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Abstract 

Field Programmable Gate Arrays (FPGAs) have been widely used for accelerating 

machine learning algorithms. However, the high design cost and time for implementing FPGA-

based accelerators using traditional HDL-based design methodologies has discouraged users 

from designing FPGA-based accelerators.  In recent years, a new CAD tool called Intel FPGA 

SDK for OpenCL (IFSO) allowed fast and efficient design of FPGA-based hardware accelerators 

from high level specification such as OpenCL. Even software engineers with basic hardware 

design knowledge could design FPGA-based accelerators.   

In this thesis, IFSO has been used to explore acceleration of k-Nearest-Neighbour (kNN) 

algorithm and Speckle Reducing Anisotropic Diffusion (SRAD) simulation using FPGAs. kNN 

is a popular algorithm used in machine learning. Bitonic sorting and radix sorting algorithms 

were used in the kNN algorithm to check if these provide any performance improvements. 

Acceleration of SRAD simulation was also explored. The experimental results obtained for these 

algorithms from FPGA-based acceleration were compared with the state of the art CPU 

implementation. The optimized algorithms were implemented on two different FPGAs (Intel 

Stratix A7 and Intel Arria 10 GX). Experimental results show that the FPGA-based accelerators 

provided similar or better execution time (up to 80X) and better power efficiency (75% reduction 

in power consumption) than traditional platforms such as a workstation based on two Intel Xeon 

processors E5-2620 Series (each with 6 cores and running at 2.4 GHz). 
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Chapter 1 

Introduction 

1.1 Motivation 

According to IBM, human beings produce 2.5 quintillion (25 billion billion) bytes of data 

every day from their routine daily activities [1]. That is why people would like to call the current 

times as the age of “big data”. When talking about big data, developers mean the ability to 

acquire this data, analyze it and draw useful conclusions from it. These tasks are very 

computationally intensive and expensive. Hence there is lots of interest in using hardware 

accelerators for these tasks.    

With the increasing popularity of data classification recently, Field Programmable Gate 

Arrays (FPGAs) as the parallel implementation platforms are suitable for many classification 

algorithms [2]. “Heterogeneous Computing system (HCS) consists of multiple computational 

cores with different configurations, connected by a high-speed LAN, for increased computational 

power and resources” [3]. HCS provides the best architecture for programmers to execute 

computation intensive problems by optimizing the HCS architecture for the given task. Currently, 

there is an upsurge in the computer design community experimenting with building HCS [4]. 

Figure 1 shows basic architecture of HCS.  
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Figure 1. Basic architecture of HCS [5] 

When accelerating classification algorithms on HCS, the difficulty is to manage the 

resource and increase the efficiency. Unlike CPU and GPU, FPGAs have the unique structure to 

take the advantages of CPU’s complicated calculation ability and GPU’s high speed parallel 

computing ability.  

The Intel FPGA SDK for OpenCL (Open Computing Language) [6] aims to reduce the 

programming difficulty, run time and cost on parallel computing on FPGA. When using OpenCL, 

the knowledge of hardware design language such as Verilog or VHDL is not required from 

programmers, since the Intel FPGA SDK for OpenCL can synthesize high level language 

specification in OpenCL to generate optimized hardware accelerators for FPGAs.  Intel FPGA 

SDK for OpenCL includes an offline complier for synthesizing OpenCL kernel code to Verilog   

descriptions and generating Quartus II compilation scripts for FPGA synthesis. As with other 

OpenCL platforms, the input specification consists of two parts: the host code and the kernel 

code. The host represents one processor coordinating execution and one or more processors 
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executing OpenCL code used by programmers when writing specific functions (called kernels) 

that run on FPGA devices.  

OpenCL can be widely used for accelerating computation intensive problems in different 

applications. One of most popular techniques utilized in dealing with data detection especially 

the tasks with artificial intelligence is machine learning. “Machine learning is a field of computer 

science that gives computers the ability to learn without being explicitly programmed” [7]. 

Nowadays, machine learning is used in various fields of data processing, such as image and 

video classification, document processing, speech recognition, etc. With the rise of 

heterogeneous computing systems, machine learning started to be implemented on such systems 

because of the computation intensive tasks required parallel hardware for fast execution. GPU 

platforms are quite suitable for running machine learning algorithms. However, power 

consumption is an issue for GPU requires expensive cooling systems to handle excessive heat 

dissipation. At the same time, some parts of algorithms can be only implemented on CPU since 

their structures are hard to parallelize and data transmission between CPU and GPU would cost 

computation time overhead.  

Machine learning algorithms suitable for parallel structures can be implemented on 

FPGAs which provide fine grain programmable hardware resources with much lower power 

consumption compared to GPUs and multi-core CPUs. IFSO can be used to accelerate machine 

learning algorithms using FPGAs. The input OpenCL specification consists of host code and 

kernels. The host code can run embedded ARM processor on FPGA and kernels can be 

accelerated using programmable hardware in FPGA. The power consumption of embedded ARM 

processor is lower than traditional CPUs and GPUs. Therefore, machine learning algorithms 
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implemented on embedded CPU and FPGA based heterogeneous computing systems has lower 

power consumption than CPU-GPU platforms. 

However, IFSO has some limitations as well. The developers need to optimize the input 

OpenCL specification to obtain shorter execution time. The dataflow in the algorithm needs to be 

adjusted and memory needs to be managed well to minimize the execution time. More details on 

these issues will be provided later in chapter 3 and 4. Another limitation is that in specific 

complex algorithms, floating point data types are used. FPGA processing efficiency for these 

data types is not as good compared to GPUS and CPUs. The implementation on Intel FPGA 

SDK for OpenCL platforms has limitation on floating point values. No matter how well 

optimized the code is, computing floating point values on Intel SDK for OpenCL would cost 

more time than the implementation on CPU. Wherever possible, alternate data types such as 

fixed point should be used to obtain better performance without significantly degrading the 

accuracy of results. 

1.2    Thesis Objectives 

In this research, kNN algorithm enhanced with Bitonic sort and Radix sort algorithms and 

SRAD have been implemented using IFSO on FPGAs. The research goals were as follows:  

• Implement optimized kNN algorithm (C++ code) using bitonic sort on multi-core 

CPU.   

• Modify C++ code and create optimized OpenCL specification for kNN algorithm 

using bitonic sort. 

• Implement optimized kNN algorithm (C++ code) using radix sort on multi-core CPU.   

• Modify C++ code and create optimized OpenCL specification for kNN algorithm 

using radix sort. 
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• Implement SRAD simulation on multi-core CPU and create optimized OpenCL 

specification for SRAD simulation. 

• Compare the results obtained using multi-core CPU and FPGA using performance 

and power consumption metrics. 

1.3    Thesis Organization 

The organization of this thesis is as follows: Chapter 2 introduces heterogeneous 

computing systems including FPGA architecture and accelerator hardware, high level synthesis, 

Intel SDK for OpenCL and machine learning.  

In Chapter 3, kNN algorithm using bitonic sort was first implemented on multi-core CPU 

and then FPGAs using IFSO. The experimental results obtained from these platforms were 

compared and analyzed.   Chapter 4 describes the acceleration of kNN algorithm using radix sort. 

The experimental results obtained from these platforms were compared and analyzed. In Chapter 

5, SRAD was introduced and implemented on multi-core CPU. Then SRAD was implemented 

on FPGAs using IFSO. The results obtained from these platforms were compared and analyzed. 

Chapter 6 provides conclusion of this thesis and discussion of future work. 
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Chapter 2 

Heterogeneous Computing System Overview 

2.1    Heterogeneous Computing 

In today’s computing environment multiple processing platforms such as central 

processing units (CPUs), digital signal processors, reconfigurable hardware (FGPAs), and 

graphic processing units (GPUs) [8] are used. Such systems are called heterogeneous computing 

systems (HCS).  They allow developers to select the best platform and architecture from many 

kinds of target platforms available to execute the task or optimize the task for the best efficiency. 

Currently HCS are becoming popular in many real world applications.  

Applications built from HCS have specific goals to process workload behaviors (e.g., 

searching, sorting, and parsing), ranging from control intensive to data intensive (e.g., image 

processing, simulation and modeling, and data mining). HCS can also solve the problems like 

iterative methods, numerical methods, and financial modeling. In such areas, how to increase the 

computational efficiency from the underlying hardware is the main goal for developers. There is 

no perfect single architecture circuit to execute all kinds of applications, and the best way to 

execute is to select multiple platforms and combine them to a mixed architecture for best results. 

The first discussion of software composition at the architectural level was first presented 

by Garlan and Shaw describing some architectural styles [9]. They claimed that “most systems 

typically involve some combination of several styles.” In these systems, the combination 

architectures are HCS. However, in this paper the authors just stated an immature concept about 

HCS. They emphasized more attention on pure architecture styles. There are twelve software 

architecture styles mentioned in this paper: 
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• Layered 

• Distributed processes and threads 

• Pipes and filters 

• Object-oriented 

• Main program/subroutines 

• Repositories 

• Event-based (implicit invocation) 

• Rule-based 

• State transition based 

• Process control (feedback) 

• Domain-specific 

• Heterogeneous 

When building HCS, developers are required to precisely articulate the architecture of the 

systems they want to design, and most successful applications rely on more than one architecture 

style [10]. In one HCS, a variety architecture styles can be used. However, not all styles play the 

same important roles in the system. Some specific architecture can be implemented to execute 

most parts of problems and other architectures in the system help the main architecture to make 

up for the deficiencies in processing the other parts. 

For example, Figure 2 shows the problem of designing a satellite ground system station 

system. The ground station takes the responsibility for receiving the information from satellite, 

processing the information, and sending the useful information to users. 
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Figure 2. A Satellite Ground Station Using Multiple Architectural Styles [10] 

This design consists of three main parts. The satellite is the first part to collect the 

telemetry from space and get commands from ground station. Satellite ground station is the 

second and main part to process telemetry and interact with the users. The Users part extracts the 

most useful information from the data sent by the satellite to the ground station. These multiple 

architectural styles system is clear and easy to understand representative example of HCS. 

Another example of HCS is the desktop or laptop computer used these days. There are 

two main data processing units in each computer, which are CPU and GPU. CPU has multiple 

cores and is responsible for executing very complex control oriented tasks. The number of cores 

in a multi-core CPU are limited due to costs and efficiency (communication overhead) reasons.   

However, GPU has thousands of cores and is able to process large quantity of data in parallel. 

Figure 3 shows the structure of CPU and GPU.  
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Figure 3. Structure of CPU and GPU [11] 

In current computers CPU mainly controls the utilization of the whole system. GPU is 

responsible for heavy duty data processing (e.g. image processing). 

2.2 FPGA Architecture and Accelerator Hardware 

2.2.1 FPGA Architecture 

Field Programmable Gate Arrays (FPGAs) were first designed almost two and a half 

decades ago [12]. An FPGA comprises of an array of programmable logic blocks. Blocks are 

connected to each other through programmable interconnect network. The advances in integrated 

circuit (IC) process technology make FPGAs a viable implementation alternative for large and 

complex digital designs. Hardware description language (HDL) models of digital designs can be 

optimized and synthesized for FPGAs [13] [14].  The main steps involved in synthesis are: logic 

synthesis, technology mapping, placement, routing and FPGA bit stream generation. The 

programmable structure of FPGAs makes a very flexible implementation medium for digital 

designs. They also consume much less power compared to high end CPUs and GPUs used in 

high performance computing (HPC). 

FPGAs can be electrically programmed by developers in the field to build a variety of 

digital circuits for different real world applications. FPGAs provide large quantity of 
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programmable hardware resources for lower cost (for low and medium product volumes) and 

faster time to market compared to Application Specific Integrated Circuits (ASIC). ASICs also 

require high non-recurring engineering (NRE) costs.   

FPGAs consist of: 

• Programmable logic blocks which implement logic functions. 

• Programmable routing that connects these logic functions. 

• I/O blocks that are connected to logic blocks through routing interconnect and that make 

off-chip connections [12].  

Figure 4 describes the overview of FPGA architecture. Configurable logic blocks (CLBs) 

are laid out in a two dimensional grid and are interconnected by programmable routing resources. 

I/O blocks are also interconnected to programmable routing. These structures enable the FPGA 

to provide programmable logic and routing.   

 

Figure 4. Overview of FPGA architecture [15] 
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2.2.2 Hardware Accelerators 

Hardware accelerators are optimized functional blocks designed to offload specific tasks 

from general purpose CPUs [16]. However, the optimized and dedicated architecture on CPU 

can only work at a sequential instruction execution level. Since FPGAs can be highly optimized 

at the logic level, they are very suitable for implementing hardware accelerators. 

In this thesis, all algorithms and applications were implemented on two FPGA boards, 

which are Stratix V A7 and Intel Arria 10 GX. Stratix V A7 FPGA board contains 2 x 4GB of 

1600 MHz DDR3 memory. The Stratix V A7 was fabricated from 28 nm node which consists of 

622K logic elements (LEs), 234,720 ALMs, 938,880 registers, 2,560 M20K blocks and 256 DSP 

blocks. The second platform Intel Arria 10 GX FPGA contains 2x 4GB of DDR3 memory. The 

Arria 10 GX 10AX115 FPGA, based on TSMC’s 20 nm process technology, has 1,150K LEs, 

427,200 ALMs, 1,708,800 registers, 2,713 M20K blocks and 1,518 DSP blocks. The layouts of 

Stratix V A7 and Arria 10 GX are shown in Figure 5 and 6. 

 

Figure 5. Stratix V A7 Accelerator Board Layout [17] 
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Figure 6. Arria 10 GX Accelerator Board Layout [18] 

2.3 High Level Synthesis 

The goal of High Level Synthesis (HLS) task is to obtain the specific functional behavior 

required of a system subject to a set of user constraints. HLS CAD tools provide optimized and 

synthesized HDL outputs at the RTL level that implement the functional behavior (subject to 

design constraints) given in the input specification [19]. High level synthesis is different from 

other types of synthesis. It is not to be confused with logic synthesis. Logic synthesis is the 

system specified in terms of logic equations, and must be optimized and mapped into a given 

technology. Logic synthesis might be implemented after high level synthesis finished in some 

way where logic synthesis needs to process the sorts of the decision obtained from high level 

synthesis. 

Recently, HLS is becoming popular for real world applications. The advantages of using 

HLS are as follows: 

• Shorter design cycle: Once the same type of design process is automated, designer 

can build the system faster. Since the design development costs too much on chip, 

automating more of that process will decrease the cost without doubt. 
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• Fewer Errors: Errors in design can be detected at a higher level and will not 

propagate to lower levels of design. This leads to reduced design debug time and cost. 

• The ability to search the design space: Using HLS the design space and design 

tradeoffs in terms of area, speed and power consumption, can quickly be quickly 

explored. This is not feasible with traditional RTL based design methodologies.   

• The design process is self-documenting: The decisions made in design, the reason, 

and the influence of these decisions can be tracked in an automated manner. 

• Availability of IC technology to more people: HLS has the potential to enable 

software engineers to design hardware accelerators.  

Nowadays, high level synthesis is used for accelerating FPGA design by enabling 

hardware developers to work at high levels of abstraction using C/C++ [20]. It allows developers 

to quickly explore multiple architectures through high-level directives and performs device 

specific timing driven schedule optimization and technology mapping for FPGAs. 

2.4 Intel SDK for OpenCL 

2.4.1 Overview of OpenCL 

OpenCL stands for Open Computing Language, which is a C-based open stand for the 

programming of heterogeneous parallel devices (e.g., CPUs, GPUs, DSPs, and FPGAs). OpenCL 

is the first industry standard language for heterogeneous computing system [21]. OpenCL 

improves the speed and the responsiveness of a wide spectrum of applications in “numerous 

market categories including gaming and entertainment titles, scientific and medical software, 

professional creative tools, vision processing, and neural network training and inferencing” [22]. 

OpenCL specification consists of four models, which are summarized as follows: 
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• Platform model: The host part is the processor coordination execution and the device 

part are one or more processors for executing OpenCL C code. The abstract hardware 

model in device part called kernels allows programmers to write OpenCL C functions 

and execute on device. 

• Execution model: Sets the OpenCL environment for host and defines how kernels are 

executed on the device. In this model, it includes the step of setting up an OpenCL 

context on the host, providing hardware mechanisms for the host, and communicating 

with kernels for executions on devices. 

• Memory mode: Manages the abstract memory used in kernels. Same as other 

accelerators, the memory model also resembles current GPU memory hierarchies. 

• Programming model: Developers can map the physical hardware through program in 

this model. 

 

2.4.2 Intel FPGA SDK for OpenCL 

IFSO is a development environment, and provides a complier and tools to build and run 

OpenCL applications that target Intel FPGA products [23].  In this environment, it includes 

“Intel’s state-of art software development frameworks and complier technology with the 

revolutionary Intel Quartus Prime software [24]”. Intel Quartus Prime software provides 

developers with a platform to program, implement and optimize their applications.  Figure 7 

shows the execution steps in OpenCL. 
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Figure 7. Execution steps in OpenCL [24] 

The SDK includes IDE integration, offline complier, debugger, and other tools to develop 

applications. The driver/runtime package on development platforms is installed for testing. Intel 

FPGA SDK for OpenCL provides variety of resources and features for developers to utilize the 

full potential of FPGAs [25]. Parts of the OpenCL standard are implemented differently in IFSO 

because the target hardware is an FPGA. The main difference between IFSO and other OpenCL 

platforms is the kernels executed on IFSO must be compiled offline.  

When processing data in parallel using IFSO, three types of parallel computation are used. 

First is data parallelism, where tasks of reading, convolving, pooling and writing back into 

memory can be done in parallel. Loop parallelism is the second type. Here the obtained 

processing results between loops are independent and can be executed in parallel. These 

operations implemented in IFSO schedules each iteration into a pipeline. The third type is task 

parallelism. Data parallelism and loop parallelism reduce the computing time, while the task 

parallelism can boost the throughput in the system. Tasks can be arranged into different kernels 

and executed by command queues and multiple channels separately. In task parallelism, the 

hardware utilization is increased. One example using task parallelism is shown in Figure 8. 
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Figure 8. Example of task parallelism [26] 

 

2.5 Machine Learning 

Machine learning usually refers to the changes in systems that perform tasks associated 

with artificial intelligence (AI) [27]. Two main types of machine learning algorithms are 

supervised and unsupervised. Supervised learning algorithms work with a target variable which 

can be predicted by the given data. Using the given set of variables, functions or equations can 

be obtained for prediction. The process of getting functions is called training process, which 

continues until the results reach the desired accuracy on the whole training dataset. Examples of 

supervised learning are as follows: 

• Regression 

• Decision Tree 

• Random Forest 

• K Nearest Neighbors 

• Logistic Regression 

Unsupervised learning works with unlabeled data. The algorithm tries to extract useful 

properties from the unlabeled data. Examples of unsupervised learning are as follows: 
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• Clustering  

• Anomaly detection 

• Neural Networks 
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Chapter 3 

Acceleration of kNN algorithm using bitonic sorting 

3.1 Introduction to kNN and bitonic sort algorithms 

3.1.1 Introduction to kNN algorithm 

k-Nearest-Neighbor algorithm is one of the most popular machine learning algorithms 

[26], which was first proposed in the early 1950s. Due to high computational complexity for 

large datasets, implementation of kNN algorithm became feasible only in the 1960s with the 

availability of increased computing power.  Currently kNN classifiers are widely used in pattern 

recognition [29]. kNN is based on analogy which makes comparison between given test datasets 

and training datasets that are in the same dimension. The training dataset can be separated into n 

attributes, and each attribute represents one n-dimensional space. kNN searches the whole 

dataset for k closest training samples for one unknown query point. The k closest training 

samples are the nearest neighbors.  

To get the nearest neighbors, the distance between query points (X1) and training data 

(X2) must be calculated, where 𝑋1 = (𝑥11, 𝑥12, … , 𝑥1𝑛) and 𝑋2 = (𝑥21, 𝑥22, … , 𝑥2𝑛) . The 

function used is Euclidean distance: 

𝑑ⅈ𝑠𝑡(𝑋1, 𝑋2) = √∑ (𝑥1𝑖 − 𝑥2𝑖)2𝑛

𝑖=1
                                              (4.1)  

Once all distances are obtained, they all need to be ranked. If k=1, the query point should 

be in the same dimension where the closest data from training dataset is. If k is more than one, 

the k calculated nearest neighbors must be found with smallest distance to query point.  
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The pseudo code for kNN is shown as follows. 

Algorithm 1. Sequential kNN algorithm 

 

kNN () 

Inputs: 

  Xrc: training dataset array; // r is the row of the array, c is the  

       // dimension of the array  

  Y: class labels of Xrc; // Y can take two values: 1 or 0 

  k: number of nearest neighbors; 

  x: unknown sample sequence; 

Outputs: 

  y: multiple clusters of size k from x; 

{   // begin kNN 

for i =1 to r do 

  compute distance d(Xic, x); 

end for 

sort distance d(Xic,x); 

select k reference point with smallest distance to x; 

      end for 

      return multiple clusters of size k from x; 

} // end kNN 

 

 

Classifying testing samples consumes large amounts of computation time in kNN 

classifier. Presorting and arranging the stored datasets into search trees are two effective ways to 

reduce classifying execution time. The most effective method to decrease run time is parallel 

computation. Each of the values in training dataset can be calculated with query point 

independently and the distance ranking part can also be implemented in parallel as the calculated 

distances are independent.  

3.1.2 Introduction to bitonic sorting algorithm 

There are large numbers of different sorting algorithms that can be used in kNN. Most of 

these sorting algorithms require heavy global memory access. In heterogeneous computing with 
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OpenCL, the main goal is to reduce the use of global memory and find algorithm suitable for 

parallel computing.  

Bitonic sort is not a common sorting algorithm and it is more complicated than other 

sorting algorithms. However, bitonic sort itself is a parallel sorting algorithm. Instead of going 

through the whole array repeatedly and swapping values, the bitonic sort keeps track of sorted 

and unsorted list separately and only swaps data when necessary. The distance values from 

multiple query points are processed concurrently while the sorting process itself utilizes task 

parallelism. In this part, additional optimizations are applied. The calculated distance values are 

all stored in the local memory and grouped smaller parts. There is no restore data to replace the 

smaller data or larger data in local memory. When all values are loaded, the data should be 

sorted in small parts separately and then these parts are combined repeatedly into larger groups 

until we form one group that represents the sorted distance values.  

The pseudo code for bitonic sort algorithm is shown below: 

Algorithm 2. Bitonic sort algorithm 

 

Bitonic() 

Inputs: 

S: a random sequence; 

n: number of values in S; 

d: n = 2d; 

Outputs: 

O: ordered S; 

{ /*begin Bitonic*/ 

    for i = 1 to d do 

     for j = i downto 0 do 

  if ith bit of sequence > jth bit of sequence then 

              comp_exchange_max;  

                //comp_exchange_max is the sequence holding larger values  

  else 

              comp_exchange_min; 

          //comp_exchange_min is the sequence holding smaller values                

endif 

  end for 

    end for 

    // the sorted values are available in O now 



21 

 

} // end 

 

The bitonic split is a procedure that cuts one bitonic sequence into two smaller ones, 

where all the elements of the first sequence are less than or equal to the ones in the second. A 

bitonic sequence is divided between its two halves, and the nth element in each part is compared 

with each other. If they are out of order, they are swapped. Applying this procedure repeatedly 

onto the smaller lists, the result is a sorted sequence in ascending order.  

Bitonic sorting network sorts n elements in (log2 𝑛) time. In bitonic sort, the number of 

training data set has to be 2n, while not all data set would satisfy this condition. Before sorting, it 

is necessary to add values in the training data set to satisfy this condition. The original sequence 

must first be transformed into a bitonic one. Note that two numbers by themselves are a bitonic 

sequence, from that the sequence can be partitioned into smaller bitonic ones and then merged 

together. 

Figure 9 illustrates the bitonic sorting process. Dark yellow colored boxes are the sorters 

for larger groups and light red boxes are the sorters for smaller groups. In each dark yellow 

colored and light red colored box, the larger values are sorted and placed at lower places (bottom 

of the box) and smaller values are sorted and placed at higher places. From smaller dark yellow 

groups to larger ones, the sequence would be divided into larger values groups and smaller 

values groups. Then the light red sorters make the sequence as ascending sequence (lower places) 

and descending sequence (higher places). For the last blue box, light red sorters rank and merge 

the ascending sequence and descending sequence into one ascending sequence. 
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Figure 9. Bitonic sort [30] 

3.2 Related Works 

There have been number of research works for accelerating kNN on HCS. In addition to 

acceleration minimizing the hardware cost and obtaining better power efficiency are also 

important. Most papers focused on obtaining better acceleration performance. 

H. Hussain et al. presented a dynamically reconfigurable kNN classifier implementation 

on Xilinx Virtex 4 FPGAs [31]. A speedup of 76X was obtained compared to a MATLAB 

implementation on Pentium Dual-Core E5300.  

I. Stamoulias and E. Manolakos proposed implementation of kNN classifier on Xilinx 

Virtex 5 FPGAs [32]. It achieved 10 times slower performance than an earlier (2008) GeForce 

8800GTX GPU implementation for large problem size but was considerably more power 

efficient  and it was quoted GPU implementation claimed to be 100 times faster than CPU of its 

time. 

 Y. Pu, J. Peng and L. Huang presented an efficient kNN algorithm implemented on 

FPGA based HCS using OpenCL [33]. In this paper, they gave experimental results that were 

148 times faster compared to an Intel Core i7-3770k CPU using bubble sort algorithm within 

kNN.  
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H. Peng and L. Huang proposed an efficient FPGA implementation for odd-even sort 

based kNN algorithm using OpenCL (2016) [34]. It gave 142 times speedup when compared to 

an Intel Core i7-3770k CPU using odd-even sort within kNN.  

Qingyun Tang presented FPGA Based Acceleration of kNN using HLS which was 15 

times faster when compared to a Xeon E5-2637V3 CPU [35].  

Table I illustrates the execution comparison summary from previous works. 

Table I. Speed comparison summary forKNN from previous works 

Reference Title Hardware Speedup 

A dynamically reconfigurable 

kNN classifier 

implementation (2012) [31] 

Xilinx Virtex 4 FPGAs 

 

76 times faster than Matlab 

implementation on Pentium 

Dual-Core E5300 

Implementation of kNN 

classifier (2013) [32] 

Xinlinx Virtex 5 FPGAs 10 times slower than an 

earlier GeForce 8800GTX 

GPU implementation 

An efficient kNN algorithm 

implemented on FPGA based 

heterogeneous computing 

system using OpenCL (2015) 

[33] 

Stratix IV 4SGX530 FPGAs 148 times faster than the 

implementation on an Intel 

Core i7-3770k CPU 

An efficient FPGA 

implementation for odd-even 

sort based kNN algorithm 

using OpenCL (2016) [34] 

DE5 FPGAs  142 times faster than the 

implementation on an Intel 

Core i7-3770k CPU 

FPGA Based Acceleration of 

Matrix Decomposition and 

Clustering Algorithm Using 

High Level Synthesis (2016) 

[35] 

StratixV A7 FPGAs 15 times faster than the 

implementation on Xeon E5-

2637V3 CPU and same speed 

with NVIDIA K620 GPU 

3.3 IFSO Implementation and Synthesis of kNN 

This section describes the implementation of kNN using IFSO. There are two parts of 

code in an OpenCL specification: Host and Device. The function of host code is to manage 

resources and tasks. Device part is the OpenCL computation blocks called kernels. The kernels 
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are executed on FPGAs. Because of the parallel architecture of FPGAs, the FPGA accelerator 

board can provide plenty of hardware resources for the application to utilize. For many 

computation intensive algorithms this approach can reduce the computation time and increase the 

power efficiency. Figure 10 illustrates the basic usage model of IFSO. 

 

Figure 10. Intel SDK for OpenCL use Model [36] 

The kNN algorithm uses two main OpenCL kernels which implement distance 

calculation and sorting process.  

3.3.1 Distance Calculation Kernel 

The distance calculation task has several parameters. D is the dimension size of the data. 

T_N is the matrix of training data set. This is the most computationally intensive part of the kNN 

algorithm, so it is implemented in a separate kernel. For each query point, the distance 

calculation is independent, hence mapping the distance calculation to thread parallelism should 

decrease the computing time. A nested for loop is used to loop through each of the query data 

point and their dimensions. Each thread passes through a for-loop over the dimensions of the 

data, which could be unrolled to increase throughput. 
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To reduce the use of global memory, local memory could be used to temporarily store the 

calculation results in process or reference points like cache in CPU memory system. The data 

stored in local memory can be shared in a single work-group so the threads do not have to read 

them form global memory every single time when another calculation needed.  

In dimensional blocked distance kernel, reference points are loaded into local memory 

and reused to calculate the distance by all the query data in the same work-group. All paired 

distance is computed using the data stored in local memory and the results are written back to 

global memory after the whole block is processed. The full utilization of local memory will lead 

reduced usage of global memory bandwidth. 

3.3.2 Distance Rank Kernel 

Distance ranking is a key step in kNN which utilizes sorting algorithm. There are large 

numbers of different sorting algorithms that can be used in kNN. Most of these algorithms 

require heavy global memory access. In heterogeneous computing with IFSO, the main goal is to 

minimize the use of global memory which can cause large latencies and maximize parallel 

computation on FPGA. Bitonic sort algorithm was used in the distance rank kernel. The 

calculated distance values are all stored in the local memory and separate the values into smaller 

parts, where the parts numbers are 2n. There is no restore data to replace the smaller data or 

larger data in local memory. When all values are loaded, the data should be sorted in small parts 

separately and combine small parts to larger ones. The bitonic split is a procedure that cuts one 

bitonic into two smaller ones, where all the elements of the first sequence are less than or equal 

to the ones in the second. A bitonic sequence is divided between its two halves, and the nth 

element in each part is compared with each other. If they are out of order, they are swapped. 

Applying this procedure repeatedly onto the smaller lists, the result is a sorted sequence in 
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ascending order. The original two sequences can be combined into one single bitonic sequence. 

This procedure continues until the entirety of the input has been sorted. 

3.4 Result and Discussion 

3.4.1 Experimental Results  

In order to determine the performance obtained by IFSO for implementing the kNN 

algorithm, test kernels with different data dimensions were constructed to compare the 1D and 

2D kernels. The 2D version gave better performance and used less FPGA reconfigurable 

resources, hence we use it when comparing with CPU results. Kernels optimized for data 

dimension sizes 32, 64, 78 and 128 were executed. The inner for loop for distance kernel with 

those dimensions are fully unrolled. Setting higher SIMD factor allows the complier to design 

hardware that could execute more work-items in parallel but will use more FPGA hardware 

resources. The execution performance decreases as the dimension size increases because there is 

not enough space in local memory to store the calculated distance values.  

Tables II and III below show the performance of IFSO for kNN for three different 

dimensions on CPU (Xeon E5-2620), Intel Stratix V A7 and Intel Arria 10 GX. The first set of 

tests was conducted with varying dimension size from 64 to 128. The second table was obtained 

with constant dimension size of 78, but with different reference data sizes.  

Table II. kNN Performance with 20480 Samples,20 Clusters and Various Dimension Sizes 

Dimension 

Size 

Xeon E5-2620 CPU 

execution time (ms) 

Stratix V A7 

execution time (ms) 

Arria 10 GX 

execution time (ms) 

64 2759.447 60.875 58.681 

78 3490.068 42.836 45.364 

128 12842.687 160.752 158.122 
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Table III. kNN Performance with 78 Dimensions, 20 Clusters and Various Data Sizes 

Data Size Xeon E5-2620 CPU 

execution time (ms) 

Stratix V A7 

execution time (ms) 

Arria 10 GX 

execution time (ms) 

1280 16.082 0.247 0.260 

2560 61.113 1.018 0.984 

5120 256.676 3.249 4.382 

10240 898.369 11.517 10.867 

20480 3494.656 43.783 45.506 

 

Figure 11 illustrates the speedup obtained by FPGA when compared to CPU for three 

dimension sizes. The speedup factor increases from 64 to 78 and remains almost the same for 78 

to 128. Figure 12 illustrates the speedup obtained by FPGA when compared to CPU for three 

data sizes. The speedup factor increases slightly as the data size increases. The local memory on 

FPGA board is limited and it can only store certain size of dataset. Once the dimension goes 

from 78 to 128, the size of calculated values is larger than the size of local memory. In this case, 

part of the calculated values would be stored in global memory, and they would be transferred 

from global memory to local memory for processing when asked. This procedure would increase 

the execution time.  
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Figure 11. Speedup of Stratix A7 and Arria 10 over CPU with Varying Dimension Sizes 

 

 

 

 

Figure 12. Speedup of Stratix V A7 and Arria 10 GX over CPU with Varying Data Size 
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3.4.2 Hardware Resources and Power Utilization 

In our experiments, the power consumption of CPU and FPGA was measured with a 

power meter. The result is summarized in Table IV where accelerator power is the total power 

consumed by FPGA board, excluding the power consumed by the CPU.  

Table IV. Power Utilization of Various KNN Implementations 

System CPU only system CPU with Stratix V 

A7 

CPU with Arria 10 

GX 

Idle Power (Watt) 106.2 126.7 127.7 

Execution Power 

(Watt) 

137.5 130.8 130.5 

Accelerator Power 

(Watt) 

- 24.6 24.3 

 

The resource utilization of various kernels along with maximum frequencies is 

summarized in Table V. 

Table V. Stratix V A7 and Arria 10 GX Resource Utilization and Frequency of Various IFSO KNN kernels 

Kernels Logic % I/O  

pins % 

DSP 

blocks % 

Memory 

bits % 

RAM 

blocks % 

Kernel 

fmax 

(MHz) 

64Dimension 

Stratix V A7 

33 58 63 13 40 225.38 

78Dimension 

Stratix V A7 

29 58 100 13 35 289.26 

128Dimension 

Stratix V A7 

32 58 54 14 46 286.35 

64Dimension 

Arria 10GX 

38 16 70 18 30 251.35 

78Dimension 

Arria 10GX 

40 16 83 20 48 250.94 

128Dimension 

Arria 10GX 

38 16 79 18 59 271.58 
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3.4.3 Discussion 

Experimental results show that the IFSO implementation of kNN algorithm with bitonic 

sorting gives good performance on FPGA when compared to Xeon E5-2620 CPU. For dimension 

sizes between 64 and 78 the speedup factor increased from 50 to 80 times. But it then levelled 

off when we go from 78 to 128. Similarly, the speedup factor increased with data size up to 5120 

elements and then it levelled off. The limited local memory size on FPGA board may be the 

reason why the increase in speedup factor levels off for larger dimension and data sizes. 
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Chapter 4 

Acceleration of kNN Algorithm Using Radix Sorting 

In this chapter we present the research results obtained for accelerating the kNN 

algorithm using radix sorting. 

4.1 Introduction to radix sorting algorithm 

Radix is one of the fasted sorting algorithms [37]. Radix sort is a counting sort and fast 

especially for large dataset. There are two major categories for radix sort algorithms, which are 

strings forward from left to right, and strings backward, from right to left [38]. The well-known 

radix sort algorithms are radix-exchange sort [39], top-down radix sort [40], and MSD radix sort 

[41]. For numerical data, the main idea of radix sort is to vary each digit of the values given from 

input dataset. Assuming that the sorted values have 𝔦 digits for each value where 𝔦 varies from the 

last significant digit to the most significant digit of a number. Sort input array using count-sort 

algorithm according to 𝔦th digit. For forward scan, the input strings are split according to the first 

character and arranged as groups in sorted order. “Apply the algorithms recursively on each 

group separately, with the first character removed” [42]. After ⅈ steps of the sorting algorithm, 

the input strings can be sorted properly. For backward scan, the input strings are split from the 

last character and arrange as groups in order. Same as the forward scan, apply the sorting 

algorithm on all strings expect last character. The input strings would be sorted once the first 

character had been added into the new order strings.  
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The pseudo code for radix sort is shown as follows: 

Algorithm 3. Radix sort algorithm [42] 

Radix sort (A, d) 

//It works same as counting sort for d number of passes. 

//Each digit key in A[1…n] is a d-digit integer. 

//(Digits are numbered 1 to d from right to left.) 

 for j = 1 to d do 

  //A[] -- Initial Array to Sort 

  int count[10] = {0}; // for representing values from 0 to 9 

  // Store count of “keys” in count[] key – it is number at digit place j 

  for i = 0 to n do 

    count[key of (A[i])] in pass j]++ 

  for k = 1 to 10 do 

    count[k] = count[k] +count [k -1] 

  // Build the resulting array by checking new position  

// of A[i] from count[k] 

  for i =n-1 downto 0 do 

     result[ count[key of (A[i])]] = A[j] 

     count[key of (A[i])] 

  // Now main array A[] contains sorted numbers according to  

// current digit place 

  for i = 0 to n do 

     A[i] = result[i] 

 end for(j) 

end func 

Based on the algorithm, sorting starts at the one’s digit (least significant digit). Once the 

first loop is finished, the second loop would begin by sorting at the ten’s digit. This continues 

until all 𝔦 digits are processed. 

 Figure 13 shows an example illustrating the execution of radix sort algorithms. 
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Figure 13. Example of radix sort algorithm [42] 

For first pass, the least significant digit has been sorted using counting sort. Once the 

least significant digits from different values are the same, they should keep initial alignment. For 

second and third pass, the ten’s and hundred’s digit would be sorted in the same method.   

4.2 Related Works 

Previous research work on acceleration of kNN on HCS was discussed in Section 3.2. In 

this section, radix sorting algorithm implemented on different platforms in recent years is 

discussed.   

Shaditalab et al [43] described the design and implementation of parallel pipelined Fast 

Fourier Transform (FFT), using Decimation in Frequency (DIF) algorithm on FPGAs. For N-

point complex data, they have achieved an execution time of 265.45 microseconds for 1024-

point FFT. 

Huang et al present an empirically optimized radix sort for GPU [44]. They used on four 

different NVIDIA GPUs (GTX 280, 8800 GTX, 9600M GT, 9400M) and utilized empirical 
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optimization techniques for radix sort. The maximum speedup on four platforms are 33.4%, 28%, 

27.9%, and 32.6% respectively. 

Khan et al presented analysis of fast parallel sorting algorithm for GPU architectures [45]. 

They achieved around 25X speedup on NVIDIA GTX-260 GPU comparing with 2-core Intel 

Q8400 CPU. 

Liu and Deng presented a scalable hardware accelerator for parallel radix sort [46]. They 

achieved a speedup of 40X on Xilinx Virtex-5 XC5VLX110T FPGA versus DDR2-800 dual-

rank 2GB CPU. 

4.3 IFSO Implementation 

The two main kernels in kNN algorithm are distance calculation and sorting. Here we 

used radix sorting in the sorting kernel. 

4.3.1 Distance Calculation Kernel 

This kernel is the same as that described in section 3.3.1.  

4.3.2 Distance Rank Kernel 

This kernel consists of two parts. The first part is utilized to rank the data obtained from 

local memory. The second part separates data into ten groups for storing each ⅈ step ranked 

distance. Once these step ranked distances are loaded, the next step is to combine these ten 

groups into one complete dataset. Applying this procedure repeatedly onto the next ⅈ digits, the 

result is a ranked sequence in ascending order. 

In the second part of this kernel, the ten separated groups are used for storing current step 

ranked value from 1 to 10. The separated groups are stored in global memory as the number of 
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iterations increased. As needed, these groups would be transferred from global memory to local 

memory for processing.  

4.4 Results and Discussion 

4.4.1 Experimental Results  

In order to determine the performance obtained by IFSO for implementing the kNN 

algorithm, test kernels with different data dimensions were constructed to compare the 1D and 

2D kernels. Kernels optimized for data dimension sizes 16, 32 and 64 were executed. Setting 

higher SIMD factor allows the complier to design hardware that could execute more work-items 

in parallel, but will use more FPGA hardware resources. 

kNN with radix sorting algorithm was implemented using IFSO running on Stratix V A7 

and Intel Arria 10 GX FPGA boards. Table VI below shows the performance for three different 

dimensions on Xeon E5-2620 CPU, Stratix V A7 and Arria 10 GX. 

Table VI. kNN Performance with 20480 Samples, Various Dimension Sizes 

Dimension 

Size 

Xeon E5-2620 CPU 

execution time (ms) 

Stratix V A7 

execution time (ms) 

Arria 10 GX 

execution time (ms) 

16 2268.659 1586.365 1469.352 

32 2869.146 1869.324 1804.657 

64 3696.548 2536.544 2489.364 

 

The FPGA platforms gave better performance in terms of execution time. Figure 14 

illustrates the execution time on different platforms for the data dimensions.  
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Figure 14. kNN using radix sort algorithm on different platforms with Varying Dimension Sizes 

 

4.4.2 Hardware Resources and Power Utilization 

Power meter was utilized to measure the power consumption of CPU and FPGA in 

performance tests. Table VII shows the power results. Accelerator Power is the total power of 

FPGA boards implementing on CPU exclude the power utilized on CPU.  

Table VII. Power Utilization of Various KNN Implementations 

System CPU only system CPU with Stratix V 

A7 

CPU with Arria 10 

GX 

Idle Power (Watt) 106.2 127.2 127.9 

Execution Power 

(Watt) 

138.6 131.5 131.4 

Accelerator Power 

(Watt) 

- 25.3 25.2 

 

The hardware resources utilization for implementation with maximum frequencies used 

are given in Table VIII.  
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Table. VIII Stratix V A7 and Arria 10 GX Resource Utilization and Frequency of Various IFSO KNN kernels 

Kernels Logic % I/O 

pins % 

DSP 

blocks % 

Memory 

bits % 

RAM 

blocks % 

Kernel fmax 

(MHz) 

16Dimension Stratix 

V A7 

33 58 63 13 40 225.38 

32Dimension Stratix 

V A7 

29 58 100 13 35 289.26 

64Dimension Stratix 

V A7 

32 58 54 14 46 286.35 

16Dimension Arria 

10GX 

38 16 70 18 30 251.35 

32Dimension Arria 

10GX 

40 16 83 20 48 250.94 

64Dimension Arria 

10GX 

38 16 79 18 59 271.58 

 

From the tables, we can see that FPGA implementation is more power efficient than CPU. 

The hardware resource utilization on Stratix V and Arria 10 looks similar in percentage. 

However, the resources utilized on Arria 10 is more than utilized on Stratix V. Because Arria 10 

is the new generation board and provides more resources when comparing to older boards.  

4.4.3 Discussion 

Radix sort used within kNN provides better performance on FPGA in terms of   

execution time and power consumption compared to a multi-core CPU. However, in distance 

rank kernel, radix sort algorithm uses a large number of iterations making hard to fully utilize the 

local memory efficiently. This limits the amount of speedup obtained. 
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Chapter 5 

 Acceleration of SRAD Simulation 

5.1 Introduction to Speckle Reducing Anisotropic Diffusion 

Increasing chip power density has brought application specific accelerator architectures 

to the forefront as an energy and area efficient solution. HCS makes use of specialized hardware, 

such as FPGAs, to deliver higher performance and maintain the same or better power efficiency 

when compared to homogeneous systems [47]. Many embedded systems-on-chip (SoCs) in use 

today employ specialized hardware components [48]. One of the common image processing 

architectures of accelerators targeted at a particular ultrasound image enhancing algorithm is 

known as ‘Speckle Reducing Anisotropic Diffusion’ (SRAD). The accelerator control logic is 

customized to the data flow and computational requirements of the algorithm. Each computation 

in SRAD is complex and includes input from all neighboring pixels, and consequently, it is 

difficult to obtain good performance using a general-purpose processor. To achieve this goal, a 

high performance, low cost SRAD accelerator could be embedded into a portable ultrasound 

device to improve visual quality of the image. 

The computational data flow of SRAD is shown in Figure 15: 
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Figure 15. SRAD Dataflow [49] 

Figure 15 shows the two stages and the operations performed in each stage. In the first 

stage, the directional derivatives for each pixel are determined, followed by the calculation of a 

diffusion coefficient 𝐶𝑖  corresponding to each pixel in the input image. Stage 1 thus requires 

immediate neighboring pixel values to be available for each pixel currently being processed. The 

second stage calculates the divergence of the diffusion coefficients multiplied by the directional 

derivatives computed in the Stage 1 and uses the divergence to compute the new pixel value. For 

each new pixel value computed, Stage 2 requires immediate neighboring pixel values, and also 

requires immediate neighboring diffusion coefficient values computed in Stage 1 as well [49]. 

The computation for each active pixel 𝐼 in both stages is dependent on its adjacent pixel (IE, IW, 

IN, IS), both in the row and column directions. Assuming row by row processing of the input 

image, the computations in Stage 2 depend on previous, current and future results of Stage 1. 

This makes any potential parallel optimization of the algorithm more complex. The algorithm is 

run for a number of iterations which, in most cases, is empirically determined by the user; an 
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unnecessary number of iterations increases the computation time and produces very little 

additional image quality [50]. 

5.2 Related Research 

Over the years, extensive research about speckle reducing anisotropic diffusion has been 

done on CPU and GPU. Y. Yu and J. Yadegar published Regularized speckle reducing 

anisotropic diffusion for feature characterization [51].  They put forward a new method called 

energy condensation integral and developed a regularized SRAD (Reg-SRAD). Reg-SRAD 

generates outputs using increased resolution while retaining the characteristics the SRAD-

filtering speckle with regional features enhanced. 

H. Kim and his research group presented Speckle reducing anisotropic diffusion based on 

directions of gradient [52]. In this paper, the authors added directions of gradient using Prewitt 

mask operations for different categories. By this method, the pixel values increased from 4 

dimensions to 8 and 16 dimensions. 

Evaluation of an accelerator architecture for SRAD called CPE achieved was more than 

200 times speedup over CPU (Intel Core i5-2500K) and GPU (NVIDIA 8800 GTX).   

5.3 Intel SDK for OpenCL Implementation 

The computation of each pixel is independent of other pixels and thus could be computed 

using different threads, and various optimization such SIMD vectorization could be used to 

increase the throughput.  Three phases were attempted in this research. First phase is the kernel 

storing pixel arrays in global memory. Second phase is to transfer the pixel array from global 

memory into local memory, and separating the array into small groups. In these small groups, 

diffusion coefficient 𝐶𝑖  was calculated for each pixel in parallel. Third phase is to make 
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comparison between diffusion coefficients 𝐶𝑖  from different groups, which helps detect the 

speckle and recalculate the pixel value by diffusion coefficients 𝐶𝑖 and values nearby (IE, IW, IN, 

IS). The second and third phases are similar, and the two phases share the same local memory 

with task parallelism. Although each phase is not memory intensive, the effect of combining the 

two phases is increase in memory utilization.   

5.4 Result and Discussion 

5.4.1 Experimental Results  

When evaluating the execution speed on SRAD, frames per second (FPS) was used as an 

evaluation metric. It represents the frame frequency which is inversely proportional to the 

execution time. Once the execution time is shorter and the FPS is larger. Table IX and X below 

show the FPS and running time of different image sizes on CPU, Stratix V A7 and Arria 10 GX 

FPGAs. Table IX shows the FPS when varying image sizes from 128*128 to 512*512. The 

second table shows the execution time of each image size on different platforms. From Table IX 

and X, we note that the smaller image size processed on FPGA boards had better performance. 

However, more iteration computation required on larger image sizes decreased the execution 

efficiency when implementing on FPGA.   

Table IX. SRAD Results of FPS with various Image Sizes 

Image Size CPU (FPS) Stratix V A7 (FPS) Arria 10 GX (FPS) 

128*128 60 100 105 

256*256 18 15 18 

512*512 10 3 5 
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Table X. SRAD Execution time with various Image Sizes 

Image Size CPU execution time 

(ms) 

Stratix V A7 

execution time (ms) 

Arria 10 GX 

execution time (ms) 

128*128 1537.468 1398.249 1259.586 

256*256 3569.254 3368.496 3048.364 

512*512 9861.279 11359.756 10953.861 

 

Figure 16 and 17 illustrates the speedup times when image data is processed on different 

platforms.  

 

Figure 16. Results of FPS implemented on different platforms 
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Figure 17. Speedup of Stratix V A7 and Arria 10 GX over CPU with varying image size 

 

5.4.2 Hardware Resources and Power Utilization 

In our experiments, the power consumption of CPU and FPGA was measured with power 

meter. The result is summarized in Table XI. In Table XI, Accelerator Power is the total power 

of FPGA boards excluding the power utilized on CPU. The power used on Stratix V A7 was 24.4 

(130.6-106.2) and on Arria 10 GX was 25.3 (131.5-106.2). The power consumption on FPGA 

boards was much lower than it on CPU. 

Table XI. Power Utilization of Various SRAD Implementations 

System CPU only system CPU with Stratix V 

A7 

CPU with Arria 10 

GX 

Idle Power (Watt) 106.2 126.8 127.6 

Execution Power 

(Watt) 

138.6 130.6 131.5 

Accelerator Power 

(Watt) 

- 24.4 25.3 
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The resource utilization of various kernels along with maximum frequencies used in the 

test is summarized in Table XII.  

Table XII. Stratix V A7 and Arria 10 GX Resource Utilization and Frequency of Various OpenCL SRAD kernels 

Kernels Logic % I/O pins % DSP 

blocks % 

Memory 

bits % 

RAM 

blocks % 

Kernel 

fmax 

(MHz) 

128*128 

pixels Stratix 

V A7 

55 40 75 16 52 239.54 

256*256 

pixels Stratix 

V A7 

60 40 83 16 42 267.52 

512*512 

pixels Stratix 

V A7 

73 40 66 17 55 298.33 

128*128 

pixels Arria 

10 GX 

52 13 73 19 38 268.15 

256*256 

pixels Arria 

10 GX 

58 13 86 22 40 256.87 

512*512 

pixels Arria 

10 GX 

69 13 89 18 48 286.54 

 

5.4.3 Discussion 

During the image processing, SRAD implemented on FPGA boards shows good or 

similar performance compared with implementation on CPU for lower image sizes, and better 

power consumption in all cases. However, the intensive memory utilization on second and third 

phases is the vital drawback for this design. The implementation with smaller image size has fast 

execution time and less hardware utilization. While for higher image sizes the performance 

dropped fast. In this single kernel design, the diffusion coefficient 𝐶𝑖 was calculated in second 

phase and reused in third phase. In these two phases, the parallel structure is not fully optimized.  
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Chapter 6. 

Conclusions and Future Work 

6.1 Conclusions 

In this work, kNN using bitonic sorting algorithm, kNN using radix sorting algorithm and 

SRAD are implemented using IFSO targeting Intel Stratix V A7 and Arria 10 GX FPGAs. The 

implementation of kNN synthesized for FPGA had better performance compared to Xeon E5-

2620 CPU in terms of execution time and power efficiency. Since bitonic sort is a parallel 

sorting algorithm it performed well during research achieving up to 80 times speedup on FPGA 

compared to multi-core CPU. The kNN algorithm using radix sort did not give high speedup on 

FPGA compared to CPU because of it’s sequential nature. But the FPGA implementation still 

provided better power efficiency compared to a multi-core CPU. In the case of SRAD, although 

the FPGA power efficiency is better when compared with multi-core CPU, the execution time is 

just equal with CPU in smaller image size and higher in larger ones. Incomplete optimization and 

single kernel are the main reasons for not getting better speedup using FPGA. 

Two different FPGA boards based on Stratix V A7 and Arria 10 GX FPGAs were used as 

hardware accelerators supported by IFSO. The process of synthesizing FPAG accelerator 

hardware was very quick and efficient compared to designing and interfacing FPGA hardware 

accelerators using traditional HDL based design methodology. It does require expertise in 

writing effective OpenCL programs to get the best results from IFSO in terms of execution time.  
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6.2 Future Work 

In this research, kNN using bitonic sorting algorithm gave good speedup results on 

FPGAs. First, bitonic sorting algorithm is used as parallel computing structure, which is suitable 

for FPGAs. Second, the optimization of memory utilization increased the execution speed. kNN 

using radix sorting algorithm and SRAD did not give good speed performance results on FPGAs. 

For radix sorting algorithm, the multiple iterations are memory intensive, which cost too much 

time on data transmission between local memory and global memory. For SRAD, multiple 

kernels and better parallel structures could be implemented on FPGA to enhance performance for 

larger image size. Finally, the implementation on the new Arria 10 GX FPGA may perform well 

due to larger on chip memory size.  
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