous experiments. Figure 5-11 shows two 

extreme cases. Figure 5-11 (a) is a ribbon vibrating freely in air. Figure 5-11 (b) is a 

frequency spectrum o f a ribbon that is put in the middle of two microscopy slides. The 

two slides are tightly held together with a pair of clips so that the ribbon can’t vibrate. 

There is no resonance frequency peak in the range between 20 and 70 kHz in Figure 5-11 

(b). However, when we studied equation (2-1) and the boundary conditions, it posed a 

question. Is it possible to create a condition in which we can continuously keep the 

resonance frequency peak in the working frequency range when the medium changes
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from a low viscosity liquid to a high viscosity liquid or a solid? If  we can do so, we can 

monitor polymerization.

The initial step was to develop a physical model. Figure 5-12 is a schematic 

drawing of an experimental arrangement for determining the resonance frequency of a 

free, fixed ribbon inside the pick-up coil. One end of the ribbon is in air. The other end 

is placed in the middle o f two microscopy slides, which clipped tightly together. The 

middle of the free end is positioned at the center of the pick-up coil. We assume that the 

free end can vibrate freely, and the other end doesn’t vibrate. It is shown in Equation (2- 

1) that the resonance frequencies are inversely proportional to the ribbon length. 

Therefore, we can vary the fixed length to look for a suitable boundary condition in 

which the resonance frequency peak falls in the range from 30 to 70 kHz. Figure 5-13 (a) 

shows a ribbon of 37.58mm long vibrating freely in air. Its resonance frequency is 58893 

Hz. Figure 5-13 (b) shows a frequency spectrum of the same ribbon when 0.64 mm is 

tightly held between two microscopy slides. A sharp peak appears at 29699 Hz. 

Physically, the boundary conditions in Figure 5-13 (a) and Figure 5-13 (b) are totally 

different, resulting in a large frequency shift. Figure 5-13 (c) shows a peak at 30000 Hz 

when 2.00 mm of the ribbon is fixed. Figure 5-13 (d) shows a peak at 30701 Hz when 

4.02 mm of the ribbon is fixed. The shapes of these two peaks are similar to that in 

Figure 5-13 (a), but the resonance frequency shifts upward. There is a small bulge to the 

left of the peak at 33601 Hz in Figure 5-13 (e) in which 6.98 mm o f the ribbon is fixed. 

This bulge became larger in Figure 5-13 (f) in which 9.00 mm of the ribbon is fixed, and 

in Figure 5-13 (g) in which 11.58 mm of the ribbon is fixed. It can be seen that two 

peaks clearly show up in the frequency spectrum between 20 and 70 kHz in Figures 5-13
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(g), (h), and (i). One of the peaks is broader around 30 kHz and doesn’t shift. The other 

peak is sharp and shifts upward from 40799 Hz in Figure 5-13 (g) to 51300 Hz in Figure 

5-13 (i). The fixed length is 13.30 mm in Figure 5-13 (h) and 17.76 mm in Figure 5-13 

(i). Now we can understand the data in Figure 5-13. First, Equation (2-1) is still suitable 

to explain the resonance frequency shift for a free, fixed ribbon. The background peak 

around 30 kHz appears no matter whether it is a free ribbon or a free, fixed ribbon. 

Second, the resonance frequency upward shifts when the fixed length increases and the 

free length decreases. This is summarized in Table 5-2 that lists the fixed length, l/(free 

length) and the resulting resonance frequency. Figure 5-14 shows that the resonance 

frequency of a free, fixed ribbon increases as the fixed length increases. Figure 5-15 

shows the relationship between the resonance frequency of a free, fixed ribbon and 

l/(free length). The linear regression equation is:

f  = 9.93856x10s x —
L

where f  is the resonance frequency of a free, fixed ribbon, and L is the length o f the free 

end. The unit is Hz for f, and millimeter for L. The correlation coefficient is 0.997. This 

result confirms that equation (2-1) can be used to describe the resonance frequency o f a 

free, fixed ribbon.
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Table 5-2 Calculation o f l/(ffee length) and related resonance frequency and amplitude

Fixed length, mm Frequency, Hz Amplitude, Volt l/(free length), 1/mm

0.64 28699 0.14029 0.02707

2.00 30000 0.21631 0.02811

4.02 30701 0.24915 0.0298

6.98 33601 0.20691 0.03268

9.00 36200 0.19525 0.03499

11.58 40799 0.16724 0.03846

13.30 43300 0.10846 0.04119

17.76 51300 0.06116 0.05045
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The above experiments demonstrate that equation (2-1) can be used to describe 

the resonance frequency o f a free, fixed ribbon. The most important result is that a 

resonance frequency peak falls in the working range between 20 and 70 kHz. To monitor 

polymerization, part of the ribbon was dipped in a monomer solution. Before the 

polymerization, the boundary condition is similar to a free, resistance-loaded ribbon.

There should be a resonance frequency peak appearing in the working range because of 

the low viscosity o f the monomer solution. During the polymerization, the viscosity 

increases, which implies that the resistance increases. The resonance peak probably will 

disappear if the viscosity or the resistance is too large because the mechanical energy 

dissipates to the surrounding medium. After polymerization, the boundary condition is 

equivalent to a free, fixed ribbon if the product becomes a solid. If this is true, the 

resonance frequency peak should show up again between 20 and 70 kHz based on the 

above results. That means we can monitor polymerization in situ by dipping the ribbon 

inside the monomer solution in the reactor.

Now let us choose the best boundary condition, that is, the optimum length dipped 

into the solution. In Figure 5-13 (b), (c), and (d), the resonance frequency peaks overlaps 

with the background peak. From Figure 5-13 (e) to (j), it is observed that the resonance 

frequency peak gradually separates from the background peak. Therefore, the optimum 

dipped length should be one of those shown from Figure 5-13 (e) to (i) because the 

resonance frequency peak differs from the background. In addition, we would like the 

amplitude at the resonance frequency to be high so that we can most accurately measure 

the resonance frequency. Figure 5-16 shows the relationship between the amplitude at 

the resonance frequency and the fixed length. The first three points belong to Figure 5-13
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(b), (c), and (d), respectively. We don’t consider them because the peak overlaps the 

background for these data. Figure 5-13 (e) is not so good because the resonance 

frequency peak is very close to the background peak. Figure 5-13 (j) is not so good 

either, because the amplitude at the resonance frequency is very small. Therefore, the 

optimum dipped length is between 9.00 mm and 13.30 mm.

Before carrying out the experiments to monitor polymerization, the apparatus was 

adjusted. Figure (2-3) shows the original set-up of the Resonance Meter. The axis of the 

driving and pick-up coils is parallel to the lab bench. A magnetoelastic ribbon is placed 

horizontally inside the Teflon cell at the center of the pick-up coil shown in Figure 5-2 (a) 

and (b). The entire ribbon is immersed in a solution in the Teflon cell. In order to create 

a boundary condition of a free, fixed ribbon, we re-arranged the driving coils and pick-up 

coils as shown in Figure 5-17. In this set-up, the axis of the driving and pick-up coils is 

vertical to the lab bench. This arrangement allows us to dip a ribbon into our sample. 

Figure 5-18 shows the sensor to monitor HEMA polymerization. It includes a front-view 

of a section of the pick-up coil. The mixture of HEMA, EGDMA, and DMPAP was 

added to a 15x45 mm round bottom glass bottle. The height of the solution was 10.90 

mm. A magnetoelastic ribbon with a length of 37.00 mm was dipped into the solution. 

Because o f surface tension, some o f solution at the ribbon surface stayed the solution 

level. The real height of the solution at the ribbon surface was 12.50 mm. 24.50 mm of 

the ribbon vibrated freely in air. The two side edges of the ribbon slightly contacted the 

inner surface of the glass bottle. The arc shape of the glass bottle prevented the whole 

ribbon from contacting the bottle’s inner surface. It is assumed that the slight contact of 

the side edges of the ribbon does not affect the boundary conditions. Some cardboard
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was used to support the bottle. The height of the bottle was adjusted in order to keep the 

middle of the free end of the ribbon at the center of the pick-up coil. The polymerization 

was initiated under a 400 Watt mercury lamp. The resonance frequency was 

automatically recorded with a programmed computer. Due to limitations of the current 

program that controls the Resonance Meter, the resonance frequency was only recorded 

every 3.5 minutes. Figure 5-19 (a) is for a 37.00 mm ribbon freely vibrating in air. Its 

resonance frequency was 58.750 kHz. This resonance frequency decreased after 12.50 

mm of the ribbon was immersed in solution. Figure 5-19 (b) shows the resonance 

frequency is 58.155 kHz before the polymerization. At this time, the upper end o f the 

ribbon freely vibrated in air. The lower end of the ribbon was in the solution, which was 

neither rigidly fixed nor completely free to vibrate. Its boundary condition was similar to 

a free, resistance-loaded ribbon because the lower end o f the ribbon was loaded with a 

kind o f mechanical impedance. Once polymerization started, the viscosity o f the polymer 

solution increased which caused the mechanical resistance to increase. As the viscosity 

increased during the period between Figure 5-19 (b) and Figure 5-19 (c), much more 

mechanical energy dissipated into the surrounding medium. This damped the vibration.

At 3.5 minutes shown in Figure 5-19 (c), the resonance frequency peak disappeared from 

the range between 20 and 70 kHz. In the period between Figure 5-19 (c) and Figure 5-19 

(d), the polymer chains were continuously propagating as chain radicals added to 

monomer molecules. The polyHEMA began to solidify at 7 minutes. As shown in 

Figure 5-19 (d), a resonance frequency peak appeared in the frequency range between 20 

and 70 kHz. This confirms that our model successfully predicted the experimental 

results. The boundary condition changed from a free, resistance-loaded ribbon to a free,
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fixed ribbon between 0 and 7 minutes as shown in Figure 5-19 (b) to (d). The lower end 

o f the ribbon was gradually surrounded with the solidified polyHEMA product. Because 

the polymer continued to solidify between 7 to 14 minutes as shown in Figure 5-19 (d) to 

(f), the resonance frequency shifted upwards. Experimentally, polyHEMA became hard 

and its modulus increased during this period of time. The loss of mechanical energy 

through the lower end o f the ribbon decreased when the ribbon is held more and more 

firmly. According to equation (2-1), the resonance frequency increases when the 

modulus o f material increases. The HEMA polymerization was completed after 15 

minutes. As shown in Figure 5-19 (f) to (1), the resonance frequency stayed at 37.262 

kHz after 15 minutes. It was observed that a small peak appeared in Figure 5-19 (g).

This was probably caused by surface stress at the interface between the ribbon and the 

poly-HEMA product. Figure 5-20 shows how the resonance frequency varies during 

HEMA polymerization. The point of 0 Hz at 3.5 minutes was added artificially because 

the resonance frequency peak disappeared at this time. The purpose o f adding this point 

is just to show how the resonance frequency changes. It was observed that the resonance 

frequency levels off after 15 minutes, indicating that the polymerization was complete. 

When we studied polymerization using optical methods, such as ultraviolet, we usually 

monitor a specific chemical bond contained in the reactants. However, polymerization 

often does not stop the monitored chemical bond has totally reacted, because the final 

product may still undergo a phase transition. This phase transition is very important in 

making polymer materials. With our new sensor, we can monitor polymerization 

including a phase transition in-situ in a sealed reactor.
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Figure 5-21 shows the relationship between the resonance frequency and the fixed 

length o f a ribbon inside the polyHEMA product. In these experiments, the ribbon was 

dipped into the monomer solution with different dipping depth, i.e. fixed length. The 

resonance frequency was measured after each polymerization when the ribbon was fixed 

in the solid polyHEMA. It was observed that the resonance frequency peak overlapped 

the background peak if the fixed length was less than 6.00 mm. The amplitude at the 

resonance frequency became too small and the peak shape became broader when the 

fixed length was larger than 15 mm, as shown in Figure 5-21 (e). Therefore, the 

optimum fixed length was between 10 and 13 mm for our typical ribbon with a length 

between 37 and 38 mm. This result is consistent with the physical model.
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o  0.15 >
O '
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Figure 5-16 Resonance frequency amplitude vs. fixed length for a 37.58 mm ribbon
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Figure 5-17 Experimental arrangement of driving and pick-up coils for monitoring 
HEMA polymerization
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Figure 5-18 Front-view of the ribbon position for monitoring HEMA polymerization
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Figure 5-19 Monitoring HEMA polymerization (a) a free ribbon in air, (b) 12.50 mm of 
the ribbon sits in solution before polymerization, (c) after 3.5 minutes polymerization. 
(Continued on next page)
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Figure 5-19 Monitoring HEMA polymerization (d) after 7 minutes, (e) after 10.5 
minutes, (f) after 14 minutes.
(Continued on next page)
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Figure 5-19 Monitoring HEMA polymerization (g) after 17.5 minutes, (h) after 21 
minutes, (i) after 24.5 minutes 
(Continued on next page)
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Figure 5-19 Monitoring HEMA polymerization (j) after 28 minutes, (k) after 31.5 
minutes, (1) after 35 minutes.
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Figure 5-20 Monitoring HEMA polymerization with the Resonance Meter
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Figure 5-21 Resonance frequency vs. the ribbon fixed length in poIyHEMA. The fixed 
length is (a) 3.98 mm, (b) 4.80 mm, (c) 6.42 mm 
(Continued on next page)
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Figure 5-21 Resonance frequency vs. the ribbon fixed length in polyHEMA. The fixed 
length is (d) 11.08 mm, (e) 15.01 mm.
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5.6 Other Factors that Affect Resonance Frequency

5.6.1 Potential ribbon bending caused by polymer swelling and shrinking

When we originally designed the sensor element configuration, we considered a 

sensing mechanism by which polymer membrane swelling would bend the ribbon. Later 

we found that swelling or shrinking caused the membrane to delaminate. This led to the 

application o f entrapping sensitive polymer particles inside a hydrogel membrane, which 

we will discuss in next chapter. When we considered a sensor based on bending, we 

wanted to know how bending would affect the resonance frequency o f the polymer 

coated ribbon so that we could understand the relationship between polymer swelling and 

resonance frequency.

The following experiments were designed to study the effect o f bending. A piece 

o f Scotch tape was placed on a straight flat ribbon, as shown in Figure 5-22 (a). The 

shadow part represented the ribbon, which was shorter than the tape length. The ends of 

the tape were stuck together, as shown in Figure 5-22 (b). By adjusting the stuck 

positions o f the tape, we can adjust the bending of the ribbon. Figure 5-23 shows how to 

calculate the length change of the polymer membrane after it swells. The bowstring 

length L and the height o f the bow H were measured with a vernier caliper. The 

corresponding resonance frequency was measured with the resonance meter. The ribbon 

length Lo is 36.90 mm. Table 5-3 shows that there is a large change in frequency as the 

ribbon bends. Based on bowstring length L and the bow height H, we can calculate the 

radius R and the angle 0.

r = *Lt i g :
SH (5-1)

.  „ 2 Ha = 4 a r c tg - j-
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We modeled a system in which a layer o f swellable polymer coated on the ribbon 

external surface that was at the lower part of the bow. The original length o f the polymer 

membrane was assumed to be the same as that o f the ribbon. Its length was Lo and its 

thickness was 0.035 mm. The ribbon was bent when the polymer swelled as shown in 

Figure 5-23. In order to make the calculation simple, we assume the thickness of the 

polymer membrane is 0.035mm and does not change after the membrane swells. This 

assumption is only for ease calculation. In practice, the membrane would become thicker 

as it swelled. But it does not affect the model itself because the swelling ratio is a 

constant for a hydrogel membrane. It only multiplies a constant in this model. In other 

words, we assume the swelling ratio is 1 in this model. If  the external length of the 

swollen polymer membrane is represented using L ’, it is

£  = ( *  + 0.03 5mm) * 6 (5-2)

The inner length of the swollen polymer membrane Lo’ is

r 0 = R * 9  (5-3)

The expected polymer length change would be (L ’-Lo’).

L - L o = 0 m 5 m m * d  (5-4)

Here we see that the expected polymer length change is related to the membrane 

thickness. Angle 0 is related to the properties of the polymer. For example, the 

membrane with high elastic modulus can easily bend the ribbon. Table 5-4 shows the 

calculation results. Figure 5-24 shows the linear regression line o f the resonance 

frequency and the expected polymer length change. The regression equation is

/  = 52147 + 231.25 * (exp ected polymer length change) (5-5)
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The expected resonant frequency shift is more than 200 Hz even if the polymer 

membrane swells 1 pm when the membrane thickness is 35 pm.

The above model was tested with a poIyHEA coated ribbon. The coating method 

was described in Section 3.4.9. The thickness of the polyHEA membrane was 51 pm. 

Figure 5-25 (a) shows that the resonance frequency o f a dry polyHEA coated ribbon in 

air is 54.685 kHz. Figure 5-25 (b) shows that the resonance frequency is 58.432 kHz 

after the polyHEA coated ribbon was immersed in water. It was observed visually that 

the ribbon was bent after the membrane had swollen. We found that the resonance 

frequency in Figure 5-25 (b) is larger than that in Figure 5-25 (a). This result is in 

contrary to that shown in Figure 5-3 (a) and (b), in which the resonance frequency 

decreased after the ribbon was immersed in water. However, this result is consistent with 

the above model. Although water content o f the polyHEA membrane increases, the 

swollen membrane bends the ribbon and dominates the resonance frequency shift. Here 

the bending becomes the dominating factor. Figure 5-25 (c) shows that the resonance 

frequency was 58.432 kHz after the membrane coated ribbon was taken out from water 

and dried in air for 50 minutes. Figure 5-28 (d) shows the result when the coated ribbon 

was put back in water again for 20 minutes.

The above experimental results show that there is a large change in frequency as 

the ribbon bends. The effect of ribbon bending is opposite to that of water content and 

modulus. It is known that increasing water content and lower modulus accompanying 

swelling cause the resonance frequency to decrease. However, the ribbon bending that 

also accompanies swelling causes the resonance frequency to increase. In the above 

experiment, ribbon bending became the dominant factor affecting frequency. Therefore,
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we should coat a very thin film on the ribbon to minimize bending as the membrane 

swells. A thin membrane also minimizes frequency damping due to the mass loading.

Scotch tape

Magnetoelastic
ribbon

End 1
End 2

0
Scotch tape

Magnetoelastic
ribbon

Figure 5-22 (a) Top-view o f a piece of 
magnetoelastic ribbon stuck to a longer 
piece o f Scotch tape.

(b) Side-view of the bent ribbon 
after the ends of the Scotch tape 
are put together.
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Figure 5-23. Schematic drawing showing model used to calculate the length change of 
the coated polymer membrane caused by swelling.
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Table 5-3 Experimental resonance frequency vs. the bowstring length L and the 
bow height H

Original membrane length 
Lo, mm

Bowstring length 
L, mm

Bow height 
H, mm

Resonance frequency 
f, Hz

36.90 36.84 0.80 55100

36.22 2.96 56722

35.92 3.40 57927

35.4 4.26 59293

34.72 5.30 61173

33.94 6.46 63053

33.34 7.06 64054

32.68 7.22 66318

31.68 7.90 68314

__ 30.76 9.46 70504
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Table 5-4. The expected polymer length change of a bent ribbon

R, mm 0, radian Lo1, mm L', mm Expected polymer length change, um

212.460 0.174 36.886 36.892 6

56.881 0.648 36.862 36.884 22

49.136 0.748 36.772 36.798 26

38.901 0.945 36.751 36.784 33

31.081 1.185 36.839 36.880 41

25.520 1.455 37.129 37.180 51

23.211 1.602 37.194 37.250 56

22.100 1.664 36.780 36.838 58

19.830 1.851 36.697 36.762 65

17.232 2.206 38.010 38.087 77
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Figure 5-24 Resonance frequency vs. the expected polymer length change
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5.6.2 Effect of membrane position on response

In some experiments we coated the polymer membrane on only part of the ribbon 

to minimize damping of the resonance frequency. Therefore, we were interested in 

whether position of the membrane affects the resonance frequency. A magnetoelastic 

ribbon o f 37.60 mm length was evenly divided into 7 parts as shown in Figure 5-26. A 

piece of Scotch tape was cut into the same size as one division. This piece of tape was 

placed on position from 1 to 7 in turn. The resonance frequency was recorded when the 

tape was put on each position. The middle of the ribbon at position 4 was always placed 

at the center o f the pick-up coil. Table 5-5 shows the measurement results. Figure 5-27 

shows the resonance frequency as a function of tape position. It is observed that sensing 

position does affect the resonance frequency. The resonance frequency is at maximum 

when the membrane is coated at the middle of the ribbon at position 4. The resonance 

frequency decreases when the membrane is coated at positions away from the center of 

the ribbon. Figure 5-28 shows the amplitude at the resonance frequency when the tape 

was put on each position. The trend is same as that of the resonance frequency. From 

Figures 5-27 and 5-28, we see that the resonance frequencies vary with sensing position. 

This result gives us two pieces of information. First, we should put the sensing polymer 

at the center o f the ribbon in order to increase the sensitivity if we only coat part of the 

ribbon with membrane. Second, we should keep the ribbon at the same place in the pick­

up coil center during the measurement. In all our experiments, we place the middle of the 

ribbon at the center of the pick-up coil, and we always position it in the same direction.

145

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



1 2 3 4 5 6 7

Figure 5-26. Top-view of a magnetoelastic ribbon evenly divided into seven parts.

Table 5-5 Resonance frequency vs. membrane position

Membrane position Frequency, Hz Amplitude, volt

No coating 58420 0.64934

1 56280 0.25305

2 57070 0.29185

3 58050 0.31265

4 58539 0.34414

5 58111 0.32701

6 57119 0.29869

7 56271 0.27234
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Figure 5-27 Resonance frequency vs. membrane position
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Figure 5-28 Amplitude at the resonance frequency vs. membrane position
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5.6.3 Modulus change of the sensing membrane

Equation (2-1) shows that the material modulus is one o f the main factors that 

affect resonance frequency. To make a sensor, we coat a layer o f sensing polymer 

membrane on the ribbon. Usually the sensing membrane is a hydrogel membrane with 

swellable polymer particles. These particles swell or shrink with changing solution pH. 

We wondered whether the swelling and shrinking would affect the material modulus.

The particles that were used in this experiment were aminated polyTCPA-VBC. 

4% particles suspended in 4% HYP AN HN 50 in DMSO solution. The mixture was put 

in a mold similar to that shown in Figure 3-8 except that the depth was 254 pm. After 

this mold was uniformly filled with the mixture, it was quickly immersed into water. The 

sensing membrane was easily peeled out from the mold. First, this membrane was put in 

pH 8 . 0  buffer to shrink the particles. The membrane modulus was measurement using a 

Dynamic Mechanical Analyzer (DMA 7e) equipped with a stainless-steel parallel plate 

measuring system. As shown in Figure 5-29, the shrunken membrane was placed on the 

base. A static force of 5 mN was applied on the parallel plate, which just barely 

contacted the polymer membrane. The measuring system was zeroed at this time. Once 

the pH 3.0 buffer was added into the testing cell, the measuring system recorded the 

displacement o f the parallel plate caused by polymer membrane swelling. The test 

temperature was set at 23 °C. Figure 5-30 schematically shows the membrane 

displacement measurement. Figure 5-31 shows the relationship o f  the static modulus and 

the static strain during swelling. It is observed that the modulus decreases as the 

membrane swells. This is consistent with resonance frequency shifts described in the 

next chapter.
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Figure 5-31 Static modulus decreases as the static strain increases during the sensitive 
membrane swelling.

5.7 Conclusion

The goal o f this research is to develop a new type o f continuously operating, 

remotely monitored sensor that does not require an electrical connection. The new sensor
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is based on a magnetoelastic metallic glass ribbon. An externally applied alternating 

current (ac) magnetic field is used to excite magnetoelastic waves inside the 

magnetoelastic thin ribbon. Frequency responses are monitored with a pick-up coil 

located outside the test area.

We used several physical models to study the factors that affect the resonance 

frequency of the magnetoelastic ribbon. This chapter summarized this part o f work. We 

studied the effects of liquid viscosity and mass loading on the resonance frequency of a 

magnetoelastic ribbon using models that have been widely accepted in the field of 

acoustic sensors. It was found that the working principle o f  magnetoacoustic sensors is 

similar to that of acoustic sensors. The new sensor responds to mass loading as a 

microbalance by decreasing its resonance frequency. When immersed in liquid, its 

resonance frequency is correlated with the square root of the product o f liquid viscosity 

and density. We studied the relationship between the frequency shift and the square root 

o f the product of viscosity and density of a starch solution. We found that the frequency 

shift is linearly proportional to starch concentration. After bonding a poly-hydroxyethyl 

acrylate (poIy-HEA) membrane on the magnetoelastic ribbon, the sensitivity o f the sensor 

to water loading is greatly increased.

One of the advantages of the new sensor is that it does not need an electrical 

connection to the ribbon. Therefore, it can monitor processes in situ such as 

polymerization and polymer curing. We built a physical model to monitor HEMA 

polymerization by immersing the end of a ribbon in the polymerizing solution. Another 

physical model was used to understand the effect of ribbon bending on the resonance 

frequency.
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CHAPTER 6

MAGNETOACOUSTIC CHEMICAL SENSORS FOR MONITORING

SOLUTION pH

6.1 Introduction

Swellable polymer microspheres were first used in fiber optic sensors by 

Seitz . 46 ,47 The basic idea is to entrap swellable polymer microspheres in a hydrogel 

membrane. The polymer microspheres swell and shrink as a function of analyte 

concentrations. Any of the physical signals accompanying swelling, such as refractive 

index, physical displacement, electrical properties, mass change, and modulus change, 

can be monitored. Many different kinds o f swellable microspheres have been developed 

in our group in the last few years.

In this chapter, we discuss pH monitoring using the Resonance Meter based on 

the swellable polymer microspheres. First, the pH sensitive microspheres are suspended 

in a hydrogel solution. Then this solution is spin-coated onto the surface o f a 

magnetoelastic ribbon to form a hydrogel membrane with entrapped pH sensitive 

microspheres. These microspheres swell or shrink with changing liquid pH. When they 

swell, they take up water and become softer. This increases the water loading on the 

magnetoelastic ribbon and decreases the membrane modulus. Therefore, the resonance 

frequency for the swollen state is smaller than for the shrunken state
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Making the chemically sensitive ribbon is the most important step in developing 

these sensors. Polyurethane is first coated on both sides of the ribbon to prevent it from 

corrosion. The coated strip is placed in an oven at 150 °C for 15 minutes to form a 

uniform polyurethane layer. Then a layer of sensitive polymer membrane is coated on 

one side o f the ribbon. This membrane is left in air for 24 hours to evaporate the solvent. 

During this period of time, the hydrogel penetrates into the polyurethane layer and glues 

itself on the substrate. Currently the optimum hydrogel is HYP AN Structural Hydrogel 

from HYMEDIX International, Inc. The pH sensitive microspheres include amine 

derivatized polyTCPA-VBC and carboxylate derivatized poIyVBC. Their responses in 

the Resonance Meter to pH are similar to those using optical methods described in 

Chapter 4. The resonance frequency of the sensitive ribbon increases as the solution pH 

increases from pH 6  to 8  for the amine derived polyTCPA-VBC microspheres. This is 

due to microsphere shrinking, which results in lower water content and increasing 

membrane modulus. In contrast, polyVBC microspheres that contains carboxylate 

groups gradually swell with pH from 2 to 8 . This results in increasing water content and 

decreasing membrane modulus. Therefore, the resonance frequency of the sensitive 

ribbon made with this kind of microspheres decreases as the solution pH increases from 

pH 2 to 8 .

As discussed in Chapter 4, all HYP AN polymers used in this study showed 

hysteresis during repeated swelling and shrinking. Therefore, it was not surprising to 

observe this phenomenon when monitoring solution pH magnetoacoustically. However, 

we found that hysteresis of the resonance frequency is related to the HYP AN types. The 

HYP AN hydrogel with high water content shows low hysteresis. This gives us a hint of
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how to look for new hydrogel that is suitable for the magnetoacoustic sensors in the 

future. The size o f the frequency shift is larger at high bead concentration. Bead 

concentration is limited by the ratio o f the bead amount to the HYP AN polymer amount. 

This ratio dominates the properties of the membrane. Usually 4% beads are suspended in 

4% HYP AN DMSO solution in our experiments.

6.2 Monitoring Solution pH

6.2.1 Polyurethane coatings on magnetoelastic ribbons

Corrosion and adhesion were serious problems when we started to develop pH 

sensors. Because the ribbons are made of an alloy of iron, nickel, molybdenum, and 

boron, they get rusty in humid environments. Typically, they get rusty when exposed to 

humid air for a week or to water for a day or two. We tried depositing a layer of inert 

metal, for example gold, on the ribbon surface. But this requires special approaches and 

introduces an adhesion problem between the inert metal and its substrate. It is also 

expensive compared to the cheap ribbons and the Resonance Meter itself. Therefore, we 

decided to focus on polymer coatings on ribbons to prevent them from corroding. 

Chemicals, such as Superglue and vinyltrimethoxysilane, failed as coatings because they 

formed rigid films that completely damped the resonance frequency. Finally, we tried 

polyurethane coatings, which are successfully used for a wide variety o f applications. 77,78 

Figure 6 - 1  shows the polyurethane chemistry. 79 ,80 Its focal point is the isocyanate group 

that can undergo many different reactions. Conventional solventbome polyurethane 

coatings include an isocyanate component and a polyol component. After mixing, the 

reaction begins immediately, which limits the amount o f time for the system to be cleanly
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applied. In this work we used Bayhydrol 110 from Bayer Corporation. Bayhydrol 110 is 

an anionic dispersion of an aliphatic polyester urethane resin in water/1 -methy 1-2 - 

pyrrolidinone. It is a water compatible polyurethane coating. The typical water 

compatible polyurethane is actually a polyurethane-polyurea that contains both the 

urethane (-NH-CO-O-) and urea (-NH-CO-NH-) groups in a macromolecular chain. 

Figure 6-2 shows one example o f the formation o f a polyurethane dispersion. 79 There are 

many advantages to the polyurethane coatings, such as excellent adhesion, excellent 

hardness and elasticity, and abrasion resistance.

First, the polyurethane dispersion is spin-coated on one side of a ribbon. The 

spin-coater is set at 2500 rpm with quick start and stop for 20 seconds. Then the ribbon 

is put in an oven at 150 °C for 15 minutes to from a polyurethane layer. After it is taken 

out and cooled to room temperature, the other side is also coated with a layer of 

polyurethane. The thickness o f the polyurethane layer was measured with an Alpha-Step 

100. As shown in Figure 6-3, it is 3.8 pm. After the polyurethane coatings are applied, 

the ribbon can stay in water for more than one month without getting rusty. Figure 6-4 

shows the effects of the polyurethane coatings on the resonance frequency of a 

magnetoelastic ribbon. It is observed that the resonance frequency decreases after 

applying polyurethane coatings. However, the resonance frequency peaks are very sharp 

in all three cases: a bare ribbon, coating on one side, and coating on both sides o f the 

ribbon. Although the resonance frequency shifts downward a little, it is still in a good 

working range. The sharp peak indicates a good balance between hardness and elasticity 

o f the polyurethane coatings.
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Figure 6-3 Thickness measurement of polyurethane layer

a: bare ribbon 
b: coating one side 
c: coating both sides
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Figure 6-4 Effect of the polyurethane coatings on the resonance frequency o f a 
magnetoelastic ribbon
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6.2.2 Preparing polymer coated ribbons

Chemical sensors are prepared by coating ribbons with a layer o f polymer on the 

polyurethane coated ribbons. The membrane is typically coated on only one side o f the 

ribbon. It is a hydrogel containing pH sensitive polymer microspheres. Although there 

are a variety o f hydrogels, such as PVA and polyHEMA, most of them have poor 

adhesion to the ribbons and polyurethane coated ribbons. The hydrogels used in this 

study were HYP AN Structural Hydrogels from HYMEDIX International, Inc. HYP AN 

polymers are hydrophilic acrylate derivatives with a copolymer structure that contains 

hard blocks and soft blocks in each polymer chain. 81,82 The hard blocks contain nitrile 

groups, which form organized, crystalline regions that are responsible for the mechanical 

strength o f the hydrogel. The soft blocks contain hydrophilic groups derived from acrylic 

acid. They constitute the amorphous regions and are responsible for swelling, flexibility 

and other properties. Figure 6-5 shows the HYP AN copolymer structure and typical soft
O t

block groups. The properties o f HYP AN polymers are dependent on the relative 

lengths of the hard and soft blocks, and the functional groups on the soft blocks. There 

are many advantages to HYP AN structural hydrogels, such as controllable water content, 

high mechanical strength, and solvent resistance. In our experiments, we used HYP AN 

HN30, HN50, and HN80. The HN number represents the water content of that type of 

hydrogel. The water content is defined as a ratio of the amount of water in the swollen 

polymer to the total weight as shown in the following equation:

, w o/v wet weight - dry weight , , Awater content (%) = ------------------ ------ - — x 1 0 0
wet weight

HYP AN HN30, HN50, and HN80 are neutral grades o f HYP AN structural polymers. 

Their swelling is independent of solution pH. The only solvents that dissolve HYP AN
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polymers are dimethylsulfoxide (DMSO), dimethylformamide, and a 55% solution of 

sodium thiocyanate in water. In our research, we evaluated 10% HYP AN polymer in 

both DMSO and a 55% solution o f sodium thiocyanate (NaSCN) in water. A physical 

three-dimensional network is formed after solvent exchange or solvent removal. The 

former occurs when the HYP AN polymer in DMSO is placed in water. The latter 

involves drying.

The pH sensitive polymer microspheres are polyTCPA-VBC particles containing 

amine groups and polyVBC particles containing dicarboxylate groups. The bead 

concentration is 4% (w/w) if not otherwise mentioned. A typical formula is to add 

0.0400 g o f beads to 0.6000 g o f DMSO. After completely suspending the beads by 

sonicating and stirring, 0.4000 g o f 10% HYP AN polymer in DMSO is added into the 

mixture. Therefore, the final suspension contains 0.0400 g beads, 0.0400 g of HYP AN 

polymer, and 0.9600 g of DMSO. The above procedures and the amounts of beads,

HYP AN polymer and DMSO are all critical to the sensor formulation. First, the solution 

of HYP AN polymer in DMSO is very viscous. At the same time, it has to be free of 

water to prevent coagulation. That means the microspheres must be dry when added to 

the HYP AN polymer solution. It is impossible to obtain a good suspension if the dry 

microspheres are directly added into the HYP AN polymer solution because the 

microspheres coagulate together in the viscous solution. Therefore, we first suspend the 

dry microspheres in DMSO and then add 10% HYP AN polymer solution to obtain a good 

suspension. Second, the HYP AN polymer concentration in the suspension is 4% (wt/wt) 

in DMSO. This concentration has low viscosity and good flow for spin coating. Figure 

6 - 6  shows that the total thickness of the polyurethane and 4% HYP AN HN50 is about 8.0
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p.m. The HYP AN solution is also spin-coated at 2500 rpm with quick start and stop for 

20 seconds. Therefore, the thickness of the HYP AN membrane is probably about 4.0 

(im, the same as the polyurethane membrane shown in Figure 6-3. Third, DMSO can 

pre-swell the polyurethane layer, which promotes a good adhesion of the coating. The 

coating is dried at ambient temperature for 24 hours. Finally, the amount ratio o f  the 

microspheres to the HYP AN polymer in the sensitive membrane is 1:1. This ratio has 

suitable mechanical properties for monitoring solution pH.

6.2.3 pH measurements

The pH measurement was described in Section 3.4.7. Two kinds of microspheres 

were used for pH measurements. One was diethylamine derivatized polyTCPA-VBC. In 

our first experiment, the suspension was spin-coated on a bare ribbon without a 

polyurethane adhesion layer. Figure 6-7 shows that its resonance frequency varies with 

pH. We see that the resonance frequency increases as the pH increases. This result is 

probably caused by changes in both the water content and the material modulus. From 

Chapter 4 we know that the amine derived polyTCPA-VBC particles are protonated as 

the pH changes from 8.0 to 6.0. Due to the static electric force caused by introduction of 

a charge onto the polymer backbone, the particles swell when pH decreases. This results 

in increased water content and lower material modulus. Luckily, both these two factors 

affect the resonance frequency positively, and cause the resonance frequency to decrease. 

The particles deprotonated with increasing pH. At this time, the particles shrink. This 

causes the water content to decrease and material modulus to increase. It is observed that
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the resonance frequency increase as the pH increasing. Usually the ribbon without a 

polyurethane layer gets rusty after one measurement cycle.

Figure 6 - 8  shows two measurement cycles for the resonance frequency o f a pH 

sensitive ribbon with a polyurethane layer. It is observed that the polyurethane layer does 

not affect the solution pH measurement. Furthermore, this ribbon can withstand the pH 

changes for many cycles without rusting. It is observed that the pKa is around 6 .8 . 

Therefore, this sensitive ribbon responds to pH from 6.0 to 8 .0 .

The other pH sensitive microspheres that were used were polyVBC containing 

carboxylate groups. Figure 6-9 shows the resonance frequency o f a pH sensitive ribbon. 

The ribbon is coated with polyurethane and HYP AN membranes. PolyVBC particles 

containing carboxylate groups are entrapped in the HYP AN membrane. It is known that 

malonic acid has two pKa’s, one at 2.847 and one at 5.696. However, Figure 6-9 shows 

that the resonance frequency continuously decreases as the pH changes from 2.0 to 8.0. 

We can’t see separate regions corresponding to different pKa’s. This result agrees with 

that measured optically in Chapter 4 and is probably caused by partial hydrolysis of 

diethyl malonate. As mentioned in Chapter 4, we know that the sizes o f polyVBC 

particles are larger than that of polyTCPA-VBC particles. Moreover, the thickness of the 

HYP AN membrane is about 4.0 pun. This results in poor adhesion o f the HYP AN 

membrane containing large polyVBC particles on the polyurethane substrate. Therefore, 

we can’t run multiple measurement cycles for the membrane used for the data in Figure 

6-9. The variation in resonance frequency with pH in Figure 6-9 differs from that in 

Figure 6 - 8  because the polyVBC particles containing carboxylate groups are neutral 

when protonated at low pH and charged when deprotonated at high pH. However, the
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effects o f the water content and material modulus are same as for amine derivatized 

polyTCPA-VBC particles.
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Figure 6-5 HYP AN copolymer structure and typical groups o f the soft blocks

165

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Figure 6 - 6  Total thickness of polyurethane membrane and 4% HYP AN HN50 membrane
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Figure 6-7 Resonance frequency vs. pH for a ribbon coated with HYP AN HN 50 
membrane containing amine derivatized polyTCPA-VBC microspheres
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Figure 6 - 8  Resonance frequency vs. pH for aminated polyTCPA-VBC particles 
HYP AN HN50 coated on the polyurethane layer
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Figure 6-9 Resonance frequency vs. pH for a ribbon coated with polyurethane layer and 
HYP AN HN50 membrane entrapped with carboxylated polyVBC particles.
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6.2.4 Response time

The current Resonance Meter in our group can only scan a pre-determined 

frequency range to obtain a resonance frequency peak. Then the resonance frequency is 

determined from this peak. Usually it takes 1 to 4 minutes to obtain one peak, depending 

on the pre-determined frequency range and scan rate. For example, it takes 3 minutes to 

scan from 56 to 58 kHz i f 200 data points are taken. It is difficult to study the response 

time with this slow rate of recording the resonance frequency. Therefore, the Resonance 

Meter has been updated since it was developed in Grimes’ research group. At present, 

the Resonance Meter in Grimes’ group can directly record the resonance frequency 

without scanning the whole frequency range. It only takes 500 milliseconds to record a 

resonance frequency. Figure 6 - 1 0  shows the response time when a pH sensitive ribbon is 

immersed in different buffers. The ribbon was made in our research group. It was first 

coated with polyurethane and then coated with 4% HYP AN HN 50 with 4% amine 

derived polyTCPA-VBC microspheres. The response time was measured by the Grimes’ 

research group with the updated Resonance Meter. The sensitive ribbon was alternately 

placed in pH 4.5 and pH 8 . 1  buffers. The buffers were made from a mixture o f 0.015 M 

acetic acid and 0.015 M K2HPO4 . The pH values were adjusted using 1 M HC1 or 1 M 

NaOH. All measurements were performed at a temperature of 23±1°C. It is observed 

from Figure 6-10 that the pH sensitive ribbon is immersed in each buffer for 10 minutes. 

There are three measurement cycles. The response is so fast that the resonance frequency 

shifts immediately after changing the pH buffer. This agrees with the results measured 

with optical methods.
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amine derived polyTCPA-VBC particles
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6.2.5 Hysteresis of the resonance frequency in different HYP AN membranes

HYP AN polymers have special swelling properties when they swell in water.

The final water content depends not only on the type of HYP AN, but also on the polymer 

concentration before the coagulation step. Table 6-1 shows the water content o f HYP AN 

HN6 8  at different polymer concentrations. 82 The swelling degree decreases as the 

polymer concentration increases. The reason is that intra-chain clustering dominates at 

low polymer concentration and inter-chain clustering dominates at high polymer 

concentration. The polymer swells more in the former case than in the latter. This means 

that the water content of the membrane can be controlled without changing chemical 

composition of the polymer. It is known that the modulus of HYP AN polymers 

decreases as the water content increases. Therefore, the material modulus is closely 

related to both the HYP AN type and its concentration. Table 6-2 shows the mechanical 

properties and permeability of HYP AN HN50 and HN70.81 The strength Eo o f the 

material is defined as the stress at fracture. The elongation-to-break is defined as the 

strain at fracture. The larger the elongation-to-break is, the more ductile the material.

The elastic modulus is the slope of the stress-strain curve evaluated at the origin. It is 

calculated using equation (2 -2 ) where the elastic modulus is the ratio of the stress over 

the strain.

The above information is very important for developing sensitive ribbons and 

analyzing their frequency responses. First, the purpose of coating the hydrogel 

membrane is to hold pH sensitive microspheres on the ribbon. There are three main 

requirements for the hydrogel membrane. One is to adhere to the polyurethane substrate. 

Second is to have large shifts in the resonance frequency when the microspheres swell or
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shrink. Another is to be highly permeable to the analytes. Considering all o f  these 

factors, we suspended 4% microspheres in 4% HYP AN polymer solution in DMSO. The 

dried sensitive membrane contains 1:1 (w/w) microspheresiHYPAN. We want to make 

the ratio as large as possible while maintaining good adhesion. Mechanical effects that 

depend on the hydrogel membrane were observed when using different HYP AN types. 

Figures 6-11,6-12, and 6-13 show the resonance frequency vs. pH for sensors prepared 

with HN30, HN50, and HN80. The pH sensitive microspheres are amine derivatized 

polyTCPA-VBC. It is observed that the resonance frequency measured for increasing pH 

differs form that for decreasing pH, i.e. two curves measured during increasing and 

decreasing pH do not completely overlap. This phenomenon is known as hysteresis. The 

hysteresis differs for different HYP AN types. We find that the hysteresis decreases when 

the water content in the hydrogel increases. The hysteresis is smallest in Figure 6-13 

using HYP AN HN80 to make the hydrogel membrane. From Table 6-2, we know that 

HN80 has the smallest elastic modulus and largest permeability coefficient among HN30, 

HN50, and HN80. The microspheres easily overcome the mechanical resistance of the 

hydrogel membrane to swell with decreasing pH. When they shrink, they do not collapse 

suddenly due to the small recovery force of the hydrogel membrane. In this case, the 

response of the sensitive ribbon is basically controlled by the properties of the 

microspheres.
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Table 6-1. Water content o f HYP AN HN68 at different polymer concentrations82

Polymer Concentration Water Content at Swelling Equilibrium (%)

25% 71.0

35% 66.0

50% 60.7

Table 6-2 Mechanical properties and permeability of HYP AN HN50 and HN7081

Property HN50 HN70

Water Content (%) 55.0 73.0

Tensile Strength (kg/cm2) 65.0 15.0

Elongation at Break (%) 400 1180

Eo (kg/cm2) 70.0 16.0

Elastic Modulus (kg/cm2) 16.3 1.3

Permeability Coefficient of water P x 10' (cm2/sec) 7.0 50

Permeability Coefficient of NaCl P x 107 (cm2/sec) 1.8 45
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Figure 6-11 Resonance frequency vs. pH for HYP AN HN30 containing entrapped amine 
derivatized polyTCPA-VBC microspheres.
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Figure 6-12 Resonance frequency vs. pH for HYP AN HN50 containing entrapped 
derivatized polyTCPA-VBC microspheres.
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Figure 6-13 Resonance frequency vs. pH for HYP AN HN80 containing entrapped amine 
derivatized polyTCPA-VBC microspheres.

6.2.6 Stability

A ribbon coated with polyurethane and HYP AN HN 50 membrane containing 

amine derivatized polyTCPA-VBC microspheres was immersed in water for 10 hours, 

pH5 buffer for 10 hours, and pH8 buffer for 10 hours. Figure 6-14 shows that the 

resonance frequency fluctuated only slightly. First, it indicates that the polyurethane 

layer is a good protection from corrosion. As mentioned early, a bare ribbon would rust 

after 30 hours in water. Second, no sudden changes in resonance frequency were 

observed, which confirms that the HYP AN membrane adheres to the polyurethane layer 

very well. Curves a, b, and c in Figure 6-15 show the resonance frequency peaks for the
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coated ribbon sitting in water for 10 hours, pH5 buffer for 10 hours, and pH8 buffer for 

10 hours, respectively. It is observed that all three peaks remain sharp. This further 

indicates that the membrane adheres to the substrate because the resonance frequency 

peak would be damped if the HYP AN membrane partly delaminated from the 

polyurethane layer. Finally, the pH sensitive microspheres continue to respond after 

staying in the swollen and shrunken states for a long time. Usually, it takes only several 

minutes to finish one measurement if we make disposable sensitive ribbons in the future.

a: water 
b: pH5 
c: pH8

54200 -

X  54000-

ocz0)
cr 53800 -  0}

L l_

Cco
o 53600 -
CO<uCC

53400 -

0 100 200 300 400 600 700500

Time, minutes

Figure 6-14 Resonant frequency vs. time for a coated ribbon containing amine 
derivatized polyTCPA-VBC microspheres immersed in water for 10 hours, pH 5.0 buffer 
for 10 hours, and pH 8.0 buffer for 10 hours.
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a: water 
b: pH5 
c: pH8

0 .0 6 -

0 .0 5 -

0 .0 4 -

0 .0 2 -

0.01 -

52000 52500 53000 53500 54000 54500 55000

Frequency, Hz

Figure 6-15 The resonance frequency peaks after the ribbon was immersed in water for 
10 hours, pH 5.0 buffer for 10 hours, and pH 8.0 buffer for 10 hours.
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6.2.7 Effect of bead concentration on the resonance frequency of a sensitive ribbon

Five ribbons were initially spin coated with polyurethane layers. Five 

suspensions were made of 4% HYP AN HN50 containing amine derivatized polyTCPA- 

VBC microspheres. Their concentrations were 0, 1.0%, 2.0%, 3.0%, and 4.0%, 

respectively. These suspensions were spin-coated onto the ribbons to make five coated 

ribbons containing different bead concentration. Table 6-3 shows the resonance 

frequency o f each ribbon in different buffers. The resonance frequency o f each ribbon 

was first measured in pH 3.0 buffer, and then in pH 8.0 buffer. The resonance frequency 

shift is defined as the difference between the resonance frequencies measured in pH 3.0 

and pH 8.0. Figure 6-16 shows that the resonance frequency shift increases as the bead 

concentration increases. The linear regression equation is:

Resonance frequency shift = 26 + 249 x (beads concentration)

Obviously, a simple method to increase the signal is to increase the beads concentration. 

However, there is a maximum practical bead concentration. First, the HYP AN polymer 

solution in DMSO is very viscous. It is difficult to suspend the pH sensitive 

microspheres in the HYP AN solution without coagulation. Second, we notice that 

DMSO is removed through evaporation after the HYP AN membrane forms. Therefore, 

DMSO should not be included when calculating the true bead concentration in the 

HYP AN membrane. For example, the suspension of 4% beads in 4% HYP AN HN50 

polymer in DMSO contains equal amount of beads and HYP AN HN50. There are only 

beads and HYP AN HN50 polymer left in the sensitive membrane after DMSO is 

removed. The bead concentration is actually 50% in the membrane. We know that the 

mechanical properties o f both the beads and the hydrogel membrane affect the resonance
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frequency o f the coated ribbon. The mechanical properties are controlled not only by the 

HYP AN types, but also by the ratio of beads to the HYP AN polymer. Therefore, we 

should consider this ratio when we vary the beads or the HYP AN polymer concentration.

Table 6-3 Measurements of the resonance frequency at different beads concentrations

Beads concentration in the 
sensitive membrane, 
%(wt/wt)

Resonance 
frequency in pH3.0 
buffer, Hz

Resonance 
frequency in pH8.0 
buffer, Hz

Resonance 
frequency shift, 
Hz

0 54651 54657 6

1.0 54417 54805 388

2.0 54315 54723 408

3.0 54200 54940 740

4.0 53774 54847 1073
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Figure 6-16 Resonance frequency shift vs. bead concentration in the HYP AN HN 50 
membrane

6.3 Conclusion

Chemical sensors were prepared by coating magnetoelastic ribbons with a 

chemically sensitive layer. We initially spin coated waterborne polyurethane on both 

sides of the ribbon. The polyurethane layer protected the ribbon from rusting without 

affecting the resonance frequency. The thickness o f the polyurethane was about 4.0 

micrometers.
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HYP AN structural hydrogel polymers were used to hold pH sensitive 

microspheres. A typical formulation is 4% beads in 4% HYP AN polymer solution in 

DMSO. DMSO can pre-swell the polyurethane layer and increase the adhesion to the 

HYP AN membrane. PolyTCPA-VBC microspheres containing amine groups were used 

to monitor pH from 6.0 to 8.0. These microspheres swell at low pH and shrink at high 

pH. The resonance frequency increases as the pH increases. PolyVBC microspheres 

containing carboxylate groups were used to monitor pH from 2.0 to 8.0. These 

microspheres shrink at low pH and swell at high pH. The resonance frequency decreases 

as the pH increases.

Swelling and shrinking can affect the resonance frequency because they change 

the water content and elastic modulus of the sensitive membrane. It should be noted that 

mechanical properties o f the membrane also affect the frequency. Therefore, all variables 

that affect the mechanical properties o f the sensitive membrane, such as the HYP AN type 

and the ratio o f the beads to the HYP AN polymer in the dry membrane, should be 

carefully controlled. The goal is to minimize the effects of the hydrogel membrane and 

maximize the effects o f the pH sensitive microspheres. Another advantage o f the pH 

sensitive ribbon is that it can be used many times when monitoring solution pH. Dried 

sensitive ribbons have long shelf lives without special storage requirements. Considering 

the convenience, cost, and other advantages of this sensor unit, magnetoacoustic sensors 

are expected to have a variety of applications in the future.
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CHAPTER 7

CONCLUSIONS

PolyTCPA-VBC microspheres were prepared by dispersion polymerization. The 

purpose of making this copolymer is to increase the hydrophilicity and introduce porosity 

o f the polymer material. The poIyTCPA-VBC microspheres are derivatized with 

diethylamine to introduce pH sensitive tertiary amine on VBC groups and hydrophilic 

amide groups on the TCPA groups. The derivatized microsphere swell at pH lower than 

pH 6.0 and shrink at pH higher than pH 8.0.

PoIyVBC particles were prepared by suspension polymerization. They were 

lightly crosslinked with DVB. A mixture of xylene and dodecane was used as the 

porogenic solvent. After polymerization and removing solvent, the space occupied by the 

porogenic becomes pore space. In order to obtain small particles by suspension 

polymerization, we used a new technique called SPG to prepare the monomer emulsion. 

In addition to the pore size in the glass membrane, many factors like applied pressure and 

the amount of reagents affect the sizes of emulsion droplets. The polyVBC particles are 

derivatized with diethyl malonate in a non-aqueous system and then hydrolyzed in 1:1 

water:DMSO. The final derivatized polyVBC particles contain carboxylate groups.

They are protonated at high pH and de-protonated at low pH.

Optical properties of derivatized polyVBC-TCPA and polyVBC particles were 

studied through turbidity measurements. These particles are entrapped in a hydrogel
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membrane. Then the sensitive membranes were placed in different pH buffers and their 

turbidities were measured. The turbidities of the sensitive membrane containing 

derivatized polyTCPA-VBC particles increase as the pH increase, but those containing 

derivatized polyVBC particles decrease as the pH increase. Different hydrogels, such as 

PVA and different HYP AN polymers were used to prepare the hydrogel membranes. 

Their effects in response time and hysteresis were studied. The hydrogel membranes that 

contain high water content had fast response and less hysteresis. Probably the material 

elastic modulus is involved in the response process.

A thin layer o f sensitive membrane was spin-coated on a magnetoelastic ribbon. 

Before that, a thin layer of polyurethane had been spin-coated on both sides o f  the ribbon. 

The polyurethane layer prevents the ribbon from rusting and increases its adhesion to the 

sensitive membrane. Many factors, such as viscosity o f the hydrogel solution, speed of 

the spin-coater, and the size of the particles, affect the process of making a sensitive 

membrane on a ribbon. The final sensor element is a magnetoelastic ribbon coated with a 

layer of hydrogel membrane containing pH sensitive polymer particles. Now it is ready 

to monitor solution pH at a determined range in a sealed container. For example, we can 

put the sensitive ribbon in a Teflon cell with a pH buffer and then put the cell at the 

center o f the pick-up coils of the Resonance Meter. If the sensitive ribbon contains 

derivatized polyTCPA-VBC particles, its resonance frequency increases as the pH 

increases from pH 6.0 to 8.0. If the coated ribbon contains derivatized polyVBC 

particles, its resonance frequency decreases as the pH increases from pH 2.0 to 8.0. 

Different HYP AN polymers were used to prepare the hydrogel membranes and their 

effects to the frequency responses were also studied.
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Many factors that affect the frequency responses of the coated ribbon and many 

possible applications o f the Resonance Meter have been studied in this thesis. These 

factors include ribbon length, ribbon bending, ribbon coatings, membrane thickness, 

membrane types, particles concentration, and so on. In addition to monitoring pH, the 

resonance meter can also be used for monitoring viscosity changes, mass loading, and 

polymerization.

Based on the above results, we can summarize as following. First, swellable 

microspheres can be used to make sensor elements. They can be derivatized to sense 

different analytes. Second, magnetoacoustic sensors provide not only new instruments 

but also new ideas for chemical sensing. Because they do not need any electrical 

connections to the sensitive elements, they have many possible applications in the future. 

For example, they can be used to monitor gastric pH of patients. They are ideally to be 

used in sealed containers or contaminated environment. However, there are still some 

problems that remain to be solved, such as hysteresis and determining accuracy and 

precision. For the swellable polymer, we need to better control particle sizes and their 

distribution by varying polymer formulation and improving techniques.
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APPENDIX A

FUNCTIONS OF COMPONENT METERS IN THE 

MAGNETOACOUSTIC CHEMICAL SENSOR

The following lists all components of the Resonance Meter.

1. KEPCO PROGRAMMABLE DC POWER SUPPLY
It is used to generate the DC bias current and then the desired DC field.

2. MACKLE FRM1400 PROFESSIONAL POWER AMPLIFIER
It is used to amplify the sinusoidal AC voltage from the signal generator.

3. STANFORD RESEARCH SYSTEM, MODEL SR830 DSP LOCK-IN 
AMPLIFIER

This dual-channel lock-in amplifier that tracks the signal generator frequency receive 
the preamplifier voltage from the pick-up coil and then send it to the controlling 
computer.

4. KEITHLEY 2000 MULTIMETER
It is used to monitor the amplified AC voltage.

5. HEWLETT PACKARD 3 3120A 15 MHz FUNCTION/ARB IT ARY 
WAVEFORM GENERATOR

It is used to output a sinusoidal AC voltage that is applied to a pair o f Helmhotz coils.

6. EARTH WORKS PREAMPLILIFER
It is used to amplify the voltage from the pick-up coil.

7. A HOMEMADE COMPUTER INSTALLED WITH MICROSOFT WINDOWS 
95 AND MERM 3.03 CONTROLLIONG PROGRAM

It is used to control all meters.

8. A PAIR OF AC DRIVE COILS WITH HELMHOLTZ CONFIGURATION 
It is used to generate a RMS magnetic field o f 55 mOe.

9. A PAIR OF DC BIAS FIELD COILS WITH HELMHOLTZ CONFIGURATION 
It is used to generate a 5.5 Oe DC magnetic field.

186

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



10. COMPENSATED PICK-UP COIL AND BUCKING COIL
They pick up the sensor responses and feed them into a preamplifier and then a lock-
in amplifier.

Note:

There used to be a Hall Probe and a Gauss Meter included in the Resonance 
Meter. They were used to monitor the magnitude of the magnetic field. However, 
they were taken away after the Resonance Meter was updated because the users 
usually don’t need to manually adjust the Resonance Meter. On the hand, it decreases 
the cost o f the Resonance Meter.

187

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



APPENDIX B

THE OPERATIONAL PANEL OF THE CONTROLLING PROGRAM

The Resonance Meter is remotely controlled with a programmed computer. The 
current program is MERM 3.03b.EXE, which is written by Dr. K. G. Ong in Dr. Crimes’s 
research group. Actually this program includes two controlling methods. One is called 
“One Time Measurement” that only runs the measurement for one time. The other one is 
called “Multiple Time Measurement” that automatically run the measurements for pre­
determined times. Double click this executable file and open a main window as the 
operational panel. The blanks in control blocks are explained as following.

The Experiment Setting Block

Start Freq: the starting frequency (kHz) in one measurement

the stopping frequency (kHz) in one measurement 

the number of data points that will be collected in one measurement 

the time interval (millisecond) between two consecutive data points

Stop Freq 

Points: 

D elay: 

Total Run the repeated times of measurements. The final results are averages o f all 
measurements.

Initial AC: the starting AC voltage (Volt in rms) outputted by the signal generator.
The AC voltage varies through out the experiment to stabilize the AC 
current.

Initial DCC: the starting DC current (A) outputted by the DC power supply. The DC
current varies through the experiment to stabilize the DC field.

ACC Band: the allowed tolerance (in %) for the fluctuation of the AC field

The Peak Finding Block

Points: the number of data points that will be collected during peak finding
process
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Delay-. the data interval (millisecond) between two consecutive data points

Total Run: repeated times o f the peak finding process. The final results are averages
o f all measurements.

The Time Control Block

The functions in this block are enabled only when running “Multiple Time Measurement”

Total Set : the number o f measurements that will be automatically run

Delay (M in): the time interval between two consecutive sets o f measurements

File Name: the preferred file name that will be automatically saved during
measurements

The Control Panel Block

Start: start running the “One Time Measurement” controlling method

Stop: stop running the “One Time Measurement” controlling method

Time Start: start running the “Multiple Time Measurement” controlling method

Time Stop: stop running the “Multiple Time Measurement” controlling method

The measuring process can be monitored through the Measurement Block, Peak 
Block, Progress Plot, and the Message Box. The Measuremenst Block is at the center 
column on the main window. It includes varying values from the signal generator, lock- 
amplifier, and digital multimeter. The Peak Block shows the frequency and amplitude of 
the final peak. The Progress Plot is at the top right o f the main window. It shows the 
magnitude as a function o f the frequency. The Message Box is at the bottom o f the main 
window. It shows the current data point that is being measured.
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Figure B -l Screenshot of the operational panel o f the controlling program o f the 
Resonance Meter
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APPENDIX C

INSTRUCTIONS FOR OPERATING THE RESONANCE METER

The operational procedures of the Resonance Meter are summarized as following.

1. Remove all metallic parts from the workbench. Make sure no ribbons at the 
center o f the pick-up coil.

2. Turn on all meters and allow them to warm up for 15 minutes. Put the right 
toggle switch o f the EARTHWORKS Preamplifier to ON position.

3. Turn on the computer and open the MERM 3.03b.EXE file.

4. Set experiment setting values in the operational panel. Typically the following 
values need to be set: Start Freq, Stop Freq, and Points in the Experiment Setting 
Block; Points, Delay, and File Name in the Time Control Block. Other settings 
can keep the default values

5. Put the sensitive ribbon in a Teflon cell, which contains the tested solutions. This 
cell is put at the center o f the pick-up coil.

6. In the Control Panel Block, click the “Start” button if just want to run the
measurement for one time, which is “One Time Measurement”. Otherwise, click 
the “Time Start” button to automatically run multiple measurements, which is 
“Multiple Time Measurement”. If the measurements run very well, they will 
automatically stop.

7. If  run “One Time Measurement”, save the file after the measurements. If run
“Multiple Time Measurement”, a file name is needed before measurements and 
the file is automatically saved during the measurements.

8. After all measurements, take out samples and sensitive ribbons from the center of 
the pick-up coil.

9. Close the program. Turn off the computer and then all meters.
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Notes:

1) For “One Time Measurement”, the Peak Finding Routine is typically turned off 
because it significantly increases the experiment time. Checking it in the Setting 
menu if want to run it. Peak values can be read from the Peak Block, or the saved 
data points, or the graph after the data points are plotted using other softwares. 
For “Multiple Time Measurement”, the Peak Finding Routine is automatically 
turned off. Peak values are automatically saved in the file that has been given a 
name before the measurements.

2) Usually all meters should be turned off at the end o f the day. If it is idle for a few 
hours during the day, the toggle switch on the EARTHWORKS Preamplifier 
should be put down to STANDBY.

3) All saved files can be re-opened and analyzed using the pre-installed 
Kaleidagraph software. Other softewares like Microsoft Excle can also be used to 
analyze the saved data points.

4) It is suggested not to manually stop the running program during measurements 
because this may result in freezing all meters. If this happens, close the program, 
turn off all meters, and then restart them.
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