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ABSTRACT
NUMERICAL SIMULATION OF ACOUSTIC WAVES IN A
RECTANGULAR CHAMBER
by

Normah Mohd.Ghazali
University of New Hampshire, December, 2001

Numerical simulation of acoustic waves in a closed two-dimensional rectangular chamber
-is considered. The waves are generated by a membrane or piston boundary condition
on one wall. The simulations are performed through many acoustic cycles. A stack of
heat exchanger plates are sometimes included. The study is motivated by thermoacoustic
refrigeration, a phenomena which uses sound waves in a chamber to achieve a éoo]jng effect.
The present study treats the flow numerically. The governing equations are the viscous
compressible Navier-Stokes system, assuming a perfect gas. The numerical method em-
ploys a finite difference spatial discretization and semi-implicit time-marching procedﬁre.
Veriﬁca,tion is accomplished by propagating Hneaf acoustic waves.
The desired result of forcing is a standing wave. I-iowever,the results show a significantly
more complex flow than the expected standing wave, includiﬁg beating, crosswaves, and
streaming. Vortex flow also appéa.rs near the wavemaker and in the area surrounding the

plate.
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Chapter 1

INTRODUCTION

Numerical simulation of acoustic waves in a closed two-dimensional rectangtilam chamber is
considered. The waves are generated by a membrane or piston boundary condition on one
wall. The simulations are performed through several acoustic cycles. Heat exchanging plates
of va.rious length and position are sometimes included. The simulations are 'niotiva.ted by
thermoacoustic refrigeration, a phenomena which uses sound waves in a chamber to achieve
a cooling effect.

Recent interest has been directed towards the study of thermoacoustic refrigei'ation due
to fhe overall simplicity of thermoacoustic devices. The thermoacoustic effect may have
been used over a century ago by European glass blowers. Known as the Sondhauss effect,
it was discussed qualitatively in 1877 by William Strutt [1]. An early modern thermoa-
coustic refrigerator was a testbed cryocooler built by Hoﬂer.in 1986 [2]. It was a gas-filled
resonator conta.ining a stack of pla.tes‘ and driven by a loudspeaker. Active study into
thermoacoustic appljcations appears to have started with the Montreal Protocol [3], an

international agreement to reduce and later stop the worldwide production of ‘harmful re-
_ frigerants, chlorofluorocarbons (CFCs). The absence of any réf;igerants, moving parts, and
lubricants makes thermoaéoustic refrigeration an appealing replacement for current refrig-
eration systems [4]. Unfortunately, previous thermoacoustic systemé have low coefficient of
. performance. Although they are generally simple, reliable, and inexpensive, further research

is needed before they can be an acceptable replacement to current systems.
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The numerical resuRs given herein treat the entire resona.f.or, and allow the acoustic
wave to evolve in time, adjusting to the no-slip boundary conditions, the presence of heat
exchanging plates, and other features. Previous numerical work on thermdacoustics has
mainly cpncentra.ted on the plate region where the cooling effects are observed [6]-[8]. Wor-
likar and Knio [6] used central finite difference methodology on recténgular grids. The
Navier-Stokes system is solved implicitly to first order. Their numerical study, however,
covers only the region enclosing two plates and without any oscillating flow anywhere in
their computational domain. They also néglect thermal diffusion. Ca.o et. al [7] also mod-

" eled the two plate region using finite differences, discretized tile governing equations on
staggered gtids. Their numerical method was only first order accurate in time, and the
physical model in(:luded both the diffusive and dissipative effects. However, the boundary
conditions have assumed a priori the presence of standing and/or travelling waves on the
left and right side of the horizontal plates.

The governing equé,tions for the present study are the viscous compressible Navier-
Stokes system, assuming a perfect gas. The numerical method employs a finite difference
spatial discretiza;tion and semi-implicit time marching procedure. All algebraic equations
é.re treated using the Gauss-Seidel iteration method. Linear terms are evaluated with the
Crank-Nicholson method,‘ and non-linear terms witﬁ the fourth-order Adams-Bashforth
method.

The results show that the oscillating flow ga.usés a variety of patterns, including beating,

cross waves, streaming, and other fows.
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Chapter 2

GOVERNING EQUATIONS

The governing equations a.re‘the equations of continuity, momentum and energy, assuming
a compressible Newtonian fluid with constant thermophysical properties. These equations

in Cartesian coordinates for two-dimensions are [5]

Dp _ :
Bt"'l'p(v'u)“o’ (1)
p(5+@ V)u) ==Vp+uVu+ £V (V- u), (@)
DT _ _._D£ ‘
peo gy =V (KVT) + 5o + 1@, ®3)

where ® is the viscous dissipation given by

o= |@) GG G e

p is the density, p is dynamic viscosity, K is the thermal conductivity, and ¢, is the isobaric
specific heat. The velocity components are (u,v). The bulk viscosity is assumed to be zero,
and body forces have been excluded.

Ideal gas behavior is assumed, where

p=pRT. | (5)
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. Density is now eliminated from (1) using (5), and the resulting equations are put in

dimensijonless form using

z Yy
t*=tw, z*=-§’ y*:E,
U v
u*=;ﬁ, U*=w—‘a P*“—‘;p—,
m
T D
T*':-—-—- ¥
T’ P pmRTy’

where H is the width of the resonator, w is the forcing frequency, and p,, 1), are the mean
density and temperature of domain. Note that the subscript generally refers to a mean or

average quantity. The dimensionless equations, after dropping the circumflex, are

2O-(DEL. e

Du 1 op V2 1 8 (Ou Bw
pm M276:B+Re _R_B_( + ) : )

Dy 1 9p 1 2, 1'a(au av)
Pt = M276y+ReV +3Reay 6:5+3y ’ ®)
DT 2 y—1\ Dp ' '
D PVT ( po )Dt+ (-1 ,(9)
The Reynolds number, Mach number, and Peclet number are defined as
H2w
Re = T, | (10)
wH :
M = , 11
VATt ()
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respectively.

The boundary conditions are no-slip, no-penetration, and zero heat flux,

v (Oa Y, t) =90,

L L
u (H’y7t) =v (E?yat) =0,
u(z,0,t) = v (z,0,t) =0,

u(z,1,t) =v(z,1,1) =0,

(12)

(13)

(14)

(15)

(16)

where L/H is the aspect ratio, and L is the length of the resonator. Furthermore, u(0,y,t)

will be chosen to drive the acoustic waves, as discussed later.
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Chapter 3

COMPUTATIONAL FORMULATION

The dimensional pressure, temperature, and density are separated into a mean and fluctu-

ating part,
p=pm+p, _ 17
T=Tn+T, (18)
p=pm+0, " (19)

where p/, T’A, and p are the fluctuating parts. Equations (17-19) are made non-dimensional
as before, inserted into (6-9), and the circumflex is dropped. After expanding the derivatives.
on the left-hand side, (6) becomes

Dp

1+T) Dt

—(1+p) -(1+p)(1+T)V-u (20)

Note that the dimensionless mean pressure, temperature, and density are unity. Equations

(7-9) become
du 1 ap 1 8 (6u v
ot T M248z +~V v +§Ee"3; (B:t: ) @z (21)
o 1 op 10 /Bu B |
ot M276y+—1_2_e_v +§—B (Bm ) Qs (22)
6
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- 1\ op _ 2
5% = Pe" T+( 5 Qr, | (23)

where the nonlinear terms are combined in the subscripted Q:

Du Su | ou

Q= TR fvgy‘a | (24)
Dy ov v
Qy= P'b"t' +“$ +'U‘a'y‘1 | (25) ‘
DT 8T oT 7—1)( ap ap) |
T e s _— — - N 2
Qr th+u6:v+v6y ( p 'u3m+v6y (26)

Note that viscous dissipation has been dropped, which is generally important only for very
low Re flow. Furthermore, the terms in (24-26) conta.iﬁing p are now neglected. This
a.pproxima,tion has the convenient consequence of eliminating p from the system, and can
be justified with a Boussinesq type scale argument.

Two approaches, A and B, are coﬁsidered. The difference between the methods concerns

the treatment of several terms in (20).

3.1 Approach A

The linear and nonlinear terms in (20) are separated, as before, resulting in

- op
at

2|3

- (V ) u) - QIH (27)
where Q) is given by

Qp=T(——+u——+v~;
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(u2+02) -
+(u6:z:+v¢9y +(p{-T+pT)V u, (28)

Eliminate p in (21-23) using (27) to obtain

Fu_ 1 ?_22_}_ Py T
02~ M2y \0x? ' Ozdy Ozt

10 /o 1 8 [8% , 6%
t Redt (V u) t 3R ot (6:1:2 + 61:8;(;)

+ M 5z (Qp) - gg (Qz) (29)

@__ 1 Pu v 9T
2" M2y \Ozdy  By? Oydt
190 1 8(8u
+‘R—e"a—t(vzv)+§-§e‘b—t (.é.’l:—a‘y"'-b‘y_i)
1 8 o )
+ 17535 (%) ~ 5 (%) ' (30)
£rj)—T—==—'-Y—V2T+(1——')')('V'-u)+(1‘—")’)Q,,,—’)’Q (31)
gt = Pe ‘ T

The above equations are solved simultaneously for u, v and T , and pressure is obtained

from
9 _ A (9L L e ‘
x 7—1(31: PeVT+QT) | (32)

A further assumption, often made by previous researchers, but not included here, is
large Peclet number. If Pe number is assumed to be large, then the diffusion term in (31)
is dropped. Equation (31) is then used to eliminate temperature in (29) and (30) to obtain

%u 1 (82u 62'v‘ )

32 = M \ o2 T 320y
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10 (o2 1 8 (6% &)\ -
+ o () g (S )
0
M2 8z

e (QtQr) -2 @), e

Pu_ 1 (Pu o
otz — M? \ 9zdy = Oy?
+..___. (VZ) 1 ?. _aﬁ‘_.,.gi’l
3Reat Oxdy Oy?
+im 5 O (@,+Qr) - 5 % () (39

The temperature and pressure would then be determined using

%f- = (1=7)(V-u) +(1-7)Q—1Qr, (35)

Equations (33-36) are only given for comparison with previous work. The diffusion term in

(31) was not neglected for the results given below.

3.2 Approach B

The second approach is to transfer a linear term, %, to the sum of nonlinear terms to
obtain

2 V-G (3)
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10

where Qp, is now defined as

B At
Qp-uaw+vay 17T/ D +pV-u. (38)
Using (38) to ¢liminate pressure in (21-23) gives
Pu_ 1 (Fu, O
ot2 — M2y \ 9z ' 9zdy v
10 (s 1 8 (0% &%
+ Redt (V 'u) + 3Re 8t (6:1:2 + 3:1:61;)
d 1 9 /.
- 5 Q)+ 3775 (%) )

Fo_ 1 (Fu &
8t2 ~ M2y \ 8zdy = Oy?

+ =2 (V?u) + 19 ( Ou | 32”)

Re 0t 3Re 0t \ 6z0y ' 9y?

9 1 9

-5 (@) + My By (@) - (40)
G-t (e (e w

The advantage of this approach is that (39) and (40) are now independent of temperature.

Pressure is obtained from equation (23):

gtﬁ I (5.{ - 5. VT + QT) . | (42)
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11
3.3 Numerical technigues

Spatial derivatives are approximated with finite differences, accurate to second order. Inte-

rior grid points use central differences, for example,

Ou _ Uit1,j — Ui-1,
oz~  2Az (43)
o Bu iy~ 2
Fr Az? ) (44)

One-sided derivatives are used on the boundaries, for example,

Ou , =3uij + 4ty — Uig2 -

e -%} J 4

Oz 20z ’ (45)
azugzui,j — Sty + Miyoj — Uits,j (46)

Oz? Az?

The temporal integration is achieved with a semi-ixﬁplicit method, where linear terms
are treated implicitly, and non linear terms explicitly. The linear terms in the equations
containing first order temi)oral derivatives, such as (29) and (30), are treated with the
Crank-Nicholson method in the usual manner. Note that the Crank-Nicholson ﬁlethod is
second order accurate. The nonlinear terms in (29) and (30) are treated with the Adams-
Bashforth method.- |

The linear terms in the equations with second order temporal derivatives must be ca.fe—
fully treated to avoid severe artificial damping of acoustic waves. Consider for example

62
SF =1
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12

The equation is approximated with

un+1 — ™ +- uﬁ—l fn.+1 + fn,—l
At? -2 ’

(47)

which can be shown to be second-order accurate in time. The non-linear terms in (29) and

(30) are approximated with

8Q: Q7 — Q27
SeadiTHE ()

which is first-order accurate in time. The complete set of discrete equations is given in
Appendix A.
Waves are forced by imposing the normal component of velocity along one side. The

z = 0 boundary used for this purpose, and the imposed velocity has the form
u (0, y) = Ush (y) sint,

where U, is fhe forcing amplitude of the velocity and h(y) is a shape function. Two
shape functions have been employed,; h =1, fvhich corresponds to a piston wavemaker,
and h = siny, which corresponds to a membrane. A piston boundary condition has the
left wall forcing amplitude constant in y, and the membrane boundary condition has a
sinusoidal increase in the amplitude with a maximum and a minimum occuring at the

chamber centerline.
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Chapter 4

VERIFICATION

Verification of computational formulation, numerical methods, and software is accomplished °
by propagating linear acoustic waves oomputa.tionally- and comparing the resulis to the exact
solution. Both inviscid and viscous cases are considered using approach A.

An exaét solution is found by discarding the viscous, conduction, and nonlinear terms,

and assuming the wave motion is one dimensional, reducing (33) to

2 1 (0%

The solution is

u = Upehout), : (50)

where U, k, and w are constants, and
wr= . (51)

The boundary at x = 0 is the wavemaker, oscilla.tipg at a dimensionless frequency of unity.
A forced wave will there;fore have w = 1, and k? = M2.

- The numerical solution to the linear inviscid equations is obtained using the metﬁods in
the previous section. The viscous terms are removed and the no-slip condition is discarded.

Otherwise the simulations are unchanged. The parameter values for a test case are given

13
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in table 4.1.
M 0.905
Pr 0.67
L/H 4.00
At 0.01
U, 01

Table 4.1 Parameters used in a test case.

Waves are allowed to propagate in the simulations until the domain is nearly filled, but
without reaching the oppdsite boundary to avoid reflections. Figure 4-1 shows the velocity
profile for a resolution of 400 x 100 (axial x transverse) at t = 5.656. Note in figure 4-1 that
the wave is not attenuated, as expected when diffusion is excluded, and the wave amplitude
matches the forcing amplitude of i?he wavemaker. Table 4.2 shows that the numerical results
produce wave parameters which converge to the exact solution as resolution increases. The
wavespeed matches the exact solution to approximately 3% at é resolution of 400, whilg the

wavenumber matches to within 0.11%.

spatial resolution | wave speed | wave number, k
100 x 30 1.0755 0.9232
200 x 30 1 1.0682 0.9022
400 x 30 1.0719 0.9060
exact 1.105 0.9056

Table 4.2 Inviscid: Computed and exact wave speed

Viscosity is now included. An exact solution is available again, assuming u = u (z,1).

Neglecting nonlinear terms and heat diffusion, equation (33) is

(52)

Pu_1u, 4 0 (0
812~ M209z2 ' 3Redt \'9x2)’
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Figure 4-1 Linear inviscid case: horizontal velocity
which has the solution

u(z,t) = Upe~“teth® : , (53)

The solution for an evanescent wave is obtained by choosing w to be real and solving for k,

resulting in

k=—7— (54)
MZ T 3Re
- Note that k is complex. The corresponding wave speed is
1 4iw
°=\7 "3 (55)

The value-of the wave number for Re = 40, and M = 0.905 is

k =0.905 + 0.012¢
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The value of the wavespeed is

¢ = 1.105 — 0.015¢

Note that the real part of the wavespeed and the wave number are not significantly different
from the inviscid casé, since the second term on the right of (55) is small compéred to the
first term. |
‘ The above exact solution is compared to the numerical results again by forcing waves
~that propa.ga.te parallel to the x-axis, and examining the results before the leading wave has
reached the opposite wall. The simulation is performed in two spatial dimensions, imposing
the no-slip condition on all boundaries. Figure 4-2 shows the resulting velocity along the
centerline of thé chamber at a time of 5.656. Note fhat a similar velocity profile near the
tof) or ‘bottom boundary (y=0 or 1) would be greatly altered due fo the boundary layer.

flow. This boundary layer, and other phenomena, are discussed in the next section.

0.01 T T T T T - T T
0.008 - |
0.006
0.004
0.002

u 0r
-0.002
-0.004
-0.006 [r
-0.008

_0.01 i H L i ]
0 0.5 1 15 2 2.5 3 3.5 4

Resonator length

T

e

Figure 4-2 Linear viscous case: horizontal velocity

The velocity profile in figure 4-2 clearly shows the spatial decay of an evanescent wave.
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However, the eprnentia.l envelope is not fully develqped, as can be seen in the leading
few waves of th;z profile. The simulation should continue to allow the profile to develop,
however, the leading Wa{re quickly reaches the opposite boundary, and reflections pollute
the solution.

Table 4.3 compares wave parameters between the exact and numerical solutions for
a Mew of resolutions. The decay factor is obtained using the logarithmic decrement.
Note that the leading wave is avoided when determining the decay factor. Increasing the
resolution for the y directic;n results in the wave speed that matches the exact solution to
within 2.7%, while the wave numbér matches to within 1%. Note that higher resolution in

y had no effect on the inviscid results, since there was no variation in y for the inviscid case.

spatial resolution | wave speed | wave number, k | decay factor
100 x 30 1.0755 0.9425 0.5542
200 x 30 1.0829 0.9003 0.5646
400 x 30 1.0829 0.8936 0.5848
800 x 30 1.0756 0.8969 0.5902
400 x 100 1.0755 0.9139 0.3490
exact 1.105 0.905 0.346

Table 4.3 Viscous: Computed and exact wave speed

Clga.rly, ‘the'accura,te match of wave speed, wave number, and decay factor between
exact and numerical solutions demonstrates the validity of the computational formuldtion,
the numerical techniques, and the computer codes.

Now include conduction in the linear viscous model. The linear equations, assuming

wave propagation in only one space dimension, are
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Pu_ 1 (Pu BTV, 40 ( "
92 M?y \Bz? Ordt)  3Redt \0z2)’ _
aT _ 4 T ou
= peaz TA- Mg (57)
dp v (6T 10T | .
5{_7-—-1(& Pedz? )’ (58)

The analytic solution is

u(z,t) = Uyje Wik, (59)

T (z,t) = Toe ek, (60)
p(z,t) = poe etk (61)

Substituting (59-61) into (56-58), one gets

s R o[
(1~ )ik (w-%) o T, | = 0. (62)
o ) e )

Since the coefficients U,; T,, and p, cannot be zero for a non-trivial solution, the determinant

of the matrix A must be zero. Let w = 1 to match the forcing frequency, then k is found to

be
- 2 ..
R (63
where
A=_P63'4L_T}f+%
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Choosing the parameters in table 5.1, the wave number is computed to be
k = 0.818 + 0.022i.

The corresponding wavespeed is
c=1.221 - 0.033¢

The simylations; are performed as before, using the piston wavemaker and allowing .wa.ves
to propagate nearly to thé'end wall. Figure 4-3 shows the computed axial velocity along the
centerline Qf the chamber at this time. Table 4.4 shows the results at different resolutions.
Note that conduction (+) has decreased the wave speed in comparison to the solution of

the linear viscous case without conduction (—), as can be seen in figure 4-4.

spatial resolution | wave speed | wave number, k | decay factor
100 x 30 0.9724 1.0556 0.2600
200x 30 - 0.9577 1.0349 0.2875
400 x 30 0.9724 1.0006 0.3541
800 x 30 0.9724 1.0029 0.3502
400 x 100 0.9724 ~ 1.0006 - 0.3541
exact 1.221 0.8190 0.3509

- Table 4.4 Viscous with conduction: Computed and exact wave speed
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Chapter 5

RESULTS WITHOUT PLATES

- Consider the numerical solution to the full non-linear Navier-Stokes system with conduction.
The heat exchanger plates normally installed in a practical thermoacoustic device are not
included here. A set of parameters (shown in table 5.1) is chosen based on a typical operating

condition for a thermoacoustic resonator.

P, 101 kPa
T 293K
M 0.7854 .
Pr 0.67
Re 800000
Pe 6000600
L/H 4.00
At 0.001
Ax _ 0.01
U, 0.001

Table 5.1 Parameters for a test case.

The Mach number is chosen so that the forcing will produce waves with a half wave-

length (n=0.5) that matches the domain length, Using linear inviscid theory, (51) gives

M=k=‘—2}‘£, (64)

where ) is the dimensionless wavelength. The wavelength is chosen to be twice the length

of the chamber:

A=2L, ' (65)
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M= (66)

T
I
A membrane wavemaker is employed, which models a loudspeaker, as used in most ther-
moacoustic refrigerators. The wavemaker is on the left wall of the rectangular chamber.
The forcing is maintained for the duration of the simulation. Results for a typicé.l case
using a membrane wavemaker are shown in figures 5-1 and 5-2 with a resolution of 100x30.
.Figure 5-1 shows a sequence of surface plots of axial velocity, u, while figure 5-2 shows the
transverse velocity, v. Note that the period of the wavemaker in the rescaled system is 2.
Hence the results in figures 5-1 and 5-2 correspond tc; an interval of ten periods c;f forcing.

Higher resolution simulations (400x100) are shown in figures 5-3 through 5-6 for the
same case. Higher resolution required a smaller time step, and made a ten cycle simulation
difficult to achieve. Note that figures 5-3 through 5-6 correspond to an interval of ounly one
cycle of forcing.

Surface plots of u and v with a piston wavemaker (instead of the membrane) are shown
in figures 5-7 and 5-8. Note that the axial velocity imposed by the piston wavemaker
(constant in y) in figures 5-7 and 5-8 is gqual to the maximum axial velocity imposed by the
-membrane wavemaker, which occurs in the wavemaker center. This results in the acoustic
wave dﬁven by a piston having a higher amplitude than the wave driven by a membrane,
as can be seen by comparing 5-1 and 5-7.

Several diagnostic quantities are evaluated at each time step 'during the simulations.

The quantities are the average temperature in the domain,

T=%//ﬂm. - (67)
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the energy flux across a line of constant x,

=g [, (69)

the average kinetic energy of the system ,

'.ﬁ = %. / / (w?+0?) av, (69)

and N
C h= 1 / vidz | (70)
L ’,

wlﬁch is a useful measure of streaming, the expression V being the volume of the domain.

Figures 5-9, 5-10, and 5-11 show the diagnostic quantities corresponding to the results
in figures 5-1 and 5-2. Note that the mean temperature shown in figure 59 is oscillatory.- A
careful observation of figure 5-9 revea.ls.fhat the témperafure does not return to zero after
a fevc} cycles, and the maximum temperature has slightly increésed. This is attributed o
viscous dissipation.

rI_‘he: desired result of the forcing is a standing acoustic wave. However, the velocity field
is) significantly more complex than the expected standing wave, as is evidentvin figures 5-1

and 5-2. The added features can bé categorized as follows:.
e Beating phenomena
e Crosswaves

. e Streaming
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e Oscillatory boundary layers and Stokes’ solution

e Vortex motion in the corners near the wavemaker

5.1 DBeating phenomena

The ‘beating’ phenomena occurs when the amplitude 6f an oscillation also oscillates. The
beating effect in the present s;mulations can be seen by studying the mean kinetic energy,
- KE, shown in figure 5-10 for the present examplg. (Note that since kinetic energy is always
positive, a cycle corresponds to two peaks of kinetic ‘eﬁergy). The amplitude is cleé,rly seen
to have an oscillation at a frequency much lower than the forcing frequency. Subsequent
cases, performed f01; more cycles, demonstrate that the beating effect continues, repeating
the pattern shown in figure 5-IQ very closely, indicating an oscillation phenomena rather
thana trapsient effect. The eﬁergy flux in figure 5-11 also shows the beating phenomena.
The simplest explanation of beating is that of an oscill_a,tion with two incommensurate
frequencies which are close in value. Using sinusoidal functions, the beating behavior can

be modeled simply with the product of two cosine functions:
08 w ¢t COS Wy, (71)

where wy and w, are the high and low frequencies measured in the results. Equation (71)
can be arranged into the sum of two independent oscillations at two other frequencies with

the following identity:

Acoswt + Acoswsyt = 2A cos [wl + CU2] tcos [wl — w2} t, (72)
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where w; and w; are the freqhencies of the individual oscillations. The frequency pairs are

~ then related by

Wy ~— W

Wp = 12 21 (73)
wy + wy

wy = 12 . | (74)

Two frequencies can be extracted from figure 5-10; a high frequency, wy, and a low frequency,
wy. The frequency rela.ti.ons, (73) and (74), may then be used to determine w; and wy.

Simulations are performed to determine the values of w; and wy, for a variety of param-
eter values. The simula.tions; are performed using the parameters in table 5.1 for an interval

- of Reynolds numbers.‘ The value of wy and wy is determined directly from the avérage
kinetic energy for each case, and the trigometric relation is used to determine w; and wp
from these values.

Tablé 5.2 shows the fesults. Note that wy is consistently near 0.95, ﬁhich is approxi-
mately the forcing &eciuency» of unity. The value of wy,, which will be called the envelope
frequency, is seen to va.ry only slightly with Reynolds number, until the Reynolds number
reaches a very low value, ;nd the beating is no longer present. This trend with Reynolds
number appears to be the result of excessive da.mpmg on the en\}elope oscillation and occurs
with both types of wavemaker, the membrane and the piston.

One ejcplanation for- the beating is that the envelope oscillation is the result of the
transient behavior at the beginning of the simulation. The initial wave propagates across
the chaﬁba, reflects off of the end of the chamber, and then the incident wave and the -
reflected wave interact to form the standing wave. This tra.nsition from a motionless fluid

to a standing wave must result in thé low frequency behavior. Perhaps the forcing could
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Re number Wy, wy
40 - mil 0.9520
100 0.2327 | 0.9520
1000 0.1348 | 0.9520 |

800000 | 0.1051 | 0.9520

10000000 | 0.1051 | 0.9520

Table 5.2 Resulting frequencies at various Re number

be injtiafed such that there is no beating, bbth in the simulations studied here, and in a
practical device. The link between the forcing and the beating is studied here by ramping up
the forcing amplitude, a scheme which has been used at length in rr;any types of numerica.l
simulations. The amplitude is assumed to increase linearly, until a chosen time, beyond
which it remains constant. The simulation continues for a total of ten cycles of the forcing,
and then wy and w, are determined from the average kinetic eﬁergy, equation (69). The

' resulting values of w ¢ and wy, are shown in table 5.3.

Period of linear increase(cycle) | wy, Wy

‘ 0.0952 | 0.9520
0.0868 | 0.9520
0.0799 | 0.9520
0.0739 | 0.9520
0.0689 | 0.9520
0.0645 | 0.9666
0.0605 | 0.9666
0.0571 | 0.9666
0.0512 | 0.9666
0.0512 { 0.9666

Sl o] o) ~a| o o] x| eof o]

~ Table 5.3 Resulting frequencies at various start-up period

Note in table 5.3 that wy is only slightly affected by the ramping effect. However,

wy is greatly affected. The value of w, is reduced by an order of magnitude between the
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case without any ramping and the ca,ée with ramping over one forcing period. The value
continues to decrease as length of the ramping time increases. The results demonstrate that
the beating phenomena is at least strongly influenced by the initialization procedures, and
that perhaps there is a manner of starting the simulations to avoid the beating,.

Other changes in the simulations had little or no effect on the beating phenomena. For
example, varying the aspect ratio of the rectangular chamber or the forcing amplitude did
not significantly affect the pattern of beating. vAttempts at changing the wavenumber to a
lqwer or higher value than the half wavelength, 0.4 and 0.6, did not significantly affect the
beating.

The above simulation was fully nonlinear, but the beating phenomena is also present in
a linear simulation. Figure 5-12 shows the average kinetic energy for a case matching the
results in figure 5-10, except that the nonlinear terms are .removed. Note that the-beating
effect is still present, but the amplitude of the envelope oscﬂlatidn is dramatically reduced.
The difference between linear and nonlinear results indicates tﬁat a complicated nonlinear
interaction betweeﬁ the incident wave and the reflected wave plays a major role in thev

beating behavior.

5.2 Crosswaves

Crosswaves are uniﬁtended secondary waves which develop on the incident acoustic wave
that have spatial oscillation ‘across’ the chamber. Crosswaves in écoustics and other non-
linear systems have beeﬁ studied previously, and are reviewed by Garrett [9].

Crosswayes can be clearly seen in f;he present results in contours of transverse velocity.

The sequence of contours in figure 5-2 shows the advance of the crosswaves along the
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chamber. Note that the dominant crosswave mode does not fill the entire chamber until
nearly the sixth cycle of the standing acoustic wave. Note also that the wavemaker for
figure 5-2 is a membrane.

The same sequence of surface plots of v for the piston wavemaker, shown in figure 5-8,
does not show strong crosswaves. This implies that the crosswaves in figure 5-2 are wave
modes which are diréétly forced by the membrane wavemaker.

‘Previous theoretical results on crosswaves imply that crosswaves will develop as a non-

| linear instability, even when the wavemaker does not fox;ce them directly, such as the piston
wavemaker case. The piston wavemaker does show very small amplitude crosswaves, and
| perhaps these waves will grow in time as a result of nonlinear interaction with the inci-
dent wave. The simulations with a piston wavemaker do not show this event. However,

sufficiently long simulations could not be achieved with current computer resources.

5.3 Oscillatory Boundary layers

The axial oscillation of the fluid results in a boundary layer phenomena at the top and
bottom boundary. These boundary layers can best be seen in contours of vorticity, as
shown in ﬁémes 5-13, 5-14,and 5-15. The temporal oscillation results in spatial oscillations
in the transverse direction. These os'ci]lations are waves, and are analagous to the viscous
waves in Stokes’ second solution, which is the parallel flow of a viscous incompressible
fluid with an oscillating bottom [10]. The wavelength of the spai;ial oscillations correlates
appro:dmately with Stokes’ second solution. |

At times the numerical methods have difficulty resolving the boundary layers, which

are remarkably thin. The difficulty appears at the boundary where the axial velocity is
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maximum. An example is shown in figure 5-16. Note in figure 5-16 that the poix;lt nea.resf
the boundary shows an unrealistic value, although the remainder of the points show ‘good’
results. Doubling the resolution (also shown in figure 5-16) improves the results, but does
not cure the problem. In general, this problem only appears sporadically, when the ampli-
tude is large and the Reynolds number is high, and does not appear to affect the validity

of the numerical solution.

5.4 Vortex motion in corners

The results show that a vortex motion is present in the corners of the chamber adjacent to
the wavemaker. This motion is only evident with the membrane wé.vema.ker, and does not
a.piaear in the two corners at the opposite end of the chaﬁber.

Consider the bottom corner, adjacent to the wavemaker. An example of the flow in this
corner is shown with a sequence of vector plots in figures 5-17 through 5-20. These figures
correspond to the lower left corner of the domain (0 < = < 0.05,0 < y < 0.2), and show
the development and movement of a clockwise vortex. Note that the velocity vectors in the
rest of the chamﬁér at this time show positive axial flow, and are essentially uniform.

The clockwise vortex appears at the tiﬁle when the wavemaker is impdsing an axial.
velocity near zero, changing from positive to negative values. This would correspond to the

| membrane being in its rightmost position. Note in figures 5-17 through 5-20 that the vortex
moves away from both'thé wavemaker and the adjacent wall.

Figure 5-21, which is also a vectof plot of the lower left corner of the domain, shows
a counterclockwise vortex. Figure 5-21 was recorded after approximately one full period

of forcing. The counterclockwise vortex also appears when the wavemaker is forcing an
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axial velocity near zero, the difference being that the velocity is changing from negative to
positive. This would correspond to the membrane being in its leftmost position. Both the
clockwise and counterclockwise vortex appear once (at different times) for every period of
forcing. -

The motion is symmetric about the axial centerline of the chamber. Hence the top
corner adjacent to the wavemaker has the same vortex motion, except the sense of rotation
is reversed.

The motion in the corners becomes increasingly complicated with each additional period
of motion during a single simulation, often causing the simulation to fail due to a lack of
resolution in the corners. Simulations with a resolution as high as 1200x400 failed to resolve
completely this motion for long times. Long simulations can-apparently only be achieved
by reducing the Reynolds n@bem to add sufficient damping to eliminate such complicated

motion. In an experiment, the corners are likely to be a source of turbulence.

5.5 Acoustic streaming

Acoustic streaming 1s a secondary flow forced by the acoustié waves. The streaming is a
steady flow along the centerline of the resonator, away from the mﬁmaker, and return
flow along the side boundaries. A schematic diagram of the flow is shown in figure 5-
22. The phenomena appears to have been first report_ed by Lord Rayleigh [11}, and is
discuséed briefly in Ra.yleigh’s volumes, The Theory of Sound [11]. Streaming can occur in

incompressible systems also, as reviewed by Riley [12].
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Streaming in the rectangular container being studied here is evaluated with
ﬁ:l/Umg (75)
LJy ’

which is determined at three evenly spaced transverse positions: the center of the domain,
one quarter of the height from fhe top, and one quarter of the height from the bottom.
Note that if the strea;minglis zero, then there is no significant vertical velocity at these
elevations, and ¥ is zero. Actually, ¥ measures the strength of all combined secondary fiows,
including crosswaves. But the crosswaves are oscillatory, as will be seen in the pmﬁle. The
nonoscillatory part is attributed to streaming. |

A time history of ¥ for the upper position for an example simulation is shown in figure
5-23, again using the parameters in table 5.1. Note that ¥ for the centerline position remains
approximately zero for the duration of the simulation, and the upper and lower positions
remam equal in value. This indicateés symmetric secondary flows about the axial centerline.
Several features are evident in ﬁgﬁre 5-23. The mean value of ¢ is increasiné wit.h time.
The value of ¥ is oscillating, and the oscillation includes several frequencies. Finally, the
magnitude of ¥ remains quite small. |

The oscillation part of ¥ is certainly due to the standing acoustic wave, along with the
crosswaves. The increasing trend in ¥ is indication of a streaming flow growing steadily in
strength. Apparently, many acoustic cycles are needed to attain steady streaming, for the

value of ¢ did not cease to increase with more cycles.
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Figure 5-1 Elevations of axial velocity (u) for a sequence of times.
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Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Figure 5.4 Ax: Al

veloci

ty at ¢

=3.601.

35



36



37



(@) t=66 | (b) ¢ =111

() t =156 . (d) ¢ =20.1

) t=129.1

Figure 5-7 Elevations of axial velocity (u) for a sequence of times.
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Figure 5-8 Elevations of transverse velocity (v) for a sequence of times.
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Figure 5-10 Mean kinetic energy in system through 10 cycles.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

40



1.5¢-06 T T T 7 T T
1e-06
5e-07

uT 0

-5e-07

-1e-06

-1.5e-06 ! ! . A
0 10 20 30 40 50 60

time

Figure 5-11 Energy flux for teﬁ cycles.

4e-09 T T ] T T T

3.5e-09
3e-09 H \ N
2.5e-09 H

KE 2e09

1.5¢-09 k

1e-09-_' b

5e-10 \

O - i i i i . |
0 10 20 30 40 50 60
time
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Figure 5-13 Vorticity at t=1.801.
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Figure 5-14 Vorticity at t-22.401.
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(a) Vector plot at £=2.701

D Vector plot region

(b) Schematic of entire chamber showing
vector plot region

Figure 5-17 Vector plot of vortex flow near membrane at t=2.701.
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Figure 5-20 Vector plot of vortex flow near membrane at t=3.601.
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Chapter 6

RESULTS WITH PLATES

6.1 Heat Exchanger Plates

A pra.ctica.i thermoacoustic device includes heat exchanging ‘plates’ installed in the chamber.
Existing theories of thermoacoustic effects, usually based on linear inviscid theory, assumes
that the heat exchanger plé,tes do not alter the acoustic field. The effect of the plates on
the acoustic waves is considered below. The plates are modeled two ways; thick plates and
thin plates. Thick plates are solid material that is motionless but allows conduction, and
the temperature of the solid evolves with the motion of the ﬁmd The boundary conditions
are the continuity of temperature, heat flux, and velocity. The thin plates are merely a
single row of discrete points, interior to the flow, where zero velocity is imposed. All plates

are positioned parallel to the direction of wave propagation.

6.2 Thick plate

The governing equations for the temperatufe of the plate material is

o, 1,
A | (76)

where T is the temperature of the solid plate material, and

2
p, =L (77)

Qg

52
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o, being the thermal diffusivity of the plate material. The thermal properties of the plate

* material are assumed to remain constant, and are chosen to model stainless steel (type 304).
\The resulting value of P, is 2.247 x 107, which is used for all thick plate cases.

Equation (76) is discretized as before. The fluid is initially at rest, the tempefature is
initia.lly‘ uniform, and waves are forced with a _membra.ﬂe. The parameter values for the
simulations are again given in Table 5.1.

The plate employs the same computational grid as the fluid, which is uniform in both
directions. Hence the plate boundaries correspond exactly to grid points in the fluid. This
method plax;es a limit on the minimum dimension of a plate. The one-sided second order
‘difference schemes for the boundary conditioné require three grid points. Therefore, a plate
cannot be less than three grid points in size. In practice, good results were obtained only
with a minimum of five grid poiﬁts across a plate.

For example, a typical simula,tion uses 101 grid points evenly spaced across the chamber.
A plafe has a minimum thickness of five grid points, or four grid spacings, meaning that
the plate thickness is 4% of the chamber height. Actual heat exchanger plates in existing
devices have a thickness which is generally less than 1%, which cannot be a.chieved with
the chosen grjd. The resolution would have to be increased to 401 points to allow a plate
thickness of ’1% of the chamber height.

The simulation of the previous section are repeated with a single t]nck plate installed
at the transverse centerline of the chamber. The leading edge of the plate is lbca,ted at the
twentieth gridpoint from the_ wavemaker (the resolution is 400 x 100), and the plate is fifty
gridpoints in length and five gridpoints in height.

Example surface plots of axial and transverse velocity are shown in figures 6-1 through
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6-4. The results show that the standing wave forms as before, and the secondary flows are
still present; beating, crosswaves, corner vdrtices, and oscillating boundary layers.

In addition, a variety of phenomena appear near the plate that were not present previ-
ously. This flow can be seen in the contour plots of vorticity shown in figures 6-5-6-7. Note
that the contour plot is only for the lower part of the cha.mbér, as shown in the schematic
(bottom of 6-5 through 6-7). The plate has an oscillating boundary layer which forms a
cellular flow pattern on bofh sides of the plate. A close-up view of the" flow in this cell

~near the wavemaker is shown in figures 6-8 through 6-12 with vector plots. The vector
plots clearly show a vorticé,l flow. Note that the time of figures 6-8 and 6-9 is t=2.701,
3.001, which is early in the simulation, corresponding to the initial wave shortly before it
impacts the opposite wall. Hence the axial velocity of the incident wax}e is positive, and the
wavemaker velocity is positive but approching zero.

Note in figure 6-8 that the region near thé plate, which is loca,ted at the top of this
figure, shows a negative axial velocity (flow to the left in the figure). This is despite the
positive axial velocity of the incident wave. Note in these figures the evolution of the vbrtex.
It appears to move away from the plate and the wavemaker. Figure 6-12, which corresponds
to t=6.001, is opposite in direction to that of figure 6-9 which is computed approximately
half an acoustic cycle earlier. |

Vortex motion at the bottom left corner of the chamber near the membrane can be
seen in figure 6-7, as in the case without a plate. The cellular flow pattern progresses as
discussed earlier. |

The ‘wake’ region directly downstream of the plate is a region of intensely cémplicated

flow, as shown with vector plots in figures 6-13 and 6-14. Figure 6-13 show that this flow
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can be simple laminar flow at times. However, vortex shedding from each side of the plate
can complicate the flow dramatically, as shown in figure 6-14. Note that figures 6-13 and
6-14 differ only in time by a fraction of a wave period.

The surface heat ﬂﬁx,
oT

oy’
is an important quantity in thermoacoustics. It measures the efficiency of heat transfer
beW&ﬁ fluid and solid. Figure 6-15 shows the heat flux along the plate surface for the
above case. Note that q has a sharp ‘kink’ near the end of the plate, which has been
explained analytically by Swift[4] and reported by Cao et al. [7]. Cao et al. observed no
smoothing of the peak even with a highly resolved computational grid. This trend in heat
flux near the plate edge may be related to the fact that the fluid near the plate ends is

. advected beyond the ’envd of the plate for part of the acoustic cycle. |
Note that the single thick plate located at the transverse center is found to have equal
heat flux on both the top and bottom surfaces. Repositioning the plate at the same axial
coordinate but different transversé location resulfs in the heat flux no longer being equal
on the top and bottom surface. Howev‘er, it is ipteresting to note that the sum of the heat

flux through the top and bottom surfaces is independent of the position.

6.3 Thin plates

Consider a single thin plate, located in the same pqsition as the single thick plate of the
previous section. Surface plots of the horizontal velocity are shown in figures 6-16 through

6-19. The dynamics of the acoustic wave with the thin plate closely match the results with
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the thick plate, as can be seen by comparing the surface plots in figures 6-1 to 6-4 and
6-16 to 6-19. This indicates that the thin plate approximation, which doeé not alter the
temperature profile directly, is a useful plate model for overall dyn[amx;cs of the acoustic
wave. The similarity in the r&sﬁlts between thick and thin plates models can also be seen in
the,diagnostic quantities, shown for both thick and thm plate cases in figures 6-20 to 6-22.
Note that the i:wo curves in each of these ﬁgulfes are indistinguishable.

The bounda.ry layer flow on either side of the thin plate develops in a manner similar to
the thick plate. Thxs can be seen by comparing the contour and vector plots for the thin
plate, figures 6-23 to 6-30, with the equivalent_plot for the thick plate, figures 6-5 to 6-12.

Significant differences do appear directly behind the plates. Figures 6-31 and 6-32 show
a vector plot of the region directly behind the thin plate, corresponding to figures 6-13
and 6-14, which show the same region at the same times behind the thick plate. The flow
appears to be sf,rikingly different. Both cases show ﬂow reversal (negative axial velocity),
although one must look closely at figure 6-32 to see leftward pointing vectors, and both cases
are_symmetric about the chamber axial qenterline. But clearly the flow behind the thick
plate shows much more complicated flow, and stronger flow reversal. The ﬂow reversal may
be understood. by notiﬁg in ﬁguie 6-14 that two symmetric counterrotating shed vortices
are present, with centers approximately eleven gridpoints ‘downstream’ of the plate. These -

counterrotating vortices appear to induce the strong flow leftward behind the plate.

6.4 Multiple thin plates

One advantage of the thin _pla.te,modél is the ease with which multiple plates may be

included. No additional computational resources are required, and high qﬁality results may
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" be obtained with modest resolution.

Figure 6-33 shows a contour plot of the vorticity for the entire chamber with five thin
plates, equally spaced across the chamber. Figure 6-33 clearly shows the developing bound-
ary layer on each side of each plate, and the boundary layer along the fop and bottom wall.
Note that contours for the center plate are longer than the contours for the @ther plates.
This is due to the membrane wavemaker, which forces a larger axial velocity at the center.

An important measure of the performance of a heat exchanger plate is the temperature
difference between the énds of the plate. Figure 6-34 shows thé temperature difference for’

‘the first (o), second (+), and third (*) plate in the 5-plate stack for plate length of 0.2.
The next 2 are symmetrical with respect to the chamber ‘centerline. Several plate lengths
are tried. The plate lengtﬁ of 0.3 generates the highest temperature difference. However,
further analysis reveals that a length of 0.2 gives the maximum temperature difference when
the results for the five plates are averaged.

The position of the plates is considered by repeating the simulations with the plates in
different horizontal positions along the chamber. The results are shown in figure 6-35. Note
that the temperature difference increases monotically as the plates are moved closer to the
wavemaking membrane. However, this effect is only important very close to the membrane,
and position is not important elsewhere. Note that the plate length was 0.2 for the results
in figure 6-35.

Consider a fixed plate length and axial position, but vary the number of plates. Figure
6-36 show temperature difference as a function of number of plates. Only the temperature
difference for the center plate is shown. The plate ‘positionAis 0.2.

The axial velocity between plates is shown in figure 6-37 for two cases: 9 plates and
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2 plates. Note the difference in the profiles. The nine plate case resembles the laminar
parallel Poiseuille flow profile for steady flow beﬁ%n parallel plates, while thé two plate
case has a bulk flow with distinct boundary layer on each side.

CO;responding temperature profiles are shown in figure 6.4. Again, the two plate case
éhows distinct boundary layers, and more importantly, a much steeper temperature gradient
normal to the plate surface. Hence, a narrower plate gap not only restricts the flow between

plates,'but also reduces the heat flux between plate and fluid.
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Figure 6-1 Axial velocity at {=0.601.
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Figure 6-13 Vector plot behind plate at t=2.701.
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Figure 6-16 Axial velocity at t=0.601.
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Figure 6-23 Vorticity contour for lower half of chamber at t=2.701.
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| Chapter 7

Conclusions

The followiﬁg general conclusions may be stated:

e The semi-implicit method is an accurate and efficient method for sub-sonic compress-

ible viscous flow.

e Eliminating pressure from the governing equations eliminates the most severe numer-

ical instabilities.

e Many typés of secondary flows appear when an acoustic wave is forced in a closed

chamber. -

e Shed vorticity plays a key role in flow around a finite thickness heat exchanging plate.
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The discrete equations to the linear Navier-Stoke system to be solved numerically are

3
4
- (a + gb) U1 + Uimr )™
—d(Uigp1 + Uig—r)™

1 .
- (ge + f ) (Vitrg+1 = Virrj-1 — Viergg1 + Viepj—1)™ !

=2U7; - (1+2a— =b - 2d) U“"

(1+20+ gb+24) U3

4 -
(a - -b) (Usgr + Uimr )™
—d(Uijsr + Upj-1)"

1 _
- ('?;d - e) (Vigrj+1 = Vigrj1 — Vier g1 + Vierj—1)™ 0, (78)
142 +-8—d+2b} vt
€T3 i.j

- (C + %d) (Vi1 + Vi,j—l)n-H
—b(Vit1,; + Vimr )™
- (%e +f ) (Uisrg+1 — Uipry-1 — Uimr g + qu—1,j—1)"f"1
=2V~ (1+2c-— gd 2b) m)
+ (c - §d> (Vg + Vig—0)" ™
—~b(Vigrj + Vier)" !

1 : —
- (-3'6 -f ) Uir141 — Uigrg-1 — Uimrjan + Uicrj1)™ 7, (79)

T + ac (Uigrg — Ui-1,5)™ + ad (Vi1 — Vi)™

=T - ac (Ui = Uier)" ™ = 08 (Vi — Vig)™ ™, (80)
+1 _ k +1 -1 |
P (7 I)Tn =Fij +(7 )T?’ ’ (81)
where, . . ‘
AP A2
*= IM2PAL2 | €= M
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