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PREFACE

Tropical forests are a critical and diverse ecosystem. They harbor a large proportion 

of the Earth’s biodiversity, provide natural chemicarcompounds that form the basis of 

medicine, provide food and shelter for indigenous peoples, account for one-third to one- 

half of terrestrial primary productivity, and contain as much as 40% of terrestrial 

biomass. Tropical forests have been called the “Lungs of the World”. However, they are 

disappearing due to widespread deforestation and logging, causing significant changes to 

the biological, physical and social environment within the tropical forest biome. Large- 

scale tropical deforestation can alter the local carbon cycle, hydrological cycle, and even 

the climate. In addition to the direct impacts of deforestation and logging, secondary 

impacts include an increase in tree mortality rates and susceptibility to fire surrounding 

the areas of disturbance.

Tropical deforestation is, at times, thought of as a one-way process. However, many 

areas that are cleared cannot support agricultural use for extended periods and are 

abandoned and revert to secondary forests. Secondary forests are estimated to occupy 

over 30% of closed tropical forests and almost 20% of the open tropical forests. Some 

studies indicate that these percentages will increase substantially over the next 50 to 100 

years. Despite the widespread extent of secondary forests in the tropics, the biophysical, 

ecological, and social processes of succession are not well understood. Clearly, a better 

understanding is needed.

IX
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The rate at which forests grow following disturbance depends on the type of 

disturbance, post-disturbance land use, and climatic and edaphic conditions. Rate of 

forest regrowth can provide an indication of the suitability of a particular region to 

support sustainable agriculture as well as the potential for carbon sequestration to reduce 

the net carbon flux from forest clearing. Hence, developing an ability to predict forest 

regrowth potential has considerable implications for our understanding of carbon 

dynamics in a future characterized by increased conversion of old-growth forests and the 

subsequent abandonment of many areas originally cleared for agricultural activity.

Deforestation of tropical forests and creation of secondary forests are inexorably 

linked. The processes that control rates of deforestation also influence the extent and 

persistence of secondary forests. Understanding the magnitude and spatial patterns of 

deforestation and, thus, secondary forests requires the synoptic capabilities of remote 

sensing. Thus, remote sensing is a valuable tool for research on tropical deforestation and 

secondary vegetation. This tool can provide not only information on the timing, extent 

and spatial patterns of deforestation and secondary vegetation, but also characteristics of 

the land use processes and post-disturbance vegetation conditions.

Loss of tropical forests has captured the interest of both the scientific community and 

the general public. Within both communities, there have been very pointed debates on the 

protection of tropical forests. While the loss of pristine tropical forests can create a strong 

emotional response, we need to be rational in our assessment of how to deal with the best 

utilization of natural resources within the tropical forest biome. Clearly the demand for 

food and fiber will continue to rise as global population increases. Tropical forests can

x
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help meet some of the increase in demand, either directly by providing natural resources, 

or indirectly by providing economic returns through ecosystem services.

Since tropical deforestation will continue, research efforts should focus on developing 

strategies that address the needs for sustainable development of the tropical biome and 

mitigate long-term degradation or destruction of tropical forests. Developing an improved 

understanding of forest growth potential in the tropics would be extremely useful for land 

use planning for sustainable development. However, there is a lack of sufficient field 

measurements of secondary forest biomass to refine models of forest regrowth potential. 

Development of remote sensing techniques for estimating biomass of secondary forests 

and patterns of land use would be beneficial for improving our understanding of the 

controls on rates of regrowth and, thus, capabilities for modeling regrowth potential.

This dissertation addresses the use of remote sensing as a tool for quantifying the spatial 

and temporal patterns of deforestation and secondary vegetation and an evaluation of how 

remote sensing can be used to quantify the structure or biomass of secondary vegetation.

xi
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ABSTRACT

OPTICAL AND RADAR REMOTE SENSING OF LAND USE AND LAND COVER 

CHANGE IN THE TROPICS: AN ASSESSMENT OF DEFORESTATION AND

SECONDARY VEGETATION.

by

WILLIAM A. SALAS 

University of New Hampshire, May, 2001

Quantification of the direct impact of land use in the tropics on net biotic carbon 

flux requires estimates of rates of deforestation, pre- and post-disturbance biomass, and 

fate of the cleared land. Synoptic observations of the extent, persistence, rates of 

secondary succession, and structure or biomass of regrowing forests would also help 

constrain estimates of net carbon flux due to tropical land use. While remote sensing 

applications can provide estimates of the rates of deforestation and the fate of the cleared 

land (pasture, croplands, or secondary vegetation), techniques for estimating persistence, 

rates of succession, and biomass of secondary vegetation are needed.

We documented the spatial and inter-annual variability in the rates of forest 

clearing, formation rates and persistence of secondary vegetation for 3 sites in Amazonia 

and 4 sites in Southeast Asia using Landsat TM data from mid-1980s to late-1990s. 

Secondary vegetation was a large, rapidly changing pool. Variability in the observed

xv
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annual rates of deforestation and secondary vegetation formation was high. The transition 

probabilities of both the formation and clearing of secondary vegetation decreased with 

age. Persistence of the secondary vegetation pool was also highly variable, likely 

indicating two distinct land use trajectories: rotational agriculture/pasture maintenance 

versus abandonment^

We also evaluated the spatial, temporal, and noise constraints of JERS SAR data 

for mapping and monitoring biomass of secondary vegetation in Rondonia, Brazil. 

Results indicate that quantitative estimates of biomass using single date JERS-1 imagery 

is problematic because of temporal variability in backscatter due to intrinsic texture, 

system noise, and environmental effects. However, JERS-1 data are still useful for 

distinguishing of secondary vegetation stands at different stages of development. Multi

temporal analysis significandy improves biomass estimates to the point where it is 

possible to map changes in biomass. Slight reductions in the variability in estimates of 

normalized radar cross-section greatly improve biomass estimation. Merging JERS-1 

SAR data with Landsat TM derived age estimates improved characterization of clearings 

and secondary vegetation in Rondonia by providing information on the relative 

differences in secondary vegetation development and residual slash with age.

xvi
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CHAPTER 1

MAPPING AND MONITORING SUCCESSIONAL VEGETATION IN 

THE TROPICS WITH REMOTE SENSING

Abstract

The rate at which forests regrow following major disturbances is a key component 

of net carbon flux from forest clearing. Consequently, developing an ability to map 

forest regrowth has considerable implications for our understanding of carbon dynamics 

in a future characterized by increased conversion of old-growth forests and the 

subsequent abandonment of many areas originally cleared for agricultural activity (e.g. 

Houghton et al. 2000). Synoptic observations of the extent, rates of secondary 

succession, and structure or biomass of regrowing forests using remote sensing would 

provide critical information for understanding the impact of secondary vegetation on the 

overall carbon budget of Amazonia. Recent research indicates that the success of remote 

sensing is likely to be highly dependent on the sensors, scale of the observations, the 

structure of secondary vegetation, and rates of succession. Remote sensing applications 

for mapping the extent and persistence of secondary vegetation have been extremely 

successful, resulting in improved understanding of the extent and spatial patterns of 

secondary vegetation in Amazonia. Direct estimates of the age and successional stage of 

secondary vegetation have had mixed results. Remote sensing based estimates of biomass

1
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have been problematic. This chapter presents a brief discussion on the importance of 

secondary vegetation in the Amazon and controls on rates of regeneration, followed by a 

detailed review of applications of optical and radar sensors for mapping and monitoring 

secondary vegetation, and concludes with a “straw-man” proposal for systematic 

monitoring of secondary vegetation with remote sensing.

Introduction

Secondary forests are estimated to occupy over 30% of closed tropical forests and 

almost 20% of the open tropical forests (Brown and Lugo 1990). Some studies indicate 

that these percentages will increase substantially over the next 50 to 100 years (Feamside 

1996). Despite the widespread extent of secondary forests in the tropics, the biophysical, 

ecological, and social processes of succession are not well understood (Walker et al. 

2000).

Land use in Amazonia creates a sequence of land cover conditions and land cover 

changes: primary or mature secondary forests are cleared for crops and/or pasture; 

croplands are abandoned or converted to pasture; pastures are invaded by invasive 

herbaceous or shrubby vegetation and become “degraded” or “dirty” pastures (the rate at 

which these plants become established depends on the site conditions and maintenance); 

woody and tree species continue the succession process, with pioneer species establishing 

the initial tree canopy, followed by late pioneer species, and finally primary tree species 

(Whitmore 1990, Walker et al 2000, Moran et al. 2000). While secondary succession is

2
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typically described as a sequence of land cover conditions, succession occurs along a 

continuum without hard separations of land cover conditions.

Secondary vegetation occurs as a result of several types of natural and anthropogenic 

disturbances, including fire, logging, clear cutting for pasture and cropland. The impact 

on the post-disturbance vegetation community varies depending on the disturbance 

intensity. Disturbance regimes in the Amazon range from light disturbance, such as 

highly selective logging, to severe disturbances from strip mining. The succession 

process is typically characterized by a transition from grasses, shrubs and herbaceous 

plants, to pioneer tree species (e.g. cecropia, vismia, babassu palms with relatively short 

life spans), followed by late successional tree species, and finally primary tree species. 

Throughout this process there is a general shift toward trees with higher wood density 

(Brown and Lugo 1990). However, the development of functional relationships between 

regrowth rates, age, and environmental conditions suffers from a lack of field data in the 

tropics. Satellite derived estimates of secondary vegetation condition and growth rates 

would provide critical data for developing functional relationships between disturbance 

regime, environmental conditions, and rates of succession. Linking field-based 

observations with remote sensing observations is often hampered by inconsistent 

terminology between the field ecologists and remote sensing scientists (Campbell and 

Browder 1995, Walker et al. 2000).

Optical remote sensing has been used extensively to map the extent and rates of 

deforestation in Amazonia (e.g. Tucker et al. 1984, Malingreau and Tucker 1988, and 

Skole and Tucker 1993). More recently there have been several studies to map the extent 

and temporal dynamics of secondary vegetation at the site level for both upland (e.g.

3
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Alves and Skole 1996, Mausel et al. 1993, Skole et al. 1994, Adams et al. 1995, 

Steininger 1996, Foody et al. 1996) and floodplain areas (e.g. Moran et al. 1994b, 

Brondizio et al. 1994, Brondizio et al. 1996). Recent results from NASA’s Landsat 

Pathfinder project have revealed that 30% of the cleared areas in the Brazilian Amazon 

are in secondary vegetation (Houghton et al. 2000). In addition to clearing, logging and * 

fire disturbances convert the landscape to secondary forests.

Based on Markov transition probabilities derived from remote sensing change 

detection studies in Rondonia (Skole et al. 1994) and Para (Moran et al. 1994a),

Feamside (1996) estimated that the equilibrium landscape of Brazilian Amazon in 2090 

in regions where farmers control 30% and ranchers control 70% would contain over 47% 

secondary forests. With the relatively high cost of proper pasture maintenance and the 

decline in government subsides and inexpensive credit, area of secondary vegetation is 

likely to increase (Moran et al. 1994b).

The impact of this large and growing secondary vegetation pool on the net biotic flux 

of carbon has yet to be quantified. Consequently, techniques for measuring pre- and post- 

disturbance biomass, rates of secondary vegetation formation and turnover, and rates of 

biomass accumulation for secondary vegetation are needed to more accurately estimate 

Carbon fluxes at the basin scale (Skole 1994). Quantitative estimates of the net biotic flux 

on a decadal average suffer from lack of quantitative data on pre- and post-disturbance 

biomass and the fate of the disturbed lands (e.g. logged, perennial and annual crops, 

pasture, or fallow). Estimates of carbon flux due to deforestation, abandonment to 

secondary vegetation, logging, and fire indicate a net source that varied between 0.1 and

0.4PgCyrL from 1989 to 1998 (Houghton et al. 2000). This range is based on estimates of

4
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annual deforestation rates from INPE (Instituto Nacional De Pesquisas Espaciais), 

coupled with ranges in estimates of above-ground biomass, combustion efficiency, decay 

rates, and carbon accumulation rates by age of the secondary vegetation. The area in 

secondary vegetation was assumed to be a fixed percentage (30%) of the total area 

deforested. Given their assumption on abandonment rates, the sources of uncertainty in 

the carbon fluxes were due to biomass of pre-disturbed forest, deforestation rates, and 

decay rates, estimated to account for approximately 60%, 25%, and 15% of the range in 

fluxes, respectively. These “bookkeeping” approaches for modeling carbon fluxes would 

benefit from spatially explicit estimates of annual rates of secondary growth formation, 

rates of carbon accumulation, and persistence of secondary vegetation; fluxes associated 

with secondary vegetation dynamics in Amazonia is such a poorly constrained 

component of the regional carbon budget (Zarin et al. 2000) that their dynamics are not 

modeled (Houghton et al. 2000).

The objective of this chapter is to provide a cursory overview of the rates 

of biomass accumulation and a detailed review of how remote sensing data have been 

used to map and monitor the extent, persistence, and structure of secondary vegetation in 

the tropics. While this review focuses primarily on the Amazonia region, a few studies 

outside of Amazonia are included to highlight remote sensing techniques that are 

particularly useful in the application of mapping or monitoring secondary vegetation. The 

final two sections of this chapter present a discussion of new remote sensing based 

approaches for mapping and monitoring regrowth in Amazonia and a brief presentation 

of a  potential framework for systematic monitoring. Three broad sets of questions form

5
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the underlying basis for much of the research described in this review. The questions can 

be summarized as follows:

1. Can secondary vegetation be detected using remote sensing? If so, what classes of 

secondary vegetation can be discriminated?

2. Can remote sensing be used to stratify or characterize classes of secondary vegetation 

based on structure?

3. Can remote sensing be used to stratify rates of change in secondary vegetation 

structure, and possibly biomass?

Disturbance in the Legal Amazonia

Prior to disturbance, the Brazilian Amazon, or Legal Amazon, contained 

approximately 4 million square kilometers of tropical forest, with several major 

categories of forest formations (see table 1.1). However, by 1988, approximately 230,000 

km2 of forest had been cleared, and including edge effects had almost 600,000 km2 

impacted (assuming 1 km buffer of influence) (Skole and Tucker 1993). By 1998, the 

extent of deforestation in the Legal Amazon had reached 550,000 km2 (INPE 2000). 

Large-scale deforestation can have a large affect on carbon and hydrological cycles and 

climate to the extent that forest will not regenerate in areas once forested (Shukla et al. 

1990). In addition to clear-cut deforestation, selective logging can lead to a significant 

impact on the forest through increased mortality rates (Uhl and Vieira 1989) and 

susceptibility to fire (Uhl and Kauffman 1990). Recent estimates of the rate of selective 

logging in the Legal Amazon range from 5,300 km2y r 1 (Janeczek 1999) to 10,000-
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15,000 km'1 y f1 (Nepstad et al. 1999). Assessment of the additional impact of logging 

beyond deforestation requires care because these logging estimates may include areas 

that are subsequently deforested. Fires have been observed in the Legal Amazon in areas 

where fire typically did not occur in the past. While there has not been a systematic 

mapping of fires, estimates suggest that three times as much forest area was affected by 

fire in 1995 than was deforested (Alaencaret al. 1997, cited in Cochrane and Souza 

1998). Despite the wide range in estimates, it is clear that anthropogenic and natural 

disturbances are altering vast areas of the Legal Amazon, resulting in a mosaic of 

undisturbed primary forest, disturbed mature forest, secondary vegetation, and non

forested areas.

Disturbance, and the subsequent potential for secondary vegetation, has occurred 

across a range of forest types in the Amazon. An assessment of the pre-disturbance and 

post 1986 deforestation extent of broad vegetation classes is provided as a description of 

the landscape within which secondary succession is occurring. This assessment is based 

on two datasets: RAD AM (RADAMBRASIL) vegetation map of the Legal Amazon and 

the 1986 Landsat Pathfinder deforestation analysis (Houghton et al. 2000). Table 1.1 

contains pre- and post-disturbance area estimates for 11 broad vegetation classes that 

have been aggregated from the original 161 vegetation classes found in RAD AM. The 

“pre-disturbance” vegetation distribution is based on the RAD AM 1:1M scale vegetation 

maps. The RAD AM maps were derived from field observations and aircraft radar 

imagery acquired in the early 1970s. The RAD AM dataset contained an agricultural class 

where deforestation had occurred. We replaced the agricultural areas with the 

surrounding vegetation class to derive our best estimate of pre-disturbance vegetation.
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The impact of deforestation on the various forest formations in the Amazon was variable, 

with losses ranging from a <1% to over 45% (see table 1.1).

During the mid-1990s, 50% of the new deforestation occurred in only 10% of all 1/4° 

grid cells covering the Amazon, while 95% of the deforestation occurred in a region less 

than 40% of the grid cells, indicating that the deforestation process is spatially 

concentrated and persistent (Alves 2000). For example, by 1996, 86% of all deforestation 

was concentrated and occurred within 25 km of areas deforested as of 1978 (Alves 2000). 

If these trends continue, it is clear that secondary succession will occur in areas that 

previously supported a broad range of forest formations. Based on a recent estimate that 

30% of deforested areas in the Amazon contain secondary vegetation (Houghton et al. 

2000) and the INPE estimate of deforestation extent in 1998, secondary vegetation may 

cover over 165,000 km2 of the Amazon basin.

Rate of Biomass Accumulation

Following disturbance, the rate of forest succession and biomass accumulation 

can vary widely from stand to stand, both within and among regions of the Amazon. 

Based on field derived biomass measurements, regeneration rates in the Amazon have 

been shown to range from less than 1 ton ha*1 yr*1 (Nepstad et al. 1991) to over 13 tons 

ha'1 yr*1 (Uhl 1987) with a range of estimates in between (see for example Uhl et al.

1988, Alves et al. 1997, Steininger 2000, Salimon & Brown 2000, Tucker et al. in 

review). However, some of the observed variability in rates of regeneration may be due in 

part to variability in the allometric equations used to estimate biomass (Alves et al. 1997,
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Tucker et al. in review). Theories on the controls on rates of biomass accumulation in 

tropical secondary forests vary. Some theories indicate that accumulation rates depend on 

the type and spatial characteristics of deforestation (Uhl 1987), frequency of clearing and 

abandonment cycles, and type of land use prior to abandonment (e.g. Uhl et al. 1988, 

Moran et al. 2000), which can impact seed source, viability, and predation of seed stocks 

(Uhl and Vieira 1988). Alternatively, some theories suggest that, at the regional level, 

differences in soil fertility and pre-disturbance vegetation cover control rates of 

succession (Moran et al. (2000). At the intra-regional scale, land use intensity and 

landscape diversity (e.g. topography and local variations in soil conditions) account for 

differences in rates of succession (Moran et al. 2000). In a recent study to characterize the 

impact of climatic, edaphic (principally soil texture), and forest type (broadleaf vs. 

needle-leaf) on regrowth rates, Johnson et al. (2000) analyzed data from nearly 300 plots 

for which data on age and aboveground biomass accumulation were available; the 

secondary forest plots covered a range of ages and were located throughout the world. 

They report that above-ground biomass accumulation rates in broadleaf secondary forests 

can be predicted by climatic controls, expressed by growing season length and average 

growing season temperature, and adjusted by stand age across a sandy versus non-sandy 

Stratification of soil texture (Johnson et al. 2000). Using the Johnson et al. (2000) 

empirical relationships derived from the global analysis, Zarin et al. (2001) developed 

predictions of potential regrowth forest above-ground biomass accumulation rates (ABA) 

for the Brazilian Amazon region based on soil texture and climate data (precipitation and 

temperature) and tested the predictions using data collected at sites throughout the 

Amazon (data from Salimon & Brown 2000, Alves et al. 1997, Lucas et al. 1998,
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Steininger 2000, Sorrenson 2000, Guimaraes 1993, Denich 1992, Tucker et al. in review). 

The empirical relationships turned out to be an unbiased linear predictor of biomass 

accumulation rates on non-sandy soils, with no significant differences between stands 

following pasture or rotational agriculture (Zarin et al. 2001). There were fewer data for 

testing the model for stands on sandy soils; based on these limited statistics, the empirical 

relationships were heavily biased and, thus, require more data for testing the sandy soil 

model (Zarin et al. 2001).

Remote Sensing of Secondary Vegetaiton

This section of the chapter provides a detailed overview of advances in mapping and 

monitoring secondary vegetation in Amazonia using remote sensing. The review is 

provided in subsections, starting with a general discussion of the spectral properties of 

secondary vegetation to provide the biophysical background as to how secondary 

vegetation can be mapped using remote sensing. The following two subsections provide 

an overview of how optical and radar remote sensing have been used to map/classify 

secondary vegetation, respectively. The remaining ssubections provide an overview of 

research in mapping characteristics of secondary vegetation, ranging from mapping age 

to mapping successional stage and biomass.

Spectral Properties of Secondary Vegetation

Forest succession results in changes in leaf biomass, woody biomass, and 

canopy roughness - forest attributes that can be estimated from remote sensing and used 

as indicators of how far succession has progressed (Foody and Curran 1994). In general,
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values of these attributes increase during succession, each reaching a peak at different 

stages of their development (Brown and Lugo 1990). Leaf and woody biomass tend to 

accumulate more rapidly during early stages of succession, followed by an equilibrium in 

leaf biomass and a slow rate of woody biomass accumulation until stand maturity (Brown 

and Lugo 1990). During succession the floristic composition of stands change from initial 

pioneer species to slower developing pioneer species, which are then eventually replaced 

by climax species (Whitmore 1990). Changes in floristic composition results in changes 

in canopy roughness, with a peak in canopy roughness occurring late in the succession 

process when a tertiary canopy has formed (Whitmore 1990). Figure 1.1 contains a 

conceptual diagram of changes in biomass and canopy roughness during stand 

development.

Conceptual models of secondary forest recovery (see figure 1.1) have 

focused on either biomass (e.g. Bormann and Likens 1979) or structure (e.g. Oliver 

1981). For optical remote sensing applications, post-disturbance forest recovery should 

be assessed in terms of vegetation structure rather than biomass because reflectance is a 

function of the optical properties and structure of the vegetation and not biomass. 

Background vegetation properties, sun-sensor-target geometry, and topography are 

additional factors (Kimes 1991). Theoretical understanding of the spectral properties of 

the landscape at various stages of secondary succession can be made based on 

chlorophyll absorption, mesophyll reflectance, moisture absorption, and plant structure or 

geometry relative to the sensing geometry (Brondizio et al. 1996). As abandoned pastures 

are invaded by herbaceous and shrubby vegetation, reflectance in the visible spectrum 

decreases due to increased chlorophyll absorption; mid-infrared reflectance decreases
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moderately due to increased canopy density and water content and a masking of soils 

which tend to be highly reflective in the MIR; near-infrared reflectance initially increases 

due to increased mesophyll reflectance of the new green biomass (Mausel et al. 1993, 

Moran et al. 1994a, Steininger 1996, Foody et ak 1996). As secondary vegetation stands 

mature, visible reflectance continues to decrease while the ratio of green to red 

reflectance increases due to higher chlorophyll content and some shadowing; the near- 

infrared and mid-infrared reflectance decrease due to infrared “spectral traps” caused by 

inter-canopy shading, and eventually the reflectance characteristics become 

indistinguishable from those of mature, undisturbed forest (Mausel et al. 1993, Boyd et 

al. 1996). In temperate forests, near-infrared and middle-infrared reflectance data are 

directly related to canopy geometry and degree of inter-canopy shading (Spanner et al. 

1990, Fiorella and Ripple 1993). The radiant temperature of forests has been used to 

estimate biophysical properties (canopy closure, age class, species composition and 

canopy structure) of temperate forests (Sader 1987) and tropical forests (Luvall et al.

1990). Mapping of secondary vegetation in motane regions of the tropics is more difficult 

because variations in illumination geometry and changes in ecological zones can mask or 

hinder differences in spectral responses between undisturbed forest and various stages of 

secondary vegetation (Helmer et al. 2000). Nevertheless, topography of the Brazilian 

Amazon is fairly flat, and, hence, topographic influences should be minor.

Mapping Extent of Secondary Vegetation with Optical Remote Sensing

Data from high-resolution optical sensors have been used successfully for 

mapping the extent of secondary vegetation across a broad range of sites in Amazonia.
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Results using Landsat TM, MSS and Spot HRV data for sites in Amazonas (Lucas et al. 

1993, Palubinskas et al. 1995, Adams et al. 1995, Steininger 1996, Foody et al. 1996, 

Boyd et al. 1996, Lucas et al. 1996), Para (Mausel et al. 1993, Brondizio et al. 1994, 

Moran et al. 1994, Li et al. 1994, Sant’Anna et al. 1995, Brondizio et al. 1996), Rondonia 

(Skole et al. 1994, Alves and Skole 1996, Kimes et al. 1999, Nelson et al. 2000), and 

Acre (Salimon and Brown 2000) with relatively high accuracies (85-97% overall 

accuracies) have been published.

The optical reflectance properties of areas of secondary vegetation change during 

succession due to changes in vegetation composition, phenology and structure. On the 

basis of several studies, it appears that the age at which the spectral properties of 

secondary vegetation become inseparable from mature forest is highly variable. Some 

studies have indicated that after 14-15 years secondary forest become spectrally 

indistinguishable from mature forest (Steininger 1996, Moran et al. 1994a, Foody et al. 

1996), where as others have indicated that the spectral properties do not merge until 20- 

30 years (Lucas et al. 1996, Lucas et al. 2000b). Thermal infrared data coupled with 

middle-infrared (Boyd et al. 1996) or textural data combined with spectral data 

(Palubinskas et al. 1995) enabled discrimination of secondary vegetation stands older 

than 14 years from mature forests. In a region with high quality soils (Alfisols) near 

Altamira, some 6 year old secondary vegetation stands were similar to mature forest, 

while others were separable to 15 years (Mausel et al. 1993). SPOT HRV visible and 

near-infrared data, without the benefit of mid- or thermal-infrared data that have been 

shown to be best for discriminating secondary vegetation (Boyd et al. 1996), have been 

used to separate 9 year-old stands of secondary vegetation from mature forest (Kimes et
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al. 1999). The wide range of ages when secondary forests become spectrally 

indistinguishable from mature forest is likely due to several controlling factors, including 

species composition (Lucas et al. 1996), soil conditions (Mausel et al. 1993), and 

previous land use (Foody et al. 1996). However, while the accuracy of separating 

secondary forest from mature forest varies with age of secondary forest stands, overall 

accuracy does not necessarily decrease monotonically with age as might be expected due 

to stand development, suggesting that stands were developing along different 

successional pathways (Nelson et al. 2000). Secondary vegetation that develop on sites 

that have been cleared multiple times are not always more separable from mature forest 

as those stands that have only been cleared once (Nelson et al. 2000).

Notwithstanding spectral differences, textural information can also be used to 

improve identification of secondary forests (Palubinskas et al. 1995, Kimes et al. 1999), 

particularly for older stages of succession (Li et al. 1994). During succession the 

biophysical properties (e.g. LAI, height, basal area, and density) change with age of the 

secondary vegetation stands and reach an asymptote (Brown and Lugo 1990). Average 

stand height and, to a lesser degree, basal area are good indicators of successional stage, 

with increasing variability in height at later stages of succession (Moran et al. 2000). At 

the later stages of succession, dominant trees emerge from the upper canopy and the 

pioneer species begin to die back, creating gaps and increasing canopy roughness 

(Whitmore 1990, Brown and Lugo 1990). Indicators of these changes or differences in 

upper canopy structure are manifested as increased texture in optical and S AR data. In 

addition to spectral separation of successional classes, texture can enhance separability of 

succesional vegetation in TM (Palubinskas et al. 1995, Nelson et al. 2000, Helmer et al.

14

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



2000), SPOT (Kimes et al. 1999) and SARdata (Luckman et al. 1997). For example, a 

classification of four age classes and two types (see Foody et al. 1996) of secondary 

vegetation with TM textural-spectral data achieved an overall accuracy of over 85%, an 

increase of 10% and 20% over traditional maximum likelihood and minimum distance 

pixel by pixel classifiers, respectively, for a region north of Manaus (Palubinskas et al 

1995). In Rondonia, the addition of texture measures with TM spectral data into a neural 

net classifier resulted in an improvement of overall accuracy in mapping mature forest, 

non-forest, and secondary forest classes from 92.7% to 98.7% with marked improvement 

in the accuracy of the secondary and mature forest classes (Nelson et al. 2000).

Linear mixture modeling (LMM) for mapping secondary growth is a new 

alternative and fundamentally different than the more traditional minimum distance and 

maximum likelihood classifiers in that the radiance data are interpreted in a physical 

context, rather than in terms of spectral clusters (Adams et al. 1995). The basic premise 

of linear mixture modeling is that the radiance measured by a sensor is a linear 

combination, or mixture, of a set of well defined end-members that have fixed spectral 

properties. Un-mixing the radiance of each pixel into proportions of the end-members can 

enhance interpretation of the imagery into classes that can easily be related to ground 

features (Adams et al. 1990). Changes in these proportions over time can be associated 

with temporal changes in the land cover (Adams et al. 1990). LMM has been tested for 

mapping several types of land cover near Manaus, including secondary vegetation with 

different canopy densities (Adams et al. 1995). Four end-members (derived from green 

vegetation, non-photosynthetic vegetation, soil and shade) were used to classify and map 

transformations within the landscape based on changes in proportions of end-members. A
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field spectrometer was used to generate end-member spectra. Since precise estimation of 

end-members fractions can be difficult due differences in the spectral properties of soils 

and vegetation across space and time, a classification scheme was defined based on 

ranges of fractions that were empirically defined. Temporal changes in the fractions 

defined land cover change processes (e.g. pasture creation, or pasture abandonment). The 

LMM approach is relatively insensitive to the particular successional species or 

vegetation communities (Adams et al. 1995).

There are very few estimates of the extent of secondary vegetation for the 

entire Amazon basin due to the effort required to analyze hundreds of high resolution 

images (e.g. Landsat MSS or TM) or limitations of coarser resolution (e.g. A VHRR) data 

for precise area mapping. The first wall-to-wall analysis of the extent of deforestation and 

secondary vegetation for the Brazilian Amazon was completed as part of the NASA 

Landsat Pathfinder Program (Chomentowski et al. 1994). In the mid-1980s and early- 

1990s, secondary vegetation covered over 30% of the deforested areas (Houghton et al. 

2000). While the scale of fine resolution sensors is commensurate with the scale of the 

land use and, hence, more appropriate for monitoring land cover change (Townshend and 

Justice 1988), persistent cloud cover in some regions of the tropics and the large expense 

and effort in analyzing hundreds of images hampers regional monitoring with high 

resolution optical data. An alternative to performing wall-to-wall inventories for mapping 

deforestation (Alves 2000) and secondary vegetation is sub-sampling with high- 

resolution data (Sanchez et al. 1997, Tucker and Townshend 2000). While pure random 

sampling does not provide precise estimates unless the sample size is very high (for 

example, over 85%), there are sub-sampling approaches that can produce reliable results.
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The higher the spatial concentration of deforestation and secondary vegetation, the 

smaller a stratified sample is needed to meet apriori defined accuracies (Sanchez et 

al. 1997, Tucker and Townshend 2000). Deforestation in the Legal Amazon has been 

concentrated around regions of early pioneer settlement or near the network of major 

roads through the basin (Alves et al. 1999, Alves 2000). However, even with stratified 

random sampling, large numbers of high-resolution images are required. Coarse- 

resolution optical and moderate-resolution SAR data are additional alternatives for 

systematic mapping of secondary vegetation.

Data from the NOAA Advanced Very High Resolution Radiometer 

(AVHRR) onboard the NOAA series of polar orbiters are acquired several times a day 

over the tropics. AVHRR is a 5-channel, visible, infrared, and thermal infrared 

radiometer with a nominal resolution at nadir of 1.1km (Kidwell 1991). Given the high 

frequency of overpasses and thus a higher probability of obtaining a cloud free 

observation when compared with Landsat (16day repeat cycle), AVHRR data have been 

used for mapping land cover and deforestation (e.g. Malingreau et al. 1989, Stone et al. 

1994, D’Souza and Malingreau 1994) and fire (e.g. Malingreau 1990, Setzer and Periera

1991) in the tropics. Lucas et al. (2000a) analyzed AVRRR data from the early 1990s 

using an unsupervised clustering approach, with cluster labeling based on existing maps 

of secondary vegetation (from Landsat Pathfinder 1992 analysis) to estimate the extent 

and successional stage of secondary vegetation for the Brazilian Amazon. Clustering of 

the AVHRR channels 1,2, and 3 alone resulted in an overestimate of regrowth areas due 

to confusion with some agricultural areas. However, by adding a synthetic layer of the 

Global Environmental Monitoring Index or GEMI (Pinty and Verstraete 1992), confusion
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with agricultural areas was reduced substantially. They estimated that almost 36% 

(approx 158,000 km2) of the deforested area contained secondary vegetation, a slightly 

larger area than estimated by the Landsat Pathfinder analysis used to constrain the 

unsupervised classification class. In addition, they indicated that 48% of the secondary 

vegetation was in the early colonization phase of succession and less than 5 years old. At 

the same time, however, AVHRR has been shown to be unable to separate old stages of 

secondary vegetation from mature forest, indicating that AVHRR based estimates of 

secondary vegetation extent may be underestimated (Lucas et al. 2000c). The coarse 

spatial and spectral resolution of AVHRR hinders its utility for mapping secondary 

vegetation.

Since the spatial resolution of AVHRR pixels range from 1.1km at nadir 

to over 2.4km by 6.5km at the edges of the scan lines (Goward et al. 1991), images will 

contain a large proportion of mixed pixels containing sub-pixel fractions of forest, 

cleared areas and secondary vegetation. Therefore, precise estimates of forest area, or 

deforestation, are difficult because, pixels typically classified as forest may contain as 

little as 66% forest (Cross et al. 1991), making area estimates problematic (Skole and 

Tucker 1993). While non-linear mixture modeling using artificial neural networks can 

provide estimates of sub-pixel fractions of forest and pasture (Foody et al. 1997a,b), un

mixing secondary vegetation fractions is difficult because the range in spectral properties 

is high and can become indistinguishable from mature forests.

At the basin scale, estimates of the extent of secondary vegetation in the early 

1990s range from 107,000 km2 (Landsat Pathfinder) to 158,000 km2 (Lucas et al. 2000). 

Based on the Landsat Pathfinder results, 31% of the total area deforested contained

18

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



secondary vegetation during this time period. Between states there was significant 

variability in percentage of deforested lands that contained secondary vegetation, ranging 

from 5% in Gois to over 65% in Maranhao (Landsat Pathfinder, Houghton et al. 2000).

At the landscape scale the percentage of secondary vegetation is also highly variable 

across landscapes in upland (Moran et al. 1994b, Mausel et al. 1993) and floodplain 

(Moran et al. 1994b, Brondizio et al 1994) and in time (e.g. Mausel et al. 1993, Alves and 

Skole 1996, Kimes et al. 1999, Nelson et al. 2000). Variability in the proportion of 

secondary vegetation at the regional, state and local level, is due in part to types of 

disturbances. Disturbance regimes vary across the Amazon from, for example, regions of 

colonization along the trans-Amazon highway, to cattle ranching in Southeast Amazon, 

to cobocolos and indigenous areas, and to areas of intense logging and mining in Eastern 

Para (Brondizio et al. 1994, Moran et al. 1994).

SAR Mapping of Secondary Vegetation

While over 25 years of Landsat data have been acquired over the Amazon, high 

cloud cover limits the usefulness of these data in the Amazon. Synthetic aperture radar 

(SAR) is an additional tool for monitoring deforestation and forest regrowth in the tropics 

due to the all weather imaging capability and sensitivity to vegetation structure and 

biomass. (Sader 1987, Dobson et al. 1992, Rignot et al. 1995). Over the past few years 

there have been several studies using synthetic aperture radar (SAR) to map deforestation 

and secondary vegetation in Amazonia. These studies have been limited by the lack of a 

space-borne multi-frequency or polarimetric SAR system. Consequently, studies have 

focused on using single frequency and single polarization space-bome systems (e.g.
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JERS-1 and ERS-1) or Space Shuttle based missions of opportunity (e.g. SIR-C). These 

studies have focused on using SAR intensity, texture, and phase coherence data to map 

regrowth and estimate regeneration stage (e.g. Rignot et al. 1997, Luckman et al. 1997, 

Saatchi et al. 1997, and Yanasse et al. 1997).

At C-band, microwave radiation from SAR does not penetrate much into 

tropical forests and the backscattering coefficient from moist soils can be comparable to 

the signal from mature undisturbed forest (Rignot et al. 1997, Saatchi et al. 1997, 

Luckman et al. 1997a). However, even when the micro-scale (sub-pixel) roughness is 

high (e.g. strong backscatter from soils that is comparable to the response from forests) 

textural information due to meso-scale (larger than single pixels) roughness can be used 

to discriminate broad land cover types. Therefore, the utility of textural information for 

enhancing remote sensing based characterization of secondary vegetation depends on 

both the canopy structure, spatial resolution of the sensor, and the imaging geometry. 

Using textural information from a an aircraft C-band SAR system with a resolution of 6 

meters, Luckman et al. (1997b) were able to separate only mature forest from secondary 

vegetation at least 6 years old and cleared areas using, while the image amplitude data 

werr indistinguishable across these land covers. However, textural information was not 

useful for differentiating between young (<6 years) stands and deforested areas without 

secondary vegetation (Luckman et al. 1997b). L-band data are better than C-band for 

discriminating secondary vegetation (Luckman et al. 1997a). Furthermore, multi

temporal L-band data significandy increases overall accuracy (Curran and Kuplich 1999). 

However, accuracy decreases significantly for smaller stands due to the inherent 

limitations of SAR imagery due to speckle (Yanassee et al. 1997).
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Estimation of Age of Secondary Vegetation

Carbon sequestration is typically faster in younger secondary vegetation during the 

first 30 years, afterwhich the rate of sequestration declines and becomes negligible or 

zero at 80 years or so (Brown and Lugo 1990). Therefore, research has focused on 

estimating age of secondary vegetation as a surrogate for carbon content by utilizing 

general age-biomass relationships (Lucas et al. 1993). Age and age classes of secondary 

vegetation can be mapped directly using multi-temporal Spot HRV (Skole et al. 1994, 

Alves and Skole 1996, Kimes et al. 1999) or Landsat MSS/TM (Lucas et al. 1993, 

Brondizio et al. 1994, Sant’Anna 1995, Nelson et al. 2000) through post classification 

change detection or Boolean operators. Kimes et al. (1999) followed up the Alves and 

Skole (1996) analysis and mapped six age classes (1-2, 3,4-5,6, 7-8, and >9 years) using 

multi-temporal Spot HRV data. Similarly, Lucas et al. (1993) mapped four age classes 

(<2,2-3, 3-6, 6-14 years) using both MSS and TM, after noting that successional age 

classes could not be mapped with single data TM imagery. Temporal gaps in the multi

temporal sequences, caused by cloud cover, data losses, data cost, or lack of continuity 

between sensors, can potentially introduce errors in age estimates (Kimes et al. 1998). 

The magnitude of these errors is a function of the number of temporal gaps, length of the 

gaps, and the rates of secondary vegetation formation and clearing (Kimes et al. 1998).

The age of secondary forest stands have been predicted using neural networks with 

SPOT HRV and TM spectral and texture measures (e.g. Kimes et al. 1999 and Nelson et 

al. 2000). The results were not precise, with average age estimates in error from 1.59 

years with TM (Nelson et al. 2000) and 2.0 years with SPOT (Kimes et al. 1999) and 

predicted age explaining only 37% and 38% of variability in age classes for the TM and
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SPOT analyses, respectively. However, using two dates of SPOT HRV imagery 

improved age estimation considerably, with RMSE of 1.3 years and r2 of 0.75 (Kimes et 

al. 1999). Since spectral variability across single aged stands is comparable to variability 

with age, TM spectral and textural data are not sufficient for separating secondary forest 

into single aged groups. This is not surprising given that rates of regeneration can vary 

depending on biophysical (e.g. edaphic and climatic) and land use controls. However, by 

aggregating ages of secondary vegetation into ranges, spectrally distinct classes can be 

identified (Moran et al. 1994a, Palubinskas et al. 1995, Steininger 1996). A potential 

shortcoming of the Kimes et al (1999) and Nelson et al. (2000) analyses is the use of 

reference data with unknown accuracy. Their reference data were based on multi

temporal post-classification analyses of Landsat TM and Spot XS data. While Kimes et al 

(1999) and Nelson et al. (2000) input classifications may have had high accuracies, all 

errors are propagated in time by the post-classification merging of the data. Therefore, 

some of the difficulty estimating stand age and variability within stand age classes was 

likely due to errors in their reference data which are difficult to quantify due to the 

stochastic independence of each analysis.

Several studies have focused on using Landsat TM data to separate age classes of 

forest regrowth. In some regions secondary vegetation stands can be spectrally separated 

into at most 4-5 spectrally distinct age classes, remaining spectrally distinct until an age 

of roughly 14 years (Boyd et al. 1996, Brondizio et al. 1996, Foody et al. 1996,

Steininger 1996, and Helmer et al. 2000). Textural measures can increase overall 

accuracies significantly (e.g. >6% increase in overall accuracy and 0.06 increase in 

weighted Kappa coefficient) (Foody et al. 1996). In general, younger age classes
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exhibited the most variability in spectral properties with age, and thus had the highest 

percentage of classification errors (Foody et al. 1996). Much of the observed variability is 

due to differences in species composition during the stand initiation phase of succession, 

potentially indicating distinct and separate successional pathways. Therefore, by 

stratifying the field data by stand age and successional pathway, higher classification 

accuracies were obtained with finer successional stage discrimination (Foody et al. 1996). 

Working near Manaus, Foody et al. (1996) demonstrated that intra-site differences in land 

use history (short term agriculture versus pasture use) can also have a significant impact 

on the spectral properties o f regrowth stands across age ranges due to differences in 

species composition (Lucas et al. 1996). A pilot study (Salas and Zarin, unpublished) 

conducted using Landsat data from Amazonas and Mato Grosso further suggests that the 

seasonality of precipitation has a significant influence on the rate at which regrowth 

stands recover mature forest spectral reflectance characteristics in Amazonia.

An alternate approach for analyzing TM data is to transform the spectral bands 

using a Tasselled Cap transformation (Crist et al. 1986) into greenness, wetness, and 

brightness indices that may have more “ecologically meaningful interpretations” (Helmer 

et al. 2000). Several studies have indicated that the wetness index, for example, is useful 

for distinguishing secondary forests from old growth forest in temperate evergreen forests 

because it is sensitive to differences in structure (Cohen and Spies 1992, Fiorella and 

Ripple 1993, Collins and Woodcock 1996). While greenness had very little variability 

between shrubs, secondary forests, and undisturbed forests in Costa Rica, the wetness and 

brightness indices exhibited a substantial dynamic range between shrubs, young (<6 

years), intermediate (6-17 years), and older (>17 years) secondary forest, and undisturbed
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primary forest (Helmer et al. 2000). Significant changes in brightness (decrease), wetness 

(increase), and to a lesser degree greenness (increase) were observed over a 6-year period 

for young secondary vegetation; these changes were not observed for old stands of 

secondary vegetations (Helmer et al. 2000). Near Manaus, brightness index appeared to 

be more sensitive to differences in old stands (8-13 years), while the greenness index 

exhibited more dynamic range in younger stands (Steininger 1996). While topography 

introduced significant noise to the greenness and brightness indices, it had minimal 

impact on the wetness index, suggesting that it may be useful for mapping secondary 

vegetation in montane areas (Helmer et al. 2000).

These studies indicate that direct mapping of age of secondary forest stands with 

single date optical data is problematic due to the similar spectral properties across age 

classes. The degree of confusion across secondary vegetation age classes decreases as the 

range between ages classes increases (Kimes et al. 1999). Variability in spectral 

properties for a given age class can be due to clearing history (Nelson et al. 2000) which 

can influence the successional pathway and species composition (Foody et al. 1996, 

Lucas et al. 1996). In some cases, for example Lucas et al. (1993), separation of age 

classes was not possible with single date TM imagery. However, from an ecological 

perspective, this is not necessarily an overly troublesome result. Given that the spectral 

properties of secondary forest depend on the composition, structure, and optical 

properties of the vegetation and soil, in regions with open canopies, remote sensing is an 

important tool for improving our understanding of the processes during secondary 

succession by providing a potential mechanism to stratify secondary forest stands by
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structure, and thus enable ecologists to examine differences in secondary forest 

development.

Persistence and Rates of Secondary Vegetation Formation

Secondary vegetation represents a large and increasing proportion of deforested 

areas in Amazonia (Skole et al. 1994, Moran et al. 1994). Rates of formation and clearing 

of secondary vegetation is estimated to be high in Amazonia, with estimates of annual 

turnover as high as 20% (Uhl et al. 1988). In other words, 20% of cleared areas transition 

to or from secondary vegetation annually. Multi-temporal satellite analyses provide a 

unique opportunity for spatially explicit mapping of agricultural lands and secondary 

vegetation turnover (Skole et al. 1994). Estimates of the persistence, or longevity, are 

needed to understand the impact of secondary vegetation on biogeochemical cycles, 

carbon sequestration, and net carbon fluxes. There have been relatively few multi

temporal studies using post classification change detection techniques to map age and 

dynamics of secondary vegetation in various regions of Amazonia (e.g. Alves and Skole 

(1996) and Nelson et al. (2000) in Rondonia, Lucas et al. (1993) near Manaus, and 

Sant’Anna et al. (1995) nearTapajos National Forest). This approach facilitates 

subsequent analysis of secondary vegetation persistence. For example, Alves and Skole 

(1996) used multi-temporal Spot HRV imagery for a site in Rondonia to estimate that 

while the total area of secondary vegetation increased from 1986 to 1992, the percentage 

of disturbed areas with secondary vegetation was highly variable, ranging annually from 

22% to 48%. More than half of the secondary vegetation in 1986 was cleared within 6 

years, and only a small proportion (14%) of the secondary vegetation in 1992 was older
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than 6 years. Re-clearing of secondary vegetation can represent a  large percentage of 

areas cleared for agricultural use; for example, over 40% of lands cleared for agriculture 

from 1988 to 1989 for a region of Rondonia came by re-clearing secondary vegetation 

(Skole et al. 1994). Steininger (1996) documented that, for a region near Manaus, -50% 

of cleared areas in 1988 were covered with secondary vegetation in 1991, and at least 

-10% of the secondary vegetation in 1988 was cleared by 1991; variability in formation 

rates and persistence was observed within this region, indicating significant differences in 

land use patterns across a small region. Additional multi-temporal studies are needed to 

better quantify the impact of secondary vegetation on the carbon balance of the Amazon.

Mapping Successional Stage

Since optical properties of secondary vegetation are a function of the 

optical properties of the constituents (leaves and branches) and their structure, which 

change during succession at varying rates, remote sensing estimation of successional 

stage seems more appropriate than age. There have been several studies that have used 

TM (Mausel et al. 1993, Li et al. 1994, Moran et al. 1994a, Palubinskas et al. 1995, Boyd 

et al. 1996, Brondizio et al. 1996, Foody et al. 1996, Sohn et al. 1999) and AVHRR 

(Lucas et al. 2000) to map differences in secondary succession with varying degrees of 

success.

One approach for mapping stage is to create a conceptual model based on known 

physical components and spectral properties of secondary vegetation to define apriori a 

set of successional stages (Brondizio et al. 1994, Moran et al. 1994). For example,

Mausel et al. 1993, Brondizio et al. 1994, and Moran et al. 1994 showed that, based on
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theoretical reflection and absorption characteristics of vegetation and soils and known 

patterns of vegetation development, three broad successional stages can be defined based 

on relative changes in TM reflective bands during development from pasture to mature 

forest status (see table 1.2). Based on field observations, the three stages were labeled as 

initial, intermediate, and advanced succession. Identification of advanced successional 

vegetation with TM can be difficult due to the spectral similarity with mature undisturbed 

forest with accuracies less than 75% (Li et al. 1994, others). However, by adding 

synthetic bands derived from principal components of TM reflective bands and 

vegetation indices and using a hybrid classifier that utilizes some textural information 

along with a maximum likelihood classifier, advanced secondary successional can be 

mapped with fairly high accuracies (>90%) (Li et al.1994). Another alternative is to use 

the spectral pattern, defined as the cosine of the angles between multi-dimensional 

vectors, to discriminate successional stages. This approach minimizes atmospheric and 

topographic effects and was used successfully (Kappa > 0.9) to map 3 successional stages 

in a region of shifting cultivation in Mexico (Sohn et al. 1999). However, defining many 

separate or distinct classes or stages of secondary vegetation based on radiance 

measurements is difficult because the successional process acts along a continuum and, 

hence, any designation of stages or classes of development are expected to contain fuzzy 

boundaries between classes (Brondizio et al. 1994).

Estimating Rates of Succession and Successional Pathways

Spectral differences have been observed between young stands dominated by 

cecropia versus vismia/miconia/bellucia genera, with young cecropia dominant stands
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exhibiting higher near-infrared and mid-infrared radiance values (Foody et al. 1996, 

Lucas et al. 1996). However, as cecropia becomes less dominant with age, spectral 

differences between these forest types decreases (Lucas et al. 1996). The structure of the 

upper canopy of young cecropia dominant stands is distinct with large, horizontal leaves 

creating a smooth and homogeneous upper canopy, which has fairly high near-infrared 

and mid-infrared radiance values (Lucas et al. 1996). While there are differences in how 

the spectral properties change during cecropia versus vismia/miconia/bellucia 

development, the spectral properties can overlap between these two forest types for 

different aged stands. However, TM based spectral data, coupled with age information, 

can provide accurate (weighted Kappa > 0.93) separation of successional pathways and 

successional stage during initial phases of succession (Foody et al. 1996). Temporal 

changes in successional stage have been used to quantify differences in rates of 

succession using post-classification analysis of an a priori defined set of classes (Mausel 

et al. 1993). Alternatively, some studies have shown that differences in spectral 

properties of same aged stands with different clearing histories were not sufficient to 

separate distinct clearing histories (Nelson et al. 2000).

Estimating Biomass of Secondary Vegetation

Red and near-infrared reflectance data have been used to estimate foliar 

biomass. Increases in the amount of foliar biomass containing leaf pigments result in a 

reduction in reflectance in the red region, with enhanced reflectance in NIR due to 

scattering from the leaf mesophyll (Mausel et al. 1993). However, as successional 

canopies develop, NIR reflectance can drop due to inter canopy shadowing. For
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temperate forests, the relationships between red, near-infrared reflectance and biophysical 

properties (e.g. leaf biomass) have been shown to have a significant correlation up to an 

asymptote, especially when the red and near-infrared data are expressed as differences 

(e.g. VI or NDVI) to enhance their inverse relation with biophysical properties (Tucker 

1979, Spanner et al. 1990). The relationship between optical vegetation indices (e.g. 

NDVI and EVI) and foliar biomass, expressed as LAI, is non-linear (Tucker et al. 1981) 

with saturation occurring at LAI between 3 and 5 (Asrar 1989). Estimates of biophysical 

properties of tropical forests are difficult due to high foliar biomass, coupled with large 

atmospheric attenuation from high water vapor content and the potential for very high 

aerosol content of tropical atmospheres (Singh 1987). The differential attenuation in the 

red and infrared regions hampers identification of canopy properties with vegetation 

indices (Singh 1987). For example, Sader et al. (1989) found that NDVI was not a useful 

predictor of foliar biomass or successional stage in Costa Rica. Nevertheless, increases in 

NDVI with age have been observed for secondary vegetation up to 6 years, after which 

NDVI drops and becomes indistinguishable from late succession and mature forest stands 

(Steininger 1996).

Radar backscatter, in theory, can provide estimates of foliar and woody 

biomass, as well as differences in canopy roughness based on micro-scale and meso-scale 

surface roughness effects. Differences in canopy roughness can be detected through 

analysis of meso-scale surface roughness as long as the “amplitude” of the canopy 

roughness is larger than the resolution of the imaging radar (Trevett 1986).

Multi-frequency, polarimetric SAR data at longer wavelengths can 

provide important information on stand structure and even biomass. There is a general
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consensus that multiple frequency, polarimetric SARs can provide accurate estimates of 

biomass for successional forests up to a certain biomass level and that variability in radar 

backscatter saturates at higher biomass levels for longer wavelength SARs (summarized 

in Kasischke et al. 1997). There are very few polarimetric SAR data sets available for the 

tropics, especially for the Legal Amazon. However, during two Space Shuttle missions in 

1994, the SIR-C instrument collected L- and C-band polarimetic SAR data of the Legal 

Amazon. Estimates of the saturation point of L-band backscatter from tropical forests 

vary from 40 tons/ha (Imhoff 1995) to 60 tons/ha (Luckmann et al. 1997). There has been 

considerable research in the use of AIRSAR for mapping biomass in temperate forests 

(e.g. LeToan et al. 1992, Ranson and Sun 1997, Dobson et al. 1992). These studies 

indicate that with AIRSAR data, it is possible to estimate biomass levels up to 200 

ton/ha. There have been relatively few studies for tropical forests. Initial results of the 

saturation point for tropical forest indicate that biomass can be estimated to 200 tons/ha 

(Rignot et al. 1995, Hoekman and Quinones 2000) with an ability to differentiate up to 8 

biomass classes with a high degree of precision (Hoekman and Quinones 2000). A 200 

ton/ha biomass saturation point for P-Band inversions is high enough to cover a large 

portion of the expected range of biomass for secondary regrowth in the Amazon given 

that the majority of the regrowth stands are less than 15 years old (Skole et al. 1994,

Lucas et al. 2000a) and the rate of biomass accumulation appears to range from less than 

1 to 13 ton ha*1 yr*1 (e.g. Uhl 1987, Nepstad et al. 1991). While the use of P-band 

polarimetric data is extremely promising for estimaing biomass of secondary vegetation 

in the Amazon, there has been very little research due to the lack of P-band data for the 

Amazon. Luckman et al. (1997) used measured stand characteristics and allometry to
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estimate biomass for 13 stands of secondary forest in central Amazonia, with ages 

between 2 and 22 years. Of these 13 stands, eight had biomass levels above the assumed 

saturation point for L-band backscatter estimates, while none of the stands exceeded the 

200 ton/ha saturation point for P-band. From this it is clear that a longer wavelength 

SAR system is needed to map secondary vegetation biomass in Amazonia. Currently 

there are no long wavelength polarimetric SAR systems on spacebome platforms. 

Therefore, for the Amazon the only suitable SAR system for mapping secondary 

vegetation biomass would be an aircraft based multi-frequency (C, L, and P-band), multi

polarization SAR (e.g. JPL TOPSAR/POLSAR).

Monitoring Secondary Succession in Amazonia with Optical Remote Sensing: A 
Proposal for a Five Component System.

Although vegetation indices and various combinations of individual

spectral bands can be used as a measure of secondary succession, structural properties of 

forests may also be characterized with multi-angle remote sensing measurements. Multi

angle remote sensing provides a unique opportunity for estimating differences in both 

meso- and micro-scale canopy roughness. Meso-scale roughness is derived from image 

texture (pixel to pixel variability), while micro-scale roughness is derived from 

differences in reflectance properties under different viewing geometries. Image texture is 

dependent on both canopy roughness and spatial resolution of remote sensing 

observations.

When measured from multiple viewing angles, assessment of structural properties 

of a forest canopy can be enhanced (Strahler and Jupp, 1990, Qi et al., 1995,Jupp and 

Walker 1997). Bi-directional properties of forest canopy are often unique and can be used
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as indicators of forest structure, density, and composition. Once again using the Oliver 

(1981) conceptual model of succession, at different stages of development, secondary 

succession stands will have different clump sizes, leaf and stem angle distributions and 

sizes, crown geometry, and proportion of inter-canopy shadowing, all of which can affect 

remote sensing measurements (Asner et al., 1998). At the later growing stages, changes 

in structural properties may not affect the spectral properties as observed from a nadir 

looking sensor such as TM. However, each of these properties has profound influences 

on observations from oblique viewing angles, and therefore bi-directional properties. 

Successional stand structure can, consequently, be represented by multiple view angle 

measurements, which will be provided by sensors like ASTER, MODIS, and MISR 

sensors. Bi-directional reflectance distribution (BRDF) models have been created based 

on empirically and theoretically derived relationships between canopy properties and 

radiative properties of vegetation constituents (Goel, 1988, Myneni et al., 1989, and 

Strahler, 1997). BRDF model inversions can then be used to estimate canopy structural 

attributes (Goel and Thompson, 1984, Qi et al., 1995, Jacquemoud et al., 1995, Privette et 

al., 1996, and Knyazikhin et al., 1998). With recent availability of data from multiple 

view angle sensors at a moderate resolution, research on mapping the structure of 

secondary vegetation in the Amazon using BRDF model inversions should proliferate 

and provide useful techniques for monitoring.

Since secondary succession proceeds along a continuum of changes in stand 

composition and structure, and not as a series of discrete steps, remote sensing based 

characterization should shift away from discrete age classes or successional stages to 

parameterization of continuous variables, such as canopy roughness, geometry, or even
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biomass, if possible. In the absence of discrete classes, evaluation or accuracy assessment 

of this type of approach will require methods that rely on fuzzy logic (Gopel and 

Woodcock 1994). This section of the chapter presents a proposal for an approach for 

routine monitoring of secondary vegetation in the Amazon, which uses a combination of 

“tried-and-true” and novel remote sensing techniques. The components of this monitoring 

system are designed specifically to provide quantitative data to aid our understanding of 

the response of Amazonian ecosystems to disturbance. While previous studies indicate 

that several successional age classes can be mapped, we propose using a different 

approach by developing coupled estimates of successional stage and regrowth rate. This 

would enable use of remote sensing technologies to assess not only the current stage of a 

successional stand but also the dynamics and future of regional biomass and carbon 

accumulation. We propose 5 components outlined here:

Component 1: Multi-temporal analysis for mapping extent, age and disturbance 

intensity:

This component consists of a multi-temporal analysis of optical data (e.g. 

Landsat and SPOT) to map extent and age, with a set of rules to define disturbance 

intensity based on clearing frequency. These multi-temporal analyses would also provide 

quantitative data on the dynamics of formation and re-clearing of secondary vegetation. 

There are two broad approaches for multi-temporal analyses: post-classification change 

detection and changes in spectral characteristics. Although the post-classification 

approach requires high accuracy for the individual classifications, the spectral approach 

requires detailed calibration and atmospheric correction. However, from published results
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it is clear that classification of cleared areas is relatively easy and can be done with very 

high accuracies (>97%). Therefore, mapping age can be achieved by tracking areas that 

have been cleared and then are no longer classified as cleared, so the more difficult step 

of separating secondary vegetation from forest is not necessary. In addition, multi

temporal analysis will also provide information on age of cleared areas, that can then be 

used to estimate below ground carbon fluxes (Morais et al. 1998).

Component 2: Development of scalable. BRDF estimates of canopy structure:

While ASTER, MODIS, and MISR data are all multidirectional, the resolution 

(15-30m) of ASTER is comparable to TM and fine enough to map stands of regrowth in 

the Amazon. To evaluate the influence of scale, MASTER data (MODIS and ASTER 

Simulator) could be used to investigate the use of BRDF models in inferring structural 

information of forest canopies. The candidate BRDF models include the Li-Strahler 

model (1985) and its modified versions (Li and Strahler, 1992), and 3-D model of 

Myneni and Asrar (1993). These models have also been selected as candidate models for 

mapping global leaf area index and fPAR by MODIS and MISR teams (Running et al., 

1994, Myneni et al., 1997, and Knyazikhin et al., 1998). The inversion technique has 

been shown to be promising (Scarth and Phinn, 2000, Jupp and Walker, 1997) and we 

will apply it to MASTER at local scale and MODIS data at large scales. Airborne 

videography data would provide additional bi-directional measurements, due to a 

continuous acquisition of multiple frames by the system, and potentially provide more 

directional sampling than MASTER. The videography, MASTER, and MODIS data
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would allow investigation for estimating the structural properties of forest canopies at a 

range of spatial scales from meters to kilometers.

The products from the BRDF modeling effort would include a set of forest 

parameters such as branch distribution, orientation, leaf optical properties and shadowing, 

all of which are structural characteristics of forest canopies. These parameters would be 

validated with ground in-situ measurements at the study sites and compared across a 

chrono-sequence of stands to assess rates of succession. These estimates of canopy 

structure could also then be compared with model predictions of succession stage.

Bi-directional properties of optical remote sensing are primarily dependent on the 

macro-level structures of forest canopies, which include forest openings, gap fraction, 

tree size, and branch distributions. Changes in any of these structural characteristics, 

which alter shadowing and mutual shading, would have substantial effects on remotely 

sensed bi-directional properties. Therefore, changes in structural properties can be 

inferred from directional measurements by sensors such as MODIS, ASTER, and 

MASTER. These bi-directional properties, however, also depend on the spatial 

resolution of remotely sensed imagery. Large pixel sizes represent averaged radiance 

measurements over larger areas and thus have high probability of including more 

components (shaded leaves, shadow, sunlit leaves, exposed soil/substrates, and branches 

and trunks), and, therefore, reflect a composite value of all components. When a pixel 

size is large enough to encompass a sufficient number of different components, the bi

directional properties may be “smoothed” and averaged out. In this case, bi-directional 

measurements may not be able to extract structural information. If a pixel is very small, 

on the other hand, the observed radiation may only reflect an individual component and,
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therefore, the bi-directional properties may also be lost. We believe that there is an 

optimal spatial resolution at which structural information of a forest canopy can be 

inferred from bi-directional measurements. For this proposal, 5m resolution MASTER 

data, acquired with multiple paths over our sites to increase the number of angular 

samples, would be ideal. The fine resolution MASTER data would then be aggregated to 

match ASTER (15m), ETM+ (30m), and MODIS (500m and 1000m). By examining the 

bidirectional properties of the aggregated MASTER imagery, in comparison with 

ASTER, if available, ETM+, and MODIS data, an optimal resolution can be determined.

Component 3; Mapping structural classes of secondary vegetation:

This component focuses on development of algorithms for spectral retrieval of 

secondary vegetation structural classes using visible and infrared reflectance data. This 

approach requires the retrievals be based on highly parameterized relationships between 

spectral reflectance and ground-based measures of vegetation structure developed in 

component 2. Relationships between remote sensing spectra and vegetation structure 

should focus on the vegetation structural attributes that influence the spectral signatures 

(e.g. canopy closure and canopy roughness). The parameterization must be developed for 

every region studied. Accurate atmospheric correction and radiometric calibration is 

required for this approach. Estimates of successional stages and regrowth rates would be 

derived, at the stand level, from three types of MASTER spectral indices and a BRDF 

model inversion. These spectral indices would include a traditional vegetation index 

based on differences in blue, red and near-infrared reflectance (EVI), an index based on 

the relative reflectance between the successional and mature forest stands (successional
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development ratio), and a  pattern index based on spectral angles (successional 

development index). These estimates of successional state and regrowth rates would be 

carried out at a set of remote sensing/validation sites located across a climate gradient in 

the Amazon and on two distinct soil textures. Figure 1.2 illustrates a set of sites that 

would provide a gradiant in climate conditions, across major soil texture differences, and 

would contain large differences in land use intensity (D. Alves, pers. com.). Scalability of 

the spectral indices and BRDF model to the scale of ETM+, ASTER, and MODIS would 

be tested by degrading the high resolution MASTER spectral data. Calibration and 

validation of these relationships will rely on using field estimates of succession state and 

structure, and, if available, LIDAR estimates of canopy height and vertical profiles.

In addition to the bidirectional property dependency on spatial resolution, 

vegetation indices also vary with spatial scale (e.g. Teillet et al., 1997). Spectral 

vegetation indices, like NDVI and EVI, computed at various spatial resolutions will 

represent different components of the forest. For example, if a pixel is very small, the 

measured reflectance may be due to only shaded branches, or shadows, or bare ground, 

depending on the spatial heterogeneity of the forest canopy. This inter-play between the 

scale of the sensors and canopy heterogeneity presents a challenge in interpretation of 

indices at variable spatial scales. If a spatial resolution is too large, detailed structural 

information may be lost due to a composite effect. Therefore, we believe that an optimal 

scale exists that would be best for forest structural analysis of regrowing forest in 

Amazonia and it can be derived by examining spectral indices using aggregated 

MASTER imagery in combination with MODIS and ASTER data.
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Component 4: Mapping Recovery Rates:

Remote sensing data would be used to monitor relative changes in 

secondary vegetation structure (canopy closure and roughness). Components 2 and 3 

would provide data on secondary vegetation age and structure. This component would 

focus on monitoring relative changes in spectral signatures, across a chronosequence of 

secondary vegetation stands, to estimate differences in recovery rates. Combining stand 

age information with changes in spectral properties would be used as an estimate of 

relative recovery rates. Radiometric and atmospheric normalization would be applied 

using the approach of Hall et al. (1991) to compensate for varying atmospheric 

conditions, changes in instrument calibration, differences in sensor response functions, 

and other temporal effects. Spectral-temporal changes and trajectories would then be 

mapped using change vector techniques (Johnson and Kasischke 1998) to quantify 

differences in succession and successional pathways.

Component 5. Assessment of Disturbance Specific Controls on Rates of Recovery:

Influence of the size and intensity of disturbance on recovery rates in 

Amazonia would be assessed by combining relative recovery rates based on spectral data 

with spatial and temporal information from multi-temporal analyses. The size (area 

cleared), proximity to seed source (e.g. distance to mature forest) and the land use 

intensity (e.g. period of pasture use, clearing frequency, number of fallow rotations) 

would be derived directly from the multi-temporal analyses and then analyzed in a GIS to 

develop a set of site specific rules of recovery rates based on land use.
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Figure 1.1 Conceptual diagram relating biomass recovery (Bormann and Likens 1979) 
to forest structural stages (Oliver 1981) following disturbance. The bottom chan shows 
the expected vertical profile of foliar biomass accompanying each stage. Each stage also 
has implications for horizontal heterogeneity and structure. Figure created by Mark 
Ducey (Department of Natural Resources).

39

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



M rcra ft C al/V al Sites Site Nam e
I Alto Paraiso, Rondonia
2 Uraara,Para
3 Vila Rica, M ato Grosso
4 Redencao, Mato Grosso

V alidation Sites Site N am e
5 Cacaulandia, Rondonia
6 Manaus, Amazonas
7 Altarm'ra, Para
S Bragantina, Para
9 Rio Branco, Acre
10 Apeu, Para

/\J  GSDY Contours 
Soil Texture 
■ ■  sandy

| H  non-sandy

Figure 1.2. Locations of proposed aircraft Cal/Val field sites and the validation sites (in 
yellow) and growing season degree year (GSDY) contours (in blue) overlaying a coarse- 
resolution (1° by 1°) soil texture map of the Brazilian Amazon. Soil texture was defined 
based on porosity, matric potential at saturation, saturated hydraulic conductivity, and the 
slope of the retention curve (Meeson et al. 1995). GSDY was calculated as the mean 
monthly temperature (Jones 1994) for months with precipitation (Hulme 1995) greater 
than 100 mm.
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'C lass 

#  _

. RADAM Aggregated . 

- /  V  Vegetation Class- ' disturbance

Area

,(10Tsq.km)

/.* Area 

, Deforested by 

: 1986 

_ CIO3 sq. km)

Post- 

disturbance 

Area (10? sq. 

km), [%loss]

1 Savanna/Savanna Estepica 726 7 719 [1.0]

2 Floresta Estacional Decidual 31 14 17 [45.2]

3 Floresta Estacional 

Semidecidual

55 8 43 [21.8]

4 Floresta Ombrofilia Densa 2,001 44 1857 [7.2]

5 Floresta Aberta 1,108 60 1048 [5.4]

6 Pioneiras/Campinarana 186 4 182 [2.2]

7 Savanna/Ombrofilia 192 17 175 [8.9]

8 Ecological Refugio 2 0 2 [01

9 Savanna/Floresta Decidual 

Contato

216 17 199 [7.9]

10 Floresta Ombrofilia/Decidual 
Estacional

203 22 181 [10.8]

11 Pioneiras/Capinarana/Ombrof 
ilia Contato

223 I 222 [0.4]

Table 1.1. RAD AM vegetation classes for the Legal Amazon. Pre-disturbance area 
estimates are based on a digitized 1:1M scale maps with areas of disturbance replaced by 
surrounding vegetation class. Post-disturbance area estimates for 1986 are based on the 
Landsat Pathfinder deforestation data set overlaid on the pre-disturbance map.
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Visible Reflectance NIR Reflectance MIR Reflectance
Pasture/crop
areas*

High Variable, < SSI High (dry soils)

SSI Moderate High Moderate
SS2 Moderate, higher 

green/red ratio
Moderate Low-Moderate

SS3 Low, with higher 
green/red than SSI, 
SS2

Low Low

Mature Forest Low Lowest Lowest

Table 1.2 Relative spectral properties of successional stages , as defined a priori by 
Mausel et al. 1993, Brondizio et al. 1994, Moran et al. 1994. SS1 is the initial succession 
stage consisting of areas with tall grasses and some woody/forest growth. SS2 is 
intermediate succession with larger trees, 8-12m tall, and beginning to develop a multi
canopy. SS3 is more advanced stage of succession with a maturing multi-canopy with 
some trees taller than 20m. * assumes imagery is acquired during the dry season after 
annual crops have been harvested.
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CHAPTER 2

INTER-ANNUAL VARIABILITY IN DEFORESTATION AND REGROWTH

IN THE TROPICS

Abstract

Estimates of land cover change dynamics for three sites in the Amazon (Alto 

Paraiso, Rondonia; Uruara and Rurupolis, Para) and four sites in Southeast Asia (Chiang 

Mai, Thailand; Kachin State, Myanmar; Upper Ca River, Laos; and Lower Ca River, 

Vietnam) were derived from multi-temporal Landsat TM data. The objectives of these 

analyses were to document the spatial and inter-annual variability in the rates of forest 

clearing, secondary vegetation formation, and persistence of secondary vegetation. 

Annual, or nearly annual, Landsat TM data from mid-1980s to Iate-I990s were classified 

into broad land cover classes (forest, non-forest, secondary vegetation, and water) using 

unsupervised classification with knowledge-based manual editing to facilitate high 

classification accuracies. Pasture, perennial crops, rotational agriculture, and 

abandonment into long-term fallow are the dominant land uses in these regions. Results 

indicate secondary vegetation was a large, rapidly changing pool. Variability in the 

observed annual rates of deforestation and secondary vegetation formation was high. The 

transition probabilities of both the formation and clearing of secondary vegetation 

decreased with age. Persistence of the secondary vegetation pool was also highly 

variable, likely indicating two distinct land use trajectories: rotational agriculture/pasture
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maintenance versus abandonment. However, some of the observed variability was likely 

due to seasonality of the Landsat data acquisition and the period between subsequent 

classifications.

Introduction

Explicit estimates of annual rates of deforestation, secondary vegetation formation 

and persistence are needed to refine estimates of net carbon flux from tropical land use. 

The significance of secondary vegetation on carbon fluxes is a function of the extent of 

secondary vegetation, biomass accumulation rates, and persistence of the secondary 

vegetation (Skole et al.1994). Fine spatial and temporal scale information on land cover 

change dynamics is critical since the “patterns and timings” of deforestation and 

abandonment impact biogeochemistry and hydrologic processes (Skole et al. 1994). Case 

studies using multi-temporal satellite data are needed to understand Iocal-scale dynamics 

of deforestation, abandonment, and secondary vegetation turnover (Skole et al. 1994). 

This chapter focuses on the following research questions:

• Are the annual rates of deforestation and abandonment to secondary vegetation 

significantly different from the decadal mean?

• How long does secondary vegetation tend to persist and, therefore, what fraction of the 

secondary vegetation pool represents rotational agriculture versus long-term 

abandonment?

Global Carbon Cycle

Ever since measurements of atmospheric CO2 have been made on a regular basis 

(e.g. Keeling’s Mauna Loa records) global carbon cycle research has focused on trying to
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balance the “budget”. Initially simple source/sink models were used to balance the budget 

based on reported fossil fuel consumption, estimated tropical land use changes, and 

modeled oceanic uptake. However, these sources and sinks could not account for the 

observed rise in atmospheric COa concentration, leading to the search for the “missing 

sink”. With the availability of more detailed atmospheric and oceanic measurements 

collected at a global scale with a relatively fine temporal scale, new techniques and 

approaches have been used in an attempt to find the “missing sink” and balance the 

carbon budget. These new techniques have focused on better modeling of the net fluxes 

in either the oceanic or terrestrial carbon pools and the direct measurement of 

atmospheric constituents ([CO2 ], O2/CO2 , 8l3C ) to estimate fluxes of carbon between 

the atmospheric, oceanic, and terrestrial pools. The concentration of atmospheric CO2 is 

designated by [CO2 ].

Tans et al. (1990) used a global atmospheric circulation model to redistribute 

atmospheric CO2 based on surface fluxes of CO2 due to fossil fuel consumption, tropical 

deforestation, and oceanic uptake. They estimated the annual oceanic uptake, based on 

seasonal CO2 partial pressure differences at the air-ocean interface and monthly 

climatological wind data, to be an average annual net sink of 1.6GTC (Giga-Tons of 

Carbon). They assumed that tropical land use contributes 1.0 to 2.5 GTC per year to the 

atmosphere. Their assumption for the tropical biotic source term was within the range of 

the 1994IPCC estimates of 1.6±1.0 GTC per year (IPCC 1994). The atmospheric 

circulation model predicted that the atmospheric [CO2] should exhibit a strong north- 

south inter-hemispheric gradient of 5.7 to 7.3 ppm. This estimate was significantly higher 

than the observed gradient of 3ppm based on the NOAA flask measurements (Tans et al.
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1990). They speculated that the source of this discrepancy could either be their 

atmospheric transport model or an unaccounted for extra-tropical terrestrial sink in the 

Northern Hemisphere. Their analysis of 85Kr and CFC tracer data indicated that 

inaccuracies in their transport model could account for differences of only 10% and not 

the two fold differences measured. Thus, they assumed that the “missing sink” was a 

terrestrial sink of 2.0 to 3.4 GTC in the northern hemisphere temperate zone. Siegenthaler 

and Sarmiento (1993) updated the Tans et al. (1990) oceanic uptake estimates by 

accounting for differences in ocean skin temperature and bulk water temperature, 

horizontal transport of carbon from the terrestrial biosphere to the ocean via rivers, and 

the north-south transport of carbon monoxide and its subsequent uptake in the southern 

oceans. From this they estimated that oceanic uptake was nearly 2.0±0.6GTC per year.

As a result, they concluded that either there is a terrestrial sink of about 1.8±l .3 GTC, or 

that the tropical source term of l.6±1.0 GTC is too high, or a combination of both. This 

highlights an important aspect of these constrained models, namely, that the magnitude of 

the inferred temperate sink is a function of the magnitude of the tropical source term. 

Another aspect of these analyses is that they rely on atmospheric transport models to 

spatially distribute atmospheric carbon. This spatial distribution is constrained by the 

atmospheric flask measurements.

A second approach is to use direct measurements of atmospheric or oceanic 

carbon content to estimate spatial and temporal patterns of carbon fluxes. This approach 

yields flux estimates that are not model dependent. Quay et al. (1992) estimated the net 

flux of CO2 in the ocean and terrestrial biosphere using isotopic measurements of 5l3C 

(essentially the ratio of I3C/i2C) in the atmospheric C 0 2 and dissolved inorganic carbon
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from ocean surface waters. 8I3C varies depending on the source of the carbon and 

changes depending on the uptake mechanism due to fsotopic fractionation. Therefore 

changes in this ratio provide an indication of the uptake mechanisms (Quay et al. 1992, 

Ciais et al. 1995a). Because terrestrial photosynthesis discriminates against the heavier
I  *>

isotope ( C), atmospheric uptake can be partitioned between the ocean and the terrestrial 

biosphere (Quay et al. 1992, Sarmiento 1993, IPCC 1994, Ciais et al. 1995a). Quay et al. 

(1993) used this technique to estimate that from 1970 to 1990 the average annual oceanic 

uptake was 2.1GTC, while the average annual terrestrial uptake was negligible (0.1GTC).

Ciais et al. (1995a, 1995b) used a hybrid approach involving a two-dimensional 

atmospheric transport model (like Tans et al. 1990) with CO2 and 8I3C measurements 

from NOAA’s Climate Monitoring and Diagnostics Laboratory (CMDL) global flask 

network (like Quay et al. 1992) to estimate CO2 partitioning as a function of latitude and 

time from 1990 to 1993. Their procedure relied on: estimates of the discrimination 

against I3C by photosynthesis as a function of latitude and time using the SiB model; 

calculation of isotopic composition of respired soil carbon from various turnover pools 

using the CENTURY model; and estimated spatial distribution of SI3C in ocean from 

ship cruise data. Their results indicate that the northern temperate zone was a large 

terrestrial sink (3.5 GTC) in 1992 and 1993, whereas the biosphere in the northern tropics 

(from equator to 30°N) was a large source (2.0±1.3 GTC) of carbon. This tropical source 

estimate is considerably higher than the estimates of 0.9GTC by Houghton et al. (1987) 

and 1.6±1.0GTC by the IPCC. Ciais et al.( 1995b) attributed this difference to either a 

problem with their intra-hemispheric transport between the tropical and temperate 

latitudes or that previous deforestation estimates were lower than the actual deforestation.
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It is also interesting to note that they estimated that the southern tropics was a small 

terrestrial sink in 1992 and 1993. This is surprising because this latitudinal band contains 

Brazil and Indonesia. Estimates of CO2 emission from tropical land use rank these two 

countries as the top two in terms of total emissions due to deforestation. The weak 

terrestrial sink in the southern tropical zone suggests that either the forests have a positive 

net ecosystem production (due to fertilization of undisturbed forest and/or secondary 

growth formation) or deforestation has been overestimated (Ciais et al 1995a).

Photosynthesis converts CO2 and water into organic carbon and molecular oxygen 

(O2). While combustion and respiration work in the opposite direction with the oxidation 

of organic compounds producing CO2 . Atmospheric [O2] is a function of photosynthesis, 

respiration and combustion, and varies inversely with atmospheric [CO2]. However, 

changes in atmospheric [O2] are difficult to measure because they are very small 

compared with the overall atmospheric concentrations (Keeling and Shertz 1992). 

Changes in [O2] can be estimated by changes in the ratio of O2/ N2 because [N2] is 

relatively stable. Since O2 is not chemically active in the ocean due to its low solubility, 

changes in atmospheric [O2] can then be related to fluxes of CO2 from the terrestrial 

biosphere (Keeling and Shertz 1992). The O2  based estimate of net terrestrial exchange of 

CO2 can be used to constrain the oceanic CO2 uptake based on atmospheric measures of 

CO2 . Keeling and Shertz (1992) used this technique to estimate an annual oceanic uptake 

of 3.0±2.0 GTC and an annual net terrestrial sink of 0.2±1.7 GTC. Keeling et al. (1996) 

used O2/ N2  data from 1991-1994 to measure hemispheric gradients in CO2 uptake. They 

estimated that on an annual basis from 1991 to 1994 the terrestrial biosphere was a net 

sink of 2.0±0.9 GTC, tropical land biota was not a strong source or sink, and the oceans
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were a net sink of 1.7±0.9 GTC. Using longer term trends in 0 2/ N2, they estimated that 

the measured slow down in the rate of increase in atmospheric C 02 was due to either 

increased C 02 uptake in the temperate land biota or the removal of a net tropical source 

of C 02 due to decreased rates of deforestation.

Precise spatial reconstruction of the historical terrestrial sources and sinks of 

carbon is hampered by the relatively few number of C 02 monitoring stations (Bousquet 

et al. 2000) and resolution of the hemispheric transport models (Rayner et al. 1999). 

Some inversion studies have compensated by aggregating latitudinal bands into broad 

regions. For example, Rayner et al. (1999) estimated annual mean land and ocean fluxes 

of carbon for northern hemisphere, southern hemisphere, and tropical regions. While the 

annual oceanic flux for the tropics was estimated to be highly variable and coupled with 

El Nino/Southem Oscillation (ENSO), the annual net flux for tropical land areas varied 

between a net source (over 0.5GTC) and sink (over I GTC) from 1980 to 1995 (Rayner 

et al. 1999). A recent inversion study using 20 years of atmospheric C 02 data by 

Bousquet et al. (2000) indicates that, during the 1980s, the tropical land areas were 

largely responsible for the observed inter-annual variability in global carbon balance. 

However they also indicated that, during the early 1990s, the mid- to high-latitude land 

areas drove the observed inter-annual variability in carbon balance, and, from 1996-1998, 

the tropical, temperate, and boreal land areas contributed equally to the observed 

variability.

Variability in carbon storage has also been estimated for Amazonia using a 

transient process-based biogeochemical model (Tian et al. 1998). During El Nino years 

the undisturbed regions of Amazonia were estimated as a source of up to 0.2GTC and a
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sink o f up to 0.7GTC in non-EI Nino years (Tian et al. 1995). These estimates are large 

compared with flux estimates based on land use change, which indicate a source ranging 

from 0.2GTC (Houghton et al. 2000) to 0.3GTC (Feamside 1997). Our understanding of 

the carbon balance of the Amazon basin is confounded further by net carbon flux 

estimates based on eddy covariance measurements which indicate that the basin as a 

whole was a huge (1.2GTC) sink in 1987 (Fan et al. 1990) and large (0.5GTC) sink in 

1992/1993 (Grace et al. 1995).

While these analyses seem to point to a significant temperate terrestrial sink for 

carbon, the carbon balance of the tropical biota is still uncertain and, therefore, it is still 

extremely important to quantify the annual net flux of carbon due to tropical land use. 

These data would serve several purposes. Annual, spatially explicit estimates of CO2 

emissions due to tropical deforestation and land use would help resolve some of the 

discrepancies resulting from these recent carbon models using annual atmospheric 

measurements. Annual deforestation data could be used to validate or identify problems 

with these carbon models, such as intra-hemispheric transport between the tropical and 

temperate zones or potential positive NEP in the tropical forests (Ciais et al. 1995a). In 

addition, in order to assess where carbon uptake is occurring over the long term, it is 

necessary to isolate inter-annual variability in carbon fluxes from long-term mean fluxes 

(Bousquet et al. 2000). The only way to properly validate these annual models is to have 

contemporaneous data on annual changes in carbon emissions due to tropical land use.
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estimates of Deforestation and Secondary Growth Formation due to Tropical Land

Use

FAO estimates that the average annual rate of tropical deforestation in the late 

1980s and early 1990s was 15.4 xlO6 ha (FAO 1993). The regional contributions of this 

global annual rate are 4.1, 3.9,' 7.4 xlO6 ha for Africa, Asia & Pacific, and Latin America 

& Caribbean, respectively. FAO estimated that for Continental Southeast Asia 

(Cambodia, Laos, Myanmar, Thailand, and Vietnam) the average annual deforestation 

rate from 1980 to 1990 was 1.3 xlO6 ha. Early results from NASA’s Landsat Pathfinder 

Humid Tropical Forest (LP HTF) project suggest the average annual rate from 1973 to 

1985 was 1.4 xlO6 ha. Since actual annual rates of deforestation may be highly variable, 

care must be taken for direct comparison of these estimates because of differences in the 

definition of deforestation, forest cover, and periods of the respective analyses.

Within the Latin America & Caribbean region FAO estimated that during the 

1980s the average rate of deforestation for Tropical South America was 6.2 xlO6 ha, with 

Brazil alone at 3.7 xlO6 ha per year. Recent satellite analyses of the Brazilian Amazon 

indicate that from 1978 to 1988 the rate of deforestation was between 1.6-2.2 xlO6 ha per 

year (INPE 2000, Skole and Tucker 1993). Estimates from the LP HTF project suggest 

that the average annual rate of deforestation in the Brazilian Amazon from 1986 to 1992 

and 1992 to 1996 was 1.65 xlO6 ha and 1.4 xlO6, respectively. INPE began mapping 

annual extent of deforestation in 1989 using 1:250,000 scale Landsat photoproducts 

(INPE 2000). Their estimates of annual rates revealed large differences in rates from 

1989 to 1998, ranging from a low of 1.1 xlO6 ha in 1991 to apeak of 2.9 xlO6 ha in 1995. 

While INPE provides annual deforestation estimates, data on the extent and formation
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and turnover rates of secondary vegetation are needed. An analysis of annual high 

resolution imagery (e.g. Spot XS or Landsat) could provide such data.

Role of Secondary Growth in Net Biotic Release of Carbon Due to Tropical Land

Use •

It is commonly accepted that the rates of carbon accumulation during secondary 

succession are a function of many factors, including type of disturbance (e.g. method of 

clearing, temperature and frequency of burning), agricultural practices (intensity), size of 

disturbance, and climate (Bazzaz and Pickett 1980, Ewel et al. 1981, Uhl et al. 1988, 

Nepstad et al. 1991, Feamside and Guimareas 1996). During succession total biomass 

and soil organic matter increase toward a climax state. However, this climax state may 

differ from the pre-disturbance state (Botkin 1993). There have been numerous studies 

measuring rate of accumulation in above ground and/or below ground biomass in 

secondary forests following disturbance throughout the tropics ( Fittkau and Klinge 1973, 

Edwards and Grubb 1977, Sabhasri 1978, Uhl and Jordan 1984, Andriesse and Schelhess 

1987a, Uhl 1987, Saldarriaga et al. 1988, Uhl etal 1988, Nepstad et al. 1991, Kauffman 

et al. 1995a). For example, average annual rate of above ground biomass accumulation in 

abandoned pastures near Paragominas in the eastern Amazonia varied from 0.63 to 11.3 

tons per hectare per year (Nepstad et al. 1991). These vast differences were attributed to 

land use. The rate of biomass accumulation was found to be inversely proportional to the 

intensity of land use prior to abandonment. Intense pasture maintenance results in 

“barriers to tree establishment” that influence the overall biomass accumulation (Nepstad 

et al. 1991). Nevertheless, an empirical model based solely on climatic controls can still
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be a good, unbiased predictor of biomass accumulation rates in regions with non-sandy 

soils (Zarin et al. 2001).

Results from the NASA Landsat Pathfinder indicate extensive areas of forest 

fallow and secondary vegetation in Continental Southeast Asia and the Legal Amazon. 

For example, the extent of secondary vegetation in the Legal Amazon varied from 76,000 

km2, 31% of the deforested area, in 1986 to over 165,000 kin2, 41% of the deforested 

area, in 1996 (unpublished results from LP HTF). The impact of these large secondary 

growth pools on the net biotic flux of carbon has yet to be quantified. The dynamics of 

the secondary growth pool and the rate of biomass accumulation needs to be quantified in 

order to assess the impact of secondary growth on the global carbon cycle. Satellite 

analyses by Alves and Skole (1996) indicate that for a site in Rondonia secondary growth 

is a large (over 40% of the deforested areas) and a rapidly changing pool. Almost 60% of 

the areas in secondary growth in 1986 were recleared at least once by 1992, and over 

55% of the deforested areas in 1986 were abandoned into secondary growth for some 

period of time by 1992 (Alves and Skole 1996). Remote sensing based change detection 

studies provide a unique opportunity for characterizing the dynamics of the secondary 

growth.

Methods

Landsat Classification

Multi-temporal Landsat Thematic Mapper images were obtained for three sites in 

Amazonia and four sites in Southeast Asia (see tables 2.1 & 2.2, figure 2.1). These
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images were selected so that the acquisition period was consistent for a given site. The 

data for the Amazonia sites was targeted for mid-dry season. However, due to cloud 

cover, two images were acquired in the late dry-season/early wet-season. While the 

acquisition date for the sites in Southeast Asia was targeted for early dry season 

(November to January) to avoid leaf-off phenological conditions, half of the twenty-two 

images used in the Southeast Asia analysis were acquired after leaf drop. At each site, a  

base image was selected and rectified to Universal Transverse Mercator (UTM) map 

coordinates using control points derived from GPS data where available or from the 

spacecraft ephemeris ground control estimates. The remaining images were then co

registered to the base image using at least 35 manual ground control points (GCPs) with a 

target RMS of less than 0.5 pixels (all RMS errors were less than 0.7pixels). The sites in 

Southeast Asia are generally mountainous, causing significant topographic effects in the 

TM imagery. To reduce the topographic effects two synthetic bands were created prior to 

classification. These bands were simple band ratios of the TM band 5 over 4 and band 4 

over 3.

An unsupervised classification procedure was applied to avoid having to specify a 

priori the spectral characteristics of our thematic classes. Of the several clustering 

algorithms that exist, the ISODATA technique was utilized in this study. Using a 

minimum spectral distance decision rule for assignment of pixels, images were clustered 

using ISODATA with a specified convergence threshold of 95% and 45 clusters. The 

convergence threshold is the percentage of pixels that do not change clusters between 

iterations even with a small shift in cluster means. Pure clusters were assigned a class
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value and removed from further clustering. Class assignment was based on several field 

surveys of the study sites and the inherent TM spectral properties of the land cover 

classes. “Mixed” clusters were re-clustered iteratively by masking areas of pure clusters 

and re-running ISODATA. Manual editing was applied to remove mis-labeled clusters. 

Final classifications had 7 thematic classes (forest, cleared, natural non-forest, water, 

cloud, cloud shadow, and secondary vegetation) for the Amazonia sites and 5 thematic 

classes (vegetated, cleared, water, cloud, and cloud shadow) for the Southeast Asia sites. 

The sites in Southeast Asia are upland regions of moderate to severe topography with 

shifting cultivation by indigenous hill-tribes as the dominant form of land use. After 

many years of shifting cultivation, the upland landscape in these areas consists of a broad 

range of villages, paddies, swiddens (areas containing active agriculture), fallows ranging 

from scrub/grasses to secondary forests, and mature forest (Sabhasri 1978). The 

combination of topographic influences and a continual range in vegetation made it 

difficult to separate secondary vegetation from forest, so these classes were combined 

into a single “vegetated class” for the Southeast Asia analyses. Very little of the 

landscape goes un-used and cleared areas are mostly areas that were cultivated during the 

wet season. Boolean operators were used to create a mask consisting of the sum of all 

areas of that were classified as water, cloud, cloud shadow, and natural non-forest 

(Amazonia only) in any year. This mask was applied to all final classifications to remove 

areas where we do not have land cover data in all of the inventories.
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ChangeDeteetiog

While there are several strategies for change detection, post-classification change 

detection facilitates the generation of land-cover transition matrices, thereby providing 

spatially explicit information on “from to” class changes (Khorram et al., 1999). 

Transition matrices can be easily created because the images are co-registered and every 

pixel is assigned to a land-cover class. While other change detection strategies, for 

example image enhancement or differencing, provide information on the location, spatial 

patterns, and amount of change, these techniques do not provide land cover transition 

information because the images are not classified. Land-cover transition matrices were 

used to determine both the amount and spatial patterns of deforestation and secondary 

vegetation formation. Pixel level transition sequences were labeled using Boolean 

operators. For example, a site that was deforested in 1990 and then contained secondary 

vegetation from 1993 through 1995 would have a transition sequence from 1989 to 1995 

of “FDDDSSS”, where F, D, and S represent forest, cleared, and secondary vegetation 

classes, respectively. Cohorts of new secondary vegetation and clearings were tracked 

throughout each time series to quantify persistence of each class. Histograms of the 

transition sequences were analyzed to quantify the land cover dynamics. For example, all 

areas of new deforestation in 1992 were identified by the transition sequence “FFFD...” 

and new secondary growth areas in 1993 were identified by “XXXXS...” where X can be 

either the F or D classes.

We applied a significant assumption regarding permitted transition sequences. It 

was assumed that if a pixel was classified as disturbed (cleared or secondary vegetation 

class) in an earlier image, it could not revert to mature forest in later images. This
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assumption was made in order to map areas of older secondary vegetation that become 

spectrally indistinguishable from mature forest and thus would be mis-classified as 

mature, undisturbed forest in subsequent imagery. Classification errors can have a 

significant impact on post-classification change detection studies because classification 

errors propagate with each additional classification added to the transition. In Amazonia, 

while accuracy in separating cleared areas from secondary vegetation and forest is 

typically quite high (98-99%), spectral confusion between secondary vegetation and 

mature, undisturbed forest is most problematic (Kimes et al.1999). However, from the 

transition sequences we know if a particular pixel was disturbed in the past and, thus, 

must be secondary vegetation instead of undisturbed forest. Therefore, by incorporating 

an historical land cover condition using Boolean operators into our transition sequences 

we improved the overall accuracy of the transition sequences and mapped areas of older 

secondary vegetation that otherwise would have been missed.

Accuracy Assessment

Traditional statistical accuracy assessment (Congalton 1991) and spatial shape 

analysis techniques were used to evaluate the results. It was not feasible to collect 

appropriate (in space and time) reference data for a statistically valid accuracy assessment 

of all Landsat TM classifications. However, reference data were collected in 1998 at Alto 

Paraiso, Brazil and in 1996 and 1997 in Chiang Mai, Thailand sites with a camera and 

GPS to document the location and land cover conditions. Additional field visits in Brazil, 

Laos, Thailand, and Vietnam were used to calibrate the analysis. The accuracy was 

computed for the forest, cleared, and secondary vegetation classes for Alto Paraiso and
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for forest and non-forest classes for Chiang Mai. The overall accuracy of the 1998 Alto 

Paraiso, 1996 Chiang Mai, and 1997 Chiang Mai classifications were 98%, 88%, and 

85%, respectively. Tau (Ma and Redmond 1995) and Kappa (Hudson and Ramm 1987) 

statistics were also calculated to evaluate overall accuracy relative to a random 

assignment of classes. Tau/Kappa statistics for the 1998 Alto Paraiso, 1996 Chiang Mai, 

and 1997 Chiang Mai classifications were 98%/94%, 83%/75%, and 80%/71%, 

respectively. Summaries of the statistical accuracy assessment are provided in Appendix 

B.

Aside from classification errors, mis-registration and atmospheric conditions can 

reduce the accuracy of change detection studies (Wickware and Howarth, 1981). The 

potential impact of mis-registration was examined by performing a spatial analysis of the 

changed areas (Salas et al. 2001). Changed areas were clumped into groups of 

contiguous pixels by change class. Calculation of the perimeter/area ( P/ A)  ratio of the 

individual change clumps provides an indication of the shape of the changed area.

Higher Pf  A values represent changed areas with a shape closer to linear, and hence 

could represent mis-registration. This ratio was used for estimating the proportion of 

total area changed that may be attributed to edge effects or mis-registration. For a given 

pixel size p the area of a group of pixels is given by An = np2 where n  is the number of 

pixels. Since the perimeter for a horizontal or vertical line of pixels is 

P= 4np - l [ n - l ) p , the corresponding?/A would be

p / A  _  4 n p -2 (n -V )p  _  2(n +1)
/  np2 np
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For a set of pixels that do not share an edge (a single pixel or a diagonal line of pixels) 

the P/A  is 4 /p . While RMS error may be unreliable for estimating the precision of co

registration (Verbyla and Boles 2000), we assume that our co-registration errors are sub

pixel given that all of our RMS errors were less than 0.7 pixels. Visual inspection of the 

change images did not reveal any indications of large mis-registration effects. Based on 

this assumption, change detection errors due to mis-registration should be manifest as

thin, single pixel bands of changes with Pf A ranging from low of t0 a

maximum of 4J p . However, change areas with P/A  in this range are not necessarily 

spurious changes due to mis-registration, but rather could be indications of small land 

cover changes. The distribution of clump sizes and P/A  values for all changes observed 

from 1989-1990 for Chiang Mai and 1996 to 1997 for the Ruropolis and Uruara sites are 

provided in figure 2.2a, 2.2b, and 2.2c, respectively. The P/A ratio was calculated for 

each contiguous area of change, herein called a “clump”. We then compared the observed 

P/A ratio for each clump with the theoretical P/A for a line of pixels, given by the 

equation above, with the same number of pixels in the observed clump. If the observed 

P/A was higher than the expected P/A for a linear strip (area above the curved line in 

Figure 2.2), then the change was flagged as a potential error due to mis-registration. 

Based on the P/A  spatial analysis, less than 10% of the total changes observed at the two 

Amazonia sites could be due to mis-registration and at most 21% at the Chiang Mai site. 

However, since some land use changes can create thin areas of disturbance surrounding 

areas of deforestation (e.g. see work of Laurance et al. 1997), analysis of the types of 

observed changes would be useful for separating spurious changes due to mis-registration
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from actual edge effects due to human disturbance. While this was not done for this 

study, future analyses will focus on using the spatial shape of changes, coupled with the 

thematic change data, to identify forest degradation due to edge effects that include 

biomass decline and fire encroachment along the edges of deforested areas.

Results and Discussion 

Amazonia Sites: Alto Paraiso. Ruropolis. and Ururara

The total area disturbed, defined as the sum of cleared and secondary vegetation 

classes, increased steadily from the mid/late 1980s to late 1990s at all three sites (Figures 

2.3a, 2.3b, and 2.3c). Area of disturbance increased from 20% in 1989 to over 41 % of the 

total area in 1998 for Alto Paraiso, a 105% increase in total area disturbed over this 9-year 

period. At Uruara, the disturbed area increased from 9.8% in 1986 to 24.5% in 1999, a 

149% increase over the 13-year period. At Ruropolis, disturbed area increased from 9.1% 

in 1987 to 19.9% in 1998, a 119% increase over the 11-year period. While the area 

weighted intensity of disturbance was different at these sites, the average annual 

expansion was similar, ranging from 10.8%/yr to 11.7%/yr. The percentage of disturbed 

area as secondary growth varied dramatically on an annual basis from 28% to 63% at 

Alto Paraiso, 37% to 64% at Uruara, and 57% to 71% at Ruropolis. Early dry-season 

imagery tended to have a higher proportion of secondary vegetation than late dry-season 

imagery (Figure 2.4). The influence of the timing of the Landsat imagery was more 

apparent at the Alto Paraiso site, which has a more pronounced dry season with typically 

less than 40mm of precipitation in the peak dry months of June and July, than at the
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Uruara and Ruropolis sites, which seldom have pronounced dry months with less than 

40mm (Legates and Wilmott 1990, Huffman et al. 1997).

The average annual rates of disturbance for the Alto Paraiso (1989-1998), 

Ruropolis (1987-1998), and Uruara (1986-1999) were ll,400ha, 12,000ha, and6,800ha, 

respectively. On an area-weighted basis, average annual disturbance rates were more than 

double at Alto Paraiso and Uruara when compared with Ruropolis. Annual rates of 

disturbance varied significantly (figures 2.5a-c). There is no apparent synchronicity of 

higher and lower rates between sites, nor with the INPE (2000) basin-scale data. For 

example, in 92-93 and 94-95 rates were high at Alto Paraiso and relatively low at 

Ruropolis and Uruara. At the basin scale there was an almost three-fold difference 

between low rates in 1990/1991 (11,130 km2 yr'1) and high rates (29,059 km2 yr'1) in 

1995/1996 (based on INPE 2000). Whereas, this large difference was not evident at these 

sites indicating spatial heterogeneity in patterns and magnitude of deforestation rates 

across the basin, which is consistent with the findings of Sanchez et al. (1997).While 

much of the annual variability is due to differences in annual disturbance rates, the large 

difference between 92-93 and 93-94 at Alto Paraiso is likely an artifact of the seasonality 

of the image acquisitions due to the timing of clearing and burning activities. In 

Rondonia much of the clearing takes place in July-August, so the images from June 22, 

1992 and October 7,1993 span two clearing seasons, whereas between the October 

7,1993 and June 4, 1994 images there was no peak clearing period.

The rates of formation and clearing of secondary vegetation were often higher 

than deforestation rates and exhibited more inter-annual variability. There were periods 

with high formation and low clearing rates, for example 1991 and 1993 at Alto Paraiso,
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and, conversely, periods with low formation rates and high clearing rates, for example 

1993 at Alto Paraiso and 1997 at Ruropolis (see figure 2.6). Secondary growth dynamics 

appeared to be higher for transitions across years with dry versus wet season imagery, 

which is likely due to the timing of land cover changes relative to the Landsat image 

acquisitions across years in the time series. The impact of the “timing” effect will be 

dependent on the actual land use. Pastures that are not well maintained are often called 

“dirty pasture” due to the presence of shrubs and herbaceous plants that have over grown 

the pasture grasses. Farmers typically do not cultivate or introduce pasture grasses 

immediately following clearing of mature forest. wSecondary vegetation formation 

typically occurs soon after the initial clearing event. On average, only 30% of new 

clearings remained devoid of secondary vegetation during the first 2 years following 

initial clearing (table 2.5). Therefore, while rates of secondary vegetation change were 

observed to be more variable than deforestation rates, we expect the two processes to be 

coupled.

Post-disturbance land use can have a significant impact on the carbon balance of 

the landscape. While it is clear that secondary vegetation is widespread across these sites 

and the tropical region as a whole, the persistence of the secondary vegetation is not well 

known. Cohorts of new secondary vegetation following cleared class were tracked 

through the multi-temporal analyses to quantify how frequently the stands were re

cleared and what percentage of stands persist beyond a short rotation period. The results 

are presented in tables 2.3a,b, and c and in figure 2.7. On average only 57% of secondary 

vegetation stands (n=l6, std. dev. = 16.6%) persisted for longer than one year. In other 

words, over 43% of secondary vegetation stands were re-cleared in the first year. Only
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25% of the stands (n=9, std. dev. = 12.5%) persisted for at least 5 years, with less than 

10% lasting longer than 8 years indicating that most of this pool is part of a rotational 

system and not due to long-term abandonment. The 1990 and 1993 Alto Paraiso cohorts 

of secondary vegetation appeared to have different survivorship characteristics with a 

much higher level of persistence. For example, only 7% of the 1990 cohort was re- 

cleared in the first year and over 36% persisted for at least 8 years. These two years also 

had relatively small cohorts of secondary vegetation (see figure2.6) and are derived from 

imagery that was acquired later in the dry season (see table 2.2). Secondary vegetation 

persistence at the Alto Paraiso site was compared with the other two sites to see if there 

were regional differences between Rondonia and Para. Based on an analysis of variance 

(d.f. = 15, F-test with threshold of a=0.25), there were small differences in persistence 

after the first year, but these differences were not apparent for the 3-year old stands. The 

results on secondary vegetation persistence presented here address only one component 

of new secondary vegetation. There are vast areas of new secondary vegetation that is 

observed that appear to come directly from the mature forest class (denoted “F ’ above). 

There are several land use changes conditions that could cause this apparent “F ’ to “S” 

transition, including but not limited to logging and multi-year clearing. Future analyses 

will focus on characterizing these land use changes using transition sequence analysis of 

persistence coupled with a spectral analysis of the secondary vegetation class.

Southeast Asia: Chiang Mai. Upper and Lower Ca River, and Kachin sites.

These four sites contain a broad range of natural forest types, ranging from low 

stature dry dipterocarp forests that have low canopy cover to dense hill evergreen forest
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with very high canopy cover, and secondary forests and fallow formations due to a long 

history of land use in the uplands of Southeast Asia (Sabhasri 1978). Analysis of spectral 

separation based on transformed divergence measures (Swain and Davis 1978) indicated 

that separation of disturbed areas (e.g. secondary forests and fallow areas) from mature 

forests in this region of moderate to severe topography would be difficult. Therefore, 

rather than direct mapping of disturbed areas, we focused on accurate designation of 

cleared areas and then tracked areas that later shifted to our broad forest class during the 

multi-year analysis. Areas of disturbance were then defined as all areas that changed 

classes during the inventory plus areas that remained in cleared class throughout the 

inventory. While use of such broad land cover class may not be ideal for complete 

characterization of the landscape, assessments of clearing of forests and creation and 

persistence of fallow areas can be achieved using post-classification change detection 

methods.

Based on the percentages of the study areas impacted by change (see table 2.4), 

land cover changes were more intense at the Chiang Mai and Lower Ca River sites than 

the Upper Ca River and Kachin sites. Over 300,000 ha, or 48% of the study site, were 

disturbed between 1989 and 1997 at the Chiang Mai site. The site in Myanmar appeared 

to have the least intensive land cover changes with less than 8% (16,200ha) of the study 

area disturbed between 1989 and 1996. However, care is needed for direct comparison of 

these sites because of different inventory frequencies. The less frequent the inventory, 

like the 3 images over the 7 year period at the Kachin site, the more likely that land cover 

changes will be missed, potentially resulting in an under-estimate of area of change. We 

had more images at the Chiang Mai (annual TM images) and Upper Ca River (6 images
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over 9 years) sites than the Lower Ca River (4 images over 8 years) and Kachin sites. The 

impact of frequency of observation on area estimates is described in more detail in a later 

section.

Throughout the time series, total cleared areas increased slightly at all sites except 

for the Kachin, Myanmar site which had a small loss in cleared area of 140ha, less than 

0.1% of the study area from 1989 to 1996 (see table 2.3). While at the other 3 sites the 

overall net expansion of cultivated areas was small on an annual basis, ranging from 

0.03%yr1 to 0..14%yr*1, large areas were cycled in and out of cultivation, a characteristic 

of shifting cultivation in Southeast Asia. In aggregate, the clearing rates for these four 

Southeast Asia sites did not exhibit the large inter-annual variability seen at the 

Amazonian sites with average clearing rates between 0.6 to 1.1% (Figure 2.8a). The 

largest change was an almost doubling of clearing rates from 1994 to 1995. However, 

there was a large degree of inter-annual variability in clearing rates at the Chiang Mai and 

Lower Ca River sites. At Chiang Mai for example, the clearing rate for 1995 was almost 

4 times the 1990 rate.

Although it is difficult to map areas of fallow in the uplands of Southeast Asia 

directly with Landsat TM imagery due to the spectral confusion with mature forest, new 

areas of fallow were identified as areas that were cleared and were subsequently in the 

“broad forest class” in a later image. Large areas of fallow were identified at each site 

(table 2.3). For example, over 245,000ha of fallow were created from 1989 to 1997 in 

Chiang Mai, representing almost 39% of the study area. Note that the total area of 

secondary forest and fallow areas will be larger than the percentages listed in the table as 

these percentages only represent new areas identified during the inventory period.
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While the aggregate rates of fallow formation were in a similar range as the 

clearing rates (0.6% to 1.2%), the inter-annual variability was higher. Contrary to 

clearing rates, each site had a large degree of inter-annual variability in the rates of fallow 

formation, with rates shifting as much as 400% between subsequent inventories (figure 

2.8b). Once again the Chiang Mai and Upper Ca River sites exhibited the largest amount 

of variability. The persistence of fallow areas at the Chiang Mai site is depicted in figure 

2.9a. Almost 50% of the fallow areas were in a short (3 years or less) rotation system, 

with only 33% in a long rotation system (greater than 7 years). The bulk (78%) of the 

cleared areas are cultivated for less than 3 years, with only 2% of the areas remaining in 

cultivation beyond 7 years (figure 2.9b). These persistence data indicate that the 

dominant cultivation in this area is shifting cultivation with a short cultivation/short 

fallow rotation.

The impact of this short rotation land use system in Chiang Mai on net clearing 

rates is evident in figure 2.10 where years with net increases in cultivated area are 

followed by decreases in cultivated areas. However, this land use pattern is not as 

apparent at the other sites likely due in part to differences in land use but also due to 

temporal gaps between images that dampen the short annual fluctuations. The influence 

of a “dampening factor” was assessed by comparing differences in decadal and sub- 

decadal rates. For each site, mean decadal rate was calculated using the first (1989) and 

the last (1996, 1997, or 1998) image in the time series. Sub-decadal rates were calculated 

using all temporal combinations of the images in time series. The ratio of the sub-decadal 

rates to the decadal rate was then calculated at each site (figure 2.11). With the exception 

of two cases, shorter census periods reflected higher clearing rates. Clearly the revisit
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frequency of the Lar.dsat observation influences estimated clearing rates since long 

revisit periods do not capture the dynamics between these cleared and broad forest 

classes. In addition, extrapolation of net forest loss based on short period rates can lead to 

a severe over-estimate of long-term losses.

Our results indicated that clearing and fallow rates were higher at the Chiang Mai 

and Lower Ca River sites. However, it is not clear if these differences were due to actual 

land use differences or just an artifact of differences in observation frequency. Based on 

the relationship between frequency of observation and estimated clearing rates in figure 

2.11, it is clear that, at an annual-scale, the clearing and fallow rates at the Upper Ca 

River and Kachin sites are actually higher than those presented in figure 2.8.

Conclusions

An analysis of multi-temporal Landsat TM data for seven case study sites in the 

tropics was presented. This analysis focused on documenting inter-annual variability in 

rates of clearing and secondary vegetation formation and an assessment of persistence of 

secondary vegetation. Rates of clearing and secondary vegetation formation varied 

considerably on an annual basis in both the Amazon and Southeast Asia regions, 

indicating a large departure o f annual rates from the decadal mean. Within region 

variability was also high as exhibited across the case study sites. The secondary 

vegetation pool is large and appears to be covering an increasing proportion of disturbed 

areas in Amazonia and Southeast Asia. However, the high transition probabilities 

observed for young stands indicates that secondary vegetation is an important component 

of the local land use practices dominated by rotational agriculture and pasture use and
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that a small percentage of the secondary vegetation persists for longer than 8 years. The 

high 1-year transition probabilities for secondary vegetation and new clearings is likely 

due to a combination of rotational agriculture and the multi-year process of pasture 

formation. Therefore, consideration of land use practices, including clearing periods and 

vegetation phenology, is needed for post-classification change detection analyses to avoid 

spurious or misleading results. Due to the highly dynamic nature of land use in these 

areas, gaps in annual time series of Landsat observations can introduce large uncertainties 

in the estimates of clearing and secondary vegetation formation rates.

Analysis of the pixel level transition sequences, coupled with an aprioi 

understanding of land use practices, can be used to move beyond land cover classification 

to map land use processes directly. While post-classification change detection with broad 

land cover classes can provide useful data on land cover change and rotational agriculture 

practices, better discrimination of vegetation structure and stature is needed to examine 

carbon dynamics. Use of remote sensing derived continuous variable, such a vegetation 

density or fractional cover, characterization of the landscape, coupled with post

classification derived changes in land cover, would provide a clear indication of the 

impacts of land use change on the above-ground carbon balance of these landscapes. 

Nevertheless, these results suggest the potential for large inter-annual variations in the net 

flux of biotic CO2  due to land use change in Amazonia and Southeast Asia.
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Table 2.1 Landsat Thematic Mapper data used for Southeast Asia anaLysis.

Chiang Mai, Kachin, Ca River, Ca River,

Thailand Myanmar Laos Vietnam

Feb 3, 1989 Jan 16,1989 Mar 2, 1989 Apr 4, 1989

Jan 29,1990 Mar 8,1993 Nov 29,1992 Nov 20. 1991

Feb 17, 1991 Dec 13,1996 Dec 8, 1995 Oct 21. 1992

Feb 4, 1992 Nov 27, 1997 Dec 8, 1995

Feb 22, 1993 Nov 27, 1997

Feb 24, 1994 May 15, 1998

Dec 10, 1994

Mar 18, 1996

Mar 5, 1997
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Table 2.2 Landsat Thematic Mapper data used for Amazonia analysis. 

Alto Paraiso Uruara Ruropolis

Jul 8, 1989 

Aug 12,1990 

Jun 12, 1991 

Jun 22, 1992 

Oct 7, 1993 

Jun 4, 1994 

Jul 25, 1995 

Jun 25, 1996 

Jun 28, 1997 

Jul 17, 1998

Aug 23,1986 

Jun 23, 1987 

Jul 18, 1988 

Jul 20, 1991 

Jul 22, 1992 

Jun 15,1996 

Jun 18,1997 

Aug 3, 1999

Jun 30, 1987 

Jul 11, 1988 

Aug 8, 1989 

Jul 11, 1991 

Jul 13,1992 

Oct 10, 1995 

Jul 8, 1996 

Jun 25, 1997 

Jun 12, 1998
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Table 2.3a Persistence of secondary vegetation at Ruropolis site. Each entry is the 
percentage of the secondary vegetation cohort that has persisted by age of cohort. 
Therefore, only 63% of the new secondary vegetation created in 1988 was not cleared by 
1989. Only 5% of the 1998 secondary vegetation cohort persisted for 10 years.

ly r  lyr  3yr 4yr Syr 6yr 7yr 8yr 9yr lOyr
1988 63 — 39 26 — — 14 9 7 5
1989 — 53 32 — — 16 9 7 5 —

1991 48 — — 22 13 9 7 — — —

1992 — — 41 22 14 11 — — — —

1995 48 28 20 — — — — — — —

1996 37 25 — — — — — — — —

1997 56 — — — — — — — — —

Table 2.3b. Persistence of secondary vegetation at Alto Paraiso site. Each entry is the 
percentage of the secondary vegetation cohort that has persisted by age of cohort.

lyr ly r 3yr 4yr 5yr 6yr 7yr 8yr
1990 93 85 64 61 53 45 41 36
1991 76 41 38 31 24 21 17 —

1992 44 39 30 21 18 14 ------- —

1993 90 68 52 45 36 — ------- —

1994 52 26 19 12 — — ------- —

1995 50 36 23 — — — ------- —

1996 62 34 — —

1997 38 — — — — — --- —

Table 2.3c. Persistence of secondary vegetation at Uruara site. Each entry is the 
percentage of the secondary vegetation cohort that has persisted by age of cohort

ly r ly r 3yr 4yr 5yr 6yr 7yr 8yr 9yr lOyr l ly r l ly r
1987 56 — — 43 24 — — — 11 8 — 5
1988 — — 68 35 — — — 16 11 — 7 --------

1991 48 — — — 22 15 — 9 — — — --------

1992 — — — 35 21 — 12 — — — — --------

1996 49 — 21 — — — -------- -------- — — — ---
1997 — 38 --------
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Table 2.4 Disturbance area for Indochina sites. Total area disturbed was calculated by 
summing up all areas that were identified as cleared in classifications. Net changes in 
cleared area were calculated as the net change in cleared area from 1989 to final year in 
the time series.. Area of new fallow was calculated as areas of disturbance that were not in 
cleared class at the end of the time, series. Note that areas with the highest % of new 
fallow areas are the sites with the most complete time series of images.

Site (area in lOOOha)

Total Net change 
Area in cleared 

Disturbed areas

Percent of
Inventory Area o f new study area 

Period fallow (ha) in new
(ha) (ha) fallow

Chiang Mai, Thailand (632) 303,200 3680 1989-1997 245,000 39%
Upper Ca River, Laos (134) 17,400 310 1989-1997 11,000 8%

Lower Ca River, Vietnam (121) 44,800 1220 1989-1998 36,900 30%
Kachin, Myanmar (231) 16,200 -140 1989-1996 10,800 5%

72

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Table 2.5 Persistence of new clearings at Alto Paraiso. Each entry is the percentage of the 
new clearing cohort that has persisted by age of cohort. New clearings cohort represents 
all areas where mature forests were cleared during the previous year. SO, for example, 
the 1990 cohort consists of all areas cleared after the 1989 image and before the 1990 
images were acquired. Of the 1990 cohort, only 52 percent remained as cleared class in 
1991. In other words, 48% of the new clearings contained secondary vegetation by 1991.

ly r ly r  3yr 4yr Syr 6yr 7yr 8yr
1990 52 33 29 15 12 12 11 11
1991 56 48 27 23 22 21 21 —

1992 84 16 8 6 4 4 — —

1993 50 30 15 11 11 — — —

1994 64 16 11 11 — — — —

1995 56 34 32 — — — — —

1996 40 31 — — — — — —

1997 47 — — — — — — —

AVG 56 30 20 13 12 12 16 11
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Figure 2.1 Location o f study sites in (a) Amazon and (b) Southeast Asia
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Figure 2.2a Perimeter-to-area ratio for land cover changes 1989-1990 at Chiang Mai site. 
Clumps are defined as contiguous areas of the same change class. All clumps with P/A 
ratios above the row/column-offset value could be the result of a single-pixel offset. 
Clumps with P/A values above the curve could be due to single-pixel mis-registration or 
to edge effects due to forest disturbance along the edge of existing clearings.
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Figure 2.2b. Distribution of perimeter-to-area ratio for 1996-97 changes at Ruropolis. 
Clumps are defined as contiguous areas of the same change class. All clumps with P/A 
ratios above the row/column-offset value could be the result of a single-pixel offset. 
Clumps with P/A values above the curve could be due to single-pixel mis-registration or 
to edge effects due to forest disturbance along the edge of existing clearings.
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Figure 2.2c Perimeter-to-area ratio for land cover change 1996-1997 at Uruara site. 
Clumps are defined as contiguous areas of the same change class. All clumps with P/A 
ratios above the row/column-offset value could be the result of a single-pixel offset. 
Clumps with P/A values above the curve could be due to single-pixel mis-registration or 
to edge effects due to forest disturbance along the edge of existing clearings.
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Figure 2.3 Area of disturbance for (a) Alto Paraiso, (b) Ruropolis, and (c) Uruara.
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Figure 2.4 Influence of timing of Landsat acquisition on the proportion of secondary 
vegetation. Alto Paraiso has a very pronounced dry season from June through August, 
with higher precipitation returning in September. By October the dry season has ended. 
Omitting the October data point, the correlation between day of year and proportion of 
secondary vegetation is remarkably high (r2=0.48), indicating a strong seasonality in 
vegetation characteristics of the disturbed landscape. Ruropolis and Uruara have a less 
pronounced dry season and exhibit lower correlation between DOY and proportion of 
secondary vegetation.
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Figure 2.5 Rates of deforestation for (a) Alto Paraiso, (b) Ruropolis, and (c) Uruara. 
Decadel average rates were approximately 12,000,11,400, and 6,800 ha/yr for these 3 
sites, respectively.
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Figure 2.6 Rates of secondary vegetation formation and re-clearing for (a) Alto Paraiso, 
(b) Ruropolis, and (c) Uruara.
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Figure 2.7 Persistence of all secondary vegetation cohorts at Amazon sites. Most cohorts 
follow a similar survivorship trajectory except for the 1990A and 1993A, which are the 
cohorts created at the Alto Paraiso site in 1990 and 1993, respectively. In general, a small 
percentage (<25%) of secondary vegetation persists beyond 5 years. There are several 
levels of survivorship in these curves. During the first year there is a large drop in 
survivorship, likely due to rapid re-clearing for pasture maintenance. Once the secondary 
vegetation persists beyond 1 year, the shape of the survivorship function becomes less 
steep. The 2 to 5 year period highlights the use of secondary vegetation as fallow in a 
rotational agricultural system. At the 5 to 6 years period the slope appears to become 
even smaller, likely indicating abandonment of agricultural and pasture areas. We 
contend that these differences in slope indicate differences in the use of secondary 
vegetation.
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Figure 2.8 Rates of (a) clearing and (b) fallow formation across Indochina sites. Rates of 
clearing and fallow formation are variable during this time period. Chiang Mai, Thailand 
site fluctuates between high rates of clearing, followed by high rates of fallow formation.
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(a)

(b)

Figure 2.9 Persistence of (a) fallow and (b) new clearings in Chiang Mai. Almost 50% of 
fallows are re-cleared within the first 3 years. One third of the fallow areas persist longer 
than 7 years. Over one half of new cleared areas are cultivated for a single year and then 
are left to fallow. These transition probabilities indicate a short cultivation/ short fallow 
system.
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Figure 2.10. Net clearing rates for Southeast Asia sites. These clearing areas represent 
areas in cultivation. Chiang Mai site fluctuates between an expansion in cultivated areas 
and a decline in cultivated areas.
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Figure 2.11 Influence of observation frequency on rates estimation. At each site, mean 
“decadal” clearing rates were calculated using the first (1989) and last (1996/7/8) image 
in our time series. Sub-decadal rates were also calculated using all combinations of 
images in our time series and compared to decadal rates. This figure indicates that long 
revisit periods do not capture the land cover change dynamics of these land use systems, 
and extrapolation of net losses of forest/fallow areas based on short periods can 
overestimate long term losses.
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CHAPTER 3

ASSESSMENT OF JERS-1 SAR FOR MONITORING SECONDARY VEGETATION 

IN AMAZONIA: I. SPATIAL AND TEMPORAL VARIABILITY IN BACKSCATTER 

ACROSS A CHRONO-SEQUENCE OF SECONDARY VEGETATION STANDS IN 

RONDONIA.

Abstract

Quantification of the direct impact of land use in the tropics on net biotic carbon 

flux relies on estimates of rates of deforestation, pre- and post-disturbance biomass, and 

fate of the cleared land. While existing remote sensing applications are providing 

estimates of the rates of deforestation and the fate of the cleared land (pasture, croplands, 

or secondary vegetation), techniques for estimating biomass of natural systems with 

remote sensing are needed. Synthetic aperture radar presents a unique opportunity for 

imaging tropical forests under most cloud conditions and potentially provides information 

on vegetation biomass. Earlier studies have developed models for estimating above

ground biomass from JER-S SAR data. In this paper we examine the temporal and spatial 

variability of mean normalized radar cross-section across a chrono-sequence of secondary 

vegetation stands and clearings in Rondonia, Brazil. We also assess the influence of the 

observed temporal and spatial variability in normalized radar cross-section for estimating 

biomass of secondary vegetation stands. Results indicate that quantitative estimates of 

biomass using single date JERS-1 imagery is difficult because of temporal variability in
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backscatter due to intrinsic texture, system noise, and environmental effects. However, 

JERS-1 data are still useful for distinguishing of secondary vegetation stands at different 

stages of development. Merging JERS-1 SAR data with Landsat TM derived age 

estimates improved characterization of clearings and secondary vegetation in Rondonia 

by providing information on the relative differences in secondary vegetation development 

and residual slash with age.

Introduction 

Land Use and Inter-annuai Variability of the Global Carbon Cycle

With the availability of more detailed atmospheric and oceanic measurements 

collected globally with a fine temporal scale, new techniques and approaches have been 

used to understand the global carbon cycle. These new techniques have focused on 

modeling of the net fluxes in either the oceanic or terrestrial carbon pools (Tans et al. 

1990 , Siegenthaler and Sarmiento 1993) or on using direct measurements of 

atmospheric constituents ([CO2 ], O2/CO2, 5l3C ) to estimate fluxes of carbon between 

the atmospheric, oceanic, and terrestrial pools (Quay et al. 1992, Keeling et al. 1996). 

Ciais et al. (1995a, 1995b) developed a hybrid approach using a two-dimensional 

atmospheric transport model (like Tans et al. 1990) with [CO2] and 5l3C measurements 

from NCAA's Climate Monitoring and Diagnostics Laboratory (CMDL) global flask
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network (iike Quay et a'l. 1992) to estimate CO2  partitioning as a function of latitude and 

time of year from 1990 to 1993.

While all these analyses seem to point to a temperate terrestrial sink for carbon, it 

is still extremely important to quantify the annual net flux of carbon due to tropical land 

use. Annual, spatially explicit estimates of CO2 emissions due to tropical land use and 

land cover change would help resolve some of the discrepancies from the recent carbon 

model results based on annual atmospheric measurements. Annual deforestation data 

could be used to validate these carbon models or identify problems within the models, 

such as intra-hemispheric transport between the tropical and temperate zones or potential 

positive net ecosystem productivity (NEP is the carbon balance for the ecosystem) in the 

tropical forests (Ciais et al. 1995a). In order to validate these annual models 

contemporaneous data on the inter-annual variability of tropical deforestation and 

regrowth rates are needed to estimate annual fluxes of carbon from the tropical biota. 

Furthermore, the models based on the annual [CO2 ], O2/CO2 , 5I3C measurements 

indicate that the southern tropics was not a strong biotic source or sink of carbon in the 

early 1990s. Annual measurements of deforestation and regrowth can be used to assess if 

high rates of abandonment and low rates of deforestation during this time period could 

explain the dampening of the biogenic source of carbon inferred from the atmospheric 

measurements (Skole et al. 1998).

Land use in the tropics is an important biotic component of the global carbon 

cycle and has a direct impact on the above and below ground organic carbon stocks of the 

tropical biome. Conversion of forests to pasture and agriculture results in a net source of 

biotic CO2  to the atmosphere, while forest fallow and abandonment into secondary
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vegetation represent a net sink of biotic C02- The magnitude and timing of these fluxes 

are a function of the extent of the conversion, the fate of the cleared lands, and carbon 

stocks of the pre- and post-disturbance landscape. The magnitude of the net biotic flux of 

carbon from the tropics is not well understood. In order to further our understanding of 

the impact of land use in the tropics the processes of deforestation and abandonment need 

to be studied further. While average decadal rates of deforestation on a regional scale are 

now being quantified more accurately (Skole and Tucker 1993, Townshend et al. 1995, 

INPE 1999), quantitative estimates of the net biotic flux on a decadal average suffer from 

lack of information on pre- and post-disturbance biomass and the fate of the disturbed 

lands (e.g. crops land, pasture, or fallow).

Remote Sensing Land Use and Land Cover Change in Tropics

Remote sensing is a useful tool for monitoring changes in tropical land cover 

because it can provide systematic and synoptic coverage of large areas. Optical remote 

sensing has been used extensively to map the extent and rates of deforestation (Tucker et 

al. 1984, Malingreau and Tucker 1988, and Skole and Tucker 1993) and, recently, the 

extent and temporal dynamics of secondary vegetation (Alves and Skole 1996, Mausel et 

al. 1993, Skole etal. 1994, Adams etal. 1995, Steininger 1996, Foody eta l. 1996). Now 

that the spatial extent and rates of tropical deforestation are being accurately quantified, 

techniques for measuring pre- and post-disturbance biomass, rates of secondary 

vegetation formation and turnover, and rates of biomass accumulation for secondary 

vegetation are needed to improve the accuracy of carbon flux estimates. Recent results 

from NASA's Landsat Pathfinder project have revealed that there are extensive areas of
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secondary vegetation throughout Continental Southeast Asia and Amazonia. Over 30% of 

the deforested area in the Brazilian Amazon was in some form of secondary vegetation in

1986 and 1992 (Houghton et al. 2000), areas of approximately 77,000 km“ and 98,000 

2
km in secondary vegetation in 1986 and 1992, respectively. The impact of these large 

secondary vegetation pools on the net biotic flux of carbon has yet to be quantified. The 

dynamics of the secondary vegetation pool and the rate of biomass accumulation needs to 

be understood in order to assess the impact of secondary vegetation on the global carbon 

cycle.

Although traditional optical remote sensing techniques can distinguish between 

cultivated areas, pastures, and secondary vegetation, they are limited in terms of mapping 

various stages of fallow and secondary forests (Sader 1987). On the other hand, since 

synthetic aperture radar (SAR) backscatter from a vegetated target is a function of the 

dielectric properties of the vegetation and soil, surface roughness, and size and 

orientation of the scatterers (e.g. leaves, branches, and trunks) in relation to the imaging 

system (Ulaby et al. 1981), SAR data have considerable promise in characterizing 

changes in vegetation structure and biomass of the fallow and secondary vegetation areas 

(Sader 1987, Dobson et al. 1992, Rignot et al. 1995). In addition, SAR has a significant 

advantage over optical systems for monitoring land cover and land cover change due to 

its ability to image the surface under most cloud conditions.

There has been considerable research on the use of synthetic aperture radar data 

for estimating above ground biomass. Multiple frequency, polarimetric SARs can provide 

accurate estimates of biomass for successional forests up to a certain biomass level. 

Radar backscatter tends to saturate at higher biomass levels for longer wavelength SAR
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systems (summarized in Kasischke et al. 1997). Estimates of the saturation point of L- 

band backscatter from tropical forests vary from 40 T/ha (Imhoff 1995) to 60 T/ha 

(Luckman et al. 1997a, Curran and Kuplich 1999). Ranson and Sun (1994) and Rignot et 

al. (1995) have shown that P-band backscatter can be used to estimate biomass for forest 

stands ranging from 150 T/ha (temperate forest ) to 200 T/ha (tropical forest), 

respectively.

Rates of biomass accumulation vary dramatically due to different climatic, 

edaphic and land use controls. If we assume an average annual biomass accumulation rate 

of 6 to 9 T/ha (based on Alves et al. 1997) for secondary vegetation in Amazonia, then 

variations in L-band backscatter would saturate after 6-10 years (approx. 50-60 T/ha), 

whereas P-band radar backscatter would not saturate for 17-25 years (approx. 150 T/ha). 

There have been several studies that either mapped secondary vegetation stand age 

directly or used household surveys to estimate stand ages for sites throughout Amazonia. 

These studies provide insight into the utility of certain sensors for monitoring secondary 

vegetation. Luckman et al. (1997a) measured stand characteristics and used allometry to 

estimate biomass for 13 stands of secondary vegetation in central Amazonia, with stand 

age ranging from 2 to 22 years. Of these 13 stands, eight had biomass levels above the 

assumed saturation point for L-band backscatter estimates, while none of the stands 

exceeded the saturation point for P-band. Brondizio et al. (1994) studied the age class 

distribution of secondary vegetation stands in eastern Amazonia and found that only 20% 

of the area in secondary vegetation was less than 6 years old. Alves and Skole (1996) 

used multi-temporal SPOT XS imagery to characterize dynamics in rates of deforestation, 

secondary vegetation formation and turnover in Rondonia, Brazil. Of all the secondary
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vegetation in 1986, 42% remained as secondary vegetation through 1992 and represented 

only 14% of the total area in secondary vegetation in 1992. Our analysis of 11 years of 

annual Landsat TM imagery indicates that in 1998 over 60% of all the secondary 

vegetation stands near Ariquemes, Rondonia were 6 years or younger (Chapter I). 

Yanasse et al. (1997) used C-band and L-band SIR-C data to discriminate secondary 

forest stand ages up to 6 years old for a site in Tapajos. While P-band radar would be 

superior, L-band systems should be able to estimate the differences in biomass for a large 

portion of secondary vegetation stands throughout Amazonia.

The rate of carbon accumulation during secondary succession is a function of 

many factors, including type of disturbance (e.g. method of clearing, temperature and 

frequency of burning), agricultural practices (intensity), size and shape of disturbance, 

and climate (Bazzaz and Pickett 1980, Ewel 1983, Uhl et al. 1988, Nepstad et al. 1991, 

Feamside and Guimaraes l996).There have been numerous studies measuring rates of 

accumulation in above ground and/or below ground biomass in tropical secondary forests 

following anthropogenic disturbance (e.g. Fittkau and Klinge 1973, Edwards and Grubb 

1977, Sabhasri 1978, Uhl and Jordan 1984, Andriesse and Schelhass 1987, Uhl 1987, 

Saldarriage et al. 1988, Uhl et al. 1988, Nepstad et al. 1991, Kauffman et al. 1995). In 

Amazonia, for example, average annual rates of above ground biomass accumulation in 

abandoned pastures and agricultural areas varied from less than 1 T/ha/yr for areas under 

long-term intensive pasture use (Nepstad et al. 1991) to over 12 T/ha/yr for light to 

moderate use areas (Alves et al. 1997, Nepstad et al. 1991, Uhl et al. 1988). Although 

there have been isolated field studies of above- and below-ground biomass accumulation 

rates in tropical secondary vegetation, the relative contributions of land use, climate, and
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edaphic controis on rates of forest aggradation is not well understood. Therefore, 

estimation of changes in above-ground biomass and structure of secondary vegetation 

with remote sensing would be extremely useful for augmenting field based studies due to 

the synoptic nature of remote sensing applications.

In this paper we examine the potential of using multi-temporal JERS-1 SAR data 

for quantifying differences in rates of recovery of secondary vegetation for a site in 

central Rondonia. First, we characterize the temporal and spatial variability of JERS-l 

normalized radar cross-section, defined as the fraction of backscattered power to the 

transmitted power and herein called sigma naught, across a chrono-sequence of 

secondary vegetation stands. Then, we test the biomass density, herein called biomass, 

retrieval scheme presented by Luckman et al. (1998) for mapping biomass at the 

landscape scale, and evaluate the impact of using multi-temporal JERS-1 SAR data for 

estimation of biomass. A quantitative understanding of sensitivity of estimating biomass 

changes with JERS data will highlight the effectiveness of this sensor for monitoring 

rates of regeneration in Amazonia. In an effort to estimate the impact of residual slash on 

the overall radar backscatter from secondary vegetation stands, we also examine the 

temporal changes in mean sigma naught with age of clearings. While Luckman et al. 

(1998) asserted that the biomass retrieval scheme is generalizable for sites across the 

Amazon provided sigma naught estimates are cross-calibrated to fit their model, our 

hypotheses concern the use of a model of similar shape with an asymptotic relationship 

between sigma naught and biomass. Our conclusions provided in this paper are intended 

to be relative, and would not change despite the use of directly-fit values of model 

parameters specific to our site in Rondonia. In a companion paper (Salas et al in this
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issue) we develop a series of statistical models to evaluate, in an operational context, 

what level of changes in biomass one might be able to identify with JERS-1 SAR data for 

a given confidence level. These models assess both the impact of number of JERS images 

on coefficient of variation of mean biomass estimates and how size of the secondary 

vegetation stands influence the confidence interval of the biomass estimates.

Methods 

Multi-temporal TM Classifications
Annual Landsat TM from 1989 to 1998 (see table 3.1) were obtained through the

NASA’s Landsat Pathfinder project (Townshend et aL 1995). The first image in the time 

series was used as a base image and registered to north-up UTM projection using the 

coordinate estimates from the spacecraft ephemeris. TM data from subsequent years were 

co-registered to the base image using a first order transformation, based on between 30- 

35 manual ground control points, with RMS errors less than 0.6 pixels.

The co-registered TM data were classified using an unsupervised (ISODATA) 

clustering technique, followed by a manual, knowledge based assignment of the 45 

clusters into 7 thematic classes (forest, cleared, natural non-forest, water, cloud, cloud 

Shadow, and secondary vegetation). Mixed clusters were masked out and re-clustered to 

enhance class separability. Areas of water, cloud, cloud shadow, and natural non-forest 

were masked out of the classifications.
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Mapping Age of Individual Secondary Vegetation Stands and Clearings

Land cover changes were quantified using post classification change detection, 

resulting in a transition sequence for each pixel. For example, a pixel that was deforested 

in 1990, abandoned to secondary vegetation in 1993, and then remained as secondary 

vegetation through 1996 would have a transition sequence from 1989 to 1996 of 

“FDDDSSSS”, where F, D, and S represent forest, non-forest, and secondary vegetation 

classes, respectively. The histograms of all possible transition sequences were analyzed 

to quantify the land cover change dynamics. Initial analysis of the magnitude of the 

number of land cover change transitions between 1989 and 1996 and their spatial patterns 

revealed a highly dynamic landscape (Salas et al. in prep). Likely some of this dynamic is 

the result of edge effects due to sub-pixel mixing, artifacts from mis-registration, and 

classification errors, but based on the size of many of these changes this is also highly 

dynamic landscape where land use patterns result in rapid changes in land cover (Alves 

and Skole 1996, Skole et al. 1994).

For this study, we segmented clearings and stands of secondary vegetation into 

two sets of age classes based on whether or not we knew when the areas were initially 

cleared from forest and, for the secondary vegetation classes, how long the area remained 

as non-forest. Table 3.2 contains the class transitions we used for this analysis. To insure 

that the land cover of the secondary vegetation and the clearings did not change between 

the 1996 TM acquisition and the JERS acquisitions later in 1996, the 1997 TM 

classification was used to remove those areas that changed land cover between the 1996 

and 1997 TM inventories. All other transition combinations not listed in table 3.2 were 

masked out. Individual fields or stands were identified and labeled in a GIS by running an
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8-neighbor dump algorithm. A 3x3 low pass filter was used to identify boundary pixels 

for each clump. These boundary pixels were then removed to minimize the impact of 

single or sub-pixel mis-registration between the multi-temporal SAR data and the TM- 

based land cover database, and to remove boundary effects at the edge of intact forest and 

clearings/secondary vegetation stands that cause increased backscatter at the near 

boundary and radar shadows at the far boundary (Leckie and Ranson 1998). All stands or 

fields smaller than 0.75ha were subsequently removed from the analysis to minimize the 

variance of the mean stand sigma naught due to speckle. Our resulting map of secondary 

vegetation contained 182 stands, ranging from 1 to at least 8 years old.

Accuracy assessment of Secondary Vegetation and Clearin2 Age

An accuracy assessment on the 1998 classification was performed with 166 field 

reference points collected in October 1998. The overall classification accuracy was 

98.2% with producer’s/user’s accuracies of 100%/97.97% and 83.3%/100.0% for the 

non-forest and secondary vegetation classes, respectively. However, to estimate the 

overall classification accuracy of the land cover change statistics, estimates of accuracy 

from additional time periods are needed. This study area is also a field validation site for 

NASA’s Landsat Pathfinder Humid Tropical Forest project. The Landsat Pathfinder 

accuracy assessment for this area for the 1993 TM scene used 103 reference points with 

an overall accuracy of 84%, a user’s accuracy over 96% and a producer’s accuracy over 

90% for the non-forest class. Areas that were cleared previously and not classified as 

deforested must, therefore, be secondary vegetation, hence the accuracy of the deforested 

class controls the accuracy of the transitions. Although we have not performed an annual
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accuracy assessment for each classification, we estimate the overall accuracy of the 8 

year (1989 through 1996) post classification change detection to range between 72% 

(based on 1993 Pathfinder accuracy results) to 85% (based on the 1998 results). The 

objective of our TM image classification was to create the most accurate possible maps of 

deforestation and vegetation regrowth. Therefore, we performed rigorous manual editing 

by heads up digitizing on the full resolution TM data. While the methods used for the 

Landsat Pathifinder analysis were similar in using multiple clustering, the manual editing 

step was performed at 1:250K scale with hardcopy overlay for the Pathfinder analysis to 

facilitate timely completion of the over 2000 images for the Landsat Pathfinder Humid 

Tropical Forest project (see Chomentowski et al. 1994 for more details on Pathfinder 

processing). As a result of these slight differences in processing detail, the overall 

accuracy should be closer to the 85% estimate derived from the 1998 assessment.

.TERS-1 SAR data pre-processing

The Japanese Earth Resources Satellite 1 (JERS-1) was launched and operated by 

National Space Development Agency of Japan (NASDA) from February 1992 until 

October 1998. Onboard the JERS-1 satellite was an L-band (1.275 GHz) synthetic 

aperture radar (SAR) with horizontal co-polarization (HH). The JERS-1 SAR imaged 

with a 35° look angle and a ground resolution of 18m in both range and azimuth with a 

44 day revisit cycle. Table 3.3 lists the eight level 2.1 products (3-looks with 12.5m 

pixels) used for this study. Figure 3.1 contains a subset of the 1996 TM image and a 3- 

date RGB composite of the 1996 JERS images from October, August, and July, 

respectively. These data were obtained through our participation in NASDA’s Global
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Rain Forest Mapping Project (see Rosenqvist et al. 2000 for details on GRFM). JERS-1 

SAR data were used for our analysis of secondary vegetation because the lower 

frequency of L-band is more sensitive to above-ground biomass than C-band data 

available from ERS or Radarsat, the only other satellite based SARs.

All eight images were co-registered automatically using image cross-correlation. 

To convert from 16-bit digital numbers (DN) to normalized radar cross-section, herein 

called sigma naught (<j°), values in dB the following formula was applied:

< 7 °  =201ogio(DN) + F (1)

where F  is the NASDA provided correction factor (-68.5 dB for the images #1-7 and 

-68.3 dB for image #8). Equation (1) and the correction factors are taken from Shimada 

1998. While it is possible to use the noise vector to improve the noise floor for JERS data 

(Chapman et al. 1999), it was not applied for this application. An estimate of noise 

equivalent sigma naught was derived from average DN values from a region of open 

water.

A range ramp in sigma naught values from mature forest stands was observed. 

While these data have been calibrated, there are still some residual artifacts due to 

significant antenna pattern variations, random gains in range, and slight incidence angle 

effect across the JERS footprint. The antenna pattern variations and random gain 

deviations have been observed before in data processed at NASDA (Rosenqvist et al. 

2000). An empirical linear correction was derived from a 60 kilometer transect in range 

covering primary forest to normalize the impact of these combined range effects (Leckie
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1990, Ranson and Sun 1994). The range ramp across this transect varied from less than 

0.4dB to over 1.5dB (see table 3.3). The October 23, 1995 image was processed at the 

Alaska SAR Facility (ASF). ASF used a different antenna pattern correction algorithm 

that has been shown to perform a better correction (Chapman et al. 1999). The slight 

range ramp observed is attributed to th_e variations in incidence angle from near range to 

far range (34° to 43°) (Chapman et al. 1999). It is assumed that, while this linear 

empirical correction may not properly model incidence angle effect for non-forested 

areas across the landscape, the impact will be a second order effect due to the small range 

in incidence angles and, hence, is ignored. This noise due antenna pattern artifacts may 

be a result of the older SAR processor used at NASDA for these data.

To apply the biomass density retrieval scheme proposed by Luckman et al. 

(1998), we applied a cross-calibration correction procedure to normalize the gain of these 

8 JERS images relative to the reference image used to derive the biomass model 

parameters. Mean and coefficient of variation statistics of a 0 for a 228 hectare (=14600 

12.5m pixels) area of mature forest was extracted from all eight images. The cross- 

calibration gains were relatively small (<0.5dB) and are listed in table 3.3.

Extraction of Stand and Clearing Sigma Naught Statistics and Confidence Limits

Radar imagery contains many sources of variability that contribute to the spatial 

and temporal variability in estimating mean sigma naught from a target. Our data pre

processing attempted to remove variability due to changes in calibration gains and 

antenna patter corrections for different incidence angles. However, to estimate the mean 

sigma naught from distributed target (stand of secondary vegetation or an individual 

clearing) other sources of variability must be considered, including speckle and the
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intrinsic spatial heterogeneity of the target (Rignot and Kwok 1993). Canopy structure of 

secondary vegetation in the Amazon varies dramatically with and across age classes due 

to differences in species composition and growth rates. This type of spatial heterogeneity 

can be seen as meso-scale roughness in radar imagery, which is often expressed as image 

texture.

Physical scattering models predict that the sigma naught from randomly 

distributed scatters (incl. leaves, branches, and boles of the trees) will have a negative- 

exponential distribution whose mean value represents the true sigma naught of the target 

(Oliver 1991). Rignot and Kwok (1993) modeled the power (P )  of a radar return at a 

given pixel location (/, j ) for a region / would be:

Pi. ;,< = [< / > f  Ti. j. /+ < m >]&. j (2)

where < /  > is the expected backscattered power, Ti. j.i is a random texture variable, m 

is system noise due to a mixture of noise sources (assumed to be additive and a function 

of slant range), and Si. j is an image speckle random variable. Since speckle and system 

noise can strongly modulated spatial statistics from space-borne SAR systems where the 

signal-to-noise ratio can be low, removal or estimation of speckle and system noise is 

necessary (Rignot and Kwok 1993). Noise equivalent sigma naught (NESO) was 

estimated from regions of open water within the images. For the eight images used in this 

study, NESO ranged from -14.88dB to -17.16dB (see table 3.3). Estimates of the lower 

limit of sigma naught from secondary forests suggest that sigma naught values will 

exceed —I l.OdB. Therefore, since NESO estimates are at least 2.88dB less than the lowest
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sigma naught values for secondary forests, system noise was assumed to be negligible. 

Therefore equation (1) above can now be expressed as follows:

Pi, j,t =< I > i'Ti. j.i• Si. j (3)

The variance-to-mean square ratio of speckle can be estimated by 1/N where N is the 

equivalent number of looks (ENL) which is only a function of the imaging and 

processing system characteristics and not on the distribution of radar cross-section of the 

target (Rignot and Kwok 1993). Vieira (1996) estimated N for the NASDA level 2.1 

product to be 2.8. For this study we analyzed only those stands and clearings that were at 

least 0.75 hectare. Given that the resolution of JERS is 18 meters, at least 23 independent 

samples were used to estimate mean sigma naught. Therefore, our maximum variance-to- 

mean square ratio due to speckle is 0.0155 (1/ENL*23). The influence of speckle on our 

mean sigma naught estimates will be small.

A source of variation in our mean sigma naught estimates comes from the 

intrinsic spatial heterogeneity of the targets (secondary vegetation stands and clearings). 

Luckman et al. (1998) following Oliver (1991), indicated that intrinsic texture 

(heterogeneity) variance (Vf) can be estimated by

Vt=-
JU N

1+—
N

(4)
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sd
where (— ) is the coefficient of variation ( C V ) within the stand and N  is ENL (Note;

in Luckman et al. 1998 the equation for Vt had an error in that the square of —  was

missing). From equation (4) the expected CV value due to both speckle and texture was 

then calculated using

from which approximate 95% confidence limits in dB of two times the standard error of 

the mean were calculated using

where n is the number of pixels in the stand. Note that this method of calculating 

confidence limits does not account spatial correlation in sigma naught between 

neighboring pixels resulting from the pixel size being smaller than the resolution of the 

sensor. Including correlation between pixels in the calculation would increase the width 

of the confidence limits, but would not alter the pattern of relative values of confidence 

limits between even sized stands. To account for pixel-to-pixel correlation, we increased 

the confidence intervals based on the number of pixels within each stand.

sd

+ Vt + (5)

lO * lo g (l± 2 * C V * -= ) (6)
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Using equations (1), (4), (5) and (6) we calculated mean cr°and 95% confidence 

limits for each of the 182 stands of secondary vegetation and <r° for each of the 152 

clearings.

Biomass Density Model

Luckman et al. (1998) developed a semi-empirical model for estimating biomass 

density of regenerating forests across the entire Brazilian Amazon using JERS-1 L-HH 

sigma naught data. The model coefficients were derived from field and radar 

observations for a site near the Tapajos River and then validated using independent field 

and JERS-1 data from Manaus. They concluded that noise due to speckle and image 

texture limits the utility of the above-ground biomass estimates to distinguishing four 

broad classes of regeneration state. We decided to use their model to quantify differences 

in broad biomass levels across the landscape and to track changes in biomass levels. 

Their model relates field estimates of biomass ( B ) to a° by

Cj° = a - e - {bB+c) (7)

where a ,b ,c  are constants that were empirically derived from field based estimates of 

biomass for 18 forested stands near the Tapajos River in the State of Para. Inverting this 

model to estimate biomass ( B ) from <7° yields the following equation

B = z U a - ^ ) - c  (8) 
b
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Using equation (8) with our mean stand values and our confidence ranges, 

biomass for all 182 stands of secondary vegetation for each of the JERS images was 

estimated. We used the following values a =0.170, b=  0.053, and c = 2.146 (taken 

directly from Luckman et al. 1998) for our calculations. While the biomass model 

saturates with respect to sigma naught at a biomass level around 60T/ha, equation (8) will 

provide biomass estimates beyond the sigma naught model saturation point. Therefore, 

for graphical purposes, we arbitrarily set maximum biomass estimates levels at lOOT/ha.

Results and Discussion

Landscape Variability in Sigma Naught Across a Chrono-sequence of Secondary 
Vegetation and Clearings

Precipitation in this region of the Amazon is highly seasonal. There is a 

pronounced dry season from June through August during with less than 4% of the annual 

2250mm of precipitation. Monthly mean precipitation derived from station measurements 

from 1978 through 1993 is provided in Figure 3.2. Unfortunately, daily precipitation for 

this region of Rondonia was not available for the time period of our JERS SAR data, 

therefore we examined image statistics to estimate relative variability due to surface 

moisture. Radar backscatter increases as soil moisture increases, often leading to 

decreased image contrast for landscapes in the Amazon with pastures and forest (Grover 

et al. 1999). Examination of our 4 JERS images from 1996 revealed that the July 13th 

image had the largest contrast between cleared areas and intact forest (>2dB difference) 

and that the October 9th and November 22nd images had the smallest contrast (figure 3.3). 

The July 13th image was assumed to have the least amount of soil moisture effects and,
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hence, was used to characterize the mean sigma naught of our three broad land cover 

classes (forest, secondary vegetation, and cleared lands) across the landscape.

At the landscape scale, mean <7° increased with age of the secondary vegetation 

stands and decreased with age of clearings (see Figure 3.4). Across a three-year chrono- 

sequence of regrowth from I to 4 years the mean <7° derived from all stands ranged by 

1.4dB (-10.4dB to -9.0dB). The range between the mean values from all the 4- to 8-year 

old stands was less than 0.3dB. This increase in <7°with stand age was expected as 

secondary vegetation stands tend to accumulate above-ground biomass with age. Rates of 

biomass accumulation for areas following light use in the region recover at an average 

annual rate ranging from 6.6 to 8.7 T/ha (Alves et al. 1997). On average 1-year old 

clearings had mean sigma naught of -8.8dB, higher than the 1- to 4-year old stands of 

regrowth. Mean c7° for the 3- and 8-year old clearings were over 3dB and 5db lower than 

the 1-year old, respectively, possibly reflecting a loss of residual biomass with age. 

Following forest clearing, slash is often left on site to dry out for up to two months after 

felling of the trees prior to burning. In Rondonia, clearing typically takes place in June 

and July, followed by burning in August and September. Estimates of burning 

efficiencies (amount of biomass consumed by the bum) range from 39% (Houghton 

1991) to 51% (Kauffman et al. 1995). While the clearing process may be different for 

areas used for annual crops versus pasture, our clearing class contained both crop areas 

and pasture. The ( f3 data in figure 3.4 are from July 13, 1996, which was likely acquired 

before burning had begun for the 1996 dry season. All 1-year old clearings had been 

cleared by the June 24, 1996 TM scene used to map these new clearings. The large 

difference (2.5 dB) in I-year and 2-year old clearings is most likely due to the first bum.
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After the first bum, the biomass o f slash declines more slowly due to decay processes 

with occasional repeated burning to establish and maintain pasture.

.TERS u °  Statistics for Individual Clearings and Stands of Secondary Vegetation

Temporal variability in stand level a° estimates can result from change in JERS- 

1 calibration, system noise, speckle, image texture, topographic effects influencing per- 

pixel scattering area estimates, and environmental conditions (Luckman et al. 1998). 

These first three potential sources of variability in <7° are unlikely to have much of an 

impact given our cross-calibration procedure and stand size limitations imposed for this 

analysis. This region of Rondonia is relatively flat, so topographic effect will likely be 

small. The influence of intrinsic image texture was characterized by equation (4). 

Variations in soil and plant dielectric properties and their relative contributions to stand 

level <7° will vary depending on the environmental conditions and the overall stand 

structure.

The mean and variance of <r° estimates for each clearing and secondary 

vegetation stand were spatially and temporally highly variable. While the clearing 

exhibited the same general trend that we observed on the landscape scale, namely a 

decrease in <7° with age, the variability within the same age classes was comparable to 

the temporal changes resulting from loss of residual slash following initial clearing (see 

Figure 3.5.). First year clearings had mean £7° values ranging from approximately -  

6.5dB to -12.0dB. Some clearings had higher £7° than the surrounding forest, most likely 

due to enhanced double bounce caused by the ground and slash interactions (Rignot et al. 

1997, Saatchi et al. 1997). High response (£7°>-8.0dB) was observed from the 1 and 2-
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year old clearings in all four 1996 images. In the July I3m image, 12 of the 39 (31%) 1- 

year old clearings had <j° values greater than -8.3dB, the threshold for old regeneration 

and primary forest class in Luckman et al. (1998) biomass density retrieval scheme. 

These 12 clearings represented 36% of the total area for all 1-year old clearings. Of the 2- 

year old clearings, 20% (12% of the area) had mean <7° greater than -8.3dB, a lower 

percentage than the 1-year old population. On an area weighted basis more than 96% of 

the older clearings had mean a° less than -8.3dB in all four 1996 images. The new 

clearings did not exhibit an appreciable decrease in sigma naught from the early dry 

season data to the later dry season images as would be expected once the slash for the 

clearing had been burned, indicating that environmental conditions may mask land use 

impacts on mean sigma naught. Normalization of soil moisture and miro-scale surface 

rroughness effects would lead to better information on differences in clearing process. 

Further quantification of these differences would be useful for quatifying variability in 

clearing practice (amount of slash removed off site), burning efficiencies, and rates of 

decay of residual biomass.

While there is a general trend of increasing sigma naught with secondary 

vegetation stand age, there are significant temporal and spatial differences within age 

classes of secondary vegetation (figure 3.6). The intra-annual temporal differences in 

sigma naught from July 13th to November 22nd are apparent with higher sigma naught in 

the late dry season/early wet season images. The observed across stand variability within 

age classes was expected to a certain extent due to variability in amounts of residual 

slash, rates of biomass accumulation and differences in species composition. The
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temporal variability is likely due to changes in environmental conditions (e.g. moisture 

content of soil and vegetation) resulting in large variations in mean sigma naught.

We converted mean <J° to biomass using equation (8) to look at trends in biomass 

estimates with age of the secondary vegetation stands (Figure 3.6). Biomass estimates 

were extremely variable and tended to increase with age of the stands. The biomass 

model from Luckmaa et al. (1998) was derived by fitting a sigmoid curve to field based 

estimates of biomass using a least squares fit. It is important to note that this sigmoid 

function reaches an asymptote at the biomass saturation point (Luckman et a l  1997a). 

Estimates of the saturation point for JERS L-HH biomass retrievals range from 40 T/ha 

(Imhoff 1995) to 60 T/ha (Curran and Kuplich 1999, Luckman et al. 1997a). Therefore, 

biomass estimates above the 40 to 60 T/ha range may be artifacts of the sigmoid function 

and not a reflection of differences in the actual above-ground biomass. Nevertheless, 

there are important trends in these results. The percentages of secondary vegetation 

stands at or above the saturation point increased with age. From the July 13th image, we 

see only one 1-year old stand above the saturation point, where more than 60% of the 8- 

year old stands were above the saturation point. Estimates from the October and 

November images had a larger percentage of the biomass estimates saturate. While the 

secondary vegetation stands may have accumulated some biomass between June and 

November, the large increase of saturated estimates is likely due to higher mean cr°, 

likely resulting from wetter environmental conditions and higher soil and vegetation 

moisture content (Curran and Kuplich 1999).

We examined the temporal stability of estimating biomass by comparing, on a 

stand-by-stand basis, biomass estimates for all 8+-year old stands from our July 13th,
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1996 image with the three other 1996 estimates (Figure 3.7). In this figure we have drawn 

a line at 31 T/ha to represent the maximum biomass of secondary vegetation that 

Luckman et al. (1998) estimate can be separated from mature regrowth with a 95% 

confidence level. Once again the estimates vary dramatically across these four images 

and hence are not temporally stable. As stands age, the variance in mean <7° due to 

environmental conditions should decrease due to enhanced scattering from higher 

above-ground biomass. For example, Hashimoto et al. (1997) documented different 

seasonal variation in JERS-1 sigma naught for dirty pastures and two biomass classes of 

secondary vegetation in Rondonia, with ranges decreasing from over 2dB to ldB. 

However, at the same time, as the stands develop there should be increased canopy 

heteorogeneity as the overstory develops resulting in greater variance due to texture 

effects (Luckman et al. 1997b). A large percentage of the July 13th estimates that are 

below the saturation point exceed the saturation point for the other dates (Figure 3.7, 

quad 3). Secondly, there are many stands that exceeded the saturation point in the July 

13lh image (assumed to have the least soil moisture effects) and did not saturate for the 

later estimates (Figure 3.7, quad 2). A majority of the stand estimates were above the 

saturation biomass levels (quad 4). Based on the Alves et al (1997) biomass accumulation 

fates of between 6.6 and 8.7 T/ha/yr, we would expect all the stands to have biomass 

levels exceeding the 31 T/ha saturation point. Of the 135 8+-year stands in our analysis, 

only 2 had biomass estimates below the saturation point for all four estimates, but if we 

only look at the July 13th data then 21 stands were below saturation point. The presence 

of some stands below this point indicate that either: a) the rate of biomass accumulation 

is well below the Alves at al. rates of 6.6 to 8.7 T/ha, b) the JERS estimates significantly
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underestimate the actual biomass, or c) the TM classifications of vegetation regrowth 

areas are wrong. While dirty (not well maintained) pastures often have similar TM 

spectral properties to young secondary vegetation, especially for early dry season TM 

acquisitions, the probability is quite low that a dirty pasture would be classified as 

secondary vegetation in all 8 TM classifications because the farmers would need to 

maintain the pastures at some point in this period to still be able to use the land as 

pasture. Once the farmer maintained the field by burning the herbaceous vegetation the 

TM classification would have mapped the area as cleared.

Figure 3.8 illustrates the range in biomass estimates for all the 1-year old stands in 

1996. While the percentage of regrowth stands above the saturation point in all 4 images 

is much lower (16%), 86% of the stands had at least one estimate above the saturation 

biomass level of 31 T/ha. From the July 13th image alone, 16% of the stands were above 

the saturation point. All of these 1-year old stands had been cleared from forest in 1994, 

were used for I-year (1995) prior to secondary vegetation formation and therefore there 

could still have a large portion of residual slash remaining on site from the original 

clearing event in 1994.

Analysis of variance of spatial and temporal variability in stand sigma naught

We performed an analysis of variance (ANOVA) derived from mean stand a°  

measurements from all four 1996 images to quantify the relative contributions of stand 

and temporal variability to the overall variance of the stand sigma naught. All 179 

secondary-growth stands for which data were available from more than one scene were 

included in the analysis, yielding 685 observations. We assumed that the change in
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above-ground biomass between the July 13th and November 22nd would have a negligible 

effect on the mean cr° for any given stand. For this analysis we modeled the measured 

sigma naught in linear units ( )  for a particular stand ( t ) at any given time ( j ) as

= Si + Tj + Ejj (9)

where (i is the average sigma naught across all stands and time periods, S, is the expected 

difference of stand i from the average, Ty is the expected difference of a stand observed at 

time j  from the average, and eiy is uncorrelated error due to noise. In performing the 

ANOVA, observations were weighted inversely proportional to their variance (calculated 

as C V ^ , ) .

From this analysis we again see that the July 13th and August 26th images had 

lower mean sigma naught and the October 9th image had higher mean sigma naught 

values than the November 22nd images (Table 3.4), which is consistent with our 

expectations based on the mean landscape statistics (Figure 3.3).

A decomposition of the components of the variance in sigma naught is shown in 

Table 3.5. This decomposition is based on the unweighted contributions of the different 

parameters to estimated o°,y values, and the corresponding residuals. Variation between

stands that is consistent from image to image is indicated by the variability of the $  

values, and represents the majority of the variance. Variance between images that is 

consistent from stand to stand is indicated by the variability of the 2} values. The 

relatively small magnitude of this variation, and its minor contribution to the overall
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variance, suggest the careful cross-calibration procedures employed here were successful 

in minimizing scene-wide impacts of calibration and environmental effects. In addition, 

changes in environmental conditions between images had a differential effect on the 

stands. However, the contribution of noise (£/,• values) is large. The expected magnitude 

(in a root mean square sense) of the uncorrelated noise term is T4% of the expected 

magnitude of the difference of a stand from the mean. Because the error term is 

uncorrelated across a scene, it cannot be reduced through cross-calibration or the 

inclusion of a range of ground-truthed reference stands in the imaged area. Contributions 

to the overall error term include image texture, speckle, relative calibration, random 

system noise (Rignot and Kwok 1993), and within scene variability in environmental 

conditions (e.g. soil and vegetation moisture content). However in this case, the 

contribution of the error term is several times the contribution that would be expected 

from texture and speckle alone (%2=1807.7, d.f.=503, p<0.001). Therefore, given the 

fairly high system signal-to-noise characteristics of these images, a large source of the 

noise term is likely due to the relative calibration and environmental conditions. There 

may also be a slight slant-range dependence that impacts the relative contribution of 

system noise across a single image. Since the relative calibration of JERS is 

approximately l.OdB and the range in expected G° is less than 2.5dB across a biomass 

range from 6 T/ha to the saturation point of 31 T/ha, calibration and differential effects on 

changing environmental conditions control the total noise contribution.

Soil moisture impact on mean stand sigma naught will be a function of soil 

moisture, soil roughness and amount of above-ground biomass. Stands with high biomass 

will likely be less sensitive to differences in soil moisture beneath the canopy in the
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absence of standing water. Based on a threshold of p<0.05, we estimate that, for 45% of 

secondary vegetation area, the variance in linear sigma naught within a stand estimate 

was within the expected range due to texture and speckle effects and, therefore, less 

sensitive to changes in environmental conditions. Looking at the temporal impact of 

background effects on stand sigma naught provides useful information on the overall 

scattering properties of the target. Sigma naught from a vegetated target is a function of 

the vegetation dielectric properties and structure, and sub-canopy surface conditions. 

Since within a given dry season the structure o f secondary vegetation canopy will not 

change much and vegetation in this region do not experience water stress, differences in 

sigma naught are a function of sub-canopy conditions and water on vegetation surfaces 

(not withstanding variability due to system noise and relative calibration errors). The 

amount of temporal variability in mean sigma naught can be used to separate qualitative 

differences in stand scattering properties.

Conclusion

This study evaluated the spatial and temporal variability in L-HH sigma naught 

from secondary vegetation stands and clearings across a chrono-sequence of ages using 

JERS-1 SAR data. At the broad landscape scale, mean radar o°  increased with age of 

secondary vegetation, likely a result of higher above-ground biomass levels with age, and 

decreased with age of clearings, likely due to decreases in residual slash over time by 

burning and decay processes. However, at the stand level the sigma naught trends are 

more difficult to quantify. The temporal variability in mean stand a°  due to system
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noise, relative calibration errors, environmental and site conditions is comparable to the 

expected dynamic range of <J° across the biomass values expected for secondary 

vegetation stands younger than 6 years old. The range of within age classes sigma naught 

was greater than the range across age classes. The source of this variability is likely due 

to a combination of differences in rates of regeneration, intrinsic stand texture, amount of 

residual slash, and soil and vegetation moisture conditions. Furthermore, differences in 

sigma naught signal between two stands at the same time, or between two observations of 

a single stand, is likely to include a sizeable noise contribution.

While quantitative retrievals of biomass with JERS need to be evaluated on a 

case-by-case basis, multi-temporal JERS data can be used to estimate qualitative 

differences in stand characteristics. An assessment of statistical variability in <7° with 

multi-date JERS relative to expected variance from texture, speckle, and system noise 

provides information on stability of the stand scattering properties for upland forest. 

While these differences may not relate directly to biomass, inferences about signal 

saturation can be made.

JERS-1 SAR data acquired during the dry season (June and July in this case) 

provided better contrast in general than the wet season data (October and November), but 

the best images cannot be selected based solely on acquisition date due to precipitation 

events during dry months. In addition to better characterization of secondary vegetation 

stand scattering properties, multi-date images improves the classification of clearings, 

secondary vegetation and forest by resolving some ambiguities due to the clearing 

process. Synergy of Landsat derived age information with JERS derived scattering 

properties provide a better characterization of the overall structure of clearings and
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secondary vegetation stands in Amazonia. Further work is needed to quantify the 

implications of using JERS derived biomass estimates of secondary vegetation for 

mapping differences in rates of regeneration. The relationship between stand structure 

and radar texture needs to be researched further as a potential source of complementary 

information to mean stand sigma naught.
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Acquisition Date Season
July 7, 1989 Dry
December 2, 1990 Early Wet
June 12, 1991 Early Dry
June 22, 1992 Dry
October 7, 1993 Late Dry
June 4, 1994 Early Dry
July 25, 1995 Dry
June 25,1996 Dry
June 28, 1997 Dry
July 17, 1998 Dry

Table 3.1 Landsat TM data used for multi-temporal classifications. While optical data 
suffer less from seasonality effects (excluding clouds), the images acquired during and at 
the end of the wet season tend to have a slightly higher proportion of secondary 
vegetation due to rapid growth of herbaceous vegetation.
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Secondary Vegetation Classes Clearing Classes

Transition from 

1989 to 1996

Age in 

1996

Code Transition from 

1989 to 1996

Age in 

1996

Code

FFFFFFDS 1 1 FFFFFFFJJ 1 1
FFFFFDSS 2 2 FFFFFFDD 2 2
FFFFDSSS 3 3 hFFFFDDD 3 3
FFFDSSSS 4 4 FFFFDDDD 4 4
FFDSSSSS 5 5 FFFDDDDD 5 5
FDSSSSSS 6 6 FFDDDDDD 6 6
FSSSSSSS 7 7 FDDDDDDD 7 7
DDDDDDDS 1 11 DDDDDDDD 8+ 8
DDDDDDSS 2 12 SSSSSSSD 1 11
DDDDDSSS 3 13 SSSSSSDD 2 12
DDDDSSSS 4 14 SSSSSDDD 3 13
DDDSSSSS 5 15 SSSSDDDD 4 14
DDSSSSSS 6 16 SSSDDDDD 5 15
DSSSSSSS 7 17 SSDDDDDD 6 16
SSSSSSSS 8+ 18 SDDDDDDD 7 17

Table 3.2. Class Transitions for estimating age and land use history for the secondary 
vegetation stands and clearings. Each entry for the transitions was derived from a single 
TM classification.
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Imaee Date Season Ranee RamD Cross-Calibration NES0
1 2/27/1993 Wet 1.058 dB 0.11 dB -16.35 dB
2 4/21/1993 Wet 1.182 dB -0.35 dB -16.37 dB
3 9/22/1994 Late Dry 1.538 dB -0.44 dB -16.29 dB
4 10/23/1995 Late Dry 0.374 dB -0.37 dB -14.88 dB
5 7/13/1996 Dry 1.516 dB -0.33 dB -17.16 dB

. 6 8/26/1996 Dry 0.954 dB -0.09 dB -15.04 dB
7 10/9/1996 Late Dry 1.340 dB -0.14 dB -15.75 dB
8 11/22/1996 Early Wet 0.948 dB 0.09 dB -14.93 dB

Table 3.3 JERS-1 SAR level 2.1 data used. *Image 4 was processed by JPL, remaining 7 
images were processed by NASDA. Cross-calibration differences were less than 0.5dB. 
The range ramp correct was derived using an empirical line model.
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Date T,
July 13 -0.0030
Aug 26 -0.0031
Oct 9 0.0054
Nov 22 0.0007

Table 3.4 Estimated departure from average sigma naught for each of the four scenes in 
1996, in linear units. The two dry-season scenes show lowest average sigma naught, 
consistent with expectation. The difference among images is statistically significant 
(F= 10.23, <#=3,p<0.0001).
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Source Root Mean Square Value Percent of Variance
Stand variability (Si) 0.0238 63.4%
Temporal variability (7}) 0.0035 1.4%
Noise (£„-) 0.0177 35.2%

Table 3.5 Magnitude of effects in the analysis of variance, and variance components as a 
percent of the total. While temporal variability (consistent within a scene) is small, noise 
from stand to stand is large, and similar in order of magnitude to the variability between 
stands within a scene.

12.1
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Figure 3.1: (a) 3-date RGB composite of JERS SAR images from October 9, August 26, 
and July 13 from 1996, respectively, (b) TM image from June 25,1996 in 4,3,2, RGB. 
The following areas are labeled: A) recently cleared land (after June 25th and before July 
13th), B) older clearing, C) secondary growth (red color in TM image), D). undisturbed 
forest (cross-calibration site), E) dirty pasture. Note that in (a) the recent clearings have 
higher intensity with less heterogeneity than intact forest.
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Figure 3.2 Mean Monthly Precipitation. Data are averages from station data acquired 
from 1978 to 1993. Source Division National Agua Energy Electric, Brazil. This region 
of the Amazon has a very pronounced dry season, running from June through August, 
with less than 3% of the total annual precipitation.

123

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



-10

„  -9
m
w
©

©aw .Q
o©

CD
c©
©

2  -7  -|

Dymunic Range by Dale 
7/13/96: 2.1 dB 
8/26/96: t.6dB  
10/9/96: 1.5 dB 
11/22/96: 1.3 dB

Forest
Secondary Vegetation 
Clearings

7 /1 3 /1 9 9 6  8 /2 6 /1 9 9 6  10/9 /1996

image Date

11/22 /1996

Figure 3.3 Landscape Statistics. The, dynamic range, defined as difference between mean 
backscatter of forest and clearings, is provided. The image from 960713 has the largest 
contrast (dynamic range) between mean forest backscatter and mean clearing backscatter. 
The two images acquired late in the dry season and early in the wet season have the 
lowest contrast. From this it appears the July 13 image is driest.
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Figure 3.4. Mean backscatter across the landscape by age, calculated by averaging 
intensity means of all secondary vegetations stands or cleared areas. Error bars represent 
the 95% confidence levels (±1.96*standard error). Statistics derived from July 13,1996 
image. Backscatter is higher for younger clearings and rapidly decreases with age. 
Backscatter is lower for young stands of secondary vegetation and increases with age.
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Figure 3.5. Mean backscatter by age of clearing. While there is a general trend of decreasing backscatter with age, there is also 
considerable range of mean backscatter within a single age cohort, as well as temporal differences. The October and November 
images tend to have higher mean values, likely because of higher dielectric properties of the target due to increased moisture content 
of soils and vegetation. Magnitude of the soil moisture effect depends on the soil texture, the surface roughness of the clearings, and 
amount of biomass.
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Figure 3.6. Mean stand backscatter by age of secondary vegetation. While there is a trend of increasing backscatter with age, there are 
significant temporal and spatial differences within age classes of secondary vegetation. The temporal differences in backscatter from 
July 3,h to November 22nd are apparent with higher backscatter in the late dry season/early wet season images. The spatial variability 
within the same age classes is due to surface roughness, and land use effects, sensitivity of the backscatter characteristics with small 
changes in biomass, as well as variability in rates of biomass accumulation. The temporal variability is due to changes in 
environmental conditions (e.g. moisture content of soil and vegetation) resulting in large variations in mean stand backscatter.
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Figure 3.7. Relative biomass estimates for 8-year old stands of vegetation regrowth. The 
dashed lines represent a saturation point of approximately 31 T/ha. Four quadrants are 
labeled. Quadrant I: stands with no saturation in at least two periods. Quadrant II: 
saturation in July 13th but not for all 3 later estimates. Quadrant IE: no saturation in July 
13th but saturated at later date. Quadrant IV: saturation in both inventories.
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Figure 3.8 Relative biomass estimates for I-year old secondary vegetation. The dashed 
lines represent a saturation point of approximately 31 T/ha. Four quadrants are labeled. 
Quadrant I: stands with no saturation in at least two periods. Quadrant II: saturation in 
July 13th but not for all 3 later estimates. Quadrant IH: no saturation in July 13th but 
saturated at later date. Quadrant IV: saturation in both inventories.
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CHAPTER 4

ASSESSMENT OF JERS-1 SAR FOR MONITORING SECONDARY VEGETATION 

IN AMAZONIA: II. SPATIAL, TEMPORAL, AND RADIOMETRIC 

CONSIDERATIONS FOR OPERATIONAL MONITORING.

Abstract

While the role of synthetic aperture radar in operational tropical forest monitoring 

has yet to be defined, it is nevertheless a critical technology for improving our 

understanding of deforestation and secondary vegetation in the tropics. In order to 

understand the role of this technology in operational monitoring a systematic evaluation, 

relative to other existing technologies, of its performance is required. In this paper we 

evaluate the spatial, temporal, and noise constraints of JERS SAR data for mapping and 

monitoring biomass of secondary vegetation in Rondonia, Brazil. Our results indicate that 

the variability in stand estimates of biomass is high and that the source of the majority of 

the variability is not from speckle and the intrinsic texture of the secondary vegetation but 

likely due to differences in environmental conditions resulting in differential background 

scattering properties. Multi-temporal analysis significantly improves biomass estimates to 

the point where it is possible to map changes in biomass. Slight reductions in the 

variability in estimates of normalized radar cross-section greatly improve biomass 

estimation.
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Introduction

Land use within the tropical rain forest biome has a large impact on the net flux of 

carbon from the biota and is an important component of the global carbon cycle. 

Conversion of forests to pasture and agriculture results in a net source of biotic CCL to 

the atmosphere, while forest fallow and abandonment into secondary vegetation represent 

a net sink of biotic CO2 . The magnitude and timing of these fluxes are a function of the 

extent of the conversion, the fate of the cleared lands, and the carbon stocks of the pre- 

and post disturbance landscape. Understanding the processes of deforestation and 

abandonment will improve estimates of the magnitude of the net biotic flux of carbon 

from the tropics. Accurate, quantitative estimates of deforestation and secondary 

vegetation extent, rates of deforestation, land abandonment, and forest regeneration are 

critical for understanding the global carbon cycle. Remote sensing provides the only 

approach capable of providing this information accurately and timely, over large areas, at 

a uniform sampling scheme, and repeatedly over time. Optical remote sensing techniques 

have proven useful for quantifying deforestation and detecting secondary vegetation, but 

they have been hampered by persistent cloud cover in some regions and by a lack of 

sensitivity to biomass. There is a clear need for additional techniques to supplement the 

role of optical sensors for tropical forest monitoring. One most promising alternative to 

optical is synthetic aperture radar (SAR) because it is not affected by clouds and offers 

some sensitivity to biomass. Ultimately, these two remote sensing tools ought to be
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working in a synergistic fashion to provide the best characterization of deforestation, 

abandonment and secondary vegetation.

Numerous studies have focused on the use of remote sensing for mapping the 

extent, temporal dynamics, age, and biomass of secondary vegetation in the tropics (e.g. 

Nelson et al. 2000, Alves and Skole 1996, Steininger 1996, Luckman et al. 1997a,b, 

Luckman et al. 1998, Foody and Curran 1994, Mausel et al. 1993, and Lucas et al. 1993). 

Multi-temporal Spot XS and TM data have been used to create maps of secondary growth 

age (Nelson et al. 2000, Alves and Skole 1996, Steininger 1996, and Lucas et al. 1993) 

and persistence (Nelson et al. 2000, Alves and Skole 1996). Vegetation indices using red 

and near-infrared reflectance saturate for separating forest secondary vegetation after a 

few years (Sant’Anna et al. 1995). However, vegetation indices that utilize mid-infrared 

and near-infrared data (Nelson et al. 2000, Steininger 1996, Boyd et al. 1996) and texture 

based classifiers (Nelson et al. 2000, Palubinskas et al. 1995) do not saturate as quickly 

and are better for detecting secondary vegetation in the tropics. Landsat TM spectral 

properties differ among the successional stages of secondary vegetation in the tropics 

(e.g. Sohn et al. 1999, Mausel et al. 1993, Moran et al. 1994, Steininger 1996, Foody et 

al. 1996). Over time, reflectance properties of secondary vegetation become 

indistinguishable from those of mature, undisturbed forest (Mausel et al. 1993, Boyd et 

al. 1996, Foody etal. 1996). Results from several studies using Landsat TM data indicate 

that secondary vegetation stands can be spectrally separated into 4-6 distinct age classes, 

with the oldest class remaining distinct from mature forest for =14-15 years (Sohn et al. 

1999, Boyd et al. 1996, Foody et al. 1996, Steininger 1996). Neural net classification 

techniques have also been used to map secondary vegetation and estimate stand age with
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single and two-date Spot XS and Landsat TM spectral and textural data (Kimes et al. 

1999, Nelson et aL 2000).

C-band radar data are less useful than L-band data for mapping biomass of re

growing forest (Rignot et al. 1997, Saatchi et al. 1997 Yanasse et al. 1997). Single 

polarization (HH) L-band radar data have been used successfully to map deforestation 

and secondary vegetation and estimate ranges of biomass accumulation from radar 

backscatter (Luckman et al. 1997b, Luckman et al. 1998) and phase coherence (Luckman 

et al. 2000). There appears to be a general agreement that radar backscatter increases with 

increasing biomass and saturates at some biomass level. Estimates of the saturation point 

of L-band data from tropical forests vary from 40 tons/ha (Imhoff 1995) to 60 tons/ha 

(Luckman et al. 1997a). Ranson and Sun (1997) and Rignot et al. (1995) have shown that 

P-band backscatter can estimate biomass for forest stands up to 150 tons/ha (temperate 

forest) to 200 tons/ha (tropical forest), respectively.

The baseline for an operational forest monitoring system necessitates complete 

forest inventories as frequently as every five years (Ahem et al 1998). Analysis of 

Landsat cloud cover metadata indicates that persistent cloud cover in the tropics would 

severely limit the ability to map annual changes using Landsat data. For example, from 

1990 to 1994 less than 50% of the 228 WRS II footprints covering the Brazilian Amazon 

was covered by a low cloud cover (<20%) Landsat TM image. Clearly, due to persistent 

cloud cover, complete optical coverage is difficult, therefore, attempts at measuring rates 

of deforestation and secondary vegetation would benefit from SAR imagery, thereby 

ensuring complete coverage. Despite the lack of complete coverage with optical sensors, 

low cloud cover imagery is available for over 90% of the areas of current deforestation
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in the Amazon. Numerous studies have demonstrated that SAR data can be used to detect 

deforestation (e.g. Rignot et al. 1997, Saatchi et al 1997). A systematic evaluation of 

errors in estimating deforestation and secondary secondary vegetation relative to 

estimates derived from optical remote sensing platforms is needed to understand the role 

of radar in the context of operational forest monitoring. This evaluation should focus on 

the performance of multi-date SAR data for operational forest monitoring. While it is 

clear that SAR must play an important role in an operational tropical forest monitoring 

systems (cf. GOFC Strategy Document), the role has yet to be defined. Knowing the level 

of performance of SAR for mapping land cover change is critical, especially for regions 

shrouded by persistent cloud cover where SAR may be the only viable alternative to 

optical sensors. While several studies have indicated that both optical (e.g. Skole et al. 

1994, Steininger 1996, Foody et al. 1996) and SAR (Luckman et al. 1997a, 1997b, 

Curran and Kuplich 1999) data can be used to characterize differences in secondary 

vegetation, new research needs to focus on how differences in the rates of forest 

aggradation can be quantified to improve our understanding of the controls on carbon 

sequestration across the landscape.

In Chapter 3 we examined the spatial and temporal variability of mean 

normalized radar cross-section, herein called sigma naught, across a chrono-sequence of 

secondary vegetation stands and clearings. In order to evaluate the potential of using 

multi-temporal JERS-1 SAR data for quantifying differences in rates of recovery of 

secondary vegetation, we applied the biomass density retrieval scheme presented by 

Luckman et al. (1998) and evaluated the sensitivity of using multi-temporal JERS-1 SAR 

data for biomass density estimation. The temporal and spatial stability of the mean stand
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sigma naught estimates were highly variable due to differential effects of changes in 

environmental conditions and variability of intrinsic heterogeneity (texture) of the stands. 

In this paper we develop a series of statistical models to evaluate, in an operational 

context, what level of changes in biomass density, herein called biomass, one might be 

able to identify with JERS-1 SAR data for a given confidence level. These models assess 

the impact of multiple JERS data takes and size of the vegetation secondary vegetation 

stands on the coefficient of variation of our biomass estimates. Performance of estimating 

biomass is evaluated based on the ability to quantify the presence and magnitude of 

biomass change over time.

Methods

In this section we provide a summary of the methods used in our analysis. 

Section 2.1 contains a brief description of how the individual secondary vegetation stands 

were mapped and how their ages were calculated. Sections 2.2 through 2.5 provide the 

details of the JERS data pre-processing, extraction of secondary vegetation stand level 

sigma naught statistics, and the biomass density model used, respectively. Section 2.5 

describes the statistical methods and models used. The text provided in these 4 sections is 

paraphrased from our companion paper in this special issue, where more details on the 

image processing methods can be found. Our analysis is based on using multi-temporal 

TM data for mapping age and size of secondary vegetation stands and multi-temporal 

JERS data for generation of sigma naught statistics for a site in Rondonia, Brazil (figure

4.1).
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xivi artaiysis 01 secondary vegetanon stand age ana size.

Annual co-registered Landsat TM from 1989 to 1998 were classified using an 

unsupervised (ISODATA) clustering technique, followed by a manual, knowledge based 

assignment of the 45 clusters into forest, cleared, natural non-forest, water, cloud, cloud 

shadow, and secondary vegetation classes. Areas of water, cloud, cloud shadow, and 

natural non-forest were removed. These 10 classifications were then combined to create 

land cover changes map using post classification change detection. Initial analysis of the 

magnitude of the number of land cover change transitions between 1989 and 1996 and 

their spatial patterns revealed a highly dynamic landscape. For this study, we segmented 

the stands of secondary vegetation into two sets of age classes based on whether or not 

we knew when the areas were initially cleared from forest and how long the area 

remained as non-forest prior to secondary growth formation. Contiguous areas with the 

same land cover transition sequence over the 10-year period were identified and labeled 

using an 8-neighbor clump algorithm. A 3x3 low pass filter was then used to identify 

edge pixels, which were removed to minimize the impact of mis-registration between the 

multi-temporal SAR data and the TM-based secondary vegetation stand map. All stands 

smaller than 0.75ha were subsequently removed from the analysis to minimize the 

variance of the mean stand sigma naught due to speckle (see discussion below). We 

estimate the overall accuracy of the stand age maps to range between 72% and 85% 

(Salas et al. this issue). The location of the study area and an example of the stand age 

map are provided in figure 4.1.
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JERS-1 SAR data pre-processing

We analyzed eight L-band (1.275 GHz), HH polarized, synthetic aperture radar 

(SAR) from the Japanese Earth Resources Satellite 1 (JERS-1). Table 4.1 lists the eight 

level 2.1 products (3-looks with 12.5m pixels) used for this study. These data were 

obtained through our participation in NASDA’s Global Rain Forest Mapping Project (see 

Rosenqvist et al. 2000 for details on GRFM). These images were co-registered 

automatically using image cross-correlation and converted to normalized radar cross- 

section (sigma naught, <t°) values in dB with the following formula:

a° =201ogio(DAO + F (1)

where F is the NASDA provided correction factor (-68.5 dB for the images #1-7 and -  

68.3 dB for image #8). We applied an empirical linear correction, derived from a transect 

of primary forest, to account a ramp in sigma naught with range (Leckie 1990, Ranson 

and Sun 1994). The range ramp across this transect varied from 0.4dB to 1.5dB (see table

4.1). While, theoretically, this linear empirical correction may not properly model 

incidence angle effects for non-forested areas across the landscape or correct for non

linear effects of system noise with slant range, we assume that the residual noise 

correlated with range would be a second order effect due to the small range in incidence 

angles across our study area. We then cross-calibrated these data to normalize their gain 

differences. The cross-calibration offsets (table 4.1) were derived from mean and 

coefficient of variation statistics of <7° from 228 hectares of mature forest.
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Extraction of Stand Sigma Naught Statistics and Confidence Limits

Speckle and the intrinsic spatial heterogeneity (texture) of vegetation impacts our 

ability to accurately estimate the mean sigma naught from stands of secondary vegetation 

(Rignot and Kwok 1993). The estimate of coefficient of variation caused by speckle and 

intrinsic texture can be estimated by:

where M is effective number of looks (ENL) and Vt is the variance due to texture (from 

Luckman etal. 1998), following Oliver (1991), and is calculated as

where (— ) is the actual coefficient of variation (CV ) within the stand. Vieira (1996) 
M

estimated N for a single JERS-1 3-look pixel to be 2.8 Using the estimated CV  we can 

estimate the 95% confidence limits in dB by

(3)

sd

10*Iog(l±2*C V *—= )  (4)
-Jn
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where n is the number of uncorrelated pixels in the stand. Note that (4) ignores all 

sources of variation except texture and speckle. An improved confidence limit, but still 

accounting only for texture and speckle, would be

10 * log(l ± r0 05 * CV * -j=r) (4a)
yn

We used leve!2.l data which has a spatial resolution of 12.5 meters. However, since 

JERS resolution is 18m, there is a significant amount of correlation between neighboring 

pixels that must be accounted for in calculating our confidence intervals. Using these 

equations we calculated mean cr°with the 95% confidence limits for each of the 182 

stands of secondary vegetation.

Shimada (1996) estimated N for the NASDA level 2.1 3-look p'oduct to be 2.1. 

The discrepancy with the Vieira estimate could be due to differences in the SAR 

processor used to create the products. If N is closer to 2.1 then our overall confidence 

limits would be wider than reported here by a factor inversely proportional to the size of 

the secondary vegetation stand.

Biomass Density Model

Luckman et al. (1998) developed a semi-empirical model for estimating biomass 

density of regenerating forests with JERS-1 radar sigma naught data and asserted that the 

model is generalizable to other regions in the Amazon. We tested their model for 

quantifying broad differences in biomass of our secondary vegetation stands. Inverting 

their model to estimate biomass ( B ) from <7°, expressed in linear units, yields
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B  = - l n j a - ^ - c  (S)

where a,b,c are constants that were empirically derived from field data from Tapajos 

region in Para State in the Amazon. We used the following values a = 0.170, b = 0.053, 

and c = 2.146 (taken directly from Luckman et al. 1998) for our calculations. 

Unfortunately, when o °> a , the estimate produced by (5), or equivalently by (4), is 

undefined, since the model saturates with respect to sigma naught, not biomass density. 

This situation occurred frequently in all the scenes examined. Unfortunately, the model 

does not provide a natural or saturated biomass density level, but some value must be 

specified. To provide estimates in these cases, we used

g = -la(0.00005)-c = 1464 
b

which is slightly larger than the largest estimate calculated using (5), or 143.1 T/ha.Using 

these equations we then calculated the biomass for all 182 stands of secondary vegetation 

for each of the JERS images listed in table 4.1.

Statistical Methods and Models

Given the availability of multiple, contemporaneous images, confidence limits 

can be calculated for o° (in linear units), c° (in dB), and biomass in two different ways. 

First, the full-width (upper minus lower limit) of the 95% confidence limits for ct° (in 

linear units) may be calculated as
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2E = 2r005 „ (6)
\n

with the corresponding width for o° in dB calculated using (4a). The full-width for 

biomass may be calculated by substituting c° + E and a0 -  E into (5) or (5a) as 

appropriate, and taking the difference. Note that this procedure specifically assumes that 

the all contributions to the variability in a° and biomass, other than those from speckle 

and texture, are negligible.

Alternately, given J  scenes, we might consider calculating the full-width of the 

95% confidence limits for c° in linear units as 2fo.o5.y-i times the standard deviation of 

the J  estimates of a 0 about their arithmetic mean. Confidence limit widths for o° in dB 

and biomass may then be calculated as before. This procedure has the advantage that all 

sources of variation between scenes are accounted for, not just speckle and texture. 

Substantial differences between confidence limits calculated using (6), (4a), and (5a) in 

turn, and those calculated from the observed temporal variability in the estimates, must 

be regarded as evidence that speckle and texture are not the major controlling factors in 

the variability of the estimates. Confidence limits were calculated for both methods using 

only those 139 stands which were present in all 4 of the 1996 scenes, since confidence 

limits based on only 2 or 3 scenes would be more variable.

To quantify the contribution of factors other than speckle and texture to the 

variability in observed sigma naught, we performed a series ofx2 tests on the sigma

naught from the four 1996 scenes. Since ct° (in linear units) for a polygon is estimated 

as the mean sigma naught for all pixels in the polygon, and since the number of pixels in
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a polygon Is generally large, It follows directly from the Central Limit theorem that the 

estimated a 0 is approximately normally distributed about the true value. The quantity

provides an unbiased estimate of the variance of o ° , under the null hypothesis that the 

variance of a 0 arises from texture and speckle only. Recalling that a sum of squared, 

normally distributed variables is distributed as chi-squared, we may test the null 

hypothesis by comparing

r = l
u

t o  - « ? ) 2 (8)

to the critical values of y~ for IJ-I degrees of freedom. In (8), i indexes I stands or 

polygons, and j  indexes /  scenes. Equation (7) is calculated separately for each polygon 

and scene. Stand area affects the value of chi-squared through the relationship between 

stand area and n, which affects se2a . In Equation (8), each stand is treated as an equally

weighted observation. The quantity o° is the Ieast-squares mean of the a° values, which

minimizes y~. We calculated y 2 for all 179 stands that were represented in more than one 

of the 1996 images combined, and for each stand separately. The combined y 2 provides a 

powerful overall test of whether the observed variation between images could have arisen 

from texture and speckle alone. The y 2 values for each stand individually provide a
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direct measure of the magnitude of the observed temporal variation relative to the 

expected temporal variation under the null hypothesis.

Following the results of the y} tests, we further examined the behavior of the 

coefficient of variation of the biomass predictions, based on the observed inter-temporal 

variability in predicted biomass. We further examined the implications of the magnitude 

of observed coefficients of variation for biomass predictions, for the coefficient of 

variation of estimates of change.

Results and Discussion 

Effects of Factors Other Than Speckle and Texture

Confidence limits based on speckle and texture only, and confidence limits based 

on observed inter-temporal variation, are shown for o° (in linear units), o° (in dB), and 

biomass in Figure 4.2. First, considering the confidence limits based on speckle and 

texture alone, it is notable that many stands exceeded the “worst-case” scenario presented 

by Luckman et al. (1998, p. 135) of full-widths of 1.18 dB. In part, this is because 22% 

of the stands considered are less than the 1-ha size used by Luckman et al. (1998) in their 

assessment. The spatial scale of land-clearing and conversion activities is small in this 

region of Rondonia. Analysis of the distribution of secondary vegetation stands indicates 

that over 60% of the stands were smaller than 5ha (Figure 4.3a). On an area-weighted 

basis, over 45% of the area in secondary vegetation was in stands smaller than 5ha. Only 

one stand had estimates of textures variance, calculated using equation (3), higher than 

the maximum value of 0.2826 reported by Luckman et al. (1998). Regardless of the inter-
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temporal variability that may or may not be reduced by better signal-to-noise ratio (SNR), 

texture and speckle impact on confidence limits will be high for a majority of the 

secondary vegetation stands in this region (Figure 4.3b).

Turning to the confidence limits based on observed inter-temporal variability, the 

difference in magnitude of the two sets of confidence limits j s  striking, regardless what 

variable is considered. Although the effect is somewhat exaggerated by the degrees of 

freedom used for t in (4a) and when evaluating the variability directly, most of the effect 

arises from the sheer variability in the images. As shown by Salas et al. (this issue), this 

inter-temporal variability does not arise from consistent variation from one scene to the 

next, which could be reduced by a different cross-calibration method. Indeed, despite 

careful cross-calibration, 125 of 139 stands show variability exceeding the 1.18 dB 

threshold identified by Luckman et al. (1998) when all sources of variation are 

considered. In practice, this translates into confidence limits for biomass that approach 

the range of biomasses calculated using (5) and (5a), or 0 to 146 T/ha. Confidence limits 

of such a great magnitude do indicate quite clearly that for many stands the biomass is 

almost completely undetermined by a single image.

The difference in magnitude between the variability arising from speckle and 

texture alone, and the actual variability, is most clearly described by the overall test 

for all stands using the 1996 data (%2=1897.1, d.f.=506, pcO.OOl). The ratio of %2 to d.f. 

indicates that the observed variance among scenes is, on average, 375% of that expected 

from speckle and texture alone. Clearly, other factors are contributing to the differences 

between scenes for many stands. Accounting for additive temporal effects that are 

consistent across scenes reduces x2 somewhat, but not to a practically significant degree
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(%2= 1807.7, d.f.=503, /?<0.001). Such temporal effects include any environmental or 

sensing variations which affect all stands across a scene in a consistent, additive fashion. 

Given the relative unimportance of a consistent temporal effect, we must consider that 

this extraneous variability arises from some temporally variable factor, such as 

environmental conditions or sensor calibration, differentially interacting with the 

characteristics of the stands of interest. Seasonal differences in surface conditions can 

influence sigma naught values differently for pastures, secondary forests, and primary 

forest, with pasture exhibiting a large (>2dB) seasonal variability, secondary vegetation 

exhibiting a smaller (~ldB) variability, and no effect on primary forests (Hashimoto et al. 

1997).

Examining the values for individual stands (Figure 4.4) allows us to gauge the 

consistency of the extraneous variability, relative to the variability introduced by speckle 

and texture. It is noteworthy that 76 of 179 stands showed y 2 values less than the 

expected value (equal to the number of scenes in 1996 in which the stand was present, 

minus one), clearly indicating that the extraneous variability impacts some stands and not 

others. The lack of clear association between individual-stand values and the least- 

squares a 0 value might suggest, at first, that the extraneous variability is not associated 

with mean sigma naught, and therefore unrelated to biomass. However, recall that %2 

measures variability relative to the variability imposed by speckle and texture, which is 

correlated with mean sigma naught and biomass. A more careful consideration suggests 

that the absolute magnitude of the extraneous variability, when it does come into play, is 

associated with the same factors that govern texture. There is clearly a relationship 

between texture and stand biomass due to changes in canopy structure during
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development (Luckman et al 1997b). Since mean sigma naught from stands with higher 

biomass will be less susceptible to variations in environmental condition, such as soil 

moisture and dielectric properties of sub-canopy vegetation, the magnitude of the 

extraneous variability may be related to biomass.

Coefficient of Variation of Biomass Predictions

The parameters used in the biomass model were developed using field data from 

Tapajos, and tested with data from Manaus. Likely, the model would have different 

parameters if it were calibrated for our site in Rondonia because of differences in site 

conditions, soil properties, and species composition. Nevertheless, our results and 

conclusions would not change because of the non-linear relationship between sigma 

naught and biomass and, therefore, are intended to be relative.

A useful measure of the variability in predictions of biomass is the coefficient of 

variation of the predictions, calculated in a straightforward fashion as the standard 

deviation of the estimates from each scene, rescaled by their mean. The CV is plotted 

against the mean predicted biomass for each stand in Figure 4.5. A nuisance feature in 

developing this relationship between biomass and its CV was the presence of sigma 

naught values for which a°>  a. All stands that had at least one estimate where o°> a 

were omitted from this analysis. Fortunately, most of the stands omitted from this 

analysis were in the biomass range above which JERS-1 data are regarded as unsuitable 

for biomass estimation (Imhoff 1995, Luckman et al. 1997b, Curran and Kuplich 1999). 

The stands for which (5a) was unnecessary, all lie within this range. For these stands, it
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is clear that the CV increases with increasing biomass. The solid curve fit to these 

coefficients of variation is described by

CV{%)=6A9SyJbi,>lomass (9)

For example, if the estimated biomass of a stand were 10 T/ha, based on a single scene, 

we would expect that estimate to have a CV of 20.5%. This implies approximate 95% 

confidence limits of 6 to 14 T/ha. By contrast, for a stand with an estimated biomass of 

25 T/ha, we would expect a CV of 32.5%, implying 95% confidence limits of 

approximately 9 to 41 T/ha. Clearly, stands with small biomass are much better resolved 

-  both in absolute and relative terms -  than stands with large biomass.

Single vs Mult-temporal JERS observations for Estimating Changes in Biomass

To the degree that the variability indicated by Figure 4.5 reflects operational 

success in quantifying biomass, to what degree of accuracy can we quantify biomass 

differences (either from stand to stand within a scene, or within a stand over time)? If a 

stand imaged at one time has biomass Bj, estimated with coefficient of variation CVt, and 

at a second time has biomass B2, estimated with coefficient of variation CV2, the standard 

error of the estimate of the difference will be

( 10)

and the coefficient of variation of the estimated difference will be
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The situation when estimating the difference between different stands at the same time is 

directly analogous. Using (11), and the relationship between biomass and its CV from a 

single scene as given in (9), we can plot the CV we would expect to obtain for the change 

in biomass of a stand, as a function of its initial biomass and percent growth (Figure 4.6). 

Several aspects are immediately apparent. First, if a single scene is used at each time of 

observation, changes in biomass as large as 30% between the two periods cannot be 

resolved reliably regardless of the initial biomass of the stand. Second, even considering 

a 100% change or doubling of biomass, a single scene at each time period provides 

insufficient information for a reliable resolution unless the initial biomass of the stand is 

< 10 T/ha. For example, if fi/=10 T/ha and Z??=20 T/ha, the CV of the change is 62%, or 

6.2 T/ha. The approximate 95% confidence limits on the change would be 10 ±  12.4 

T/ha. In other words, using a single scene at each time period, changes in biomass are 

unlikely to be well-resolved unless the change is very large, or the stand is nearly bare at 

one of the two time periods.

Fortunately, it is possible to improve on the resolution by using multi-temporal 

images. If J  images are available at each time period, then

( 12)
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If we can suggest a target vaiue of CVSi_Bi for a given change, then we may estimate the 

required number of scenes as

BtCV* + BlCV;
" (5 2 - 5 i )2C ^ . Bi

Using (9) as the relationship between biomass and the CV of its estimate, a solution to 

(13) is shown in Figure 4.7. The target value of CVBi_B̂ is taken as 50%, which is not an

overly restrictive value. It implies approximate 95% confidence limits equal to plus or 

minus the actual change, or a 39 in 40 chance of obtaining the correct sign on the change. 

With this rather loose definition of acceptable accuracy, we see that moderate numbers of 

additional contemporaneous scenes at each time period do improve accuracy 

considerably. For example, with a 44-day repeat cycle, it is possible to obtain 8-9 images 

in a year. That additional information at each time period would allow identification of 

changes as small as 30% of initial biomass in stands with as little as 17 T/ha, and 

identification of a doubling in biomass up to the saturation point.

Impact of Noise on Estimating Biomass

The variability in our mean sigma naught for our stands was higher than could be 

accounted for due to texture and speckle alone. Potential sources of this variability 

include system noise, relative calibration errors, and environmental conditions (primarily 

surface moisture on vegetation and soil moisture). While estimating contributions of 

environmental conditions is unlikely with a single polarization instrument like JERS, 

better estimates of the scattering from vegetation alone may be possible with multi-
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polarization sensors. Therefore, in an attempt to quantify impact of improved SNR (in 

this sense we consider noise all sources variability not due directly to biomass, including 

environmental conditions, system noise, calibration offsets, etc), we modeled the relative 

bias, coefficient of variation, and relative RMSE of estimating biomass with a 1.0 dB 

versus 0.5 dB normally distributed errors of mean stand sigma naught estimates. The 

model first assumes an actual biomass value and calculates the “true” a° by inverting 

equation (5), which was then converted to dB. Based on the “true” estimate of <J° we 

calculated the probability density from our assumed distribution of <r° based on our errors 

(0.5dB or 1.0 dB) and then recalculated biomass from the distribution. Numerical 

integration was used to estimate the expected value of bias (observed -  “true” biomass), 

variance (observed biomass - average biomass)2, and mean squared error (observed 

biomass - 'true' biomass)2. From these we calculated the relative bias, CV, and relative 

RMSE as percentages. These steps were repeated across a range of biomass values to 

create Figure 4.8. The results highlight the inter-play between stand biomass and 

potential errors in estimating biomass. The observed positive bias can be explained by the 

non-linear (sigmoidal) relationship between sigma naught and biomass. A decrease in 

overall SNR of 0.5 dB would extend the range of biomass where there is little (<10%) 

bias, lower CV and lower RMSE. Clearly, any improvement in SNR will have a large 

impact on improving the success of estimating stand biomass given the sensitivity of 

these estimates confidence limits over the small dynamic range of sigma naught expected 

for biomass levels below the saturation point.
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Conclusion

A statistical analysis of sigma naught statistics from a series of secondary 

vegetation stands was presented. These statistics were used to model and assess the 

impact of spatial and temporal variability in estimating stand biomass and changes in 

stand biomass with single and multi-date JERS SAR data. Many of the secondary 

vegetation stands in this study had confidence limits due to speckle and texture alone that 

exceeded the “worst-case” estimate provided by Luckman et al. (1998). While these 

differences are likely due to the smaller stands in this study, the size class distribution of 

stands across the landscape in Rondonia indicates that much of the secondary vegetation 

is contained in these smaller stands (<5ha). Nevertheless, speckle and texture are not the 

largest controlling factors on the variability of mean stand sigma naught estimates. 

Extraneous factors, such as natural noise due to changes in environmental conditions, 

have the largest impact on the variance of biomass estimates. However, this variability 

due to these extraneous factors does not impact all stands of secondary vegetation, likely 

due to the presence of a biomass saturation point. The coefficient of variation of biomass 

estimates increases with stand biomass. With single data JERS imagery biomass cannot 

be estimated for most of the stands in this region of Rondonia. Multi-temporal 

observations improve the accuracy of biomass estimates sufficiently to enable 

identification of changes in biomass. Given the non-linear relationship between 

backscatter and above-ground biomass, a 0.5dB reduction in extraneous variability would 

significantly improve biomass estimation, especially for levels below 40-50 T/ha.

While it is clear that estimation of biomass from natural systems, like secondary 

vegetation in the Amazon, with a single polarization L-band SAR is extremely difficult, it
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appears feasible to provide the carbon cycle community information useful for improving 

our understanding of carbon sequestration in secondary vegetation in Amazonia. 

Improved techniques for estimating contributions of noise will further enhance this 

application because we then will be able to quantify stand-to-stand variability due to 

environmental conditions.
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Table 4.1 JERS-1 SAR level 2.1 data used. *Image 4 was processed be JPL, remaining 7 
images were processed by NASD A.

Imaee Date Season Range Ramp Cross-Calibration NES0
1 2/27/1993 Wet 1.058 dB 0.11 dB -16.35 dB
2 4/21/1993 Wet 1.182 dB -0.35 dB -16.37 dB
3 9/22/1994 Late Dry 1.538 dB -0.44 dB -16.29 dB
4 10/23/1995 Late Dry 0.374 dB -0.37 dB -14.88 dB
5 7/13/1996 Dry 1.516 dB -0.33 dB -17.16 dB
6 8/26/1996 Dry 0.954 dB -0.09 dB -15.04 dB
7 10/9/1996 Late Dry 1.340 dB -0.14 dB -15.75 dB
8 11/22/1996 Early Wet 0.948 dB 0.09 dB -14.93 dB
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— ~ 25km

Figure 4.1. Location maps of the Rondonia site, and subsets of the secondary vegetation 
and clearing stand age map, June 25,1996 TM image, RGB composite of October 9th, 
August 26th, and July 13th 1996 JERS images.
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Figure 4.2. 95% confidence limits for c°  (linear units), a° (dB), and biomass calculated 
based on speckle and texture alone (left column) and based on actual inter-temporal 
variation among images (right column).
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Figure 4.3a. Size class distribution of secondary vegetation stands, ranging from 0-1 
ha to larger than 11 ha. Percentage of each class with respect to total area in 
secondary vegetation is also plotted. Note that there are many more stands in the 
smaller range (1 to 4 ha) than above 8 ha. Approximately 50% of the secondary 
vegetation are in stands less than 5ha. Stand sizes were calculated from multi
temporal TM analysis.
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Figure 4.3b. Influence of secondary vegetation stand size on magnitude of 95% 
confidence interval in dB due to texture and speckle only. While the majority (122 of 
179) of stands had confidence interval greater than ldB, on an area weighted basis, 
65% of the area of secondary vegetation was contained within stands with confidence 
intervals less than ldB.
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Figure 4.4. Individual-stand %2 values. The expected value of %2is shown as a dashed 
line; dotted lines show the upper and lower critical values for a one-tailed error rate of 
0.05. If texture and speckle were the dominant sources of variability, the points would 
cluster around the expected value, with 5% of the points outside each of the two dotted 
lines.
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Figure 4.5 Coefficient of variation for biomass estimates (in percent), as a function of 
predicted biomass. This figure and curve are derived from only those stands with no 
instances of <J°> a. Most of the stands had at least one instance when cr°> a.
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Figure 4.6. Coefficient of variation (%) for estimates of change in biomass, using a 
single scene at each time period, as a function of initial biomass and percent change.
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Figure 4.7. Number of contemporaneous scenes at each time period required to achieve a 
50% coefficient of variation on biomass change estimates, as a function of initial biomass 
and percent change.
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Figure 4.8. Differences in relative bias, coefficient o f variation, and relative RMSE (expressed as 
percentages) for “observed” biomass from JERS due to normally distributed noise of 0.5 dB (dashed line) 
and 1.0 dB (solid line). The non-linear relationship between backscatter and biomass is readily apparent.
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Appendix A: Description of Spectral Indices

EVI (Enhanced vegetation index by Huete and Justice 1999): While NDVT is 

sensitive to APAR, it saturates quickly during forest succession (Steininger 1996). EVI is 

more sensitive than NDVI to canopy structure and it saturates at higher LAI levels. To 

enhance sensitivity at higher density, the soil and atmospheric adjustment factors in the 

EVI equation will be optimized for tropical forests using an approach similar to Qi et al. 

(1994). The adjustment factors will be optimized for forest application using in-situ data 

from the proposed study sites. This optimized vegetation index is expected to be sensitive 

to NIR reflectance patterns that are controlled by canopy moisture and architecture and is 

more useful for mapping differences in forest canopies (Huete et al. 1997).

Successional Development Index (SDI): This index is based on mapping the 

spectral pattern of forest succession. The spectral angle approach to mapping land cover 

analyzes spectral responses in such a way as to be minimally affected by atmospheric or 

topographic variations (Sohn et al. 1999). When using a multi-spectral data set (n 

channels), the spectral signature of a certain surface type can be represented in n- 

dimensional feature space as multiple vectors (each vector representing one spectral 

channel). Spectral angle mapping uses the cosine of the angles between these multi

dimensional vectors. Sohn et al. (1999) used pre-defined reference spectra collected from 

sites of known successional stages to map, with very high accuracy, three stages of forest 

succession in the Yucatan Peninsula. Signatures for SDI will be derived from field data 

on stand structure and regrowth stands will be classified into areas with similar spectral 

patterns.
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Successional Development Ratios (SDR): This index is the ratio of the reflectance 

of a regrowth stand to the reflectance of a mature forest. We expect the SDR values to 

approach unity as regrowth stands become spectrally similar to mature forest. We have 

chosen to calculate SDRs for NIR and MIR data based on results from the linear 

discriminant analyses in Nelson et al. (2000) and Boyd et al. (1996) that revealed these 

bands were more correlated with regeneration stage (see figure A.l). We have begun to 

investigate the relationship between the SDRs and regrowth stand age across a gradient 

of growing season degree years (GSDY). The SDR indices all increased with stand age 

and exhibited differences across the sites with a relatively short and long GSDY on 

similar soils (Latosolos) (see figure A.2). Differences in regrowth structure across these 

sites appeared to be more pronounced in the younger stands, indicating that differences in 

rates of regrowth may become less visible with age. In addition, we will explore this 

ratioing technique using modified EVI. Since EVI is more sensitive to structural 

properties than individual spectral bands, the ratioing of this index is expected to further 

enhance structural discrimination of forest succession.
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Figure A.I. Changes in stand development ratios with age. SRD4, SDR5, SDR7 ratios 
of bands 4,5 and 7, respectively for a series of secondary vegetation stands in Rondonia 
after 1,2,5, and 8years. The SDR indices all increase with stand age, indicating that as the 
stands age their spectral properties become more similar to mature, undisturbed forest.
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Figure A.2. Differences in average SDR5 values across ranges of stand ages for two sites 
with a relatively short (dry season with <5mm precipitation/day, in Amazonas) and long 
(dry season with >1.5 mm precipitation/day in Mato Grosso) GSDY on similar soils 
(Latosolos). The SDR5 values in this figure are the averages for at least 40 stands of 
regrowth in each age category. Differences in regrowth structure across these sites appear 
to be more pronounced in the younger stands, indicating that differences in rates of 
regrowth may become less visible with age.
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Accuracy assessment: Alto Paraiso 1998 '

This spreedsheet estimate accuracy assessment based on different approaches. Changes on the contingency 
table will be reflected on different types of accuracies for each individual class*.

Classified ___ Reference Data
Data Forest Deforestation 2o Growth Water Row Total Correct (%) Commission (%)

Forest 11 0 0 . 0 11 100 0
Deforestation 0 154 2 0 156 99 1

2o Growth 0 1 18 0 19 95 5
Water 0 0 0 0 0

Column Total 11 155 20 0 186
Omission (%) 0 1 10

Definitions:
o\

Ommission: Refers to the samples of a certain class of the reference data that were not classified
as such.

Commission: Refers to the samples of certain class that were wrongly classified

User's Accuracy: The probability that a pixel classified on the image actually represents that category in
ground, also known as reliability. Error of commission.

Producer's The probability of a reference pixel being correctly classified. Error of ommission.
Accuracy:



95% confidence Limits 
Lower Upper

U ser’s  A ccuracy (forest)= 100 % 95 105
P ro d u c e r 's  Accuracy (forest)= 100% 95 105

U ser's Accuracy (Defores)= 99 % 97 101
P ro d u c e r 's  Accuracy (Defores)= 9 9 % 98 101

U ser's Accuracy (2o G row th)= 9 5 % 82 108
P ro d u c er’s  Accuracy (2o G row th)= 90 % 73 107

Sum  o f m ajor d iagonals 183

O verall A ccuracy^ 98 %

T au Coefficient Analysis (Ma & Redmond, 1995):

Po=

Pc=

K=

Pr=

Te=

0.98 (Percentage agreement) 

0.74

0.94 (Kappacoefficient)

0.25

0.98

Tau Coefficient Analysis (Ma & Redmond, 1995): 

Interpretation:

1. Te is an adjustment o f  percentage o f  agreement (Po) by 
the number o f groups and. as a  measure o f  classification 
accuracy, it is independent o f  group size.

2. The Tau coeffient indicate that 98 % more pixels were
classified correctly than would be expected by random assigment. This 
means that based on the data collected we were 98 %
o f  the time.

Kappa H at coeffient analysis:

Sum Xii=

Sum Xi-t- * X+i= 

N=

KHat =

183

24681

186

0.94

Comparison of the three accuracy measures:

Overall Accuracy:

Tau Accuracy:

KHAT Accuracy:
* Sheet developed by Arturo Sanchez

98 % 

98 % 

9 4 %
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Accuracy assessment: Chiang Mai 1996 ■

This spreedsheet estimate accuracy assessment based on different approaches. Changes on the contingency 
table will be reflected on different types of accuracies for each individual class*.

Classified Reference Data
Data Forest Deforestation 2o Growth Water Row Total Correct (%) Commission (%)

Forest 16 2 0 0 18 89 11
Deforestation 2 20 0 0 22 91 9

2o Growth 0 0 0 0 0
Water 0 0 0 0 0

Column Total 18 22 0 0 40
Omission (%) 11 9

Definitions:

Ommission:

Commission: 

User's Accuracy:

Producer's
Accuracy:

Refers to the samples of a certain class of the reference data that were not classified 
as such.

Refers to the samples of certain class that were wrongly classified

The probability that a pixel classified on the image actually represents that category in 
ground, also known as reliability. Error of commission.

The probability of a reference pixel being correctly classified. Error of ommission.



User's Accuracy (forest)= 
Producer's Accuracy (forest)=

User's Accuracy (Defores)= 
Producer's Accuracy (Defores)=

89 % 
89 %

91 % 
91 to

Note: Six of the 1996 reference sites were omitted due to leaf off phenology.

95% confidence Limits 
Lower Upper

70 107
70 107

76
76

106
106

Sum of major diagonal= 

Overall Accuracy^

36

90 %

Tau Coefficient Analysis (Ma & Redmond, 1995):

Po=

Pc=

K=

Pr=

Te=

0.90 (Percentage agreement) 

0.62

0.73 (Kappa coefficient)

0.25

0.87

Tau Coefficient Analysis (Ma & Redmond, 1995): 

Interpretation:

I . T e is an adjustment o f  percentage of agreement (Po) by 
the number o f  groups and. as a  measure o f  classification 
accuracy, it is independent o f group size.

2. The Tau coeffient indicate that 87 % more pixels were
classified correctly than would be expected by random assigment. This 
means that based on the data collected we were 87 %
of the time.

Kappa H at coeffient analysis:

.Sum Xii=

Sum Xi+ * X+i= 

N=

KHat =

36

808

40

0.80

Comparison of the three accuracy measures:

Overall Accuracy:

Tau Accuracy:

KHAT Accuracy:
* Sheet developed by Arturo Sanchez

90 % 

87 to 

80 %
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Accuracy assessment: Chiang Mai 1997

This spreedsheet estimate accuracy assessment based on different approaches. Changes on the contingency 
table will be reflected on different types of accuracies for each individual class*.

C l a s s i f i e d _________    Reference Data
Data Forest Deforestation 2o Growth Water Row Total Correct (%) Commission (%)

Forest 16 4 0 0 20 80 20
Deforestation I 19 0 0 20 95 5

2o Growth 0 1 0 0 1 0 100
Water 0 0 0 0 0

Column Total 17 24 0 0 41
Omission ( % ) 6 21

-Jto

Definitions:

Ommission: Refers to the samples of a certain class of the reference data that were not classified
as such.

Commission: Refers to the samples of certain class that were wrongly classified

User's Accuracy: The probability that a pixel classified on the image actually represents that category in
ground, also known as reliability. Error of commission.

Producer's The probability of a reference pixel being correctly classified. Error of ommission.
Accuracy:



95%  confidence L im its 
L ow er U pper

U ser's A ccuracy (forest)= 80 % 57 103
P ro d u cer's  Accuracy (forcst)= 94 % 79 109

U ser's  Accuracy (Defores)= 95 % 83 107
P ro d u cer’s  Accuracy (Deforcs)= 79 % 58 100

N ote: 13 forest and  2  cleared reference sites w ere om itted due to leaf o ff  o r  clouds.

Sum  of m ajor diagonals 35

O verall Accuracy= 85 %

T au  Coefficient Analysis (M a & Redm ond, 1995):

Po= 0.85 (Percentage agreement)

Pc= 0.67

K= 0 5 6  (Kappa coefficient)

Pr= 0.25

Te= 0.80

T au  Coefficient Analysis (M a & Redm ond, 1995): 

In terp re ta tion :

1. Te is an adjustment o f percentage o f agreement (Po) by 
the number of groups and, as a  measure o f  classification 
accuracy, it is independent o f group size.

2. The Tau coeffient indicate that 80 % more pixels were
classified correctly than would be expected by random assigment. This 
means that based on the data collected we were 80 %
o f  the time.

K appa H at coeffient analysis:

Sum Xii= 35

Sum Xi+ * X+i= 820

N = 41

KHat =  0.71

C om parison o f  the th ree accuracy  m easures:

O verall A ccuracy: 85 %

T a u  A ccuracy: 80 %

K H A T  A ccuracy: 71 %
* Sheet developed by Arturo Sanchez
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