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ABSTRACT

OBSERVATION AND STUDY OF GeV SOLAR ENERGETIC PARTICLES 

USING THE MILAGRITO EXTENSIVE AIR SHOWER DETECTOR

by

Abraham Falcone 

University of New Hampshire, May, 2001

Measurements of high energy emission from solar events can lead to an 

understanding of the solar energetic particle acceleration mechanism(s). 

Although the energy source of these mechanisms is known to reside in the solar 

magnetic field, the details of the acceleration process(es) have continued to elude 

researchers. By observing the particle emission at the upper limits of the 

spectrum, essential information about the location and the nature of the 

acceleration mechanism(s) can be obtained.

Milagrito was an extensive air shower observatory which operated as a 

prototype for the larger Milagro instrument. It operated from February 1997 to 

May 1998. Although Milagrito was originally designed as a high energy (>100 

GeV) water-Cherenkov gamma ray observatory, it could also be used to study 

solar energetic particles (SEPs). In a scaler mode, it was sensitive to muons and 

small showers from hadronic prim ary particles above -3  GeV. Simultaneously, 

Milagrito also operated in a shower mode which had increased sensitivity due to 

its ability to reconstruct event directions, but this mode required prim ary 

particles of higher energy. In its scaler mode, Milagrito registered a ground level
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enhancement associated with the 6 November 1997 SEP event and X9 solar flare. 

At its peak, the enhancement was 22x background RMS fluctuations. Based on 

comparisons to neutron monitor and satellite data, we conclude that the 

differential flux of energetic protons from this event followed a rigidity-power- 

law spectrum which became steeper above a few GeV, and that the acceleration 

site was at ~2 solar radii. This altitude is relatively low in the corona, bu t it is 

well above the flare site.
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CHAPTER 1

INTRODUCTION

Early research in the field of energetic particle acceleration was carried out 

from a perspective defined by researchers w hose experience ranged over many 

fields, including nuclear physics, atomic physics, astrophysics, and plasma 

physics (Fermi 1949). As the various fields of physics have progressed, 

researchers have become increasingly specialized within their respective fields.

In spite of this approach, which has led to narrow  fields, the natural world will 

not allow the links between the myriad of fields to be severed. The physics of 

energetic particle acceleration is one example of this. Wherever strong electric 

fields, shocks, or variable magnetic fields that can produce reconnection exist, 

energetic particle acceleration becomes likely. Thus, the mechanisms of energetic 

particle acceleration become im portant for both man-made projects such as 

accelerators and tokomaks and for astrophysical sites of acceleration. Energetic 

particle acceleration is a process common to m any astrophysical sources, such as 

supernova remnants, active galactic nuclei, the unknown accelerators of ultra 

high energy cosmic rays, and the Sun. Due to its proximity, the Sion and its 

associated activity can be studied in far more detail than sources outside of our 

solar system. Therefore, by studying the Sun, w e can make considerable 

contributions to our understanding of the general processes of particle 

acceleration.

1
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In addition to providing an excellent laboratory for the study of energetic 

particle acceleration in a plasma environment, the Sun provides us with reasons 

to study it in its own right. At some level, nearly all processes on Earth receive, 

or have received, their energy supply from the Sun. Radiation from the Sun 

warms the Earth environment, affects the dynamics of Earth’s atmosphere and 

magnetosphere, affects global weather patterns on the surface of the Earth, and 

buffets orbiting spacecraft with potentially damaging radiation. The extremely 

turbulent and complex atmosphere of the Sun creates a daunting problem for 

researchers to solve. Magnetic fields become twisted within the highly 

conductive plasma that makes up the solar environment. The dynamics of this 

plasma is coupled, in ways that are not well understood, with the convective 

motion below the visible surface of the Sun. All of these motions lead to multiple 

sites of explosive energy release through magnetic reconnection, shock 

acceleration, an d /o r direct electric field acceleration. Exactly how these 

mechanisms combine to create the observed energy releases and massive 

structures that extend to distances well beyond the orbit of Earth is still a young 

and thriving topic of study.

Most of the research that has been done on solar energetic particles has 

concentrated on energies below ~ 1 GeV. This is due to the fact that there are 

very few particles to detect at higher energies since the spectra are usually 

characterized by a power-law form, which drops rapidly with increasing energy. 

As a result of the low fluxes above ~ 1 GeV, satellites cure not capable of 

providing the necessary effective area requirements to study transient sources. 

Ground-based detectors, which utilize the ability of the Earth’s atmosphere to 

interact w ith incident particles, are required to observe these very high energy

2
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particles. Although these high energy particles are poorly studied, it is in this 

energy regime that some of the m ost interesting and important research can be 

done since it is here that the limits of the acceleration m echanism /s are tested. 

Milagro is, and Milagrito was, capable of observing particles in this poorly 

sampled energy region, thus spanning the gap defined by satellites and neutron 

monitors on the low energy end and traditional extended air shower arrays on 

the upper energy end. Milagrito was sensitive to particles from -5  GeV to 

several TeV, and its effective area was ~3 orders of magnitude greater than that 

of a neutron monitor at 10 GeV. This places Milagrito in an excellent position to 

explore the limits of the acceleration mechanisms and to search for the existence 

of an energy cutoff in the SEP spectrum.

3
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CHAPTER 2

SOLAR PHYSICS OVERVIEW 

Characteristics of the Quiet Sun

The Sun is a massive (-2X1030 kg) sphere of hot, gaseous plasma with a 

thermonuclear fusion reactor in its core and an atmosphere permeated by a 

large-scale, turbulent magnetic field that is coupled to the plasma dynamics. 

Thus, it is easy to see why this ordinary type G2 star is extremely active and 

dynamic. Before going into the detail of some of these dynamics, it should be 

useful to outline some of the features of the "quiet Sun."

The interior of the Sun is generally considered to be the region below the 

visible surface, which is the relatively thin layer referred to as the photosphere. 

From the center of the Sun to about 0.25Rsun is the core, which has an average 

tem perature of ~1.5xl07 K and an average density of -1.6X105 kg m '3. These 

conditions allow fusion to take place, converting the abundant (~90%) hydrogen 

to helium, positrons, neutrinos, and gamma radiation. At the basic level, this 

process provides all of the energy necessary for the myriad of solar processes to 

take place, while providing a constant flux of radiation, and it provides the 

pressure required to support the mass of the Sun. As one proceeds to higher 

radii, the radiative zone of the Sim extends from the edge of the core up to its

4
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boundary with the convective zone at -0.86 R^,,. In the radiative zone, the 

prim ary means of energy transport is through radiative diffusion, while in the 

convective zone, energy is transported primarily by means of convective 

instabilities. As bulk quantities of plasma rise to the surface of the convective 

zone and give off their heat before falling back down to be reheated at lower 

depths, the scene is set for the dynamic nature of the coupled solar magnetic 

field. Above the convective zone, lies the photosphere at a temperature of -6000 

K. By the time the gamma rays from the core have reached the photosphere they 

have been absorbed and emitted so many times that they have taken -107 years 

to complete their journey, which would have taken -2  seconds in the absence of 

interactions. As a result of this journey, these photons are shifted to the visible 

realm of the spectrum , thus we observe the visible light that comes from the 

region we call the photosphere.

The photosphere of the Sun, the layer from which most of the observed 

wavelengths of light are emitted, is only -500 km thick. As a result of this 

thinness, the Sun appears to have a well-defined edge, in spite of its gaseous 

state. When one observes the Sun at different wavelengths, a different depth is 

observed. Viewed at visible wavelengths, the photosphere appears to be dotted 

by cells at a variety of scales. These cells, which range from granulation to super 

granulation to giant cells, are thought to be a result of the processes occurring in 

the underlying convection zone. At the photosphere, the temperature has 

dropped to about 6000 K, which is a fall in excess of three orders of magnitude 

from the core temperature. The effective temperature of the Sim, if it is 

considered to be a blackbodv, is -5785 K.

5
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Beyond the photosphere, the temperature of the Sun begins to rise as one 

proceeds radially outward. The upper boundary of the photosphere is 

commonly defined as the radial distance at which the solar temperature hits its 

minimum. The mechanism by which the layers above the photosphere are 

heated is not well understood. Most solutions to this problem, known as 

"coronal heating," involve the release of energy through resonant waves and 

dynamics of the solar magnetic field. Above the photosphere lies the 

chromosphere, which is -2000 km thick. This layer is visible in a variety of lines, 

such as H a and Ca II, and granulation can be observed throughout this region. 

The temperature rises with radial distance in the chromosphere, and in a region 

referred to as the transition region, the temperature increases rapidly before it 

begins to level off in the next layer known as the corona. At the lower boundary 

of the corona, the temperature has reached nearly 10r K, while the density has 

decreased by many orders of magnitude to a value of -10‘" kg m'3.

The corona is a vast layer of the Sun that extends far beyond Earth to the 

unknown distance (maybe -80 AU) at which solar system material meets 

interstellar material. So, in a sense, the Earth is immersed within the outer layer 

of the Sun. The corona can be observed during eclipses when the moon blocks 

out the bright central light of the Sun that would otherwise outshine the low- 

density, high-temperature coronal material emission. This view can be 

artificially achieved through the use of a coronagraph, which is a telescope with 

an occulting disc used to block out the bright photospheric light. Coronagraphs 

have been operated on the ground, such as that at Mauna Loa, as well as in space 

such as those flown on board Skylab, SMM, and more recently SOHO. When 

one observes the corona, m any structures are found to be present. Prominences

6
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of bright higher density plasma can be seen extending out from the low corona 

for many solar radii. These prominences can remain stable for several solar 

rotations, or they can erupt into massive transient events that extend for many 

AU in the corona. Streams of dense plasma can also be observed to flow 

outward from the Sun through the corona. Regions of relatively low density can 

also be observed in X-rays as dark areas in the low corona. These regions, 

referred to as coronal holes, tend to occur near the polar regions of the Sun.

While many solar features, such as coronal holes, persist as 'non-transient’ 

structures for long periods of time, their structure and properties do vary over 

timescales in excess of years. This will be explained more thoroughly in the 

discussion of the solar cycle.

The Solar Wind and Plasma Motions

When looking at the motion of charged particles in the solar environment, 

it is im portant to understand the interaction between motions in a highly 

conductive plasma and the magnetic field. When bulk motions of plasma occur, 

the magnetic field will be dragged along with the plasma. Similarly, motions of 

the magnetic field lines will affect the plasma. This positive feedback 

relationship can be quantified by looking at Ohm's Law along with a suitable 

combination of Maxwell's equations. One can start with the generalized Ohm's 

Law and apply Faraday's Law, Ampere's Law, and the divergence equation.

7
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After combining the generalized O hm 's Law, J  = crn(£ +  V x £?), and Faraday's 

- dBLaw, V x  E = ——, one obtains:

From this, one can apply Ampere's Law and the divergence equation to obtain:

From this equation, it is evident that the magnetic field can vary through bulk 

motions of the plasma with the first term on the right hand side (RHS) of the 

equation, and B can vary through diffusion defined by the second term on the 

RHS. If a 0—> «> or the characteristic length scale becomes large, then the second 

term on the RHS approaches zero. When these conditions hold in a collisionless, 

cold plasma, then the magnetic field is considered to be "frozen in" to the plasma.

In addition to considering bulk plasma dynamics in the presence of a 

magnetic field, one can consider the effect of the magnetic field on individual 

charged particles. Charged particles with gyroradii significantly less than the 

characteristic length scale tend to remain bound to the field line they are on, in 

the absence of collisions and cross-field drifts. This effect is a result of the 

Lorentz force, which tends to bind charged particles into a helical orbit about the 

field line they are on. One can speak of the connection of a particular point in 

space to another point in space as a result of the tracing of one field line through 

these points. Thus, for a charged particle, the path from the Sun to the Earth is 

determ ined by the magnetic field geometry, unlike the path for neutral particles 

which can travel directly along the line of site. For charged particles with very

^ = Vx(Kx5)  + —— v-B  
dr c an 0

8
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large gyro radii, such as cosmic rays whose kinetic energies exceed many GeV, 

this effect becomes negligible as the particles are no longer "confined" by the 

magnetic field.

It was once thought that the solar corona was a static atmosphere of the 

Sun (Chapman 1957), but it is now understood that there is a "wind" of plasma 

that blows radially throughout the corona. The model for this wind and the 

associated solar magnetic field was initially introduced by Parker (1958), 

although the concept of continuous streams of plasma emission from the Sun 

was proposed earlier (Biermann 1951). Parker modeled the solar coronal 

environment as a spherically symmetric isothermal plasma acted on by a 

pressure gradient and the gravitational field. The model could correctly predict 

the pressure and density in the solar corona, unlike the static atmosphere model, 

and it qualitatively produced the velocity distribution of the solar wind. Later 

models would incorporate higher order effects to obtain a quantitative solution 

for the velocity distribution. Additionally, Parker’s model led to a picture of the 

solar magnetic field, known as the "Parker Spiral," which is considered to be the 

standard today. Observations of comet tails provided early evidence for the 

solar wind, and recent observations of the wind properties have been carried out 

by the Ulysses spacecraft.

The solar w ind blows approximately radially from the Sun at an average 

velocity of -450 km /s. The plasma that comprises this w ind is composed of 

mostly hydrogen ions and electrons, although many other ions are present in 

small quantities including -3% ionized helium. The solar w ind is usually 

separated into the fast stream and the slow stream. The fast w ind comes 

primarily from coronal holes, which contain an array of open field lines (i.e. field

9
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lines that extend far out into the corona before turning back in on themselves as 

any finite universe without monopoles requires). The slow wind, which tends to 

flow at speeds less than -450 km /s, flows primarily from the lower latitudes 

where there are more field lines in loop structures. Given the typical coronal 

densities and the typical coronal B field strength of -5-10 nT, it is evident that the 

solar wind speed is generally both supersonic and super-Alfvenic, where the 

Alfven speed is defined by VA=B/(4rtp):/2.

It is the presence of the solar wind and the rotation of the Sun that makes 

the geometry of the background solar interplanetary magnetic field (IMF) so 

interesting. As the solar w ind transports plasma radially outward from the Sun,

Figure 2.1 - Schematic diagram of magnetic field structure in the heliosphere. Magnetic field 
lines extend outward from the Sun in an Archimedean spiral form. The wavy "ballerina 
skirt" plane defines the neutral current sheet that separates the north and the south solar B.

10
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the magnetic field geometry is also transported with it due to the fact that the B 

field is frozen into the highly conductive plasma. The B field lines, which are 

effectively attached to the surface of the Sun, are then curved as a result of the 

rotation of the Sun about its axis within the radially expanding plasma. This 

curvature, which is illustrated in figure 2.1,takes the form of an Archimedean 

spiral, which is referred to as the Parker Spiral. Under quiet conditions, this 

leads to the ambient IMF being tilted at an angle of -45 degrees at 1 AU. This 

feature of the IMF is im portant when one considers the path that charged 

particles traverse from the Sun to the Earth. Since the charged particles prefer to 

travel along magnetic field lines, they do not necessarily travel along the line of 

site that is traveled by photons from the Sun. For example, a proton whose gyro 

radius is much less than 1 AU and is emitted from the center of the Sun may 

travel in a curved path that does not intersect the Earth, while a proton with the 

same gyroradius emitted from the west limb of the Sun may travel along the 

spiral curve that brings it to Earth. This will also lead to a path length in excess 

of the naively expected distance of 1 AU, thus the travel time will be 

correspondingly longer.

The Solar Cycle

Some of the m ost exciting properties of the Sun are its multiple forms of 

transient activity. Solar flares are evident on the surface of the Sun when viewed 

a t a variety of wavelengths including visible, radio, and gamma ray. Sunspots, 

which are cooler than the surrounding photospheric plasma (figure 2.2), come

11
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Figure 22 - Example of a group of sunspots on the solar photosphere.

and go throughout the photosphere as a result of magnetic flux tubes emerging 

from below the photosphere. Networks of sunspots also exhibit fluctuations. 

Huge amounts of plasma are launched from the Sun w hen coronal mass ejections 

launch themselves into space. Ribbons and plages can be observed moving 

along the surface of the Sun, while filaments can be observed in the low corona, 

sometimes erupting into the outer corona. All of these processes come and go on 

different timescales, but there are some recurrent timescales that persist.

12
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Figure 13 - Sunspot number as a function of time. (Figure courtesy of Nat. Geophys. Data 
Center.

The Sun exhibits an 11 year cycle of activity. This cycle can be tracked in a 

variety of ways, but the most traditional m ethod is to record the number of
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sunspots on the surface (figure 2.3). The number that is generally recorded is the 

Wolf sunspot number, which combines the number of sunspots, s, and the 

number of sunspot groups, g, into one number using the following relationship: 

Rw = K(10s+g), where K is a factor used to correct for observer and instrumental 

differences. The number of sunspots exhibited by the Sun is a good indicator of 

magnetic activity, which is linked to nearly all, if not all, forms of activity on the 

Sun. For instance, as the sunspot number increases, the frequency and 

magnitude of flares also increases. From figure 2.4, which is referred to as a 

"butterfly diagram," it is also evident that the range of solar latitudes at which 

active regions appear varies with the solar cycle. During an 11 year period, the 

frequency of sunspots and solar activity progresses from a minimum to a 

maximum and back dow n to a minimum value. During this 11 year period, the 

solar magnetic field reverses its polarity, as do the sunspots seen on the surface. 

Since the following 11 year period will see another reversal of the magnetic field 

back to its prior orientation, it is apparent that the 11 year cycle is actually a 

subcycle of the longer cycle that has a 22 year period. It has been proposed that 

there are other longer periods to the cycle of solar activity.

In addition to these longer period cycles of solar activity, there is the more 

obvious cycle due to the rotation of the Sun. Since the Sun is not a solid body, it 

exhibits differential rotation. In the equatorial regions, the Sun rotates with an 

apparent period of -27 days, while at the poles, the rotation period is -37 days.

(It is interesting to note that sunspots rotate a bit faster. This is probably due to 

the fact that the emerging flux is anchored to regions below the photosphere that 

are rotating faster than the overlying material.) Due to this rotation, active 

regions of the Sun are in constant motion. An observer at the Earth may see

14
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Figure 2.4 - Locations of solar activity regions as a function of solar cycle time. (Graph 
courtesy of Hathaway at NASA-MSFC)

emission from a flare that subsequently rotates to the backside of the Sun. This 

active region may still be present when it rotates back into view after ~2 weeks. 

For some forms of emission, this relationship is not quite that simple since some 

interactions can occur above the limb and charged particles can travel from the 

backside of the Sim along the IMF.

CMEs and Flares

Although the processes that lead to increased energy release during the 

peak of the solar cycle arise from a variety of mechanisms, not all of which are 

well understood, the solar magnetic field provides the basis for many common 

features and correlations. The exact mechanisms that lead to the acceleration of

15
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particles and ejection of m atter are frequently debated, but nearly all 

mechanisms require a release of energy stored in the solar magnetic field. It was 

dem onstrated as early as 1957 that only the solar magnetic field had the energy 

to accelerate observed fluxes and energies of particles from the February 1956 

event (Parker 1957). Furthermore, all of the mechanisms must take place within 

the ambient solar B field, and any charged energetic particles must move 

through the spiral structure of the solar B field, while obeying the laws of a 

highly conductive plasma in an extended magnetic field. It is easy to see why 

these processes of energy release, which have many overlapping properties, were 

frequently assigned incorrect cause and effect relationships in the history of the 

field.

During no other transient solar process, do we see such a dramatic energy 

release as that observed during a coronal mass ejection (CME). CMEs can eject > 

1013 kg of mass at speeds ranging from 10 k m /s  to > 2000 km /s. This equates to 

a kinetic energy release that can be > 4 x 1032 erg simply to lift the material out of 

the gravitational field of the Sun. An example of a CME observed by the 

coronograph on the Solar Maximum Mission (SMM) is shown in figure 2.5. 

During this process, initially closed field lines that are frozen into the ejected 

plasma are stretched out into the corona. One can observe the bulky bright 

features of these events extending out for m any solar radii during an eclipse or 

w ith the aid of a coronograph. After several days, the plasma from the coronal 

mass ejection can travel past the Earth, sometimes creating disturbances of the 

geomagnetic field, and it m ay continue to propogate for many AU.

While solar flares and coronal mass ejections (CMEs) are both well known 

processes by  which energy is released in the form of energetic particles, a n d /o r

16
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radiation, it is the solar flare phenomena that received the most attention during 

the early years of research in the field. This was primarily a result of the fact that 

evidence for solar energetic particles (SEPs) preceded the observation of CMEs 

by many years (Forbush 1946), whereas the flares had already been known to 

exist. This historical situation led to an inaccurate view of the respective roles 

played by flares and CMEs, which is only beginning to dissipate today. In 1859, 

Carrington observed a visible brightening on the surface of the Sun, now known 

as a white-light flare (Carrington 1860). It was further noted that a large 

geomagnetic storm occurred within a day of this flare. In the following years, 

more observations of solar flares were made (Hale 1931, Newton 1943, Hudson &

Figure 2.5 - Series of coronograph images that track the launch of a CME that ocurred on 18 
August 1980. These white light images wre obtained with a coronograph of the Solar 
Maximum Mission. (Images courtesy of HAO)

17
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Ryan 1995). Some of these flares were accompanied by w hat appeared to be 

associated geomagnetic storms., while others were not. It was suggested (Hale 

1931, Chapman 1950) that the geomagnetic storms accompanying flares were 

caused by streams of plasma, which were emitted from the solar flares, that 

interacted with Earth’s magnetic field. This idea dominated most of the ensuing 

research in the field of solar eruptive energy release until very recently.

The paradigm shift from considering solar flares to be the prime 

accelerators of large energetic particle events to placing coronal mass ejections in 

a more prominent role began when Kahler et al. (1978,1984) and Cliver et al. 

(Cliver 1983) began looking at the correlations between SEP events, flares, and 

CMEs. It was found that there was a high correlation (-96%) between large SEP 

events and CMEs, while these events were not well correlated with X-ray flares. 

This also implies another shift that was occurring. It had previously been 

thought that CMEs were launched by solar flares, bu t this was certainly not true 

since many CMEs did not have any associated solar flare. The development of 

this so called "solar flare m yth” has been outlined by Gosling (1993) and Reames 

(1999). Based on observations of SEP abundances and ionization states, as well 

as associations between and spatial distributions of the various solar processes, 

the role of CMEs in the heliosphere is beginning to be understood. Two key 

points have been realized. CMEs can, and do, occur independently of solar 

flares, and CMEs, not flares, are the dom inant cause of the highest energy SEP 

events.

Coronal mass ejections can occur in conjunction with solar flares, bu t this 

is not always the case. The early belief was that hard X-ray events at the Sun 

were required for effective proton acceleration (Lin & Hudson 1976), b u t it was
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found by' Cliver et al. (1983) that this was not the case when he studied proton 

acceleration from "weak" impulsive events. It has also been thought in the past 

that long duration soft X-ray flares were the drivers for both SEPs and CMEs. 

Work by Pallavicini et al. (1977) on flares separated soft X-ray events into two 

categories, designated inpulsive and long-duration, and the long duration events 

were subsequently asociated with CMEs. While observations by Sheeley et al. 

(1975) using Skylab and the SOLRAD spacecraft suggest that all long duration (> 

4.5 hours) soft X-ray flares are accompanied by a CME, the CMEs that have no 

associated flare activity m ust also be considered. It has been found that only ~

1 /3  of CMEs occur in conjunction w ith long duration soft X-ray flares (Gosling 

1993, Sheeley et al. 1975, Sheeley et al. 1983). It should be expected that some 

flaring activity will be associated with CMEs since both processes involve 

reconfigurations of the solar magnetic field. As the CME launches, by whatever 

mechanism, one should expect field lines to get twisted and reconnected and for 

new loops to be formed. So, it seems natural to observe some associations, as has 

been found, bu t to stretch these mild associations to the point of a cause and 

effect relationship is unjustified based on current observations.

Gradual and Impulsive SEP Events

It was noticed by Kahler et al. (1978,1987) that there was a 96% correlation 

between large SEP events and CMEs. This was the first major evidence that 

coronal mass ejections were the driver of w hat would later be called gradual 

SEPs.
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SEP events are generally separated into two generic categories that are 

referred to as "gradual" events and "impulsive” events. The nomenclature is 

actually related to the historical association of the events with gradual and 

impulsive flares, bu t in some respects it is still applicable. Gradual events tend

exhibit a broad peak that may last for days. In contrast, impulsive events tend to 

have time profiles that are sharply peaked, although they may take days to 

actually reach pre-event flux levels. Two relatively "pure” examples of these two 

types of events can be seen in figure 2.6 (Reames 1999).

n n e E  * r  a 9 c « u g 14 15 i t  17

Figure 2.6 - Example o f a model gradual SEP event is shown in the left panel, while an 
example of a model impulsive SEP event is shown in the right panel. TTie gradual event was 
associated with a CME and a filament, with no impulsive flare. The impulsive event was from 
flaring with no associated CME. (Reames 1999)

The larger and more energetic events usually fall into the gradual event 

category. These are the events that can be observed at ground-based stations, 

such as neutron monitors, that require protons to exceed several GeV in order to

to have energetic particle flux time profiles that rise above background and then
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pass through the Earth’s magnetic field. Gradual events generally exhibit greater 

fluxes of SEPs over long time scales. They also tend to be associated with long- 

duration type II/IV  radio emission. Type II metric radio emission is indicative of 

plasma emission from coronal shocks, while the associated type IV emission is 

usually associated with electron gyrosynchrotron or plasma emission from well 

within the CME (Robinson et al. 1986, Kahler 1992). Gradual events are also 

associated with fast moving (>400 km /s) CMEs that are capable of driving 

shocks in front of the mass of plasma. The SEP abundances and ionization states 

during gradual events are characteristic of coronal values, and low electron-to- 

ion ratios are generally present.

Impulsive events typically exhibit smaller fluxes of SEPs over shorter time 

scales. They also tend to be associated with large electron-to-ion ratios and 

enhancements in heavy ions and 3He relative to coronal values. For instance, a 

typical value for 3H e /4He during an impulsive event is ~1, while the 3H e /4He 

ratio for gradual events is usually < 0.01. These ionization states and abundances 

are indicative of a lower source region for the accelerated ions from impulsive 

events. Another interesting feature of impulsive versus gradual events is 

indicated by their longitudinal distribution, shown in figure 2.7. Although the 

error is large due to the difficulty in determining source locations of the extended 

structure of a CME, it is evident that gradual events can originate from anywhere 

across the solar disk, while impulsive events observed at Earth m ust originate at 

western longitudes. This is presumably due to a requirement upon impulsive 

SEPs that they originate on a field line that is well connected to the Earth-based 

observer. This also implies a lower corona or photospheric origin and more 

point-like nature of the acceleration mechanism for impulsive SEPs.

21

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Fast (v>400 km /s) CME driven interplanetary (i.e. coronal) shocks are 

generally thought to be the acceleration mechanism for the gradual events (Lee 

1997, Kahler 1992), while the impulsive events are frequently thought to 

originate at, or near, a flare site (Reames 1999). The general line of thinking is 

that CMEs drive a shock wave in front of the mass of plasma. This shock is 

capable of accelerating particles throughout the corona. Thus, it is not surprising 

that fast CMEs (>450 km /s) are far more likely to accelerate particles to high 

energies. It is also not surprising that the abundances observed for gradual SEP 

events are representative of coronal abundances, rather than photospheric 

abundances as one would expect from acceleration at the site of a flare. Studies 

by Cliver (1996) have suggested that the distinction between the two classes of 

events is fuzzier than previously thought. Cliver has painted a picture that 

includes a class of events that are a hybrid of impulsive and gradual SEP events.
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Figure 2.7 - Histograms o f the longitudes of the solar active regions associated with gradual 
SEP events (left panel) and impulsive SEP events (right panel). (Reames 1999)

22

(b) Grnduat T ra M T  EMftl
■7 * * * I1 ' ■ ■ ■ ■ ■ ■ I ■ •! I I *
ft) Imputafca Events

1

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



This picture may also blur the distinction between SEP acceleration mechanisms 

and the locations of the particle acceleration.

Shock Acceleration by CMEs

Shocks are thought to accelerate energetic particles from several sources 

throughout the heliosphere. At the shock front where the fast solar wind 

overtakes the slow solar wind, particles are accelerated in the so called corotating 

interaction region. Anomalous cosmic rays are thought to be the result of 

acceleration at the heliospheric termination shock of ions that enter the 

heliosphere from interstellar space and are subsequently transported back to the 

termination shock by the solar wind. Particles are also accelerated in the low 

corona by solar flares and CMEs, and shocks play a role in many of these 

proposed processes. Most pertinent to this work are the particles that are 

thought to be accelerated in interplanetary space by fast shocks driven by CMEs 

moving at velocities in excess of the ambient solar wind.

Diffusive shock acceleration at fast shocks driven by a CME is presently 

considered by many researchers to be the mechanism by which SEPs from 

gradual events are accelerated (Lee 1997, Reames 1999, Kahler 1992). In this 

model, the ions gain energy whenever they traverse the shock. Multiple shock 

traversals are necessary to reach the observed energies, particularly for the GeV 

ions observed by ground-based detectors such as Milagrito and neutron 

monitors. In order to traverse the shock m any times, efficient scattering m ust be 

achievable. This scattering occurs to some degree as a result of the irregularities
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of the magnetic field, but it is also thought that much of this scattering is from 

resonant waves. These waves can be excited by the low energy particles, thus 

increasing their acceleration potential in a recursive process on up to GeV 

energies (Reames 1999).

Injection energy at the shock will also play an im portant role in the ability 

of the shock to accelerate particles to GeV energies. The solar atmosphere is a 

dynamic region, and it is not uncommon for several events to occur within days 

of each other during periods of high solar activity. It is obviously easier for a 

shock to accelerate a proton from 100 MeV to 10 GeV than it is to accelerate a 

proton of 1 MeV to 10 GeV. This can be seen in a blast wave shock model 

produced by Lee and Ryan (1986), for which acceleration times for a variety of 

injection energies are calculated. Although this model does not take into account 

the driving mechanism of the CME, it is sufficient to illustrate the dependence on 

injection energy.

One should expect there to be a cutoff in the energy spectrum of shock 

accelerated particles. This cutoff should arise as a result of physical constraints 

such as finite size, finite time and number of shock traversals, and available 

injection energies. Currently, observations w ith neutron monitors above a few 

GeV seem to show a gradual softening (i.e. rollover of the spectrum) of the 

power-law spectrum  relative to satellite measurements a t lower energies. This is 

in agreement w ith current theory, but one m ight expect to see the cutoff in the 

spectrum at energies just above several GeV. The sensitivity of neutron monitors 

has not been sufficient enough to allow for an unambiguous detection of this 

proposed spectral cutoff.
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During the days when the solar flare myth dominated, the typical method 

used in the transport models for the gradual SEP events was that of diffusion in 

the heliosphere. Many of these events were observed to have isotropic 

distributions. Particles had been observed to come from solar flare events that 

had no apparent field-line connection to the Earth-based observatories that 

measured intensity increases, but this did not daunt the modelers. Diffusion 

theories were incorporated to allow the particles to diffuse along magnetic field 

lines sufficiently to explain the observations. This contrived model is not 

necessary, and probably not correct, now that it is understood that CMEs are the 

prim ary accelerators of gradual SEP events. Based on SMM observations, the 

distribution of the apparent angular w idths of CMEs peaks between 40 and 50 

degrees and extends to > 120 degrees (Hundhausen 1999). Thus, the shocks that 

are driven by these broad structures and the CME associated magnetic field 

geometry extend over many degrees, as well. Coronal diffusion models are no 

longer necessary.

Solar Modulation of Cosmic Rays

Interplanetary space is filled with charged particles called cosmic rays, 

which will be described in the following chapter. When these charged particles 

move through the heliosphere, they must interact with the ambient magnetic 

field and the local plasma. This fact leads to a variation of the intensity of the 

observed cosmic ray flux. This effect is known as solar modulation. This 

modulation of cosmic rays has been observed to vary with the solar cycle, as
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shown in figure 2.8. This figure displays an anticorrelation between the solar 

cycle and the local intensity of cosmic ray flux. An anticorrelation of the cosmic 

ray intensity can also be seen when it is compared to the aa index, which is a 

measure of geomagnetic activity’ that is correlated with solar activity. As solar 

activity increases, magnetic turbulence and solar wind velocity also increase. 

Thus, the cosmic rays that enter the heliosphere must overcome the barrier that is 

presented to them by the local magnetic field. If the gyroradii of the cosmic rays
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Figure 2.8 - The lower curve is the smoothed sunspot number over the past four solar cycles. 
The other curve is a measure of the local cosmic ray intensity above a few GeV based on the 
monthly count rate at the Climax neutron monitor. An anticorrelation due to solar 
modulation of cosmic rays is evident. (Courtesy of Univ. of Chicago and Nat. Geophvs.
Data Center)

are significantly smaller than the distances over which they travel, then their 

trajectory will be affected by the magnetic field. Above -10 G eV /nuc, this 

modulation effect becomes small.

In addition to the long timescale solar modulation of cosmic rays 

described above, there are also shorter timescale variations of cosmic ray
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intensity due to solar activity. One can simultaneously glean information about 

the interplanetary magnetic field and the CME structure by observing the 

decrease in cosmic ray intensity associated with the passage of a CME. These 

decreases of cosmic ray intensity are known as "Forbush decreases" (Forbush 

1946). They occur due to the fact that cosmic rays below a particular rigidity are 

partially "shielded" by the closed magnetic field structure of the CME. The 

observation of these events has, in fact, been used as evidence for the closed 

magnetic field structure of CMEs, rather than the open structure that was 

postulated by some early theorists. As the large-scale magnetic field structure of 

a CME passes the Earth, decreases in cosmic ray intensity can be observed in 

ground-level detectors. These Forbush decreases tend to last hours, and typically 

occur after the passage of the CME shock front.
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CHAPTER 3 

COSMIC RAYS AND EXTENSIVE AIR SHOWERS 

Cosmic Rays

In 1912 Victor Hess ascended through the atmosphere in a balloon and 

measured the ionization of the atmosphere as a function of altitude, thus 

recording the first evidence for radiation from extraterrestrial sources (Hess 

1913). Initially this radiation, which was dubbed "cosmic rays" by Millikan in 

1925, was thought to be due to some exotic form of gamma radiation that had an 

increased penetration depth from that observed previously. It was not until 1929 

that the charged particle nature of this radiation was realized. In subsequent 

work, Auger (1939) indirectly measured cosmic ray particles at the highest 

energies by observing the shower particles created when the cosmic rays interact 

with atmospheric material. Simpson (1948) also carried out pioneering work on 

the nudeonic component of these showers. His w ork led to the development of 

the neutron m onitor network, which has been used extensively for studies of 

solar cosmic rays in  the GeV energy regime. Since these times, much has been 

learned from and about cosmic rays and their sources, bu t several im portant 

problems remain unsolved.

28

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Composition

In the energy range observed by satellites (i.e. below -1  GeV), cosmic rays 

are almost entirely composed of protons and higher Z ions. Protons make up 

-85% of observed cosmic rays, He ions contribute -12%, and higher Z ions 

contribute -1%. The remaining 2% comes from electrons. In figure 3.1 the 

abundances of cosmic ray nuclei relative to those of the solar system are shown. 

A review of these data is available by Simpson (1983). There is a remarkable
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Figure 3.1 - Comparison of observed cosmic ray abundances (curve) to the solar system 
abundances (histogram) of elements. Abundances have been normalized to silicon.
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correlation between the chemical abundances present locally and those of the 

cosmic rays, but there are also some striking differences. In particular, there is an 

obvious overabundance of Li, Be, and B, as well as for several elements 

immediately below Fe. These cosmic ray elemental overabundances are thought 

to be due to spallation reactions between primary cosmic rays and ambient 

interstellar gas (Weber 1983, Longair 1992).

Spectrum

One of the most remarkable properties of cosmic rays is the continuity of 

the observed spectra. The energy spectrum of cosmic ray protons is shown in 

figure 3.2. The differential intensity spectrum is well fit by a single power law 

extending from ~5xl09 eV to 3xlOl3 eV. For cosmic ray protons, the spectrum 

takes the form : I = CxE(GeV)'2-7 [particles m ': s '1 sr'1 GeV'1]. The observations of 

cosmic ray nuclei at Earth follow this power law closely over six orders of 

magnitude. Below a few GeV/nucleon, the spectrum is significantly influenced 

by solar modulation. Solar activity, with its associated magnetic turbulence, 

tends to 'bend" the cosmic rays propagating through the interplanetary medium. 

This causes the spectrum of cosmic rays to rollover below a few GeV/nucleon. 

Above ~3xl015 eV, the cosmic ray spectrum follows a softer pow er law of the 

form: I = CxE(GeV)'3'1 [particles m '2 s'1 sr'1 GeV'1]. The region where the spectrum 

takes this downward turn is referred to as the "knee" of the spectrum. This form, 

with the spectral index of ~3.1, describes the observed spectrum up to ~1019 eV. 

Above ~1019 eV, the spectrum appears to flatten out, thus this region has been
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Figure 32 - Differential flux spectrum of cosmic ray protons over more than twelve orders of 
magnitude. A power law fits the spectrum well. Below -10 GeV the effects of modulation can 
be seen. The spectral steepening at -10'5 eV is also evident.

dubbed the "foot" of the cosmic ray spectrum. The error bars are large in this 

region due to the small num ber of detected particles, so the true nature of the 

spectrum in this region is still a lively topic of research at this time.
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Sources

There are several known sources of cosmic rays, and there is at least one 

unknown source of cosmic rays. Among the cosmic ray populations with known 

sources are anomalous cosmic rays (ACRs) and solar cosmic rays, while galactic 

cosmic rays (GCRs) have several source candidates. Solar cosmic rays are the 

energetic particles of direct solar origin, such as those accelerated by 

interplanetary shocks and at flare sites, that were discussed in the previous 

chapter. The dominant contribution to the cosmic ray spectrum comes from 

what are commonly referred to as the GCRs. As the name implies, these cosmic 

rays are widely believed to originate within our galaxy. Acceleration 

mechanisms involving fast shocks within supernova remnants are generally 

incorporated to explain the observed power law energy spectrum. This is 

probably the dom inant source of cosmic rays below ~101:,-10I7eV.

Below ~60 MeV, there is a turn up in the spectrum of "'He. These cosmic 

rays, which have been dubbed ACRs, are now understood to be accelerated in 

the outer heliosphere. It was noticed that the flux of these particles increases 

with increasing distance from the Sun. The flux of these particles was also 

subject to the effects of solar modulation, as was indicated by their 11-year 

periodicity that inversely followed that of solar activity. The general idea for the 

acceleration of these ACRs is that they are a result of interstellar neutral particles 

that enter the heliosphere, get turned around by the solar w ind after being
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ionized, and are subsequently accelerated at the heliospheric termination shock 

(Cummings & Stone 1998).

The total flux of particles above ~10’7 eV, referred to as ultra high energy 

cosmic rays (UHECRs), is insignificant relative to that of the GCRs, but the 

importance of understanding the acceleration mechanism /s of these particles 

cannot be understated. The source of these particles is still unknown, although 

there are numerous theories. Some theories consider sources for these UHECRs 

in the local super cluster of galaxies or in the galactic plane, while other theories 

consider exotic mechanisms such as cosmic string annihilation. The difficulty 

lies in the process of explaining the deposition of such a massive am ount of 

energy into one single particle. It is difficult to explain the high energy of these 

particles if they are accelerated by some diffusive mechanism within the galaxy 

since charged particles above -lO 13 eV are not effectively trapped by the galactic 

magnetic field. This results in a situation in which multiple scatterings from 

magnetic field irregularities are rare. Furthermore, if these particles are 

extragalactic, they must propagate through the extragalactic medium, where 

they should interact with background 2.7 K microwaves. This photo-pion 

production interaction with the relic background microwaves should lead to an 

attenuation of the cosmic ray flux above ~5xlOt9 eV, referred to as the GZK cutoff 

(Greisen 1966, Zatsepin & Kuzmin 1966). The observations of the spectrum do 

not indicate such a cutoff, but the data is still too sparse to draw any conclusions.
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Distribution

The angular distribution of GCRs has been well studied. Below -lO 13 eV, 

the distribution is relatively isotropic, w ith the degree of anisotropy 5 -  0.001 as 

shown by Linsley (1983). This should be expected since ions with kinetic energy 

below -lO '5 eV tend to travel along the magnetic field structure of the galaxy, 

thus they are subject to multiple scatterings due to irregularities in the field 

geometry. At higher energies, the directions of the particles can also be 

measured using the extensive air shower techniques that will be discussed more 

later, but the small flux does not provide good statistics on the anisotropy 

measurements. The trend does seem to show an increase in anisotropy as the 

energy of the cosmic ray is increased, but this is not well determined. 

Additionally, there is some evidence, with questionable statistics, for clusters of 

two or three events from the same region (Medina-Tanco 2001). Although some 

researchers analysis seem to indicate that the anisotropy of the UHECRs points 

towards the local supercluster of galaxies and / or towards the galactic plane, the 

results are not clear due to the sparse num ber of detections available for 

statistical analysis.

Air Showers

Above ~1-10 GeV, satellite-based detectors are no longer efficient at 

detecting the flux of cosmic rays. This is a result of two factors. The fast, power- 

law decline in the cosmic ray spectrum provides very few particles to detect, and
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the practical aspects of launching satellites into space does not allow for the 

launch of large area detectors. There is, however, an alternative to deploying 

massive detectors in space. The atmosphere of the Earth can be, and has been, 

used as an effective detector of prim ary cosmic rays that collide with particles in 

the atmosphere and produce cascades of particles. This cascade of particles 

produced by high energy prim ary particles is referred to as an extensive air 

shower (EAS). Work on this was pioneered by Auger (1939) when he detected 

coincidences of less than 1 ps in detectors spread out over hundreds of meters at 

ground level. He correctly concluded that he was detecting air shower particles 

from cosmic ray primaries with energies in excess of 10,s eV. So, to detect cosmic 

rays w ith energies in excess of those observable by satellite-based detectors, one 

can use ground-based detectors that can register signals from the secondary 

cascade particles of the EAS initiated by the prim ary cosmic ray.

Developm ent in Atmosphere

EASs propagate to ground level in a m anner defined by the characteristics 

of the atmosphere and the prim ary cosmic ray, thus one can use the observed 

properties of the EAS in the atmosphere and at ground level to deduce 

characteristics about the initiating prim ary particle. EASs develop when a 

prim ary cosmic ray has enough energy (~ 1 GeV) to initiate multiple pion 

production (see figure 3.3). These pions are then free to continue the cascade in 

a m anner dependent upon the charge of the pion, while the scattered prim ary 

particle will continue to interact if it retains enough energy. Neutral pions that
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are produced will decay into gamma rays, which may subsequently pair 

produce. The resulting electrons and positrons can then produce high energy 

gamma rays through the Bremsstrahlung process, thus completing one of many
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Figure 3.3 - Develoment o f a nucleonic cascade cosmic ray shower, (courtesy o f J. 
Simpson, Univ. o f Chicago)

cycles of an electromagnetic cascade. The charged pions that are produced may 

decay into muons, electrons, and neutrinos, by means of the reactions listed 

below:
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7C* -»  (I* +  V„ 

k ' -> p.' + anti-vu 

p~ e* + ve + anti-v^ 

p ' -> e' + anti-ve +

Some of the high energy muons have enough penetrating power to reach the 

ground-level with no further reactions, while others decay into electrons, 

positrons, neutrinos, and anti-neutrinos. Charged air shower particles that are 

travelling faster than c /n ajr will also produce photons through the Cherenkov 

emission process, which will be discussed in more detail in chapter 4. As this 

series of interactions continues the particles will lose energy through ionization 

and reactions. As long as enough energy remains for the propagation of the 

shower and the production of additional cascade particles, the shower will 

continue down to lower levels of the atmosphere until it ultimately reaches 

ground level.

The maximum number of particles produced in the EAS and the 

distribution of particles as a function of depth in the atmosphere are related to 

the energy of the initiating prim ary particle. Primary particles of higher energy 

will penetrate farther into the atmosphere before initiating their first interaction, 

and they will eventually produce far more total shower particles (see figure 3.4) 

A useful rule of thumb is that the energy of the prim ary particle is approximately 

(to within -25%) equal to the total num ber of particles at shower maximum 

multiplied by 1.4 GeV (Longair 1992). One can also observe, as should be 

expected for a prim ary with a higher mean free path, that the depth of shower
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maximum will occur farther into the atmosphere for a higher energy primary 

particle.
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Figure 3.4 * The number of shower particles present as a function of depth in the 
atmosphere for two different showers. Shower A on the left has an estimated total energy 
of ~5.6xl0,s eV and has ~3.9xl06 particles in the shower at maximum development. 
Shower B, the curve to the right, has an estimated total energy of -11 .3x l0 ,<> eV and has 
-7.8x10* particles in the shower at maximum development, th e  extension of the curves 
below 5200 kg m’: is based upon theoretical calculations. (Hillas 1972)

As a result of the various interaction timescales and mean free paths, the 

fractional composition of the myriad of particles produced in the EAS is a 

function of altitude. This can be seen for the major constituents of the EAS in 

figure 3.5. On a side note, one can see from this figure, as well as figure 3.4 that 

it is advantageous to place detectors of EAS particles at high altitude since 

shower maximum typically occurs many kilometers above sea level. It is evident 

that m ost of the energy at ground level is in the form of m uons, while most of the 

energy a t the altitude of shower maximum is in the form of electrons.
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Figure 3.5 - Vertical flux of air shower particles of a nucleonic cascade as a function of 
atmospheric depth. (Hillas 1972)

The secondary and higher order particles of the EAS tend to move 

through the atmosphere as a relatively uniform, thin front. This is referred to as 

the "pancake" structure of the shower. Typically, this pancake has a thickness of 

several meters. The lighter particles will generally arrive first in a thin pancake 

of ~l-2 meters, while the m uons may arrive in a pancake with a thickness up to 

-4  meters. The more massive hadrons m ay trail behind the initial shower front 

by a few meters. The shower front is not actually a perfectly flat pancake. 

Showers have some curvature, which is a function of energy. This curvature is a 

result of the increased scattering experienced by lower energy shower particles. 

As a result of the increased scattering, these particles have a longer flight path.
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As one moves laterally away from the core of the shower, a delay in the arrival 

time of the shower particles can be observed.

The lateral extent of the shower is determined primarily by the amount of 

transverse momentum that is transferred to the shower particles. The lateral 

extent of the electron-photon cascades, as well as the transverse scattering of 

muons, contribute significantly to the lateral size of the shower. In particular,
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DISTANCE FROM SHOWER AXIS (m )

Figure 3.6 - The lateral extent of a typical EAS can be seen in these plots of shower particle 
flux density as a function of distance from the shower core. The three curves corrsepond to 
three independent showers of different numbers of particles at shower maximum. (Hillas 
1972)
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muons may be scattered by as much as ~3 degrees. For the electromagnetic 

cascade portion of air showers, the photons are scattered to large angles more 

than the electrons and positrons. The lateral extent of the shower, which is a 

function of the total number of particles in the shower, can reach distances many 

kilometers from the core of the shower (see figure 3.6), but the particle density is 

much larger close to the core of the shower.

Gamma Ray Initiated Showers

So far, this discussion has concentrated primarily on atmospheric showers 

produced by hadronic primary particles, but gamma rays also induce showers in 

the atmosphere. This is im portant to our discussion for two major reasons. First 

of all, it is desirable to distinguish between the two types of showers if one is 

trying to study only one of the populations of astrophysical particles. This does 

not present nearly as much of a problem for cosmic ray physics as it does for 

gamma ray physics, since the cosmic rays contribute dominantly to the flux. 

Thus, for gamma ray air shower physics, it is extremely im portant to utilize a 

technique for distinguishing the gamma ray induced showers from the more 

numerous cosmic ray showers. The second reason to consider gamma ray 

induced showers is that many of the same physics principles and detection 

techniques are used for both gamma ray and cosmic ray air shower observations.

One of the most im portant and distinguishing features of gamma ray 

showers is their lack of muons relative to cosmic ray induced showers. Although 

there is a small probability for m uon production in high energy gamma ray
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initiated showers, the cross sections for these processes are several orders of 

m agnitude smaller than the cross section for pair production (Aid et al. 1995). A 

gamma ray initiated shower is almost entirely an electromagnetic shower that is 

comprised of electrons, positrons, and photons, whereas cosmic ray induced 

showers have many muons as a result of pion decay. Another related feature is 

the fact that a cosmic ray shower will be "clumpier" as a result of the non- 

uniform mini-particle-showers and the penetrating muons that propagate to the 

ground, w'hile the electromagnetic cascade will develop in a relatively uniform 

manner. This absence of muons in electromagnetic showers and, as well as the 

penetrating characteristics and dum piness of muons from hadron induced 

showers, can be used to separate cosmic ray showers from gamma ray showers.

Air Shower Detection Instruments

There are several techniques that are used to detect air showers and to 

characterize their primary particles. In some cases, the air shower particles are 

detected directly, while other instrum ents utilize indirect methods that detect 

signatures of the air shower. Some of these techniques are concerned primarily 

w ith observing gamma rays over the cosmic ray background, while others are 

designed for the purpose of detecting cosmic ray induced showers.
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Air Fluorescence

One interesting technique that has been used to observe the highest 

energy cosmic rays is the air fluorescence technique. By observing the 

fluorescence light emitted when the relativistic electrons of the air shower excite 

molecules in the atmosphere, one can infer properties of the initiating primary 

particle. At shower maximum, electrons are the m ost abundant particles in the 

shower. By measuring the energy loss of the relativistic electrons of the shower, 

one can obtain an estimate for the energy of the shower. In addition to the

f

Figure 3.7 - Mirrors o f the Fly’s Eye air fluorescence detector, which are each viewed by an 
array of PMTs, can be pointed in a variety of directions in the sky. In this way, the 
development of the air shower is imaged. (Picture courtesy of HiRes collaboration)

energy estimate, this technique allows one to obtain an  absolute lower limit to 

the energy of the show er based on the integrated energy. The Fly’s Eye cosmic
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ray detector, located at the Dugway Proving Grounds in Utah (figure 3.7), has 

successfully utilized the air fluorescence technique to detect > 1020 eV prim ary 

particles, w ith one event estimated to have an energy of -4x1020 eV. This 

instrument utilized multiple telescopes that detected the optical fluorescence 

emission from a shower. In this way, the geometry of the shower development 

could be determined, and a measurement of the propagation direction could be 

obtained. HiRes, which is the next generation air fluorescence instrument, has 

recently been constructed in Utah.

Air Cherenkov Telescopes

Air Cherenkov telescopes (ACTs) are actually designed to measure 

gamma rays in the TeV regime, rather than cosmic rays. Nevertheless, it makes 

sense to mention them here since they are related to Milagrito in this way. Both 

Milagrito and ACTs were designed to measure gamma radiation, but they are 

both dominated by the cosmic ray background. ACTs detect the optical 

Cherenkov light emitted by the relativistic air shower particles as they move 

through the atmosphere (Cherenkov light will be discussed in the next chapter). 

This is done by focusing the Cherenkov light, which is incident on one or more 

mirrors, onto PMTs w ith fast readout systems. The image on the focal plane of 

the reflecting mirrors can be analyzed to determine information such as shower 

energy and direction of incidence.

Background reduction is a primary concern for ACTs. Cosmic rays 

provide a large source of background. This is dealt with by applying some
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gamma-hadron separation based on observed shower properties, such as lateral 

spread and muon content. For point sources, it can also be dealt with by im aging 

the shower direction accurately since cosmic rays are a relatively isotropic 

source. Angular resolution of ACTs can be as good as -0.1°. Another source of

Figure 3.8 - The Whipple Imaging Air Cherenkov Telescope. (Picture Courtesy of Whipple 
Collaboration)

background for ACTs are off-source gamma rays. ACTs are limited to operating 

on dark, moonless nights, and they must limit their field of view in order to 

minimize background contributions. Fast readout electronics (<10-20 ns), such
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as flash-ADCs, are desirable in order to minimize the background signal that is 

present even on dark nights.

The leader in the field of ACTs has been the Whipple telescope (figure 

3.8). This 10 meter instrument is located in southern Arizona a t an altitude of 

2300 m. It operates with a threshold of -200 GeV, has a field of view of -3.5°, 

and has a resolution of -0.2° (Weekes 1996, Weekes et al. 1989). Since the 

development of this technique by T. Weekes and collaborators, many more 

detectors have been built. Summaries of instruments and observations are 

available in reviews by Hoffman et al. (1999), Ong (1998), and Cronin et al.

(1993). The next generation of ACTs is on its w ay with the proposed 

construction of Veritas. Veritas will be an array of 10 meter telescopes, including 

the present Whipple telescope.

Extended Air Shower Arrays

Traditional EAS arrays are instrum ents that incorporate many detectors 

spread over a large area at ground level. By detecting shower particles at the 

ground, both gamma ray and hadronic cosmic ray primaries can be 

reconstructed. EAS arrays are typically spread over large areas so they do not 

sample a large fraction of the shower particles (typically < 1%). This generally 

leads to a high threshold energy (> 1 TeV). The Tibet array, which has a 

relatively low threshold due to its relatively dense detector spacing, has a peak 

trigger energy of -2  TeV. This array is composed of 109 detectors spread over an 

area of 5000 m2. In contrast, the Cygnus array operated from 1986 to 1996 with a
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peak trigger energy of -50 TeV and was comprised of 204 detectors spread over 

an area of 86000 m2. In order to maximize the potential signal, it is favorable to 

locate EAS arrays as close to shower maximum as possible. This translates to 

high mountain altitudes, which can present practical problems such as 

accessibility. Due to the pancake-like structure of air showers, EAS arrays are 

capable of reconstructing the primary particle direction. By using the timing 

difference from one detector to another, the plane of the. shower front can be 

reconstructed, thus the prim ary particle direction is determined.

Currently, there are several EAS arrays operating, including the HEGRA 

array in the Canary Islands, the Tibet array, and the AGASA array in Japan. For 

a list of many of these arrays, refer to a review article by Hoffman et al. (1999). A 

new large array, Auger, will probably be constructed soon. The plans for this 

array, which will be sensitive to the highest energy showers, include two 

separate arrays that will each consist of 1600 detectors spread over 3000 km2.

Neutron Monitors

Neutron monitors have made many contributions to the fields of solar 

energetic particles and cosmic ray physics. The concept of the neutron monitor 

and its initial design can be credited to J. Simpson (Simpson 1948, Simpson 1957). 

Based on studies of the latitude variation of the secondary nucleonic component 

of cosmic ray induced showers, Simpson devised a technique for detecting 

prim ary cosmic ray protons above -1  GeV and prim ary neutrons above -500 

MeV. His basic design, which is referred to as an IGY (international geophysical
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year was 1957/1958) neutron monitor w as later expanded into the larger NM64 

neutron monitor (Carmichael 1964). The basic design of the neutron monitor 

consists of tubes containing Boron Triflouride, surrounded by 2 cm of 

polyethylene and -14 cm of lead, as shown in figure 3.9. When the secondary 

nucleonic component of a cosmic ray shower interacts with the lead, neutrons 

are produced. The polyethylene slows these neutrons to energies at which they 

can be detected by the BF3 tubes. Once the neutrons enter the tubes, there is a 

-0.057 chance that they will undergo a reaction defined by: I0B= +n -> rLi3 + 4He:. 

The counter then detects the electrical discharge caused by the Li nucleus and the 

a  particle. The entire counter is also surrounded by a thick (-7.5 cm) layer of 

polyethylene that acts to reflect and moderate the neutrons from the lead, as well 

as absorb the low energy neutron produced in surrounding material external to 

the counter.

By placing neutron monitors at various latitudes, a sampling of the proton 

spectrum can be obtained. This is a result of the fact that each location on the 

Earth has a characteristic cutoff rigidity for charged particles due to the 

geomagnetic field. Rigidity is used in this discussion, rather than energy, since 

particles with the same rigidity will have the same dynamics in a magnetic field. 

Rigidity is defined as : P[Volts] = pc/Z e, where pc is momentum times the 

velocity of light and Ze is electric charge. For vertically incident particles, this 

cutoff rigidity is given by Pc [GV] = (14.9/e) cos\X), where k  is the geomagnetic 

latitude (Longair 1992). These cutoff rigidities range from -1  GV to -14  GV for 

high latitudes and equatorial latitudes, respectively. Another effect of the 

geomagnetic field on charged particles is that the particles are deflected from
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their original direction. Thus, one can define asymptotic directions for a 

particular neutron monitor location that determines the original (i.e. external to 

the magnetosphere) direction of a particle that hits the atmosphere vertically. 

This effect is, of course, a function of particle rigidity.

While a single neutron monitor acts as an integral counter above a 

threshold defined by the geomagnetic field, it is evident that a series of neutron 

monitor stations at a variety of locations could act as a spectrometer. The world­

wide network of neutron monitors operates in this way. The intensity of a signal 

at one station can be compared to the intensity of that signal at another station 

with a different response and cutoff rigidity to determine characteristics of the 

spectrum. A great deal of spectral information can be gleaned for solar proton

Figure 3.9 - The Inuvik neutron monitor. The ends of the sealed tubes containing Boron 
Triflouride can be seen. (Picture courtesy of Bartol Research Institute)

events by using many monitors in this way (Lockwood et al. 1999, Lovell et al. 

1998, Debrunner 1994). While neutron monitors are nominally sensitive to 

protons up to -30 GV, the effective areas are typically too low to obtain
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significant measurements of solar proton events above -10 GV. The relative 

signals in neutron monitors may also be used to differentiate between solar 

proton and neutron events. Neutrons will not experience the deflections in the 

magnetic field that cause the characteristic station to station intensity variation. 

Additionally, solar neutron events are not visible to neutron monitors on the 

night-side Earth, while proton events frequently reach a degree of isotropy that 

allows them to be seen by many monitors on the night-side of the Earth.
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CHAPTER 4

THE MILAGRITO INSTRUMENT

Milagrito operated in the Jemez Mountains near Los Alamos, New Mexico as a 

prototype for the Milagro instrument from 8 February 1997 to 7 May 1998 

(Atkins et al. 2000; McCullough et al. 1999). The detector, which was built in a 

pond that was previously used by a geothermal research group, utilized the 

water Cherenkov technique to detect EAS particles. Although it was operated as 

an engineering model for the fully-instrumented Milagro gamma ray 

observatory, Milagrito accumulated useful data of its own with a novel detection 

technique. Both Milagro and Milagrito were designed as TeV gamma ray 

observatories, but this work will concentrate on Milagrito’s abilities as a SEP and 

cosmic ray observatory.

Cherenkov Emission

Cherenkov emission occurs when charged particles travel faster than the 

speed of light in the medium that they are traversing. This process is roughly 

analogous to the sound waves that are emitted at the shock produced by an 

object, such as an airplane, travelling faster than the speed of sound in  the 

medium being traversed. For Cherenkov emission to occur, the velocity of the 

charged particle m ust exceed a threshold given by v^ > c /n , where n is defined
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as the index of refraction in the medium. Otherwise, the energy loss of the 

particle is deposited in the local dielectric medium, rather than escaping to 

infinity in the form of Cherenkov radiation. From the previous condition, one 

can see that there is a threshold for total particle energy given by

E!h = m^c2/V l — n~l . In water, this leads to a Cherenkov emission threshold 

energy of 0.775 MeV for electrons and 160 MeV for muons.

There is also a characteristic emission angle for Cherenkov radiation. The 

radiation will propagate in the direction of ExB, which leads to an emission 

angle given by cos(6c) = 1 /np . Thus, the radiation is emitted symmetrically, in a 

pattern referred to as the Cherenkov cone, about the particle trajectory. Since the 

index of refraction is a function of frequency, there is a frequency dependence for 

the threshold energy and the angle of the Cherenkov light cone. For water with 

an index of 1.34, the angle of Cherenkov emission will be 42° for highly 

relativistic particles. In air, the Cherenkov angle for highly relativistic particles 

will be approximately 1.4°. This narrow cone of Cherenkov emission in air 

contributes to the air shower in the atmosphere and can be observed by air 

Cherenkov telescopes at the ground level. However, the index of refraction of 

the atmosphere is a function of altitude, so the opening angle of the light cone 

will vary as the shower propagates to lower levels. In Milagrito, the large 

opening angle of the Cherenkov light in w ater leads to the capability for many 

PMTs to view the signature of a single particle traversal.
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Physical Parameters

The Milagrito detector was composed of 228 upward-facing 

photomultiplier tubes (PMTs) submersed under 1-2 meters of "clean" water. . 

These PMTs were placed within a pond with surface dimensions of 80x60x8 m. 

The cross-section of the pond, as shown in figure 4.1, was actually a trapezoid 

with bottom dimensions of 50x30 m. Within the pond, the PMTs were attached 

to a grid composed of sand-filled PVC pipe and placed in a square grid pattern 

with 3 m spacing between each PMT. On the surface of the pond, there was a 

polyethylene cover (this cover could be inflated for the purpose of entering and 

working within the pond) that provided a light-impermeable environment, thus 

allowing the detector to operate free of background light throughout the day and 

night. When an energetic hadronic particle or gamma ray is incident on the 

Earth's atmosphere, it can trigger an EAS that propagates downward in the form 

of a thin ( -1-3 m) "pancake-like" plane of secondary particles. Upon entering 

the water of the Milagrito pond, the charged particles from the EAS produce 

Cherenkov light in  characteristic 42° light cones. These Cherenkov photons are 

then detected by the PMT array (figure 4.1). The gamma rays in the EAS

50 meters 

80 meters

Figure 4.1 - Cross-sectional view of the Milagrito detector.
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Figure 42 - Aerial view of Milagrito/Milagro pond. The cover is inflated in this picture so  
that work can be done under the cover for installation of the Milagrito hardware. The 
telephone poles that can be seen surrounding the pond are part of the lightning protection 
system.

undergo both Compton scattering and pair production when they enter the 

water, thus contributing to the Cherenkov photons detected in  the pond. With 

this water-Cherenkov technique, a large fraction of the shower particles can be 

detected, and a low threshold energy is achievable.

Milagrito was located in the Jemez mountains near Los Alamos, NM at an 

elevation of 2650 m (figure 4.2 & 4.3). This corresponds to an atmospheric 

overburden of -750 g /cm 2. Since protons have a mean free path  of -62  g /cm 2 

for nuclear collisions, the altitude Of the detector corresponds to -12 mean free 

paths. Thus, the detector was located well below the location of shower
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maximum for nearly all showers detected. This situation, in which one is 

observing on the tail of a distribution, is common in the fields of high energy 

gamma ray and cosmic ray air shower physics. This is a characteristic that guides 

much of the design of the detectors of these showers. It would, of course, be 

desirable to locate the detector at a higher altitude, but high altitude locations 

can be difficult due to practical considerations, such as access to the site.

Milagrito approached this situation w ith another method. Rather than placing 

the detector closer to shower maximum, Milagrito attempted to detect more of 

the shower particles at ground level. Traditional EAS arrays spread relatively 

small detectors overalarge  area'., thus detecting only a small fraction of the 

shower particles from an EAS. By utilizing one large detector, Milagrito was able 

to detect a large fraction of the shower particles that fell within its active area. In 

this way, the energy threshold was significantly lowered.

Another location-related factor that contributed to Milagrito's threshold

Figure 4.3 - View under the cover of the pond. The PVC frame to which the positively 
buoyant PMTs are mounted can be seen.
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energy was the geomagnetic field. As discussed earlier, in the section related to 

neutron monitors, the geomagnetic field deflects charged particles whose rigidity 

is not large enough to overcome the bending caused by the field. The threshold 

rigidity for deflection is a function of the location of the detector within the 

geomagnetic field. Milagrito is located at a geographic latitude of 35.9°N, which 

corresponds to a geomagnetic latitude of 44.5JN. This places the vertical cutoff 

rigidity of Milagrito at -3.86 GV, neglecting variations in the Earth's geomagnetic 

field. This geomagnetic cutoff, along with atmospheric attenuation at low 

energies, will determine the threshold of the detector.

In order to collect the Cherenkov light in the water of the Milagrito pond, 

sensitive PMTs with a large photocathode area are desirable. Other desirable 

characteristics for the Milagrito PMTs are fast rise time and minimal transit time 

jitter, in order to obtain good time resolution. Charge resolution that allows for 

the resolution of the single photoelectron peak is a necessity for calibration 

purposes. In order to avoid misidentification of pulses, a PMT with minimal 

prepulsing and after-pulsing is also desirable. The model of PMT chosen for use 

in Milagrito was the 20 cm diameter, 10-stage Hamamatsu R5912SEL. The PMTs, 

as well as the bases, were encapsulated in a PVC housing that protected the 

electronics from the water of the pond. Additionally, the base was coated with a 

silicon conformal coating that protected the components from humidity. The 

positive high voltage was connected to the PMTs through nominally watertight 

coaxial connectors and bulkhead connectors made by W.W. Fischer that were 

connected to the PMT housings. The PMT signal was carried on the same RG-59 

cable used to supply the high voltage to the PMT. Several PMTs that are 

mounted within their encapsulation are shown in figure 4.4.
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The water in Milagrito was initially obtained from a fresh water well at 

the site of the detector. It was then pum ped through a filtration system and 

recirculated, throughout the lifetime of the detector. The water was pum ped 

through a pum p at the bottom of the pond at a nominal rate of 725 I/m in. The 

water filtration system was composed of a series of stages including a 1 pm filter, 

a carbon filter, a UV lamp, and a 0.2 pm filter. The attenuation length of 350 nm 

light in the pond water was measured to be -5  meters.

Figure 4.4 - Photomultiplier tubes mounted to their encapsulation hardware. These tubes are 
actually in the pond during the time frame between Milagrito operations and Milagro 
operations. They are tethered to the PVC grid. When the water fills the pond, the positive 
buoyancy of the tubes will cause them to float to a pre-determined level and point upward.

Since Milagrito was located within one of the m ost lightning prone areas 

in the United States, a system to protect the observatory and  the associated 

electronics was necessary. The lightning protection system used to protect
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Milagrito was a 12,500 rrr Faraday cage that enclosed the entire observatory site. 

The cage was essentially composed of a mesh of wires that were suspended by 

telephone poles above the entire site, including the buildings containing the 

electronics hardware. This system was devised to intercept, rather than avoid, 

the lightning strikes in the area. Once the lightning was intercepted, the charge 

was shunted to ground, thus dangerous voltage gradients were avoided within 

the site enclosed by the Faraday cage.

Electronics and Data Acquisition System

The cables from the PMTs were routed out of the pond, and they were 

subsequently fed into a patch panel. From there the signals traveled through 

underground conduit to the house containing the electronics, known as the 

counting house. Once the signals from the PMTs reached the counting house, it 

was necessary to obtain timing and pulse height information, as well as make 

triggering decisions. Custom made front end electronics (FEEs) boards were 

used to distribute high voltage to the PMTs and to process the signals prior to 

readout and storage.

Before describing the path taken by the signal through the Milagrito 

electronics, the time-over-threshold (TOT) technique, which was used by 

Milagrito, should be described briefly. The TOT technique can be used to replace 

m uch of the functionality of analog-to-digital-converters (ADCs). The TOT 

technique makes a measurement of the time a pulse spends above a defined 

threshold, as shown in figure 4.5. This time is then related to the size of the
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signal in the PMT. Milagrito used an ADC to calibrate the conversion of 

photoelectrons to TOT. With the exception of this calibration, ADCs were not 

required for the operation of Milagrito. The advantages of the TOT technique are 

primarily a result of this absence of ADCs in the processing. Since there are no 

ADCs, which slow down the processing, there is less dead time. The event size, 

and consequently the amount of data that needs to be handled, is reduced since 

the TDCs contain the pulse height and the timing information without the need 

of the ADC data. There is also a financial savings when the TOT technique is 

used, since the need to purchase an ADC channel for each PMT is eliminated. A 

disadvantage to using the TOT technique is that it will not provide as good a 

measurement of the pulse size as an ADC. This is due to the fact that typical 

pulses rise and fall at an exponential rate with time. This problem is countered

FEE boards

d iscnm inator

2 edge event
Low Threshold£) Low m

25 ns delav

H ig h T h

High Threshold 4 edge event

Figure 4.5 - Milagrito's front end electronics (FEE) boards measured the time that a signal 
pulse spent with its voltage in excess of two predetermined thresholds. This time could 
then be correlated with the amplitude of the pulse by calibrating with an ADC.

somewhat by the fact that the dynamic range of the TOT technique is superior to 

that of standard, commercially-available ADCs. Another problem with the TOT 

technique is that prepulses and after-pulses can lead to mismeasurements of
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signal durations. In an attem pt to alleviate this problem, Milagrito had two 

independent thresholds that could be used to differentiate between large events, 

which are more likely to have associated prepulses, and small events.

An analog FEE board did the initial signal processing. These boards 

distributed high voltage to two groups containing 8 channels each, such that one 

board could supply high voltage for up to 16 PMTs. Each channel contained a 

resistor that could be adjusted to vary the high voltage supplied to an individual 

PMT. The analog signal came into this board through the same cable that 

supplied the high voltage. The PMT signal was AC coupled to the amplifier 

inputs by a high voltage capacitor on the analog board. The signal was split, and 

both branches were passed through their own respective amplifiers with 

different gains. One of these branches was fed through a high threshold 

discriminator, while the other branch was sent to a low threshold discriminator. 

The amplifier gain and the discriminator threshold were set so that a signal with 

-1 /4  photoelectrons would pass the low threshold discriminator, while a signal 

with -7.6 photoelectrons would pass the high threshold discriminator. The 

output of the amplifier associated with the low threshold was actually split into 

two parts so that one part could be sent to an ADC, which was used only for 

calibration. Both of these discriminators generated TOT pulses (see figure 4.5). 

The discriminator outputs were sent to the custom made digital FEE boards that 

performed the digital signal processing.

The digital FEE boards multiplexed the low and high threshold 

discriminator signals and provided triggering information. Each PMT signal 

crossing a discriminator threshold generated a 300 ns pulse w ith a 25 mV 

amplitude. Multiplicity triggering information is provided by the simple sum  of

60

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



these pulses. Multiplicity information was independently provided for both the 

low and high threshold discriminators. The low threshold multiplicity 

information was used to create the 100 PMT trigger requirement that will be 

described later in this chapter.

The Milagrito timing and pulse height information were encoded as a 

series of edges as shown in figure 4.5. These data were digitized using three 

LeCroy 1887 FASTBUS TDC modules. Each of these modules contained 8 event 

buffers and 96 channels that could each record up to 16 edges per event with 0.5 

ns resolution. The time of each event was recorded by using a latched GPS clock.

After digitization, the data were read out with a FASTBUS smart crate 

controller (FSCC). The FSCC transferred the data to a pair of dual ported VME 

memory modules, which allowed for the simultaneous reading and writing of 

data. An SGI Challenge L multi-CPU computer was responsible for reading the 

data from the memory boards over the VME bus. Commands from this 

computer controlled the operation of the detector electronics. The system could 

be controlled remotely via the internet, and in cases that required hum an 

intervention, the automated system was capable of sending an alert to a pager 

carried by the collaboration member on active shift duty. This system allowed 

Milagrito to operate w ith less than 0.5% dead time with a trigger rate of -300 Hz. 

The raw  data and the online-processed data were saved to DLT tapes throughout 

the lifetime of the experiment.

There was another system that operated nearly independently of the DAQ 

described above. The environment monitoring system (EMS) was used to 

monitor the status of many aspects of the observatory and its surrounding 

environment. W eather information, such as air temperature, air pressure,
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humidity, w ind speed, and precipitation were recorded. Temperature 

measurements inside the counting house and within the electronics racks were 

also recorded. Pond w ater characteristics such as depth, recirculation flow rate, 

pressure within the filtration system, and water temperature were also recorded. 

Status of PMTs and their associated high voltage were recorded. Scaler counter 

rates from an independent CAMAC system, as well as trigger rates of the 

detector were also recorded. All of these data, updated at ~3 minute intervals, 

could be monitored remotely from a web page, and the data were archived.

Modes of Operation

Milagrito was able to operate in several modes of operation. During this 

discussion, it is im portant to remember that all of these modes were in operation 

simultaneously. There was no need to switch from one mode to another during 

operation. The researcher merely needs to look from one data set to the other to 

observe in a different mode.

100 PMT Shower Mode

Designed as a Very High Energy (VHE) gamma ray observatory, 

Milagrito's baseline telescope mode of operation, which will be referred to as the 

100 PMT mode, was sensitive to extensive air showers from prim ary hadrons 

and gamma rays above -100 GeV. In this mode, Milagrito required >= 100 PMTs 

to trigger within a 300 ns coincidence window in order for the data acquisition
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hardw are to record an event. In this 100 PMT mode of operation, a PMT triggers 

when its pulse height exceeds the low threshold, corresponding to -0.25 

photoelectrons measured by the TOT technique. For each event, the time and 

pulse height in each PMT were recorded. Once these data were recorded, they

Event No 9_
J u l i c n  E > o v  b 9 5  

Seconds 7458 .5172637  
N PMTs : 120

Online Infer motion: 
Theta: 6.1 10
Phi: 151 C6
CniSq 104 0  
N Eli 29

Figure 4.6 - Display of the relative tuning o f individual PMTs for a real event in the Milagrito 
data. The differences in PMT onset times, which are proportional to the heights of the lines 
in the figure, are used to reconstruct the shower direction for events that satisfy the 100 PMT 
trigger requirement. This event had 130 hit PMTs, and 29 of those PMTs were used in the 
fitting procedure. The plane of the shower front is visible.

could be used to reconstruct the incident direction of the prim ary particle with a 

resolution of -1°. The hadron-induced showers were treated as background for 

the gamma ray source observations for which the instrument was designed, but
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these events were treated as a signal for the purposes of solar and cosmic ray 

physics.

In order to reconstruct the incident direction of the primary particle, the 

relative timing of the individual PMTs in the pond was utilized (figure 4.6). 

Before doing this, one m ust make a series of corrections. Timing corrections 

must be applied to the PMT arrival times to account for slewing effects, transit 

time effects, and the different timing pedestals of the individual PMTs. An 

additional correction m ust be applied to account for the curvature of the air 

shower. Although shower curvature was certainly present in the Milagrito data, 

it was not evident due to the fact that Milagrito was not capable of accurately 

determining the shower core position. Monte Carlo studies indicated that a fixed 

curvature correction of 0.04 n s /m  should be applied. Once the core location was 

estimated for a given shower and the timing corrections were applied, the 

shower direction was determined by fitting the shower plane using a weighted 

least squares fitter (%2). This fitting procedure was an iterative process. The first 

iteration used only those PMTs that had a pulse height in excess of 2 PEs. 

Subsequent iterations used PMTs whose contribution to the %z was less than 9, 

6.25, and 4, respectively. This procedure was developed by studying the 

difference in space angle of fit for two interleaved portions of the detector, 

referred to as AM. As should be expected, the value of decreases for events 

that have a high number of PMTs that are used in the fitting procedure.

In the 100 PMT mode, -90% of the events that are recorded are capable of 

passing through this fitting procedure. These events that cannot be fit, which we 

refer to as NoFits, are thought to be associated with single muons that arrive
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from grazing directions (zenith angle > 93") and single hadrons. Based on Monte 

Carlo studies, high zenith angle muons are thought to contribute -6%  to the 100 

PMT trigger, while single hadrons are thought to contribute -3%.

Scaler Mode

In addition to recording these 100 PMT mode events, thus operating as a 

telescope, Milagrito also had a scaler mode of operation. This mode of operation 

is similar to that of a neutron monitor. It records a time-integrated measurement 

that corresponds to the rate of single PMT hits in the pond. In this scaler mode of 

operation, a PMT was considered to be hit when its pulse height exceeded a 

defined threshold. There were actually two scaler modes, the low threshold 

scaler mode and the high threshold scaler mode. The high threshold output, 

which counts only those events with pulse heights in excess of -7.6 

photoelectrons, has considerably less background fluctuation than the "low" 

threshold output used for the 100 PMT baseline mode. This is im portant when 

considering the large num ber of smaller and unreconstructable events registered 

in the scaler mode. For the high threshold scaler mode, the PMTs in the pond 

were separated into 15 patches that contained 16 PMTs each. The scalers 

registered the logical OR of the PMT hits within a patch by counting the number 

of patches that registered at least one hit during a -45 ns interval. Thus, an event 

that triggers only one PMT constitutes a count in the high threshold scaler mode, 

and an event that triggers several PMTs (within -45 ns of each other) w ithin one 

patch of 16 PMTs will also constitute only one count in this mode. The same
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method was used for the low threshold scaler mode except for the fact that the 

low threshold scaler mode counted the logical OR of groups of 4 PMTs, rather 

than the 16 PMTs OR’d by the high threshold scalers. The number of scaler hits 

was read with a period of 1 second.

Since the energy range most likely to be of primary interest to solar 

physics is <100 GeV, the scaler mode of Milagrito is extremely useful, despite the 

fact that imaging is not possible with the scaler mode. This mode significantly 

lowers the energy threshold of Milagrito by detecting the numerous muons and 

small showers at ground level. Even showers for which only a single muon 

survives to the ground level could be detected by Milagrito. This is due to the 

fact that a single charged particle entering the pond can trigger many tubes since 

its Cherenkov light cone causes a significant lateral spread of photons to many 

tubes throughout the pond. A substantial fraction of the scaler rate recorded by 

Milagrito was due to muons, as well as small showers, and an integral 

measurement above a threshold is performed. These data provide an excellent 

high energy complement to the network of neutron monitors.

To analyze the scaler data of Milagrito properly, one must first correct the 

ground level scaler rates for pressure, temperature, and other diurnal effects 

(Hayakawa 1969). Typical background cosmic ray rate fluctuations on a time 

scale of -1 day are shown in figure 4.7. Although this figure shows the pressure 

at ground level, which is not as critical as the measurement of pressure at higher 

altitudes in the atmosphere, one can easily observe the increase in background 

rate as the pressure, and consequently the atmospheric overburden, decreases. 

Atmospheric temperature also effects the background rate, as a result of the 

variation of muon lifetime with temperature. Although this smaller effect can
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not be seen in the figure due to the overwhelming pressure variation, the overall 

temperature effect can cause variations on the order of -5xl0'2 %/°F. Preliminary 

estimates of these correction factors for M ilagro/M ilagrito have been calculated 

based on observations, and they have been found to be reasonably consistent 

with past work with muon telescopes (Fowler et al. 1961). Accurate estimates of 

the pressure and temperature correction factors for Milagrito have not been 

calculated due primarily to the multide of variations on many timescales that

Milagrito Data on 8 Nov. 1997x 10s3.9u w,w
IT 3.85

3.75
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X 22.1
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Figure 4.7 - Typical diurnal fluctuations in the Milagrito scaler rate during a time period that 
is relatively free of instrumental anomalies.

were prsent in the Milagrito data. This was a result of the fact that Milagrito was 

an engineering prototype that had significant variation in detector parameters 

such as w ater level, electronic thresholds, and light-leak integrity of the cover.
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However, these atmospheric corrections are less im portant for fast transient 

events that rise above background quickly and have short durations.

Simulation of Detector Response

The complete simulation of the detector response was performed in two 

steps. The initial interaction of the prim ary particle with the atmosphere and the 

generation of secondary particles was simulated with the CORSEKA air shower 

simulation code (Heck et al. 1998). The second step was to simulate the response 

of the detector itself using GEANT (CERN 1994).

Using CORSIKA, the primary particles and shower particles are tracked 

through the atmosphere, which is stratified into five horizontal layers. The five 

layers of the atmosphere are based on the US standard atmosphere. In this 

model, the lower four layers have an exponential dependence of density with 

altitude, while the upper layer has a linear dependence of density with altitude. 

When particles initiate a reaction or decay, the secondary particles are also 

tracked through the atmosphere. Electromagnetic interactions are simulated 

using EGS 4 code. For the hadronic interactions, the VENUS code is used at high 

energies, and GHEISHA is used at low energies (<80 GeV).

A wide array of particles can be simulated at many energies for zenith 

angles ranging from 0*-90* using CORSIKA. However, at this time, particles can 

only be tracked for simulations with zenith angles between CF-60\ This presents 

a problem for the estimation of Milagrito’s sensitivity. Particle tracking is 

necessary since Milagrito’s low energy signal comes from events whose
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properties deviate significantly from average values. Thus, it was necessary to 

extrapolate the simulations between 0°-60° to larger zenith angles when 

Milagrito's effective area w as calculated. This will be discussed more in the 

following section on the effective area.

Once the air shower has been created using CORSIKA., the response of the 

detector is modeled using the GEANT package (CERN 1994). This simulation 

package requires the input of the detector parameters, such as PMT spacing,

PMT quantum  efficiency, pond size, water characteristics, optical properties of 

materials in pond, etc. The measurement of these parameters is im portant since 

errors can lead to systematic errors in the simulation. In particular, the 

simulation is sensitive to the scattering of light w ithin the pond. Measurements 

of the attenuation length of the pond water were necessary. The attenuation 

length for 350 nm light, including both scattering and absorption was found to be 

~4 m (Atkins et al. 2000). The output of GEANT can be analyzed by the offline 

code, and the detector triggering conditions can be imposed. Thus, a simulation 

of the detector response is obtained.

Effective Area

With an analysis based on the Monte Carlo calculations, effective areas of 

the Milagrito instrum ent w ere computed for each of its modes. For the purpose 

of simulating Milagrito's response, effective area is defined as: 

(Ntrigger/N ,hrow)Athrow, where Athrow is the area over which the shower core is 

throw n and Ntngger and Nthrow are the number of triggers and the num ber of
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prim ary particles thrown, respectively. Of particular interest for solar ground 

level events, as well as cosmic ray studies, are the effective areas of Milagrito to 

protons incident on the atmosphere isotropically, at zenith angles ranging from 

0°-90° (Figure 4.8). The curves shown in the figure correspond to the high 

threshold scaler mode and the 100 PMT mode. The effective area from 60°-90° 

was estimated by extrapolating the area curve from the 0°-60° range. In the

Eff. Area to Isotropic p^s deduced from Monte Carlo

Mn'agnto High T nresrt. S caler

Milagnto 100 PMT tngger

in 10‘

IGY neutron monitor
10*

(at location of Climax)

Iff' 10 '

Kinetic Energy (GeV)

Figure 4.8 - Effective area of Milagrito to isotropic protons incident on the top of Earth's 
atmosphere, with an IGY neutron monitor for comparison. These calculations are based on 
Monte Carlo proton events thrown over zenith angles from 0*-60‘, with extrapolated values 
used for zenith angles from 60°-90\

absence of effects specific to large zenith angles, the majority of the contribution

to the scaler mode efficiency comes from zenith angles below 60°. An example of

the relative contribution at angles above and below 60° for protons a t 50 GeV can

be seen in figure 4.9. Since cosmic ray showers were not simulated between 60°-
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Figure 4.9 - Milagrito scaler mode differential efficiency to 50 GeV protons (from Monte 
Carlo) normalized to 25’ and plotted as afunction of zenith angle. Points above 60" are 
extrapolated using a functional fit to points at lower theta. The contribution from 6>60" is 
shown to be small.

90° due to limitations of the software and time, effects that are present only at 

large zenith angles are not reflected in these effective area curves (the possible 

effect of high zenith angle muons will be discussed later). While this could have 

a significant impact on the analysis of the shower mode data, it should not 

significantly affect the scaler mode data analysis.
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The systematic errors of the instrument response have been estimated by 

folding the known cosmic ray spectrum through the calculated response. This 

results in a theoretical value for the instrument's rate due to galactic cosmic rays, 

which comprise most of the instrum ent's background rate. The measured 

background rate in Milagrito matches this predicted value to within a factor of 

~3. While this provides us with a reasonable level of confidence in the calculated 

effective area curves, there are still some lingering concerns. There are some 

concerns with using GHEISHA to simulate showers from prim ary particles with 

energies below -20 GeV (Heck 1999). For these lower energy prim ary particles, 

it is possible that the sum  of the secondary shower particles' energies can be as 

much as 20-30% greater than the energy of the prim ary hadron. While a 

reasonable agreement (factor of ~3) between the predicted and the measured 

cosmic ray rates in Milagrito shows that the effective area systematic errors are 

reasonably small, we are unable to assess the effect of using GHEISHA at 

energies below -20  GeV. The areas in figure 4.8 were calculated using Monte 

Carlo events whose shower cores were thrown randomly over a large area 

surrounding the Milagrito pond. To ensure that the Monte Carlo showers were 

thrown over a large enough area, we progressively increased the throw area 

until the effective area reached an asymptotic value. This occurred at 

approximately 7000x7000 m2. Figure 4.10 illustrates the relationship between 

Milagrito's predicted effective area and the shower-core throw area for proton 

showers. We note that the effective area of Milagrito has a significant 

contribution from hadronic showers with cores far (> 3 km) from the detector. 

This effect increased the estimated effective area at -5-100 GeV by -3  orders of 

magnitude relative to earlier estimates (Falcone et al. 1999, Ryan et al. 1999). Our
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confidence in these revised effective area curves is bolstered by the fact that they 

predict the instrum ent's background rate due to cosmic rays to within a factor of 

-3.

At 10 GeV, Milagrito's scaler mode effective area is ~3 orders of 

magnitude greater than that of a sea level neutron monitor, with the effective 

area rising rapidly w ith energy. The threshold of Milagrito is defined by the 

combined effects of the geomagnetic field and atmospheric attenuation. The 

effects of the atmosphere, for zenith angles between 0°-60° degrees are
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Figure 4.10 - An example, for 50 GeV proton showers, of the relationship between 
effective area and the spatial dimensions over which the Monte Carlo throws the shower 
cores. An asymptotic value is approached as the throw dimension becomes large enough 
to model reality.

incorporated into the effective area curves, while higher angles are assumed to 

be a simple extrapolation of the curve, as depicted in figure 4.9. The
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geomagnetic effect is incorporated by assuming a hard cutoff at the calculated 

vertical cutoff rigidity, which is 3.86 GV. The fact that this is actually a function 

of zenith angle and magnetic field fluctuations should be considered when 

interpreting the response of the detector.

Comparison to Other Instruments

Now that the Milagrito detector has been described, it makes sense to 

consider it within the context of other existing detectors. There are a wide array 

of satellite based detectors of cosmic rays, SEPs, and gamma rays; but the 

sensitivity of these detectors is severely limited by the size of detector that can be 

launched into space. As a result of this size constraint, satellite detectors require 

long integration times to be even remotely sensitive at GeV energies. Thus, 

ground-based techniques such as EAS arrays, ACTs, and neutron monitors 

dominate at energies in excess of ~ 1 GeV.

Due to the fact that Milagrito detected many air shower particles at 

ground level over a wide lateral range, m any people would define it as an EAS 

array. While this is true in many ways, there was one important difference that 

made Milagrito the first detector of its kind, with the exception of its small 

prototype, Milagrissimo. By making use of the Cherenkov emission of charged 

particles in water, Milagrito was able to detect nearly all of the particles that 

crossed the surface of the pond. This included gamma rays since the processes of 

pair production and Compton scattering led to charged particles that produced 

Cherenkov emission. In contrast to this, typical EAS arrays detectors cover <1%
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of the total area over which they are distributed. Thus, Milagrito was able to 

realize a much lower energy threshold than a typical EAS array is capable of 

achieving, while still retaining the abilities of an EAS to operate with all-sky 

coverage and -100% duty cycle.

Imaging ACTs are more sensitive to sources than Milagrito or Milagro, 

thus ACTs can observe over shorter timescales with higher significance. 

However, ACTs m ust observe on clear moonless nights to minimize background 

light. This severely limits their duty cycle. Additionally, ACTs have a relatively 

small field of view so surveys and detections of transient unknown sources are 

difficult or impractical. Milagrito and Milagro are well suited for these types of 

studies due to their -100% duty cycle and their all-sky coverage.

Neutron monitors are the closest kin to Milagrito and Milagro when 

considering the energy range. Neutron monitors operate as threshold 

instruments for detecting prim ary protons above a few GeV. Milagrito’s scaler 

mode also provided a measurement above a threshold of -3  GeV, but Milagrito 

operated with an effective area that was several orders of magnitude larger than 

that of a neutron monitor, as can be seen in figure 4.8. This larger effective area 

increased Milagrito’s probability of detecting SEPs at energies in excess of those 

probed by neutron monitors. In order to probe anisotropy, neutron monitors 

rely on a  network of monitors placed around the globe at locations w ith various 

rigidity cutoffs and atmospheric overburdens. The relative signals in this 

worldwide network of monitors can be used to determine anisotropy and can be 

treated as a spectrometer. In this sense, Milagrito was an excellent complement 

to the worldwide network of neutron monitors, but the high threshold scaler 

data of Milagrito also provided additional information at higher energies. At
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even higher energies, the 100 PMT trigger mode of Milagrito could be utilized. If 

a source had high enough energy (>-100 GeV) to trigger this mode, then 

directional information could be obtained based on the relative timing of the hit 

PMTs.
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CHAPTER 5

THE 6 NOVEMBER 1997 CME 

Introduction

Particle acceleration beyond 1 GeV due to solar processes is well 

established (e.g. Meyer et al. 1956, Parker 1957). However, few data exist 

demonstrating acceleration of particles beyond 5 GeV (Chiba et al. 1992, Lovell et 

al. 1998). The energy upper limit of solar particle acceleration is unknown but is 

an im portant param eter because it relates not only to the nature of the 

acceleration process, itself not ascertained, but also to the environment a t or near 

the Sun where the acceleration takes place. Due to their small size, space-based 

instruments are inefficient at measuring the low fluxes of particles above -1 GeV. 

However, neutron monitors become efficient at these energies. Neutron 

monitors provide an integral measurement of the particle intensity above a 

threshold determined by the location of the monitor. To study the solar energetic 

particle intensity above the equatorial neutron monitor threshold (-14 GV), 

other instruments are necessary.

Coronal mass ejections (CMEs) and solar flares are frequently 

accompanied by SEPs, bu t the details of the acceleration process(es) continue to 

elude researchers. Although SEP events are frequently categorized as either 

gradual or impulsive (Reames 1999, Gosling 1993), some events do not seem to
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fit neatly into either category (Mobius et al. 1999, Cliver 1996). The distinctive 

characteristics of gradual and impulsive events were described in chapter 2, as 

well as the fact that some events appear to be a hybrid of these two classes. Fast 

(v>400 km /s) CME-driven coronal and interplanetary shocks are generally 

thought to be the acceleration mechanism for the gradual events (Lee 1997, 

Kahler 1992), while the impulsive events are frequently thought to originate at 

the flare site (Reames 1999). Milagrito’s capability of fulfilling the function of 

studying these high energy SEP events by operating at higher energies with large 

areas prompted a search of the data at the time of the 6 November 1997 SEP 

event.

Some Observations With Other Instruments

On 6 November 1997 at 11:49 UT, an X9 flare with an associated coronal 

mass ejection occurred on the western hemisphere of the Sun. At a longitude of 

63“, this event was magnetically well connected to the Earth, along the Parker 

spiral geometry of the interplanetary magnetic field. This event was well 

observed with many instruments, and it exhibited both gradual and impulsive 

characteristics.

The GOES-9 satellite detected energetic protons in excess of 100 MeV, as 

well as hard X-rays from the 6 November event. The proton fluxes are shown as 

a function of time in figure 5.1. The channels corresponding to interplanetary 

flux of protons above 10 MeV and 50 MeV also registered significant increases. 

The enhancement of this proton flux lasted for several days after the event. It is
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also clear from figure 5.1 that there was a SEP event on November 4 1997. The 

flux of interplanetary protons above 10 MeV was still enhanced relative to 

background at the time of the 6 November event. While the 4 November event 

did not produce particles with enough energy to be registered in ground based 

detectors, its effect on the interplanetary environment and the implications 

related to the 6 November event could be im portant so they will be discussed 

later.

Figure 5.1 - Interpanetary proton flux observed by GOES-9 during the onset and the time 
period leading up to the 6 November 1997 solar energetic particle event. The three separate 
curves corresepond to fluxes o f protons in excess of three different energy thresholds (E>10 
MeV, E>50 MeV, E>100 MeV). The onsets of the 6 November event and the 4 November 
events are both plainly visible.
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Figure 52 - Image of the 6 November 1997 CME using the C2 coronagraph on board SOHO.
The central disk of the Sun is blocked out at the center of the image in order to view the 
coronal regions. The hot plasma can be seen expanding out into the corona. The small 
tracks dispersed throughout the image are due to energetic particles hitting the detector 
itself.

As shown in figure 5.2, the C2 coronograph on board the SOHO satellite 

detected the launch of the CME. Using coronograph images, the speed of the 

leading edge of the CME w as estimated to be -1600 k m /s  (St. Cyr 2001, Torsti 

2000). This speed was deduced by calculating the slope of a line fit to the height- 

versus-time plot that is shown in figure 5.3. This relatively fast CME was 

undoubtedly driving a strong shock as it propogated since its leading edge speed
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Figure 5 3  - Coronal height of CME leading edge as a function of time during the 6 
November 1997 event. Data was obtained from the C2 and C3 coronagraph on SOHO.
(Figure courtesy of C. St. Cyr)

was far in excess of the ambient solar w ind speed. Type II and IV radio emission 

were also observed during this event, indicating the presence of a coronal shock.

Yohkoh recorded impulsive gamma-ray emission up to 100 MeV for 

approximately 5 minutes, along w ith the presence of gamma ray lines 

(Yoshimori et al. 2000). The presence of gamma ray lines is a sign that there was 

significant proton acceleration since the gamma ray lines are a result of nuclear 

interactions between ambient nuclei and high energy particles, such as protons 

and alpha particles. This impulsive emission of gamma rays began a t 11:52 UT, 

which was shortly after the onset of the X-ray event.
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Using ACE measurements, Cohen et al. (1999) and Mason et al. (1999) 

reported exceptionally hard ion spectra above 10 MeV/nuc. The SEPICA 

instrument on board ACE observed an increase in charge state with energy, as 

well as mixed charge state distributions for Fe (Mobius 1999). This has been 

postulated to be a result of multiple energetic particle populations. Furthermore, 

Fe and 3He enhancements (F e /O -l and 3H e /4He~4x coronal) were evident in the 

interplanetary particle populations. These values are greater than those expected 

for a gradual event, but the enhancements are not as great as those found in 

many impulsive events.

There were also ground-based measurements of this event. Many of the 

instruments in the world-wide network of neutron monitors registered a ground 

level enhancement (GLE) in response to high energy (>1 GeV) protons (Duldig et 

al. 1999). The rate increase began shortly after 12:00 UT with an anisotropic 

component, but the distribution approached isotropy by the time of maximum, 

approximately 45 minutes after the onset (Lovell et al. 1999). Low latitude 

monitors, such as Mexico City (cutoff rigidity ~ 8.6 GV) did not record an 

increase. The Climax neutron monitor, located < 400 km north of the Milagrito 

site with a vertical cutoff rigidity of ~3 GV, was among the monitors to record an 

increase.

Observations of the 6 November 1997 Event Using Milagrito

The scaler mode and the "100 PMT" mode of Milagrito can be treated as 

independent data sets.
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Scaler Mode Observations

In its scaler mode, Milagrito measured a rate increase coincident, within 

error, with the increase observed by Climax (see figure 5.4). If one accounts for 

the background meteorological fluctuations that are present, the event duration 

and time of maximum intensity, as seen with Milagrito, are also consistent with

Milagnto and Climax D ata on Nov 6 ,1 9 9 7

: Climax neutron  monitor

Milagrito

nign threshold scaler

'  Milagnto............
100 PMT trigger

0 5 10 15 20 25
UT time (hours)

Figure 5.4 -  Milagrito rate history plotted over the same timescale as the nearby Climax 
neutron monitor. The high threshold scaler rate increase of Milagrito was coincident with 
the rate increase observed by Climax. Diurnal background variations are also visible in the 
Milagrito data.
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that of Climax. The magnitude of the scaler rate increase is -22 times the RMS 

fluctuations of the instrum ent's background using 160 second time bins. The 

background scaler rate prior to the event was -375 kHz, and the event produced 

a rate increase of -0.5 % from the onset to the time-of-maximum. The RMS of 

observed background fluctuations, which is approximately ± 84 Hz, is nearly 

twice that expected from Poisson statistics. These larger fluctuations may be a 

result of effects such as meteorological fluctuations in the upper atmosphere and 

at the Milagro site. We also estimated the chance probability of an event rate 

increase of this magnitude, over this time scale, by looking at the data over the 

lifetime of Milagrito. This was done by splitting all of the Milagrito high 

threshold scaler data into 10 minute time bins. The difference between the 

average rate in any two time bins seperated by one hour from the start of one bin 

to the start of the next was then calculated. There were only two other rate 

increases of at least this magnitude during the 15 m onth (-20% dead time due to 

maintenance, etc.) lifetime of the instrument (Williams et al. 1998). One of these 

is a possible light leak, and the other has been identified as a power up transient 

effect. Based on this analysis, it has been found that the upper limit of the 

probability for a chance rate increase with a m agnitude and timescale similar to 

that of the 6 Nov.1997 event is -2x10"*.

While the daily variations of the background are present, as described 

earlier, the onset is plainly visible above this background and the fluctuations of 

the background. Since this event rate exhibited a fast rise above background, the 

need to apply pressure and temperature corrections was minimized. A rough, 

first-order background subtraction is shown in figure 5.5. This method simply
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fits a line to the background rate at the times immediately preceding and 

following the event. Although initial estimates have been made for the pressure 

and temperature correction coefficients, it appears as though more upper 

atmosphere data, as well as observations using a more stable configuration of the

Grito High Thresh (- P7) with linear fit to bkgmd on 110697x 10s3.78
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Figure 5.5 - The top panel shows the Milagrito high threshold scaler rate along with a linear 
fit to the background directly preceding and following the event. To first order, it can be 
seen that this linear fit does a fairly good job of estimating the daily variation during this 
time period. The bottom panel shows the background subtracted rate for the time 
immediately surrounding the event. Notice the different scales for the horizontal axis in the 
two plots.

detector than those available during Milagrito’s lifetime, are necessary to make 

corrections that are more useful than the rough estimate shown in the figure. 

This does not present a problem for the analysis of the relatively fast event onset 

shown in this work, but it unfortunately, does not allow for an accurate estimate 

of the event duration. There is another effect during this event, described below,
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that makes an accurate estimate of the event duration even more difficult to 

attain.

We note that the scaler rate plotted in figure 5.4 does not include one of 

the 15 patches of the detector. This historically noisy group of PMTs, located 

within patch 7, exhibited an unrelated instrum ental rate increase a few hours 

after the onset of the CME related rate increase. The difference between the rate 

increase with and without patch 7 can be seen in figure 5.6. This type of 

instrumental rate increase (referred to as "high-rate flashing" and thought to be

Milagrito High Threshold Scaler Rate w/wo Patch 7 on 110697

| BLUE: high threshold scaler rate 
i RED: high threshold scaler rate WITHOUT PATCH 7
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Figure 5.6 - Milagrito high threshold scaler rate on the 6 November 1997, with and without 
the scaler counts from patch 7 induded in the sum. It can be seen that the high rate 
"flashing” that ocurred within patch 7 resulted in a rise in the total scaler rate at about 14:30 
UT. The daily variation of rate can also be seen in this plot. These two effects conspired to 
make it difficult to estimate the duration of this event, but they did not significantly effect 
the estimation of the onset time.
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caused by arcing in the base of the PMT or light emission in the tube itself) is 

common in some clusters of PMTs, but it can be identified and corrected based 

on its localized spatial characteristic. A high-rate flasher will cause a 

disproportionate rate increase in a local cluster of PMTs, but an air shower signal 

will cause a more uniform increase over the entire pond. High-rate flashing can 

cause scaler rate increases that are comparable in magnitude to the rate increase 

from the 6 November event, but they are localized to the area of the flashing 

PMT. Typically, the rate increase from the flashing can be attributed to only one 

patch, with a smaller increase in patches within the immediate vicinity of the 

culprit PMT. An example of a high-rate flasher increase was observed in patch 7 

at -14:30 UT on the day of the event, well after the onset of the SEP related 

increase (see figure 5.6). This patch of PMTs was known to exhibit such behavior 

over much of Milagrito’s lifetime. During the rate increase that began shortly 

after 12:00 UT on 6 November 1997, all of the patches except for patch 7 

experienced a uniform rate increase with an average increase of 0.48% and a 

standard deviation of 0.08%. Patch 7 experienced a rate increase of 1.1%. After 

studying the uniformity of the signal over the pond in this way and analyzing 

the instrum ent's behavior over its lifetime as described in the preceding 

paragraph, we concluded that most of this instrumental increase could be 

attributed to patch 7 and that the remaining rate increase was of solar origin.
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100 PMT Mode Observations

The 100 PMT shower trigger rate also experienced an increase, although 

the significance was not as great as that in scaler mode. The m agnitude of the 

rate increase signal to background fluctuations in 100 PMT mode was -10% of 

that in the scaler mode. We expected that the 100 PMT mode w ould have a 

smaller response to an event such as this, since this mode has a higher threshold 

energy and has less effective area. It is not yet clear which of several possible 

mechanisms initiated the signal in the 100 PMT mode, so the detector's 

sensitivity to several possible mechanisms has been investigated. Some of the 

explanations for the shower mode "signal" that have been considered are 

isotropic proton primaries (such as those that caused the high threshold scaler 

increase, but with much higher energies), instrum ental effects known as 

"flashing" PMTs, and high zenith angle muons. The magnitude of these effects 

influences the systematic errors in the analysis.

The 100 PMT mode provides data that is nominally more stable than that 

of the scaler mode. In spite of this, there are some effects that can lead to a 

misinterpretation of the 100 PMT mode data, while not causing an effect in the 

scaler mode that will be significant relative to its larger background. If a 

mechanism for triggering the 100 PMT mode that is not modeled by the effective 

area curves in figure 4.8, such as those to be listed in the following paragraphs, is 

present then it m ay lead to a small event rate increase of -5  Hz. While this 

increase may appear significant in the 100 PMT mode, the corresponding rate 

increase in the high threshold scaler mode, which may be -50 Hz, will not be
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significant over the much larger background of the scaler mode. With this in 

mind, several potential mechanisms and instrumental effects have been 

considered with regard to the 100 PMT mode "signal."

This signal does not appear to conform to known instrumental effects, 

such as "flashing" PMTs. Flashers, which are caused by light emission at the 

base an d /o r in the tube of the PMT, are a common problem with water 

Cherenkov detectors. There are three known forms of flashers in the Milagrito 

data that could, in theory, contribute to the 100 PMT signal.

One of these forms of flashers is referred, to as a "high PE, low Nfi[" flasher. 

This type of flasher, which typically does not lead to high scaler rates, is 

characterized by particularly high photoelectron hits in individual PMTs. These 

flashers tend to present themselves in the data with a low number of PMTs that 

are useable in the fitting procedure (i.e. low Nftt), and they tend to dissapear 

completely if an Nfit cut of 40 PMTs is applied (McEnery et al. 1999, McCullough 

et al. 1999). This type of flasher is not present at anytime during the event.

Another form of flasher is referred to as a "high PE, high Ntjt" flasher. This 

phenomenon may actually be a result of mis-calibration of individual PMTs, 

rather than an actual flashing in the PMT itself. Like the previous form, these 

flashers typically do not lead to high scaler rates, and they are characterized by 

particularly high photoelectron hits in individual PMTs. The difference is that 

these flashers continue to appear in the data with a high value for NSt. This form 

of flasher is present during the onset of the event, but this flashing is present 

before and after the event as well. Since the flashing, or possible calibration 

effect, remains constant prior to and throughout the event, it cannot be 

responsible for the observed rate increase.
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The third form of flasher, known as a high-rate flasher, is the same one 

that caused the high rate flashing in patch 7 that was discussed in the earlier 

section on the scaler mode observations. This type of flasher is not present in the 

100 PMT mode during the onset of the event, although particularly high rate 

flashing that contributed to the scaler rate did occur several hours later within 

patch 7.

The 100 PMT mode effective area curve in figure 4.8 represents the 

response of this operational mode of Milagrito to isotropic protons, but the 

simulated response does not include effects at high (>60°) zenith angles. It is 

evident from this curve that particles of much higher energies (on the order of 

100 GeV or greater) are needed to induce a response in this mode, as compared 

to the particle energies required for a trigger in the scaler mode. Although the 

100 PMT mode increase could have been caused by isotropic, very high energy 

primaries (>100 GeV) such as those modeled, it is unlikely. Evidence for this can 

be found by looking at the quality of the air shower fit to a particular incident 

angle during the "event." Although 100 PMTs trigger the "100 PMT" air shower 

mode, not all of these PMTs are suitable to be used in the angular reconstruction, 

also known as "fitting" the event. For example, some PMTs may trigger 

significantly later or earlier than expected relative to others, thus giving the 

impression that there is no coherent shower plane. Individual PMTs that 

contributed disproportionately to the x~ of the fit w ere not included in the fitting 

procedure. As an example of the criteria used, if a PMT contributes > 9 to the x* 

of the fit during the first iteration of the fitting procedure, then it is not used. For 

more detail on the fitting procedure, see Atkins et al. (2000). The events that
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caused the shower mode increase on 6 Nov. 1997 all had a low num ber of PMTs 

that were suitable for the fitting procedure (see figure 5.7), and many events 

could not be fit at all. In figure 5.7, it is clear that there is no event rate increase if

S32400ta
§3 2 2 0 0

w 32000  
_o
1 3 1 8 0 0  

31600 

31400  

31200 

31000
41000 42000 43000 44000 45000 46000 47000 48000

time (sec since 6 Nov OOiOO UT)

~  8000 
£ 7900 

§  7800
5  7700 
£  7600
6  7500 

7400 
7300 
7200 
7100 
70004 i

Figure 5.7 -  Milagrito 100 PMT shower mode rate history at the time of the GLE. The top 
panel indudes all events. The bottom panel, which displays no rate increase, indudes only 
the events for which >39 tubes were suitable for use by the angle fitter. The dashed line is 
the event onset time according to the high threshold scalers.

it is required that 40 tubes are suitable to be usd in the fitting procedure. If this 

rate increase was due to an isotropic proton distribution, as that modeled 

between zenith angles of 0°-60°, then greater numbers of "fittable" PMTs would
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be expected since these events lead to "pancake-like" shower fronts, which have 

a characteristic time delay from one PMT to another. We also see (figure 5.8) 

that the fraction of events that cannot be fit increases as the event progresses. 

Furthermore, if this increase was due to isotropic protons, then a very hard 

spectrum (P~3, w ith -90% of the events from >200 GeV) is necessary to explain 

the increase. This spectrum would conflict with the spectrum inferred from the 

Milagrito high-threshold scaler rate increase, as well as neutron monitor and 

satellite data.

There is another potential mechanism by which primary protons can 

trigger the shower mode. High zenith-angle protons leading to secondary 

muons arriving from nearly horizontal directions could trigger the detector. 

These events were not simulated beyond 60°. The increase in the rate of 

"unfittable" events as the event progresses (figure 5.8) is evidence for high 

zenith-angle muons being the cause of the air shower "signal." Based on Monte 

Carlo events, we determined that the majority of "unfittable" events in the 

background rate could be attributed to muons from zenith angles > 83°, thus it is 

known that this mechanism can cause a trigger in the 100 PMT mode. However, 

the efficiency for converting a high-zenith-angle proton into a high-zenith-angle 

muon, which can subsequently trigger the 100 PMT mode, is not known. If 

horizontal muons contributed to this signal, they would be the result of high 

energy proton primaries (>30 GeV), based on estimates of muon losses in the 

atmospheric overburden above 83% but the effective area curve in figure 4.8 

would not apply to this triggering mechanism. In order to determine the 

spectrum of the prim ary protons associated with this mechanism, extensive and
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time consuming simulations, which require particle tracking through a multi­

layered and spherical atmospheric model, will have to be completed.

Until more studies and simulations beyond 60° are performed, the details 

of the 100 PMT shower mode "signal" will not be known. Presently, the work on 

this 100 PMT "signal" remains inconclusive. Therefore, this analysis is restricted
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Figure 5.8 -  Comparison of the 100 PMT mode time histories for fittable and unfittable 
events. It is apparent that the ratio of events that cannot be fit to events that can be fit 
increases during the time of the event. (The dashed line marks the onset according to the 
high threshold scalers.)
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to the scaler rate increase, based on the belief that if the 100 PMT rate increase is 

of solar origin, it arises from a response characteristic of the instrument that has 

not been studied thoroughly. It is important to form the arguments in the 

previous paragraphs of this section in order to insure that there is no known 

inconsistency between the 100 PMT mode response and the scaler mode 

response, but any conclusions regarding the 6 November event must be based 

on the scaler mode analysis, which is well understood. Investigation of the 

instrum ent response to primary particles beyond 60°, is planned.

Thus, using only the high-threshold scaler rate data of Milagrito, we can 

derive characteristics of the prim ary proton spectrum. We did this by folding a 

trial power law spectrum of protons through the response of the instrument. The 

trial power law spectrum is of the form:

where P is rigidity [GV] a n d /is  the differential proton flux [m': s '; s r 1 GV'1]. The 

expected rate increase in the detector for a given C and a  is then found by 

integrating:

The parameters of the trial spectra, C and a , are then varied until a good fit to the 

measured rate increase is achieved. By only using the high-threshold scaler rate 

in this analysis, a range of acceptable values for C and a  was obtained. To

Proton Spectrum
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uniquely determine the param eters, another detector with a different response is 

necessary.

We made the assum ption that the geomagnetic rigidity cutoff can be 

accurately represented by a single value, namely the vertical cutoff rigidity of 

3.86 GV. This ignores any fluctuations in the planetary magnetic field, as well as 

the change in the cutoff at other zenith angles. Additionally, the pitch angle 

distribution of protons from the event is assumed to be isotropic. This is a 

reasonable assumption since it has been shown by other researchers (Lovell et al. 

1999, Smart & Shea 1998) that the distribution was approaching isotropy by the 

time of maximum intensity, w hich is the time that is being analyzed here.

During the onset of the event, a t -12:30 UT, the full-width-half-maximum 

(FWHM) of the pitch angle distribution was measured by Lovell et al. to be -60% 

and by -13:30, at which time the rate increase was on a plateau a t maximum, the 

pitch angle distribution FWHM w as -105%

After obtaining the range of spectral parameters from the Milagrito data, 

we compared this to the spectrum  obtained by the world wide network of 

neutron monitors. Neutron m onitor data for this proton event, near the time of 

maximum intensity (-12:45-13:00 UT), indicate a rigidity power-law spectral 

index between approximately 5.2 and 6 in the 1-4 GV rigidity range (Duldig et 

al. 1999, Lovell et al. 1999). If the Milagrito derived range of spectral parameters 

for protons above 4 GV includes the neutron monitor spectrum a t this rigidity 

and if an unbound power law  above 4 GV is assumed, then a unique solution for 

the spectrum above 4 GV can be obtained. Doing this, we found that the spectral 

index, a , that best fits the data is 9.0 ± 2.3. (The error bars for the spectral 

parameters are obtained by doing the above integral with the input parameters
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modified by their l a  error bars. The error is dominated by the error in the 

calculated effective area. Statistical errors from background fluctuations and 

errors arising from the fitting technique are also included, but the contribution 

from these error sources is insignificant compared to the effective area error.) 

The analysis leading to this spectral index assumes a single power law above 4 

GV. We also performed the analysis w ith a hard upper rigidity cutoff in the 

proton spectrum. We varied this cutoff rigidity as a free parameter while 

extending the spectrum derived from the neutron monitors up into the energy

Nov 6 Event proton spectra from neutron monitors and Grito

Q.

,-10

nr
Rigidity, P (GV)

Figure 5.9 - Calculated differential flux of isotropic protons from the 6 November 1997 SEP 
event. Below -4  GV, the neutron monitor derived flux spectrum is shown. Above -4  GV, 
two possible spectra that are consistent with the Milagrito high threshold scaler rate 
increase are shown. One of these spectra involves a hard cutoff of the spectrum from 
lower energies, while the other curve is a broken power law. The actual spectrum is 
probably a gradual rollover of the rigidity power law. The drde is placed at the point 
where the neutron monitor and the Milagrito derived spectra were required to overlap.
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range of Milagrito. In order for the Milagrito scaler data and the neutron 

monitor data to be consistent, the hard cutoff m ust occur at 4.7 ± 0.5 GV (error 

source as described above), if we assume that the P° 2 spectrum of Lovell et al. 

(1999) extends into the energy range of Milagrito.

Both of the cases described above are shown in figure 5.9. These results 

provide evidence for a cutoff or a rollover in the spectrum in the transition 

region between the neutron monitors and Milagrito. This is most likely of the 

form of a progressive spectral softening throughout the energy region above ~1 

GeV.

Event Timing

Prior to the detection of energetic particles at Earth, X-rays and gamma 

rays were detected by space-based instruments, and the CME-associated solar 

flare was categorized as X9. Yoshimori et al. (2000) reported the detection of 

gamma rays up to 100 MeV, with an onset time of 11:52 UT for the 10-20 MeV 

emission, based on Yohkoh data. Figure 5.10 shows the onset and the 

completion times of this emission on a plot with the Milagrito high threshold 

scaler rate and the Climax neutron monitor rate for comparison. Several nuclear 

lines were present in the count spectrum derived from Yohkoh data, including 

the neutron capture line and C and O deexdtation lines. It is clear that proton 

acceleration was occurring at the flare site for a short period of time following 

11:52 UT. The gamma ray event, as measured with Yohkoh, was over within five 

minutes of onset.
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The time profile measured by Milagrito is consistent with that of Climax, 

when allowances are made for the long-term, background meteorological 

fluctuations (Figures 5.4 and 5.5). The onset of the Milagrito scaler rate 

enhancement, which was at 12:07 UT + /- 6 min, was simultaneous within error 

with the Climax neutron monitor onset time, which occurred at approximately 

12:06 UT. The times of maximum intensity and the duration are also similar.
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i r r

13 13.5 14
UT time on 6 Nov. 1997 (hours)

14.5 15 15.5

Figure 5.10 -  Onset of the Milagrito high threshold scaler rate increase and the Climax rate 
increase, with lines marking the beginning and end of the Yohkoh 7-ray line observations for 
comparison.

The rate increase in Milagrito's scalers reached its maximum value at 12:44 UT ± 

6 min. The GOES satellite observed an enhanced rate of protons from this event 

at about the same time. The >100 MeV proton emission detected by the GOES 

satellite lasted more than  two days. GOES also detected protons from an event
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that occurred on 4 November. While the >100 MeV protons had returned to their 

pre-disturbance flux by the time of the 6 Nov. event, the >10 MeV flux of protons 

was still elevated over background by ~10x, relative to its value prior to the 4 

November event.

Discussion and Conclusions Regarding 6 Nov. 1997 Event

When the short duration (~5 min) of the gamma ray line emission and the 

long duration (-hours to -days, depending on energy) of the high energy proton 

acceleration are considered, it appears as though much of the proton acceleration 

does not occur in the flare itself. Protons do appear to be accelerated at the flare 

site during the impulsive phase, but the GeV protons, which come later, 

probably originate in the low corona. If a CME-driven shock was responsible for 

the GeV protons, then the height of the CME at the time at which protons 

reached these high energies can be estimated by looking at the difference in time 

between the gamma ray onset and the GLE onset, while accounting for the 

proton path length along the Parker spiral of the interplanetary magnetic field. 

The path length for protons is defined by the spiral IMF, which is a function of 

solar wind velocity, Vsvv, and the angular speed of the Sun, Q. The path length, S, 

from a heliographic latitude defined by A is given by Lockwood et al. (1990) as:

„  ln[or + Vl + a V
S  = ------------- r —1 ■ ■ t

2 l a

where r  is the radial distance to the observation point, and a  = (£2cosA)/V^..
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Thus, a path length of 1.1±0.05 AU from the region around the flare site to Earth 

during the time of the 6 Nov 1997 event is expected, if any IMF disturbances are 

neglected (the error bars arise from the l a  error bars in the input parameters, 

which means that kinks in the field lines and fluctuations of the magnetic field 

are neglected). The path length can also be affetcted by the pitch angle 

distribution of the particles. The path length calculation shown above does not 

account for the spiral path of a particle with a non-zero pitch angle. This tends to 

scale the path length by (cos 9)'1. For instance, the path length would be double 

the parker spiral value for a particle with a pitch angle of 60°. Although the 

event exhibited some anisotropy in its early stages, it has already been stated that 

Lovell et al. (1998) found that the FWHM was -60° at this time However, the 

onset time of the event is determined by the earliest arriving particles, which 

were the ones with small pitch angles that were beamed along the IMF line. This 

leads to an estimate of -10-20 minutes for the acceleration time of the >4 GV 

protons. After this amount of time, assuming a CME leading edge speed of 

-1600 km /s, the leading edge of the CME was at -2-4 solar radii. This spatial 

scale is reasonable, and it is consistent with prior results on GeV ion acceleration 

heights found for the 24 May 1990 CME event studied by Lockwood et al. (1999) 

and the September 1989 event studied by Kahler (1992). In these studies, which 

made use of similar timing arguments, particle injection heights were calculated 

to be - 2  solar radii and -2.5-4 solar radii, respectively. An acceleration time of 

-10  minutes for -1-10 GeV protons is consistent w ith the collisionless shock 

model of Lee & Ryan (1986), when injection energies of -10 MeV are present. In 

this model, the ratio of injection energy to accelrated particle energy' as a function
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of time was calculated. While this is a simple blast wave model, similar driven 

shock models could be applied (e.g. Lee 1997). Based on GOES data, there was 

an abundance of >10 MeV protons that continued to occupy interplanetary space 

due to the 4 November solar event. These ambient energetic protons could have 

provided the >10 MeV injection energies needed by the propagating CME-driven 

shock. While this does present a consistent interpretation, it is not definitive.

Between 10 and 60 MeV, the instrum ents on board the ACE satellite 

observed a proton spectrum of the form E'~' (Cohen et al. 1999), while at higher 

energies, ground-based instruments observed much softer spectra. The Milagrito 

data, combined with neutron monitor data, leads to a proton spectrum with a 

rigidity power law spectral index of 9.0 ± 2.3, if a single power law is assumed 

above -4  GV. A continuation of the P'5~ spectrum from Lovell et al. (1999) with a 

hard cutoff is also possible. These spectra are, by construction, continuous with 

the spectrum derived from the world wide neutron monitor network at 4 GV. In 

any case, the spectra derived from Milagrito and neutron monitor data provide 

evidence for a gradual rollover or a cutoff somewhere in Milagrito's sensitivity 

range above ~4 GV.

This steepened high energy spectrum is also consistent w ith a low corona 

origin based on the implied shock strength. For a differential rigidity power law 

spectral index of 9.0 ± 2.3 for relativistic protons to result from diffusive shock 

acceleration, one must have a shock compression ratio of -1.2. For a fast CME, 

such as this, to drive a shock with this low compression ratio, the Alfven speed in 

the local medium must be relatively high. This shock compression ratio implies 

an  Alfven speed on the order of 500-1000 km /s. This is on the high end of that
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expected in the solar corona. This implies that the acceleration occurred low in 

the corona where the magnetic field and the Alfven speed were large. This is 

consistent with the timing arguments presented above for a low coronal origin. 

Once again, this presents a consistent picture, yet it is not definitive. It is also 

possible that the spectrum could be steepened by a transport effect after the 

diffusive shock acceleration occurs or that an unidentified alternative source 

could produce this steep spectrum.
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CHAPTER 6

CONCLUSIONS AND THE FUTURE

Observations with Milagrito have contributed to the understanding of the 

6 November 1997 SEP event, and by doing so, Milagrito has dem onstrated the 

utility of the water-Cherenkov detection technique. The conclusions regarding 

the 6 November 1997 event presented in the last chapter provide an enhanced 

understanding of the processes that lead to SEP acceleration. In particular, 

Milagrito has made observations a t the extreme end of the energy spectrum 

which have identified the source location and provided compelling evidence for 

the mechanism of CME-driven shock acceleration. The observation of this event 

with Milagrito has provided a detection of a cutoff, or a rollover, in the energy 

spectrum of SEPs at the highest detectable energies. While measurements of an 

event during the last solar maximum in September of 1989 with underground 

muon telescopes provided evidence for a cutoff (Lovell et al. 1998), Milagrito has 

used a new technique with a significantly increased effective area relative to both 

muon telescopes and neutron monitors. Due to this increased area, Milagrito 

was able to unambiguously detect the 6 November event and provide evidence 

for the existence of a spectral softening, rather than simply providing an upper 

limit measurement. Milagrito was the world’s first EAS particle detector 

sensitive below 1 TeV, and these findings are indicative of the abilities of the 

water-cherenkov technique used by Milagrito. This technique will continue to be 

utilized by the full-scale Milagro detector.
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The Milagro inlfrument, for which Milagrito was a prototype, is currently- 

taking data. With its increased number of PMTs, multiple layer design, and 

increased effective area, Milagro may provide exciting results in the future.

There are already some preliminary results that indicate the detection of several 

Forbush decrease events in the Milagro data, as well as at least one SEP event in 

April 2001.

The second layer of PMTs, as shown in figure 6.1, can give Milagro the 

ability to reconstruct the directions of single muons and small showers in the 

pond. In the future, this second layer could also be used to incorporate advanced 

triggerring mechanisms. By using the pulse height information on the bottom 

layer of the pond, one can identify the penetrating muons. Timing information 

can then be used to reconstruct tire incident direction of these muons. This 

technique will lower the energy threshold for reconstructable events. Proposed 

enhancements to the data acquisition system, which would allow Milagro to 

record this higher rate data and reconstruct hadronic events dow n to primary 

energies of ~3 GeV, can increase Milagro's capabilities. This proposed higher- 

rate DAQ system w ould enhance Milagro’s baseline mode as well as its ability to 

study solar energetic particles (Ryan et al. 2000).

r*» .*S ^  §■ ■ ■ ■ ' ■  ■ ■
M .  M  M- .i-fi-,

•» Jnjrettf-s   —
“*  SO m e te rs

Figure 6.1 - Cross-sectional view of the Milagro PMT layout.

S meters
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Other changes that have been made to Milagro are the number of PMTs 

and the addition of baffles that now surround each PMT. The number of PMTs 

has been increased to 723, and the area of the air shower layer has been 

increased. This results in an increase in the effective area. Each PMT in Milagro 

has a collar-like baffle around its base. This reflective baffle is designed to 

reduce light that has scattered and reflected throughout the pond. It should 

reduce effects of late light in the PMT, and it should also minimize the cross-talk 

between PMTs. As a result, the problems associated with flashers should be 

minimized in Milagro. Additionally, each PMT base now has a black cover, 

which should reduce any flashing that may arise from arcing in the base of the 

tube. The actual effects of these measures should be evaluated with the data 

from Milagro.

Another major difference between Milagro and Milagrito is the 

philosophy that governs their operations. Although Milagrito took useful data, it 

was a prototype that operated as an engineering test bed. This means that the 

configuration of the detector was frequently changed, and stable operation was 

not the prim ary concern. On the other hand, Milagro is being operated with a 

philosophy that places a high priority on live-time and stable operation. This 

should allow for more consistent data that can be interpreted with more ease, 

relative to Milagrito. Additionally, this stable operation should allow for one to 

study variations of scaler and trigger rates on a variety of timescales. The 

diumal and meteorological fluctuations, as well as possible seasonal variations, 

should be relatively straight-forward to evaluate due to the constant 

configuration of Milagro relative to that of Milagrito. That is not to say that this
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work will be easy since new and mysterious variations will almost certainly 

present themselves.

Other work that can enhance Milagro's ability to study SEP and cosmic 

ray variations will be the calculation of more detailed instrument response 

curves. Due to the inability of Corsika to track particles through the more 

complex atmospheric model required above zenith angles of 60°, the current 

Milagrito effective area curves rely on an extrapolation at these high zenith 

angles. By using updates to Corsika, or exploring alternative Monte Carlo 

simulation options, the calculation of the effective area can be significantly 

improved. The extension to higher zenith angles will also allow one to analyze 

the response of the instrum ent to effects particular to this zenith angle range, 

such as high zenith-angle muons.

Additionally, faster processing time will allow for more calculations at 

low energies, which are critical to analysis of SEPs and cosmic rays a t energies of 

a few GeV. With more calculations at low energies and a variety of zenith 

angles, the effects of atmospheric attenuation on the lower energy limits of the 

effective area should present themselves. Additional calculations of the 

geomagnetic effects can also be carried out to further the understanding of 

Milagro’s response at its lowest detection energies. The analysis presented in this 

thesis relied on the vertical cutoff rigidities, but the cutoff rigidity is actually a 

function of zenith angle at the site location. This additional knowledge 

regarding atmospheric and geomagnetic effects should lead to a greater 

understanding of the low energy response of Milagro.

By combining the enhanced hardware configurations and operational 

stability of Milagro w ith additional calculations, the currently operating detector
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should provide interesting contributions to our understanding of SEP 

acceleration and cosmic ray propogation in the heliosphere.
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