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ABSTRACT

LEARNING AND UNDERSTANDING IN ABSTRACT ALGEBRA
by
Bradford R. Findell

University of New Hampshire, December, 2001

Students’ learning and understénding in an undergraduate abstract algebra class were
described using Tall and Vinner’s notion of a concept image, which is the entire
cognitive structure associated with a concept, including examples, nonexamples,
definitions, representations, and results. Prominent features and components of students’
concept images were identified for concepts of elementary group theory, including group,

subgroup, isomorphism, coset, and quotient group.

Analysis of interviews and written work from five students provided insight into their
concept images, revealing ways they understood the concepts. Because many issues were
related to students’ uses of language and notation, the analysis was essentially semiotic,
using the linguistic, notational, and representational distinctions that the students made to
infer their conceptual understandings and the distinctions they were and were not making
among coﬁcepts. Attempting to explain and synthesize the results of the analysis became
a process of theory generation, from which two themes emerged: making distinctions and

managing abstraction.

The students often made nonstandard linguistic and notational distinctions. For example,

some students used the term coset to describe not only individual cosets but also the set

X1v
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of all cosets. This kind of understanding was characterized as being immersed in the
process of generating all of the cosets of a subgroup, a characterization that described and
explained several instances of the phenomenon of failing to distinguish between a set and

its elements.

§

The students managed their relationships with abstract ideas through metaphor, process
and object conceptions, and proficiency with concepts, examples, and representations.
For example, some students understood a particular group by relying upon its operation
table, which they sometimes took to be the group itself rather than a representation. The
operation table supported an object conception even when a student had a fragile

understanding of the processes used in forming the group.

Making distinctions and managing abstraction are elaborated as fundamental
characteristics of mathematical activity. Mathematics thereby becomes a dialectic
between precision and abstraction, between logic and intuition, which has important

implications for teaching, teacher education, and research.

XV
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CHAPTER1
INTRODUCTION

“Mathematics is the science of order, patterns, structure, and logical relationships.”

(Devlin, 2000, p. 74)

In é compelling new book The Math Gene, renowned mathematician, expositor, and
National Public Radio commentator Keith Devlin (2000)‘claims that everyone has innate
ability to do mathematics because “the features of the brain that enable us to do
mathematics are the very same features that enable us to use language” (p. 2). A key
point in his argument is that richer representation rather than richer communication was

the driving force behind the emergence of language.

In order to properly understand how we acquired language, we should view it as
a representational structure rather than as a medium of communication. In order
to communicate some concept, you first need to have a mental representation of
it. (p.291)

His argument draws on a broad body of empirical and theoretical work in anthropology,
neuroscience, linguistics, psychology, mathematics education, and also upon his
contention that most people do not know what mathematics is. “Modern mathematics,”
he claims, “is about abstract patterns, abstract structures, and abstract relationships”

(p. 136). And with a sufficiently broad understanding of “pattern,” the shorter version
“the science of patterns” says it all (pp. 73-74), suggesting that patterns reveal structure
and relationships. In fact, structure, pattern, and relations are mutually dependent aspects
of mathematical thinking, any of which may be taken as primary. Poincaré, for example,

begins with relations and arrives at structure:
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Mathematicians do not study objects, but relations among objects; they are
indifferent to the replacement of objects by others as long as the relations don’t
change. Matter is not important, only form interests them. (cited in Gallian,
1994, p. 102)

And I would argue that structure gives rise to relationships and patterns. Thus, when I
speak of a structural view of mathematics, I mean a view that embodies all of these

aspects. v

Devlin’s thesis raises a number of practical questions: What are the implications for the
mathematics curriculum? Should all students experience mathematics as abstract
patterns, structure, and relationships? If so, how might such ideas be taught? Just when
do mathematics students, particularly future mathematicians and secondary teachers,
have an opportunity to develop such a perspective about mathematics? And what do
students take from such experiences? To what extent is the representational structure of
natural language sufficient for reasoning about mathematics? Where does natural

language fall short?

With the organization of today’s mathematics curriculum, few students ever have an
opportunity to develop a structural view of mathematics. Mathematics majors are first
exposed to such a view of mathematics in a university course called abstract algebra,
typically taken in their junior or senior year. The course usually focuses on elementary
group theory and often also includes introductibns to ring theory and other abstract
structures. It is worth pointing out that examples from group theory form a significant

portion of Devlin’s description of what mathematics is.

The structural view of mathematics has been an organizing theme in the mathematics

research community since the group of mathematicians known collectively as Bourbaki
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identified three mother structures: algebraic structure, order structure, topological
structure, although they allow for the possibility of additional fundamental structures (see
Bourbaki, 1950, for an overview). Beginning in 1939, this influential group published a
collection of texts under the title Eléments de Mathématique, intended to set mathematics
on a firm footing. In a short expository piece, Bourbaki (1950) simultaneously present a
description of the structural view and an argument for the formal, abstract, axiomatic
method upon which it is based, acknowledging explicitly the difficulty of higher stages of
abstraction and “the great problem of relations between the empirical world and the

mathematical world” (p. 231). And, once again, group theory serves as the canonical

example.

During the 1960s, curriculum developers and some psychologists adopted structure as a
central theme, though not always with the same motivations. Piaget (1970a), for
example, was interested primarily in mental structures, and so structure was a
fundamental characteristic of his psychogenetic theory. He was subsequently taken by
the structures suggested by Bourbaki, such as the analogy between his concept of
reversibility and the algebraic concept of inverse. Ernest (1994) goes so far as to say,
“Piaget was seduced by the Bourbakian account of mathematics as logically constituted
by three mother structures” (p. 2). Bruner (1960/1977), on the other hand, took structure
to be a fundamental characteristic of the disciplines and suggested that structure must be
taught. “The task ... is one of representing the structure of that subject in terms of the
child’s way of viewing things” (p. 33). Judging from the movements in the mathematics

curriculum since the “new math,” it seems that the structure has largely faded in school
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mathematics, but structure has remained at least a dominant background influence in the

upper-level undergraduate mathematics curriculum.

Despite this history, little is available in the mathematics education literature about how
students learn content, such as group theory, that typifies the structural view. And less is
known about the extent to which learning group theory helps students develop a
structural view of mathematics. This study aimed to contribute to the empirical and
theoretical work in this area of mathematics education by investigating student learning
in abstract algebra, or more specifically, group theory. Like Devlin’s book, this study
was about mathematics, language, and representations, but rather than taking such a
global and evolutionary view, it was more exploratory, beginning at the level of

individual students in a college mathematics class.

Rationale

The reasons for investigating student learning in group theory are manifold. First, such
investigations can contribute to an understanding of advanced mathematical thinking,
especially because group theory typifies what modern mathematics is about, as discussed
above. Second, students often find the course difficult, and instructors are often
dissatisfied with the level of understanding reached by the students. Third, the research
in this area is particularly thin. And fourth, because the course is typically required of
preservice secondary teachers, there are potential implications for teacher education.

These reasons are elaborated below.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Advanced Mathematical Thinking

Tall (1992)7suggests that “advanced mathematical thinking ... is characterized by two
important components: precise mathematical definitions (including the statement of
axioms in axiomatic theories) and logical deductions of theorems based upon them”

(p. 495). Over the past decade and a half, the mathematics education community has
seen growing interest in the study of advanced mathematical thinking and,
simultaneously, in research in the teaching and learning of undergraduate mathematics.
Although there was some scholarly work in this area in the 1970s and early 1980s, a
community of researchers was formally established with the creation in 1985 of the
working group on advanced mathematical thinking within the International Group on the
Psychology of Mathematics Education (PME). Since then, accompanying the broader
curricular and pedagogical reforms in undergraduate mathematics (Dossey, 1998;
Douglas, 1986; National Research Council, 1992; Steen, 1992; Tucker & Leitzel, 1994),
scholarly interest in the teaching and learning of undergraduate mathematics has grown
and intersected with the broader mathematics community, as evidenced by the increasing
numbers of sessions at the Joint Mathematics Meetings devoted to educational issues and
particularly by the creation in 1999 of the Association for Research in Undergraduate
Mathematics Education (ARUME), which has since become a special interest group of

the Mathematical Association of America.

Literature Is Thin

Despite these developments, the research literature in advanced mathematical thinking
and undergraduate mathematics education has been and remains sparse, particularly

regarding the learning of post-calculus mathematics. This is perhaps a particular

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



symptom of a general phenomenon that the amount of research literature diminishes
sharply as one proceeds from elementary school to secondary school to undergraduate
mathematics. One comprehensive survey of the literature in undergraduate mathematics
education was conducted in 1995 (Scher & Findell, 1996), at about the time this study
was conceived. Based on literature published in journals and known collections (e.g.,
Kaput & Dubinsky, 1994) between 1985 and 1994, the survey found 312 research articles
on the teaching and learning of undergraduate mathematics and categorized them
according to mathematical content and research outcome. Of those 312 articles, fewer
than 30 could clearly be described as attending to the teaching and learning of content
beyond first-year calculus, and only two concerned the learning of abstract algebra. The
research about the teaching and learning of undergraduate mathematics has grown since
1994, particularly through the publication of volumes II through IV of Research in
Collegiate Mathematics Education (Dubinsky, Schoenfeld, & Kaput, 2000; Kaput,
Schoenfeld, & Dubinsky, 1996; Schoenfeld, Kaput, & Dubinsky, 1998). And although
there is substantial recent work in linear algebra (Dorier, 2000), the literature specific to
the teaching and learning of abstract algebra remains thin. A literature search using the
same criteria as the previous survey revealed 15 articles on the learning of abstract
algebra. Eleven of them had bee published since 1994, of which 9 grew from the work of

Dubinsky, Leron, and their collaborators.

Difficulties with Teaching and Learning

Some research has indicated student understanding of the concepts in abstract algebra is
less than satisfactory (see, e.g., Dubinsky, Dautermann, Leron, & Zazkis, 1994; Hazzan

& Leron, 1996). Leron and Dubinsky (1995) go so far as to declare that the teaching of
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abstract algebra is a disaster and to claim that there is wide consensus on this view among
both instructors and students. This view may be indicative of a larger problem: The
transition to advanced mathematics courses, particularly those beyond calculus, is often

problematic.

Harel (1989) proposes several reasons why the learning of linear algebra is difficult for
students, which I paraphrase as an initial characterization of the difficulties with abstract
algebra. First, the concepts are abs.tract structures that serve as categories for a broad and
diverse range of examples. The objects are defined by their properties, and the properties
rather than the examples are primary, making it hard for students to conceive of them.
Second, many of the examples themselves are unfamiliar to the students. And third,
many students are not yet comfortable With proof and the axiomatic method. Regarding
the last point, it is worth mentioning that linear algebra is often studied before abstract
algebra. But in some mathematics programs, the approach to linear algebra is fairly
concrete, unlike the abstract approach Harel describes. Furthermore, some mathematics
programs require that students take a course in “mathematical proof,” before they take
abstract algebra. Even with such experiences, there is reason to believe that students

have not yet transcended the difficulties with proof (see, e.g., Moore, 1994).

Abstract Algebra for Future Teachers

There is widespread agreement on the need for improvements in teacher preparation and
professional development in mathematics, as evidenced in the plethora of recent reports
that discuss teacher education. The reports recommend ways to improve the system of
teacher education (Kilpatrick, Swafford, & Findell, 2001; National Commission on

Mathematics and Science Teaching for the 21st Century, 2000; National Research
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Council, 2001a), recommend mathematics that should be required of future teachers
(Conference Board of the Mathematical Sciences, 2001), and reframe questions about the
content and delivery of mathematics teacher education (National Research Council,
2001b), yet there has been little empirical or theoretical work exploring the relevance of
particular mathematics courses in the preparation of future teachers. Most certification
programs for prospective secondary mathematics teachers require a course in abstract
algebra. Thus, by exploring what students do learn in an abstract algebra course, this
study provides some empirical and theoretical backing for ways to implement and

improve upon the recommendations.

For some time, professional organizations and committees have agreed that the study of
abstract algebraic structures is an important part of a secondary preservice teacher’s
mathematical preparation (see, e.g., Leitzel, 1991; National Council of Teachers of
Mathematics [NCTM], 1991; Committee on the Undergraduate Program in Mathematics,
1971). Although these reports provide little in the way of rationale, the dominant point of
view is that the equivalent of a major in mathematics should be required of prospective

high school teachers (Ferrini-Mundy & Findell, 2001).

The implicit rationale might be that a major in mathematics is necessary in order to
understand secondary school mathematics with sufficient depth. And, as elaborated
below, powerful ideas from advanced mathematics can explain and unite ideas from
school mathematics. A recent report on the mathematical education of teachers
(Conference Board of the Mathematical Sciences, 2001) acknowledges, however, that
“unfortunately, too many prospective high school teachers fail to understand connections

between [abstract algebra and number theory] and the topics of school algebra” (p. 40).
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Although the empirical basis for this claim is not stated, there is clearly a perceived need
to think about ways to improve the content and effectiveness of the courses that are
offered to future teachers. Furthermore, there is a need to think deeply about the
rationale for requiring of future teachers a course in abstract algebra, and this study

provides some suggestions there.

What Is Abstract Algebra?

The notion of a “group,” viewed only 30 years ago as the epitome of
sophistication, is today one of the mathematical concepts most widely used in
physics, chemistry, biochemistry, and mathematics itself. (Sosinsky, 1991, cited
in Gallian, 1994, p. 68)

School algebra can be seen as a generalization of arithmetic in which the variables are
numbers and the expressions and equations are formed with the four arithmetic
operations. Abstract algebra is a generalization of school algebra in which the variables
can represent various mathematical objects, including numbers, vectors, matrices,
functions, transformations, and permutations, and in which the expressions and equations
are formed through operations that make sense for the particular objects: addition and
multiplication for matrices, composition for functions, and so on. This section provides a
short sketch of abstract algebra in order to highlight ideas of structure and to present the

terms, concepts, notations, and perspectives that undergird the research questions and

subsequent analysis.

Abstract algebra consists of axiomatic theories that provide opportunities to consider
many different mathematical systems as being special cases of the same abstract

structure. The theories are called axiomatic because the structures are defined by axioms.
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Group theory is “one of the oldest (and also one of the simplest) of axiomatic theories”

(Bourbaki, 1950, p. 224).

Consider, for example, the following four mathematical systems:

1. Theintegers {...,-3,-2,-1,0, 1,2, 3, ...} under the operation of addition. This
system is denoted Z.

2. The whole numbers less than a given whole number 7, {0, 1,2, ..., n— 1}, under the
operation of addition, where addition is given by the remainder after dividing the
usual sum by r. This system is denoted Z,.

3. The translations of the plane, where the operation is given by composition, that is,
following one translation by another.

4. The set of 2 x 2 matrices of real numbers with determinant 1, under matrix
multiplication.

Each of these examples consists of a set of elements (numbers or translations) together
with an operation that specifies how to combine two of the elements to get an element
that is also in the set. Because the operation combines two elements, it is often called a
binary operation. In order to talk about these examples simultaneously, the operation is
denoted by *, where the interpretations are addition, addition “modulo »,” composition,

and matrix multiplication, respectively, in the four examples.

With some work, it is possible to see that each of these systems satisfies the following

axioms:

1. Associativity. For any three elements, x, y, and z, in the set (not necessarily distinct),
@*y)*z =x*(*2).

2. Identity. There is an element, e, in the set, such that for any x in the set, e¥x =x =
x*e. (For addition of integers, the identity is 0; for addition modulo #, the identity is
0; for translations of the plane, it is the “identity” translation that leaves every point

fixed; for matrices under multiplication, it is the “identity” matrix with 1s on the
diagonal and Os elsewhere.)

3. Inverse. For each element x in the set, there is an element y in the set such that x*y =
e=y*x.
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A fourth (or zero™) axiom, closure, is built into the reqliirements of a binary operation:
that the combination of two elements gives an element that still lies in the set. It should
be pointed out that commutativity is not one of the axioms, and it is not hard to see that

matrix multiplication is not commutative.

Any set and operation that together satisfy these axioms is said to be a group. When the
operation is also commutative, the group is said to be Abelian. The advantage of the
axiomatic approach is that any result (i.e., theorem) that can be proved on the basis of the
axioms alone necessarily applies to all four examples and also to any other mathematical

system that satisfies the axioms.

The important results in group theory depend upon a collection of related concepts. A
subgroup, for example, is a subset of a group, which is itself a group under the group’s
operation. The role of structure again returns to the fore with the concept of
isomorphism. On a high level, the group axioms define an algebraic étructure that applies
to a broad collection of mathematical systems. The axioms create the rudimentary
structure to which all groups must conform. At a lower level, every specific group is a
mathematical system with its own internal structure. An important abstraction can occur
when two groups appear in different settings and yet are “essentially the same.” The
intuitive idea is that two groups are structurally the same, or isomorphic, if they differ
only in the names of their elements and operation. Demonstrating that two groups are
isomorphic requires finding a renaming that preserves the group operation. Such a
renaming, which is essentially a function that takes elements from one group to the other,

is called an isomorphism.
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It should be pointed out that the above mathematical systems and other standard examples
may not be familiar to undergraduates in a first course in abstract algebra. Thus, some of
the student’s energy must be spent trying to build some familiarity with the examples.
Taken together, these examples and the concepts of group, subgroup, and isomorphism

constitute the fundamental concepts of group theory for the purpose of this study.

I distinguish as “advanced concepts of group theory” those concepts that require the
construction of new objects. Given a subgroup H, one can create a left coset of the
subgroup by multiplying an element a of the group on the left by each of the elements in
the subgroup. The coset is denoted aH. When the set of left cosets forms a group by
extending the group operation to the cosets, the resulting group is called a quotient group,

and the subgroup that gave rise to the cosets is said to be normal.

Other important mathematical structures are rings and fields. In ring theory, there are
two operations, typically called multiplication and addition. Examples are the arithmetic
of integers, of matrices, and of polynomials in one variable with integer coefficients. A
field is essehtially a ring in which multiplication is commutative and division is also
possible, except, of course, division by zero. Examples are the rational numbers, the

complex numbers, and the integers modulo p, where p is prime.

The Big Ideas of Abstract Algebra

A course in abstract algebra is the place where students might extract common features
from the many mathematical systems that they have used in pfevious mathematics
courses, such as calculus, linear algebra, and school algebra. Students have opportunities
to develop deeper understandings of concepts such as identity, inverse, equivalence, and

function. What is shared, for example, by the identity for multiplication of real numbers,
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the identity matrix, and the identity function? What is the common idea behind the
inverse of a function, the inverse of a matrix, and the multiplicative inverse of a number?
In abstract algebra, students can also learn about the importance of precise language in
mathematics and about the role of definitions in supporting such precision. Mathematics
is also about noticing when things are the same and being able to describe how they are
different. In abstract algebra, this naive notion of “sameness” becomes formalized in the

concept of isomorphism.

Thus, it is clear that the concepts in abstract algebra provide guiding themes, principles,
and sensibilities that pervade mathematics. It is not so clear, however, what sequence of
topics from abstract algebra can be constructed to help students recognize and appreciate
such themes. And, in particular, it is not clear whether an abstract algebra course

intended for mathematics majors, as it is typically taught, can serve such a role.

When the population of students in an abstract algebra course includes future teachers
(which may be almost always), these big ideas, such as inverse and identity, are
particularly important because they can help teachers connect advanced mathematics with
high school mathematics in ways that can strengthen and deepen their understandings of
the mathematics they will teach. Of course, it is also crucial that future teachers are able
to employ those new understandings in their teaching, but that concern takes us beyond

the scope of this study.

Conceptualizing the Study

In the previous sections, I provide a rationale for an investigation of student learning in

abstract algebra and a short description of what abstract algebra is. The remainder of this
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chapter describes how I arrived at this particular study and presents the research

questions.

My interest in the teaching and learning of abstract algebra stems from my own
experiences as a student and as an instructor. I found the subject quite difficult myself,
both as an undergraduate and as a graduate student in mathematics. When I first taught
abstract algebra to undergraduate mathematics majors at a state college, Iﬁy hope was to
provide more conceptual and concrete support for the students than I had been given.
Upon beginning my graduate program in mathematics education, I imagined several
pqssible thesis topics, but foremost among these was learning in abstract algebra. In

particular, I was interested in exploring students’ conceptual understandings.

Some of the literature on the learning of advanced undergraduate mathematics focuses on
students’ difficulties writing proofs (e.g., Moore, 1994; Hart, 1994). While this literature
confirms that structuring, organizing, and writing proofs presents significant difficulties
for many undergraduates, there are also significant obstacles in the concepts themselves

(Dubinsky et al., 1994).

As I began to conceptualize this study, I had an opportunity, as part of a graduate course
in mathematics education, to interview an undergraduate abstract algebra student on
several abstract algebra tasks. That experience and subsequent pilot activity not only
served to develop my interviewing skills but also confirmed that students’ conceptual
understandings in abstract algebra was a researchable area in the sense that the subtleties

in students’ thinking seemed interesting and worth exploring.
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Research Questions

In investigating students’ understandings of advanced mathematics, my intent was to
begin building a theory: a representation of student’s understandings, or, alternatively, an
understanding of students’ representations. The central theoretical construct for this
study was the notion of a concept image (Tall & Vinner, 1981), which denotes the entire
cognitive structure associated with a concept, including examples, representations,
processes, and the relationships among them. The concept image is distinguished from a
concept definition, which is a form of words used to specify a concept, and which I take
to be part of the concept image. It is helpful to imagine a concept image as a network in
which the links indicate relationships between ideas. The metaphor of a conceptual
network accommodates the perspective that new knowledge builds on prior
understandings, and so I investigated not only students’ understandings in group theory
but also how preliminary mathematical understandings were involved in students’

learning.

My interest in characterizing students’ understandings led ultimately to the following

research questions:
e What are the prominent characteristics and components of students’ concept images
as they are learning the fundamental ideas of group, subgroup, and isomorphism?

e  What are the prominent characteristics and components of students’ concept images
as they are learning the more advanced ideas of homomorphism, coset, and quotient
group?

e How do students’ understandings of prior mathematics come into play as they are
learning elementary group theory?

The context for the study was a nontraditional class in which the instruction was based
largely on problem sets that the students completed in collaborative groups of three or

four students. In such a setting, and without a comparison group, it was not possible to
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determine the causes of many of the events. The goal of this study was not comparison,
however, but rather to begin building a theory supported by a thick description of the
issues that students grappled with around the mathematical content of elementary group

theory while they were in the process of learning.

The following chapter reviews the relevant literature on the teaching and learning of abstract
algebra. Chapter 3 sets forth the conceptual and analytical framework that guided this
study. Chapter 4 describes the context and methodology. Chapters 5 through 7 address

the research questions in turn. And chapter 8 provides conclusions and implications.
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CHAPTER 11

LITERATURE REVIEW

To synthesize the research on the teaching and learning of abstract algebra, it is useful to
consider first two categories: those articles connected with Dubinsky’s framework for
research and curriculum development (Asiala et al., 1996) and those that are not. These
sections are followed by a brief discussion of research on the learning of proof. To
complement the educational research, I include discussion of historical literature
describing the genesis and evolution of algebra and also some of the literature that
provides suggestions for curriculum or instruction. Much of this literature takes a
negative tone, describing difficulties, errors, obstacles, and the ways in which student
understanding falls short of expert understanding. Clearly, the field could benefit from

- an approach that begins organically, with students’ ways of thinking.

Dubinsky’s Framework

The work of Dubinsky and his colleagues is based on a well-articulated framework for
research and curriculum development in undergraduate mathematics education (Asiala et
al., 1996), which grows largely from Dubinsky’s (1991) elaboration of Piaget’s notion of
reflective abstraction. The core of framework is the theoretical perspective that all
mathematical conceptions can be understood as actions, processes, objects, or schemas
(hence the acronym APOS). The categories may be seen as an extension of the

process/object distinction that is well developed in the literature and that is discussed in

17
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detail in chapter 3. It is important to keep in mind that the theoretical perspective
provides ways to categorize students’ thinking about mathematical concepts, not
categories for the concepts themselves. Thus, one student may have an action conception
of coset and another a process conception. The categories are roughly developmental,

with each new conception requiring new mental constructions.

According to Dubinsky’s theory, an action conception is different from a process
conception in that in the former, the student is particularly focused on going through
specific procedural steps and is unable to talk clearly about one of the steps until all the
previous steps have been carried out. An action conception can become a process
conception through a mental construction called interiorization. Then, the student can
think about the result of the process without actually having done it and, in particular, can
imagine reversing the process. A student who has an object conception of a
mathematical idea can imagine it as a totality and, in particular, can act on it with higher-
level actions or processes. Processes can be encapsulated into objects, and it is
sometimes useful that the student be able to de-encapsulate an object to focus on the
underlying process. Schemas are coordinated collections of actions, processes, objects,

and other schemas, which can themselves be encapsulated into objects.

Dubinsky’s research and development framework consists of three activities: theoretical
analysis, design and implementation of instruction, and observation and evaluation of the
implemented instruction. The theoretical analysis describes the actions, processes,
objects, and schemas that students might construct in order to develop an understanding
of the target concepts. Instructional activities are designed specifically to help students

make the constructions identified in the theoretical analysis and typically include
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computer activities using the programming language ISETL (Interactive Set Language),
whose syntax closely resembles mathematical notation. Evaluation consists largely of
interviews and written exams to determine to what extent students made the desired
constructions. The framework is cyclical in that observation and evaluation inform
revisions in the theoretical perspective, which informs subsequent instructional design,
and so on. The research papers primarily report the results of a particular
implementation, focusing primarily on characterizing the action, process, and object
conceptions of students, reporting the numbers of students in each category, and,

sometimes, comparing results with classes that had received traditional instruction.

On the learning of abstract algebra, the evaluation of the first round of curriculum
development is reported in a research article (Dubinsky et al., 1994) and the resulting
second version of the cﬁrriculum has been published (Dubinsky & Leron, 1994).
Dubinsky et al. conclude, not surprisingly, that many of the concepts, especially coset
and quotient group, seem quite difficult for students, and they offer some explanations.
They discuss a number of cognitive obstacles that are common among beginning abstract
algebra students. Regarding the group concept, the idea of an abstract binary operation
poses a significant obstacle for students, who often think of a group as a set and ignore
the operation. Students are often unable to correctly answer questions about cosets in and
quotients of noncyclic groups, and they often confuse normality with commutativity.
Although some of the students can perform the calculations required for listing the
elements in a coset, they have difficulty thinking of cosets as objects that can themselves
be manipulated. It may seem obvious that a set is an object, but sets are often described

by a process that lists all elements or that would eventually list any element. In this way
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a set is a process. A set is not a full-fledged object in the mind of the student until the
student can imagine a set as an element of another set. The researchers isolate certain
prerequisites for success in abstract algebra, including understanding of functions as both

processes and objects.

This research has been criticized by Burn (1996), who characterizes Dubinsky et al.
(1994) as a report of a novel teaching procedure using the computer and particular
activities. He suggests that the fundamental concepts of group theory may be not group,
subgroup, coset, and normality, but rather closure, associativity, identity, inverse,
function, and set. Burn further points out that some of the interview excerpts that were

- regarded as misconceptions may actually reveal insight on the part of the student (e.g.,
closure is enough to determine whether a subset of a finite group is a subgroup).
Furthermore, quotient groups are quite easy to see in some situations (e.g., even and odd
integers, rotation and reflection in the transformations of the plane). It should not be
surprising, Burn suggests, that the concepts in abstract algebra can be described in the
language of sets and functions, but that may be twentieth century analysis imposed on
nineteenth century ideas. (I would point out that in order to implement the concepts in
ISETL, it is necessary to view them as sets and functions.) Finally, he proposes that
automorphisms (specifically permutations and symmetries) may be more profitably

viewed as the fundamental concepts of group theory.

Dubinsky et al. (1997) respond by reaffirming that their previous article is not a report of
a novel teaching procedure but an attempt to contribute to knowledge of how students

understand certain concepts in group theory. Regarding Burns’ unsupported claims about
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the ease with which students might understand certain instances of quotient group or

permutation, they suggest that Burns conduct a study and report on it.

The second iteration of research and curriculum development using the APOS framework
to study the learning of abstract algebra is reported in a collection of articles (Asiala,
Brown, Kleiman, & Mathews, 1998; As_iala, Dubinsky, Mathews, Morics, & Oktac,
1997; Brown, DeVries, Dubinsky, & Thomas, 1997; see Clark et al., 1997, for an
overview). The general conclusion of these articles is that the authors’ initial
epistemological analyses of the various topics are supported by the data, in the sense that
the analyses describe the important proceéses, objects, and schemas that students need to
construct in order to learn the those topics. The authors then typically offer refinements
of the epistemological analyses and later offer pedagogical suggestions. Some specific
conclusions include the suggestion that the crucial idea in calculating a quotient group
may be constructing the binary operation, the importance of being able to choose
appropriately between two binary operations defined on a set (e.g., multiplication and
addition), and specific misconceptions such as the fact that some students believe Z, is a

subgroup of Z.

Student Thinking

Although the literature on the learning of abstract algebra contains a small number of
research articles, the list of misconceptions identified is not short. Selden and Selden
(1978) alone list thirteen types of errors, many of which might occur in any
undergraduate mathematics course. Some commonly found misconceptions include

confusion about the group operation, particularly when the problem involves more than
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one group (Hart, 1994; Selden & Selden, 1978), believing that the only solution to the
equation x = x' was the identity element (Hazzan, 1994), using techniques from the real
numbers in the abstract setting (Selden & Selden, 1978; Hazzan, 1994, 1999), confusing
a theorem and its converse (Selden & Selden, 1978; Hazzan, 1994; Hazzan & Leron,
1996), and difficulty managing the distinction between set and element (Hazzan, 1999;
Selden & Selden, 1978). This last distinction is further complicated by the fact that the

elements of the quotient group are themselves sets.

Some of the above misconceptions are tied to the use of mathematical notation. Selden
and Selden (1978) found, for example, that students often use the same symbol for two
different things, and, conversely, they often assume things are distinct because they have
different names. Hazzan (1994) suggests, regarding the use of different letters in the
axiom for inverses, that it is easier to think of a relation between two different objects

than of an object with itself.

Other difficulties seem to be tied to other sorts of representations. As part of a study on
visual and analytic thinking, Zazkis and Dubinsky (1996) investigated abstract algebra
students’ ability to represent the elements of Dy, the group of symmetries of the square
and then to find the product of two elements. This task can be approached either
“visually,” using a geometric representation, or “analytically,” using permutation
representations. They found that most students used a combination of these approaches,
suggesting that the dichotomy between visual and analytic thinkers may be false. They
propose an alternative model that assumes visual and analytic thinking to be mutually

dependent in mathematical problem solving.
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The study also produced some unexpected mathematical results (Zazkis & Dubinsky,
1996). Eight of ten students found as they translated between the geometric and
permutation representations that the groups were not isomorphic, causing Zazkis and
Dubinsky to conclude that the dihedral groups such as D, are not groups until some
structure is imposed on them in the sense that the relationship between the group
operations in the two representations must be specified appropriately. By careful analysis
of the ways to translate from the geometric to the permutation representation, they found
that students could focus on the square and where its vertices traveled (an object
interpretation) or on the four positions and which vertices they contained after the
transformation (a position interpretation). In computing the product of two
transformation symmetries in the geometric representation, students could imagine either
that the axes describing the transformations were fixed (a global interpretation) or that
they traveled with the square (a /local interpretation). Choosing either the object/global or
the position/local pair of interpretations results in the desired isomorphism between the
geometric and permutation representations. Most students, however, were drawn to the
position/global pair or the object/local pair, which caused the groups to be anti-
isomorphic, in the sense that the order of multiplication is reversed. Zazkis and Dubinsky
suggest that the embedding of dihedral groups in permutation groups deserves some

careful attention in instruction. .

Hannah (2000) pursued Zazkis and Dubinsky’s ideas through a teaching experiment.
Expecting that students would prefer the global interpretation, he encouraged the object
interpretation by using additional labels to separate the object from the position. About

half the students still preferred the position interpretation, although one of these students
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also chose the local interpretation, thus leading to an isomorphism between the geometric
and permutation representations. In the second trial of the teaching experiment, after
making some additional adjustments in his notation to make the object and frame of
reference more salient, all but one student chose consistent interpretations. Hannah also

found that permutation notation can lead to the same local/global interpretational issues.

Leron, Hazzan, and Zazkis (1995) discuss the development of the concept of group
isomorphism. Some of the difficulties, they suggest, may actually be with quantification.
They note that the naive concept of isomorphism (same group with the names changed) is
a good start, but the object isomorphiém is defined directionally, with the two groups
playing different roles, and requires a sophisticated concépt of function. In other words,
although there is symmetry in the statement that two groups are isomorphic, actually
finding an isomorphism requires choosing one group as the source (the domain of a
function) and the other as the target. When trying to construct an isomorphism between
two groups, they note that students hope for a canonical (or at least obvious)

isomorphism and get stuck when there is a choice.

Hazzan and Leron (1996) argue that the standard formulation of Lagrange’s theorem
hides its nature and its deep meaning. The standard formulation is:

Let G be a finite group. If H is a subgroup of G, then o(H) divides o(G).
The notation o(G) signifies the order of the group,1 that is, the number of elements in it.
The authors suggest that the contrapositive of the theorem includes explicit quantifiers

that make its nature as a nonexistence theorem clearer and reveal its deep meaning:

! This is Hazzan and Leron’s notation. In the class that provided the context for the present study, we used
the alternative notation |G| to denote the order of a group G.
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Contrapositive: If k£ does not divide o(G), then there does not exist a subgroup of
order k.

Deep meaning: If there exists a subgroup of order £, then & divides o(G).

This analysis of Lagrange’s theorem arose in response to data collected on the question,
“Is Z3 a subgroup of Zs?”” Out of 113 students, 73 gave incorrect answers. Of these, 20
gave some version of, “Yes, by Lagrange’s theorem, because 3 divides 6.” Hazzan and
Leron suggest that students’ response may be due to a coping mechanism and may not
really reflect thinking about the theorem and the two groups. The authors explore issues

of coping more fully elsewhere (Leron & Hazzan, 1997).

In a broader study of learning in abstract algebra, Hazzan (1999) found that students
tended to reduce the abstraction level in order to cope with the task at hand. She
organized her results according to three ways of looking at the level of abstraction.
Regarding abstraction level as the quality of the relationships between the object of
thought and the thinking person, she found that students tend to make the unfamiliar
familiar by basing their argument, for example, on numbers and number operations.
Regarding abstraction level as a reflection of the process/object duality, she found that
students tend to personalize formal expressions and logical arguments by using first-
person language and that they tend to engage a well-rehearsed procedure rather than rely
on theorétical knowledge. Regarding abstraction level as the degree of complexity of the
concept of thought, she found that students sometimes reduce abstraction level by

replacing a set with one of its elements.

Hirsh (1981) describes an abstract algebra course for preservice secondary school
teachers that included a “didactical shadow” seminar in which the mathematical concepts

were followed closely by readings and discussions on teaching K-12 mathematics. These
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readings were intended to encourage preservice teachers to see abstract algebra as
relevant in their future as secondary school teachers. The study found significant
improvement in the experimental group in the students’ understanding of the real number
system and nonsignificant improvement in the control group. On several affective
measures, no significant differences between groups were found. The most important

result, Hirsch suggests, was that the study demonstrated the feasibility of such a course.

Proof

As stated in chapter 1, mathematical proof is one of the defining characteristics of
advanced mathematical thinking, and proof plays a central role in the learning of abstract
algebra. Because the role of proof did not play a central role in this study, this section

briefly reviews literature that was helpful in framing the study.

One of the leading expositors of the role of proof in mathematics education is Gila Hanna
(1991, 1995). She suggests that constructivist theories have led to a mistaken view of the
teacher as playing a passive role and of proof as being unimportant. She argues for
recognizing and promoting proof in the mathematics curriculum as a key tool for
promoting understanding. The research on the role of proof in mathematics education is
thin and confused by the typical four-year separation between proof in high school

geometry and proof in undergraduate mathematics.

Hart (1986, 1994) describes a research study in which twenty-nine college mathematics
majors, taking different abstract algebra courses from beginning undergraduate to
beginning graduate, were asked to write six standard abstract avlgebra proofs, each

“doable in 15 minutes or less.” On the basis of their performance on three criterion
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proofs, students were classified into four levels of conceptual understanding. Analysis of
errors made, processes used, correctness of proofs, and student assessment of tasks
suggested that the joﬁrney frbm npvice to expert in a content domain may be an irregular
and unstable developmental process, rather than the dichotomy often assumed in the

literature.

In a mathematics course called Introduction to Higher Mathematics, Moore (1990, 1994)
found seven major sources of student difficulties in learning to do proofs, including
inability to state the deﬁniﬁons, inadequate concept images, inability to use the definition
to structure a proof, inability or unwillingness to generate examples, and difficulty with
mathematical language and notation. He suggests that the concept image/concept
definition dichotomy was not sufficient to explain his results and suggested the term
concept usage to discuss how students used definitions to generate and use examples,
applied definitions within proofs, and used definitions to structure proofs. Although in
Moore’s work this construct more accurately describes students’ use of concept
definitions rather than of concepts, thinking about concept usage proved helpful in this

study in identifying components and characteristics of students’ concept images, as

described below.

Taken together, these articles support the idea of investigating not only students’
understandings of concepts but also their personal definitions of those concepts. Proof,

after all, involves reasoning about concepts, which must be meaningful to the students in

order to support such reasoning.
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History
Sfard (1995) gives a detailed a description of the historical development of algebra with
strong connections to the teaching and learning of both school and abstract algebra,
providing compelling support for the claim that historical-critical and psychogenetic
studies should converge (Piaget & Garcia, 1989, p. 108). According to Sfard, group
theory arose out of the work of Lagrange and Ruffini, who noticed that methods of
solving polynomial equations depended on permutations of the roots. Soon permutations
and then, with Cauchy, operations on those permutations became objects of attention.
Galois defined the notion of a group by declaring interest in the structure imposed on the
permutations by the so-called substitutions. Cayley freed the concept from any
commitment as to the nature of the elements, focusing instead on the manipulations.
With the invention of the concept of group, the seeds had been planted for algebra to

become a science of abstract structures.

Kleiner (1986) describes four lines of inquiry that coalesced toward the end of the
nineteenth century to form the area we now call abstract algebra. First, the techniques
from classical algebra for solving polynomial equations led to the permutation groups.
Second, questions in number theory led to the finite Abelian groups. Third, attempts to
unify and organize geometry led to transformation groups. Finally, roots in analysis led
to investigation of continuous transformation groups. One response to this account is to
use historically important problems to provide pedagogical and intellectual motivation in

the teaching of abstract algebra (see Kleiner, 1995).

Nicholson’s (1993) account of the slow historical development of the concept of quotient

group can provide additional sources for cognitive roots to be exploited. She suggests
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several obstacles that were overcome by the mathematics community during the
deveiopment of this concept. First, the community needed an abstract concept of group
that was not dependent on any particular representation. Second, the community needed
the concept of equivalence (modulo a subgroup). Finally (and most importantly), the
community needed to realize that the elements of the quotient group are not like the
elements of original group, but are equivalence classes—sets. All of these historical
developments provide clues about what might be the issues for students learning the
subject. In this study, I paid attention in particular to the ways in which students develop
an abstract concept of group and the sense in which they consider sets to be elements of

quotient group.

Teaching Suggestions
I close the review of the literature with a discussion of articles that informed the
development of the course, that provide additional rationale for investigating learning in

abstract algebra, and that collectively support the decision to investigate learning in a

nontraditional course.

In “An Abstract Algebra Story,” Leron and Dubinsky (1995) condense the principles and
research behind their textbook (Dubinsky & Leron, 1994) into a dialogue with an
“idealized reader.” They begin by asserting that “The teaching of abstract algebra is a
disaster, and this remains true almost independently of the quality of the lectures”

(p- 227). They suggest that the ISETL computer activities provide an experiential basis

for the abstractions that follow, asserting that “if the students are asked to construct the
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group concept on the computer (by programming it), there is a good chance that a parallel

construction will occur in their mind” (p. 230).

In Dubinsky and Leron’s approach, before seeing the concept of quotient group, the
students have already explored a construct they call Gmod#, which is the set of cosets in
G of a subgroup H, independent of whether H is normal, an approach consistent with that
recommended by Benson and Richey (1994). Leron and Dubinsky acknowledge that the
notation GmodH is unorthodox, particularly when H is not normal, but defend their
approach by noting that students realize they need to look into the properties of H that
make GmodH a group and come to appreciate that the main issue is closure.

Furthermore,

by building on the material that the students bring up, the instructor is able to
state most naturally and smoothly the definition of a normal subgroup, the
theorem that when H is normal then GmodH forms a group, and the (now very
easy) proof of this theorem. Normality is naturally introduced here as the
condition which insures that GmodH be a group, and the definition most often
discovered by students is aH = Ha for all a € G. Except for the new name, the
students can really feel that the instructor merely summarizes what they have
found in their investigations. In the session that follows, the instructor makes the
final ties with the “standard” approach by explaining that when H is normal,
GmodH is commonly denoted G/H, and is called the quotient group of G modulo
H and coset product is commonly defined by the formula (Ha)(Hb) = H(ab).

(p- 238)

Freedman (1983) also rejects the lecture method, quoting Halmos, “A good lecture is
usually systematic, complete, precise—and dull; it is a bad teaching instrument” (p. 631)
and Moise, “It is simplistic to suppose that people remember what they are told and
understand the things that are explained to them clearly” (p. 631). He discusses an
approach he used in London in which students in a small seminar were each required to

read and lecture on some original papers in abstract algebra. Although this approach may
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seem quite radical to instructors in the United States, he claims that the students worked

together and were quite successful.

In response to the difficulties students usually have with Lagrange’s theorem, Johnson
(1983) notes that the traditional proof involves cosets and equivalence relations, both of
which are new concepts to most students. As Lagrange’s theorem is usually used to
prove the more intuitive theorem that the order of an element divides the order of the
group, Johnson suggests proving the latter result first, for it follows quite naturally from
the decomposition of a permutation into disjoint cycles. Of course, this approach
assumes the students are familiar with permutation groups, and such an assumption might

be unwarranted.

Holton and Wenzel (1993) describe an abstract algebra course in which Lagrange’s
theorem is preceded by cooperative learning via examples. Rejecting the traditional
approach of “exposition, exhortation and regurgitation” (p. 883), they found that students
were able to conjecture the theorem and many of the necessary lemmas. Although it was
not a formal research study, the description of the classroom environment was

compelling.

Conclusion

This review has shown that although there have been few published research studies on
the learning of abstract algebra, there is a theoretical and empirical base on which to
build. To complement the work embedded in the APOS framework, this study is more

exploratory in nature, taking a broader view of the ways of thinking that students exhibit
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while trying to make sense of the concepts in the course. The next chapter describes the

conceptual and analytical framework designed to support such an approach.
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CHAPTER III

CONCEPTUAL AND ANALYTICAL PERSPECTIVE

This chapter sets forth the conceptual perspective that guided this study and that
contributed to the design of the analytical framework. Fundamentally, learning is seen as
a process of making sense of experience and of building understanding, a viewpoint that
is consistent with various forms of constructivism. The central theoretical construct is the
notion of a concept image (Tall & Vinner, 1981). The concept image is contrasted with
the concept’s definition, which leads to a discussion of the role of definitions in
mathematics, in thinking, and in learning. The chapter continues with a discussion of
other important constructs that are useful in describing the growth and character of
concept images, particularly in advanced mathematical thinking, including abstraction
and generalization and the distinction between process and object conceptions of
mathematical ideas. The chapter also includes a discussion of the role of metaphor in
mathematical thinking, with particular attention to thinking in abstract algebra. Next, I
discuss issues of naming and notation, setting the stage for a discussion of semiotics,
which provides much of the analytical and theoretical backing for the study. These
various theoretical constructs are then brought together at the end of the chapter in an

analytical framework that undergirded the analysis of the data.

33
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Learning with Understanding
This study was based upon the following fundamental theoretical assumptions that are
consistent with a large body of work in cognitive science, psychology, and mathematics
education (see, in particular, Bransford, Brown, & Cocking, 1999; Hiebert & Carpenter,
1992). First, human beings are conceptualizers in that they try to make sense of their
percepts by developing concepts. People try to understand their experiences by
organizing them, abstracting from them, creating categories, making connections,
particularly with prior knowledge, and making distinctions. In high school and college
mathematics, for example, students create a category called “function” by abstracting the
common features of the many mathematical creatures called “function” in their
experience. These abstracted features are not necessarily the properties that are isolated

in the formal mathematical definition, as is elaborated below.

Second, knowledge is represented internally in the mind. People create internal
representations for objects, processes, properties, and relationships; for images, sounds,
smells, sensations, and impressions; and also for categories and networks of these. These
mental representations do not match an external world but rather fit one’s experience
with some degree of viability (von Glasersfeld, 1990). Because mental representations
are not observable, discussions of how ideas are represented in someone’s head must be
based largely on inference. Such inferences can be facilitated by building and testing
models of individual understanding, as is elaborated below. A fundamental goal of
research in the psychology of learning is to understand mental representations of ideas,
by building models, describing their features, and so on, based on observation of learning

situations. It is not necessary that the models match the underlying neural processes
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(Kosslyn & Hatfield, 1984). Rather, the goal is that models fit the observations with
some degree of viability, particularly with regard to explanation and prediction. In order
to build such models, it is reasonable to assume that the external entity being represented
influences and constrains the internal representation. In mathematics, these external
entities are often themselves representations, such as symbols or diagrams, because

mathematical ideas are accessible only through their representations (Duvall, 1999; see

also Pimm, 1995, p. 119).

Third, internal representations can be connected to one another in useful and hence
meaningful ways. Successful learning may be described as learning with understanding,
where understanding is characterized by connectivity. While in the process of learning,
connections are made internally in the mind of the learner and over time the concepts,
processes, properties, examples, and the connections among them grow to form cognitive
structures that might be described as networks. In general, the more connections, the
more intricate and encompassing are the networks, and the deeper are the understandings.
In this study, individual conceptual understandings are described via the term concept
image, which denotes the entire cqgnitive structure that a particular individual associates
with a particular cdncept, as elaborated below. In considering the notion of a concept
image, it is important to contemplate not only a concept’s structurc and connections to

other concepts but also the boundaries that distinguish the concept from related ideas.

Concept images and other cognitive structures are actively built up over time through
experience and through active reflection on that experience. The structures, of course,
depend heavily upon prior experience and also upon the nature and extent of the

reflection. Thus, in response to an experience, the actual constructions are personal and
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idiosyncratic, which implies that learning and knowing, too, are personal. It is for these
reasons that phrases such as “construct personal meaning” or “construct knowledge” are
helpful in describing the learning process. This is not to say that all conceptual structures
are equal. Some conceptual structures are particularly weak or fragile or lack long-term
viability in light of future learning goals. Other structures are strong and persistent.
Some conceptual structures are unproductive and fade as a result. Other structures are
productive and will support and promote future learning. And, of course, when measured
against established knowledge, sometimes conceptual structures contain ideas that are

incorrect.

The real quandary lies with strong, productive, but faulty structures with incorrect
ideas—often called misconceptions. Independent of whether these are called knowledge,
such structures are personal conceptions that are held with conviction and are based upon

some reasoning, however incomplete or fallacious.

Piaget describes two mechanisms by which a subject makes sense of experience:
assimilation and accommodation (see, e.g., Steffe & Wiegel, 1996). When an experience
fits within the existing cognitive structures, the experience has been assimilated. If, on
the other hand, the experience evokes cognitive structures that do not fit with fhe
experience, we say the learner has been disequilibrated. To re-equilibrate, the learner
must reorganize his or her cognitive structures in light of the new experience. It is this

reorganization that Piaget calls accommodation.

The point is that new information is not simply received but is actively interpreted and
filtered through prior experience. The experience must either make sense within the

existing structure, in which case it is assimilated, or it must be “moderately novel” so that
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the experience creates a disequilibration, which can lead to an accommodation. The
experience must be only moderately novel, for it must be sufficiently interpretable to

create some cognitive conflict.

This balance between assimilation and accommodation makes the point that learning is
sometimes difficult, and thus faultless communication is fiction. Papert suggests that,
“Anything is easy if you can assimilate it to your collection of models. If you can’t,
anything can be painfully difficult.... What an individual can learn and how he learns it

depends on what models he has available” (cited in Steffe, 1990, p. 173).

Given the above positions about the nature of learning, what then are the implications for
the teaching of mathematics? First, mathematics itself is a highly structured and
organized domain. For mathematical knowledge to be useable (or perhaps even
accessible), it must be organized in some way in the mind. It is clearly not possible to
transmit whole structures from the mind of the instructor to the mind of the student.
Rather, the student must do some constructing in his or her own mind. Second, it is
impossible to know in advance what a person will learn from a given activity. Moreover,
it is impossible to know with certainty what a person has learned, although an instructor
or researcher can develop approximate models by asking questions. Explicit reflection,
with the corrective mechanisms of the observations and responses of the teacher and

other students, is likely to lead to strong, viable, and productive connections.

Relationship with Constructivism

Many of the above positions are consistent with the assumptions of any of several forms

of constructivism.
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What the various forms of constructivism all share is the metaphor of carpentry,
architecture, of construction work. This is about the building up of structures
from preexisting pieces, possibly specially shaped for the task. The metaphor
describes understanding as the building of mental structures, and the term
restructuring, often used as a synonym for accommodation or conceptual change,
contains this metaphor. (Ernest, 1996, p. 335)

A key expositor of constructivism in mathematics education is Ernst von Glasersfeld,

who proposes two principles for radical constructivism:

(a) Knowledge is not passively received but actively built up by the cognizing
subject;

(b) the function of cognition is adaptive and serves the organization of the
experiential world, not the discovery of ontological reality. (von Glasersfeld,
1989, p. 162)

Adopting only the first of these principles is to take a position that is sometim’es called
“weak constructivism” (Ernest, 1996) or “trivial constructivism” (von Glasersfeld, 1996).
As Kilpatrick (1987) and others have noted, the first of these principles is broadly
accepted and “almost no mathematics educator alive and writing today claims to believe
otherwise” (p. 7). The second principle, on the other hand, is much more controversial.
My position is that whether one believes in an objective reality or Platonic ideals or
denies both is, in a sense, immaterial because the stude.nt’s cognitive structures will
match neither reality, nor an ideal, nor the teacher’s or researcher’s cognitive structures
but instead will fit each of these with varying degrees of viability. This is a particularly
important point regarding the learning of mathematics, since mathematical concepts exist
not in the physical world but rather in abstractions from activity in the physical world and

in the mind.

In order to understand what constructivism provides, it is important to recognize that the
theories arose in part as a response to what was missing from behaviorism, which refused

to posit any meaning behind student’s actions. Stimulus-response mechanisms were
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supposed to explain all behavior. Thus, constructivism was one of many efforts during
the twentieth century to insert meaning and understanding into theories of knowledge and

learning. But not all behavior is meaningful.

Vinner (1997) describes some behaviors as pseudo-conceptual and pseudo-analytical
because they may be taken as an indication that true (i.e., meaningful) conceptual and
analytical processes have occurred when iﬁ fact the behévior is little more than simple
association and imitation based on superficial similarity. For example, a calculus student
who immediately responds “2x” when hearing “x*” is not responding meaningfully if the
response is merely a verbalized association. In a calculus class, sometimes this simple
association will yield the correct answer, and it is impossible to know, without asking
further questions, to what extent the student can construct (or resurrect) some meaning
for the response. Students are bound to have such associations. Vinner’s point is that in
mathematics class, students should evaluate their associations consciously and critically,
rather than merely verbalizing them in hopes of getting “credit.” He argues that such
verbalized associations should not be interpreted as indicating misconceptions or
anything about a student’s cognitive structures, because cognitive structures are not

involved.

Part of the reason many students exhibit pseudo-conceptual behavior in mathematics is
that they have found such behaviors to be viable in mathematics classes. Many students
are successful in mathematics by relying almost exclusively on simple association and
imitation, practicing problems that are just like the ones demonstrated in the textbook or

by the teacher. Yet the severe filtering effect of high school and college mathematics
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suggests that for most students, mere imitation fails at some point, in arithmetic, algebra,

geometry, or calculus.

Thus, learning with understanding requires the development of cognitive structures in
which the connections are not simple associations but relationships that are rich in
meaning.> Mathematical learning is rarely effective without such meaning, in the sense
that it is unlikely to be durable, flexible, and supportive of future learning. Mathematical
learning that is based only on simple associations is not mathematics at all, not to

mention that such skills are fragile and essentially useless today.

There are certain meta-cognitive behaviors that may support learning even if they are
simple associations. For example, my studenfs learn that in response to their statements I
am likely to say, “Okay. Why?” Some of them internalize this behavior and begin to ask
the question themselves. Deborah Ball’s class learned that she was likely to ask, “Are
these all the solutions?” (Ball & Bass, in press; Suzuka, 2001). And many of Polya’s
(1957) suggestions (Can I think of a similar problem? Can I simﬁlify the problem?) can
be seen in a similar light. The list of desirable behaviors also includes many so-called
habits of mind that describe successful mathematics knowing and learning. Cuoco,
Goldenberg, and Mark (1996) provide a compelling list of such habits, suggesting, for
example, that students should learn to look for patterns, to watch for things that change,

and also to watch for things that do not change.

? When T asked my 19-month-old daughter, “When will you be two?” she responded, “November.” But
how much meaning might have been behind her response? It is rather overwhelming how much conceptual
knowledge she will need to construct before she will be able to give a detailed account of the meaning
adults might take from her response. '
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Thus, investigations of mathematical understanding must look at behavior, because that is
all that is observable, but should also address meaning, which requires probing beneath
the simple associations to explore and make inferences about the meaning that students
bring to the situation. My goal as a researcher is to understand how meaningful

mathematical understanding is built and how meta-cognitive behavior can help.

Concept Image

The assumption that learners build up cognitive structures as they learn mathematics
requires some terms to discuss these structures. I borrow a term from Tall and Vinner

(1981):

We shall use the term concept image to describe the total cognitive structure that
is associated with the concept, which includes all the mental pictures and
associated properties and processes. It is built up over the years through
experiences of all kinds, changing as the individual meets new stimuli and
matures. (p. 152)

In this seminal paper, Tall and Vinner contrast the concept image with the term concept
definition, which is a verbal description of the concept and about which I say more
below. Because only part of a cognitive structure is brought into consciousness during a
particular task, the term evoked concept image refers to that portion of the concept image

that is evoked in response to a given task (Tall & Vinner, 1981).

The ideas of concept image and evoked concept image are consistent with the work of
Hart (1994), who found that when students approach mathematical tasks, “strategies are
evoked [rather than chosen], based on the interaction between the task at hand and the
current conceptual schema” (p. 61). Furthermore, he explained his results by suggesting

that “processes, metacognition, and misconceptions are actually part of one’s conceptual

schema” (p. 62).
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Characterizing Concept Images

Concept images consist of examples and nonexamples, representations (symbolic,
graphical, pictorial, verbal, enactive, iconic, etc.), definitions and alternative
characterizations, properties, results, processes and objects, contexts, and impressions
from previous experiences. Solving a mathematical problem (or any mathematical
activity) involves recalling or reconstructing examples, representations, objects, or
processes and establishing connections to other examples, representations, objects, or

Processes.

Concept images are not moriolithic, for the various examples, properties, and
representations play different roles. Michener (1978), for example, distinguishes among
start-up examples, reference examples, model examples, and counterexamples. Some
properties hold for all examples of the concept (e.g., all groups have an identity element).
Other properties, on the other hand, are useful for categorizing examples (e.g., some
groups are Abelian). For many concepts, there are also lists of key properties for
describing examples (e.g., when making computations or deriving results about a group,
it is useful to know the group’s cardinality, a set of generators, or an alternative

representation).

Because individuals are sometimes more able than at other times to make particular
connections or to reconstruct particular examples, representations, or processes, concept
images not static entities but rather are always in a state of flux as one thinks about a
concept, focusing and refocusing one’s thought on various aspects of the concept image.
Thus,.it is useful to consider not only the components of a student’s concept image but

also the students’ concept usage (Moore, 1994), which in turn can provide
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characterizations of a concept image. Concept images, for example, can be dominated by
particular examples, representations, or ways of thinking. Dubinsky et al. (1994)
observed, for example, that some students focused on the process of computing a coset,
whereas more successful students were also able to conceive of cosets as objects that
themselves could be acted upon by other processes. Thus, concept images can be
limiting when they inhibit an individual from making certain constructions or

generalizations.

A concept image is built through all previous experiences with the concept. Experiences
that are assimilated make sense within the evoked concept images. Experiences that
require accommodation, on the other hand, cause structural changes in an individual’s
concept images such as the construction of a new concept, the creation of new

connections to other concepts, or the reorganization of the connections within or among

concepts

A key theme that emerged in this study is the complicated relationship between a concept
and its name. I make only two points here and provide additional theoretical discussion
below. First, a student’s concept image might not reasonably be described as a subset of
a mathematician’s concept image. A student’s concept image may instead include
misconceptions or may even be of a different character entirely. Second, the notion of
concept image presents something like a chicken-and-egg problem: Which comes first,
the concept or the name? One might begin with the name of a concept and then gradually
build experiences underneath. On the other hand, as individuals gain experience, they
build mental structures that are not necessarily part of a named concept but at some point

subsume those structures (and experiences) under a single name. In either scenario, at
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what point is there a concept image? The resolution of the problem lies in the realization
that the notion of concept image is merely an analytical tool. People do not have concept
images in the same sense that they have internal organs. Thus, in the analysis I try to
maintain a notion of concept image that is flexible enough to accommodate all of these

possibilities.

Relationship to Schema

The term concept image shares some similarity with the term schema, used by Piaget and
many researchers in both the constructivist and cognitive science traditions (see, €.g.,
Bransford et al., 1999; Piaget, 1970a). In the problem-solving literature, particularly in
cognitive psychology, schemas are associated with problem types, and each schema has
“slots” that are filled by the specific information provided in the problem. (For an
overview of this literature see Mayer, 1992.) This view is problematic because it seems

to suggest that learning consists of constructing a new schema for each new problem

type.

For Dubinsky (1991), “A schema is a more or less coherent collection of objects and
processes” (p. 102), which typically might be named as a concept. For example, “The
concept of group can be understood as a schema that consists of three schemas: set,
binary operation, and axiom (Brown et al., 1997, p. 192). For Skemp (1987), on the other

hand, a schema is a suitably connected collection of concepts.

For the purposes of this study, I was primarily concerned with the ways that students
think about particular concepts. Thus, a concept image was associated with a particular
concept, typically given by name. And with the term, I considered both the way it is

structured and the ways it connects to other mathematical ideas.
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Concept Definition

As described above, Tall and Vinner (1981) introduced the term concept image to
contrast with a concept definition, which is a form of words used to specify a concept.
This distinction serves as a reminder of two simple ideas about students’ learning of
mathematics. First, around any (mathematical) concept, students’ thinking is strongly
influenced by the examples, nonexamples, representations, and contexts in which they
have previously experienced the concept. Second, students do not typically employ (or
naturally adopt) the mathematical habit of consulting a formal definition in response to
mathematical tasks but rather rely entirely on their concept image. Furthermore, Vinner
(1992) found that even when students can recall a concept definition, the concept
definition and the concept image might conflict or contradict one another. He calls this
phenomenon compartmentalization, suggesting that the concept definition and the

concept image are not evoked at the same time.

Perhaps because of the phenomenon of compartmentalization, Vinner and Tall often
separate the concept definition from the concept image, in describing cognitive structure
(see, e.g., Vinner, 1992), and even go so far as to discuss a “concept definition image” to
describe a concept image built up around the definition (Tall & Vinner, 1981). For
successful mathematicians, however, a formal concept definition constitutes an integral
part of the cognitive structure built around that concept. The definition is routinely
consulted and is well integrated into the rest of the concept image. Thus, for this study, a
concept definition (personal, formal, or otherwise; see below) was considered a subset of
a concept image. In the analysis, I explored the definitions that the students provided as a

means of making inferences about the nature and connectivity of their concept images.
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Theoretically, including the definition as part of the concept image is reasonable even
when the definition is compartmentalized, because the term concept image implies
nothing about the connectivity of that structure. In fact, an individual’s concept image

may include several essentially separate components, each evoked for different kinds of

problems.

Definitions are not easily remembered verbatim. And in everyday life, a definition’s
precise wording is often forgotten shortly after it is used, introduced, or consulted. When
terms are introduced via a definition, the definition sometimes provides only scaffolding:
When the construction is sufficiently complete, the scaffolding is taken away. To
overcome this tendency, some instructors, in mathematics as well as other subjects,
recommend that students memorize definitions. But it is not at all clear to what extent
mathematicians or other experts recall rather than reconstruct definitions that they use in

their professional work.

Because definitions are not easily remembered, it seems likely that they are constructed,
and this is the point of view that informed this study. According to Tall and Vinner
(1981), a student, when asked to define a concept, may respond with a personal concept
definition, which may not agree with a mathematically acceptable formal concept
definition but which instead might be described as an ad hoc description of his or her
concept image. Thus, some parts of the concept image function as definitions. For
example, in Deborah Ball’s third grade classroom, Cassandra shows that six is even by
pointing to the number line: “Six can’t be an odd number because this is (she points to
the number line, starting with zero) even, odd, even, odd, even, odd, even” (Ball & Bass,

2000, p. 213). For her, the alternating pattern provides the definitions of even and odd.
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For other students in the class, grouping by twos serves to provide the definitions. Still
other students prefer to separate numbers into two groups. As another example, the
literature on the learning of functions is replete with examples of students defining
Sfunction as synonymous with formula or equation (see, e.g., Vinner, 1992; Ferrini-Mundy
& Graham, 1994). Students implicitly use personal concept definitions when asked to
determine whether a particular thing is an example or a nonexample of a concept. This is
reasonable behavior in contexts—including many mathematical contexts—where precise
definitions are not necessary for the task at hand, particularly when one’s concept image

is sufficiently rich and robust.

Lakoff and Johnson (1980, pp. 117-125) point out that from a cognitive point of view,
definition is not a matter of giving a list of necessary and sufficient properties for a
concept, although this is sometimes possible. Instead, concepts are defined by prototypes
and by types of relations to the prototypes, and there need be no fixed core of properties
of the prototypes that are shared by all instances of the concept. Furthermore, some
properties of a concept are not part of the thing itself but are functional, purposive, or
otherwise involve interaction with an instance of the concept. And finally, concepts are
not fixed but can be systematically modified by metaphors and by hedges such as

“technically” or “loosely speaking.”

In advanced mathematics, on the other hand, the definition of a concept becomes

~ primary; the definition becomes the touchstone whose role is to ensure rigor (i.c.,
precision and consistency) within, between, and among concept images. Because this
perspective on definitions is unusual outside of mathematics and the hard sciences, it

represents a significant adjustment for students. The nature and role of definitions in
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mathematics did not play an explicit role in the course that is the subject of this study, but

because these ideas inform my analysis, the topic deserves more attention here.

Types of Definitions

Linguists distinguish among several types of definitions (see Kemerling, 2001). A lexical
definition is an attempt to describe the meaning of a word as it is commonly used. These
are the kinds of definitions found in dictionaries, which, contrary to some beliefs, portray
current usage not timeless truths, in full acknowledgement that languages evolve. A
stipulative definition, on the other hand, specifies what a term is to denote. Such
definitions are commonly found in technical, legal, and scholarly writing. From the
viewpoint of some writers, a stipulative definition freely assigns meaning to a new term
and thus is intended to be the touchstone for all subsequent uses of the term.

Nonetheless, the expositor is somewhat constrained by what the reader might be willing
to accept. Thus, one common approach is to use a precising definition, which begins
with a lexical definition of a term, and then proposes to sharpen it by stipulating more

narrow limits on its use.

Theoretical definitions are stipulative definitions made within the context of a broader
intellectual framework. It is worth noting that the validity of a theory depends upon the
definitions on which the theory is built. Thus, an appropriate interpretation of Newton’s
laws of motion, for example, depends upon imposing particular definitions of terms such
as mass, inertia, and force onto experience. For example, I presume that separating the
concept of weight into mass and acceleration due to gravity was a major conceptual
advance. When they were introduced, Newton’s particular set of definitions provided an

extremely elegant description of objects in motion. But one should recognize that the
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precise definitions were required for the creation of the theory. It seems backward to
teach students the theory only to conclude later that they have misconceptions about
some of the terms. Why not instead try to provide them with experiences that will help
them see the importance of precise definitions and the usefulness of particular definitions

and of the distinctions among them?

Formal definitions in mathematics are, in a way, peculiar precising definitions—peculiar
because of the inflexible totality of the implied precision (i.e., no more, no less) and
because the formal definition sometimes bears little relationship to the term’s informal
usage (e.g., “cycle”). This use of definitions may be peculiar to mathematics and the
hard sciences. In the social sciences, precise definitions are hard to find. Rather, an idea
is given a name (often a common word), and then tﬁe researcher spends paragraphs

describing what does and does not fit under the name.

In the analysis of the data in this study, I followed Vinner (1976) and restricted my
attention to formal and lexical definitions to discuss the two primary roles that definitions
play in mathematics and mathematics learning, but it is worth pointing out that in the
above discussion I have presented stipulative definitions of several terms including
concept image and stipulative definition itself. None of these, however, carries the
precision of formal mathematical definitions. I believe that such precision is not possible
because ideas about language and cognition are messy, fuzzy, and dependent upon the
phenomena that the definitions are intended to describe. Mathematical ideas, on the other
hand, are ideal—abstracted from phenomena and no longer dependent on the “real

world,” at least in formal mathematical practice.
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Definitions in Mathematical Practice

“When I use a word,” Humpty Dumpty said, in a rather scornful tone, “it means
just what I choose it to mean—neither more nor less.” (Lewis Carroll, Through
the Looking Glass)

In the words of Polya (1957), the “definition of a term is a statement of its meaning in

other terms which are supposed to be well known” (p. 85). But this seemingly innocuous
statement hides four crucial aspects of the role of definitions in mathematics: the creation
of meaning, the need for undefined terms, the substitution criterion, and the use of mental

or physical models. These are discussed, in turn, below.

“The mathematician is not concerned with the current meaning of his technical terms....
The mathematical definition creates the mathematical meaning” (Polya, 1957, p. 86).
This view of definitions, embodied in the character of Humpty Dumpty above, reached
its height in the formalism of Russell, Whitehead, Peacock, Hilbert, and others, but in
fact, has its early roots in Kant.> Formalists maintain that mathematics involves
manipulating meaningless symbols according to the formal rules of the system, and the
primary criterion is that the system is consistent. Of course, this point of view requires
certain ontological and epistemological commitments or at least changes in perspective.
Hamilton, for example, insisted that the symbols must stand for something ‘real’—if not
material objects, then mental constructs (Kleiner, 1987). Nonetheless, some
mathematicians were reluctant to adopt a formalist view. Graves, for example, on
Hamilton’s invention of the quaternions, responded, “I have not yet any clear view as to
the extent to which we are at liberty to create imaginaries, and to endow them with

supernatural properties” (quoted in Kleiner, 1987, p. 233). By 1844, however, less than a

3 This was the fundamental idea behind Kant’s notion of synthetic a priori statements. “Whereas, therefore,
mathematical definitions make their concepts, in philosophical definitions concepts are only explained”
(cited in Beth & Piaget, 1966, p. 13).
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year after Hamilton had published his work on quaternions, Graves and other

mathematicians begin creating new mathematical structures almost without restraint.’

It is well known that in any mathematical system some terms must be taken as primitive,
that is, left undefined, for the only alternatives are circular definitions or infinite regress,
neither of which is logically tolerable. If one accepts that definitions create the meaning
of terrhs, where, then, do undefined terms acquire their meaning? Just as the axioms of
natural numbers form implicit definitions of natural numbers (Beth & Piaget, 1966, p.
68), the axioms of any mathematical system give implicit definitions of the undefined
terms of that system. Couturat made this point by distinguishing between direct
definition and definition by postulates, the latter applying not to a single notion but a

system of notions (cited in Poincaré, 1946, p. 453).

To adhere to the principle that all assumptions must be made explicit in the axioms and
definitions, Pascal was apparently the first to put forward the criterion of substitution:
that the definition permits us “to substitute the definition in place of the defined” (cited in
Beth & Piaget, 1966, p. 38). Thus, the substitution principle is a way of ensuring that
every theorem and every f)roof could, in principle, be written using only the undefined
terms, the axioms, and the laws of logic. Mariotti and Fischbein (1997) clarify the

implications of this view:

In the new theory, it is not possible to prove anything which was not already
possible to prove in the old one. From the formal point of view, a definition does
not enlarge the power of the theory. A definition is rather a correct definition just
because it can be eliminated. (p. 222)

* This approach is not without its failures. There is one apocryphal story, for example, of a mathematician
who proved all sorts of theorems based on a set of axioms that, it turned out, were satisfied only by the
empty set. See Wilensky (1991, note 4) for a similar example.
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And although this extreme formalism is rarely carried out, the first substitution is a
standard mathematical practice. In other words, when proving theorems about a newly
defined mathematical concept, the standard approach is to replace the term by its
definition. Polya (1957) calls this process “the elimination of technical terms” by “going

back to definitions” (p. 89).

If the axioms and the definitions are to be the source of meaning within a mathematical
system, then the implication is that all proofs and formal reasoning should proceed from
the axioms, definitions, and previously proven theorems. This is what is meant by
mathematical rigor. Because physical and mental models of the system might carry
meaning that does not follow from the axioms and definitions, such models cannot be
trusted and thus are inadmissible in proofs. The validity of a proof is independent of the
meaning of the descriptive terms. To emphasize this point, Hilbert once said, “One must
be able to say at all times—instead of points, straight lines, and planes—tables, chairs,
and beer mugs” (Reid, 1986, p. 57). The implication is that no matter how the terms are
interpreted, a counterexample will never be produced (Lakatos, 1976, p. 100). Taken to
an extreme, the formalist approach identifies mathematics with metamathematics and

with logic, resulting in a rather bleak picture:

The subject matter of metamathematics is an abstraction of mathematics in which
mathematical theories are replaced by formal systems, proofs by certain
sequences of well-formed formulae, definitions by “abbreviatory devices” which
are “theoretically dispensable” but “typographically convenient.” (Lakatos,
1976, p. 1, drawing on Church, Peano, Russell, Whitehead, and Pascal)

But even Russell (1938) admits:

It is a curious paradox, puzzling to the symbolic mind, that definitions,
theoretically, are nothing but statements of symbolic abbreviations, irrelevant to
the reasoning and inserted only for practical convenience, while yet, in the
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development of a subject, they always require a very large amount of thought,
and often embody some of the greatest achievements of analysis. (p. 63)

Thus, despite the formalism and the claim to disregard meaning, thinking and meaning
remain crucial characteristics of mathematical activity. It is true that the words are
symbolic abbreviations, but the concepts for which they stand (and hence the meaning

that they are intended to carry) took time to formulate and constitute significant human

achievements.

When one acknowledges the importance of both rigor and meaning, perhaps it is not
surprising that most mathematicians are Platonists on weekdays and formalists on the
weekends (P. J. Davis & Hersh, 1981), seeking to discover timeless mathematical truths

and simultaneously adhering to meaningless formalism.

Definitions in the History of Mathematics

The history of mathematics is full of examples where the definitions changed in order to
correct for unintended consequences, including such “simple” concepts as function,

continuity, and polyhedron (see Lakatos, 1976). Much of the history of mathematics has
been spent trying to figure out what the concepts are, trying to “get the definitions right,”

so that they correspond to the intuitions that the mathematicians had in mind.

We begin with a vague concept in our minds, then we create various sets of
postulates, and gradually we settle down to one particular set. In the rigorous
postulational approach the original concept is now replaced by what the
postulates define. This makes further evolution of the concept rather difficult
and as a result tends to slow down the evolution of mathematics. It is not that the
postulation approach is wrong, only that its arbitrariness should be clearly
recognized, and we should be prepared to change postulates when the need
becomes apparent. (Hamming, 1980, p. 86)

The process of “gradually settling down” on a definition deserves elaboration. Drawing

on Lakatos (1976), the process goes something like this:
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¢  Get a mathematical idea that can form the beginning of a concept.
¢ Create an informal definition that seems to describe the concept.
¢ Formalize that definition.

¢ Reason from that definition to determine what it implies: Create some examples;
prove some theorems; look for equivalent or closely related characterizations of the
concept.

¢ Modify the formal definition to exclude undesired consequences.

¢ Alternatively, enlarge or otherwise alter one’s understandings and intuitions of the
concept to accommodate these newfound possibilities.

There are several points to make about this process. First, sometimes the modifications
to the definition amount to little more than eliminating undesirable examples through ad
hoc redefinitions, a seemingly nonmathematical practice Lakatos (1976) called monster

barring.

Second, the process incorporates apparent contradictions on the role of definitions: On
the one hand, the definition is taken to create a mathematical object and to give a term its
meaning. And on the other hand, the definition is carefully chosen to capture a specific
meaning and with an instrumental or expository purpose. Because both of these roles are

mathematically indispensable, their relationship is better viewed as dialectical.

Third, once agreement is reached, a definition can be taken as primary—as though it had
been handed down on stone tablets. In the deductivist, definition-theorem-proof format
of much mathematical presentation and exposition, the dialectical evolution of the

concept and its definition are subsequently ignored.

In deductivist style, all propositions are true and all inferences valid.
Mathematics is presented as an ever-increasing set of eternal, immutable
truths.... Deductivist style hides the struggle, hides the adventure. The whole
story vanishes, the successive tentative formulations of the theorem in the course
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of the proof-procedure are doomed to oblivion while the end result is exalted into
sacred infallibility.’ (Lakatos, 1976, p. 142)

Such strict adherence to formalism is to ignore the history of mathematics, rendering the
teacher and students blind to important epistemological obstacles and ignorant of
required changes in perspective. And not only are students deprived of opportunities to
see and benefit from the growth of particular definitions, they are thus also deprived of

opportunities to appreciate the evolution of the role of definition in mathematics.

It should not be at all surprising that students have difficulty accepting the role of
definitions in modern mathematics when it was not fundamental in until the nineteenth

century.

Definitions and Mathematical Intuition

By relaxing the demands of pure formalism, one can adopt a position in which intuition
and meaning are central to mathematical activity but where logic and rigor are available
as tools for verification. As Hadamard said, “The object of mathematical rigor is to
sanction and legitimize the conquests of intuition, and there never was any other object
for it” (cited in Ahlfors et al., 1962, p. 192). Despite the rhetoric of formalism and rigor,

it seems that metaphorical thinking (Sfard, 1994) and intuition remain central:

It is significant that when a mathematician reads a theorem which conflicts with
his intuitive expectations his first move is to doubt not his intuition but the proof.
He trusts his intuition more. If after having checked the proof carefully he
becomes convinced that it is correct, he then inquires into what may be wrong
with his intuition. (Kline, 1973, p. 160)

Thurston (1994) acknowledges putting “a lot of effort into ‘listening’ to my intuitions and

associations, and building them into metaphors and connections” (p. 165). He discusses

% Lakatos condemned mathematics and science education as a hotbed of authoritarianism and as the worst
enemy of critical thought (Lakatos, 1976, pp. 142-143, note 2).
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the relationships among definition, understanding, and intuition by presenting several

characterizations of the concept of derivative:

(1) Infinitesimal: the ratio of the infinitesimal change in the value of a function to
the infinitesimal change in a function.

(2) Symbolic: the derivative of x” is nx" !, the derivative of sin(x) is cos(x), the
derivative of fog is flog* g', etc.

(3) Logical: f'(x)=d if and only if for every € there is a & such that when
0<|Ad <8,

SG+a0-f()

. <d [sic].

(4) Geometric: the derivative is the slope of a line tangent to the graph of the
function, if the graph has a tangent.

(5) Rate: the instantaneous speed of f{¢), when ¢ is time.

(6) Approximation: The derivative of a function is the best linear approximation
to the function near a point.

(7) Microscopic: The derivative of a function is the limit of what you get by
looking at it under a microscope of higher and higher power.

This is a list of different ways of thinking about or conceiving of the derivative
rather than a list of Jogical definitions. Unless great efforts are made to maintain
the tone and flavor of the original human insights, the differences start to
evaporate as soon as the mental objects are translated into precise, formal and
explicit definitions.

I can remember absorbing each of these concepts as something new and
interesting, and spending a good deal of mental time and effort digesting and
practicing with each, reconciling it with the others. T also remember coming
back to revisit these different concepts later with added meaning and
understanding.. ..

The list continues; there is no reason for it ever to stop. A sample entry further
down the list may help illustrate this. We may think we know all there is to say
about a certain subject, but new insights are around the corner. Furthermore, one
person’s clear mental image is another person’s intimidation:

37. The derivative of a real-valued function f'in a domain D is the Lagrangian
section of the cotangent bundle 7" (D) that gives the connection form for the
unique flat connection on the trivial R-bundle D x R for which the graph of fis
parallel. (pp. 163-164)

Despite the fact that Thurston’s 37 characterizations are not definitions, for him they may
function as definitions in reasoning within certain problem settings, though perhaps

without the precision of a formal definition. From his use of words such as flavor, tone,
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and insight, it is clear that these characterizations are full of meaning for Thurston. And
it is worth emphasizing that attempting to formalize these ways of thinking runs the risk

of changing their character and perhaps their usefulness in reasoning.

Definitions and Learning Mathematical Concepts

Drawing on the history and expository literature discussed above, I take the position that
meaning is central to mathematical learning and mathematical thought and that careful
reasoning from precise definitions is an important capability to be cultivated in

mathematics majors. What, then, is the relationship between definitions and learning?

Skemp (1987) proposes two principles for teaching mathematical concepts:

+

1. Concepts of a higher order than those which people already have cannot be
communicated to them by a definition, but only by arranging for them to
encounter a suitable collection of examples.

2. Since in mathematics these examples are almost invariably other concepts, it
must first be ensured that these are already formed in the mind of the learner.

(p- 18)

Skemp does not indicate how or when he came to these sensible conclusions or what sort
of empirical data support them. But from the preceding discussion, it should be clear that
mathematicians are distinguished by their ability to violate the first of these principles,
and it appears that Halmos, at least, transcends the second principle by constructing his
own examples: “A good stock of examples, as large as possible, is indispensable for a
thorough understanding of any concept, and when I want to learn something new, I make

it my first job to build one” (cited in Gallian, 1994, p. 34).

Thus, learning to violate or transcend these principles is a requirement for entering into
the mathematical community. Specifically, a student pursuing a degree in mathematics

must leam to build understanding (and perhaps create the examples) by reasoning from a
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definition. But here we have a conflict: On the one hand, students must learn to reason
from the definitions rather than exclusively from their concept images because pictures,
metaphors, and informal understandings are sometimes unreliable. On the other hand,
the source of their reasoning may continue to be the models and metaphors that they keep
in mind.

Conflicts between the empirical (lexical) approach and the theoretical approach
can represent a real obstacle for the students’ understanding. That is the reason
why the problem of introducing pupils to the mathematical process of defining
constitutes a crucial point in mathematics education, which needs to be faced
directly. (Mariotti & Fischbein, 1997, p. 226)

Adopting a formalistic approach to definitions may require epistemological and
ontological changes in perspective. Suffice it to say that these changes in approach and
perspective are rarely made explicit to the student. It is possible that successful
mathematicians learned to reason from the definitions without ever being aware of these
changes in perspective. And by the time they are teaching courses to undergraduates, this

approach has become so natural that they do not realize that nothing has changed for the

student.

From the naive student’s point of view, definitions are lexical: They are used to describe
or explain ideas that already exist (Vinner, 1976). But as concepts expand, become more
general, and allow inclusion of never-before-imagined examples, the natural meaning
gets lost. What does it take to understand the importance of formal reasoning, which

includes reasoning from definitions?

Students do not understand the role of mathematical definitions in general and, in
particular, do not know how to reason from definitions. Mariotti and Fischbein (1997)

found, like Vinner, that students may know the definition and yet fail to correctly identify
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whether objects satisfy the definition because the “concepts are often, implicitly or
explicitly, distorted by gestalts” (p. 244). These distortions can take the form of
additional conditions that remain implicit. They suggest that “in empirical domains, one
tends to adapt the definitions to the empirical data—and exceptions are admissible”

(p. 245).

Borasi’s Work

Some of the most fully elaborated work on learning the nature and role of mathematical
definitions comes from Borasi. In Learning Mathematics Through Inquiry (Borasi,
1992), she presents a detailed analysis of a “mini-course” with two high school students.
Although she had broad mathematical goals, she chose to focus on the notion of
definition because it “presents a beautiful example of the more humanistic and

contextualized aspects of mathematics” (p. 7).

Before presenting any of the data or analysis, she sets forth five criteria for definitions:

e Precision in terminology. All the terms employed in the definition should
have been previously defined, unless they are one of the few undefined terms
assumed as a starting point in the axiomatic system one is working with.

o Isolation of the concept. All instances of a concept must meet all the
requirements stated in its definition, while a noninstance will not satisfy at
least one of them.

e Essentiality. Only terms and properties that are strictly necessary to
distinguish the concept in question from others should be explicitly
mentioned in the definition.

¢ Noncontradiction. All the properties stated in a definition should be able to
coexist.

®  Noncircularity. The definition should not use the term it is trying to define.
(Borasi, 1992, pp. 17-18)

She then points out that these criteria stem, in part, from the fact that we want a definition to:
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1. Allow us to discriminate between instances and noninstances of the concept
with certainty, consistency, and efficiency (by simply checking whether a
potential candidate satisfies all the properties stated in the definition).

2. “Capture” and synthesize the mathematical essence of the concept (all the
properties belonging to the concept should be logically derivable from those
included in its definition). (p. 18)

During the mini-course the students wrote, created, and modified deﬁnitioﬁs, extended
definitions to new domains, and constructed definitions in new contexts, such as taxicab
geometry. In one of the activities, inspired by Lakatos’s (1976) example of the evolution
of the definition of polyhedron, Borasi asked the students to construct a definition of
polygon, believing that such an experience “could help students appreciate that
definitions are really created by us, even in mathematics, where everything may seem

rigid and predetermined (at least to most students)” (Borasi, 1992, p. 44).

Based upon her analysis, Borasi concludes that the students changed their conceptions
not only of mathematical definitions but also of mathematics. Through the experience,
she also changed her view of mathematical definition, realizing a deeper understanding of
the role of context and purpose in the creation and evaluation of mathematical definitions.
Furthermore, she reconsidered the role of her five criteria set forth above, for those
criteria are satisfactory only in specific mathematical contexts when it is reasonable to
imagine the definition is fixed. When the context changes, however, the criteria must be

relaxed, at least for a moment, and the definition may change.

Which Definition?

Which of the various equivalent formulations of a concept is chosen as its definition?
The choice is not arbitrary, despite the formalist claim to the contrary. In a formal

presentation of a concept, the definition that is chosen is usually the one that is most
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elegant or most useful in proofs concerning the concept, which implies that it is formal
and often that it is minimal and otherwise concise. In a pedagogical presentation, a
* definition is chosen with a particular pedagogical purpose. Poincaré (1946) makes it

clear that the choices should not be the same:

What is a good definition? For the philosopher or the scientist it is a definition
which applies to the objects defined, and only those; it is the one satisfying the

rules of logic. But in teaching it is not that; a good definition is one understood
by the scholars [students]. (p. 430)

This view toward formalism was echoed by 75 mathematicians who, responding to the
excesses of the new math, warned that “premature formalization may lead to sterility”

(Ahlfors et al., 1962, p. 190).

From the mathematics education community, Mariotti and Fischbein warn that “the
formal approach does not grasp the very process of defining” (p. 222) and suggest,
instead that definitions have a constructive and creative role and actually bring new
concepts into existence. They propose that “a definition is to be considered a ‘good’
definition as far as the new object starts to live by itself and may become the subject of a

new theory” (p. 223).

There seems to be very little discussion in the literature about the problem of conflicting
definitions, other than occasionally mentioning that parallelograms are sometimes but not
always included as trapezoids. What is rarely acknowledged is that there are also
conflicting definitions of natural number (including vs. omitting 0), ring (including vs.
omitting 1), and integral domain (including vs. omitting commutativity). Thus, although
a particular definition may be chosen with a particular expository or pedagogical purpose,

there is a certain arbitrariness in which objects are thus defined.
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Definitions in Textbooks

How are definitions treated in mathematical texts? Explicit definitions can send implicit
messages about the role of definitions in mathematics. Raman (1998) found that texts
send conflicting messages about the purpose and use of mathematical definitions. Vinner
(1991) suggests that mathematics textbooks and classroom practice are partly based on

the following assumptions:

Concepts are mainly acquired by means of their definitions.
Students will use definitions to solve problems and prove theorems.
Definitions should be minimal.

It is desirable that definitions will be elegant.

A

Definitions are arbitrary. (pp. 65-66)

What conclusions do students draw from such implicit messages? Rin (1982) found that
students do not understand that the definition is to be the official source of information
about the concept and that textbooks sometimes compound the problem by burying
definitions in the text or the exer;ises, or by leaving implicit the quantifiers or the

appropriate range of the variables.

Would it be better if texts were explicit about the nature and role of definitions in
mathematics? Textbooks are rarely explicit about the role of definition, although some
texts emphasize that all definitions are “if and only if” statements (e.g., Fraleigh, 1989, p.
3; Bittinger, 1982, p. 40), and a few point out that a definition is an abbreviation (e.g.,
Bittinger, 1982, p. 40). But these are statements about what a definition is, which is
singularly unhelpful to students, who believe they already know what definitions are and
implicitly operate on this basis (Vinner, 1976). Instead, students need to learn what to do

with definitions.
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Summary

Definitions play opposing roles in mathematical thinking and learning, serving
simultaneously to describe and support informal mathematical intuition and meaning and
to create meaning through the imposition of formalism. These opposing roles are evident
in the history of mathematics, in the evolution of definitions of key concepts, in
mathematics textbooks, and in research into students’ use of definitions in mathematical
learning. In order to accommodate both of these roles into descriptions of students’
understandings of concepts in abstract algebra, I took a broad view of definitions, with
the aim of capturing both meaning and level of precision. Thus, the analysis included not
only students’ attempts at formal definitions but also the ad hoc personal definitions they

provided when I asked for the meaning of a term or statement.

Abstraction Versus Generalization

Mathematically, a definition creates meaning for a new concept, but psychologically, new
concepts are created through processes of abstraction and generalization. Abstraction and
generalization are fundamental human activities that become critically important in
advanced mathematics. Dreyfus (1991) suggests, for example, that the ability to
consciously make abstractions from mathematical situations “may well be the single most
important goal of advanced mathematical education” (p. 34). I begin with abstraction,

which played a central role during the new math era. Here is one view from that era:

The process of abstraction is defined as the process of drawing from a number of
different situations something which is common to them all. Logically speaking

it is an inductive process; it consists of a search for an attribute which would
describe certain elements felt somehow to belong together....

For example the forming of the concept of the natural number two is an
abstraction process, as it consists mainly of experiences of pairs of objects of the
greatest possible diversity, all properties of such objects being ignored except
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that of being distinct from each other and from other objects. The essential
common property of all such pairs of objects is the natural number two. (Dienes,
1961, pp. 281-282)

Piaget distinguishes between empirical abstraction, which starts from perceived objects,

and reflective abstraction, which starts from actions and operations (Beth & Piaget, 1966,

pp. 188-189).

As an adjective, abstract is usually contrasted with concrete. Wilensky (1991) points
out, however, that concreteness is not a property of an object but a property of a person’s
relationship to an object. Concreteness, he suggests, measures the degree of our
relatedness to the object (the richness of our representations, interactions, connections
with the object), how close we are to it, or the quality of our relationship with the object.
Thus, any object can become concrete for someone. He notes that this point of view
turns the old definition of concrete on its head, so that thinking concretely is not narrow
but rather opens up a whole world of ideas and relationships. Frorer, Hazzan, and Manes
(1997) agree with Wilensky and suggest two additional themes in abstraction: ignoring

details and thinking of things in terms of properties rather than actual components.

As for generalization, it shoﬁld be mentioned that generalization and abstraction are often
confounded in the literature (e.g., Dreyfus, 1991) and are sometimes treated as essentially
synonymous (e.g., Beth & Piaget, 1966; Vygotsky, 1934/1986).° Tall (1991) suggests,
however, that generalization simply involves an extension of familiar processes whereas
abstraction requires mental reorganization. Thus, generalization is the application of an
existing process or structure to a broader class of objects (see also Dienes, 1961).

Generalization may be contrasted with specialization, where the scope of a process or

8 Piaget speaks mostly about abstraction and Vygotsky mostly about generalization, but it is possible that
these choices were made by the translators.
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structure is restricted in some way. Abstraction, on the other hand, creates avnew
structure on a higher level, which is not a deduction but a construction process.
Abstraction may be contrasted with exemplification, which creates a specific instance of
the abstract structure or idea. A mathematical metaphor may help make the distinction
more clear: Generalization and specialization are about creating supersets and subsets;
abstraction is about constructing a new kind of set and exemplification involves choosing
an element of that set. In mathematical thinking, of course, abstraction and
generalization may be operating simultaneously or consecutively. It is not always
possible, however, to separate the two processes, such as in the introduction of the

notation of an asterisk ‘*’ to serve generally for an abstract binary operation.

Processes Versus Objects

One of the central theoretical themes in advanced mathematical thinking is the distinction
between process and object conceptions of mathematical ideas. Although the
terminology is diverse, the primary distinction is that a process is an activity carried out
through some sort of procedure, whereas an object can be conceived of as a single entity.
Many mathematical ideas can be conceived both as processes and as objects, so the
distinction is psychological. Sfard (1991) distinguishes between operational and
structural éonceptions. Harel and Kaput (1991) distinguish between a process and a
conceptual entity. Dubinsky and his colleagues (Dubinsky, 1991; Breidenbach,
Dubinsky, Hawks, & Nichols, 1992) also distinguish between processes and objects and
offer additional categories described above. In reviewing this literature, Tall, Thomas, G.
Davis, Gray, and Simpson (2000) suggest that it is possible to ascertain whether students

have constructed a mental object based on the way they talk and write about the concept.
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Object conceptions allow for descriptive discourse and attention to structural features of
the mathematical ideas. Process conceptions, on the other hand, are confined to narrative

discourse.

There are some differences among the perspectives of these researchers, but they are in
agreement that a learner cannot meaningfully act on a process with another process until
the former has become an object in his or her mind. This kind of mental construction is
called encapsulation (or reification, or entification). For some concepts, encapsulation‘
seems to be extremely difficult for most students, and coset may be one such concept, as

suggested in the literature review above.

On the other hand, there are “natural,” implicit instances of encapsulation. For example,
from a process of counting, a young child creates an understanding of “4” as an object
that describes what is the same about the wheels on a car, the legs on a dog, and the sides
of a rectangle. To emphasize the ambiguity in the symbolism for mathematical ideas,
Gray and Tall (1994) coined the term procept. Thus, “4 + 5> is a symbol that
simultaneously denotes both the process of addition and object that results. In abstract
algebra, given a subgroup H and a group element a, the notation aH simultaneously
specifies the process for calculating the cosets of H and the result of one of those

calculations for the particular value a.

Gray and Tall (1994) further distinguish between a procedure, where the focus is on step-
by-step details, and a process, where the concern is with the result (as dependent on the
initial state). A procedure, in other words, refers to a specific algorithm for carrying out a
process. The process of addition, for example, can be carried out by mény different

procedures, including counting all, counting on, or pressing buttons on a calculator.
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Similarly, there are many procedures that can be constructed to determine whether a
subgroup is normal, but any (or all) of them may be conceptualized as the process for

determining normality.

Metaphor
Drawing on fhe work of Lakoff and Nuiiez (1997, 2000), I take the position that
mathematical concepts are predominantly metaphorical in nature. Despite the central role
of precise formal definitions, mathematical thinking is usually guided by metaphors.
This recent work in the cognitive science of mathematics is based upon a large body of
empirical work in cognitive science that has produced three major findings: “The mind is
inherently embodied. Thought is mostly unconscious. Abstract concepts are largely
metaphorical” (Lakoff & Johnson, 1999, p. 1). In identifying the metaphors that support
particular concepts, most of the evidence comes “from language—from the meanings of

words and phrases and from the way humans make sense of their experiences” (p. 115).

Lakoff and Nufiez (2000) elaborate the metaphorical nature of mathematics,

concentrating first on arithmetic and later on concepts such as the real numbers, limits,

and continuity, building up to a case study of the equation ™ +1=0. In their analysis,
some mathematical concepts are based upon grounding metaphors, such as Sets Are
Containers,” that grow out of bodily experience in the world. Other concepts link to,
build upon, or coordinate previously established metaphors, so that “much of the
‘abstraction’ of higher mathematics is a consequence of the systematic layering of

metaphor upon metaphor, often over the course of centuries” (p. 47). A metaphor “A is

7 Throughout this section, I have adopted Lakoff and Nuifiez’s convention of capitalizing the names of the
metaphors.
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B” is a mapping from a source domain B to a target domain A, where the source domain
is typically more familiar. The inferential structure of the source domain gives structure
to the target domain, often introducing new elements or relationships in the target
domain. The Arithmetic-Is-Object-Collection metaphor, for example, provides
grounding for the commutativity of addition; the Arithmetic-Is-Motion-Along-a-Path

metaphor provides grounding for the concepts of zero and fractions.

Between their detailed treatments of arithmetic and real analysis, Lakoff and Nufiez
provide a short discussion of metaphorical nature of abstract algebra. A key construct in
their analysis is the Fundamental Metonymy of Algebra, which allows us to reason about
numbers or other entities without knowing which particular entities we are talking about.
This mathematical notion depends upon its everyday version, the Role-for-Individual
metonymy, by which we are able to imagine carrying out actions with whoever (or

whatever) fills the required role.

Because algebra in general and abstract algebra in particular are about essence, Lakoff
and Nuifiez (2000) discuss the Folk Theory of Essences, which includes such notions as
“everything is a specific kind of thing” (p. 107), “kinds are categories” (p. 108), and “the
essence of a thing is an inherent part of that thing” (p. 108). Essence is characterized by
three metaphors: Essences Are Substances, Essences Are Forms, and Essences Are
Patterns of Change. The Folk Theory of Essences was behind Aristotle’s definition of
definition as a “list of properties that are both necessary and sufficient for something to
be the kind of thing that it is, and from which all its natural behavior flows” (p. 109) and

also behind Euclid’s axiomatic (or postulational) approach.
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Building on the metaphor Essences Are Forms, Lakoff and Nufiez (2000) put forward a
foundational metaphor for abstract algebra: The essence of a mathematical system is an
abstract algebraic structure, which is taken to include the elements in the structure, the
operations used on those elements, and the essential properties of the operations (p. 111).
I accept their guiding principles and much of their analysis, but regarding abstract
algebra, their analysis falls short on two counts. First, their notion of a mathematical
structure is too restrictive because mathematical structures do not always have operations.
Second, some of their metaphors are backwards in the sense that the source domain is

less familiar and more abstract than the target domain it is intended to describe.

For example, they claim, in effect, that Z is the abstract group with three elements.
While this is a true statement, it is not a helpful metaphor. Furthermore, their description
of the abstract group with three elements uses the set {/, 4, B} with the expected
operation table. This group, it is important to note, is not the abstract group itself but a
particular representation of it—a representation, moreover, that does not easily support
calculation. If abstract concepts are metaphorical, as they claim, then the appropriate
metaphor is that the abstract group with three elements is Zs, thereby providing a familiar
instantiation of the abstraction. This metaphor does not provide a complete
characterization of the abstract group, however, because it leaves out the necessary
abstraction. Where do abstractions come from, and by what process do they come about?
Unfortunately, the process of abstraction (abstracting) is conspicuously missing from

their analysis, although the results of abstractions are covered in their Folk Theory of

Essences.
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To remedy the analysis provided by Lakoff and Nufiez, it is necessary first to broaden the
notion of structure. Rickart (1995) suggests that there is “not much hope for stating in a
few lines a precise and complete definition of structure” (p. 11). In its place, he suggests,
puts forward “an admittedly imprecise approximate definition, which is then elaborated
and made increasingly more complete through examples and explanations” (p. 11).
Rickart’s definition is the following: “A structure is any set of objects (also called
elements) along with certain relations among those objects” (p. 17, emphasis in original).
The advantage of this definition over that of Lakoff and Nufiez is that it can
accommodate topological and order structures. Furthermore, it is consistent with the
notion of structure in fields outside mathematics, such as linguistics, psychology,

biology, and anthropology (Rickart, 1995; see also Piaget, 1970b).

Algebraic structures fit this definition by way of an appropriate interpretation of the
relations among the objects. A group is a structure, for example, in that the objects are
the elements and the relation is a ternary relation defined in terms of the group operation:
The group elements in an ordered triple (g, A4, k) are related if gh = k. (Rickart, 1995,

p. 53) The group axioms can be also be specified as relations.

Analysis of the concepts in group theory, focusing primarily on language, leads to the

conclusion that group theory is guided primarily by two metaphors:

J Groupé Are Sets

¢ Groups Are Structures
At first sight, these do not appear to be metaphors at all but would be more accurately
characterized as obvious statements of fact. A group, after all, is a set. But sets and

structures are themselves metaphors, which may be traced back to metaphors that are
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grounded in bodily experience. With the above definitions of structure as a set of
elements with relations among them, it is possible to reduce this to one metaphor: Groups
Are Structures. A guiding principle behind the concept of structure, however, is that a
structure is independent of the elements themselves, depending only on the relations. For
this reason and because the Groups-Are-Sets metaphor is so predominant, it makes sense

to consider it separately.

The metaphor Groups Are Sets is quickly grounded through the Sets-Are-Containers
metaphor, hence groups are containers. This metaphorical thinking becomes apparent in
expressions such as “an element g in a group G.” When a set is closed under an
operation, as all groups are, the containér is metaphorically closed, preventing the
elements from escaping. The Groups-Are-Containers metaphor takes a slightly different
character in the question “Where does this element live?” suggesting a Containers-Are-
Territories metaphor that becomes particularly apparent when the grdup is the domain or

codomain of a homomorphism.

The metaphor Groups Are Structures becomes apparent in the etymological derivation of
the term isomorphism as meaning “same form.” The metaphor of structure also suggests
that the form is in some sense incomplete, providing only the framework that is the
relations among the elements. The elements themselves are unimportant details. When a
particular set under a particular operation is said to be a group, it is the operation that

provides the structure, by sitting metaphorically above the elements and imposing form

on the relations among them.

In constructing the above definition of structure and structuralism that applies across

diverse fields, Rickart (1995) observes, “The objective of a structuralist approach to a
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subject is to extract the essential information from the background of irrelevant or
unimportant information” (p. 19). Thus, structures are also essences. And since
“essence” and ‘“essentially” share the root essens (Latin present participle of esse, “to
be”), the merged concepts of structure and essence is revealed in the semantic
equivalence between the statements “the groups are essentially the same” and “the groups

have the same structure.”

By building metaphors on top of metaphors, abstraction on top of abstraction, it is
possible to create hierarchical chains of metaphors that ultimately depend upon
grounding metaphors. What, then, is the metaphorical relationship between essence and
structure in mathematics? On the one hand, structures are essences, but on the other
hand, the essence of a mathematical system is its structure. This is not circular reasoning,
however, but an example of a conceptual blend, where two concepts combine to form a
deeper unified concept while also contributing to a more flexible understanding of each
of the concepts individually. The conceptual blend Numbers Are Points on a Line, for
example, beginning with Descartes, paved the way for profound connections between
geometry and algebra. Thus, structures are essences and vice versa. Saying structures
are essences highlights the push toward abstraction that is a guiding principle behind the
structuralist approach. Saying mathgmatical essences are structures, on the other hand,

gives body and form to an otherwise ethereal concept.

Consider the definition of a structure as a set with relations, along with the metaphor
Structures Are Essences and the three metaphors that characterize essence: Essences Are
Substances, Essences Are Forms, and Essences Are Patterns of Change. Taken together

these metaphors reaffirm the point made in chapter 1 that mathematics can fit under any
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of the three themes in Devlin’s (2000) characterization that “modern mathematics is

about abstract patterns, abstract structures, and abstract relationships” (p. 136).

This discussion provides but a preliminary analysis of the metaphorical nature of the
concept of group. Group theory involves many more concepts, some of which are
discussed metaphorically in the analysis that follows. I note here only a few key
metaphors that informed this study: Subgroups are subsets, homomorphisms are

functions, cosets are sets, and sets are objects.

Naming and Notation

Thus far, I have discussed concepts and their definitions, and certainly mathematical
thinking and discourse require concepts and definitions. But students often use language
and notation incorrectly. Rin (1982) suggests that students’ linguistic misbehaviors are
interpretable as reflective of deficient understanding or of deficient expressive powers
(p. 10). Mathematical learning requires not only constructing concepts but also learning
the standard names and notations for those concepts and the appropriate verbal and
mathematical syntax for referring to those concepts in mathematical discourse. In this
study, issues of naming and notation were central, as they are key components of the

larger issues of language and representation.

One commonly advocated approach for teaching that promotes understanding is to
provide opportunities for students to explore concepts before giving the concept a name
(e.g., Leron & Dubinsky, 1995). After the students have had sufficient experience and
have noticed certain regularities, the relevant concepts can be given names. The naming

itself is seen as unproblematic. As the mathematician John H. Conway (1995, April 13)
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once said when discussing whether spherical geometry is a non-Euclidean geometry,
“This is the sort of question that bugs me! Being about names, it’s not a mathematical

[sic], so ‘the answer’ really doesn’t matter.”

But this study and at least one other (Lajoie & Mura, 2000) suggest that attaching the
name is sometimes not as simple as supposed. As part of a larger study into the learning
of abstract algebra, Lajoie and Mur%l found that when asked about cyclic groups, students
seemed td focus on metaphors of éoming back to the start, cycies, and images of circles.
Most students did not consider infinite cyclic groups to be cyclic because “you don’t
come back.” Lajoie and Mura propose several sources of confusion: inappropriate use of
mathematical definition, semantic contamination from everyday language (a la Pimm,
1987), confusion with cyclic permutations, and nonstandard definitions of powers and
generators. They point out, first, that incorrect conceptions can lead to correct answers
for many questions about Z, and, second, that in the history of group theory, Ruffini,
Cauchy, and Jordan used similar imprecise “circular” language and excluded infinite
cyclic groups. As possible solutions, they suggest drawing students’ attention to
differences between mathematical and ordinary uses of words and explicit teaching of the

role of definition in mathematics.

The question here is, What is the relationship between a concept and its name? What is
gained by giving a collection of physical or mental entities a name? How is thinking
constrained by the particular name chosen? Given the name of a new concept, what
understanding do students associate with that name and how? These uncertainties imply
that the notion of concept image must be applied flexibly in the analysis to allow for the

possibility of nonstandard connections between concepts and names.
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Similar questions may be asked regarding mathematical notation. As mentioned above,
students often use mathematical notation improperly in abstract algebra (Selden &
Selden, 1978; Hazzan, 1994). Mason and Pimm (1984) suggest that students’ difficulty
may be caused partly by ambiguity in the notation itself. What, for example, does 2N
stand for? Is it any even number or all even numbers? Is it specific, particular, generic,
or general? Perhaps it is not an even number at all, for it would never appear in a list of
even numbers. Is it shorthand for {2N: N a whole number}? In this case, 2N is not an
even number but an instruction to carry out a calculation. Mason and Pimm suggest that,
for students, 2N sometimes represents any even number and that as a result they may
show that the sum of two even numbers is even by writing 2N + 2N = 4N. What is
missing is awareness of 2N as a particular even number. Any has two interpretations:
generic and general, and the latter implies “every.” Recognizing that in fact “2N” is

merely marks on the paper, they point out that the meaning has to do with perception.

Durkin and Shire (1991) suggest that some difficulties with language arise from
ambiguities in the language itself, pointing in particular to polysemy, the property of
some words to have distinct but related meanings. There are many examples, such as
Junction or group, in which an everyday word takes on a specialized meaning in
mathematics. Durkin and Shire suggest that the words some and any may be similarly
confounded, providing additional insight into the observations of Mason and Pimm
(1984) above. What is more problematic is when words take on multiple but related
meanings within mathematical discourse itself. Zazkis (1998) suggests, for example, that

the term quotient takes on different meanings depending upon whether one is dealing
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with whole numbers or rational numbers. In abstract algebra, it appears that the term

cycle is mathematically polysemous (Lajoie & Mura, 2000).

Taken together, these studies suggest that attaching names and notations to ideas involves
subtle distinctions and ambiguities in language to fit with subtle conceptual distinctions
among mathematical objects. Thus, empirical and theoretical work must allow for and
explain the possibility that students might take words and notations to carry nonstandard

meanings. For this study, the analytical tools were furnished by semiotics.

Semiotics

Figure 1. Ceci n’est pas un groupe
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Ceci w'est pas wn groupe

To paraphrase René Magritte regarding his painting Ceci n’est pas une pipe [This is not a
pipe] (see Foucault, 1983), the table in Figure 1 is not a group. To be precise, itisa
representation—a sign. The sign is certainly not itself the abstract group with three
clements. A central theme in this study is the relationship between mathematical notation
and language, concept definitions, and conceptual understanding. This is essentially the
relationship among signs, objects, and meaning, which is the province of the field of
semiotics, or the study of signs. Whereas semantics is the study of meaning in language,
semiotics is the study of meaning in signs, which includes language as a subset.

Semiotics is generally recognized to have been founded in the work of Swiss linguist

Ferdinand de Saussure (1857-1913) and independently in the work of American
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mathematician and philosopher Charles Sanders Peirce (1839-1914). This section
presents the influential distinctions made by Saussure and Peirce on the nature of signs
and of sign systems and their relationship to meaning. These basics of semiotics are then
connected to the work of Vygotsky, with particular attention to learning and the
relationship between personal and social meaning. Additional theoretical background is
then provided on various types of signs and on the semiotics of mathematics. The section
closes with a discussion of the analytical framework that was used to guide and organize

the analysis for this study.

The Sign

Saussure’s (1959) fundamental contribution was the distinction between the two
inseparable components of the sign: the signifier (e.g., a sound or symbol) and the
signified (the concept represented). The signifier itself is meaningless, for the same
signifier can represent a different signified in a different context. Saussure also
distinguished between speech (sound patterns) and writing, seeing writing as a separate,
dependent sign system. Such a distinction was not necessary for this study, and Saussure
himself arrived at many of his principles by analyzing words and not sound patterns. I do
distinguish between mathematical language and notation, however, as there are clear
psychological differences for mathematics students. The term multiplicative identity and

the symbol 1, for example, do not necessarily have the same meaning.

The fundamental unit of semiotic analysis is the sign, which includes the signifier, the
signified, and the crucial connection between them. The sign, it should be recognized, is
arbitrary, in the sense that the bond between signifier and signified is essentially

circumstantial, cultural, conventional, and historical. It is tempting to conclude that
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meaning is contained in the sign. But signs have no meaning except as they relate to and

are distinguished from other signs:

In Saussurean linguistics, words do not refer to things themselves. Rather, they
have meaning as points within the entire system that is a language—a system,
further, conceived as a network of graded differences. (Harkness, 1983, p. 5)

Thus, Saussure’s “conception of meaning was purely structural and relational rather than
referential” (Chandler, in press, emphasis in original). The structure of a language
system or any system of signs depends upon its network of graded differences. The
network is built from semantic distinctions that create concepts, for a concept is not a
concept until its boundaries are specified. These semantic distinctions, as well as the
supporting phonological, syntactic, and symbolic distinctions, are ontologically arbitrary,
as evidenced by the fact that translation between languages is sometimes problematic.
Anthropological linguists Sapir and Whorf found, for example, that “Eskimo has many
words for snow, whereas Aztec employs a single term for the concepts of snow, cold, and
ice” (Encyclopaedia Britannica, 1999). In other words, different languages provide for
different concepts. This observation puts a twist on Shakespeare’s aphorism “a rose by
any other name would smell as sweet.” The validity of the statement depends, after all,
upon a language that distinguishes roses from objects that smell less sweet, and also

distinguishes “smell” and “sweet” from related concepts.

Semiotics is concerned not only with what signs mean but with zow signs mean what
they mean (Sturrock, cited in Chandler, in press), which requires studying the structural
relations among signs, as mentioned above, and also the relationship between signs and
interpreters. But what is meaning? And where is it? There is a long history of

philosophical debate about the meaning of meaning (see, e.g., Zemach, 1992). For the
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purposes of this study, I point out one particularly influential approach, proposed by

Wittgenstein (1973):

For a large class of cases—though not for all—in which we employ the word
“meaning” it can be defined thus: the meaning of a word is its use in the
language.

And the meaning of a name is sometimes explained by pointing to its bearer.
(pt. 1, sct. 43)

Wittgenstein’s solution contrasts sharply with that of Saussure (1959), for whom “the
linguistic sign unites, not a thing and a name, but a concept and a sound-image”(p. 66).
For Saussure, meaning was a psychological phenomenon in that the signifier was a
mental representation of sensory impressions and the signified was also a mental
construct. Wittgenstein’s statement, on the other hand, has a decidedly social or cultural
sense, a point of view that fits with Matthews (2000), who argues that “meanings are in
the public domain; they have to be enculturated” (p. 171). In the analysis for this study, I
considered both psychological meaning and social meaning in mathematical discourse,

focusing, in particular, on the relationships between them.

Charles Sanders Peirce developed a semiotic theory that takes into account both the
psychological and social planes. Asserting that nothing is a sign unless it is interpreted as
a sign, Pe_irce (1955) proposed, “A sign, or representamen, is something which stands to
somebody for something in some respect or capacity” (p. 99). This is essentially a
material version of Saussure’s signifier. This sign addresses somebody, creating in the
mind of that person an equivalent or more developed sign, which Peirce calls an
interpretant. These are complemented by the object to which the sign refers, creating a

triadic relationship. It is important to point out that there is not necessarily any direct
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relationship between the representamen and its object, and in fact the only relationship

may be through an interpretant, which requires an interpreter.

The semiotic models of Saussure, Peirce, and Wittgenstein are compared in Figure 2.
The vertical alignment is intended to indicate correspondences, though the
correspondences, particularly between the psychological and social planes, are not direct.
Moreover, the fit among the models is not perfect, precisely because Saussure, Peirce,
and Wittgenstein were using different categories as well as different names. In particular,
an interpretant for Peirce céuld be either a mental recreation of the representamen or a

more developed sign, perhaps approaching a concept.

Figure 2. Comparison of meanings of meaning

signifier signified

Saussere: (sound pattern) (concept)

interpretant

/ \ Psychological
Peirce:

Social
representamen -a------ + object

Wittgenstein: name -——— thing

Figure 3 illustrates a semiotic model that blends each of the models described above and
expands on them as well. A signifier is a symbol or a word or anything external that is
taken to signify something else. A concept is a mental entity, which may be considered
the core of a concept image, as described above. A referent is a mathematical object,
process, or property, taken to be external in some sense. I make no ontological claims
about Whether or where the referent exists but say merely that it is useful in the analysis

to suppose that it is distinct from the concept and from the signifier. This model of a
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sign, then, is what I mean by the meaning of a mathematical word or symbol, with the
added stipulation that the meaning must be considered within a system of language and

symbols.

Figure 3. A general sign

concept

signifier referent

Conceptual Grids

In this study, signs provided access to the students’ concept images. The students’ use of
signifiers provided insight about the meanings and understandings that the signs held in
their thinking. The principles of semiotics make clear, however, that signs (and hence
meanings) must be interpreted within a system of signs. Thus, the notion of concept
image must be sufficiently flexible to pay attention to thé ways that the students’ concept

images related to each other.

Within a system of signs, the meaning of an individual sign is determined, in large part,
by its relations to other signs and, in particular, by the distinctions between it and closely
related signs. The structure and categories of a system of signs lead those who use the
signs to impose a conceptual grid on experience, specifying the way that the experience is
cut up and hence shaping the way the experience is perceived. The crucial content in a
system is the set of boundaries that are placed around and between the categories, and
thus the essence of the system is independent of the particular symbols and names that

are attached to the concepts it delineates. The categories, however, are not inherent in the
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experience but arise in the way the world is represented in the structure of the system.
Different systems provide different categories that give rise to different concepts. Those
differences manifest themselves in the particular grid that is used to organize an
experience. A semiotician can gain insights about concepts and their meanings by paying

attention to distinctions in the use of the signs—by trying to infer the conceptual grid.

Thus, language and other sign systems play a crucial role in shaping the concepts that are

available. This position is supported by empirical work in linguistics:

The “real world” is to a large extent unconsciously built up on the language
habits of the group. No two languages are ever sufficiently similar to be
considered as representing the same social reality. The worlds in which different
societies live are distinct worlds, not merely the same world with different labels
attached. (Sapir, 1929/1949, p. 162)

We cut nature up, organize it into concepts, and ascribe significances as we do,
largely because we are parties to an agreement to organize it in this way—an
agreement that holds throughout our speech community and is codified in the
patterns of our language. The agreement is, of course, an implicit and unstated
one, BUT ITS TERMS ARE ABSOLUTELY OBLIGATORY; we cannot talk at all except by

subscribing to the organization and classification of data which the agreement
decrees. (Whorf, 1956, pp. 213-214)

The above theoretical perspectives led to what is known in linguistics as the Sapir-Whorf
hypothesis, which in its extreme form is called linguistic determinism, indicating that
language determines the framework of perception and thought. Although few linguists
accept the hypothesis in this form, its weaker formulation—that language influences

thought—is generally accepted (Chandler, in press).

Semiotics and Learning

As stated above, I consider in the analysis both psychological and social meaning,
focusing particularly on the relationship between them. What is missing from all of the
above treatments is acknowledgment that personal and social meanings may not fit.

Unless an individual makes the same conceptual distinctions as made by the community,
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the conceptual grids imposed on an experience will be different. In educational research,
the critical question concerns the relationship between personal and social meanings

during learning.

Much of Vygotsky’s work can be viewed as describing the process of personal
acquisition of social meani’ngs, which is essentially the acquisition of speech and
language. In developing his research methodology, Vygotsky (1934/1986) was critical of
methods of analysis that analyzed psychological processes into components, such as
thought and word, to be studied separately, when what is most crucial is to understand
how they operate together. In considering a method for analyzing the acquisition of

language, he asked:

What is the unit of verbal thought that is further unanalyzable and yet retains the
properties of the whole? We believe that such a unit can be found in the internal
aspect of the word, in word meaning. (p. 5)

Although it seems that Vygotsky (1978) did not explicitly draw on semiotics in his work,
his perspective fits with semiotics. “The sign acts as an instrument of psychological
activity” (p. 52), and by sign he generally meant a word, which is but one kind of
signiﬁer.‘ By comparing the use of signs in thought to the use of tools in physical
activity, he maintained that the sign and the tool both mediate activity indirectly, the tool

being externally oriented and the sign being internally oriented.

Borrowing from French psychologist Paulhan, Vygotsky (1934/1986) also proposed a
distinction between the meaning and the sense of a word, which are roughly its

denotation and connotation, respectively:

The sense of a word, according to [Paulhan], is the sum of all the psychological
events aroused in our consciousness by the word. It is a dynamic, fluid, complex
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whole, which has several zones of unequal stability. Meaning is only one of the
zones of sense, the most stable precise zone. (pp. 244-245)

Note the striking similarity between this definition of sense and Tall and Vinner’s (1981)
definition of concept image as the total cognitive structure associated with a concept.
And so, the distinction between meaning and sense may be considered to be roughly the

distinction between a concept and a concept image.

Constructing personal meaning requires establishing a conceptual bond between the
signifier and the referent. This necessity is well recognized in mathematics education and
is seen in the metaphor of attaching or gluing names to ideas (see, e.g., Hewitt, 2001).
The fact that the signifier is arbitrary and thus needs to be taught (Hewitt, 1999) fits well

with many explicit and implicit theories of mathematics teaching and learning.

What is seldom recognized in mathematics education, however, is that the signified also
is arbitrary, in the sense that the conceptual grid is not predetermined. In emphasizing
the role of language in creating conceptual grids, Sapir and Whorf seem to have ignored
the learning that is required to build the intended distinctions into one’s own cognitive
structure. I accept the weak version of the Sapir-Whorf hypothesis in the sense that the
conceptual grids that are used by the community certainly influence, and to a great extent
limit and constrain, those of the learners. But one must also recognize that students’
conceptual grids do not always fit with the ones used in fhe mathematical community.
Social and personal meanings will not match but will fit with some degree of viability.
Students do not learn social meanings whole and unproblematically but instead make

successive approximations, adjusted via accommodation.
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Typology of Signs

In addition to his seminal contribution on the nature of the sign, Peirce (1955) also
provided a detailed typology of signs. For the purposes of this study, it is sufficient to
mention only his distinction between icon, index, and symbol. An icon bears a
resemblance to its referent, “such as a lead pencil streak as representing a geometrical
line” (p. 104). An index bears a direct connection to its referent, such as smoke to fire or,
in mathematics, as a letter used in text following a figure to refer to a labeled portion of a
figure. The label itself, however, is not an index. Finally, the connection between a

symbol and its referent requires establishment by convention.

Bruner (1966, pp. 10-11) distinguished three ways in which human beings model their
experience: enactive, iconic, and symbolic representations, the latter two of which are
similar to Peirce’s categories. Enactive representations embody experience in action and
are, in a sense, prior to the other types of representations. Enactive representations, I
would suggest, are helpful in describing the gestures that accompany certain metaphorical

conceptions of mathematical ideas such as function.

Regarding the signs (or representations) in abstract algebra, it is important to point out
that Peirce categorized algebraic equations as icons, in the sense that they are compound
signs, composed of symbols and indices, in which the relationship 6f the signs to one
another iconically represents the mathematical expressions and relations they are to
represent. But as Peirce pointed out, a sign is not a sign unless someone interprets it as
such. Thus, whether a sign is an icon, index, or symbol depends upon the individual

using or interpreting the sign. Therefore, when (but not until) an individual has
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established a conception of set, element, and set arithmetic in a group, the symbol aff can

function as an icon for a coset.

A Semiotics of Mathematics

In a initial semiotic analysis of mathematics, Rotman (1988) identifies three aspects of
mathematical discourse: the referential aspect, the formal aspect, and the psychological
aspect, which have rough parallels in the mathematical philosophies of Platonism,
formalism, and intuitionism, respectively. Each philosophy captures, in part,

an important facet of what is felt to be intrinsic to mathematical activity.
Certainly, in some undeniable but obscure way, mathematics seems at the same
time to be a meaningless game, a subjective construction, and a source of
objective truth. (p. 6)

Thus, through semiotics, we are back to the metamathematical issues that arose in the

discussion of definitions above.

Drawing on Peirce, Rotman distinguishes between the Mathematician (the “self””), who
imagines and conducts reflective observations, the Agent (a skeleton diagram and
surrogate of the self), who metaphorically constructs objects and carries out processes as
demanded by the Mathematician, and the Person (the subject), who operates with the
signs of natural language and participates in nonmathematical discourse. The distinctions

become clear in Rotman’s (1988) observation:

A mathematical assertion is a prediction, a foretelling of the result of performing
certain actions upon signs. In making an assertion the Mathematician is claiming
to know what would happen if the sign activities detailed in the assertion were to
be carried out. (p. 13)

The Mathematician cannot directly verify claims that would require infinitely many
operations, so she or he sets up a thought experiment in which it is the Agent who

performs the necessary actions. The proof of the assertion is presented via the
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mathematical Code, which consists of “the discursive sum of all legitimately defined
signs and rigorously formulated sign practices that are permitted to figure in
mathematical texts” (p. 15). The proof is guided by an underlying idea, which Peirce
called a leading principle. Discussion of neither the leading principle nor knowledge of
the Agent are permitted in the Code. Rather, they are part of the metaCode, which
consists of “informal, unrigorous locutions within natural language involved in talking
about, referring to, and discussing the Code that mathematicians sanction” (p. 15). Thus,
it is not the Mathematician alone but the Mathematician in the presence of the Person, the
natural language subject of the metaCode, who can be persuaded by a proof, for
conviction depends upon knowledge of both the leading principle and the actions of the

Agent.

Rotman (1988) then uses this model to provide compelling critiques of the three
mathematical philosophies, largely based upon the aspects of mathematical experience
that they ignore. I will not discuss the substance of these critiques except to mention the
Platonic nature of naming. In present-day mathematical Platonism, the principal function
of language is naming aspects of a pre-existing world—of assigning names to
prelinguistic referents. Rotman argues instead that mathematical language creates reality.

Furthermore,

what present-day mathematicians think they are doing—using mathematical
language as a transparent medium for describing a world of pre-semiotic
reality—is semiotically alienated from what they are, according to the present
account, doing—namely, creating that reality through the very language which
claims to “describe” it. (p. 30)

Rotman’s point here suggests that the preceding discussion of semiotics, particularly the

Peircian version, suffers from what might be a serious philosophical problem: the
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ontological status of the mathematical object that serves as the referent in the model of
the sign. In mathematical discourse, the various signifiers exist as marks on paper or
perhaps merely as ephemeral vibrations in the air; the concepts exist in the minds of the
students or in the collective mind of the mathematical community, as reflected in
discourse. But in what sense does the object exist and, more particularly, where does it

exist?

This is an age-old philosophical problem that was present in the work of Plato, Russell,
Frege, Godel, Hilbert, and many others. Rather than choosing among the various
solutions to this problem, I suggest that for this study (and, I believe, for the semiotic
study of mathematical cognition more generally) it was necessary only to suppose that
mathematical objects exist in some sense. In particular, this assumption is all that is
necessary for semiotics to be a useful analytical tool. From my understanding of
philosophies of mathematics, this assumption and the general sign (Figure 3) fit with all
the major philosophies of mathematics, with the exception of Hilbert’s strict formalism,
which maintains that the symbols are themselves the mathematical objects. In particular,
this approach can satisfy both Platonistic and anti-Platonistic philosophies (see Balaguer,

1998).

The point is mathematical cognition is primarily a psychological problem, not a
philosophical problem, and, as such, theoretical explanations must be psychologically
plausible. In other words, psychological considerations must trump philosophical ones.
Whether one supposes that mathematical objects exist in an abstract Platonic realm or
exist only as fictions, whether abstract objects are created by the community or by an

individual’s thought, mathematical discourse—including all externalization of
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mathematical thought—proceeds as though abstract objects exist, and thus the analysis

proceeded on this basis.

Unfortunately, this assumption is not sufficient to establish the psychological and
philosophical grounding of my version of Peirce’s semiotics. There is also the problem
of whether the concept is distinct from the object. From a psychological perspective, it is
clear that the concept and the object are not identical. A concept of a rock is certainly not
identical to a rock that exists as an object in the world. Similarly, it is useful to consider
that a concept of the group of integers is distinct from the object that is the set of integers
under addition. If the object exists physically, then there is no question that a concept of
the object is distinct from the object itself. Thus, once again, independent of where, how,
or even whether mathematical objects exist, it was useful in the analysis to suppose that

the concept and the object are distinct.

To complete this discussion, I must address the question of whether the signifier is
distinct from the referent. In the case of a rock, there is no signifier; the rock is the object
and Peirce’s triadic structure fails. This is not surprising, however, for Peirce’s semiotics
is a theory of signs, not of physical objects. One approach, due to Hilbert, is to suppose
that the symbols are the objects, simultaneously solving the ontological problem above
and rendering the current question moot. Hilbert’s solution to this problem strikes me as
a desperate attempt to construct a coherent, anti-Platonic philosophy of mathematics.

The approach is both counterintuitive and anti-psychological, for it ignores the nature of
mathematical activity and discourse. Mathematicians feel as though they are working

with real objects that exist independent of the symbols and independent of their own
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thought, and mathematical discourse suggests such a perspective (see, e.g., P. J. Davis &

Hersh, 1981).

Nonetheless, there is sometimes a sense in which students treat symbols as though they
are the objects. Nemirovsky and Monk (2000) suggest the construct of fusion to describe
How some children behave when symbols are used to model something in the world, such
as marks on a page to represent people getting on and off a bus, or when a stick becomes
a horse during a child’s play. This construct is not immediately helpful for noncontextual
mathematics, when there is neither a physical object nor a physical activity that the
student is attempting to model with the symbols. In the case of a physical object or
activity, the student is always able to step back and agree that the stick is not really the
horse and the marks on the page are not really people on a bus. In the case of abstract
mathematics, the phenomenon is more complex. Sfard (2000) points out that a crucial
“event in learning about a mathematical concept is when an individual separates a signifier
from its referent. At first, the symbol (perhaps an operation table of a group) is the object
of thought, much as a particular rock may be an object of thought. The students begins to
develop a concept of the symbol by developing some familiarity with it, perhaps relating
it to other symbols, transforming the symbol in various ways, and particularly translating
it to what is to be another symbolic representation of the same object. Eventually, as the
student begins to see the symbol not as a thing-in-itself but as a representation, then the

student has a concept of an abstract object and the Peircian triadic sign applies.

Semiotics in Mathematics Education

Because this version of semiotics and the semiotic framework below is not identical to

anything currently available in the literature, it is important to point out some similarities
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and differences. I have already discussed ways in which this semiotics is similar to the
work of Sfard (2000) and others. Several other mathematics education researchers use
Lacan’s (1977) modifications of Saussure’s version of semiotics to describe chains of
signifiers that arise in mathematical discourse. For example, Sfard (2000) suggests that
“in Lacan’s writings, one finds the idea of a sign turning into a signified of another sign”
(p. 45). Proceeding in this way, one can create a hierarchy of signs of increasing
abstraction. The literature describes how students use chains such as candies — unifix
cubes — pictured collections — verbal enumerations (Cobb, Gravemeijer, Yackel,
McClain, & Whitenack, 1997) and double-decker bus passengers — beads —
nonstandard notations — conventional notations (Gravemeijer, Cobb, Bowers, &
Whitenack, 2000). Such chains of signifiers typically proceed from some real-world
situation to be modeled, to abbreviated (iconic or essentially indexical) signifiers, to
conventional symbols. The trouble with this description is that any chain of signifiers
creates a hierarchy that implicitly privileges some signifiers over others. In studying
advanced mathematics, where what is important is moving flexibly among thé various
important signifiers, including names, definitions, and several symbolic representations,
one needs a framework that allows more flexibility. The Peircian approach is preferable
because it allows consideration of the concept and the object separately, as discussed
above, and because it allows a nonhierarchical perspective on the various signs that might

come into play during mathematical discourse.

Analytical Framework

The goal of the study was to characterize students’ images for concepts in elementary

group theory. The preceding sections have described a number of theoretical constructs
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that inform the characterizations. In particular, I have discussed the role of definitions in
mathematics, the role of metaphor in mathematical intuition, the distinction between
processes and objects in mathematical thinking, the distinction between abstraction and
generalization in the creation of mathematical concepts, and the role of naming and
notation in mathematical thinking and communication. The primary analytical tool,
borrowed from semiotics, is the sign, embodied as the distinction between a signifier, a

concept, and a referent.

In this section I describe how these theoretical constructs and analytical tools are brought
together in an analytical framework. For the purposes of this study, I was interested in
the relationship between a concept and three types of signs: symbols, names, and
definitions, including informal ones. That symbols and names are signs is obvious; that
definitions are signs follows from the substitution criterion described above. A primary
activity of thought is replacing one representation with another, and substitution of a

definition for the defined accomplishes exactly that.

The theoretical constructs discussed above are partially synthesized in the semiotic
conceptual framework shown in Figure 4 for a conceptual object. It is important to note
the framework is but a mere skeleton intended to highlight the main relationships for this
analysis. The two front-most faces of this pyramid and the vertical cross-section through
the vertices labeled concept, name, and referent each constitute a sign in the Peircian
sense, in that they are triadic relationships between a concept, a signifier (a name,
symbol, or definition), and a referent. Furthermore, the framework suggests

consideration of mediating role (in Vygotsky’s sense) of the name, symbol, or definition

in mathematical activity.
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Figure 4. Semiotic conceptual framework

concept

= symbol

definition referent

The framework in Figure 4 is not a concept image but rather an organized collection of
slices of the concept image that serves as a tool for semiotic analysis. Separating these
various signifiers from the referent and from each other providés lenses for looking at
students’ use of language and notation for the purpose of making inferences about the
conceptual structures that the language and notation represents. By paying attention to
structural relations among signifiers, one can gain insights on structural relations among

concepts.

As for the concepts themselves, they are Iikely to be metaphorical in nature, and semiotic
analysis can serve to reveal some of the operative metaphors. As for the referents, they
may be objects, processes, properties, or some combination of these, though in view of
the process/object duality of many mathematical concepts, perhaps the nature of the
referent is in the relationship between the concept and the referent. Taken as a whole,
this framework for analysis can be seen as an elaboration of Gray and Tall’s (1994)
notion of procept, where the semiotic nature of the analysis is made explicit.
Furthermore, the analysis takes advantage of the observation that it is possible to
ascertain whether students have constructed a mental object based on the way they talk

and write about the concept (Tall et al., 2000).
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The above framework serves to guide the analysis of individual concepts. But what
about collections of concepts and the relationships among them? Here I use the metaphor
of a conceptual grid that organizes experience into concepts. The grid is not in an
individual’s cognitive structure but rather is created because of one’s cognitive structure
and is then imposed on experience. In other words, a conceptual grid is not something
one has but rather something one uses. There is a potential conflict, it should be pointed
out, between the notion of concept image, which assumes the concepts to be primary, and
the metaphor of a conceptual grid that manifests itself in the way experience is cut up and
organized into concepts. Thus, one needs a sufficiently flexible notion of concept image
to accommodate not only the possibility that students might have the right concepts but
attach the wrong names but also the possibility of having entirely different concepts. In
general, this accommodation requires an analysis that gets at the concept without the
name (via an activity) and also analysis that tries to determine what is organized under
that name. Furthermore, the analysis must provide for the possibility of multiple
meanings in the language itself (polysemy or lexical ambiguity) and the analogous
phenomenon of compartmentalization in thought, wherein an individual holds two
aspects of the same concept under the same name in such a way that they are not evoked

at the same time and therefore do not interact.

Summary
On the fundamental assumption that mathematical learning is meaningful learning, the
ideas expressed in this chapter combine to create a conceptual and analytical framework
intended to support the investigation of the meaning behind students’ utterances. The

notion of a concept image, as distinct from a concept definition, served to organize the
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analysis of learning and using the various concepts in elementary group theory. To
characterize the students’ concept images, I paid attention to issues of abstraction and
generalization, to the sense in which they treated the concepts as processes or objects, and
to the metaphors they used explicitly or implicitly. To study the students’ use of
language and notation, I borrowed constructs from semiotics, focusing in particular on
the sign as a relationship among a signifier, a concept, and a referent, such as a

mathematical object.

The conceptual perspective evolved over the course of the study. Early versions helped
to frame the initial research questions, to inform the design and implementation of the
course, and to ground the research methodology and data collection. Later versions
served to guide the analysis of the data. These contextual aspects of the study and the

evolution of the research questions and methodology are elaborated in the next chapter.
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CHAPTER 1V

CONTEXT AND METHODOLOGY

The participants in this study were enrolled in a junior-level abstract algebra course at the
University of New Hampshire (UNH) during the spring term of 1996. The class was
taught by Dr. Steve Benson, a visiting faculty member, and I served as his teaching
assistant. The curriculum was designed collaboratively by Dr. Benson and me. The
instruction was unusual in that there were no formal lectures, although there were whole-

class discussions at least weekly that were led by Dr. Benson or me.

This setting was chosen for the study based, in part, on my theoretical stance and my
research questions. They might be paraphrased as, What does students’ understanding
look like in abstract algebra, and how does it build on their prior experience? Because
this was essentially an exploratory study, I wanted to be able to observe some of this
knowledge building in a rich, example-driven environment in which the students were

encouraged to make their thinking overt and explicit.

The analysis and results are based largely on interviews with five key participants. The
methods of analysis were designed to provide characterizations of the students’ concept
images. This chapter describes the context, curriculum, and instruction in more detail,

followed by descriptions of the participants, the data sources, and the methods of

analysis.
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The Context

UNH is a land-grant institution with about 10,500 undergraduate and 2,000 graduate
students. The mathematics department consists of 23 full-time faculty, 3 faculty emeriti,
4 adjunct faculty, and 34 full-time graduate students.® The department offers 10
undergraduate major programs: a Bachelor of Arts (BA) in Mathematics; a Bachelor of
Science (BS) in Mathematics; a BS in Mathematics Education, with Elementary, Middle,
and Secondary School options; and a BS in Interdisciplinary Mathematics with options in

Computer Science, Economics, Electrical Science, Physics, and Statistics.

The Course

The class that provided the setting for the study was an abstract algebra course intended
to be taken by most mathematics majors at UNH and required by the BA in Mathematics,
the BS in Mathematics, and the Middle and Secondary School options of the BS in

Mathematics Education. The course was offered in only one section in the spring term of

1996.

The class met for 50 minutes, four times per week, for 15 weeks. (See Appendix A for a
syllabus.) There were two midterm exams, the first consisting of an in-class and a take-
home portion and the second entirely take-home, and a two-hour final exam (see
Appendix B). A standard text (Gallian, 1994) was used as a resource for examples,
problems, and explanations. The bulk of the class was devoted to collaborative problem
sets (classwork) and individual assignments (homework), written by Dr. Benson and m(;,,

with Dr. Benson taking the lead role. Problem sets with homework assignments were

¥ These data are from 2000 and are reasonably representative of the situation in 1996.
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distributed (sometimes separately) approximately every week, though more frequently at
the beginning of the course (see Appendix C). Some of the classwork was completed
using the computer software Exploring Small Groups (Geissinger, 1989), which was
available in the department’s computer laboratory. The classwork and homework were
periodically collected for comment or grading. Although I provided comments on the

students’ work, I had no responsibility for grading.

Mathematical Content

This course focused on group theory, including the concepts of group, subgroup,
isomorphism, homorﬁorphism, coset, and quotient group. This focus is in contrast to
some beginning abstract algebra courses that include introduction to rings and fields. To
provide an experiential basis for the group axioms, these concepts were preceded by
some exploratory work in number theory, particularly modular arithmetic. The course

was highly example driven, focusing especially on the following:

Z: The group of integers. The elements are the integers, {...,-2,-1,0,1,2, ...},
and the operation is addition. Sometimes the operation of multiplication was also
considered to illustrate the failure of the inverse axiom.

nZ: The group of multiples of n. The elements are the integers, {..., -2n, -n, 0, n,
2n, ...}, and the operation is addition.

Z,: the group of integers modulo n. The elements are the integers {0, 1, ..., n—
1} and the operation is addition modulo #n. Sometimes multiplication modulo #
was also considered to illustrate the failure of the inverse axiom.

U,: the group of units modulo ». The elements are the integers in {0, 1, ... , n —
1} that have inverses under the operation multiplication modulo #n. An equivalent
characterization is the integers in {1, ... , » — 1} that are relatively prime (i.e.,
share no factors) with n. Thus, for example, U = {1, 3, 7, 9}.

D,: the dihedral group of order 2n. The elements are the symmetries of a regular
n-gon and the operation is given by thinking of the symmetries as
transformations and composing them; that is, carrying out one transformation
followed by the other. The elements of D, were represented both geometrically
(as transformations) and as permutations of the vertices.

S»: The symmetric group of degree n. The elements are the permutations of a set
with n elements, and the operation is composition of permutations, thought of as
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functions. The elements were usually represented as arrays notation or in cycle
notation. For example, a permutation o, where a(1) =3, a(2) =2, a(3) =4, a(4)
= 1, is represented by the array

1 2 3 4

32 41

where the elements in the second row indicate the images of the elements in the
first row. In cycle notation, this same permutation would be written (134),
indicating that 1 goes to 3, which goes to 4, which goes (back) to 1. The fact that
2 is missing implies that 2 remains unchanged. The identity permutation is
denoted (1) in cycle notation, specifying explicitly that 1 goes to 1 and implying
that everything else remains unchanged as well.

We also considered the real, rational, and complex numbers; sets of matrices; and various
groups and nongroups given by operation tables. During class and on problem sets, these

examples were notated as sets, leaving the operation implicit (see chapter 5).

These examples were used to motivate the concepts treated in the course, which included
group, subgroup, isomorphism, center, centralizer, order of an element, cyclic subgroups,
subgroups generated by elements, homomofphism, coset, Lagrange’s theorem, and
quotient groups. These concepts are described in more detail in the description of the

problem sets below.

Instruction

As was stated above, this class included no lectures. Most of the time for this class, both
in class and out, was devoted to working on activities and problem sets designed by Dr.
Benson and me. The students worked through most of the activities and problem sets
collaboratively, usually in groups of three or four, although some assignments,
particularly the take-home exams, were to be completed individually. During class time,
Dr. Benson and I worked with the groups and periodically brought the whole class
together to discuss common issues, to encourage synthesis of the various results, and to

point toward important themes and ideas. Both individually and when working
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collaboratively, the students were expected to justify their claims. In this way, student
thinking was expected to be overt and explicit. Both Dr. Benson and I held office hours,
both regularly and as needed, and students attended both individually and in groups,

usually to get help with specific problems on the problem sets.

Aspects of the theoretical perspective described in chapter 3 implicitly and explicitly
informed the instruction and the design and implementation of the problem sets. In
particular, Dr. Benson and I tried to pay particular attention to what the students were
thinking because what they learned might not be what we intended. The class was
somewhat like a teaching experiment in that our planning tried to take into account the
experiences, including both difficulties and insights, that students were having with
previous problem sets. Moreover, because reflection is key to building strong and
productive understandings, we encouraged overt reflective activity whenever possible,
meaning that the students were eXpected to explain their thinking, orally or in writing, to

us or to other students.

Problem Sets and Homework

The problem sets were designed to provide experience with examples that could be used
to motivate the key ideas. Often, concepts were introduced not by a definition, statement,
or theorem, but by a problem. Then, as students developed solutions, key features or
properties of the problem were drawn out, defined, and given standard names and
notations. Often the key terms, definitions, and notations were provided again in
subsequent problem sets. In this way, the students might see some of the concepts as
growing naturally from the problems they were trying to solve. A sampling of the

problem sets is included in Appendix C.
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The course initially focused on modular arithmetic, which was used the primary example
of a system in which to solve equations. For example, the students were asked to find
solutions of 3 + x =5 mod 7, 3x = 5 mod 7, and 3x = 5 mod 6, and to investigate when
such equations had a unique solution, no solutions, or multiple solutions. The students
also spent time solving equations of the form ax = b, a + x = b, or a*x = b in other
mathematical systems such as subsets of the real numbers, sets of matrices, and also in
finite systems for which the operation was given by an operation table. The group
axioms were then présented as a generalized consolidation of what the students suggested

needed to be true about a system in order for such equations always to be solvable.

The students were asked to find all possible Cayley tables with 2, 3, and 4 elements in
order to motivate the ideas of isomorphic groups, which they initially called congruent
groups. The isomorphism itself was not explicitly a function, at first, but instead resulted

from a renaming process based on looking at the group table.

In order to provide experience for making sense of addition and multiplication of cosets,
set addition (and multiplication) were introduced early through examples such as
{1,3,4} +{2,6} =1{3,7,5,9, 6, 10} and by comparing the sets 3Z,3Z+1, ... ,3Z+7.
Later, the students were asked to make operation tables for {0, 4, 8}, {1, 5, 9}, {2, 6, 10},
and {3,7, 11} in Z;5. And to motivate the usefulness of the normality of a subgroup after
introducing the concept of coset, the students performed coset arithmetic at first without

concern for whether the subgroup was normal. Additional detail is provided in chapter 6.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



102

Participants

All 29 students enrolled in the class were participants in the study for the purposes of
field observation. All were mathematics majors: 24 of them were juniors, and 22 were
pursing a Bachelor of Science in one or more of the Mathematics Education options.

This high concentration of mathematics education majors is typical in the spring semester
offering of this course. They had previously taken an average of seven mathematics
classes, typically including a four-course calculus sequence, courses in mathematical
proof and statistics, and another course such as geometry or linear algebra. Because the
mathematical proof course is a prerequisite for abstract algebra, it is reasonable to assume
that all students had taken it previously, although two did not list it on the questionnaire
distributed on the first day of class. Of the 29 participants, 25 allowed collection of their
written work, 21 were willing to be interviewed, and 19 consented to both. Blank

consent forms and Institutional Review Board Approval are provided in Appendix D.

Almost all of the students who completed course evaluations said they found the problem
sets and the collaboration helpful in their learning. Some students even said they found

the take-home exams particularly helpful.

Key Participants

For key participants, I wanted students who might be considered typical students in the
course. I did not want students who were struggling so much that the interviews would
not be able to reveal their understanding of the key ideas in the course. On the other
hand, I did not want students for whom many of the abstractions and generalizations were
quick and obvious. Thus, based on discussions with and observations of the students

over the first two weeks of the course, I chose six students who had given permission for
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full participation and whom I expected to perform at an average level in the class. As it
turned out, their grades were above average, with 3 A, 2 A-, and 1 B in the following
distribution: 13 A, 4 A-,9 B,2 B-, and 1 D. The study was based primarily on an
analysis of the interviews with the five students for whom I was able to collect a full set
of interviews: Carla, Diane, Lori, Robert, and Wendy.9 These students are described

briefly below.

The data for these sketches come from three sources: questionnaires distributed to all the
students at the beginning of the course, moments in the interviews when the students
chose to describe themselves, and conversations with the students after the completion of

the class. .

Carla. Carla was a junior and was majoring in mathematics education in both the middle
and secondary school options. She planned to teach eighth grade. She had taken seven
college mathematics courses previously, including calculus, and was taking linear algebra
concurrently. Two of these courses were among those taken primarily by preservice

elementary teachers.

Carla described herself as follows: “I am a visual learner. So I remember, like, a
sequence of letters if I see them” (Interview 1, line 34). She said she was a very
successful mathematics student, though she admitted mathematics had not always been
easy for her. When a mathematics course was very challenging, she often looked back
later and appreciated the struggle. Looking back on this abstract algebra class, she

indicated that the class had been stressful and she did not like the fact that that Dr.

? The key participants have been given pseudonyms that preserve their gender.
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Benson and I often answered questions with questions. Nonetheless, she felt that she had

learned a lot.

Diane. Diane was a junior majoring in mathematics education under the secondary
school option. She had taken six mathematics courses previously, including calculus.

She hoped to teach high school mathematics, particularly algebra and calculus.

On her questionnaire, Diane expressed some apprehension: “Because of the approach of
this class I’'m a little concerned with how I’ll do. It’s different working through a
problem, exploring possibilities and then reaching some conclusions, not just begin told
that something is right and here’s how to do it.” During her second interview, she
indicated some frustration with the exploratory approach, which she described as “just
playing around with it like this. There has got to be a better way” (line 101). After all,
“this is math. There are always rules to follow, and it’s always very neat.... But this has

already been established somewhere, so I know there’s rules” (lines 235-240).

Lori. Lori was a junior pursuing a BA in mathematics and not intending to teach. She
was repeating the course. She had been advised to take abstract algebra in the fall
because of a perception that the sections offered in the fall were typically geared more
toward the mathematics majors and those in the spring were geared more toward the
mathematics education majors. Because she had received a poor grade in the fall, she
was taking the course again in order to improve the grade on her transcript. She had

taken five other mathematics courses previously.

Lori was the weakest student among the key participants. She was the only one who

received a B in the class; all of the others received an A or an A-. She indicated that she
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appreciated some aspects of the approach of this class: “I don’t think that I necessarily
understood the concept of closed until we made charts and tables and stuff, and we never

made tables last semester” (Interview 1, line 5).

Robert. Robert was a junior and a mathematics education major under the secondary
school option. He had taken five mathematics classes previously, including calculus. He
intended to teach high school mathematics and was considering a graduate degree in

science education.

Robert claimed on his questionnaire that he had had uneven success in his mathematics
classes: “I find that I do all right w/ computational math, but I find the theory classes very
difficult. Perhaps due to my lack of intuition.” When struggling with an unfamiliar
problem or concept, he said that he often look at various texts, examples, definitions, to
“see if I could make heads or tails out of it, which, typically, I probably couldn’t. It’s

written in mathematics, not English” (Interview 1, line 162).

Wendy. Wendy was a senior and was majoring in mathematics education in the
elementary and middle school option. During her program she had decided that she
would prefer to teach secondary school, so she was planning to attend graduate school for
secondary certification after graduation. ‘She had taken thirteen mathematics courses

previously, including calculus. Three of the courses were among those typically taken by

preservice elementary teachers.

After the class was over, Wendy indicated that her favorite part about the class was all
the writing. She explained that she got a lot out of doing the problems and said she got

even more out of explaining the problem and trying to write her solution carefully.
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Instructor

Dr. Steve Benson is a mathematician who was a visiting faculty member at UNH and
who, at the time, had recently decided to devote his attention to mathematics education.
He received his doctorate from the University of Illinois in 1988 and then held a two-year
postdoctoral teaching position at St. Olaf College. He taught at Santa Clara University
and another year at St. Olaf before coming to UNH in the fall of 1995. His research area
was algebraic number theory. While working i.n mathematics, he published two research
papers, two expository papers in journals of the Mathematical Association of America,

and one paper on teaching suggestions in abstract algebra (Benson & Richey, 1994).

Dr. Benson had a temporary faculty appointment in the mathematics department at UNH,
which he saw as an opportunity to learn about and begin working in mathematics
education by interacting with the faculty and graduate students in the Ph.D. program. His
teaching was always a priority in his work, as evidenced by a graduate student teaching
award at the University of Illinois and by consistently excellent teaching evaluations. In
fact, teaching was a primary reason that he pursued and accepted the postdoctoral
position at St. Olaf College, which is known for valuing and encouraging quality
teaching. He had taught the content of this abstract algebra course three times before,

although previously his approach had been more traditional.

Teacher/Researcher

In my interactions with students, I played two roles—teacher and researcher—which
brought both opportunities and pitfalls. Ball (2000) suggests that such an approach
“offers the researcher a role in creating the phenomenon to be investigated coupled with

the capacity to examine it from the inside, to learn that which is less visible” (p. 388).
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Simultaneously, the dual roles create challenges with respect to the validity and
generalizability of the results, and particularly with respect to causation. Here I pause to

discuss how I managed and coordinated these roles.

By assuming the roles of both teacher and researcher in this study, I gained considerable
inside knowledge. In constructing the problem sets, I provided some of the ideas and
served as a sounding board for some of Dr Benson’s ideas. Like Dr. Benson, I helped
and guided groups of students as they worked in class on their problem sets. Iled some
of the whole-class discussions, and I provided office hours in which students sought extra
help. In this way, I provided another pair of ears and eyes to help Dr. Benson learn about
the students and their thinking. These duties not only provided detailed knowledge of the
context for the interviews but also helped me get to know all the students much better

than if I had merely observed from the back of the class and selected a few for interviews.

In class as well as in office hours, the students’ thinking was expected to be explicit and
was valued, no matter how nascent. Dr. Benson and I rarely told students that they were
right or wrong, an approach that served to encourage their own thinking and discussion,
although, in retrospect, our implementation of this approach may have been too extreme,
as it occasionally led to unproductive discussions (see Chazan & Ball, 1999). It is
plausible that the atmosphere we had created in the classroom was partially responsible

for the fact that key participants often required little prompting in the interviews.

Many of the pitfalls of being a teacher/rescarcher arise when the purpose of the research
is to study teaching. The problem is gaining sufficient objectivity to ensure the reliability

of observations and the validity of conclusions about one’s own thoughts and actions.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



108

Such pitfalls were not present in this study, however, because the purpose was to study

learning.

Some of the challenges arise in any research that relies on cases. In such research,
generalizations must be made carefully and are often only tentative. Any generalization
depends upon the extent to which the case resembles other situations. Yet
generalizability depends also upon the nature of the claim. When the goal is to establish
an existence proof or theory building, as was the case for this study, generalizability is

determined outside and after the study and thus is not really an issue.

The most potentially problematic issue for a study such as this is the evaluative role of
the teacher. Ball hints at the issue when asking, “What might [the students] not want to
say to her? What might it be risky to disclose?” (p. 389). Although it is plausible that
this issue is not serious when the students are third graders, as in Ball’s research, I am
quite convinced that it merits careful consideration when the students are undergraduates.
This is why I chose to make it clear to the students, with Dr. Benson’s support and
assistance, that I was to play no direct evaluative role in the class. I was particularly

fortunate that Dr. Benson was comfortable with this arrangement.

The goal of this study was to describe student thinking and, to the extent possible, to
build theoretical explanations for the descriptions without necessarily attributing cause as
part of the explanations. With such goals, validity and reliability are ensured during
analysis through the constant comparative method, as described under methods of
analysis. In summary, the conduct of the study and the methods of analysis were
designed to take advantage of the opportunities and mitigate the pitfalls of my dual role

as teacher/researcher.
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Data Sources

The primary source of data was the interviews with five key participants. Some exams
and other written work were also collected, including final exam and second midterm
papers from all the students, to provide a broader view of the ways students understood
the material. Contextual data were provided through a questionnaire distributed on the
first day of class (see Appendix A), from field notes I took on 20 occasions, from the
problem sets and explanatory handouts, and from audiotaped planning discussions with

Dr. Benson.

The Interviews

The interviews took place outside of class, and the students were compensated for their
time. All interviews were simultaneously videotaped and audiotaped to aid subsequent
transcription and analysis. Each of the five key participants took part in four interviews
organized roughly around mathematical content, as described below. To provide some
perspective on how the students were working together in the collaborative setting, Lori
and Diane were usually interviewed together. (Their third interviews occurred separately
because of scheduling difficulties.) Thus, a total of 17 interviews provided the core of
the data. The interview schedule is given in Table 1. Two of the interviews took place

after the final exam, which was administered on May 10, 1996.

The interviews were intended to address the initial versions of my research questions,
which all fit under the guiding question, “In what ways do these students understand the
mathematical content of the course?” The interviews were not highly structured but
rather were exploratory and contingent. To provide sufficient data on each of the key

concepts in the course, the four interviews were organized around mathematical content:
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(1) groups and subgroups, (2) isomorphisms, (3) homomorphisms and cosets, and
(4) quotient groups. Each interview typically began with a common question and

proceeded from there, guided by the student’s responses.

Table 1. Interview Schedule

Diane and Lori | Interview 1 | 04/05/96
Robert Interview 1 | 04/05/96
Wendy Interview 1 | 04/06/96
Carla Interview 1 | 04/12/96
Robert Interview 2 | 04/15/96
Diane and Lori | Interview 2 | 04/17/96
Wendy Interview 2 | 04/18/96
|Carla Interview 2 | 04/24/96
Diane Interview 3 | 05/01/96
Carla Interview 3 | 05/02/96
Diane and Lori | Interview 4 | 05/03/96
Carla Interview 4 | 05/07/96
Robert Interview 3 | 05/07/96
Wendy Interview 3 | 05/08/96
Robert Interview 4 | 05/09/96
Lori Interview 3 | 05/13/96
Wendy Interview 4 | 05/13/96

The interviews were opportunities for me to observe the issues that the students were
struggling with during their early learning of these new concepts. Thus, most of the
interviews were conducted during the several days after which key concepts had been
introduced, sometimes immediately following the class. My aim was to try to understand

students’ utterances as sensible and meaningful from their individual perspectives.

During all my discussions with students (during interviews, office hours, and class), my
predominant method was to pose problems, ask questions, and encourage students to
explain their thinking, so the students were accustomed to nondirective interaction.
During the interviews, however, because I was trying to understand students’

understanding, I was typically more probing and less directive than in class or in office
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hours, at least until I thought I understood what a student was saying. Then, when I did
move on, I typically posed a leading question intended to provide opportunities for the

student to correct errors or make new connections among new and old ideas.

The interview tasks and questions were essentially of three varieties: tasks from the
literature, open-ended questions such as “What is a homomorphism?” intended to get at
the meaning the student had developed, and questions intended to probe the key concepts

through standard examples. The key questions and topics in the interviews are given

below.

Interview 1: Groups and subgroups. The first interview began with the question, “Is Z3 a
subgroup of Zs?” During the students’ responses, I paid particular attention to the role of
the operation. When the students had resolved the opening question, I asked them to find
subgroups of Zs and then to compare those subgroups with Z; and Z, to look for the

beginnings of the concept of isomorphism.

Interview 2: Isomorphisms. The second interview approached the concept of

isorhorphism by comparing different groups of order 4, beginning with the four operation
tables the students had identified on their take-home exam. Carla’s second interview was
largely about the concepts of function, domain, and range, prompted by discussions
during the class that had preceded the interview. With Robert, we began with a follow-

up to the first interview and spent the remainder of the interview representing the

elements of Dy.

Interview 3: Homomorphisms and cosets. The third interview began with the question,

“What is a homomorphism?” and I asked for examples. Then, I gave the students a
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homomorphism from Us to Z; and asked how they would check whether it was a
homomorphism. After checking a few specific examples, I asked them to find the kernel
of the homomorphism and the cosets of the kernel. I asked Robert also to find the cosets

of the subgroup generated by 3 in Z},. I asked Wendy to try to make a group out of the

cosets.

Interview 4: Cosets and quotient groups. The fourth interview was based on comparing

the cosets of the subgroup generated by (12) in D3 with the subgroup generated by (123).
The students computed right and left cosets and then tried to construct a group using the
cosets. Wendy also computed cosets and the quotient of 4Z in Z, and Carla also
constructed the cosets and quotient of {0, 3, 6, 9} in Z;,. Much of each interview was
spent sorting out the students’ uses of the terms coset, normal, and quotient group to

describe the results of their calculations.

Conventions in Transcripts and Figures

All the interviews were transcribed. In the transcripts, I tried to capture all abandoned
phrases and restatements, although “ahs” and “ums” were mostly ignored. Because I
wanted the analysis to be guided as much as possible by complete thoughts, I chose the
paragraph as the smallest unit of coding, although I refer to these paragraphs as “lines” in
the transcripts and provide line numbers for all direct quotes. In order to improve the
coherence and completeness of paragraphs in the transcripts, I did not interrupt a
statement from one speaker to insert inconsequential statements such as “Okay” from

another speaker when the statement seemed to have no effect on the train of thought.
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Instead, I inserted such statements inside the paragraph of the primary speaker, enclosing

the statements in square brackets to signal the change of speaker.

Numbers were written as numerals in the transcripts except when the use of the numbers
did not seem relevant to the mathematics. In long lists of numbers, semicolons were used
to indicate slight pauses. The notations x, +, —, and = were used only for the words times,
plus, negative, and equals, respectively; similar expressions such as “added to” or “is
equal to” were written out as words. Notations for standard groups were used throughout
the transcripts, so that “Zee six” was transcribed as “Zg,” for example. Functional
notation was used when the argument of the function seemed clear, so that, for example,
“f of x” was transcribed as f{x). Set notation was used when the context or the written
work suggested, either explicitly or implicitly, that the students were thinking about sets.
Similar conventions were used for permutation notation, transcribing “one two three” as
“(123),” for example. These transcriptional conventions helped me read and analyze the
data more fluently than if I had written out each word in full. Importantly, each of these
conventions is reversible by reading the transcript aloud. The students’ written work was
typeset as’ figures rather than scanned, on the judgment that the essential characteristics of
that work could be more clearly conveyed this way. Thus, it is my conviction that these
conventions improved the clarity of the transcripts and the written work without

influencing the data or analysis by imposing notation inappropriately.

Methods of Analysis

Essentially three types of analysis were employed: detailed analysis of each interview

transcript; global analysis to confirm, refine, and refute the initial hypotheses generated
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by the detailed analysis; and conceptual analysis of the mathematical content. Because
both the research questions and the methods of analysis evolved as the study progressed,
I begin this section with discussion of the fits and false starts that led to the methods.
Then I provide a detailed description of the methods and the ways that each type of
analysis informed the others. I close with a discussion of the relationship between the
methodology of this study and the methodology of constant comparison and grounded

theory (Glaser & Strauss, 1967).

Evolution of the Method

In my proposal for this study, the research questions included the following: “In what
ways do these students understand the mathematical content of the course? How do these
understandings emerge from their experiences?” These broad questions were sufficient
to guide the interviews, but, as will become clear, they were initially unhelpful in guiding
the analysis because they neither suggested a scheme for coding nor helped me decide

what to look for in the transcripts.

Before coding any of the data, I developed a preliminary coding scheme that included
categories of mathematical content, such as coset and commutativity; categories from the
research literature, such as the proof schemes of Harel and Sowder (1998); categories of
student action, such as choosing an example or giving a justification; categories about
affect, metacognition, and the nature of mathematics; and categories that described the
types of errors that students made, along with categories that described how errors were
resolved. The scheme was, from my perspective, exhaustive (and exhausting), including
all possible dimensions and aspects of mathematical experience that I could imagine

might be present in the interviews. My attempts to use this scheme to code the transcripts
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statement by statement proved unsuccessful not only because the scheme was unwieldy
but also because the salient portions of a transcript were typically extended exchanges
that fell entirely under one or two codes. Simultaneously, other exchanges were
straightforward calculations that were not paﬁicularly interesting. The fact that both
kinds of exchanges received equal emphasis in the coding was clearly not satisfactory.

Furthermore, large portions of the scheme did not seem pertinent to the available data.

I temporarily abandoned coding and instead carried out a detailed analysis of each
transcript. By comparing the audiotape with the student’s written work and, when
necessary, with the videotape, each transcript was annotated to clarify the referents of
pronouns and what the student was writing. At the same time, the transcripts were
segmented into episodes, providing both a chronology and a table of contents for each
interview. Additional annotations were inserted to highlight episodes, events, and
statements that struck me as interesting or significant, typically because of the use of
nonstandard language, an error that seemed nontrivial, a hint of an unusual way of
thinking, or a change that suggested learning. Guided by very general questions such as
“What was the student doing? What was the student using?” I developed short
descriptions of these interesting events. The table of contents and the significant events,
together with my description, provided an initial “bottom-up” analysis that also served as

a summary of the interview.

During the above processes, the research questions evolved, eventually arriving at
questions such as, “What concept images do students demonstrate as they are learning the
fundamental ideas of group, subgroup, and isomorphism?” Using the summaries of the

interviews, I began the next phase of analysis with an eye toward answering the research
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questions. Intending to delineate various components of concept images, I developed a
coding scheme that was short, focused on describing concept images, and more relevant
to the data. The scheme had categories such as representations, properties, and examples
of concepts, as well as definitions, results, and associations about concepts. Once again,
however, when I tried to code the transcripts, I had trouble making the scheme fit. It
became clear that the most salient features of the interviews were issues of language,
notation, and meaning, and the relationship between signs and the concepts that they
were intended to represent. These issues still were not sufficiently prominent in the

coding scheme.

I again abandoned explicit coding. Reviewing the interview summaries, I instead asked
directed questions such as “What can I say about this student and her concept of group?”
that led to answers such as the following: “She reasoned from the table; she confused
related words; she used idiosyncratic language and syntax; she was confused about the
operation in Z,.” The resulting long list of observations about student thinking was then
examined for emergent themes. In continuing the episode-by-episode analysis and
synthesis, I elaborated the observations with examples of dialogue from the interviews,
regularly asking myself, “What is this an example of?” thereby keeping the goal of
describing student understanding at the forefront of my thought. As is described in detail
below, [ also lookéd for regularities and overarching themes that could be developed into

theoretical explanations.

In summary, the method of analysis evolved from line-by-line coding to detailed
description of significant episodes and events. Another way to describe the transition is

as follows: The unit of analysis was originally the concept, as indexed (not in the Peircian
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sense) by the concept name. The students’ language use was so unusual and
idiosyncratic, however, that it became clear that the unit of analysis needed to be the
episode. This change is analogous to Wertsch’s (1985) observation that although
Vygotsky began with the word as his unit of analysis, many of his colleagues and

students (e.g., Davidov, Leont’ev) moved to using the activity as the unit of analysis (see

also Wertsch, 1981).

Detailed Description of the Method

The goal of the analysis was, of course, to provide answer to the research questions,
which meant describing students’ concept images for the key concepts in the course and
also describing the ways that preliminary mathematical ideas came into play. In the
analysis, I considered both personal and conventional meanings of the concepts and
focused on the differences between them, for that is where clues to learning problems lie.
Thus, the main fodder for the descriptions of students’ concept images was episodes,
events, and statements that struck me as significant because of potential differences
between personal and conventional meanings. Events were pursued through detailed
analysis when my observations about the event seemed sufficiently robust, such as when
similar events occurred elsewhere with the same student or with a different student. In
this section, I describe some technical and theoretical aspects of the method and also

provide additional detail.

Most of the data were managed via N5, the fifth major revision of NUD*IST qualitative
rescarch software (QSR International, 2000). The annotated transcripts and their
summaries were imported into N5 along with excerpts from the midterm and final exams

of the five key participants. To provide some context for the interviews and exams, the
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discussions with Dr. Benson were summarized, including some verbatim transcription,
and imported into N5. The field notes were also imported. All electronically available
data were coded for mathematical content. In particular, I coded for the following
concepts: modular arithmetic; function; binary operation; properties of operations,
including the four group axioms and commutativity; group; subgroup; isomorphism;
homomorphism; kernel; coset; normality; and quotient group. These mathematical
categories formed the primary headings under which I sought to describe students’

concept images.

In trying to create descriptions of students’ concept images, I found that one of the most
puzzling aspects was explaining or even describing students’ idiosyncratic and seemingly
inconsistent use of language and notation. I was initially at a loss and for a long time
found little in the mathematics education literature that helped me understand the
students’ statements and actions. Eventually, I was led to literature in linguistics,
philosophy, and particularly semiotics, from which I borrowed and adapted theoretical
constructs that helped explain what I saw and that led to a theory that ultimately

connected back to the mathematics education literature.

With these additional theoretical constructs, the analysis of the episodes became
essentially semiotic in character. Although semiotics holds no widely shared theoretical
assumptions or methodologies, a consistent feature is looking beyond specific signs to
discern the relationships between signs and the systems of distinctions operating within
them (Chandler, in press). For analyzing student thinking, the approach might be
described as looking at the students’ language rather than through it (Sfard, 2000).

Lacking direct access to the personal meanings of the students, I relied on semiotic
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analysis to help me make inferences about those meanings and to build a theory that fit
the data. In the detailed analysis of the significant episodes, I tried to discern meaning in
students’ utterances and tried to understand their use of mathematical signs, particularly
words, notations, and definitions, using the analytical framework described in chapter 3.
Not all significant episodes were so analyzed; instead, I focused on those episodes that
either spoke to the use of langﬁage, notation, and representations; suggested
consideration of relevant objects, processes, or metaphors; or raised issues of abstraction

and generalization.

To complement the detailed analyses of episodes, I also took a global view, searching for
additional uses of words or notation that might confirm, refine, or refute the working
hypotheses. For example, I coded and collected the various formal and informal
definitions that the students gave of the key concepts in the course. Some of these were
in response to very direct prompts such as “What is a homomorphism?” as in the
interviews, or “Provide complete definitions for the following terms and phrases™ as on
the final exam (Appendix B). Other definitions arose without a direct prompt, typically

as part of an explanation of something else.

In the global analysis, [ used N5 to search the transcripts and other electronically
available data for other instances of the signs (i.e., words and notations) that the students
and I were using to discuss the particular concept. On the basis of my familiarity with the
data and with the aid of the interview outlines, I also carefully examined portions of the
transcripts that were likely to speak to the particular ideas under analysis. The excerpts
identified by these searches were considered first for relevance and then for fit with the

emerging hypotheses, which were modified to accommodate data that did not fit.
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Because the study aimed to characterize students’ concept images, the hypotheses were
often about a nonstandard conception that a student had during a particular episode.
Sometimes the search identified excerpts that suggested that later in the course the
student had developed a conception that fit better with standard mathematical usage. I
saw such excerpts not as disconfirming evidence of a hypothesis but rather as partial

evidence of learning,.

The detailed and global analyses produced preliminary descriptions and representations
of students’ concept images for the key concepts in the course. These were compared
with what I took to be standard language usage and descriptions of the concepts in the
mathematical community. This comparison was implicit, at first, in the sense that during
the analysis, I was particularly interested in language or understanding that did not fit
with my own, which I took to be a fair representation of standard mathematical usage.
Because both my interview technique and the method of analysis took as a guiding
principle the pursuit of that which was interesting, unusual, or unexpected, many
discrepancies with standard usage were explored in detail during the interviews
themselves, thereby providing substantial supporting data to confirm or disconfirm both
the implicit hypotheses that I was generating during the interview and the related

hypotheses I was developing during the analysis.

To make explicit the concept images that implicitly guided my analyses of student
thinking, I also completed conceptual analyses of the key concepts in the course, as
described below. The various analyses were conducted iteratively. By reflecting on the
students’ statements, I was often better able to conceptualize and articulate what the

conventional concepts are and the distinctions between them. Conversely, with a detailed
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conceptual analysis [ was better able to characterize students’ concept images. In this
way, comparisons between students’ personal meanings and accepted mathematical
meaning became increasingly explicit. Because these versions of the accepted

mathematical meanings were largely my own creation, some explanation is in order.

In mature discoﬁrse, particﬁlarly within a professional community, meaning is often
“taken as shared” in the sense that individuals converse as though their personal meaning
is shared by the community (see, e.g., Cobb, Yackel, & Wood, 1992; Ernest, 1991).
Because no one has direct access to the shared meaning of the mathematical community,
it was not possible to import conventional concepts directly into my analysis.
Furthermore, traditional mathematical exposition would not have been appropriate for
this study, because, as Pimm (1995) observes, mathematicians use words as though they
are the concepts, as is apparent in mathematical discourse, and symbols as though they
are the objects, as is revealed in the metaphor of manipulation. Instead, I created
descriptions of the mathematics based on a conceptual analysis that aimed at careful
semiotic descfiption of the meanings of the words and representations of the mathematics
under study. Guided by my own thinking, frequently consulting resources such as
mathematical texts (e.g., Gallian, 1994; Herstein, 1975; Hungerford, 1974), and with
careful consideration of accepted formal definitions, I arrived at a particular elaboration
of the meaning of a concept, highlighting its semiotic nature and including process,
object, and metaphorical characterizations. I take these meanings to be shared by the

community, in the sense that the descriptions fit with, though they are not identical to,

descriptions I found in texts I consulted.
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As the detailed, global, and conceptual analyses proceeded, my preliminary observations
about student understanding were combined, reworded, and sometimes dropped, leading
to working hypotheses that were categorized eventually under two broad themes: the use
of language and notation and the mathematical meanings that students gave to their
activity. Although my intent was originally to describe students’ concept images for a
list of concepts, these themes became increasingly prominent as the analysis continued,
eventually overtaking the mathematical content categories in importance. Furthermore, it
became clear that these emergent themes provided not components but rather
characteristics of concept images. Thus, the research questions were adjusted to reflect

this observation, resulting in the versions given in chapter 1.

Characterizing the Method

The working hypotheses evolved over the course of the analysis into a theory that was
organized under the two themes. Analysis, synthesis, and theory generation were
conducted iteratively and sometimes simultaneously. In other words, by frequently
returning to the initial analyses and to the data themselves to judge the faithfulness of the
emerging theory and the accompanying explanations, I established the theory in an

empirically grounded way.

Very late in the process, I realized that the detailed summaries functioned as codes, the
preliminary observations served as initial categories and hypotheses, and the synthesis of
the working hypotheses formed the core of an emergent theory. It is now apparent that,
disregarding the false starts, the method is consistent with the constant comparative
method of Glaser and Strauss (1967; see Cobb & Whitenack, 1996, for a similar

discussion). Theoretical constructs were developed as part of the data analysis, and the
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constructs are grounded in the sense that they are rooted in the data. The inferences made
while analyzing the episodes formed working hypotheses that were constantly compared
to the data and modified in light of new data and analysis, and the theory emerged via this
process. The methodology also emerged as I abandoned unproductive approaches and
instead focused on what the data afforded. Explicit description of the method was made

only retrospectively.

What was hardest about the process that eventually led to this method was coming to the
realization that there was no need to be apologetic about the fact that my initial research
questions were vague and that I could not stick to a coding scheme. From the start, the
goal of this study had been to develop new understandings of the ways that students learn
abstract algebra. When the study began, the only extant theory had been grown out of
Dubinsky’s (1991) APOS framework, and I suspected right away that the APOS
framework missed and even obscured important issues for the learning and teaching of
advanced mathematics. Now it is apparent that my aim all along was theory generation,

which is precisely what the constant comparative method is intended to support.

As for the coding, by thinking up the coding scheme in advance, the subsequent attempts
at statement-by-statement coding required that I impose (or force) preconceived

categories onto the data. The coding did not work precisely because the codes did not fit
the data. What I should have done instead was let the codes and categories emerge from

the data, and that was the end result, despite the several dead ends that were explored.

To be precise, however, not all of the codes emerged from the data. In particular, coding
and categorizing by mathematical content was intended in the early conceptualization of

the study and remained important throughout. The fact that these categories were
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imposed on the data seems reasonable because they are natural in a sense, because I was
interested in the learning of specific mathematical content, and because these categories
organize important learning goals. Thus, because of these preconceived categories, the

resulting theory is not entirely grounded in the sense of Glaser (1992).

Relationship with Grounded Theory

I have mentioned that the method of this study is consistent with the constant
comparative method of Glaser and Strauss (1967), but that seminal book is more often
cited (with little detail) for the methodology of grounded theory. In this section, I fill in
some of the oft-missing detail and explain the relationship between the constant
comparative method and grounded theory. This discussion is particularly important
because Glaser and Strauss themselves later disagreed about the methodological
requirements of constant comparison and grouhded theory (compare Strauss & Corbin,
1990; Glaser, 1992). I follow Glaser’s account because it seems to me to be more faithful

to the notions of groundedness and emergence.

'fhe constant comparative method forms the methodological backbone in the
development of grounded theory. Regarding the formulation of a research problem,
Glaser (1992) suggests, “Remember and trust that the research problem is as much
discovered as the process that continues to resolve it” (p. 21). As for reviewing the
literature, Glaser dictates that the researcher nof review any of the relevant literature in
the field of study (p. 31), because the theoretical constructs in the literature may
contaminate the analysis, steering the researcher toward imposing preconceived

categories on the data. Any theory that grows through the constant comparative method I
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will call an emergent theory, usage that fits with the work of Glaser and much of the

work of Cobb and his colleagues (see, e.g., Cobb & Whitenack, 1996).

How do the constant comparative method and an emergent theory satisfy the traditional
research ideals of validity and reliability? Glaser (1992) suggests that the criteria by
which to judge the theory are not verification and reproducibility but rather fit, work,
relevance, and modifiability. When the goal of a study is theory generation, verification
is not necessary if the theory fits, although future studies might undertake verification.
Furthermore, it matters not whether another researcher would have produced the same
theory but rather whether the theory fits the data, works to explain the variation in the
data, is relevant to the context from which the data came, and is modifiable to

accommodate the integration of additional concepts.

In the following chapters, I have tried to include enough detail in the analysis to
demonstrate that these four key criteria are satisfied. The final analysis and the emergent
theory for this study also essentially satisfied Glaser’s prohibitions about the formulation
of the research problem and the influence of the relevant literature, if the false starts and
missteps are disregarded. Certainly, the original statement of the research problem was
sufficiently vague, and the statement of the research problems underwent revisions
throughout the process in response to what was available in the data. Regarding the
review of the literature, although I read much of the literature ahead of time and did try to
force some categories on the data, in the final analysis only the process/object distinction
was helpful, and that formed but a small part of the resulting theory. Of course, I also

used the notion of concept image, but that construct served mostly as a reminder that I
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aimed to describe students’ understandings broadly, and the construct carried little

theoretical baggage that could have been imposed on the data.

Thus, the methodology of this study was consistent with the constant comparative
method, and I call the result an emergent theory. A grounded theory, on the other hand,
requires additional methodological commitments. For example, in Glaser’s version of
grounded theory, data analysis and data collecﬁon are iterative so that emerging theories
can inform and guide subsequent data collection. I do not see this discrepancy as very
serious in this study, although I readily admit that the theory could have been developed

further and in more detail if I had been able to alternate analysis and data collection.

There are two senses, however, in which the design of this study could not lead to a
grounded theory. The first sense concerns the imposition of codes for mathematical
content, as described above. That was unavoidable. Because the goal was to understand
learning in abstract algebra, it was necessary to keep the mathematical content available

in the analysis.

The second discrepancy with the tenets of grounded theory is more fundamental, though
it also arises from the attention to mathematical learning. In formulating a research
problem, Glaser suggests that the researcher enter the substantive area wondering what
the main issue is for the subjects and the processes by which it is handled. Furthermore,
it is essential that issue be relevant for the subjects from their perspectives. At least in his
field of sociology, it seems that Glaser hopes that the researcher’s findings might actually
be directly useful to the subjects who participate in the study. Thus, in grounded theory,
the subjects’ meanings are primary, whereas [ was concerned not only with the subjects’

meanings but also with the community meanings and the fit between them. As both a
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researcher and a teacher, I want not only to understand students’ conceptions but also to
understand how to guide and direct students toward important mathematical ideas and
conventional concepts. This perspective was always in the background in the interviews.
In the analysis, this perspective took a different form: How might we improve the

teaching of abstract algebra in particular and advanced mathematics in general?

It is hard to imagine a grounded theory that is committed to describing students’
conceptual understanding and its relationship with conventional concepts as they exist in
the mathematical community. In studying students’ conceptual understanding, I would
suggest that the criteria of fit and relevance are with respect to teachers and researchers
primarily and only secondarily with respect to the students. The fact that a theoretical
construct is useful for teachers and researchers does not necessarily imply that it will be
directly relevant for students, although it is possible to imagine recasting some constructs
in ways that might assist students in reflecting on their own thinking and learning. The
point is that in judging the theory, fit and relevance for students is at most a secondary
consideration. After all, who would suggest that first graders should begin the year with

some lessons on assimilation and accommodation?

Summary
This chapter provides a detailed description of the context for this study, including the
curriculum, the instruction, and the participants, and the methodology employed. Briefly,
this study consists of a semiotic analysis of interviews with students to support the
development of theoretical descriptions of their understanding and learning in elementary

group theory. The next three chapters provide the results of that analysis, organized
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according to mathematical content and addressing the three main research questions

individually.
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CHAPTER V

GROUPS AND ISOMORPHISMS

This chapter presents analysis of students’ concept images of binary operation, group,
subgroup, and isomorphism, which were the mathematical foci of the first and second
interviews. The chapter is organized around the mathematics and thus essentially follows
the chronology of the interviews. The bottom-up analysis of these interviews revealed
two themes that are threaded throughout this chapter: use of language and use of the
operation table. Because these themes are well illustrated by Wendy’s interviews, a
detailed case study of Wendy’s concept images forms the bulk of the chapter, with
supporting data from other students and other interviews providing corroborating and
contrasting evidence. Each section begins with a description of the interview task, which
is followed by an analysis of the mathematics. Then portions of the Wendy’s interviews
are presented and analyzed, followed by related evidence from other students and other
interviews. But first, I provide a short description of Wendy’s language and reasoning as

an introduction to the chapter’s main themes.

Wendy’s Language and Reasoning

Wendy often misused words. The analysis of the transcripts of Wendy’s interviews was
complicated by the fact that many of her misstatements were mere slips of the tongue.
She would say one thing but meant to say something else. Such an inference is clearly
reasonable in two kinds of situations: when Wendy immediately corrected herself and

when she restated the idea differently moments later. Because these occurrences were
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rather frequent, Wendy’s language inaccuracies were also interpreted as slips of the
tongue when both the context and Wendy’s typical usage strongly suggested she intended
to say something else. In cases where I do not otherwise call attention to her
misstatement, [ enclose in brackets what I believe she intended. Not all of Wendy’s
misstatements were so categorized, however. In particular, her use of the words inverse,
identity, commutativity, associativity, and isomorphism indicated conceptual issues that

are explored in this analysis.

Wendy’s images of the fundamental concepts in group theory were dominated by the use
of operation tables. She often relied on the operation table to provided support for her
reasoning and seemed to require that the table be visible in order to begin. The operation
table played a metaphorical role in her explanations, appearing to substitute for the group
in her reasoning and thinking. Wendy drew conclusions and generalizations from her
consideration of the operation tables but also was constrained by her reliance on the
tables and found it hard to separate her thinking from them. A related and perhaps
consequential phenomenon was that Wendy often considered the group axioms
individually, seldom engaging more than one of them at a time in her explanations.

Wendy’s use of the operation table is explored in detail below.

Groups and Binary Operations

As stated in chapter 4, the first interviews began with a question from the literature: “Is
Z3 a subgroup of Zs?” The short answer to this question is no because the operations in
the two groups are different. More specifically, because Z; is the set {0, 1, 2} under

addition modulo 3, and Z; is the set {0, 1, 2, 3, 4, 5} under addition modulo 6, the
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operations are not the same. For example, 2 +2 is 4 in Zs but 1 in Z;. Nonetheless, the
subset {0, 2, 4} of Zs is simultaneously a subgroup of Zs and isomorphic to Z3, so there is

a sense in which the answer is yes. Both of these ideas were explored in the interviews.

The literature suggests two reasons for students’ difficulties with this question. First,
although students think of a group as a set, they are not always sufficiently aware of the
operation (Dubinsky et al., 1994). The second finding in the literature is that some
students use a powerful result inappropriately, saying that Z3 is a subgroup of Zs by
Lagrange’s theorem because 3 divides 6 (Hazzan & Leron, 1996). Because the students
had not yet been introduced to Lagrange’s theorem at the time of the first interview, my
intent was not to explore the students’ understanding of Lagrange’s theorem but to
explore the role of the operation in their conceptions of group and subgroup.
Nonetheless, by exploring subgroups of Zs in the interviews, I intended to get at some of
the divisibility ideas that are behind Lagrange’s theorem. Before providing a detailed
description and analysis of the interviews, I offer an analysis of the mathematical
concepts of binary operation, group, and subgroup. The analysis is semiotic in the sense
that I pay particular attention to names, notations, and other representations, particularly

those that were used in this class.

Conceptual Analyvsis

As described in chapter 1, a group is a set and a binary operation that together satisfy four
axioms (closure, associativity, identity, and inverse). The operation gives the group its
structure. In other words, a group without its operation is merely a formless collection of
elements. In some textbooks, this point is sometimes made notationally, but it is more

common to use the set to denote the group, thereby leaving the operation implicit.
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Fraleigh (1989), for example, at first uses the notation <G, *> to denote the group
composed of the set G and the binary operation *. Almost immediately he adopts the

shorthand notation:

At some point, all authors give up and become sloppy, denoting the group by the
single letter G. We choose to recognize this and be sloppy from the start. We
emphasize, however, that when you are speaking of a specific group, G, you
must make it clear what the group operation on G is to be, since a set could

- conceivably have a variety of binary operations, all giving different groups.

(p- 40)

Using Fraleigh’s first notation, <Z,, +,> denotes the group consisting of the set‘ {0, 1, ...,
n — 1} under the operation addition modulo ». In this class, the instructors and students
adopted the shorthand, denoting the group merely by Z,. Because the most obvious
operations to consider are addition modulo » and multiplication modulo » and because
the set Z, is not a group under multiplication modulo n, it is reasonable to say that, for
many mathematicians, the phrase “the group Z,” or “the group of integers modulo »”
carries the implication that the intended operation is addition modulo » (see also Gallian,
1994; Hungerford, 1974). Nonetheless, this implication was not always obvious to the

students.

The operation on a set may be given in a number of ways, such as by a formula, by a
table, or by inheriting an operation from a larger structure in which‘the set sits. In subsets
of the integers, for example, the operations of addition and multiplication may be
inherited from the familiar operations on integers. For the sets Z,, however, the
operations addition modulo » and multiplication modulo # are not inherited from Z

because, for example,3+5=8inZ,but3 +5=2 in Z;.

For sets with only a few elements, the table was the predominant representation of binary

operations for this class. Even with sets such as Z3 and Z, for both addition modulo »
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and multiplication modulo 7, the students typically created tables that served to support

their reasoning.

Just as a group is a set with structure provided by an operation, a subgroup is notvmer‘ely
a subset of a group but rather a substructure, and the structure is provided by the
operation of the group. General insight into the structure can be provided by Lagrange’s
theorem, which says that in a finite group the order of a subgroup (the number of
elements in the subgroup) must be a factor of the order of the group. The converse of the
theorem is false in general, as discussed in chapter 3, although it is elegantly true for Z,:
For cach divisor d of n, there is a unique subgroup of order d, which consists of the
multiples of #n/d. In the task at hand, although Z; is not a subgroup of Zs, the multiples of
2 in Zg are the subset {0, 2, 4}, which is a subgroup of Zs and which is isomorphic to Z3,

as mentioned above.

Wendy, Groups, and Binary Operations

The beginning of Wendy’s interview was marked by uncertainty. She first tried to

understand the question:

5 Wendy: Okay. Well on the first question I look at, is Z; a subgroup of Zs? From.... Zgsis
Jjust mod 6, right? Mod 67 So first of all I'd want to.... I am assuming Zg is a group if
you are going to ask that Z; is a subgroup of Z;.

11 Wendy: I am taking Zs to be integers mod 6. And I don’t know what’s leading me to
think that. But, so, but ifitis.... Can I just say, “ifitis ...”?

12 Brad: Sure.

13 Wendy: A total table. It would consist of 6 items or elements, and for.... It has to be
mod 6. Zg. It has to be integers mod 6, because.... Well, we have to also figure out an
operation, also, too. So now you have the elements, you know Zs. We have to know the
operation because that will be [inaudible] whether or not it’s going to be a subgroup.

Wendy was unsure of what Zg was, what the operation should be, and whether it was a

group. Nonetheless, she made some assumptions. Using the wording of my question,
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she assumed Zg to be a group. She also assumed Zs to be integers mod 6, but her
statement “Zs is just mod 6” (line 5), with its odd syntax, suggests she may have been
thinking as much about the process of calculating the remainders as about the set of
remainders. Later in the interview, she confirmed this impression, saying, “I’m assuming
Z¢ means it’s integers mod 6, which means you look at the remainders after dividing by
6” (line 32). The students’ understanding of modular arithmetic is considered in detail in

chapter 7.

Wendy’s phrase “a total table” (line 13) suggests she wanted to create a table, but she
quickly realized she would need to figure out what the operation should be. To resolve

this issue, she referred back to the question at hand:

17 Wendy: So, therefore you have to find.... That would help you to determine what
operation, because maybe if you tried multiplication and if Zs wasn’t a group under
multiplication then you would know that Z3, you are not talking about whether Z; is a’
subgroup under Zg because Zs isn’t a subgroup [group). But maybe under addition Z; is a
group and therefore you can look at the case under addition.

Thus, although Wendy’s concept images of group, subgroup, and binary operation were
insufficient to provide a quick answer to the interview question, her concept images were
sufficient to provide general framing of the question at hand. In particular, she saw that it
would be helpful to determine first whether the operation in Zs was addition or
multiplication. The fact that she didn’t say “addition modulo »” suggests that she may
not have been distinguishing between addition and addition modulo »n, and similarly for
multiplication. I did not pursue this distinction in the interview but merely suggested that

she try both possibilities. She started with multiplication.

20 Wendy: Okay. Well, Z; is not going to be, when I start with my chart, and I do the first
row, 0 times any element is going to equal 0, so if you look at that.... Actually, okay.
Let me just.... It’s not going to have.... You have to.... I’ll just finish it. Okay, now it
has to hold four properties to be a group. Let’s write these down. It has to have an
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identity, an inverse, it has to be closed, and it has to be associative, which we’re going to
leave for last. [Laughs]

During this statement, Wendy set up an operation table and filled out the “0” row and

column (see Figure 5). She also wrote down the names of the four group axioms to assist

her, it appears, in the process of checking whether Zs is a group under multiplication.

Figure 5. Wendy’s table for multiplication in Zs

x|]0 1 2 3 4 5
0j0 0 0 0 00
@alo 12 3 4 5
Qjo 2402 4
310 3
410 4
5/0 5

Wendy continued filling out the table, checking the identity and inverse properties as she

went along:

22 Wendy: So it has an identity, which is 1, which is the identity ... which is the identity for
every element, identity equals 1. But inverse ... '

23 Brad: Every element identity? What do you mean?

24 Wendy: An identity means when you multiply the identity by itself, like say if you have
the letter m and you multiply it by the identity i, it’s going to equal m. [Writes m(i) = m.]
It is going to give you back the same thing. The identity is ...

25 Brad: Okay. So how does that fit in here?

26 Wendy: If you look at this row; you multiply.... IfI.... Tam calling | the identity. If
you multiply 1 by every element, you get the element back, get the original element back.
So, like 1 multiplied by this row gives you the same row back.

28 Wendy: So Zg does have an identity. Now, inverse. Inverse means when you multiply....
If you have a number in Zg, there has to be a number in which when you, a number so that
when you multiply it, you will get the identity.

30 Wendy: So m times the inverse. I don’t know how I should represent the inverse.

Identity is usually.... I am going to change it so that my identity being represented as e,
and then I am going to change the inverse as i. So when you multiply some number m
by, it has to have an inverse i, so that when multiplied, it will equal the identity. [Writes
inverse = m(i) = e].

This excerpt provides the first clear hint that Wendy was thinking about the identity and

inverse properties in similar ways. She struggled to articulate each of the concepts and
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arrived at definitions (lines 24 and 28) and notations (lines 24 and 30) that were similar.
Furthermore, her syntax suggested that to some extent the names of the concepts had
been swapped in her thinking. For example, when talking about the identity, she used the
phrase “for every element” (line 22), which is more typical when talking about inverses.
Similarly, her phrase “m times the inverse” (line 30) employs syntax more typical of
statements about the identity element. A more correct phrasing would be “m times its
inverse,” which makes the dependence on m explicit. A search of the transcript reveals
that Wendy had used similar syntax for the two concepts when listing the group axioms

earlier in the interview: “It has to have an identity, an inverse” (line 20).

Wendy explicitly used the table to verify the identity property (line 26). Similarly, after
explaining her calculations for the row labeled “2,” she used the table to explain how the

inverse property failed:

34 Wendy: So if you look at the second row [the “2” row], there is no number when you
multiply.... If you take m equalling 2, if you take a number equalling 2, when you
multiply, there is nothing to multiply by 2 to get—in mod 6, cause it has to be an element,
to be closed, you can only work with the elements within mod 6. And I have tried every
element, 0, 1 ... 0 through 5, multiplied by 2 to see if I can get the identity, 1, and I can’t
get it. So therefore, Zg is not a group under multiplication. So, I don’t think we should
look at it, check to see if Z3 is a subgroup of Zs when Zg isn’t even a group under
multiplication. ‘

Wendy was about to begin considering addition but stopped herself to make a comment

about multiplication:

38 Wendy: Actually, up here, in multiplication, I didn’t even have to look at the second row
[the “2” row] because if you look at 0 there is nothing you can multiply by 0 to get the
identity element back, 1, because 0 times every element is going to equal 0.

It seems that at this point, Wendy had reduced the process of checking the inverse
property to a process of looking for the identity, 1, in a particular row in the table, for not

only was she able to see from the table that the element 1 did not appear in the “2” row,

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



137

but she also noticed that 1 did not appear in the “0” row, which proVided a more
immediate reason for the failure of the inverse property under multiplication. This
process either provides a partial explanation for or is partly explained by the close
relationship between the identity and inverse properties in Wendy’s thinking. The word

inverse was not present in her justification, however. I asked her to explain:

39 Brad: So what does that say about 0 there?

40 Wendy: 0 cannot be an element in Z;.
41 Brad: 0. But you are saying it is an element though, because ...
42 Wendy: Oh yeah; 0 is an element in Zg, but it doesn’t have an inverse.

43 Brad: Oh, okay.

44 Wendy: Because you can’t.... There’s not.... When you n{ultiply 0 by anything, you
can’t get the identity element. And this doesn’t help. So that just doesn’t seem.... Like,
if you are going to have a group, you couldn’t, 0 couldn’t be in it. A group under
multiplication, it couldn’t include 0.

Thus, Wendy’s statement that “0 cannot be an element in Zs” (line 40), was a specific
instance of a general principle: A group, under multiplication, cannot include 0. It is not
surprising that Wendy wanted to exclude elements that did not satisfy desired properties,
because this is essentially the idea behind the construction of the groups of units modulo
n. In the introduction to the groups U,, the class used a more general version of this

principle: Include only elements from Z, that have multiplicative inverses.

Wendy next began considering whether Zg is a group under addition. She constructed a

new operation table (Figure 6), checking the axioms as she went along.

47 Wendy: Now if you look at addition, I am going to fill out the table the same way, except
with addition. I’'m going to just look at the remainders when divided by 6. We can see, I
can see by filling out the first table [row] that the identity.... Also, I think it is a global
property, that since integers, the identity is going to equal zero. That, if you take a
subgroup of.... But then we are going to go into another issue, whether Zs is a subgroup
of, in the integers. But I think if integers has an identity of 0 under addition, that Zs will
also have the identity 0. It works.
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Figure 6. Wendy’s table for addition in Z;

+10 1 2 3 45
0101 2 3 4 5
If1r 23 4 5 0
212 3 45 01
313 45 01 2
414 5 01 2 3
515 01 2 3 4

In class, the word global was often used to describe the associative property when
checking whether a subset of a group was a subgroup. The term is based on the idea that
if an operation is associative on an entire set, then the property must hold for any subset.
The term is nonstandard, although the idea closely resembles the meaning of the more
conventional phrase “associativity is inherited from the group.” This excerpt shows that
Wendy had expanded her use of the term to describe a similar idea for the identity
property. She was correct, in a sense, in that when verifying the identity property for a
subset of a group, it is sufficient to show that the identity element is in the subset, rather
than showing that it serves as the idenﬁty for all elements in the subset. It is not clear,
however, whether she had in mind this precise use of the word. In any case, the “global”
idea was not appropriate here because addition in the integers and addition in Zg are
different operations. Thus, this excerpt suggests imprecision in Wendy’s concepts of

global and of addition. These issues are explored in more detail below.

Wendy continued verifying the group axioms:

50 Wendy: So next I am going to check the inverse property. And 0 has an inverse so 0 + 1,
or.... Excuse me. Since 0 is the identity we have to check that when you add 0 to 0 you
get the identity 0. So 0 is the inverse element for itself. And then 1. When you multiply,
when you add 1 and 5 it equals 6, but that equals 0 (mod 6) cause 6 is divisible by 6.
That’s pretty obvious, but.... So 1 has a inverse. 2 has an inverse because 2 + 4 = 6,
which equals 0. 3 + 3 has an in-.... equals 0 (mod 6). 4+2=0 (mod 6). And5+1=0
(mod 6). So each element has an inverse. So you know that Zg is a group under addition.
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Here, Wendy correctly verified the inverse property by using the table to find the inverse
of each element. She supported this process by making a check mark alongside each row
of the table as she identified the corresponding inverse. She momentarily considered 1 as
the identity but corrected this on her own. Apart from her self-corrections, she used
appropriate language throughout this verification, which culminated in the statement
“each element has an inverse.” Wendy’s language and calculations, taken together,
suggest that she could distinguish identity and inverse properties according to the

conventional meanings, although the distinction became less clear again later in the

interview.

Although Wendy’s verification of the inverse property was essentially correct, she was
premature in declaring that Zg is a group under addition because she had not yet checked
all the propérties. Because she immediately went on to check closure, however, it seems
likely that she had in mind a preliminary rather than final conclusion. In verifying the

closure and associative properties, Wendy explicitly referred to the table to support her

reasoning:

51 Wendy: And then it’s closed. You can see that there are no elements other than 0 through
5, looking at the chart, because we have all possible combinations on elements in Zs. So
it is closed also.

52 Wendy: And associative. You can see, because the chart has symmetry, that the group
will be, is associative. This is how I look at it, anyway, because if you look at 2 x 5 you
are going to get 1 and if you look at 2 + 5 you get 1. But also you know it is Zg, is also
because it’s a global property, because addition is associative, for integers, and you know

that this carries over to subgroups and so Zs will be associative under addition. Do you
want me to explain that further?

Wendy made several errors in her attempt to verify associativity. First she stated that she
was comparing 2 + 5 and 2 x 5 when, based on her statement about the symmetry in the

table, she probably was comparing 2 + 5 and 5 + 2. A more significant error was that she
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was describing commutativity but calling it associativity. Furthermore, the penultimate
sentence implies that she thought that Zs is a subgroup of Z. During the interview, I

pursued the first two errors.

53 Brad: I want you to explain how you said.... What was it you said, 2 + 5 is the same ...?
54 Wendy: 2 + 5 is the same as 5 + 2.
55 Brad: Oh, okay. So that means it is associative?

56 Wendy: Well that is an example of associative.... No, that’s not. That’s the
commutative property. So we have to check 1 +2 + 3 is going to equal 1 +2 + 3. That’s
the associative property. So in a sense we have to.... But we’d have to go through all of
the different combinations including 0 through 5 and all of the different elements, which
takes a while. But because we know that the associative property holds under integers,
for addition, we know it holds. And that’s one of the good things that, good facts about
that global property because associativity is so hard, difficult to check. Would you like
me to try just to see if this checks?

Thus, Wendy was able to correct both errors on her own. Because it took her a moment
to realize that her description was about commutativity, it appears that the commutative

and associative properties were closely related, perhaps even overlapping, in Wendy’s

thinking.

Wendy used the idea that associativity is a global property to complete her verification,
but again the idea was not appropriate because addition in the integers and addition in Zg
are different operations. I did not pursue this issue explicitly in the interview but instead

asked Wendy only to verify the property for the example she gave.

At this point, I put aside the case of Wendy to extend the analysis to other students,
discussing, in particular, the concept of binary operation, the relationship between
associativity and commutativity, and the notion of global properties. In this section, I
further develop some of the themes that have emerged thus far, including language use

and the use of the operation table.
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Binary Operation

Operation confusion. One of the most persistent occurrences throughout the interviews
was a phenomenon I initially called operation confusion, where students were unsure of
the appropriate operation on a set. As might have been expected, operation confusion
was more likely to occur when more than one operation was available, such as in Z;,,
where there are two natural operations. All the key participants experienced operation
confusion during the first interview, and most had at least momentary confusion in the
third interview when dealing with a function from Us to Z,. All these groups, it should be
pointed out, have elements that look like integers but that do not behave quite like the

integers with which the students were familiar.

In the first interviews, none of the key participants was immediately sure about the
operations that would be appropriate for answering the question “Is Z3 a subgroup of Z?”
Carla, for example, stated at first that the operation must be multiplication “because the
addition wasn’t a group mod #.... Something about multiples of #” (line 12). She then
verified that the group axioms are satisfied under addition modulo n, showed that the
group axioms are not satisfied for multiplication modulo #, and realized that she had

remembered incorrectly.

Robert, on the other hand, was at first convinced that Zg is not a group under
multiplication, “because the inverses aren’t in Z¢” (line 9), a statement that was

| essentially correct and might have led him quickly to consider addition modulo 6.
Moments later, however, he stated that the inverse of 1 would be “1 over 1, just 1” (line

15), demonstrating that he was thinking of inverses as fractions. Then he used analogous

reasoning for addition in Z.
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20 Robert: So, but that’s not a group either because in Zg if each inverse is itself, the
negative of itself, which isn’t in Zg.

21 Brad: What do you mean?

22 Robert: Like 1 + —1 will equal 0, so —1 is 1’s inverse, but -1 isn’t in Zs.

At this point in the interview, Robert was unsure whether Z; is a group at all. By making
operation tables for both operations, he was able to resolve these issues, although he first
stated that 3 is the inverse of 2 under multiplication because the product is 0,

demonstrating some difficulty keeping his additive and multiplicative thinking separate.

It is likely that the students’ operation confusion was caused in part by the fact that the
class had spent time at the beginning of the course solving both multiplicative and
additive equations in Z,. It may also be, however, that the notational convention of
writing the group operation multiplicaﬁvely when is not specified promotes

multiplicative thinking in additive situations such as this.

During the first interviews, resolving operation confusion consumed considerable time
for all of the key participants, but as the semester progressed, the students developed
more efficient and accurate methods of determining and keeping track of the operation.
For example, they used either the identity or closure properties to deduce that the

operation in Uy is multiplication and not addition:

34 Carla: Let’s see Uy is a group under... [pause] ... I am trying to think if it is a group under
addition or multiplication. But it must be multiplication, because if it was addition then 0
would be in there. (Interview 3)

17 Lori: Okay. So, [inaudible]. Is it multiplication? Oh, I was thinking it was addition.
‘Cause I'm like 1 + 1 is 2.

18 Brad: And, why wouldn’t that work?
19 Lori: Because 2’s not in Us. I don’t know why I was thinking that. (Interview 3)
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One might hope that determining a group’s operation would become a matter of recall.
But the evidence suggests some subtlety in the learning process: The students developed
increasingly efficient strategies for determining a group’s operation. This hypothesis is
analogous to the development of proficiency in other areas of mathematics, most notably
in the learning of the basic number combinations: Rather than moving from slow object-
based procedures to recall, young children proceed along a trajectory of increasingly
efficient procedures until the combinations are based either on recall or on procedures
that are indistinguishable from recall (see, e.g., Kilpatrick et al., 2001, chapter 6). Thus,
the phenomenon of operation confusion may be viewed as a natural stage in the

development of proficiency with group theory and its standard examples.

Diamond and star. Another explanation for operation confusion may be an inevitable
consequence of one of the goals for the course: an abstract concept of binary operation.
So that all binary operations, including familiar additions and multiplications, might be
seen as instances of a single idea, Dr. Benson and I chose sometimes to use a neutral
notation for the operation. Clearly the notations +, x, or - would not provide such
neutrality. Thus, we often used ¢ (diamond) or * (star) to denote an unspecified
operation. One could argue that * does not provide the intended neutrality because the
symbol is often used in computer programming languages to denote multiplication. This
is certainly a concern, although it is no more problematic than the common practice in
abstract algebra texts of leaving the operation implied, as in ab, a convention that clearly
carries overtones of multiplication. Even the more neutral ¢ (diamond), however, was

problematic, as is illustrated by Diane and Lori as they tried to determine the operation in

Zs.
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20 Diane: Z; you would have addition, multiplication, or a diamond. And0,1,2,3 ...
[inaudible]. No, it only goes up to 2.

21 Lori: All right, yeah let’s make a table of Z; and let’s make a table of Z.

22 Diane: You need to make 3 tables because we don’t know what operation we are talking
about.

So for Diane, at least, diamond was not a generic operation that could stand for either
multiplication modulo 3 or addition modulo 3; it was another operation entirely. Upon
questioning, Diane reiterated her list of three operations, so I asked her to write out

operation tables for all three. Lori interrupted:

28 Lori: Like it’s integers. What’s diamond? Can’t you only really have these two? That’s
what [ am thinking. ‘

Diane had begun to construct operation tables but quickly reconsidered:
31 Diane: But I don’t know how to do a diamond because I don’t know what the operation
is.

32 Lori: I don’t think that you can do diamond, because we are in Z; and it’s integers, and
what is diamond?

33 Diane: Yeah, that’s what I am saying. I don’t know what diamond is.
34 Lori: So you can only do like addition and multiplication.

35 Brad: Where does the diamond ...?
36 Diane: Diamond comes in when you don’t know what the operation is.

37 Brad: Oh, so you mean when you don’t know what you call the operation you just use
diamond instead? Do you agree with that?

38 Lori: Yes, definitely. But we kind of know that it’s integers. So we know how to add
integers. It’s not like it’s @ and b, you know. Then I would probably use diamond
because I don’t know how to add a and b elements.

Thus, despite their momentary disagreement, Lori and Diane both saw diamond not so
much as a label for an abstraction under Which a number of familiar operations could sit
but rather as a device to use when the operation was unfamiliar or unknown.
Furthermore, it seems that Lori had similar thinking about the notational uses of @ and b,

in the sense that the letters were not generic labels for group elements but rather
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unfamiliar objects that she did not know how to add. Thus, even the most neutral

notation did not necessarily lead students to the desired abstraction.

The abstract concept of binary operation continued to be problematic for Lori. During
her third interview, while determining whether a particular function f from Uy to Z; was a
homomorphism, Lori described an appropriate verification formula, fla*b) = fa)*f(b),
and seemed to know that the operation * on the left was to take place in Uz, whereas the
operation * on the right was to take place in Z;. Nonetheless, she spent a good deal of
time determining what the operations were in each of the groups. She first called both
operations addition (line 15), yet after deciding that the operation in U was
multiplication, she thought that both operations were multiplication (line 30). Finally,
because she could not find multiplicative inverses in Z4, she decided, “This [Usg] is
multiplication, and this [Zs] is addition” (line 34). I asked her whether it was okay that

the operations were different.

38 Lori: If we prove it’s a homomorphism, yes. [Okay, but....] Right now I am not sure.
[Okay.] SoIdon’t,I guess star right now is just going to have to remain generic until I, if
I prove it is a homomorphism, then.... It’s neat that they call it star because it could be
representing two totally different things. [Oh, Okay.] Do you know what I’m saying?
[Okay] Like in Uy it’s multiplication, in Z, it’s addition. [Okay.] So maybe I should just
keep it star.

Thus, Lori continued to prefer to use * when there was some uncertainty about the
operation, yet she was becoming comfortable with the idea that * could stand for various
known operations. It is not clear why or to what extent these impressions were dependent
on whether f was indeed a homomorphism. Would Lori have made better sense of the
task if the two operations had been notated differently? In class, the verification formula
was typically written as f{a*b) = fla) *'f(b), thereby making it more apparent that the

operations might be different. Lori and Diane were unusual in denoting both operations
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as *. Because Lori had taken abstract algebra previously, a reasonable hypothesis about
her use of notation is that she stuck to notation she had first learned rather than adopting

the class’s notation, and, furthermore, her usage had rubbed off on Diane.

Regarding Lori’s concept of binary operation, it seems unwise to speculate about the
source of her confusion and delayed abstraction. Nonetheless, because most textbooks
leave both operations implicit, as in flab) = fla)f(b), it is worth considering the
relationship between the notation used in introducing the concept of homomorphism and
students’ concepts of binary operation. If this was a significant moment in Lori’s
construction of an abstract concept of binary operation, for example, to what extent did

ambiguity of the notation * support or constrain this construction?

Late in the course, some students had developed a reasonably robust concept of binary
operation, as evidenced by the fact that they were able to switch effortlessly between
additive and multiplicative notation and language. Wendy, for example, compared the
expression a*a between Us and Z, by noting, “Here we’re squaring it, but here we’re
saying 2a” (Interview 3, line 156). This ability led sometimes to problematic or awkward
syntax. Robert, for example, called 6 a power of 3 because “If you operate 3 with itself

you get 6” (Interview 3, line 272).

Sometimes, however, the switch between multiplicative and additive notation and
language was not so effortless, and multiplicative language seemed to dominate. In one

interview, for example, I asked Carla to find the subgroup generated by 3 in Z)5.

15 Carla: There would be 3, and 9 would be in it because 3 squared is 9. And 0 would be in
it because.... Well, actually, Z;, is a group under addition. So it’s not.... I can’t really
think of it as 3 squared.... So 9 is in it, but not because it’s 3 squared. 9 is in it because
it’s 3 cubed when you are adding. So, in other words three 3s. (Interview 4)
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It took Carla a moment to establish additive thinking, and still she maintained some
multiplicative language, leading to awkward phrases such as “3 cubed when you are
adding.” Later in the same interview, when explaining the sense in which {0, 3, 6, 9} can
be an identity element, she indicated some discomfort with the broad use of

multiplicative language:

65 Carla: Okay if you add ... We have often called it multiplying, but I don’t like that term
because to me it doesn’t ... Ijust don’t like the idea of multiplying; it doesn’t make
sense. So I prefer to think of combining them.

In summary, the notion of an abstract binary operation presented notational, conceptual,
and even linguistic issues. Coming to view various operations as instances of the same
idea was a slow process. Standard notations such as + or - have associated language and
thus associated meaning. New notations, such as diamond, were sometimes seen not to

represent new abstract categories but rather new operations.

Regarding the concept of binary operation, the students demonstrated on the one hand
that they didn’t sufficiently distinguish between various operations called addition. On
the other hand, they demonstrated that they imposed nonstandard distinctions between
notations for generic operations such as * and notations for familiar operations such as -
or +. The students also had trouble maintaining the standard distinctions between

associativity and commutativity.

Associativity and Commutativity

It should not be surprising that Wendy sometimes confused the concepts of
commutativity and associativity, for the concepts are indeed closely related. And in fact,
other students also demonstrated similar confusion. Conceptual analysis, supported by a

closer look at the data, provides several possible explanations for the close relationship
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and the confusion between the concepts. This section builds an explanation out of
description of the definitions, distinguishing examples, and verification processes for the

concepts of associativity and commutativity.

Definitions. First, the definitions are quite similar in form. On their final exams, all the
key participants except Diane gave largely correct definitions of associative operation

and commutative operation, such as the following, provided by Carla:

assoc. operation - the operation where, for any a, b, ¢, a*(b*c) = (a*b)*c.

comm. operation - the operation where, for any @ and b, a*b = b*a.

Not all students were careful about the quantifiers. - Wendy, for example, stated on her
final exam that “an operation is commutative if for 2 elements a and b, a*b = b*a.”
Students’ definitions and statements often noted that commutativity is about two
elements and that associativity is about three elements, suggesting that this was a salient
distinction between the two concepts. In fact, this is the most obvious difference in the

definitions.

Few distinguishing examples. Second, although associativity and commutativity are
often discussed in high school mathematics, most elementary examples of
noncommutative operations, such as subtraction and division of real numbers, are also
nonassociative. Experiences in high school mathematics might lead to concepts of
associativity and commutativity that are merged into an “order doesn’t matter” property.
Wendy said almost exactly this in her fourth interview: “Because it’s associative, you can
move it all around” (line 213). Furthermore, Diane’s final exam included similar claims
about commutativity: “This property allows us to switch around the elements in an

expression so that it doesn’t matter which elements will operate first.” Unless students’
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linear algebra courses emphasized the fact that matrix multiplication is associative but not
commutative, this abstract algebra class may have provided students their first
opportunity to separate their conceptions of the two properties. Separating the concepts
might require at least a few distinguishing examples, but the group axioms suggest an
asymmetry: Associativity is more important. In fact, it seems to be difficult to create an
operation that is commutative but not associative, particularly via an operation table

(Zaslavsky & Peled, 1996; Benson, in press).

Verification. There are other important differences between the concepts of associativity
and commutativity, particularly regarding their verification processes. Commutativity is
often easy to infer from a description of an operation, and when the operation is given via
a table, commutativity reveals itself as symmetry about the main diagonal. Students
often used commutativity to help them reason about groups and subgroups, particularly
when filling in an operation table. Thus, commutativity is tied closely to the

phenomenon of reasoning from the table.

Associativity, on the other hand, is hard to see in an operation table. When an operation
is given via a table, the number of calculations required to verify the property is
prohibitively high even for groups with as few as 4 elements. When an operation is given
via a description or a formula, there are a number of possible approaches, cach with its
own subtleties. In class, we took essentially three approaches to the problem of
associativity. For operations given via operation tables, we often used Exploring Small
Groups (Geissinger, 1989) to let the computer perform the tedious calculations. At other
times, we verified associativity via symbolic proof. Perhaps the most common approach,

however, was to argue that associativity was inherited from a larger structure in which
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the desired structure lived. In class, this approach was used uncritically and incorrectly
by many students and took on a life of its own under the label “Associativity is global.”

This phenomenon is discussed in more detail below.

These differences between commutativity and associativity provide a third reason for the
confusion and also explain the fact that the confusion was essentially one directional:
Students sometimes said associative and meant commutative, but I found no evidence of
the opposite. I do not contend that the opposite confusion never occurs but suggest
instead that commutativity is more likely to be present in a student’s mind. ’First, itis
easier to think about two elements at a time than it is to think about three. Second,
commutativity is such a useful property and such a prominent visual feature of an
operation table, students are likely to focus on it rather than associativity, despite the fact

that commutativity is not one of the group axioms.

Global Properties

Verifying that a set and an operation satisfy the associativity axiom requires particular
attention to the operation. As mentioned above, sometimes the associativity of an
operation on a set is inherited from a larger structure in which the set and operation are
situated. All key participants applied this “global property” idea inappropriately at some
point during the interviews, typically by paying insufficient attention to the operation.
Furthermore, many of the key participants uncritically generalized the idea to other group

axioms.

Both Lori and Robert, for example, claimed that associativity in Zs was inherited from Z:

83 Lori: And it’s associative because addition is associative and that’s inherited from the
larger group Z under addition. So that’s why it’s a subgroup.
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69 Robert: We are talking about Zs. These are integers, and integers fall in the associative
law, so it’s associative.

Carla demonstrated similar thinking but with more generality and with idiosyncratic
language, calling the set Z, “mod n.” (See chapter 7 for detailed discussion of Carla’s use

of the phrase “mod ».”)

79 Carla: So the next thing to check would be associativity. But mod # is a subset of Z
because all of your elements in mod # are integers and Z under addition is associative, so
therefore mod » under addition is associative. So therefore mod » under addition is a

group.

Earlier in the same interview, Carla had similarly claimed that Z; inherits associativity

from Zg:

7 Carla: ... Allright, so then Zg wouldbe 0, 1,2,3,4,and 5. Okay. So we can see that Z;
is a subset of Z; because 0, 1, 2 are elements within 0, 1, 2, 3, 4, and 5. So because of
that we know that the associative property holds because the associative property is
global. And if the associative property works on this larger set then we know it is going
to work on the smaller set because it is, just has fewer elements to work on.

Carla’s description of the idea is essentially correct. In this statement, however, she
made no mention of the operation and, in fact, had not yet mentioned operations at all in
the interview. This suggests that the notion of global or inherited properties may have

been mostly about subsets, with little connection to the operation.

Lori provides additional support for this hypothesis. On her midterm exam she stated,
while showing that a subset of a group was a subgroup, “We need not show associativity
since it is inherited from the larger group.” Similarly, on her final exam, she asserted,
“Associativity is a global property, so it is inherited from the group.” Thus, Lori was
able to use the terms global and inherited with proper syntax. Elsewhere on her final
exam, however, Lori incorrectly claimed that Z4 is a subgroup of Z and also a subgroup of

Zs. Such statements do not make sense, of course, if one is paying attention to the
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operation. This suggests that Lori’s other statements about associativity were not

properly supported by consideration of the operation, despite their correctness.

Like Wendy, other students broadened the idea of global or inherited properties beyond
associativity. The notion that the identity is global was perhaps implicit in many
students’ claims that 0 is the identity for addition, in the sense that the statement holds for
a wide variety of representations of groups, with many distinct operations called addition.

Of course, the same can be said of 1 as the identity for multiplication.

Diane and Lori argued explicitly that the identity in Z3 is inherited from Zs (lines 78-80).
As in the case with Wendyj, it is possible that Diane and Lori intended merely that they
did not need to show that 0 behaved as an identity in the subset. This simple explanation
seems particularly unlikely, however, in light of Diane’s subsequent claim that an

element’s inverse need not be the same in a subgroup as it is in the group:

94 Diane: The only thing that it says about inherited inverses is that you get the inverse of 1
is 2 here and 2 is an element of this Zs. It doesn’t say that the inverse of 1 has to be 2 in
here; it just says that 2 is in this, it doesn’t say that it has to be the same.

Diane’s concept of inverse seems especially problematic here in the sense that the inverse
of an element is unique and thus will not change when restricting to a subgroup. On the
other hand, on the assumpﬁon that Diane had a broad notion of inherited properties—a
notion that did not pay much attention to the operation—then it follows that she would
say something about inverses in Z, being inherited from Z. Then, because the inverse of
51is—5in Z but 1 in Zg, her statement would make sense. This hypothesis iS made more
plausible on the basis of additional evidence of Diane’s broad use of the idea of inherited
properties. Particular compelling evidence is provided by an earlier claim of some kind

of inheritance by Z; from Z,:
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44 Diane: Well Z; isn’t a subgroup of Z, it’s at least a subgroup of Z, and we know that Z, is
a group under addition, so it would have inherited property.

Unfortunately, there was insufficient data to make much sense out of what Diane meant
by Z, here. Nonetheless, it is clear that her notion of inherited properties was broader

than associativity and was insufficiently tied to the operation.

One potential explanation for students’ improper generalization of the idea of global
properties is that that term itself is nonstandard and lacks a formal definition. The data
suggest, however, that the more standard term inherited was also problematic.

Furthermore, formalizing either of these terms would have been essentially the same

exercise.

Subgroups and Binary Operations

At this point, the discussion returns to the case of Wendy to present detailed analysis of
Wendy’s concept image of subgroup. Again, the main themes are Wendy’s use of the
operation table and her use of language. Following the detailed presentation, I broaden
the analysis to include other students, discussing first the concepts of identity and inverse
and the relationships between them, as these concepts became prominent in students’
reasoning about subgroups. Then, following a brief discussion of the students’
understanding of the concept of closure, the section closes with a presentation of the
findings about their concept of subgroup, focusing particularly on the ways that students
answered the main interview question, Is Zs a subgroup of Zs? The central issues are the
ways that the students distinguished among various operations called addition and the

ways that they used the operation table to support their reasoning.
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Wendy and Subgroups

When Wendy returned to the question of whether Z; is a subgroup of Zg, she used the

addition table to support her reasoning.

76 Wendy: Now is Z; a subgroup of Zs? Now, we have to check that Z; is going to be a
group because it has to have all of the elements [axioms] of a group, which means it has
to have identity and inverse; it has to be closed. So I am going to start checking Z3. Z3
would consist of 0, 1, and 2 under addition. But Z3, the table is going to be different. See
I am going to have to explore right now whether or not.... When you say Z; is a
subgroup of Zs, whether it means you are taking Z; out of Zg, or if you are just looking at
Zs [Z5] and seeing whether it’s a group. See when you say something is a subgroup of
something else [pause] T am not quite sure what way to look at it. Like how it exactly,
like how Z; ties into Zg, like to be a subgroup of Z;. What, that.... Like I know how to
check whether or not Z; itself is a group and whether Z¢ is a group, but to check whether
Zs, Z3 is a subgroup of Zg, I don’t know exactly what to look at.

Wendy had a sense that the operation table for Z; would be different, depending upon
whether it was constructed on its own or taken out of the Zg table. Consistent with the
emerging hypothesis that Wendy’s reasoning was highly dependent on /ooking at an
operation table, it seems that her statement “I don’t know exactly what to look at” meant

she didn’t know what zable to look at.

This excerpt suggests a much stronger observation than has been drawn thus far. Rather
than saying the operation in Z; is different, Wendy said, “But Z3, the table is going to be
different” (line 76), suggesting that the table was not merely supporting her reasoning but
rather was substituting for the group in her thinking. The phrase “taking Z3 out of Zg”
(line 76) suggests again that, for Wendy, Z¢ was not merely a list of elements that
appeared on the edges of the table but was in fact the table. This conjecture is further
supported in the following explanation in which Wendy referred not to the group Zs but

again to the table:

78 Wendy: Because if you use the elements of Z3, which is 0, 1, and 2—are the elements of
Z;. Butif you look at them in terms of Z, like if you just look at this section of the table
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Zs (see Figure 7), this isn’t going to be a group.
Brad: Why?

Wendy: Because it is not closed.

Brad: Why?

Wendy: Because 4 isn’t an element of Z;.
Brad: And where did the 4 come from?

Wendy: 2 + 2 from Zg because it’s mod 6 in Zs, but when you look at Z; it is mod 3.

Figure 7. Wendy’s table for addition in Zs, second version

+]0 1 2¢3 4 5
010 1 2:3 4 5
111 2 3:4 5 0
212 3 4:5 01
313 4501 2
414 5 01 2 3
515 01 2 3 4

Thus, through her reliance on the table, Wendy had correctly identified the central issue

behind the interview question: whether the addition was to take place based on the

operation in Z3 or in Zs. Nonetheless, she was not ready to come to a conclusion:

86

87
88

Wendy: See, it doesn’t make sense. Like, I started over here to do, to look at whether or
not Z; was a group itself, but that didn’t make sense to me.

Brad: What didn’t make sense?

Wendy: To look independently to see whether Z; was a group under addition. Actually, I
think for the same reasons it is going to be a group under addition, just like Zs. I think
any Z group under addition is going to be a group because 0 is going to be.... Well, I
guess it depends what elements are in there, but.... Like Z; is going to be a group, it’s
easy to see after looking at Zs. But if you just look at it separately, it doesn’t really make
sense whether, like, to tell whether or not Z; is a subgroup of Zg to just look at whether Z;
is group because it has no connection with Zg.

It is surprising that Wendy was not able to make general statements about “any Z group”

but instead stated “it depends what elements are in there.” Perhaps this is merely

evidence that she needed to see the operation table in front of her. Nonetheless, she was

concerned that there should be a clear connection between a subgroup and the group that
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it was supposed to come from. Earlier statements indicate that she thought the

connection should come via the operation table.

To provide some clarity, I first asked Wendy to compare the two different versions of

2 + 2 that she had discussed. She explained:

92 Wendy: This is going to equal 1 in Z; mod 3 because that equals, 2 + 2 =4. Inmod 3 that
is going to equal, the remainder’s 1. But here it’s only, it’s still going to be 4 because it’s
mod 6.

Next, I checked briefly why Wendy had not pursued multiplication as the operation in Z3.

(Misused words are set in bold to help call attention to them in the following discussion.)

95 Wendy: Well Z; isn’t going to be a subgroup, isn’t going to be a group under
multiplication because if you look at the first row it’s going to equal the same thing as it
was up here. Like, they have very similar relationships, the Z tables. Like, Z; under
multiplication has a similar relationship to Zs multiplication table, as does Z; under
addition and Zs under addition. Like they are going to have the same identity under
multiplication and division [addition). So if you look at Z; under multiplication I’d know
that the first row is going to be—I"m going to fix this—is going to be 0’s and from here
you know that 0 does not have a, doesn’t have an identity element, or an inverse, excuse
me. So you know already. ’

99 Wendy: There are no elements in Z; when multiplied by 0 will give you the identity 1.
That’s why you know that, again, for the same reason, Z; is not going to be a group under
multiplication.

Wendy had trouble saying what she meant here, correcting her language twice (group for
subgroup and inverse for identity) and also meaning addition but saying division.
Nonetheless, it scems that she was reasonably confident about the fact that Zzisnota
group under multiplication (mod 3). But to get some clarity on the extent to which

Wendy associated an operation with Z,, I asked her about Z.

104  Wendy: Like, I automatically know when you say Z;, that, under addition now it’s not
going to have an inverse element.

105 Brad: Under addition?

106  Wendy: I mean under multiplication it’s not going to have an inverse element. Under
addition it probably will be a group; it will be a group.
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Thus, Wendy still had trouble using the words she meant, saying addition when she
meant multiplication. Furthermore, her syntax “not going to have an inverse element” is

more appropriate for talking about the identity.

Then we returned to whether Z; is a subgroup of Z.

111 Wendy: Like a subset of.... Ithink we have to look at it as like part of the set of Z,
which, like subgroup, like as a group in Zg. So if you look at ... which is why I kind of
choose the elements Z; out of the Zg table.

Wendy was clearly thinking of Zs as more than a set and as Z3 as more than a subset. She
was choosing not “elements Z; out of the Zs table,” but rather entries out of the Zs table
that corresponded to the restriction of the binary operation to the subset Z;. On the
conviction that this was the appropriate method, Wendy decided that Z3 is not a subgroup

of Zs because the subset was not closed under the operation.

The fact that she had answered my question was apparently of little concern, however, for
she immediately began focusing on the manner in which closure had failed. In particular,

she looked at the 3 and 4 that appeared in top left quarter of the Zs table (see Figure 7).

123 Wendy: If you just looked at, are, is the subgroup 3.... Well, I don’t know really what
you’d call that.... But if you kind of just look at the, like, elements 3 and 4.... Actually
4 doesn’t have, forget it. 4 doesn’t have an inverse.

125  Wendy: I was trying to look. This is closed. Like I was going to say, if you only look at
the elements 3 and 4 in Zg, I was going to say under Z; it was going to be closed, but I
was just kind of thinking. But I’m not, that doesn’t make sense at all.

Wendy may have been considering {3, 4} to determine whether it was a subgroup but
saw that 4 doesn’t have an inverse in {3, 4}. She may also have seen that 3 is its own

inverse. She continued looking for a subgroup.

127 Wendy: Well, I was just kind of looking. Cause 4 isn’t an element of Zs, element of Zs.
So therefore it wouldn’t be closed. But the problem are these elements right here: 3, 3
and 4, and 4. So like if you looked at Z,, it is going to consist of these first two elements.
The problem here again is going to be this last multiplication, or addition of 1 and 1,
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cause that’s going to equal 0.
It seems Wendy abandoned looking at {3, 4} and instead was trying to exclude the
problematic entries in the table by considering Z,, both as a subset of Zs and as a group

on its own. I asked her to explain what she was doing:

129  Wendy: I am just relating to what subgroups would be. What subgroups, what Z mod »
subgroups would be a subgroup of Zs.

132  Brad: And you were trying specifically ...

133  Wendy: Z,. But the problem is, if you look at Z,, this 2.... Like 1x1 [1 + 1] in Z, equals
0 and that causes ... or that gives you the identity [inverse] element in 1, for 1. But here
if you just look at it under Z, it doesn’t, 1 doesn’t have an identity [inverse] element.
Just like here [the {0, 1, 2} subset of Z], 1 and 2 don’t have an identity [inverse] element
also, besides it not being closed, there are a lot of reasons why it’s not going to be a
subgroup.

Once again, Wendy was saying identity and meaning inverse, and she confirmed this-
moments later. But this excerpt provides something of an explanation for her confused
language: She was using the operation table for Z¢ to support this reasoning. In
particular, she was checking the inverse property for various subsets by looking for the
identity inside the appropriate subset of the operation table. Because her process

involved looking for the identity, it is not surprising that Wendy said identity rather than

inverse.

This process was in service of a larger question that Wendy was pursuing. She had
generalized the question “Is Z; a subgroup of Z?” to consider whether Z, might be a
subgroup for other n. This provided a natural transition to ask Wendy whether she could

find any subgroups of Zs.

144  Wendy: See Z, it’s hard to take a subset because you have to make sure you include the
identity element in the set that you pick. So let’s, just for instance, I’'m going to take this.
Because if I am looking in the fact that you have to have an identity element. Here, if
you look at 1, 2, and 3 they each have and 3, 4.... You can’t do that. ‘Cause now it’s not
closed, really. You can’t take 3,4, 5 and 1, 2, 3. It wouldn’t work.
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Wendy saw that she needed to include the identity, but she was simultaneously
considering “blocks” in the operation table, and she saw that this would not work. I
suggested that she think more broadly and consider subsets with nonadjacent elements,

such as {1, 4}.

146  Wendy: 1 and 4. Like, what I was saying before, 3 and 4? Like looking just at 3 and 47

147  Brad: Yeah, or maybe not two that necessarily that are right next to each other. Like
what about 3 and 5? Could that work? Or.... Do you know what I am saying?

148  Wendy: It’s just easier for me to see [inaudible].
149  Brad: So, what are you doing there? Oh, you’re covering up 4.
150 Wendy: 4. It distracts me.

At first, Wendy persisted looking for blocks in the table (line 146), and so I suggested
once again that she consider subsets more broadly. This excerpt suggests that she was
looking at blocks in the table partly for visual reasons. Because it was hard for her to see
the operation table for subsets that were not blocks, it was therefore hard to think about
subsets that weren’t blocks. A related possibility is that she looked for blocks in the table
because of an overly limiting interpretation of the Groups-Are-Containers metaphor. If
groups are containers, then subgroups must also be containers, but it is difficult to
imagine a container that holds every other element from the group table, for example.

Wendy tried to overcome this limiting view as the interview continued.

Figure 8. Wendy’s table for Zs, annotated version

+]0 1 2i3 45
0{0 1 2i{3 4 5
1|1 2 314 50
22 3 4i5 01
3(3 4 540012
414 5 01 2 3
505 0 1233 (4

Note: circles added to clarify transcript

150  Wendy: ... Technically you are only looking atthe 0, 2 ... 2, 4 [circled in Figure 8].
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152

153
154

160

Right? Because, in other words, you can make that table.... You can’t look at the other
elements. You can’t look at the whole row, 3 and 5. You know what I mean? Because
you can only look at the addition of those two. You can’t start including 0, 1, 2 added to
three, because you have to restrict it to three if you are to restrict it to 3 and 5, in order for
it to be closed. So if I am going to look at the addition of just 3 and 5 [pause] 0 [5]
doesn’t have an id-, a inverse element. )

Brad: What do you mean?

Wendy: Nothing [incomplete thought].... When you add 3 or 5 to 5, you can’t get 0.
Like, 3, when you add 3 to itself you get 0. So that wouldn’t be.

Brad: So3 hasa...

Wendy: It is kind of hard. Like, what if you took 1 and 3. Oh, no. Not 1 and 3. You
have to make sure you pick 1 and 5. What if I tried three, picking three numbers?

Wendy described how she was restricting her view of the table, describing precisely those

entries inside the table (0, 2; 2, 4) that were relevant to whether {3, 5} is a subgroup.

Furthermore, she justified this view by noting that “you can make that a table” (line 150).

From this view, she noticed that 5 does not have an inverse in {3, 5}, although she said at

first that O does not have an inverse, perhaps because she had been looking for a 0 in that

row. Then, perhaps prompted by the fact that 5 lacks an inverse in {3, 5}, Wendy

decided to begin with the set {1, 5} to see whether it was a subgroup of Z.

As the interview continued, she focused on the inverse property.

156

157
158
159
160

161
162

Wendy: Let me pick 1 and 5. 1 and 5, and that would give you.... I’'ll tell you how I am
going to do this. 1 and 1 is going to give you 2. 5 and 5 is going to give you 4. And |
and 5, and 5 and 1, is going to give you 0.

Brad: Okay.
Wendy: You see that 1 and 5 both have an inverse. So, ooh.
Brad: Ooh what?

Wendy: 1 and 5 work, so far. It hasn’t.... They both have a inverse element. You see
what I mean?

Brad: Uh huh.

Wendy: 1 and 5 are their own inverse, are each other inverse elements. So if you took
those two separately, it upholds the inverse property. Identity ...
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Although the previous excerpt suggested that Wendy had chosen {1, 5} so that it would
satisfy the inverse property, it seems in this excerpt that she was unsure whether this
choice would work until she had considered the operation table. Her syntax about the
relationship between 1 and 5 was somewhat confused and inconsistent, however,

evolving from “have an inverse” to “are each other inverse elements.”

At the same time, it is apparent that Wendy was thinking only about the inverse property.
If she had been thinking about closure, she would have noticed during her calculations
that closure was not satisfied. Furthermore, she was ready to consider the identity

property only after she had completed her verification of the inverse property.

164  Wendy: It has.... However, it doesn’t have an identity element. Like, you have to get 1
and you have to get 5. Like you have'to.... If you take something, you kind of have to
build from it. Kind of like what we did in abstract class. They gave us, like, one—this
confuses me, but—one element of a subset, of a subgroup and they said, “Is this a
subgroup?” It wasn’t. Well then you kind of have to see what it’s missing, and you have
to kind of build the subgroup.

165  Brad: Oh, okay, well try that here then. It’s a good idea.

166  Wendy: Okay. So, Ineed.... Well I picked two numbers so that it upheld the inverse
property. But now it doesn’t have the identity property, which means when added to
itself, or when added to another number it gets itself. And that’s 0. It has to have 0 in it.
So I am just going to move this over. Move this down.

Drawing on a procedure developed in class, Wendy considered adding elements to the set
in order to build the subgroup one element at a time. Here she realized that she needed to

include the identity element in order to be sure that the identity property was satisfied.

This seems to be a significant moment regarding the identity, for from this point on,
Wendy always included the identity early when constructing a subgroup. But at this
point, she was ignoring closure and was having trouble reasoning about the set {0, 1, 5}

because the table for Zs was cluttered with other elements. Thus, she decided to “move
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over” the relevant portions of the table into a smaller table containing only the three

elements she was interested in (see Figure 9).

170

171

172
173

Figure 9. Wendy’s table for {0, 1, 5}

Wendy: Okay. So, here everything has an ... 1 has, everything has.... Thereis an
identity element in here, because O is in the table, and therefore 0 added to anything is
going to equal the number itself. So zero is everything’s identity.

Wendy: So now everything has an inverse, even though you added 0, 0 is its own inverse.
So, therefore, you didn’t have to worry about changing the inverse, like disturbing the
inverse property when you added 0.

Brad: Oh, okay.

Wendy: It’s not closed. [Laughs.] Oh, no. It’s got 2 and 4 in it. This is just getting
really difficult. Like, you’re going to have to keep on.... You’re going to have to add 2
and 4 now. So the only thing you are missing is 3, and if you ... I am sure if you add 2 or
4 you’re going to get.... So if you just do away with 3.... 2 times 1 is going to equal 3.
2 + 1 is going to equal 3. And therefore you’re going to need to add 3 in there. So it
doesn’t work.

There are two points to make here. First, Wendy had been considering the group axioms

one at a time and did not move flexibly among them. From her laughter and frustration

in noticing that the set was not closed, it is clear that she had not considered the closure

axiom earlier in this example. Second, this excerpt reinforces the hypothesis that Wendy

began constructing the set with 1 and 5 because together they satisfied the inverse

property and then added 0 to the set so that there would be an identity element. When

she returned to check the inverse property (line 171), she still was thinking of the process

by which she had constructed the set, but her reasons for choosing 1 and 5 as a pair were

not explicit. This omission may be significant because she seems to have forgotten her

reasons only a few minutes later when, taking advantage of her idea to “build up”
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subgroups, I asked what would happen if she had started with different elements or with

only one element:

186  Brad: If you just started with 1, would you need 5?

187  Wendy: I don’t know. You have to see after you add 2. If you add 2, 2 and 1 is going to
equal 3. Then you’re going to need 3. 3 and 1 is going to equal 4, and you’re going to
need 4. And then 4 and 1 is going to equal 5 and you’re going to need 5. [inaudible]

188  Brad: Okay. So in other words, if you start with 1, what else do you need?
189  Wendy: 0 for the identity element.

191  Wendy: You need 2 for closure, 3 for closure, [laughs] 4 for closure, and 5 for closure.
Wendy was no longer thinking of the inverse property, or she would have responded (in
line 187) more quickly that 5 was necessary. Instead, she was thinking about closure,
which is why 2 needs to be in the subgroup. Continuing the processes of adding 1, she

decides that 3, then 4, and eventually 5 must also be in the subgroup.

At this point in the interview, the identity axiom was fairly immediate and salient, but the
inverse axiom had faded into the background, obscured by the closure axiom. Closure
remained dominant as the interview continued. Despite Wendy’s frustration, she had
built up some ways of thinking that allowed her to proceed more quickly. I asked her to

try starting with a different element.

196  Wendy: If you start with 2 you are going to need 0. You are always going to need 0,
‘cause, like you said. Okay. So, things are getting kind of messy. I need a new piece of
paper. If you start with 2, you’re going to need 4.

198  Wendy: And when you’re doing 4, you need 0. Well.... Ooh.
199  Brad: Ooh what?

200  Wendy: You need 0, anyway. You need 4 though. [inaudible] So, 2 ... ‘cause 2 and 4 is
going to equal 0. Uh oh.

201  Brad: Uh oh what?

202 Wendy: It works! Youdon’t.... It’s closed. It’s got an id-, everything has an identity
element ... 0 is the identity element for all, each element. Well, they have to have the
same identity element, but.... And it’s got an inverse.
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Figure 10. Wendy’s table for {0, 2, 4}

Wendy had found a subgroup, and, for the first time in the interview, she considered
several axioms in quick succession. Her explanations were somewhat muddled, however.
In particular, her syntax for the identity and inverse was mostly reversed, suggesting once
again that these two properties were closely related in her thinking. She did clarify that

all elements have the same identity. I asked for clarification about inverse:

203  Brad: What’s got an inverse?

204 Wendy: Every element has an inverse. So that’s a subgroup.

Because Wendy corrected her syntax regarding the inverse property, it seems that she

could distinguish the inverse property from the identity property, even if the distinction

was not automatic.

Again, it is remarkable that Wendy considered three of the group axioms almost

simultaneously, suggesting growing fluency with the axioms. She had said nothing,

however, about the associative property.

205  Brad: Did you check all of the properties?

206  Wendy: No, I did not check associative. [Laughs.] No! [Her tone suggests she’d rather
not check the associative property.]

207  Brad: And why? Do you think you need to check it?

208  Wendy: No, because it’s a global property. And if it’s.... Addition is associative. So no
[matter] ... If addition is associative, doesn’t, under integers.... Taking any integers, it’s
still going to be associative. So there’s no need to check it.

209  Brad: Okay. So what do you have here?
210  Wendy: A subgroup of Zg.
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Wendy’s response to my question indicated some frustration that all her work had not yet
produced something that she could be sure was a subgroup. Nonetheless, she overcame
this frustration quickly upon remembering that associativity is a global property. Wendy
did not correctly use the idea that associativity is global, however, basing her conclusion
on the associativity of addition in Z rather than in Zs. Nonetheless, she was correct that

{0, 2, 4} is a subgroup.

Next, I asked Wendy whether there are any other subgroups of Z.

212 Wendy: I don’t know I’d have to play and try. I just found one; I didn’t think that we
could find one, but I just found one.

213  Brad: Okay. What do you think? Another one?

215 Wendy: Let me try 3, starting with 3. Youneed 0. You always need ... [Whistles.]
Found a group!

216  Brad: You found a group?

217  Wendy: Yeah. Because it’s got a identity element. Whoops, I made a little mistake in
my calculation, but.... It’s got an identity element, 0. It’s got an inverse because 0 + 0 =
3[0]and 3 +3 =0, so it’s got an inverse. It is closed between 0 and 3 and it’s
associative. So here’s another subgroup.

Again her syntax regarding the inverse property is more appropriate for talking about the
identity, yet her calculations indicate that she did know that each element must have an
inverse. And again she considered the inverse, identity, and closure properties in quick

succession.

I asked whether there were any other subgroups.

220  Wendy: No, because 4 you would need 2.

221  Brad: Why?

222 Wendy: Because if you have 4, 4 and 4 is 2. And therefore you need 2.

225  Brad: Well, what if you had 5? What if you started with 5?

226  Wendy: 5 is the same thing as 1.

2277  Brad: Why?

228  Wendy: Because 5 and 5 you are going to need 4, and then 4 and 5 are going to need 3.
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Okay? And then 3 and 4 you going to need 1, you are going to need 0, and 4 and 4 is
going to equal 2. So you need everything.

For both of the examples in this excerpt (starting with 4 and starting with 5), Wendy’s
arguments were based on the closure property, not the inverse property. The inverse

relationship between 5 and 1, which had earlier been quite present in her thinking (see
lines 154 and 158), had faded into the background. Instead she focused on the need to

satisfy the closure property.

Next, I asked Wendy whether she saw any relationship between Z; and the subgroup {0,

2,4} in Zg. She paused for a moment and then responded:

235 Wendy: You multiply Z; by 2, all of the elements by 2, and you get this subgroup. I
don’t know what you call it. I don’t know.

Taking advantage of this relationship, Wendy decided to call the subgroup 2Z;. She
asserted that Z; and 2Z; are not the same but are related by multiplication. Wendy was

not satisfied with this description, however, and wanted to find a deeper explanation.

249  Wendy: Yeah, but if you take every element in Z; and you multiply it by 2.... Ican’t
really make that connection yet, like, why that exactly works. Iknow it definitely has
the.... Like, I think it definitely affects the fact that 2 and 4 are factors of 6. Not
factors.... Oh, no. They’re.... Like 3, when added to itself is going to equal 0. When 2
and 4 are added to each other, you’re going to ... it’s going to keep it closed. Like when
you start adding 1 you’re switching.... Like, these are two even numbers. The fact that
they are two evens, two evens are going to equal an even number. I don’t know if it has
to do with the evens, but.... Isee a definite pattern why these two are going to be
subgroups. Because 2 and 4.... 2 and 2 is going to equal 4. 4 and 2 is going to equal 6,
and 6 is going to be, 6 is equal to 0. So all these.... Like 2 and 4 when.... I’ve explained
this to you [inaudible] four times. I can’t explain.... I don’t know. [inaudible]

250  Wendy: Like it makes total sense to me that these two are groups. And I can see why this
isn’t. So can I re-ask a question or can you re-ask me a question?

Wendy considered factors and evenness to explain why 2Z; would be a subgroup, but
neither of these provided a clear explanation. To assist her in searching for the
explanation, she sought a new question, suggesting that she saw questioning as a useful

means for developing insight and explanation. She continued looking.
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254  Wendy: Well, I want to sort of look at 4Z;, for no reason at all [inaudible]. If I’'m looking
at 273, why not look at 4Z;. And you’re going to get.... Actually, we’re adding here.
This is going to equal 4. '

Wendy calculated 4Z; to be the set {0, 4, 2} and began constructing the operation table,
using that order. Because she was not explicit about how she was doing the arithmetic, I

asked her whether she was still doing arithmetic modulo 6:

258  Wendy: Yeah, just as I did here [in the 2Z; table].

260  Wendy: Ooh, wait a minute. But here I said this was a subgroup. This is a subgroup of
Zs, but that’s because in Z3, we’re restricting our elements to 0, 1, and 2. Here we are
allowing for higher numbers.

262 Wendy: So, technically, this isn’t 2Z;. Cause it’s not in mod 3.
263  Brad: Oh, I see.
264  Wendy: This is definitely not 273, 2 x Zs.

265 Brad: Butitis the set {0, 2, 4}, which.... I can see why you want to call it 2Z;. I’'m not
sure.... | mean, maybe that’s a good notation [inaudible].

266  Wendy: Well, I guess if you say Z3, Z; has to hold.... Like, if you take all the members
of Z; and multiply them by 2, who said they still have to hold the stipulations of Z;? It
has to be divisible, like you look at their remainder after dividing by 3. So I guess you
could still say 2Z;. But I still don’t know the connection between 2Z; and Z; and why 27,
is a member, is a group of, a subgroup of Z [inaudible]. I know why Z; isn’t. But I just
don’t know why 2 x Z; would work. Thisisn’ta.... 2 x | equals 2. 2 x 4 is 8 equals 2.

Wendy was uncomfortable with her notation. She was sometimes adding and at other
times multiplying, sometimes modulo 3 and at other times modulo 6. This inconsistency
caused confusion that she was not able to resolve. Nonetheless, without prompting from

me, Wendy saw a relationship between the tables that she had called 2Z; and 4Z;.

272 Wendy: I think this is just a different arrangement of this. Do you see what I mean? This
is just a different arrangement of this.

273  Brad: So the thing you’re calling 4Z; and the thing you’re calling 2Z; ...
274 Wendy: Are the same, just a different arrangement.

The fact that Wendy called two different tables the same suggests that, by the end of the
interview, she had begun to separate the table from the group. The question is whether

she saw the table (and various rearrangements) as the object of investigation or,
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alternatively, saw the two tables as representations of another object. Sfard (2000) points
out that “the transition from signifier-as-object-in-itself to signifier-as-a-representation-
of-another-object is a quantum leap in a subject’s consciousness” (p. 79). Such a
distinction between signifier and signified might mark the creation of an abstract object—
in this case the group Zs;. This sort of separation between the table and the group paves
the way for the concept of isomorphism, which gives rise to the idea of an abstract group
that is independent not only of the arrangement of its elements in the table but also of the
names of the elements as well. It is not clear, however, to what extent Wendy had made
this conceptual leap by the end of the interview. Because isomorphism was the theme of

the second interview, this issue is explored in more detail below.

Wendy’s reasoning about groups and subgroups was largely external, often requiring that
relevant portions of the table be present before her eyes without extraneous information
interfering with her perception. When considering whether {3, 5} was a subgroup, she
covered up the 4, and when building a subgroup with {1, 5}, she created a new table
separate from the Zg table. In large measure, the operation table was the group for
Wendy, although she had begun to separate the group from the table, as evidenced by her
“suggestion that the table she called 4Z; was a rearrangement of the table she hgd called
2Z3. The operation table both supported and limited Wendy’s ability to reason about
groups and subgroups. On the one hand, the table helped her see quickly the problem
with considering Z3 to be a subgroup of Zs. On the other hand, her reliance on the table

made it difficult for her to find subgroups.

A symptom of the external, table-based nature of Wendy’s reasoning was that she often

considered only one group axiom at a time when reasoning about groups and subgroups.
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Toward the end of the interview, however, she had developed more fluency and was able
to move quickly among the axioms. Moving toward considering the axioms multiply and
flexibly might be described as a matter of increasing proficiency and fluency with the
group axioms and with the particular examples, which may be a result of internalization

of some of the external processes that were based in the table.

The above case demonstrates some of Wendy’s difficulties with language and also the
ways that her language use shed light on the ways she was thinking about some of the
concepts. The case also demonstrates some of the ways that Wendy used the table to
support her reasoning. In the sections below, I further illustrate these themes by
broadening the analysis to include characterizations of the concept images of other key
participants. The theme of language use is particularly prominent in the discussion of the
concepts of identity and inverse. The theme of the use of the operation table is central in

the discussion of the concepts of closure and subgroup.

Identity and Inverse

Like Wendy, the other key participants demonstrated that their concept images of identity
and inverse were closely related. In this section, I first present a synthesis of the
definitions and informal meanings that students associated with the concepts, followed by
a description of the notational, linguistic, and conceptual expectations that the students
seemed to have for each of the concepts. Then I provide some additional examples of
confusion between the two concepts and some explanations based in procedures and

operation tables.
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Definitions and meaning. On the final exam, several students provided definitions of the
identity and inverse as part of their definitions of group. Lori, for example, wrote the

following:

There must be the existance [sic] of an inverse: a 0 a”' = e (where e is the identity
element).

There must be an existance [sic] of an identity: a 0 e = g (e is the identity
element).

The syntactical similarity between the definitions suggests that the two concepts were
closely related in Lori’s thinking. Furthermore, the quantifiers and other specifications
are missing, yet the formulas are correct in the sense that correct definitions could be
crafted around these formulas. This characterization fits many of the definitions that

students provided.

There were also important differences between students’ definitions of identity and
inverse. In particular, the definition of identity seems to have been more difficult to

formulate than the definition of inverse. Compare, for example, Robert’s definitions:

identity - an element e such thata 0 e=a=¢e 0 a.

inverses - for each g € G thereisa”' € Gsuch thatag' =e=a"a.

Though Robert’s definition of inverse was essentially correct, including the quantifiers,
his definition of identity lacked quantifiers entirely. Wendy’s definition of identity was

also problematic:

There is an identity element for the group so that every element in G, when
multiplied by this identity element, e, will give you back the original element:
{x e G|xe=x}.

Wendy’s informal characterization was essentially correct and included the quantifier

“every element in G.” The formalization at the end, however, is incorrect. A standard

mathematical reading of Wendy’s symbolism would be, “The set of x in G such that xe =
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x” or, more informally, “All x in G such that xe = x.” This is not far from the correct
condition, “For all x in G, xe = x.” Thus, Wendy had specified a set rather than a
condition on G, and her unusual symbolism may be interpreted as difficulty with correct

symbolic use of quantifiers.

Informal characterizations such as “giving back the original element” were common for
the identity element. On her final exam, Lori noted, “The identity of Z, is 0 because 0
plus any element in Z, gives back that element.” Wendy called the identity the “do-
nothing element” (Interview 2, line 306). Carla elevated this characterization to a
definition: “So you could call 0 the do-nothing element, which is the way we’ve defined
identity” (Interview 1, line 88). Robert combined these characterizations: “Rg, which
doesn’t do anything to them. Ry composed with any of them leaves them the same. So

there is an identity” (Interview 2, line 178).

Informal characterizations of inverse were more difficult to formulate. Lori, for example,
was quite vague: “Because the inverse of something is when you operate two things to
equal the identity” (Interview 1, line 87). Recall that Wendy struggled aﬁd eventually
came to an approximate characterization: “So when you multiply some number m by, it
has to have an inverse i, so that when multiplied, it will equal the identity” (line 30).
Carla, on the other hand, was more precise in her language, even in her first interview.
She stated, “To get the inverse you have to find something that adds with your element
that results in the identity, which is 0 in this case” (line 39). In the same interview, she
used similar syntax when she described that for something to be an inverse of 2: “It

means that 2 times that thing equals the identity” (line 120).
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Expectations about the identity. The students’ images of the identity property seemed

partly tied to what the identity was called. In other words, the symbol that was used for
the identity (e.g., 0, 1, or e) seemed to support and facilita‘;e the students’ thinking. In
fact, the students’ use of 0 and 1 (and eventually ) was so flexible that it was not
possible for me to distinguish between the symbol and the name. Not surprisingly, there
were also strong connections between the name of the operation and the expected name
of the identity. When the operation was called addition, for example, students expected
the identity to be called 0. Then, when determining whether a set was a group or a
subgroup, they needed only determine whether 0 was in the set. Similar statements can

be made about multiplication and 1. Carla, for example, was explicit about this process:

168  Carla: So then you want to check the identity. We already said that the identity for
integers under addition is 0. So we know that the identity for Z; is 0. The question is, Is
0in Z5? Andyes, itis. So therefore we have an identity.

This statement suggests that Carla was not necessarily distinguishing between addition in
Z and addition in Z; and that 0 being the identity was a global property. Both of these
issues are discussed further below. Here I wish to suggest that students also had a sense
that the 0 in Z; is the same as the 0 in Z. This point brings into question the practice of
calling the elements of Z; the integers 0, 1, and 2. The alternative is to construct Z; as
equivalence classes in Z so that the elements of Z; are subsets of Z and 0, 1, and 2 are but
convenient representative elements. When using representative elements to name
equivalence classes, some texts use a bar over the representative element, as in i, so as to
distinguish the equivalence classes from elements themselves (see, e.g., Bhattacharya,
Jain, & Nagpaul, 1986). This approach might solve the problem of failing to distinguish
between 0 in Z and 0 in Z3 but might also create a different collection of conceptual and

notational issues.
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In addition to natural facility with identities called 0 and 1, the students also developed
facility with calling the identity e. When groups were given by tables with elements
named by letters, Diane and Lori seemed to prefer that the identity be called e and
hesitated when the identity was called something else. Yet they also seemed to know that
the names of the elements do not matter. I asked them whether it mattered that the

identity was called e.

422  Diane: That’s just convention. I mean we could make it i if we want it to be and just say i
" is the identity. That’s just conventional.

423  Lori: When we renamed and reordered, we looked at the table after we renamed and
reordered. We said, “Okay, what acts like the identity?” And that’s what we have to set
equal to the identity so that we make sure we get back one of our tables. (Interview 2)

Whatever names were given to elements in a group, most students were able to notice
when elements acted like the identity even when the elements were themselves sets, such
as in a group consisting of two elements, {1, 3} and {5, 7}. In this group, Wendy called -
{1, 3} the “identity set.” Often this sort of reasoning seemed to arise out of the operation
table, but the students also were aware of distinguishing characteristics of the identity.
Wendy, for example, noted on her midterm exam, “The only element that when

multiplied by itself, gets itself is the identity element.”

Expectations about inverses. In some representations, particularly when the

representations looked like integers, the students sometimes drew on their experience
with integers and rational numbers and expected inverses to be negative numbers or
fractions, depending upon the operation. Carla, for example, suggested that “the inverse
of 2 mod 3 would be 1/2 mod 3, and 1/2 is not an integer, and it is not in mod 3. And the
only elements of mod 3 are 0, 1, 2” (Interview 1, line 118). Similarly, Wendy stated that

“multiplication is not a group, because there’s no inverse ... because they’re, under
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multiplication they’re going to be, like a fraction” (Interview 3, lines 36-38). In his first
interview, Robert expected multiplicative inverses to be fractions and also expected
additive inverses to be negative: “Like 1 +—1 will equal 0, so —1 is 1’s inverse, but —1

isn’t in Zg” (line 22).

This phenomenon of expecting negatives and fractions for inverses is analogous to
expecting that 0 is the identity for any operation called addition and 1 is the identity for
any operation called multiplication. In the case of the identity, this phenomenon rarely
caused difficulty because 0 and 1 often continue to behave as they do in the integers. In
the case of inverses, however, the tendency is potentially more problematic because, for
example, —3 and 1/3 do not have obvious meaning in Z,. The concept of inverse provides
the meaning by which these symbols may be interpreted in Z,. The students, on the other
hand, used their understandings of the rational numbers —3 and 1/3 as the source of

meaning, and those meanings did not fit with their images of Z,.

Confusing identity and inverse. Wendy’s linguistic confusion between inverse and

identity continued at least into the second interview. When she was investigating the

powers of a specific permutation o, for example, I asked her what o would be. She first

called it E and later explained:

308  Wendy: The identity. It’s the do-nothing. It doesn’t do anything. When you put
anything to the power of 0 it doesn’t ... Like, any number to the power 0 is going to
equal 1. Okay? Because ... And 1 is the multiplicative inverse? You know, like, it
doesn’t do anything. Multiplicative inverse is the identity. Or not multiplicative inverse.
I’m not talking ... I’'mnot ... I don’t know why I just said that. [laughs] But any power,
any number to the power of 1 [0] is going to equal 1, which is the multiplicative identity,
not inverse. Right? [inaudible] multiplicative identity. So, alpha to the 0 is going, in
cycle notation, has to be the cycle identity, which is the do-nothing cycle, which is 1.

Wendy was able to correct her language, though not without a struggle. Other students

also sometimes mixed up identity and inverse and corrected themselves. Lori, for
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example, said, “Under multiplication there’s no identity. I am sorry; there’s no inverse
for 0” (Interview 1, line 71). Similarly? when discussing {0, 3} in Zs, Robert noted, “3
was its own identity. Was its own inverse, I should say” (Interview 1, line 232). He also
sometimes used confused syntax, such as, “3 plus itself is an inverse. 3 is an inverse of
itself” (line 189). And sometimes the syntax for the inverse was more appropriate for the
identity, such as, when discussing Z3, he concluded, “So now I ﬁnd it has an inverse”
(Interview 1, line 114). Moments later, however, he was clearer: “Let me say that again,
the whole group has an identity 0, and each element in the group, 0, 1 and 2, have an

inverse” (line 116).

The confusion between identity and inverse is probably best explained by the close
procedural relationships between the concepts. In particular, finding the inverse of an
element necessarily involves the identity. As mentioned above, when operations are
presented through tables, finding the inverse of an element involves looking for the
identity in the appropriate row or column. More generally, checking whether a binary
operation satisfies the inverse property is a matter of checking every row and column.
Robert was explicit about this procedure: “0 doesn’t appear in every row and column, so
not every element has an inverse” (Interview 1, line 93). The idea of looking for or
creating an identity in order to find an inverse leads to procedures in other mathematical
contexts as well. For example, a standard method of finding the inverse of a matrix
involves performing row operations on an augmented matrix until part of that matrix

looks like the identity.

Another reason for the strong connection between identity and inverse is that it seems to

be natural for students to think in terms of inverse pairs, such as {1, 5} in Z, or in terms
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of triples that include the identity, as is described for Wendy above and for Robert below.
In this kind of reasoning, elements that are their own inverses are something of a special

case that becomes particularly salient when working with operation tables.

Several students noticed that an identity occurs in the diagonal when an element is its
own inverse. For example, Carla demonstrated this connection when she described how

she knew that a particular table was a group:

394  Carla: So if we rename {1, 3} to e, the set {1, 3} as e and the set {5, 7} as a, we will
create a table that looks like e along the diagonal that goes like this and a along the
opposite diagonal, which is a group because that’s.... Well, for one thing it is one of the
tables we came up with when we talked about possible groups for a two element set. And
for another thing, we see that each of the elements appears only once in each row or
column, which tells us it’s group. And we see that it contains the identity, that a is its
own inverse, e is its own inverse. So, we’re all set. (Interview 3)

As is discussed in the section on Wendy and isomorphism below, Wendy discriminated
among groups of order 4 according to the appearance of the identity element along the
diagonal. Diane and Lori took longer than Wendy to notice this discriminating feature,
but their description makes clear this fundamental connection between identity and

inverse.

394  Diane: All the elements squared is e. Each element is its own inverse.

397  Lori: They are all their own inverses.

398  Diane: Well that’s just definition. If youtakeax a=¢e, b x b =e, ¢ x ¢ = ¢, the only way
you can get an identity element, if these aren’t the identity elements themselves, these
have to be inverses of each other, cause that’s just the definition [of inverse].

Assuming that e is the identity under multiplication, Diane was saying, “If a x a = e then
a is its own inverse.” By calling this a definition, Diane was either trivializing her own
reasoning or demonstrating that she did not distinguish this statement from the definition,

which might instead be given by “If a x b = e then b is the inverse of a.”
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The connection between the identity and inverse became even more apparent when the
students looked for the inverse of the identity. As Carla remarked, “The identity’s
inverse is itself” (Interview 4, line 133). This observation helped her verify that a group

containing only the identity was indeed a group.

In summary, although the students often confused the terms ideﬁtizjy and inverse in their
language, they often corrected that language on their own. The frequent confusion
between the terms is explained by procedural connections between the concepts. In
particular, using an operation table to find an inverse is really a matter of looking for the
identity element in the table. The confusion is further explained by the fact that the
students thought in terms of inverse pairs, for which the product is the identity. Elements
that are their own inverses form a special case when thinking about inverse pairs, and the

identity element is always its own inverse.

Closure

The students’ concept images of closure were similar to those of other group axioms in
that the students’ reasoning was often tied to operation tables. On the other hand, the
students’ concept images of closure were different in that there seemed to be fewer
linguistic and conceptual confusions. Closure became prominent in service of the
concept of subgroup, both in determining whether a subset was a subgroup and in
constructing subgroups of a given group. A firm understanding of the concept of closure
also relied on distinctions between operations, such as between addition and addition
modulo 6. Because all of these issues are treated in detail in the section on the concept of

subgroup, here I make only two observations.
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First, the students’ formal definitions were usually correct. For example, on her final
exam Wendy stated that a group must satisfy the property of closure: “For all @ and b in
G, a * bis also in G.” Informal characterizations were quite close to the formal
definition. Lori, for example, wrote on her final exam, “So pick any two elements in S,

namely a and b and operate them together to see if the answer is in S.”

Second, operation tables helped the students see whether or not closure was satisfied.
Lori, who had taken the course previously, explained in her first interview that tables
helped her understand the concept: “I don’t think that I necessarily understood the
concept of closed until we made charts and tables and stuff, and we never made tables

last semester” (Interview 1, line 5).

More on Subgroups

The students’ concept images of subgroup were dominated by the idea that a subgroup is
a subset that is a group in its own right. The students often did not explicitly mention the
operation and often made no distinctions between various related operations. These
themes characterized the students’ formal and informal definitions of subgroup, as well
as the ways they solved problems involving the concept. In reasoning about subgroups,
the students relied on operation tables, on thinking about the processes underlying the

operation, and on considering each of the group axioms individually.

After providing the students’ formal and informal definitions of subgroup, the bulk of this
section presents an énalysis and synthesis of students’ responses to the question, “Is Z; a
subgroup of Z¢?” Results of similar questions on the final exam are also presented. The
section continues with discussion of two central phenomena that arose during these

interviews: the sense that a subgroup should be a block within an operation table and the
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belief that addition in Z3, addition in Zs, and addition in Z are all essentially the same
operation. The section closes with analysis of the ways that the students looked for
subgroups of Zs and, more generally, how they constructed subgroups gencrated by

elements of groups.

Definitions. On the final exam, the students’ definitions mostly characterized a subgroup
as a subset that is a group, and the operation was not always mentioned. Robert’s
definition was typical: “A subgroup is a subset of elements from a larger groupb G, which
form a group under G’s operation.” Some students did not state explicitly that the
subgroup would be a group but rather listed the four group axioms as conditions that the
subset must satisfy. Some students mentioned that it was not necessary to check
associativity. These formal definitions were consistent with the students’ informal
definitions found throughout the data. What varied was the kind of attention they gave to

the operation.

Is Z; a Subgroup of Zs? When considering whether Z; is a subgroup of Zs, most of the

key participants were seduced by the fact that Z; is a subset that is a group in its own
right. Carla, for example, after verifying that Z is a group, concluded that Z; is a
subgroup of Zg “because Z; is a subset of Zg. That is what makes it a subgroup of Zs”
(line 173). Rober‘g Lori, and Diane came to similar conclusions. Wendy was alone in her
early conviction that it did not make sense to consider Z; separately from Zs. For most
students, overcoming this initial conclusion required a coordination of resources and
depended upon concluding that addition mod 3 and addition mod 6 are different

operations.
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As the students continued to ponder the question at hand, the operation tables and the
processes behind the operations created suspicions that Z3 is not a subgroup of Zg, but the
suspicions were usually not sufficient to convince them of that fact. Instead, the notion
that a subgroup is a “subset that is a group” was strong enough to create the simultanepus
belief that Z; ought to be a subgroup. This belief may explain the fact that the students
had a strong sense that “addition is addition” despite differences between addition mod 6

and addition mod 3.

Diane and Lori, for example, knew that a subgroup must use the same operation as the
group and also saw the operations in Z; and Zs as different, but that was not sufficient to

lead them to a conclusion.

103  Diane: They are both modular arithmetic, they are both modular addition, they are just
different mods. So it’s kind of weird what you would think of mods, if you are talking....
If you take into consideration the different mods here and still consider it the same
operation, then these could be subgroups. This could be a subgroup of this. But you are
saying that this and this are different, then you have say they are different operations.

104  Lori: Do we define mod 3 under addition a different operation than mod 67
Diane and Lori also considered the operation table for the subset {0, 1, 2} in Zs, which
Diane said “would definitely be a subgroup” (line 105). I asked them what the table

would look like.

110 Lori: Oh, it’s the same as Zs.

111  Diane: No it’s not exactly the same, because you are going to have 0, 1, 2; 1, 2, 3; 2,3, 4
[in the table].

112 Lori: You can’t have 3 and 4. They are not in the set, and then it’s not closed.

113  Diane: You’re right.
Thus, Diane and Lori had at least two kinds of evidence that the operations are different.
Despite this evidence, Lori still wanted Z3 to be a subgroup of Z¢. She enumerated the

group axioms to support her point of view:
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118  Lori: I think it is a subgroup of Z¢ under addition because, kind of like.... We were on a
roll here with these things, these being, they’re both closed, they both have an identity,
they both have inverses, they both are associative, so that makes them both groups, and
this is in here.

Diane was a bit more skeptical. She was still willing to consider Z3 to be a subgroup of
Zg but only if “dividing by 3 and dividing by 6 [is] just a characteristic of mod and you
are going to say that it’s all right to kind of ignore that” (line 122). In other words, she
was unwilling to conclude that Z; a subgroup of Zs without confirmation that “all mod is

fine” (line 124).

Soon thereafter, Lori and Diane went back to considering the tables:

131  Lori: Yeah, that’s what I was saying because when I think of something being a subgroup
of something ¢lse, its table can almost fit right into it since it’s the same operation, and I
don’t see this anywhere down here.

132 Lori: I don’t think they are subgroups of each other anymore. I was getting confused
with ...

133  Diane: I say no.

Thus, no simple piece of evidence was sufficient, but rather an accumulation of evidence
and consideration was necessary for Diane and Lori to conclude that Z;3 is not a subgroup

OfZ6.

Robert was similarly hesitant to come to the same conclusion even in the face of
evidence. He first used the table for Zs to show convincingly that the subset Z; was not a
subgroup because the inverse and closure properties failed. Nonetheless, he went on to
create a separate table for Z3, and on the basis that Z; was a group concluded that it was a
subgroup of Zs. He was unsure whether to call the operations different: “Are we talking
addition mod 6 and addition mod 3, or are we just talking addition?” (line 148).
Interestingly, Robert was also the only student who was unable to resolve the issue by the

end of the first interview. This fact may be partly explained by Robert’s sources of
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authority for making mathematical claims. At the beginning of the second interview, he
announced that he had determined that Z; is not a subgroup of Zg, because the operation
is not the same. “For one thing, I read it in the textbook last night. And, for a second
thing, Steve told me that today. He mentioned that in class” (Robert 2, line 12). Thus,
Robert required evidence, consideration, and external authority to come to the correct

conclusion.

For some of the key participants, the conclusions they reached during their first interview
were not as enduring as their expressions seemed to indicate. On the final exam, students
were asked whether Z, is a subgroup of Zg and whether Z, is a subgroup of Z. Carla,
Robert, and Diane all pointed out that the operations were different and therefore Z; is a
subgroup of neither Zg nor Z. Wendy and Lori, on the other hand, both wrote that Z4 is a
subgroup of both Zg and Z, arguing, essentially, that Z4 is a group and also a subset of
both Zg and Z. Lori’s misjudgment was not surprising, for her reasoning had seemed
uncertain and ambiguous throughout the discussion of whether Z; is a subgroup of Zs and
throughout her interviews more generally. Wendy’s response, on the other hand, is a
stark contrast to her thinking in the interview. The most plausible hypothesis for the
discrepancy is that, without a table in front of her, it was not readily apparent to Wendy

that the operations were different.

Subgroups of Z and Z,. The prominence of the idea of subset in the students’ definitions

of subgroup explained not only the sense in which the students considered Z; to be a
subgroup of Zs but also the sense in which they considered them both subgroups of Z.
Lori, for example, asserted, “Z; is a subgroup of Z. We all agree on that, right? So if

they are both subgroups of Z, then maybe they are subgroups of each other” (line 142).
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What was harder to explain, however, was Diane’s belief that although “Z; isn’ta
subgroup of Zs, it’s at least a subgroup of Z,, and we know that Z, is a group under
addition” (line 44). From the first half of Diane’s claim, it is clear that she did not mean
that Z; is a subgroup of Z, for any n. What is puzzling, then, is what kind of object Z,
was for Diane and in what sense Z3 could be a subgroup. Clearly, Z, was not an
unspecified group that could be Z;, Zg, or any of a number of other groups. Instead, Z,
was a different group, distinct from Z3 and Zs, but somehow situated so that Z; could be a
subgroup. Unfortunately, I did not pursue this unusual idea further in the interview.
Diane’s final exam indicates, however, that, at least at the end of the course, her

_conception of Z, was more typical.

Z,: Is a group under modular addition. # is a positive integer and tells which mod
we are in and which elements are contained in the group (0, ..., n—1). For
example Z, is a group under addition mod 4 that contains the elements 0, 1, 2, 3.

Portions of the table. Like Wendy, most of the key participants tended to think of

subgroups as blocks within the operation table of the larger group. Robert, for example,
focused on the top left quarter of the Zg table and concluded (momentarily, at least) that
Z3 1s not a subgroup of Zs, because “0 doesn’t appear in every row and column, so not
every element has an inverse” (Robert 1, line 93). Robert, like Wendy, also initially
ignored my suggestion that he pick individual elements from the table and instead
continued to focus on blocks such as {0, 1, 2} and {3, 4, 5} (line 176). Later, after he
had identified {0, 3} as av subgroup, I asked him whether that constituted a portion of the
table. He replied, “Not in the sense that you are just drawing a box around part of the
table. This is taking different elements out of the table and putting them into a new table”

(line 199). Thus Robert, like Wendy, preferred “blocks” in the table or wholly new

tables. Lori’s language also suggested that she was thinking of blocks: “When I think of
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something as being a subgroup, if you look at its table, you can fit in into a larger table”

(Diane/Lori 1, line 129).

By the third interview, Carla’s thinking seemed more flexible, although it was still tied,
to an extent, to the order of elements in the table. When I asked Carla about the
relationship between a table for {0, 2} in Z, and the table for Z,, she first called it a
portion of the table. She described how she would reorder the table as 0, 2, 1, 3, so that
“in the top left corner we’d have an imitation of the table that we just created” (line 125).

Then I asked again what she would say about the relationship between {0, 2} and Z,.

127  Carla: T would think it would say it’s a subgroup of it, for two reasons. One would be, if
you just looked at ... “sub” means a smaller part.... If you do the Z; group table, then
you have a group table and a corner of it is what you are talking about then that ... it
would be a good guess to say that that would be a subgroup. But also you know that 0, 2
that table is a group table, and it is a subset of Z, so that means it is a subgroup of Z,.

When the students used operation tables, they sometimes paid too much attention to the
order in which elements were listed in the table and too little attention to the binary

| operation underlying the tables. This phenomenon may be related to the strong sense that
a subgroup is a subset that is a group, coupled with an overly limited Groups-Are-
Containers metaphor that made it difficult for the students to think about nonconsecutive
subsets. Nonetheless, the tables served a useful purpose in organizing calculations when

the students were constructing subgroups or verifying that a set was a group or subgroup.

Addition is addition. This study supports the finding in the literature that students

sometimes do not pay sufficient attention to the group operation (Dubinsky et al., 1994).
The above analysis shows, however, that even when they do pay attention to the

operation, there is still a tendency to say that two operations are the same if they are both
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called addition, and there is reason to believe that analogous results would hold for

operations called multiplication.

Dubinsky et al. (1994) suggest that students’ progress from thinking of groups and
subgroups as sets, to considering them as sets with operations, to considering a subgroup
as having the same operation as the group in which it sits. This developmental
progression makes good sense and partially describes the data in this study. A key
question that emerged in this study is, What is involved in making the second transition?
Dubinsky et al. suggest that students need to consider the binary operation to be a
function on ordered pairs from the group and then restrict the function to the subset.
Then students recognize that the operations need to be the same on the group and the

subgroup by coordinating their function concept with their emerging group concept.

This description, quite simply, does not fit the data in this study. First, there was no
indication that the students thought of binary operations as functions. Moreover, there is
no reason to believe that such a conception was necessary for success, as many students
seemed to be successful without it. Regarding the sameness of the operations, all the key
participants recognized that the operations needed to be the same, though not always
immediately. The issue was that many of the students were willing to call operations the
same despite evidence that they were different. All the key participants saw—by looking
at operation tables, by considering the processes underlying the operations, or both—that
the operations are in Z; and Z are different. Nonetheless, they all concluded at various

times that the operations are the same because they are both addition.

The issue concerns making distinctions, not only between addition in Z; and in Zs but

also with addition in Z. The above analysis suggests that making such distinctions
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requires coordination of evidence and careful reasoning. Furthermore, even after such
distinctions have been made, they can become blurred in students’ minds moments, days,
or weeks later. These findings should not be surprising in view of the fact that addition in
Z3, Zg, and Z are very much the same. This sense of sameness is not a misconception that
must be overcome. On the contrary, this naive idea, although incorrect, has a grain of
truth that can be firmly established only through the concept of quotient group, which is

introduced much later.

Constructing subgroups. In constructing subgroups, the students reasoned both from the

table and from thinking about the operation. They typically began with a small number
of elements and then constructed an operation table to determine whether the elements
constituted a subgroup. Most participants stated, either immediately or while reasoﬁing
during the process, that any subgroup must contain 0. Robert, for example, chose {0, 2,
4} and {0, 1, 5} as possible subgroups because “0 has to be in there. And we need things
that are inverse of each other” (line 230). Diane, on the other hand, initially chose {0, 2,
4} because she “went for the even numbers” (line 224). Diane and Lori were not able to
find the subgroup {0, 3}, however, until having considered, as Wendy had, what else
would need to be in a subgroup that began with all elements other than 3. Like Wendy,
Diane reasoned largely from closure: “If you have 1 you have to have 2, and if you have
1 and 2 you have to have 3” (line 251). Lori also reasoned from the inverse property,
noting that if you have 5, “you have to have 1” (line 272). Although we did not use the
phrase “subgroup generated by” until much later in the course, Diane, Lori, and Wendy

all seemed to pick up this sort of reasoning quite naturally.
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In their fourth interview, Diane and Lori used a tabular method of finding the subgroup
generated by one or more elements. They developed the method in response to such
questions on the second take-home exam. I asked them to explain the method for the

subgroup generated by (123) in Ds.

49 Diane: Well I know I need an identity, and I know I have the element (123), so I would
go ahead and fill this in as far as it lets me. [Makes an operation table with (1), (123).]

51 Lori: That’s going to give her a different element, and she does (132) (132). And then
she is going to add it next to it, to keep it ... It’s going to get bigger.

61 Diane: And now our table is done because we didn’t generate new elements in our
[table].

In other words, beginning with the identity and the generators, they constructed a table
and filled in its interior. Then they expanded the table, when necessary, adding a row and
column corresponding to each new element that appeared in the interior of the table.
They continued this process until there were no new elements to append to the table.

This process is entirely legitimate for any finite group and with any number of
generators. Furthermore, whenever the process stops, the resulting set is necessarily a

subgroup.

In summary, the students used operation tables, reasoning about the operations, and the
identity, closure, and inverse properties when constructing subgroups. Not surprisingly,
associativity was not a consideration. It is legitimate, of course, to assume associativity
when the operation considered on the subset is the same as the operation on the set as a

whole, but often that was not the case.

Summary. The students’ concept images of subgroup may be characterized as subsets
that are groups. Their reasoning about subgroups was dominated by the identity and

inverse, closure properties, as embodied in operation tables, and without sufficient
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attention to distinguishing among various operations called addition. For most students,
overcoming this tendency “addition is addition” required multiple sources of evidence,

including, for example, operation tables as well as careful reasoning about the operation.

Regarding the main interview question, these data provide additional insight into the
finding in the literature that students believe Z; is a subgrdup of Zs. There seems to be a
strong belief that Z; should be a subgroup of Zs and, similarly, that they are both
subgroups of Z, because they are subsets that are groups of their own right. Furthermore,
this belief is strong enough to overpower any suspicion that the operations should be
acknowledged as different. As for the inappropriate use of Lagrange’s theorem to
establish that Z; is a subgroup of Zs (Hazzan & Leron, 1996), the data and analysis
suggest that this phenomenon may not be a matter of confusing a theorem with a
converse but rather a matter of grasping a seemingly relevant theorem to support a

previously held conviction.

Isomorphisms
Isomorphism' was the theme of the second interviews, but Robert’s and Carla’s second
interviews focused on other topics. Nonetheless, the concept of isomorphism arose in
interviews with all the key participants, thereby providing sufficiently broad data. Again
this section begins with a conceptual analysis followed by detailed analysis of Wendy’s
second interview, which was particularly rich, and where, once again, the themes are use
of language and use of the operation table. The discussion then is broadened to include

other students.
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It is through the concept of isomorphism that students begin to gain a sense of abstract
groups. Thus, this discussion provides a way then to discuss students’ concepts of groups

and the nature and role of abstraction in such conceptions.

Conceptual Analysis

As discussed above, Wendy noticed during her first interview that sometimes a group’s
operation table can be made to look like another group’s table by renaming the elements.
This can happen, of course, only when the groups have the same structure, because, once
again, it is the operation that gives a group its structure, and the names of the elements
are structurally unimportant. When two groups have the same structure, they may be
considered “essentially the same,” and the groups are said to be isomorphic.

Furthermore, both groups may be seen as instantiations of the same abstract group.

It is a hard problem, in general, to determine whether two groups are isomorphic,
although it is often possible to see quickly that they are not, such as when they do not
have the same number of elements. When two groups are represented by operation tables
and if one believes that the two groups might be isomorphic, the naive approach is to
attempt to rename the elements of one group and perhaps reorder the elements in the
operation table until the table is identical to the table for the other group. The
formalization of this naive idea is somewhat involved. The renaming and reordering are
accomplished via a one-to-one function from one group onto the other. Then the task of
comparing the two structures involves comparing two kinds of calculations:

(1) performing the operation on the elements in the first group and sending the result
through the function, and (2) sending the elements through the function individually and

combining their images under the operation in the second group. If the results of the two
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calculations are the same for all pairs of elements in the first group, the function is called
an isomorphism. Formally, an isomorphism is a one-to-one function f from a group G
onto a group G’, with operations * and *', respectively, such that for all @ and b in G,
Aa*b) = fla)*' f(b). Two groups are said to be isomorphic if such a function exists.
Depending on the manner in which the groups are presented, it may be a very difficult

task to find a function that works.

The formal definition of isomorphism, although necessary, obscures the intuitive notion
that the two groups G and G’ are essentially the same and thus are examples of the same
abstract group. The formalization has other negative consequences as well. The idea that
two groups are isomorphic is symmetric, in that if G is essentially the same as G', then
clearly G' is essentially the same as G. In contrast, the formal definition is asymmetric,

in that one of the groups must be chosen as the domain of the function.

The core idea, once again, is that groups that arise in different contexts might actually be
different representations of the same group. This point of view provides an opportunity
for profound insight into the nature of groups. For example, although there are countless
representations of groups with three elements, all of them are isomorphic and thus all
represent the same abstract group. It is in this sense that it is legitimate to talk about Z3 as
representing the abstract group with three elements, or, more simply, to talk about the

group of order three.

Dr. Benson and I had as a goal for this course that students would begin to develop an
understanding of such abstract groups, so that they might begin to “see” an abstract group

“through” a representation. Once again, the only access to abstract objects is through
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representations or, more to the point, through multiple representations. An abstract
object emerges in a student’s thinking when he or she begins to see a symbol as a
representation rather than a thing-in-itself, but that is unlikely to happen “unless there are
other symbols that can be regarded as signifying the same entity” (Sfard, 2000, p. 79).
For small finite groups, an obvious mode of representation is an operation table. Thus, to
pave the way for these ideas in class, the students had been asked on the take-home
portion of the first midterm exam (Appendix B) to “fill out all possible operation tables
which make the set {e, a, b, ¢} a group,” where e was assumed to be the identity. The
students had found four such tables.'® Wendy’s tables are provided in Figure 11. It turns
out that first three tables in Figure 11 are isomorphic and thus represent the same abstract
group. The fourth table, on the other hand, is not isomorphic to any of the first three and
thus represents a different abstract group. In this way, there are exactly two abstract

groups of order four, just as there is only one group of order three.

Figure 11. Wendy’s tables for {e, a, b, c}

@ =

QO & o
QN Q o0 e

o oQ 8la
o0 0 QI8

e
a
b
c

To provide additional grounding for the concept of isomorphism and the ideas behind it,

the class spent several days renaming and reordering tables to show that they were the
same as other tables. For groups with four elements, they were asked to determine
whether they got one of the four operation tables they had identified on the midterm

exam (see Figure 11) and, if so, which one. Our hope was that, when asked to show that

' To be precise, there are exactly four such tables only if one assumes that the elements are to be presented
in a particular order. Because all students used the order e, a, b, ¢, this imprecision did not present a
problem.
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Z4, for example, was isomorphic to one of these four tables, the students would choose
different ones, and indeed they did. Then when one student showed that Z; was
isomorphic to Table 1 in Figure 11 and another student showed that Z; was isomorphic to
Table 2, they might conclude that Table 1 must be isomorphic to Table 2. Dr. Benson
and I thought that conclusions such as this would be obvious to students, based on their
intuitions about renaming and reordering, and indeed students did make such

conclusions.!!

During this work in class, a student had suggested the word congruent to describe the
relationship between two groups that could be made the same via renaming and
reordering elements in the operation table. This term suggests the intuitive idea that
establishing a correspondence between elements of two groups and comparing the
operations is, in a way, analogous to establishing a correspondence between vertices of
two geometric figures and then comparing the figures. Dr. Benson introduced the word
isomorphic to give a standard name to the naive concept of congruence that was
emerging in the class, and he indicated that the term congruent would be acceptable as
well. At the same time, he gave formal definitions of isomorphism and homomorphism

(see chapter 6).

Wendy and Isomorphisms

Wendy’s second interview took place just after the session in which Dr. Benson had
introduced the term isomorphic. 1had planned to discuss the concept of isomorphism in
the context of the several groups of order 4 that the class had been investigating. I was

getting ready to ask a question when Wendy put forward her own question:

"It is possible to formalize this kind of reasoning by proving that isomorphic is an equivalence relation,
but this would have required a formal version of isomorphism, which had not been introduced yet.
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Wendy: What exactly does the word isomorphic mean? Iso- meaning like, one? Does it
mean one?

Brad: Well, the etymology of the word, iso- means “same.”

Wendy: Same.

Brad: And -morphic means “having to do with form.”

Wendy: Okay. Same form.

Brad: Same form?

Wendy: Okay. [inaudible] I don’t like using a word if I don’t know what it means.

Brad: Right. But on the other hand, understanding what the word means, “same form”
and understanding how it relates to this stuff here, that’s ...

Wendy: It really relates.

Wendy: Because you can reorder.... The way I explained it to the class today.... Iam
kind of getting a hold on this. [Laughs] (Wendy 2) .

Dr. Benson’s introduction of the term isomorphic apparently had not been enough for

Wendy. Her initial confusion followed by her response “It really relates” seems to

indicate that my description of the etymology of the word was both necessary and

sufficient for her to attach the word isomorphic to the idea that she had been developing.

As is shown below, however, understanding isomorphic as “same form” was not really

sufficient.

Wendy then described how she was thinking about the reordering (rearranging) process.

24

26

28

29
30

Wendy: Well, the way that I do it.... Because people have.... One person in class kept

on putting up, asking a question that didn’t make much sense to me, but I explained my

way of saying, well, say we have Table 1 and Table 2 [see Figure 11], which we kept on
saying were the same,

Wendy: Okay? And we wanted to show that 2, Table 2 is like Table 1. But what she
kept on saying, was, “Well, can you rearrange it anyway you want?” And in a sense you
can, there are different ways to rearrange it to get it to look like Table 1. But you can’t
rearrange it anyway you want to make it look like Table 1, because the way I know how
to rearrange it is that you have to look at the diagonal.

Wendy: There might be another way, but this is the way that always works for me. By
looking at the diagonal you see that there.... And the reason why you can tell that it’s
different from this group altogether is because if you look at the squared ...

Brad: From your Table 4.
Wendy: From my Table 4, is that if you look at the squared elements, all the squared
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elements, e, a, b, and c squared equal the same thing. But in these three tables [Tables 1
through 3], two elements equal the identity e, and two elements don’t. That’s why these
three can be arranged to look like each other. (Wendy 2)

So, for Wendy, the differences in the diagonals indicated a fundamental difference
between the groups that the tables represented. Furthermore, she saw that the appearance
of the diagonal constrained the ways that one table could be rearranged to look like

another.

It is worth noting that Wendy’s approach is correct and insightful: The squares—in
particular the number of them and how often they each appear—provide essential
information (in the sense of “essence”) about the structure of a group. In the case of
groups of order 4, merely counting the number of squares is an accurate and efficient
discriminant between the two groups of order 4. The approach is somewhat general in
that if the number and multiplicity of the squares is different between two groups, then

the groups are not isomorphic, although the inverse is not always true.

At this point, Wendy had a sense that the groups presented by Tables 1 through 3 were
isomorphic. But actually showing they are isomorphic requires finding an isomorphism,
which for Wendy was a reordering and renaming that would make the tables identical, or

as Wendy said, “in the same form.”

34 Wendy: But to rearrange them, if you want to see whether they are the same or not, you
want to get it in the same form, hence being isomorphic. Same form. So if you want get
[Table] 2 to look like 1, if you look at.... €*is always equal to e, so you really, you can
leave e where it is. But in the first table you have o’ = ¢, b =c, and ¢ = e. That means
you want to make a” and b or these two elements in the middle of the table, their squares
to be the same element where the last, the last element in the table you want to equal &”.

35 Wendy: And if you look at the second table. These two elements, their squares equal €’
but you don’t.... You want, you want this square to equal the nonidentity square. A
nonidentity square. You know what I mean?

36 Brad: So you want a* to be other than the identity?
37 Wendy: Other than the identity. And you want &” to be in this position because that’s
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where it is in the first table.

39 Wendy: So by this case you know that a and ¢ have to switch. But as Steve [Benson]
pointed, as we figured it out in class today, that you don’t necessarily.... WhatIdid, is1
switched a and ¢, so the table would have, the new table to rearrange and rename to make
it look like Table 1 would be ¢, ¢, b, a.

Wendy’s language in the statement “you want to get it in the same form” (line 34)
suggests that, for her, the form depended on the arrangement of the elements in the table.
Rearranging a table would put it into a different form, and the goal was to get two tables
into the same form, “hence being isomorphic.” Wendy’s concept of isomorphism was
“dominated, at this point at least, by her notion of same form. Thus, her concept of

isomorphism depended on the particular arrangement of elements in the table.

Wendy used the table not only to determine which groups could be rearranged to be the
same but also to determine how to accomplish a reordering that would work. By
focusing on the fact that the two middle elements in Table 1 (a and b) had nonidentity
squares and the fact that a” = e in Table 2, she knew that something other than a in Table
2 must map to a in Table 1. One way to accomplish that was by switching a and c, but

Wendy saw there were other possibilities.

41 Wendy: But if you look at this table, e, b, ¢, a works, and that is because you can take out
a, the a row on this table and slide it up. And that way the diagonal would be e, a, a and
if you place a down at the bottom, if you kind of take it out, slide these up and put it back
on the bottom you’d get e, b, c, a and that works too. You can do it that way. So there
are two ways to do it.

43 Wendy: e, b, ¢, a works, and so does ¢, ¢, b, a.

Wendy’s explanations were partly based on manipulations of the table, such as switching
rows and removing a row and sliding others up. Her written work from class
demonstrates the e, b, ¢, a reordering and renaming process (see Figure 12). She
reordered Table 2 and then used a “renaming function” in order to end up with names that

were easier to compare with Table 1.
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Figure 12. Showing Table 2 is like Table 1
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The work in class had led Wendy to several insights about renaming and reordering
tables. She also had begun to ask more general questions and to sense possibilities for

broader conclusions.

47 Wendy: We can do it more than one way. And that was interesting for me. But what he
[Dr. Benson] was saying today that I really haven’t thought much about was that all you
have to show, to show that they are isomorphic, is one way, and that makes sense. You
don’t have to show all of the different ways that it’s isomorphic.

48 Wendy: But, I wonder how many different [inaudible] ways. Like, say you have Table 3,
which has a, b, or e, b, e, b in the diagonal, and you want it to look like the first one. 1
wonder how many different ways to reorder it before you rename there are. You know,
like, there were two ways to reorder 2 to look like 1 before you rename it. I wonder how
many there are for 3. I don’t know.

Thus, Wendy was concerned not only about whether a table could be rearranged and
renamed to be the same as another table but also about the number of ways that it could
be done, despite the fact that Dr. Benson had indicated that this was not necessary in
showing that two groups are isomorphic. Wendy’s question demonstrates noteworthy
mathematical instinct, for finding and counting the different ways to reorder and rename
a group is the key idea behind the set of automorphisms of a group—a topic that we did

not explore in class.
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 As the interview continued, I asked Wendy to write out operation tables for two familiar
groups to sce whether they were the same. In particular, I wanted her to compare the
rotations in Dy and a group the class came to call the military group, which consisted of
the commands “stand as you are,” “left,” “right,” and “about face,” abbreviated S, L, R,

.A, where the operation was following the first command by the second. I was interested
in how she would approach this task because, from a certain perspective, these groups are
obviously isomorphic, in that the former consists of rotational symmetries of a square and

the latter consists of the same rotations of a person as viewed from above.

“Before I told her the two groups I had in mind, she was concerned that she was going to
have to think of the examples. And even when I named two groups, she preferred to
copy the table from her notes rather than reconstruct it, suggesting that her reasoning was
largely external and based in the table. As she copied the military group from her notes,

she considered reordering it as part of the copying:

59 Wendy: Do you want them in any particular order? I presume not because we’re going to
rearrange it anyway. But it also makes it interesting, while I am just copying this
[inaudible], is that like, you.... It depends on how you set this up. You know what I
mean? Like what if I give like.... I don’t know. [inaudible] You can write the table
down this way or in this way. Rearrange ...

60 Brad: Youmeanas S, 4,L,Roras S, L, A4, R.

61 Wendy: Yeah, and that is going to make a difference to how you are going to have to
rearrange it to make it look like something else.

62 Brad: Okay. Butisit...? Whether you write it down as S, 4, L, R or S, L, 4, R are they,
are these different operations here? Are these different systems?

63 Wendy: No, it’s the same operation. But say for some reason my.... We are doing the
rotations in D;. Maybe if I wrote it this way, I wouldn’t have to rearrange it. It might
turn out to be the same. Or if I wrote this one, it might turn out to be the same. Do you
know what I mean?

Wendy anticipated that in her copying she had an opportunity to choose an order that

could make it unnecessary to reorder the table again. And even though she preferred to
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look at the tables, she saw them as representing something that was independent of the

order that elements were listed.

Wendy began filling out the table for the rotations in D, and quickly noticed a

connection:

64

65

66

67

68
69
70

71

Wendy: Okay, the rotations of D, are rotate 0, rotate 90, rotate 180, and rotate 270.
Rotate 90 and a 90 is rotate 180. Rotate 270, rotate 0. [Begins writing out Figure 13,
Table 1.] This is like an addition table.

Brad: Oh, really?

Wendy: I think so [inaudible] because you just.... Do you know what I mean when I say
it is like an addition table? Like if this was 0, 1, 2, and 3; 0, 1, 2, and 3, this is.... Ryis
the identity. And then it kind of rotates 1, it like moves up one.

Brad: Why don’t you write it down? What the table would be if you call them 0, 1, 2, 3
just like that?

Wendy: Under addition?
Brad: Well, however you are thinking about it.

Wendy: I am thinking about it like an addition table. 0, 1, 2, 3. [Begins writing out
Figure 13, Table 2.] Uh oh. I am thinking about it mod 4, a Z, addition table.

Wendy: You know how you always kind of ...? When you are filling out a table if you
pick up a pattern, if it clicks with something else? Like this is how it clicked with me.
And that’s how I know how to fill out my table.

Figure 13. Wendy’s connection: Rotations in D, as Z;

@ [Ro Ry Riso  Rane
Ry |Ry Re Rige Ry
Ryy |Roo Riso Rao Ro
Rigo |Riso Rono Ro Roo
Ry [Rane Ro Reo  Riso

Wendy noticed the connection while working in the table, not by reasoning about the

rotations or addition modulo » or abstractly about the groups. This point becomes clearer

as the excerpt progresses. She noticed how the elements rotated and moved up one

position in the interior of the table (line 66). Furthermore, her surprise in line 70

indicates that it was not until she was carrying out this rotation process to construct the
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addition table for {0, 1, 2, 3} that she realized that the operation was not addition, but

addition mod 4.

To get some clarity on her thinking, I asked her why she switched to addition mod 4.

75 Wendy: It wouldn’t be closed if I turn it, if I didn’t switch it to mod 4.
76 Brad: Okay, but ...why is the connection here? '

77 Wendy: Because with addition, modulo addition, when you have, the first row is always
going to be the identity. Row or column is always going to be the identity. And then
when you fill out the next row, it always increases by one, the following row, it almost
like cycles. It’s almost like a turn [inaudible]. Almost like when we did the
permutations. Let’s see if I can remember the forms. I mean the notation kind of screws
me up. It’s like that notation. Permutation notation. Right?

78 Brad: Okay. How, what?

79 Wendy: So, 1 goesto 2,2 goesto 3.... Well, I have.... Itshould be 0, 1, 2, 3, but if we
are going to look at this case. But, same difference. 0 goesto 1, 1 goesto 2, 2 goes to 3,
3 goes to 4, 4 goes to 1. Same thing as if you wrote Ry, Rop, Riso, and Ryz. Same thing.
R always goes to.... R goesto.... If you look at the rows and columns, Row 0 goes to
Row 90, Row 90 goes to 180, Rotate 170 [270] would go back to zero, and it does this in
all of the columns. Like, rotate 90 goes to rotate 180. It kind of moves up.

Wendy’s explanation supports the point that she was reasoning from the table, for her
description was about how the elements move around the rows and columns of the table
and included no discussion of the meanings of the operation in Dy or the structural
aspects of the group. Wendy’s statement “the first row is always going to be the identity”
(line 77) suggests, however, that Wendy may have thought of the whole row as actually
being the identity, rather than indicating how the identity acts on the elements of the
group. Wendy’s comparison with permutation notation is problematic, based perhaps
only on notational similarities between the rows in the operation table and one of the two
methods the class used for representing permutations. On the other hand, the idea of
elements of the group acting on the group as a whole is yet another seed of an important

mathematical idea. Furthermore, developing the connection more fully requires strong
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connections with permutations, once again demonstrating Wendy’s good mathematical

instinct.

Moments later, when Wendy compared these tables to the table for S, 4, L, R, she first
wondered whether she had made a mistake in copying the table but soon suggested that

switching things around might make it work.

89 Wendy: Because if you noticed in these two tables [Figure 13, Tables | and 2], you can
write the same permutation notation because if you look at the diagonal again, it has the
same form. These are in the same isomorphic form. They’re iso-.... I don’t know how
to use the word right yet, but.... These have the same form right now. The way that
these two are set up, D, and, [ don’t know, military—I don’t know what you want to call
it—this military form. It’s not cut up in the same form, yet, that’s the table.

Thus, for Wendy the form was the table, a perspective that may have made it difficult for
her to separate the notion of isomorphism from the particular table (and its arrangement)
used to represent a group. She had a sense that there was something that stayed the same

under rearrangement, but she did not yet have the language for it.

As the interview continued, Wendy reaffirmed that her key to whether two tables were in
the same form was first to look at the diagonals, and her goal was to try to get the
diagonals to look the same. Iasked her to do that with the military group, to try to make

its diagonal look like the diagonal of the rotations in D,.

101  Wendy: Well, I see that rotation 0 is the identity in this table, and it goes.... In this
diagonal, I am going to try to set this diagonal up to look like this diagonal and see if
everything else will fall into place. In here it’s identity, rotation 180, identity, and
rotation 180. So am going to see, since S is the identity in this table, I am going to see if I
can get the same thing: the first and third squared elements to equal the identity. Like
here it’s the second. So I am going to try to see if I switch 4 and L, if I can make the
tables look the same.

As Wendy tried to carry out this plan, she stumbled for a moment because she tried to
switch the row and the columns at the same time but then completed the rearrangement

(Figure 11, Table 3).
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Figure 14. Wendy’s tables for other groups of order 4

O IR Ry

Ry |Ry Ry
Ryy |Rso Rigo
Rigo |Riso Raro
Ry |Rao Ro

Q@ *|s 4 LR
SIS 4 L R
Ald s R L
Lz R 4s
RIR L s 4

She next renamed Table 3 to E, 4, B, C, yielding Table 4. Throughout this vprocess, she
paid careful attention to the diagonals, frequently checking the correspondence along the

diagonals and often filling out the diagonal of the table first.

Her process began by making each calculation and then each translation, but as she
continued, the process became increasingly abbreviated. She also introduced a function f

to describe the renaming from Table 3 to Table 4:

116  Wendy: I am saying that there is a function almost that puts this table to this table. And T
am going to call that function.... And the function brings S.... Let’s call it the renaming
function, and it puts Sto E, L to 4, A to B and R to C. And what I realized as I was filling
up this table, that when, if you have S times L for instance it is going to equal L, and
instead of figuring out.... All you have to do is look at the function of L, which is 4, to
figure out, to rename it, to this ...

I asked her to explain how this function helped her abbreviate the procedure:

124  Wendy: So the function that we’re calling the renaming function is up here. So R brings,
R isrenamed to C. So almost f{R) is going to equal C. So that’s why I was just saying R
is going to be equal to C. '

It took Wendy a long time to say this, and she had trouble articulating the way that the
function supported the sense of equality between the groups. In particular, saying

“almost f{R) = C” 1s redundant, whereas saying “R = C” omits the role of the function
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entirely. A more accurate description would be “almost R = C.” The function establishes

the “almost” precisely: AR) = C.

She completed her calculations and described the result:

126 Wendy: So that’s the new form [Table 4] after I reordered it and renamed it. So reorder
and then rename.

127  Wendy: Here [Table 1] I am just going to rename. And this I am going to use as my
function. So rotate 180 is equal to B. Good, it’s working. [Both laugh] Rotate 270 is
equal to C, rotate 0 is equal to E. Rotate 270 is C, rotate 0 is E, rotate 90 is A4, rotate 180
is B, rotate 0 is E, and rotate 90 is A. And these two [inaudible] the same. By renaming,
by just renaming D, and by reordering and renaming the military one you can get them to
hold the same form.

128  Brad: That’s nice.
129  Wendy: Isn’t that nice?

Thus, Wendy described Table 4 as the “new form” of Table 2 and immediately went on
to rename Table 1 to create Table 5. Upon completing this process, she summarized the
relationship between Dy and the military group and also expressed some satisfaction in

what she had shown.

At this point, Wendy still thought of the form as the particular arrangement of elements in
the table. The group did not have a form that was independent of the table, but rather the
groups could sometimes be made to “hold the same form” by the processes of renaming
and reordering. In other words, the form was not a property of the group but something

you could do with the group.

Wendy explained further:

134  Wendy: Because if you are looking at the table, the table is like a very specific form....
Like.... You know how we said that these are kind of alike, before we really started
asking this isomorphism stuff. There are different arrangements you can have of the
same table. Like these two [Tables 2 and 3] we are calling the same table, but they are
Jjust different arrangements of the same table. So, technically these would be the....
These are different arrangements of the same.... Like these have different forms, but
they are really the same operation. So this takes form into account, this permutation.
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So the operation and the fable are independent of the arrangement and they take form in
particular arrangements of the table. The permutation “takes form into account” by

specifying the necessary rearrangement to get tables into the same form.

I asked Wendy whether the groups represented by the tables in Figure 13 and Figure 14

were all the same.

138  Wendy: Yeah, they are the same because you can rearrange them to be the same. They
are definitely the same. But when you have it, if you have the original military one, the
original, and this is D,, they are different.... These [Tables 1 and 2] are in different
forms of the same, what would you call it, the same group. Like it has the same.... Or
actually, I don’t know how you’d say it. They have the same form. They are iso-.... I
don’t really know.... I have to make this.... I think this is going to be the.... Once I
make this statement right here I’ll totally understand what I am doing.

Wendy saw that many of the groups of order 4 were essentially the same. As she tried to
describe this, however, her use of language evolved from “different forms of the same,”
to “same group,” to “‘same form.” She almost éaid “isomorphic” but held back and
instead revealed personal insights about the relationship between her language and her
understanding. Perhaps she had a sense that the word isomorphic should be about the
group and not about the particular order in which the elements are listed. In any case,
this seems to have been a significant moment, for her attention turned from the processes

of renaming and reordering to resolving her language difficulties.

139  Wendy: What I am trying to understand right now is whether or not these have the same
form, or if these have the same form [Tables 1 and 2 versus Tables 1 and 3]. Can you say
that these two have the same form, or can you say that these two have the same form?
‘Cause I understand that these two [Tables 1 and 2] are the same tables once you
rearrange it and rename it, but without rearranging it and renaming it, do they have the
same form? They don’t. Well, they do because you can rearrange it to have the same
form. ButIjust don’t know if you can say that when they’re not the same yet.

140  Brad: When it’s not obvious.

141  Wendy: When it’s not obvious. Do you know what I mean? So what can you say about
these two tables and then what about these two tables? [Tables 1 and 2 versus Tables 1
and 3.] These two [Tables 1 and 3] have the same, they’re in the same form, right there
and then. So can you still say these two [Tables 1 and 2] have the same form? I guess
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you can because they do have the same form it is just not in it yet. It’s just disguised.

Wendy saw that Tables 1 and 3 had the same form, demonstrating that that the form (and
hence the abstract group) was independent of the names of the elements. She was
conflicted, however, as to whether the arrangement of the elements determined the form.
She saw renaming and reordering as different processes with different consequences.
Renaming left the form intact, whereas reordering seemed to change the form. Wendy
was uncomfortable with this point of view, however, perhaps because she had a sense

that the order in which elements were listed in a table ought to be unimportant.

142 Brad: Here is a question to ask about it. Does...? You might ask whether the tables have
the same form, is one way of asking it. But another is to ask sort of more abstractly, do
the groups have the same form?

145  Wendy: See, the tables don’t have the same form. That’s what I was trying to get at, but
the groups do. Like they’re, they definitely, these elements under their operations have
the same form, because it’s just the way you made up your operation table that you
disguised it and made it look like it didn’t have the same form. But if you take it and
erase it, like we did, and like reordered it and renamed it, it really does have the same
form. You can see it.

The distinction between the form of the group and the form of the table was helpful to
Wendy. At this point it seems as though she wanted the phrase same form to be tied to
the group but not to the particular arrangement in the table. But then she became

concerned about her work on the midterm exam.

147  Wendy: Like we were saying with any 4-order table in our take-home exam, we had, we
had that there are 4 different.... I don’t.... Do you remember how, what exactly the
question is that he asked us? Because I am curious to know whether we actually
answered the question right on the exam or not.

148  Brad: The question was something like, “Assuming you have four elements, ¢, a, b, ¢
where e is the identity, write down all the group tables that you can.”

149  Wendy: All the.... So it was right that we wrote all the different arrangements, because
there are four different arrangements of this group table. Like these are all group tables
you can fill out.

151  Wendy: But we figured out that this one is different. These, all three of these are the
same, can be rearranged to hold the same form, if you rearranged them and renamed -
them.
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Wendy was reassured that her work on the midterm exam had been correct, but she had a
sense that there was a deeper question that would also incorporate her sense that three of

the four tables were the same.

153  Wendy: But, if you really look at the form and see which ones are actually different....
But I want to know what question.... And I think maybe he asked this. Which, what
would you ask to get the answer, to get the two different forms?

154  Brad: You mean.... On the, the way the midterm was worded the answer was four
different tables. Here they are.

155 -Wendy: Right, different arrangements. What would you ask...? How many congruent
or...? What question would you ask to only get...? I want to try to figure out what
question you would try to ask to only get two.

Again, the interview took a new direction. Wendy knew an answer for which she could
not formulate a question. In referring to the “two different forms,” she was talking about
abstract entities that are independent of both the names of the elements and the order in

which they might be listed.

She continued trying to formulate the question:

157  Wendy: These are all little links now. I am trying to figure out exactly what’s going on.
So what is this actually called? Like, what are we actually doing? Like, maybe list all....
List the different forms.... List the tables.... [inaudible] Maybe ...

159  Wendy: Show the different tables of different forms? Or [inaudible] form of order 4....
Of a group of order 4.

I asked Wendy what if the question on the exam had been to write down all the groups of
order 4 and began recalling some of the many groups of order 4 we had discussed in

class. Wendy interrupted:

163  Wendy: I think there is an ... like endless amount of tables you could write down.
[inaudible]

164  Brad: Endless, if ...

165  Wendy: If you consider all of the different operations, the different.... I am sure there are
tons of different 4-like element groups.

168  Brad: The idea of having to write down this many is kind of annoying, maybe.

169  Wendy: Yeah, because there are all the same, most of them are the same thing.
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170  Brad: They are the same in what sense?

171  Wendy: It breaks down to two forms. Like, if you look at any, every single one of those
4 ordered tables, there are only two forms that they can have. This form or pick any one
of those three forms. Because you can.... There are only four different arrangements of
those four.... This is what we figured out in the exam. If you take any 4-ordered group,
it has to hold one of these arrangements. Okay? But, so, we realized when we started
working with isomorphic groups that these are just different arrangements.... Like you
can.... Say you wrote down this form, you can arrange any of these to look like this one.
So really these three are the same, have the same form. And so if this is one form and
this is one form because there is no way you can make it look like this because it has
different elements in the diagonal. But you.... It hasto.... Any 4 element, 4 ordered
group will either hold this form or this form.

It is readily apparent that Wendy had developed some conviction about the idea that there
are two groups of order 4. Furthermore, her use of the word form was becoming less tied

to the to the table and more associated with the abstract groups of order 4.

I asked how she might reword the question from the exam:

173  Wendy: List all of the arrangements of a 4-ordered group ... which have different form?
Which have a different form? Would that narrow it down?

She considered using the words isomorphic and congruent but eventually stuck to the

word form.

189  Wendy: Or you could even say, How many forms are there? [inaudible] And what are
they? And then it could be any combination of these 2.

190 Brad: You mean Table number 4 and ...
191  Wendy: Any one of those [Tables 1 through 3].

Thus, by the end of this episode Wendy had a firm conviction that there are two groups of
order 4. A glance back at the beginning of the interview reveals, however, that she
already had a sense of this when the interview started. What had she learned during the
interview? She had changed her use of the word form so that it was no longer tied to the
particular arrangement of elements in the table, but it is hard to point to any other

learning.
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During the interview, the word isomorphic had not been very helpful to Wendy, although
it seems likely that she would still say that isomorphic means “same form.” She
preferred to use the word form, perhaps because neither the terms isomorphic nor
isomorphism provide appropriate syntax for what she saw as the essential idea. When
one says that two groups are isomorphic, what is it, then, that the two groups have in
common? The answer is something like “their essence” or “their form” or “their

structure.” The term isomorphic is not necessarily helpful.

During this interview, Wendy was simultaneously developing concepts of the two
abstract groups of order 4 and developing language to talk about them. This process
involved separating her concept of the groups from the names of the elements and also
from the order in which elements were listed in the table. She spent most of the interview
generalizing her use of the word form to accommodate this abstraction. It appears that

these processes can take a good deal of time and mental effort.

Mathematical habits of mind. The most prominent feature of Wendy’s second interview
is that she had noticed a profound mathematical idea: There are essentially two groups of
order 4. During this interview, she had a sense that this idea was separate from the names
and arrangement of the elements in the tables, but her reasoning was so tied to the tables
that she had trouble making the separation. Furthermore, she was going a step beyond
this observation and in doing so adopteq an inherently mathematical point of view. She
wanted to know what question to ask in order to get the answer, “There are two groups of
order 4.” In other words, she not only saw the mathematical elegance of this statement,

she also wanted to be able to ‘talk about it.
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In retrospect, perhaps I should have been more helpful in her struggle, for it is highly
unlikely that Wendy would have been able to phrase the question in anything like the
conventional mathematical way: “Up to isomorphism, how many groups of order 4 are
there?” (see Fraleigh, 1989, p. 112; Hungerford, 1974, pp. 76, 82). The subtlety and
difficulty in the idea are perhaps underscored by the fact that the phrase “up to

isomorphism” is not an obvious metaphor.

This episode is noteworthy for another reason: It illustrates some inherently mathematical
habits of mind. Throughout Wendy’s interviews, her calculations were sometimes slow
and seemingly unaided by mathematical insight. At the same time, she often showed
good mathematical instincts and asked deep mathematical questions that sometimes led
to imiaortant insights. For example, she decided that 0 could not be an element of a group
if the operation was multiplication.'” She focused on the squares of clements in a group
as an indication of something essential about the group. She demonstrated interest not
only in how to rearrange an operation table but also in counting the number of ways that
it could be done. After concluding that Z; is not a subgroup of Z, she looked at other
possibilities, including Z,. She chose a useful name, 273, for a subgroup of Zs and then
decided to investigate whether 4Z; was a subgroup. She sought to understand the
meaning of specialized terms, such as isomorphism, and was conscious of her language
difficulties. In a later interview, she noted, “If you operate any two-cycle groups that
don’t equal the identity, it is going to equal a three-cycle” (Wendy 4, line 481),

demonstrating seed of a good idea here: In S3, the product of any two (distinct) two-

12 Wendy did not distinguish among various kinds of multiplication.
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cycles is a three-cycle. Furthermore, the observation generalizes to S,, although it is

necessary to add the hypothesis that the two-cycles overlap.

Habits of mind such as these ought to be cultivated. They might be missed, however, in a
traditional class that does not encourage students to articulate their nascent ideas. From
the ways that students are typically assessed and from the ways that mathematics texts are
written, the implicit message is that in mathematics what is valued is the result of
thinking, not the process of thinking. The case of Wendy suggests the potential of

changing the message.

Other Students and Isomorphisms

As described above, the concept of isomorphism was introduced informally as a process
of renaming and reordering operation tables, and the formal version was introduced later.
The interviews and the students’ exams together provide evidence that the connection
between the formal and informal conceptions was not made very well. The students in
general had a good intuitive sense of when two groups were isomorphic, though they

>N 11

‘were often drawn to other language, such as “similar,” “corresponding,” “the same as,”
“equal,” and, particularly, “congruent.” Their concept images were dominated by
patterns and relationships they saw in operation tables and in renaming processes, which
they were sometimes also able to imagine without operation tables. The formal concept
definition, in contrast, was rarely evoked. In a nutshell, the students demonstrated
shallow understanding of “isomorphism” as a function with particular properties but rich

understanding of “isomorphic,” including the ability to see two different operation tables

as being the same abstract group. To illustrate this result, I describe below the definitions
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the students provided on their final exams and the ways in which they used the operation

tables to support their informal understandings.

Definitions. On their final exams, the students’ definitions of isomorphism were not very
close to the formal definitions that had been provided in class. In particular, although
Carla and Robert noted that an isomorphism is a function, none of the key participants
explicitly included a condition such as f{a*b) = fla)*'f(b). Instead, most students gave
approximate informal definitions of isomorphic, using phrases such as “congruent” and

“renaming and reordering.” Lori’s definition was the least formal:

f) isomorphism Two groups are isomorphic to each other, if the groups are
similar or congruent. This means that there are two totally different groups that
can be renamed and possibly reordered to be represented exactly the same. The
two groups have the same number of elements, they have an identity element that
acts similarily and they have elements that have similar inverses. In other words,
the two groups are completely congruent after renaming and reordering.

Robert’s definition, in contrast, was essentially correct, although different from what had

been presented in class:

) An isomorphism is a special kind of homomorphism. It isa 1-1 and onto
function. Things that are the same after renaming and reordering are said to be
isomorphic to each other. Note: a homomorphism does not need to be 1-1.

In class, the concept of homomorphism had been introduced as a generalization of the
formal version of isomorphism. Robert had reversed the relationship, making possible a
very simple definition of isomorphism. Furthermore, his definition combined formal and
informal descriptions clearly and correctly. In fairness, all key participants except Lori
provided answers elsewhere that suggest they knew that an isomorphism is a one-to-one
and onto function that is a homomorphism. Only Robert demonstrated such clarity when

asked to provide a definition of isomorphism.
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Renaming and reordering. The act of rearranging the table was procedurally difficult to
carry out and fraught with possibilities for error. For example, it was tempting to try to
reorder the columns and rows at the same time without coordinating the two. Renaming
and reordering were particularly difficult when the two sets of names overlapped. To
overcome this difficulty, some students preferred to rename both groups to some neutral
representation, although this approach brought the new difficulty of determining which

element “acted like the identity.”

Renaming sometimes presented conceptual difficulties as well. I asked Robert, for

example, whether he could rename the {0, 2, 4} table, just as he had the {0, 3} table.

279  Robert: Yeah, we could maybe call the.... But the thing is, if I had renamed these 1’s in
this one, then we wouldn’t have had a group under mod 6, like addition under mod 6.
But if I was going to do something similar to that, I would just call this 0, 1, 2.

Thus, renaming can present cognitive obstacles when the operation has a meaning
because the meaning of the operation must change to accommodate the new names. This
obstacle is related, of course, to Wendy’s concern about attaching the name 2Z; to the
subgroup {0, 2, 4} in Zs. In mathematical discourse, one talks about isomorphisms (and
homomorphisms) as preserving the group operation, and abstractly that is accurate.
There is a sense, however, in which renaming modifies the operation, or at least the way

one must think about it.

Seeing form in the table. Tables were very present in the students’ concept images of

isomorphism, particularly for groups of order 2, 3, and 4. Without prompting from me,
the students often noticed, usually based on patterns in the table, that a group given by

one table was isomorphic to another group. Carla noticed, for example, that both a group
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whose elements were the sets {1, 3} and {5, 7} and the subgroup {0, 2} in Z4 could be

renamed to what she might have called the {e, a} group (see Figure 15).

97 Carla: So if we rename {1, 3} to e, the set {1, 3} as e, and the set {5, 7} as a, we will
create a table that looks like e along the diagonal that goes like this, and a along the
opposite diagonal, which is a group because that’s.... Well, for one thing it is one of the
tables we came up with when we talked about possible groups for a two element set. And
for another thing, we see that each of the elements appears only once in each row or
column, which tells us it’s a group. And we see that it contains the identity, that a is its
own inverse, e is its own inverse.

116  Carla: So again if you rename 0 to e and 2 to a, you end up with e’s on the diagonal and
a’s on the opposite diagonal, just like the table of the left coset.”

Figure 15. Carla’s groups of order 2

x | {13} 5.7 lo 2 le a
{1,3} | {1,3} {5, 7} 010 2 ele a
{57y 1 {57y {1,3} 012 0 ala e

From the way Carla discussed the diagonals, it appears that she was noticing visual
patterns in the tables. When she noticed these patterns, she did not use the word
isomorphic, yet when I asked her what was the relationship between the first two tables in
Figure 15, she responded immediately and firmly, “They are isomorphic.... Yeah.

Congruent” (lines 118, 120).

For Wendy, the diagonal of an operation table was a distinguishing feature in groups of
order 4. The diagonal was particularly salient for other students, as well, particularly
when it contained only the identity element. Carla was momentarily convinced, for
example, that a group of order 3 should have the identity along the main diagonal, which
is impossible for a group of order 3, although it is necessary for groups of order 2 and

works for one of the two possible groups of order 4.1

13 Carla’s use of the phrase “the left coset” is explored in detail in chapter 6.
' These statements assume that elements are listed along the rows in the same order as along the columns.
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Diane noticed similar relationships in her fourth interview, pointing out that two groups
were isomorphic to the group she called e, a. At the end of the interview, as she gathered
her papers, she looked at two operation tables and said, “Oh, wait, wait, wait. These are
isomorphic!” (line 551). When I asked her to think also about Z,, she asserted, “It has
only one possible table for all groups with 2 elements.... So anything of order 2 will be
isomorphic to each other” (lines 561, 563). Thus, Diane had begun to develop a concept

of the abstract group of order 2.

Robert naturally renamed group elements to representations that were more familiar, and
he did this even in his first interview, before there had been any explicit attention to the
idea of renaming. For example, while he was considering whether {0, 3} is a subgroup
of Zs, he noted in passing that “You couldn’t call it Z,” (line 189). Because his comment

suggested he saw a connection, I asked him what Z, looks like.

193  Robert: Just replace all these 3’s by 2’s. Oh no, what am I saying? Replace all of these
3’s by 1’s. So that’s what it would look like.

When I pursued this connection again later, he disagreed that the subgroup {0, 3} was
“like” Z,. Instead, it had reminded him of Z, only because it had two elements (lines

220-225).

Robert also eventually renamed the table for the subgroup {0, 2, 4} in Zg as {0, 1, 2} and
noticed that the table was then the same as Z;. The process led him to a more general

conclusion:

318  Robert: All right, cool. Well, I am thinking now that if you have a 3-element set, no
matter what we call the elements, you get the same type of table.

It seems likely that Robert was seeing the form in the table. He frequently noticed

symmetries, “cycling,” and other patterns in the operation tables, as did all the students.
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Robert was alone, however, in calling such features “geometric,” and saw even more
surprising connections, such as analogizing tables to matrices and renaming to
performing row operations. Independent of Robert’s unusual associations, it is clear that

patterns in the tables were involved in his emerging concept of abstract groups.

I interviewed Diane and Lori on the concept of isomorphism the day before I interviewed
Wendy and before the word isomorphic had been introduced. Nonetheless, their work in
class had provided sufficiently rich experience for me to investigate how they were
thinking about the ideas. They were convinced from their work on the midterm exam
that their four tables exhausted the possibilities for tables with four elements.
Furthermore, from their work renaming and reordering other tables with four elements,

their conviction had become deeper:

5 Lori: Right. These are the only four, no matter what ... [inaudible]. No matter what
group of order 4 you make a table of, it’s going to be congruent to one of these four after
renaming them and reordering, I think.

Based on this knowledge, they tended to fill in tables based on the patterns and
sometimes provided justification for their actions. At the start of the interview, however,
they were skeptical as to whether any of their tables were “similar” or “congruent” to
each other. Nonetheless, they proceeded to rename and reorder tables; eventually
showing, correctly, that three were isomorphic. I asked them what they thought about the

three tables that they had shown to be isomorphic.

411 Diane: I think they are the same table. They could be the same table. Like they came
from the same abstract table.

413  Diane: Well, I mean, just because you rename and reorder something doesn’t change
what it means, what it defines. Like you can call number 1 @, you can call it whatever
you want to, but it still stays number 1.
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So for Diane, neither the names of the elements nor the order mattered for what the table
“means, what it defines.” Through or in each of the three tables, she saw the same

abstract table, where what matters is “the value that [the clements] hold” (line 431).

The abstract group. The fact that several students used the {e, a} group as a canonical
representation of a group with two elements conflicts with my suggestion that that the
metaphor “Z; is the abstract group with three elements” (Lakoff & Nuiiez, 2000,
chapter 3) is backwards. For these students it may be that they were noticing
isomorphisms not with the abstract group with two elements but with the {e, a} group.
In order to notice an isomorphism, however, they must have had some notion of the
abstract group, yet it is possible that what they were seeing was patterns in the table

rather than the abstract group.

On the one hand, using {e, a} as the canonical representaﬁon of the two-element group
makes perfect sense because then the letters can be anything. One could argue that the
letters are the names of the elements, but some students saw the letters as variables that
can take on any “values.” On the other hand, the representation {e, a} does not provide
any support for thinking about the underlying binary operation. In fact, it is hard to
imagine an underlying mechanism that would give meaning to an operation on elements
that themselves seem to carry no meaning. In contrast, Z;, as {0, 1}, brings plenty of
meaning for the operation. In fact, Z, brings so much baggage from operations on

integers that it is hard to think of {0, 1} as representing something else.

Another explanation is that it may be easier to see (and remember?) {e, a} as an object.
Diane demonstrated this possibility by calling the group “e, a, a, e,” listing all the entries

in the interior of the table (Interview 4, line 559). The table clearly supported object
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conceptions, for the students thought of it as something that could be acted on as a whole,
compared as a whole with something else, and manipulated as a whole (via renaming and

reordering) in ways that do not change its fundamental nature.

Comparing this result to the findings about the concept binary operaﬁon reveals a
contradiction. On the one hand, Dr. Benson and I introduced diamond to represent a
generic (particular but unspecified) operation, intending that it would stand for any
operation. We found that the students saw it as a new operation, distinct from whatever
addition and multiplication might make sense on the set. Yet, on the other hand, we also
introduced a new group on the letters {e, a}, notationally distinct from familiar groups, in
hopes that students might notice that it is “essentially the same” as some of those familiar
groups. We found that students treated it, in a sense, as a generic group, capable of

representing any of a number of specific groups.

So who is right? What is the difference between a generic object in a category and a new
unfamiliar object in that category? Are the two cases different? In the case of the
abstract group with 2 elements, is there a way to represent it generically? Is it better to
consider Z, or {e, a} as the canonical representation of the abstract group with 2
clements? The data and analysis above suggest that it might be most profitable to
imagine the abstract group with 2 elements as something that lies in a coordination
between Z; and {e, a}. That way, both process and object conceptions are supported,

and, more importantly, neither representation is seen as the group.

Summary

The students developed rich, nuanced, and largely informal concept images of

isomorphism, based on processes of renaming and reordering operation tables. They

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



217

used operation tables to see when two groups were isomorphic and to construct
isomorphisms. These processes supported the emergence of concepts of abstract groups,
independent of the names of the elements and the order that elements were listed in the
operation tables. Through these experiences, students came to see that there is one group
of order 2, one group of order 3, and two groups of order 4. These results suggest that the

operation table provides a viable experiential root for the concept of isomorphism.

Students had considerable difficulty, however, articulating formal versions of the concept
of isomorphism. No doubt, this result stems partly from the manner in which the
concepts were introduced (first informally, then formally),’ but it seems unlikely that it
would be productive to introduce the formal definition without having developed some
sense of what was being formalized. Thus, the pedagogical problem is what might be
done to help students connect these informal understandings with the formal version.
Among the concepts investigated in this study, the concept of isomorphism is perhaps the
most striking example of the general problems of connecting formal and informal
conceptions, learning to use quantifiers, and learning to reason from definitions. I return

to these issues in the chapter 8.

Groups and Abstraction

Most of the analysis above discusses the students’ understandings of the groups Z, and
groups given via operation tables. As was mentioned in chapter 4, the students in this
class also had experiences with U, D,, S,, as well as other standard and nonstandard
examples. There were less data on the students’ understanding of these classes of groups

than on Z,. Nonetheless, there were sufficient data to support a few observations.
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Regarding the groups U, the observations are similar to what was detailed above about
the groups Z,. The students had a tendency to view the elements of U, as though they are
integers, whereas a more sophisticated point of view is that they are equivalence classes
of integers, or that they are merely arbitrary names for an abstract group.. The students
often were not immediately sure of the operation in U, and carried properties of the

elements as integers over into U,.

Students often had frouble writing down the elements of the dihedral groups D3 and D4
and were even unsure of how many elements there should be. Robert, for example,
described 12 elements of Dy, not realizing that he had listed 4 elements twice. This was
particularly true when the groups were represented as geometric transformations, using
letters, such as Rgo for a 90-degree rotation and H for a reflection about a horizontal axis.
The students also had difficulty when the groups were represented as permutations of the
vertices, although, in this case, the difficulty seemed to have more to do with the

permutation notation.

The students took a long time to become comfortable with the cycle notation for
permutations in S, and openly expressed frustration early in their learning. Wendy, for
example, complained, “This notation drives me nuts.... It scares me. Do you see how
intimidated I am right now?” (Interview 2, lines 218-220). The students had trouble
maintaining the distinctions between the meanings of the array and the cycle notations,
and the notational confusions were sometimes compounded by the similarities between
the array notation and the rows of an operation table. As the course progressed, however,
all the key participants used the cycle notation fluently and with few errors in finding

subgroups, cosets, and quotient groups in D during their fourth interview.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



219

The data and analysis suggest that with growing fluency, students’ expectations are more
often fulfilled, in the sense that they know ahead of time what the operation table ought
to look like, whether a subset is likely to be a subgroup, or whether two groups are
isomorphic. This idea makes good theoretical sense and seems to fit the data in this
study, although it would be hard to verify empirically because expectations often remain
implicit. This observation suggests that the literature on the learning of abstract algebra
would benefit from a notion called something like group sense, analogous to number
sense (Greeno, 1991; Markovits & Sowder, 1994) or symbol sense (Arcavi, 1994), to
describe particular kinds of fluency and proficiency that students might develop as they
gain familiarity with the examples, notations, language, and results of group theory and

the objects and properties that they are supposed to represent.

The difficulty that the students experienced with the standard examples of groups
presents anéther pedagogical dilemma. On the one hand, abstract algebra is about
abstraction, intended to rise above specific examples to see generalizations that apply to
whole classes of mathematical systems. On the other hand, the students spent much of
their time in this class making sense of specific examples, such as Zs and D;, and, more
generally, classes of examples (Z,, U,, D,, S») that were not available to them previously.
The number systems of school mathematics (natural numbers, integers, rationals, reals,
complex numbers) do not seem diverse enough for