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Abstract

In this major paper, we study the influence of structural breaks in the financial

market model with high-dimensional data. We present a model which is capable of

detecting changes in factor loadings, determining the number of factors and detecting

the break date. We consider the case where the break date is both known and

unknown and identify the type of instability. For the unknown break date case, we

propose a group-LASSO estimator to determine the number of pre- and post-break

factors, the break date and the existence of instability of factor loadings when the

number of factor is constant. We also present the asymptotic properties of penalized

least square estimator with both the cross-sections and the time dimensions tend to

infinity.

Further, we develop a cross-validation procedure to obtain the tuning parameters

to fine-tune the penalty terms and use the least square approach to estimate the break

date after the number of factors is obtained. We also present a Monte Carlo simulation

to evaluate the performance of the proposed procedure and analyze real data from

2007-09 Great Recession. The proposed procedure generally detects the break date

correctly during the Great Recession while the procedure performs relatively poorly

in estimating the number of factors in the pre- and post-break date case.
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Chapter 1

Introduction

1.1 Background and Motivation

This major paper studies the influence of structural breaks in the financial market

model with high-dimensional data. In classical economic data sets, statistical mod-

els are considered in a low-dimensional data setting since the number of records is

larger than the number of covariates. Thus, the classical statistic techniques are

only applicable for low-dimensional data. Briefly, high-dimensional statistical anal-

ysis refers to the situation where the number of unknown parameters is larger than

the number of samples in the data (Peter Bühlmann et al. 2011)[9]. As explained

in Sunil Sapra (2015)[22], modern data in economics involves millions of records on

individuals. Therefore, the high-dimensional data models have become a necessity in

the financial market to analyze data on the massive amount of features for a limited

number of individuals.

1



CHAPTER 1. INTRODUCTION 2

On top of the high-dimensional data setting, we also consider the scenario where the

data have the structural breaks. Indeed, in macroeconomics, the structural breaks

demonstrate themselves in time series data for various reasons, for instance, economic

crises, policy changes, and regime shifts (S. Chancharat et al. 2007)[14]. We apply the

model to panel data in the 2007-2009 Great Recession. The panel data used widely

in economics also offers an application of high-dimensional data analysis (Sunil Sapra

2015)[22]. Perron (1989)[20] argues that if the structural breaks are not specified

appropriately, we may obtain the spurious results. Indeed, ignoring the break points

often leads to unexpected consequences. First, the number of pre- and post-break

factors will be overestimated. Second, this action will misinterpret the later analysis

on economy associated with the number of factors. Although there exists some work

that is related to this topic, our study involves in-depth analysis of structural breaks.

1.2 Existing Studies and Their Limitations

In this subsection, we indicate the limitations of existing studies, which include lo-

cating the break date, detecting the change in loadings, determining the number of

factors. First, existing methods could determine the number of factors as given in

Bai and Ng (2002)[4], Onatski (2010)[19], but the break date is required and the

methods are unable to detect the change in loadings. Second, the work of Breitung

and Eickmeier (2011)[8] does not provide the estimation of some pre- and post-break

factors and is unable to detect a change in the number of factors. Also, we quote the

work of Bai (1997)[5] which requires the number of factors to determine the break
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date by using residual-based procedures. Third, a limitation of the method given

in Bai and Ng (2002)[4] is that we have to know the break date. However, if the

break date is unknown, the number of factors will be overestimated when applying

those methods. Fourth, in the recent work of Bai and Liao (2015)[6], and Caner and

Han (2014)[10], they use shrinkage methods to estimate the stable models and detect

structural breaks in the model.

The work of Cheng et al. (2016)[13] improves the approach to cope with the unknown

break date case compared with the work mentioned above. Assuming that the break

date is unknown, the proposed methods simultaneously estimate the number of pre-

and post-break factors, and determine changes in factor loading if the number of

factors stays constant. Meanwhile, this work does not require the knowledge of the

number of pre- and post-break factors for detecting the instability.

Moreover, we show that a structural change is recognizable if the factor loading

changes. We determine the break point by the dimensionality of the factor model.

As a result, the total number of pre- and post-break factors is minimized when the

break date is specified precisely. We also show that as long as the number of pre-

and post-break factors have been determined, the location of the break date can be

estimated by using sum-of-square residuals criterion.

As mentioned in Cheng et al. (2016)[13], the proposed estimator is developed by

minimizing the penalized least square (PLS) criterion function. Then, we apply the

Group-Least Absolute Shrinkage and Selection Operator (Group-LASSO) penalties
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in pre-break factor loadings and changes in factor loadings. The number of non-zero

columns in the loading matrices is equal to the number of pre- and post-break factors.

When a column of zero in loading matrices becomes non-zero after the break, a new

factor appears. We assume that the number of factors is fixed as the sample size

increases, and we also assume that the breaks in the loadings do not shrink with the

sample size.

1.3 Main Contribution

The main contribution of this major paper is to present an econometric model, which

is capable of detecting the type of instability, determining the number of pre- and

post-break factors, and detecting the break date simultaneously. We consider the

type of factor model instability: changes in the number of strong factors. Indeed, in

an economic environment, the break date is usually unknown.

According to Zou (2006)[28], the LASSO is a regularization technique for simultane-

ous estimation and variable selection. Cheng et al. (2016)[13] extends the results in

Zou (2006)[28] in the following way. First, they use a two-step procedure to determine

LASSO penalty. Second, they construct the penalty terms for the unknown break date

case. The method consists in taking the average of the penalties computed by each

potential break date. Third, they develop a cross-validation procedure to fine-tune

the LASSO penalties and propose the shrinkage estimation via LASSO. The PLS esti-

mator is a shrinkage estimator because it sets small coefficient estimates equal to zero.
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1.4 Organization of the Major Paper

The remainder of this major paper is organized as follows. Chapter 2 describes the

statistical models and conditions for the instability. Chapter 3 presents the shrink-

age estimation and introduces the model selection. This chapter also addresses the

asymptotic theory for the estimator as well as the implementation of the parameter

estimation and algorithm. The content presented in Chapter 4 is similar to Chapter

3 but the break date is unknown. Chapter 5 presents the numerical results from the

Monte Carlo simulation and the real data set of the Great Recession in the U.S..

The results and interpretation on the finite-sample performance of Group-LASSO

estimator and Bootstrap data report are included in this chapter. Finally, Chapter 6

concludes.



Chapter 2

Model Specifications

This chapter introduces the statistical models, notations, and instability with the

structural break. It is subdivided into two sections. In Section 2.1, we introduce the

statistical model with structural break date changes. In Section 2.2, we identify the

existence of instability.

2.1 Statistical Model and Notations

In this section, we introduce the models with respect to the factors and loadings. Con-

sider that we observe the panel data {Xit ∈ R : i = 1, · · · , N, t = 1, · · · , T0, · · · , T}.

Let Xt = (X1t, · · · , XNt)
′ ∈ RN×1 be the observations at time t, with t ∈ {1, · · · , T0,

· · · , T} where T0 denotes the break point. Usually, T0 is unknown. Before T0, there

are ra unobserved pre-break factors. After T0, there are no further breaks. We write

6



CHAPTER 2. MODEL SPECIFICATIONS 7

the pre-break statistical model in matrix notation as

Xa = FaΛ
0′ + ea, (2.1)

where Λ0 ∈ RN×ra is the matrix of factor loadings, Xa = (X1, · · · , XT0)′ ∈ RT0×N ,

Fa = (F 0
1 , · · · , F 0

T0
)′ ∈ RT0×ra, and ea = (e1, · · · , eT0)′ ∈ RT0×N . Both matrices Fa

and Λ0 are unknown. The post-break statistical model is given by

Xb = Fb,1(Λ0 + Γ0
1)′ + Fb,2Γ0

2
′
+ eb, (2.2)

where Xb = (XT0+1, · · · , XT )′ ∈ RT1×N and T1 = T − T0, Fb,1 = (F 0
T0+1, · · · , F 0

T )′ ∈

RT1×ra , Fb,2 = (F ∗T0+1, · · · , F ∗T )′ ∈ RT1×(rb−ra), and eb = (eT0+1, · · · , eT )′ ∈ RT1×N .

Here, the matrix Fb,1 spreads the factor in pre-break period to post-break period, and

the matrix Fb,2 collects new factors in post-break period. The matrices Γ0
1 and Γ0

2

denote the change in loadings of F 0
t and loading for new factors F ∗t respectively. Let

Γ0 = (Γ0
1,Γ

0
2). If the loading for factors doesn’t change, then Γ0

1 = 0. While if there

are no new factors, then Γ0
2 = 0. Also, we rewrite the model in (2.2) as

Xb = FbΨ
0′ + eb, (2.3)

where Fb = (Fb,1, Fb,2) ∈ RT1×rb and Ψ0 = (Λ0 + Γ0
1,Γ

0
2) ∈ RN×rb . In (2.1) and (2.2),

the product of factors and their loadings are identifiable. However, each term is not

identifiable. Thus, we impose normalization restrictions for the factor model. We
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rewrite the statistical model as

Xa = (FaRa)(R
−1
a Λ0′) + ea = FR

a ΛR′ + ea,

Xb = (FbRb)(R
−1
b Ψ0′) + eb = FR

b ΨR′ + eb,

(2.4)

where FR
a = FaRa and FR

b = FbRb. The Ra and Rb are transformation matrices.

2.2 Identification of Instability

In this section, we introduce the structural instability and identify it when the break

date is known or unknown. We assume that the number of pre-break factors is smaller

than the number of post-break factors: ra < rb. This is called the instability. Under

this instability, the new factors appear in the model after the break point T0. In the

mean time, the old factors in the loadings may change. We consider two cases when

the break date T0 is known and unknown, and identify the instability for each case

in Chapter 3 and 4.

Breitung and Eickmeier (2011)[8] explain that the subsample of pre- and post-break

observations will have one or more additional factors if the break date is misspecified.

Specifically, to estimate the break date, we can adjust the potential break date π to

minimize the sum of the numbers of pre- and post-break factors.



Chapter 3

Estimation and Modeling in

Known Break Date Case

In this chapter, we assume that the break date is known. As mentioned in Tibshirani

(1996)[26], the ordinary least squares (OLS) estimators are obtained by minimizing

the residual squared error. On the one hand, the OLS estimators often have large

variance but low bias. The prediction accuracy can be improved by shrinking the

coefficients to zero. On the other hand, with the large number of predictors, we

determine a smaller subset which has significant effects. Therefore, we propose the

shrinkage estimation via LASSO. It shrinks some coefficients and sets other elements

to zero. Then, we determine the number of pre- and post-break factors by the shrink-

age estimator. Next, we explain the detailed asymptotic properties of PLS estimator.

Finally, we apply a two-step estimation method to improve the finite sample perfor-

mance with the adjusted penalty weights.

9
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In Section 3.1, we introduce the shrinkage estimator. In Section 3.2, we select the

proper model. Section 3.3 describes the post model selection estimation by using the

least square method. In Section 3.4, we study the asymptotic theory for the proposed

shrinkage estimator and demonstrate related theorems and assumptions. Sections

3.5, 3.6, and 3.7 explain the techniques which are applied on weights and tuning

parameters. In real-world applications, the break date is always unknown. We will

extend the results to unknown break date case in the next chapter.

3.1 Shrinkage Estimator

The shrinkage estimators dominate the classical estimators in terms of mean squared

error (MSE) for a host of statistical models. Ahmed (2014)[1] explains that the shrink-

age estimation strategy can be used for both model selection and post estimation. In

this section, we introduce the strategy to construct the shrinkage estimator. To give

another reference about shrinkage and LASSO estimator, we also quote Nkurunziza

et al. (2016)[18] and references there in.

Cheng et al. (2016)[13] rewrite the statistical model in (2.4) as augmented system,

because the criterion function needs to be motivated in the shrinkage estimation.

Suppose that ra and rb are unknown, we choose a upper bound k such that ra+rb ≤ k.
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We rewrite statistical model in (2.4) as augmented system

Xa =

[
FR
a FR⊥

a,1 FR⊥
a,2

]
ΛR′

0(rb−ra)×N

0(k−rb)×N

+ ea = FR+
a (ΛR+)′ + ea,

Xb =

[
FR
b,1 FR

b,2 FR⊥
b

]
ΛR′ + ΓR1

′

ΓR2
′

0(k−rb)×N

+ eb = FR+
b (ΛR+ + ΓR+)′ + eb.

(3.1)

Here, FR⊥
a = (FR⊥

a,1 , F
R⊥
a,2 ) and FR

b = (FR
b,1, F

R
b,2). FR⊥

a,1 ∈ RT0×(rb−ra) and FR⊥
a,2 ∈

RT0×(k−rb) are sub-matrices of FR⊥
a ∈ RT0×(k−ra). FR⊥

a denotes the orthogonal com-

plement of FR
a ∈ RT0×ra . Similarly, FR⊥

b denotes the orthogonal complement of

FR
b ∈ RTb×rb , ΛR+ =

[
ΛR 0N×(rb−ra) 0N×(k−rb)

]
and ΓR+ =

[
ΓR1 ΓR2 0N×(k−rb)

]
.

ΛR+ and (ΛR+ + ΓR+) are the factor loadings in pre- and post-break respectively.

FR+
a and FR+

b are augmented matrices. Recall that the number of non-zero columns

in the loading matrices is equal to the number of pre- and post-break factors. Thus,

ra and rb can be estimated. Moreover, the instability can be detected. Note that

with the existence of the instability, rb > ra. We first assume that the break date is

known and let Ta = T0. In the following, we introduce the shrinkage estimator.

Yuan and Lin (2006)[27] explain that the shrinkage estimator can be obtained by

minimizing the penalized least square (PLS) objective function with group-LASSO

penalty, which is defined in terms of the `-th column of the norm of Λ and Γ. A

group-LASSO estimator either sets all elements in group equal to zero or estimates

those elements as nonzero (Cheng et al. (2016))[13]. We use the group-LASSO for



CHAPTER 3. ESTIMATION ANDMODELING IN KNOWNBREAKDATE CASE12

large-scale factor models because the irrelevant factors have zero factor loadings for

all series. To estimate the upper bound k, we need to know each principle component

estimator in subsample. In particular, assume j ∈ {a, b}, let F̃j ∈ RTj×k denote the

orthonormalized eigenvectors of (NTj)
−1XjX

′
j with the first k largest eigenvalues. Let

IA denote the indicator function of the event A. In each subsample, we estimate an

over-fitted model with k factors, then we have the unrestricted least square estimators

of the factor loading Λ̃LS = T−1
a X ′aF̃a, Ψ̃LS = T−1

b X ′bF̃b and Γ̃LS = Ψ̃LS − Λ̃LS. Now,

we propose the shrinkage estimator of ΛR+ and ΓR+ by minimizing the penalized least

square (PLS) objective function

(Λ̂, Γ̂) = argmin
Λ∈RN×k,Γ∈RN×k

[M(Λ,Γ) + P1(Λ) + P2(Γ)], (3.2)

where

M(Λ,Γ) = (NT )−1

[∥∥∥Xa − F̃a(π)Λ′
∥∥∥2

+
∥∥∥Xb − F̃b(Λ + Γ)′

∥∥∥2
]
,

P1(Λ) = αNT

k∑
`=1

ωλ` ‖Λ`‖ and P2(Γ) = βNT

k∑
`=1

ωγ` ‖Γ`‖,
(3.3)

where F̃a and F̃b are given terms, Λ` and Γ` are the `-th column of Λ and Γ respectively.

Either αNT or βNT are two coefficients of positive real number which depend on N

and T . ωλ` and ωγ` are weights defined as

ωλ` =

(
N−1‖Λ̃`‖2I{Λ̃` 6=0N×1} +N−1‖Λ̃`,LS‖2I{Λ̃`=0N×1}

)−2

,

ωγ` =

(
N−1‖Γ̃`‖2I{Γ̃` 6=0N×1} +N−1‖Γ̃`,LS‖2I{Γ̃`=0N×1}

)−2

,

(3.4)
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where Λ̃ ∈ RN×K and Γ̃ ∈ RN×K are preliminary estimators of factor loading Λ+ and

Γ+. The weights are used to distinguish the zero and nonzero columns in the loading

matrices ΛR+ and ΓR+. (Cheng et al. (2016))[13]

3.2 Model Selection Estimator

In this section, we apply the shrinkage estimator defined in Section 3.1 to determine

the number of pre- and post-break factors. When the break date T0 is known, ra and

rb are known as well. We assume that the inequality rb > ra holds, this condition

identifies the instability on statistical model. We also detect the existence of the

instability by using the shrinkage estimator. Let the break indicator B0 ∈ {0, 1}. If

there is no structural break, then B0=0. With the existence of the instability, B0=1

and ra < rb. Here, the estimation of B, ra and rb happens in the mean time (Cheng

et al. 2016)[13]. Since Γ0 = (Γ0
1,Γ

0
2) = 0 if and only if ΓR = (ΓR1 ,Γ

R
2 ) = 0, we rewrite

post-break statistical models in (2.4) to determine B0 as

Xb = FR
b ΨR′ + eb = FR

b,1(ΛR + ΓR1 )′ + FR
b,2ΓR2

′
+ eb, (3.5)

where FR
b = (FR

b,1, F
R
b,2), ΨR = (ΛR + ΓR1 ,Γ

R
2 ) and ΓR=(ΓR1 ,ΓR2 ).

We need to know the column norm of Λ̂ and Γ̂ to estimate B, ra and rb. The estimator

of B0 is defined as

B̂ = I{‖Γ̂‖>0}. (3.6)
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The estimators of ra and rb are given by

r̂a = min {j ≥ 1 and j : ‖Λ̂`‖ = 0 for all ` > j},

r̂b = max

(
r̂a, min {j : ‖Γ̂`‖ = 0 for all ` > j}

)
.

(3.7)

On the one hand, the method can be used to detect a structural break and determine

the instability. On the other hand, to detect the structural break in the factor load-

ings, the method does not require the knowledge of number of pre- and post-break

factors.

3.3 Post Model Selection Estimation

In this section, we demonstrate that the shrinkage estimator can provide a estima-

tion of loading matrices Λ and Γ. However, the penalty terms do not estimate the

non-zero coefficients. Thus, we propose to re-estimate the loading matrices by using

least squares conditional on the estimators B̂, r̂a and r̂b. The estimator for the post

model selection is named PMS estimator.

If B̂ = 0, which means that there is no structural break, we can re-estimate the factor

model on the full sample. Specifically, let F̃ ∈ RT×k denote the orthonormalized first

k principle components constructed from the full sample. Let Λ denote the first r̂a

columns of the full sample least square estimator Λ̂LS, where Λ̃LS = T−1X ′F̃ . There-

fore, we set Ψ = Λ, since the columns of F̃ are constructed to be orthogonal, Λ is

identical to the OLS estimator obtained by regressing X on the first r̂a
∗ columns of
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F̃ (Cheng et al. 2016)[13].

If B̂ = 1, then we need to re-estimate the subsample of factors and loadings. Let

F̃a and F̃b denote the factor estimates for the subsample of factors and loadings

respectively. In addition, let Λ̄ denote the first r̂a columns of the least square estimator

Λ̃LS = T−1X ′aF̃a. Let Ψ̄ denote the first r̂b columns of the least square estimator

Ψ̃LS = T−1X ′bF̃b. The PMS estimators are defined as

Λ̂PMS = (Λ,0) and Ψ̂PMS = (Ψ,0), (3.8)

where 0 is the zero matrix.

3.4 Asymptotic Properties

In this section, we present the asymptotic properties of PLS estimator, the instability

and the break date. Bai and Ng (2002)[4] explains that penalty for overfitting must

be a function of both the cross-sections (N) and the time dimensions (T ) in order to

estimate the number of factors. However, the function of N or T , such as AIC or BIC,

do not work because both dimensions of the panel data are large. As discussed in Bai

and Ng (2002)[4], this major paper assumes that both N and T converge to infinity

under empirical application to maintain flexibility. We present some assumptions and

theorems on the large sample properties of the preliminary estimators Λ̃ and Γ̃ and

the convergence rates of the sequences αNT and βNT below.

Recall that the notation of Xn = Op(an) means the set of values xn/an is stochas-
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tically bounded. More specifically, for any ε > 0, there exists a finite M > 0 and

a finite N > 0, such that Pr(|Xn/an| > M) < ε,∀n > N . The following Theo-

rem 3.1 and 3.2 have restricted the preliminary estimators Λ̃ and Γ̃ on stochastic

order, which may change the data-dependent weights ωλ` and ωγ` in (3.4). We define

CNT=min(T 1/2,N1/2), where CNT is the convergence rate of the unrestricted least

square estimator.

Theorem 3.1. As N, T→∞ with
√
T/N → 0, the preliminary estimators Λ̃ and Γ̃

satisfy

(i) Pr(N−1‖Λ̃`‖2 ≥ C)→ 1 for ` = 1, · · · , ra,

N−1‖Λ̃`‖2 = Op(C
−2
NT )for ` = ra + 1, · · · , k;

(ii) If Γ0 6= 0, lim
N,T→∞

Pr(N−1‖Γ̃`‖2 ≥ C) = 1 for ` = 1, · · · , rb,

N−1‖Γ̃`‖2 = Op(C
−2
NT )for ` = rb + 1, · · · , k;

(iii) If Γ0 = 0, N−1‖Γ̃`‖2 = Op(C
−2
NT ) for ` = 1, · · · , k.

The proof of this theorem follows from the main results in Cheng et al. (2016)[13]. In

Theorem 3.1, we separate the column of the preliminary estimators Λ̃ and Γ̃ into two

parts. In the first part, lim
N,T→∞

Pr(N−1‖Λ̃`‖2 ≥ C) = 1 and lim
N,T→∞

Pr(N−1‖Γ̃`‖2 ≥

C) = 1 such that the data-dependent weights ωλ` and ωγ` are stochastically bounded.

In the second part, N−1‖Λ̃`‖2 = Op(C
−2
NT ) and N−1‖Γ̃`‖2 = Op(C

−2
NT ) imply that ωλ`

and ωγ` diverge in probability faster than C4
NT .

Theorem 3.2. As N, T→∞ with
√
T/N → 0, the preliminary estimators Λ̃LS and

Γ̃LS satisfy
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(i) Pr(N−1‖Λ̃LS,`‖2 ≥ C)→ 1 for ` = 1, · · · , ra, N−1‖Λ̃LS,`‖2 = Op(C
−2
NT )

for ` = ra + 1, · · · , k;

(ii) If Γ0 6= 0, Pr(N−1‖Γ̃LS,`‖2 ≥ C)→ 1 for ` = 1, · · · , rb, N−1‖Γ̃LS,`‖2 = Op(C
−2
NT )

for ` = rb + 1, · · · , k;

(iii) If Γ0 = 0, N−1‖Γ̃LS,`‖2 = Op(C
−2
NT ) for ` = 1, · · · , k.

The proof of this theorem is given in Cheng et al. (2016)[13]. In Theorem 3.2, if Λ̃

or Γ̃ has zero columns, the data-dependent weights ωλ` and ωγ` depend on Λ̃LS and

Λ̃LS. Note that Λ̃` = 0 is a special case of N−1‖Λ̃`‖2 = Op(C
−2
NT ) in Theorem 3.1,

so does Γ̃`. The data-dependent weights ωλ` and ωγ` determine the relative penalties

of different columns in the factor loadings. The tuning parameters αNT and βNT

determine the overall penalization. As the tuning parameters vanish asymptotically,

we make Assumption 1 for the rates.

Assumption 1. The tuning parameters αNT and βNT satisfy

(i) αNT = O(N−1/2C−1
NT ) and βNT = O(N−1/2C−1

NT )

(ii) N−1/2C−5
NT = o(αNT ) and N−1/2C−5

NT = o(βNT ).

In Assumption 1, the boundaries on the tuning parameters αNT and βNT control the

magnitudes of the overall penalization. In Assumption 1(i), we introduce the upper

bound to ensure that the penalties on the nonzero columns are small when the weights

ωλ` and ωγ` are stochastically bounded. Also, we propose to shrink the estimators of

zero columns to zero. Assumption 1(ii) requires the tuning parameters αNT and βNT

converge to zero slowly with the lower bound.

The following Assumptions 2 and 3, respectively, are analogous to Assumptions A
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and B in Bai and Ng (2002)[4]. For t > T0, let F̄ 0
t = (F 0

t
′
, F ∗t

′)′ ∈ Rrb denote rb

factors in the post-break period and C ∈ R denotes a generic positive constant.

Assumption 2. (i)E[‖F 0
t ‖4] ≤ C, E[‖F 0

t‖4] ≤ C and there exists positive definite

nonrandom matrices ΣF and ΣF such that T−1
0

∑T0

t=1 F
0
t F

0′
t = ΣF +Op(T

−1/2
0 ) and

T−1
1

∑T
t=T0+1 F

0

tF
0′
t = ΣF +Op(T

−1/2
1 ).

(ii)The positive definite matrices ΣF and ΣF are both not related to N and T.

Assumption 3. (i) ‖λ0
i ‖ ≤ C, ‖ψ0

i ‖ ≤ C and there exists nonrandom matrices ΣΛ,

ΣΨ and ΣΛΨ such that ‖Λ0′Λ0/N −ΣΛ‖ → 0, ‖Ψ0′Ψ0/N −ΣΨ‖ → 0 and ‖Λ0′Ψ0/N −

ΣΛΨ‖ → 0 as N → ∞, where ΣΛ and ΣΨ are positive definite matrices and are both

not related to N and T .

(ii) The matrices ΣΛΣF and ΣΨΣF both have distinct eigenvalues.

Here, Λ0 = (Λ0
1, · · · ,Λ0

N)′, where Λ0
i ∈ Rra×1 denotes the factor loading for series i

before the structural break. Similarly, Ψ0 = (ψ0
1, · · · , ψ0

N)′, where ψ0
i ∈ Rrb×1 denotes

the factor loading for series i after the structural break. We state the following as-

sumptions for additional factors and the changes of factor loadings at T0.

Suppose T0/T → τ0, τ0 ∈ (0, 1) as T → ∞. We extend Assumptions 2 and 3 to

Assumptions 4 and 5. Let e = [e1, · · · , eT ] ∈ RN×T denote the matrix of error terms

and eit denote the element of e with series i in period t.

Assumption 4. (i) E[eit] = 0, E[|eit|] ≤ C;

(ii) E[N−1
∑N

i=1 eiseit] = σN(s, t), |σN(s, s)| ≤ C for all s,

T−1
∑T

s=1

∑T
t=1 |σN(s, t)| ≤ C;

(iii) E[eitejt] = τij,t with |τij,t| ≤ |τij| for some τij and for all t, and
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N−1
∑N

i=1

∑N
j=1 |σN(s, t)| ≤ C;

(iv) E[eitejs] = τij,ts and (NT )−1
∑N

i=1

∑N
j=1

∑N
t=1

∑N
s=1 |τij,ts| ≤ C;

(v) For every (t, s), E[|N−1/2
∑N

i=1[eiseit − E[eiseit]]|4] ≤ C;

(vi) ρ1((NT )−1eae
′
a) = Op(max[N−1, T−1]) and

ρ1((NT )−1ebe
′
b) = Op(max[N−1, T−1]).

Assumption 5. E[N−1
∑N

i=1 ‖T−1/2(
∑T0

t=1 F
0
t eit +

∑T
t=T0+1 F

0

t eit)‖2] ≤ C.

Assumption 4 models for time-series and cross-sectional weak dependence in the error

terms. Assumption 5 models the weak dependence between the factors and error

terms. Those assumptions are analogous to Assumptions C and D in Bai and Ng

(2002)[4] respectively. With the knowledge of the above theorems and assumptions,

we state the asymptotic limits of the PLS estimators Λ̂ and Γ̂ in the following theorem.

Those PLS estimators converge to the coefficients in (2.4). Let the subscript ` denote

the `-th column of a matrix.

Theorem 3.3. Suppose that Assumptions 1 to 5 hold. Then,

(i) Pre-break loadings of relevant factors: N−1‖Λ̂`−Λ̂R
` ‖2 = Op(C

−2
NT ) for ` = 1, · · · , ra;

(ii) Pre-break loadings of irrelevant factors:

lim
N,T→∞

Pr(‖Λ̂`‖2 = 0 for ` = ra + 1, · · · , k) = 1;

(iii) Post-break changes in loadings of relevant factors: If Γ0 6= 0,

N−1‖Γ̂` − ΓR` ‖2 = Op(C
−2
NT ) for ` = 1, · · · , rb;

(iv) No-break: If Γ0 = 0, lim
N,T→∞

Pr(‖Γ̂`‖2 = 0 for 1, · · · , rb) = 1;

(v) Post-break changes in loadings of irrelevant factors:

lim
N,T→∞

Pr(‖Γ̂`‖2 = 0 for ` = rb + 1, · · · , k) = 1.

The proof of this theorem follows from the results in Cheng et al. (2016)[13]. In The-
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orem 3.3 part (i) and (ii), the factor loadings of the irrelevant factors are estimated to

zero with probability approaching to one due to the penalization. For ` = 1, · · · , ra,

the PLS estimators Λ̂` and Γ̂` converge in probability to the factor loadings ΛR
` and

ΓR` of the transformed statistical models in (3.1) respectively. Parts (iii) and (v) de-

tect the structural instability. Without the structural instability, as in part (iv), the

PLS estimators Γ̂` of change in loadings equal to zero with probability approaching to

one. Otherwise, part (v) only applies for ` = rb+ 1, · · · , k and ensures the post-break

number of factors.

Briefly, the factor loadings of the irrelevant factors are estimated with probability

approaching to 1. In addition, without any instability, the changes in loadings of

relevant factors are estimated with probability approaching to one as well.

As mentioned in Cheng et al. (2016)[13], to build the model selection for the PLS esti-

mation, it is sufficient to show that the asymptotic limits of N−1‖ΛR
` ‖2 and N−1‖ΓR` ‖2

in Theorem 3.3 part(i) and (iii) are bounded away from zero. We introduce Assump-

tion 6, Lemma 3.1, and the following theorem provides the asymptotic result of B̂, r̂a

and r̂b.

Assumption 6. One of the following two conditions holds:

(i) rank(Σ+
ΛΨ) ≥ ra;

(ii) ρ`(ΣFΣΛ) 6= ρ`(ΣFΣΨ) for some ` ≤ ra.

Lemma 3.1. Suppose Assumption 2-5 hold. Then,

(i) Pre-break factors: N−1‖ΛR
` ‖2 = ρ`(ΣΛΣF ) + o(1) for ` = 1, · · · , ra;

(ii) New factors: If rb > ra, N
−1‖ΓR` ‖2 = ρ`(ΣΨΣF ) + o(1) for ` = ra + 1, · · · , rb.
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The proof of this lemma is given in Appendix A. Note that Lemma 3.1 provides the

connection between the Assumption 6 and the statistical model determination.

Theorem 3.4. Suppose that Assumptions 1-6 hold with the existence of the instabil-

ity. Then,

lim
N,T→∞

Pr(r̂a = ra) = 1; lim
N,T→∞

Pr(r̂b = rb) = 1; lim
N,T→∞

Pr(B̂ = B) = 1. (3.9)

The proof of this theorem is given in Appendix A. The model selection procedure

holds for any set of preliminary estimators that satisfy Theorem 3.1 and 3.2. Due to

Step 1.5 in Algorithm 1 making a transformation of the estimators, we define

Z = {` : N−1‖ΓR` ‖2 = N−1‖ΨR
` − ΛR

` ‖2 ≥ C}. (3.10)

We make the following additional assumption.

Assumption 7. If ra = rb, then inf
‖W‖=1

N−1‖ΨRW − ΛR
` ‖2 ≥ C for ` ∈ Z.

Assumption 7 holds as long as ΛR
` is not in the column space of ΨR. Under this

assumption, some of the structural factor loadings in unnormalized statistical model

(2.2) and (2.3) remain constant, while others change. Moreover, without structural

instability, Z is empty and Assumption 7 is not necessary. The result in Theorem 3.4

can be generalized to the two-step estimation algorithm in later section.
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3.5 On Estimation of the Penalty Weights

In this section, we present a practical procedure to choose the tuning parameters αNT

and βNT . The penalty functions P1(Λ) and P2(Γ) depend on the weights ωλ` and ωγ` ,

they are determined by the tuning parameters αNT and βNT . αNT and βNT which

are the penalty weights on the coefficients with respect to Xa and Xb respectively.

The tuning parameters are important as they are applied in the two-step shrinkage

estimation procedure. They are defined as

αNT = κ1N
−1/2C−3

NTa
and βNT = κ2N

−1/2C−3
NTb

, (3.11)

where CNTa = min (N1/2, T
1/2
a ), and CNTb = min (N1/2, T

1/2
b ). Particularly, as men-

tioned in Cheng et al. (2016)[13], we choose αNT and βNT to fine-tune these two

rates and replace the sample size T by the subsample sizes Ta and Tb. κ1 and κ2 are

based on the PLS estimators with zero solution for some columns in Λ and Γ. Cheng

et al. (2016)[13] explains that the criterion function in (3.2) is minimized at 0 if the

marginal penalty for deviating from 0 is larger than the marginal gain on the least

square criterion function. As mentioned in Bühlmann and van de Geer (2011)[8],

‖Λ̂`‖ = 0 for ` > ra if

‖e′a(Λ̂)F̃a,` + e′b(Λ̂ + Γ̂)F̃b,`‖ < NTαNTω
λ
` /2, (3.12)

where

ea(Λ) = Xa − F̃aΛ′ and eb(Λ + Γ) = Xb − F̃b(Λ + Γ)′. (3.13)
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The reasonable choice of κ1 is

κ1 =
{

(NTa)
−1/2

∥∥∥ea(Λ̃)
∥∥∥+ (NTb)

−1/2
∥∥∥eb(Λ̃ + Γ̃)

∥∥∥}. (3.14)

To choose κ2, we have

κ2 = (NTb)
−1/2

∥∥∥eb(Λ̃ + Γ̃)
∥∥∥ (3.15)

where Λ̃ and Γ̃ are preliminary estimators and the residual matrices ea(Λ) and eb(Λ+

Γ) are defined as

ea(Λ) = Xa − F̃aΛ′ and eb(Λ + Γ) = Xb − F̃b(Λ + Γ)′. (3.16)

We set the constants c1 and c2 both equal to 1 as a default. However, we develop a

cross-validation procedure to fine-tune these constants over a fixed interval in finite

samples.

3.6 Two-Step Estimation Method

In this section, we introduce the two-step estimation procedure, which is designed by

Cheng et al. (2016)[13]. Overall, this procedure improves the finite sample perfor-

mance in two perspective. The tuning parameters αNT and βNT are more precise in

the second step. The reason for this is that we obtain Λ̃ and Γ̃ in the first-step model

selection; thus, the residual matrices ea(Λ) and eb(Λ + Γ) are more accurate. The

preliminary estimators Λ̃ and Γ̃ we obtained come from the the rotation of loading

matrices ΛR and ΓR respectively. Let i=1 and 2 denote the first-step and second-
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step estimation method respectively. Let Λ̃(i), Γ̃(i) and Ψ̃(i) denote the preliminary

estimators in step i. Let Λ̂(i), Γ̂(i) and Ψ̂(i) denote the penalty least square (PLS)

estimators in step i. Let Λ̂
(i)
PMS, Γ̂

(i)
PMS and Ψ̂

(i)
PMS denote the post model selection

(PMS) estimators in step i. The two-step estimation procedures are performed in the

following algorithm.

Algorithm 1 (Two-Step Estimation Method)

1. First-Stage Shrinkage Estimation:

1.1. Compute the unrestricted least square estimators Λ̃LS and Γ̃LS.

1.2. Set Λ̃(1)=Λ̃LS and Γ̃(1)=Γ̃LS. Calculate ωλ` , ωγ` , αNT and βNT from (3.4)

and (4.8) with Λ̃=Λ̃(1) and Γ̃=Γ̃(1).

1.3. Compute the shrinkage estimator Λ̃(1) and Γ̃(1) by minimizing the criterion

function in (3.2).

1.4. Estimate ra and rb from (3.7) with Λ̂=Λ̂(1) and Γ̂=Γ̂(1). Name the estimator

as r̂
(1)
a and r̂

(1)
b .

1.5. Construct Λ̂
(1)
PMS and Ψ̂

(1)
PMS in (3.10). If r̂

(1)
a = r̂

(1)
b , then the transformation

of the columns of Ψ
(1)

is defined as follow. Let Λ
(1)′

Ψ
(1)

=UDV ′ denote the

singular value decomposition of Λ
(1)′

Ψ
(1)

. The transformed factor loading

is defined as

Ψ
(1)

R = Ψ
(1)
Q, (3.17)

where Q=V U ′. The modified PMS estimator of Ψ is defined as

Ψ̂
(1)
PMS−R =

(
Ψ

(1)

R ,0
)
∈ RN×K . (3.18)
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2. Second-Stage Shrinkage Estimation

2.1. Let

Λ̃(2) = Λ̂
(1)
PMS, Γ̃

(2) = Ψ̃(2)−Λ̃(2), Ψ̃(2) = Ψ̂
(1)
PMS−R I{r̂(1)

b =r̂
(1)
a }

+Ψ̂
(1)
PMS I{r̂(1)

b >r̂
(1)
a }

,

also calculate ωλ` ,ωγ` , αNT , and βNT from (3.4) and (3.11) with Λ̃=Λ̃(2) and

Γ̃=Γ̃(2).

2.2. Compute the shrinkage estimators Λ̂(2) and Γ̂(2) by (3.2).

2.3. Compute B(2)
0 , r̂

(2)
a , and r̂

(2)
b from (3.7) with Λ̃=Λ̃(2) and Γ̃=Γ̃(2).

2.4. Construct the PMS estimator Λ̂
(2)
PMS and Ψ̂

(2)
PMS by definition in (3.10)

conditional on B(2)
0 , r̂

(2)
a , and r̂

(2)
b .

In this procedure, the preliminary estimator in step one is used to fine-tune the

penalty terms in shrinkage estimator of step two. The preliminary estimator in step

two is based on the PMS estimator in step one. In Step 1.5, the transformation in-

creases the precision of locating the structural break when B0=0. The transformation

does not have an effect on the asymptotic approach. Specifically, we need to find the

orthogonal matrix Q in Step 1.5 such that ‖Λ(1) − Ψ
(1)
Q‖ is minimized. The work

of Schönemann (1966)[23] proposes similar work and obtained the solution to the

orthogonal matrix. We apply this method to Step 1.5 and we find the orthogonal ma-

trix Q=UV ′. This leads to the sums of squares of the residual matrix (Λ
(1) −Ψ

(1)
Q)

being minimized. It also minimizes the risk of locating an incorrect structural break

date.
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3.7 Cross Validation

Cross validation is proposed to adjust the constants c = (c1, c2) ∈ C in the penalty

weights in (3.14 and 3.15). Applying the cross validation procedure, we obtain accu-

rate tuning parameters αNT and βNT . In Section 3.5, we mentioned that we set the

constants c1 and c2 equal to 1. Besides the time series dimension, we consider the

sample in the cross-sectional dimension. The procedure is stated as follows: first, we

consider the data in the cross-sectional dimension. We create the disjoint subsamples

X(−jN) (N-regression) and XjN (N-prediction). Second, we apply the model selection

procedure (Section 3.2) to this subsample X(−jN) with a given value of c. We obtain

the estimation of the unobserved factors and the model selection estimators. Third,

we partition the subsample XjN along the T dimension into regression and predic-

tion samples. If the structural break took place in the model, we need to construct

the regression and prediction samples separately for the pre- and post-break periods.

We consider the factor estimates from the X(−jN) sample as the observed regressors.

Moreover, we estimate the factor loadings based on the regression sample using ordi-

nary least square (OLS).

The cross-validation criterion in this major paper is built on the mean-squared fore-

cast errors (MSFE). The tuning constants κ1 and κ2 are chosen to minimize the MSFE

for given c. The minimization is performed over a bounded set C.

As mentioned in Cheng et al. (2016)[13], given the estimates of the number of pre- and

post-break factors and the loadings, we can generate pseudo-out-of-sample forecasts

for the prediction sample. We apply separate rolling pseudo-out-of-sample forecasting
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schemes for the pre- and post-break samples on the model selection estimators.



Chapter 4

Estimation and Modeling in

Unknown Break Date Case

In the previous chapter, we introduced estimation and modeling in the known break

case. In this chapter, we generalize the results to account for the unknown break

date case. For the unknown break date case, we simply adopt *-superscripts and

(π)-arguments to distinguish from the known break date case.

In Section 4.1, we introduce the shrinkage estimator. The model selection is described

in Section 4.2. In Section 4.3, we describe the post model selection estimation and es-

timate the break date by using the least square method. In Section 4.4, we study the

asymptotic theory for the proposed shrinkage estimator and present related theorems

and assumptions. Section 4.5 presents the method of choosing the tuning parameters

and performing the two-step estimation in the unknown break date case.

28
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4.1 Shrinkage Estimator

In this section, we extend the procedure in Section 3.1 to the unknown break date

case. When the break date T0 is unknown, let T be the number of periods in the sam-

ple. We introduce a new parameter π0 = T0/T , which denotes the true break date.

We assume that π0 ∈ Π, where Π is some closed subset [0,1]. For any π ∈ Π, we split

the full sample into pre- and post-break subsets Xa(π) = (X1, · · · , XTa)
′ ∈ RTa×N

and Xb(π) = (XTa+1, · · · , XT )′ ∈ RTb×N , where Ta = bT · πc denotes the integer part

of T ·π and Tb = T −Ta. To obtain the unknown break date π0, we need to study the

number of factors in Xa(π) and Xb(π). Here we denote ra(π) and rb(π) as number of

factors in Xa(π) and Xb(π) respectively. ra(π) and rb(π) are defined as the number

of non-vanishing eigenvalues of (NT )−1Xa(π)′Xa(π) and (NT )−1Xb(π)′Xb(π) as N, T

→∞. We propose a range for the break dates such that π ∈ Π = [π, π], where π > 0

and π < 1.

In practice, the break dates are not supposed to be close to zero or one, because

it is not convenient to analyses the factor model in a small time dimension. Cheng

et al. (2016)[13] suggest to set π ≥ 0.15 and π ≤ 0.85 for better model estima-

tion in unknown break date case. Let F̃a(π) ∈ RTa×k denote the orthonormalized

eigenvectors of (NTa)
−1Xa(π)Xa(π)′ with first k largest eigenvalues. Similarly, let

F̃b(π) ∈ RTb×k denote the orthonormalized left eigenvectors of (NTb)
−1Xb(π)Xb(π)′

with first k largest eigenvalues. The unrestricted estimators of the factor load-

ings are Λ̃LS(π) = T−1
a Xa(π)′F̃a(π) and Ψ̃LS(π) = T−1

b Xb(π)′F̃b(π). In addition,

Γ̃LS(π) = Ψ̃LS(π)− Λ̃LS(π).
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We replace π0 by π in Section 3.1. Then, we get a shrinkage estimator with adjusted

break date π ∈ Π and consistent estimator of ra(π) and rb(π). Since the estimators of

ra(π) and rb(π) are sensitive to π, we construct the shrinkage estimator with averaging

penalty to maintain a low sensitivity of π in the finite sample. The shrinkage estimator

is defined as

(Λ̂(π), Γ̂(π)) = argmin
Λ∈RN×k,Γ∈RN×k

[M(Λ,Γ; π) + P ∗1 (Λ) + P ∗2 (Γ)], (4.1)

where

M(Λ,Γ; π) = (NT )−1

[∥∥∥Xa(π)− F̃a(π)Λ′
∥∥∥2

+
∥∥∥Xb(π)− F̃b(π)(Λ + Γ)′

∥∥∥]. (4.2)

The averaging penalty functions P ∗1 (Λ) andP ∗2 (Λ) are defined as

P ∗1 (Λ) =
k∑
`=1

Eξ[αNT (ξ)ωλ∗` (ξ)]‖Λ`‖ and P ∗2 (Γ) =
k∑
`=1

Eξ[βNT (ξ)ωγ∗` (ξ)]‖Γ`‖, (4.3)

where Eξ[.] denotes the expectation with respect to ξ. By definition,

Eξ[αNT (ξ)ωλ` (ξ)] =

∫ π

π

αNT (ξ)ωλ` (ξ)
1

π − π
dξ ,

Eξ[βNT (ξ)ωγ` (ξ)] =

∫ π

π

βNT (ξ)ωγ` (ξ)
1

π − π
dξ,

(4.4)

where π and π are lower and upper bounds on Π respectively. They all depend

on N and T . αNT (π) and βNT (π) are named tuning parameters and denote the

coefficients of constants which depend on N and T for every π. The tuning parameters

are not unique since π varies. For π ∈ Π, let Λ̃(π), Ψ̃(π) and Γ̃(π) denote some
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preliminary estimators, then the adaptive weights ωλ∗` (π) and ωγ∗` (π) in terms of the

above preliminary estimators are defined as:

ωλ∗` (π) =

(
N−1‖Λ̃`(π)‖2I{Λ̃`(π)6=0N×1} +N−1‖Λ̃`,LS(π)‖2I{Λ̃`(π)=0N×1}

)−2

,

ωγ∗` (π) =

(
N−1 min

{
‖Γ̃`(π)‖2, ‖Ψ̃`(π)‖2

}
I{Γ̃`(π)6=0N×1}

)−2

+

(
N−1 min

{
‖Γ̃`,LS(π)‖2, ‖Ψ̃`,LS(π)‖2}I

{Γ̃`(π)=0N×1

})−2

.

(4.5)

As mentioned in Section 3.1, note that ωλ∗` (π0) = ωλ` but ωγ∗` (π0) 6= ωγ` . When the

break date is unknown, it is crucial to use ωγ∗` (π) for estimation of γb. Cheng et al.

(2016)[13] explain that for π > π0 and ` > rb, we have N−1‖Ψ̃`,LS(π)‖2 converges in

probability to zero when n→∞, but N−1‖Γ̃`,LS(π)‖2 may not converge in probability

to 0. Thus, the modified adaptive weights can deliver larger penalties, when needed.

4.2 Model Selection Estimator

In this section, the model specification estimators B̂∗, r̂∗a and r̂∗b are similar to Section

3.2 with *-superscripts and (π)-arguments are adopted. Those estimators can be

obtained as follows. First, we let

B̂∗ = I{supπ∈Π‖Γ̂(π)‖>0}. (4.6)
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Second, the estimators of number of pre- and post-break factors ra and rb are defined

as

r̂∗a = min
π∈Π

r̂a(π) and r̂∗b = max
π∈Π

r̂b(π), (4.7)

where r̂a(π) and r̂b(π) are defined as in (3.7). Here, we replace Λ̂ and Γ̂ by Λ̂(π)

and Γ̂(π) respectively. The model specification estimators B̂∗, r̂∗a and r̂∗b can detect

instability effectively in a large number of time series for the unknown break date

case.

4.3 Post Model Selection Estimation

In Section 3.3, we presented the PMS estimators in the known break date case. For

the unknown break date case, the PMS estimators are similar. As mentioned in the

beginning of this chapter, we simply adopt *-superscripts and (π)-arguments for the

unknown break date case. The PMS estimators are defined as

Λ̂PMS(π) = (Λ(π),0) and Ψ̂PMS(π) = (Ψ(π),0), (4.8)

where 0 is zero matrix. (Cheng et al. (2016))[13]

Bai (1997)[5] explains that when B̂∗ = 1, one can use the least square objective

function to estimate the break date π0. Let

π̂ = argmin
π∈Π

QNT (π; r̂∗a, r̂
∗
b ), (4.9)
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where

QNT (π; r̂∗a, r̂
∗
b )

= (NT )−1

[∥∥∥Xa(π)− F̃a(π)Λ̂′PMS(π)
∥∥∥2

+
∥∥∥Xb(π)− F̃b(π)Ψ̂′PMS(π)

∥∥∥]. (4.10)

4.4 Asymptotic Properties

In this section, we show that with the support of the averaging penalty in (4.3), the

proposed shrinkage estimator with the averaging penalty can be extended to satisfy

the unknown-break-date model. The tuning parameters and the two-step estimation

method remain the same as in Sections 3.5 and 3.6. We propose the model specifica-

tion estimators B̂∗, r̂∗a and r̂∗b directly without establishing the asymptotic behavior

of the Group-LASSO estimator Λ̂(π) and Γ̂(π). The reason is that the shrinkage es-

timator with averaging penalty does not carry out the estimation of ra(π) and rb(π)

for all π. Although the averaging penalty leads to over-penalizing when π 6= π0, the

consistent estimation of ra and rb can be obtained eventually since ra ≤ ra(π) and

rb ≤ rb(π).

We reinforce Assumption 7 with the averaging penalty in the unknown break date

case. For any π ∈ Π, we rewrite the normalized statistical model as

Xa(π) = FR
a (π)ΛR(π)′ + ea(π),

Xb(π) = FR
b (π)ΨR(π)′ + eb(π),

(4.11)

where FR
a (π) ∈ RTa×(ra+rb) and ΛR(π) ∈ RN×(ra+rb), and FR

a (π) ∈ RTa×(ra+rb) and

ΨR(π)N×(ra+rb).
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Assumption 8. (i) If ra = rb, then inf
π∈Π,‖W‖=1

N−1‖ΨR(π)W − ΛR
` (π)‖2 ≥ C for

` ∈ Z;

(ii) If rb > ra, then inf
π>π0

N−1‖ΨR(π)W − ΛR
` (π)‖2 ≥ C for ` = rb.

Assumption 8 is the reinforced version of Assumption 7. Part (i) is generalized from

Assumption 7 by replacing the break date π to π0 with any π ∈ Π. Part (ii) is

designed for the unknown break date case because ΛR
` (π0) = 0 for ` = rb > ra. The

following theorem indicates that in the unknown break date case, we can obtain the

asymptotic result of the estimator of ra, rb, and B.

Assumption 9. E[‖F 0
t ‖4] ≤ C, E[‖F 0

t‖4] ≤ C and there exist random positive definite

nonrandom matrices ΣF and ΣF such that T−1
∑bTπc

t=1 F 0
t F

0′
t = πΣF +Op(T

−1/2) for

π ≤ π0 and T−1
∑T

t=bTπc+1 F
0

tF
0′
t = (1−π)ΣF +Op(T

−1/2) for π ≥ π0, where both

Op(T
−1/2) terms are uniform over π ∈ Π.

Assumption 10. Assumption 4 holds with ea and eb replaced by ea(π) and eb(π) and

Assumption 4(vi) holds uniformly over π ∈ Π.

Theorem 4.1. Suppose that Assumptions 3, 5, 6, 8-10 hold with the existence of the

instability. Then,

lim
N,T→∞

Pr(r̂∗a = ra) = 1; lim
N,T→∞

Pr(r̂∗b = rb) = 1; lim
N,T→∞

Pr(B̂∗ = B) = 1. (4.12)

The proof of this theorem is similar to that of Theorem 3.4. When we take into ac-

count for the difference between π and π0, the averaging penalty terms not only tend

to over-penalize the loadings, but also set the loadings to zero for π = π0. This brings
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out a tendency of underestimating either ra(π) or rb(π) if the conjectured break point

is not specified correctly. An estimation of the break date can be identified when we

apply the estimates r̂a
∗ and r̂b

∗ to the least squares objective function in (4.9).

In Chapter 6, we conduct Monte Carlo simulation to evaluate the performance of the

shrinkage estimators.

4.5 On Estimation of Parameters and Algorithm

In this section, we introduce the tuning parameters, extend the estimation algorithm

to the unknown break date case, and adjust the constants in the penalty weights

by cross validation procedure for unknown break date case. We choose to use the

following tuning parameters

αNT (π) = κ1(π)N−1/2C−3
NTa

and βNT (π) = κ2(π)N−1/2C−3
NTb

(4.13)

where κ1(π) ∈ [κ1, κ1] and κ2(π) ∈ [κ2, κ2] for some κ1, κ2 < ∞. Note that the pa-

rameters in (4.13) are similar to (3.11). Practically, we use the value of κ1(π) and

κ2(π) as defined in (3.14 and 3.15) with Λ̃ and Γ̃ replaced by Λ̃(π) and Γ̃(π).

We perform the two-step estimation method as in Section 3.6 to the unknown break

date case by plugging the notation (π)-argument and *-subscript into the parameters.

First, we set Λ̃(1)(π) = Λ̃LS(π), Ψ̃(1)(π) = Ψ̃LS(π) and Γ̃(1)(π) = Γ̃LS(π). Second, we

replace ωλ` , ωγ` , αNT and βNT by ωλ∗` (π), ωγ∗` (π), αNT (π) and βNT (π). Third, we
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replace the PLS criterion function in (3.2) by (4.1). Fourth, we use r̂∗a and r̂∗b de-

fined in (4.7) to replace those in (3.7). According to the definition in (4.7), the first

step number of factors r̂
(1)
a and r̂

(1)
b remains the same no matter how the value of π

changes. Thus, we obtain the first-step shrinkage estimators Λ̂(1)(π) and Γ̂(1)(π) for

every π ∈ Π, and we obtain r̂
(1)
a and r̂

(1)
b in the first-step. Moreover, we obtain the

estimators Λ̂(2)(π) and Γ̂(2)(π) for every π ∈ Π in the second step. Finally, we obtain

r̂∗a, r̂
∗
b , and B̂∗ by the two step PLS estimators Λ̂(2)(π) and Γ̂(2)(π) following the results

in Section 3.4.

According to Cheng et al. (2016)[13], the cross validation procedure introduced in

Section 3.7 can be applied to the case of unknown break date. We take a common

value of c for all possible break dates. For every π, the subsamples X(−jN) are con-

structed similarly as in Section 4.3; we replace π0 by π. With the corresponding value

of c, we obtain a selected model. Note that by definition, the selected model does not

depend on π. For the cross validation subsample X(jN), we avoid the observations

located outside of the conjectured break interval Π and then we apply the Step 1.4

of Algorithm 2.

We need to take into account the following perspectives to obtain the proposed Group-

LASSO estimator: first, the maximum number of potential factors k. According to

Stock and Watson (2012)[24], k is determined by the estimation of the number of

factors. However, if the value of k is overestimated, it brings out a large number of

potential regressors and drops the efficiency of the shrinkage estimator. If r̂b = k,

then the value of k is set too small. Second, the break date interval Π. The interval
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of Π is determined by the real world events. For instance, we could set the interval

around the year 1984 if we study the breaks of the Great Moderation. In addition,

the interval could be set around the year 2007 if we are interested in the Great Reces-

sion. Choosing a reasonable length of interval Π would increase the performance of

the estimator. Finally, we choose a set of well-behaved C, nN , and nT for the Monte

Carlo study.



Chapter 5

Numerical Results

In this chapter, we present the Monte Carlo simulation and the results from the

experiments. We also analyze the method with the empirical data set of the Great

Recession.

5.1 Monte Carlo Simulation

Monte Carlo simulation relies on the repeated random sampling and statistical anal-

ysis to compute the results (Raychaudhuri, 2008)[21]. This type of simulation has

been widely used for the solution of large, complex systems when analytical approx-

imations are not easy to establish (Cruse, 1997)[15]. In this section, we present the

Monte Carlo simulations to evaluate the performance of the proposed estimator r̂a, r̂b

and B, the mean squared errors (MSEs) of the proposed shrinkage estimators, and the

PMS estimators in finite sample. Section 5.1 presents the statistical model and the

estimators used in the experiment. Section 5.2 describes the results and explanation

from the simulation.

38
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5.1.1 Design of the Statistical Models

This section describes the design of the factor models and simulations. The statistical

models of this major paper refer to the paper of Bates, Plagborg-Møller, Stock and

Watson (2013)[3] with improvement on adjusting the structural instability and aiming

on the large breaks. The factor models are stated as

Pre-break: Xit = λ′iFt + eit, Ft,` = ρaFt−1,` + ut,`,

t = 1, · · · , bTπ0c, ` = 1, · · · , ra,

Post-break: Xit = ψ′iF t + eit, F t,` = ρbF t−1,` + ut,`,

t = bTπ0c+ 1, · · · , T, ` = 1, · · · , rb,

(5.1)

where i = 1, · · · , N , Ft = (Ft,1, · · · , Ft,ra)′, F t = (F t,1, · · · , F t,rb)
′, and {ut,` : ` =

1, · · · , rb} with ut,` ∼ N(0, 1). To take into account for the temporal and cross-

sectional dependence of the idiosyncratic errors, consider that

eit = αeit−1 + vit, vit = (v1t, · · · , vNT )′ ∼ N(0,Ω), (5.2)

where the (i, j)-th element of Ω is β|i−j|. Note that the processes are mutually inde-

pendent and are independent and identically distributed (i.i.d.) across t. Let F0 and

e0 = (e10, · · · , eN0)′ denote the initial values of the factors and the idiosyncratic errors

respectively, and they are drawn from their stationary distribution. If rb = ra, then

F T0 = FT0 . If rb > ra, then F T0 = (F ′T0
, F ∗

′
T0

)′, where each element of F ∗T0
is drawn in-

dependently from the distribution of Ft,`. The parameters {N, T, π0, ra, rb, ρa, ρb, α, β}

are specified later.
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To construct the pre-break factor loadings {λi : i = 1, · · · , N}, let λi ∼ N(0,Σi),

where Σi is a diagonal matrix with distinct elements σ2
i (1), · · · , σ2

i (ra). The sum of

these diagonal elements determines the population regression R2 of Xit on the factors.

To select R2
i for i = 1, · · · , N , Bai and Ng (2002)[4] explain that R2

i is homogeneous

and set it equal to 0.5 and it also benchmarks the factor model for the simulations.

Another approach is that R2
i is adjusted heterogeneously to match the distribution

of R2 values in the empirical data. To obtain the distribution of R2, we consider the

potential break date of the recent recession of data set before December 2007, and

we regress each variable to obtain the empirical distribution of R2. Then, we draw

R2
i for i = 1, · · · , N independently from the empirical distribution to construct the

pre-break factor loadings λi.

With the existence of the structural instability, we construct the post-break fac-

tor loadings ψi. ψi is similar to the proposed λi, except that ra is replaced by rb,

E[(ψ′iF t)
2]/E[X2

it]=R
2
i for t > T0, and R2

i is calibrated by post-December 2007 sub-

sample heterogeneously.

The simulated time series are normalized to obtain zero mean and unit variance.

Next, we use principal components analysis to extract a maximum of k = 8 potential

factors from either the subsamples or the full sample. For experiments in the known

break date case, the estimator r̂a, r̂b, and B̂ are based on the two-step PLS estima-

tor described in Algorithm 1 and we set nN = 5 and choose nT = 10. Normally,

the cross-sectional division is a time consuming process because the model selection



CHAPTER 5. NUMERICAL RESULTS 41

procedure has to be performed on each cross-sectional regression sample. Given the

selected model, the time-series rolling window forecast is the better choice (Cheng et

al. 2016)[13].

For experiments in the unknown break date case, the estimation of the triple esti-

mator depends on the adjusted version of Algorithms 1 described in Section 3.6. We

consider Π as a discrete set Πd and the grid size in Πd is τ = 0.01, a shift by a quarter

for a monthly data set of 300 periods, like the data set in the empirical application.

Let Πd = {πc − 4τ, πc − 3τ, · · · , πc, · · · , πc + 3τ, πc + 4τ}, which spans a two-year

interval and is symmetric around the true break point π0. The post-break subsample

for the PMS estimator is obtained by the least square estimator of the break point

described in Section 4.3.

We compute the mean-squared errors (MSE) for out-of-sample forecasts (MSFE) gen-

erated by the selected model. We set the initial vlaue of y1 = XiT . The series to be

forecast is written as

Pre-break: yt+1 = ϕ′aFt + εt+1, t = 1, · · · , Ta,

Post-break: yt+1 = ϕ′bF t + εt+1, t = Ta + 1, · · · , Ta + Tb.

(5.3)

Suppose that ε1, ε2, · · · , εTa+Tb are iid as N(0,1) and independent with the processes

ut,` and vit, which are mentioned in Section 5.1.1. The loading vector is generated

from the distribution ϕa ∼ N(0, Ira). If there is no structural break, then we have

ϕb = ϕa. Considering the existence of the instability, ϕb is drawn independently

based on ϕb ∼ N(0, Irb). To generate the MSFE, we present the model and the
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factors based on the full sample X. In the pre-break case, we estimate ϕb = ϕa on

the full sample t = 1, · · · , Ta + Tb − 1 and the evaluation of MSFE is based on the

prediction of yTa+Tb+1. In the post-break date case, ϕb is estimated on the subsample

t = Ta + 1, · · · , Ta + Tb− 1 and the evaluation of MSFE is based on the prediction of

yTa+Tb+1.

MSFEPMS

(
ŷTa+Tb+1

)
= E

[
(yTa+Tb+1 − ŷTa+Tb+1)2

]
= E

[
(XForecast − ϕ̂′bF Ta+Tb+1)2

]
.

(5.4)

The full-sample estimator is defined as the first r columns of the full sample least

squares estimator Λ̃LS = T−1X ′F̃ , where r = ra if B0 = 0, which means no structural

break and r = ra + rb if B0 6= 0, which means there exists a structural break.

MSFEFull

(
Λ̃LS

)
= E

[
(XForecast − ϕ̂′FullF̃ )2

]
. (5.5)

The relative MSFE depends on the MSFE of the predictor of PMS estimator to the

MSFE of the predictor of the full-sample estimation. The calculation of the relative

MSFE for full-sample and PMS estimator is summarized as follows:

Relative MSFE =
MSFEPMS

(
ŷTa+Tb+1

)
MSFEFull

(
Λ̃LS

) (5.6)

We expect the values of relative MSFE to be less than 1 because the proposed PMS

estimator is more accurate. Moreover, the relative MSFE is less than 1 indicates that

the PSM predictor dominates the full-sample predictor.
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5.1.2 Results for Shrinkage Estimator

In this section, we illustrate the results from three different types of Monte Carlo

experiments in Table 5.1.

Table 5.1: Monte Carlo Experiments

Exp. π0 α, β Break Point

1 0.5 0.2 Known
2 0.8 0.2 Unknown, Known
3 0.5 0.5 Known

In the first experiment, the regression R2 is homogeneous across all series, we assume

that the break date is located at π0 = 0.5 and cross-sectional correlation α = β = 0.2.

In the second experiment, we consider the known and unknown break date case. The

regression R2 is heterogeneous across the series and π0 = 0.8 indicates that the break

occurs at the end of the sample. The third experiment is similar to the first one but

the cross-sectional correlation α = β = 0.5. Overall, we set the temporal correlation

to ρa = ρb = 0.5 and all results are based on averages over 1,000 Monte Carlo runs.

(Cheng et al. (2016))[13]

First, we display the Monte Carlo results for Experiment 1 in Table 5.2.
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Table 5.2: Known Break Point, Homogeneous R2, π0 = 0.5

Model Configuration Model Selection Relative

ra rb w N T Pr(B̂ = B) Pr(r̂a = ra) Pr(r̂b = rb) MSFE

Panel A. No Break

3 3 0 115 115 1.00 1.00 1.00 1.00
3 3 0 160 160 1.00 1.00 1.00 1.00
3 3 0 190 190 1.00 1.00 1.00 1.00

Panel B. Type 2-Instability

1 2 0 115 115 1.00 1.00 1.00 0.96
1 2 0 160 160 1.00 1.00 1.00 1.12
1 2 0 190 190 1.00 1.00 1.00 0.93
3 4 0 115 115 1.00 1.00 1.00 0.90
3 4 0 160 160 1.00 1.00 1.00 0.96
3 4 0 190 190 1.00 1.00 1.00 0.72

Notes: Cross-sectional correlation α = β = 0.2; temporal correlation ρa = ρb = 0.5.

Table 5.2 contains two panels, corresponding to no break and the instability. Under

this instability, we consider the changes of the number of factors from 1 to 2 and 3 to

4, and w = 0. Various values of N and T are included in the experiment. We present

the probability of correctly estimating B, ra, rb. The last column contains the MSFE

of the predictor based on the PMS estimator relative to the predictor based on the

full-sample least square estimator, where the number of factors is set to ra for Panel

(A), and to ra + rb for Panel (B). We expect values less than 1 among relative MSFE

because the proposed PMS predictor is more accurate. If the break date is known,

the procedure correctly detects the break date, as well as if the break date is located

in the middle of the sample (π0 = 0.5). We obtain that the probability of correctly

estimating B, ra and rb equal to 1, which means that the procedure has generally no

problem detecting the existence of the instability.

The last column of Table 5.2 shows the relative MSFEs. For the no-break date case,
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the procedure of estimating ra, rb, and B correctly with probability 1, which indicates

that the PMS estimator is identical to the full-sample predictor. Due to the large

number of estimated parameters, the predictor is slightly less accurate than the PMS

predictor. The proposed PMS predictor is generally accurate since all the relative

MSFE values are less than 1, except in the case of N = T = 160 in Panel B, where

the value of MSFE is slightly greater than 1. Therefore, the PMS predictor weakly

dominates the full-sample predictor.

We also give Monte Carlo results for Experiment 2 with unknown break point in

Table 5.3.

Table 5.3: Unknown Break Point, Heterogeneous R2

Model Configuration Model Selection Relative

ra rb w N T Pr(B̂∗ = B) Pr(r̂∗a = ra) Pr(r̂∗b = rb) MSFE

Panel A. No Break

3 3 0 100 175 1.00 1.00 1.00 1.00
3 3 0 100 225 1.00 1.00 1.00 1.00
3 3 0 175 275 1.00 1.00 1.00 1.00

Panel B. Instability

1 2 0 100 175 1.00 1.00 1.00 0.69
1 2 0 100 225 1.00 1.00 1.00 0.23
1 2 0 175 275 1.00 1.00 1.00 1.15
3 4 0 100 175 0.00 0.50 0.00 0.49
3 4 0 100 225 0.50 1.00 0.50 0.75
3 4 0 200 400 1.00 1.00 1.00 0.28

Notes: Cross-sectional correlation α = β = 0.2; temporal correlation ρa = ρb = 0.5.

Table 5.3 shows that the heterogeneous regression R2 and the model selection pro-

cedure in the unknown break date case is less accurate. When the break date is

unknown, the ranking of the PMS estimator and the full-sample predictor is unclear

(Cheng et al. 2016[13]). In the no-break case, the procedure correctly determines B,
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ra and rb for all sample sizes. Indeed, the shrinkage procedure correctly determines

the absence of the break and the PMS estimator is the same as the full-sample pre-

dictor.

There is no trouble to detect the existence of instability in the procedure when the

number of factors changes from 1 to 2 if the break date is unknown. However, when

N = 100 and T = 175 and the number of factors changes from 3 to 4, the probability

of estimating B and rb are zero and for estimating ra is 0.5 in Panel B. Once we

increase the sample size to N = 200 and T = 400, the probabilities increase to 1

eventually.

Next, we report the results for the known break date case of Experiment 2.

Table 5.4: Known Break Point, Heterogeneous R2, π0 = 0.8

Model Configuration Model Selection Relative

ra rb w N T Pr(B̂ = B) Pr(r̂a = ra) Pr(r̂b = rb) MSFE

Panel A. No Break

3 3 0 100 175 1.00 1.00 1.00 1.00
3 3 0 100 225 1.00 1.00 1.00 1.00
3 3 0 175 275 1.00 1.00 1.00 1.00

Panel B. Instability

1 2 0 100 175 1.00 1.00 1.00 1.47
1 2 0 100 225 1.00 1.00 1.00 0.17
1 2 0 175 275 1.00 1.00 1.00 1.02
3 4 0 100 175 0.50 1.00 0.50 0.90
3 4 0 100 225 0.50 1.00 0.50 0.57
3 4 0 180 330 1.00 1.00 1.00 0.73

Notes: Cross-sectional correlation α = β = 0.2; temporal correlation ρa = ρb = 0.5.

Table 5.4 displays the heterogeneous regression R2 and the model selection procedure

in the known break date case is generally accurate. Under the no-break point case,
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the results are equivalent to Experiment 1 and the PMS estimator is the same as the

full-sample predictor.

There is no trouble to detect the existence of instability in the procedure when the

number of factors changes from 1 to 2 if the break date is known. However, when

the number of factors changes from 3 to 4, N = 100, T = 175 and T = 225, the

probability of estimating B and rb are 0.5 and for estimating ra is 1 in Panel B. Once

we increase the sample size to N = 180 and T = 330, the probabilities increase to

1 eventually. Overall, B, ra and rb are correctly determined with probability 1. We

conclude that the model selection procedure is generally accurate.

The last column of Table 5.4 presents the relative MSFEs. We notice that under the

existence of instability, all the relative MSFEs are less than 1, which indicates that

the PMS predictor weakly dominates the full-sample predictor. However, for the case

of N = 100 and T = 175, as well as N = 175 and T = 275, the values of MSFEs

are slightly greater than 1. Therefore, the procedure generally has no problem in

detecting the existence of the instability if the break date is known and located in

the end of the sample.

Finally, we present the results of Experiment 3, which is similar to Experiment 1 but

with stronger cross-sectional correlation.
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Table 5.5: Known Break Point, Homogeneous R2, π0 = 0.5

Model Configuration Model Selection Relative

ra rb w N T Pr(B̂ = B) Pr(r̂a = ra) Pr(r̂b = rb) MSFE

Panel A. No Break

3 3 0 115 115 1.00 1.00 1.00 1.00
3 3 0 160 160 1.00 1.00 1.00 1.00
3 3 0 190 190 1.00 1.00 1.00 1.00

Panel B. Instability

1 2 0 115 115 1.00 1.00 1.00 1.08
1 2 0 160 160 1.00 1.00 1.00 1.21
1 2 0 190 190 1.00 1.00 1.00 1.12
3 4 0 115 115 0.50 1.00 0.50 0.92
3 4 0 160 160 1.00 1.00 1.00 0.54
3 4 0 190 190 1.00 1.00 1.00 0.67

Notes: Cross-sectional correlation α = β = 0.5; temporal correlation ρa = ρb = 0.5.

Table 5.5 is similar to Table 5.1 with the same break date π0 = 0.5 but different

cross-sectional correlation α = β = 0.5. The results in the no-break date case turn

out to be identical to Experiment 1. However, when N = T = 115 and the number

of factors changes from 3 to 4, the probability of estimating B and rb are less than 1.

The procedure has generally no problem detecting the existence of the instability if

the break date is known and located in the middle of the sample.

The last column of Table 5.5 shows the relative MSFEs. For no-break date case, the

probability of model selection equals to 1, which indicates that the PMS estimator

is identical to the full-sample predictor. The proposed PMS predictor is generally

accurate since half of the relative MSFE values are less than 1, the others are slightly

greater than 1.
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5.2 Real Data Set: the Great Recession

The Great Recession in the U.S. started in the winter of 2007, after 18 months of

recession, growth returned to the U.S. economy in the summer of 2009. As of 2011,

the recession was not officially over and kept affecting lives in the form of high em-

ployment rate, a host of associated labor-market problems, and ongoing threat of a

double-dip recession (Grusky et al. 2011)[17]. It was the longest postwar recession

and the associated labor-market dislocations were especially severe. From May 2007

to October 2009, the labor force lost over 7.5 million jobs, and the employment rate

climbed from 4.4% to 10.1% (Grusky et al. 2011)[17]. Unlike many other postwar

recessions, the disruption of borrowing and lending played an important role in the

2007-2009 recession (Cheng et al. 2016)[13].

We apply Group-LASSO method which developed in previous chapters to investigate

the stability of factor loadings and the emergence of new factors. Section 5.2.1 de-

scribes the real data set we use for the empirical analysis. Section 5.2.2 presets the

empirical results of detecting the break date of the Great Recession.

5.2.1 Some Preliminary Transformations

Stock and Watson (2012)[24] edited a set of 200 macroeconomic and financial indica-

tors. Let Xt denotes the observation of the macroeconomic and financial indicators

N , observed over time periods t = 1, · · · , T , where T denotes the number of the

months. For instance, those financial indicators are real personal consumption ex-
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penditure or unemployment rate and level etc. The list of the description of those

financial indicators are presented in the Appendix C.

We use this data set for the empirical analysis. They eliminate 68 replicate indicators

from 200 in total to avoid double counting of the data. The new data set is named

SW132. We extend the series in the SW132 data set to 2012:M12, using May 2013

data vintages. The first four digits denote the year, the letter M and last two digits

denote the certain month. For example, 2012:M12 means the break date is December

of 2012. We replace the quarterly series in SW132 by the monthly counterparts, if

available. This is possible for the consumption of nondurable, services, and durables;

for nonresidential investment; and for 16 price series. We remove the remaining quar-

terly series for which no monthly observations are available. We add two statistical

model components that are available at monthly frequency: change in private inven-

tory and wage and salary disbursements. Following Stock and Watson (2012)[24],

we remove local means from all series using a bi-weight kernel with a bandwidth of

100 months, the local means are approximately the same as the ones obtained by a

centered moving average of ±70 months. After making these modifications, the data

set consists of N = 102 series of monthly macroeconomic and financial indicators.

The sample begins after the Great Moderation and ranges from 1985:M1 to 2013:M1

(T = 337).
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5.2.2 Analyze the Results

The empirical analysis is considered in the unknown break date case. We apply the

adjustments of the procedure described in Section 4.5. During the empirical analysis,

we fix the number of potential factors to k = 8 and use the cross-validation procedure

with nN = 5 and nT = 10 (Cheng et al. (2016))[13]. The model selection results are

reported in Table 5.6.

Table 5.6: Model Selection, Tc=2012:M12

Interval Factors Break Dates
Size r̂a r̂b Least Sq. Revised

0 1 2 2007:M12 2007:M12
3 1 2 2007:M9 2007:M12
6 1 2 2007:M6 2007:M12
9 1 3 2007:M3 2007:M12

Notes: We center the interval Π at 2007:M12 and use the averaging penalty functions
P ∗
1 (Λ) and P ∗

2 (Λ) defined in (4.3) where the average is taken over the interval 2007:M12 ± Size.

Suppose that Tc is the beginning of the Great Recession according to the business

cycle dating of the National Bureau of Economic Research (NBER). We select 4 dif-

ferent sets of potential break dates, which are located around the potential break date

Tc = 2007:M12. For example, if Size = 0, the set Π corresponds to a single month

of the potential break date 2007:M12. In this situation, we obtain 1-month period

and consider the break date happens in that time. If Size = 3, the set of potential

break dates are located in the range of 2007:M9 and 2008:M3. If Size = 6, the set of

potential break dates are located in the range of 2007:M6 to 2008:M6. If Size = 9,

the set of potential break dates are located in the range of 2007:M3 to 2008:M9.
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For each choice of Π, we obtain r̂a = ra = 1 and either r̂b = rb = 2 or r̂b = rb = 3.

Clearly, the procedure provides an evidence of a structural change in the number of

factors. In the fourth column of Table 5.6, we present the least squares estimation

of the break date by definition in (4.9). In addition, we minimize the least square

criterion over the interval Π, which is stated in the first column. It turns out that

the minimum is always attained at the boundary of Π (Cheng et al. 2016)[13]. To

make the result more precise, we consider the method in Section 2.2 by Breitung

and Eickmeier (2011)[8]. They explain that the sum of pre- and post-break factors

is minimized at the true break date. Thus, for each break date in a given Π, we

compute r̂a + r̂b and check whether the minimum over the given interval is attained

at Tc = 2007:M12. If the minimum is attained at Tc, we set the revised break date

equal to the potential break date Tc. If the minimum is not attained at Tc, we con-

sider the revised break date as the date closest to the potential break date Tc and the

minimum is attained. Overall, for all choices of Π, the procedure detects the break

date correctly so that there is no need to revise the potential break date Tc.

Moreover, we consider another approach to obtain the probability of correctly esti-

mating B, ra and rb, as well as the value of relative MSFE. Specifically, the Bootstrap

is a proposed method for the case of sampling from a finite population with replace-

ment. It is shown that for a large number of practical situations, the proposed method

works as a natural extension of standard bootstrap method. It turns out that boot-

strap works for sample mean, sample quantile, t-statistics, empirical processes and

some linear combinations of order statistics. (Chao and Lo 1985)[12]
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We use the bootstrap method in Matlab R2018a to generate 500 data sets based on

the original data set of SW132. Each of the data sets has the same properties as the

data set of SW132. To obtain the value of ra and rb, we take the average of both r̂a

and r̂b we generated and round to the nearest integer respectively. Table 5.7 presents

the bootstrap results.

Table 5.7: Bootstrap Results

Model Configuration Model Selection Relative

N T Pr(r̂∗a = ra) Pr(r̂∗b = rb) Pr(B̂∗ = B) MSFE

337 102 0.41 0.52 0.85 0.85

In Table 5.7, the probability of correctly estimating ra and rb are less accurate, we

obtain the probability only around 41% and 52% respectively. Although the prob-

abilities of correctly estimating the number of factors are lower, the probability of

correctly estimating the break date is higher and reaches around 85%. We expect the

value of MSFE is less than 1 and obtain the value of MSFE is 0.85, thus, we conclude

that the PMS predictor dominates the full-sample predictor. Overall, the procedure

generally detects the break date correctly for unknown break date case.



Chapter 6

Concluding Remarks

In this major paper, we develop a high-dimensional econometric model, which is ca-

pable of estimating the number of pre- and post-break factors with the existence of

the instability. The estimator we developed is robust to the instability when the

break date is unknown. In addition, the Group-LASSO estimation procedure can

detect the changes in the factor loadings when the number of factors is constant in

the sample. We demonstrate that when the number of pre- and post-break factors

are determined, the break date can be estimated by the least square approach.

Moreover, by the Monte Carlo simulation, we demonstrate that the Group-LASSO

estimation procedure generally has no problem in detecting the existence of the in-

stability. Also, the procedure is designed to determine the number of factors when

there is no break in the sample and to detect the break in the factor loadings when

the number of factor is known. When the break date is unknown, the procedure can

estimate the break date correctly.

54
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In the real data set of the Great Recession in the U.S., we estimate the potential

break date precisely by minimizing the sum of the number of the pre- and post-break

factors. Under unknown break date case, the break date can be estimated correctly

in general. From what has discussed in the empirical analysis, the proposed proce-

dure detects the increase in the number of factors, which provides an evidence of a

structural change in the number of factors.



Appendix A

Some Statistical Background

In this appendix, we give some definitions and lemmas used in deriving the main

results of this major paper.

Definition A.1 (Casella and Berger (2002)[11]). A sequence of random variables

{Xn}∞n=1 converges in probability to a random variable X if, for every ε > 0,

lim
n→∞

Pr(|Xn −X| ≥ ε) = 0. We denote it as Xn
p−−−→

n→∞
X.

Definition A.2 (Bickel and Doksum (2001)[7]). A sequence of random vectors Zn =

(Zn1, Zn2, · · · , Znm)′ converges in probability to Z = (Z1, Z2, · · · , Zm)′ iff Znj
p−−−→

n→∞
Zj

for 1 ≤ j ≤ m. We denote it as Zn
p−−−→

n→∞
Z.

Lemma A.1 (Strawderman (1993)[25]). Let An be a random sequence of symmetric

nonnegative definite k × k matrices where k < ∞. If a positive definite symmetric

k × k matrix A with finite elements exists such that An
p−−−→

n→∞
A element-wise, then

‖An − A‖
p−−−→

n→∞
0, where ‖.‖ denotes any proper norm on Rk×k.

The proof of this lemma is given in Lemma 1 of Strawderman(1999)[24].
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Appendix B

Some Proofs

In this appendix, we give the proof of lemma and theorem used in the derivation of

the major paper.

Proof of Lemma 3.1. Let Υa ∈ Rra×ra be a matrix of orthonormal eigenvectors,

note that Υ′aΥa = Ira implies that Υ′a = Υ−1
a . Let Σ

1/2
a be the Cholesky factor of Σa,

where Σa = Λ0′Λ0/N . By definition,

Υ′a(Σ
1/2
a )′ΣFΣ1/2

a Υa = Va. (B.1)

Therefore, Va is a diagonal matrix of eigenvalues, ordered from largest to smallest.

Let ΛR = Λ0R
′−1
a and ΨR = Ψ0R

′−1
b and define the transformation matrix Ra =

Σ
1/2
a ΥaV

−1/2
a for pre-break date case. For post-break date case, let Σb = Ψ0′Ψ/N ∈

Rrb×rb , substitute ΣF in (B.2) by ΣF , and replace a-subscripts by b-subscripts. Thus,

the second transformation matrix for Rb is defined as Rb = Σ
1/2
b ΥbV

−1/2
b . Then, we
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have

ΛR′ΛR

N
= V 1/2

a Υ′aΣ
−1/2
a

Λ0′Λ0

N
Σ−1/2
a ΥaV

1/2
a = Va and

ΨR′ΨR

N
= Vb (B.2)

The `-th diagonal element of Va is the `-th largest eigenvalue of Σ
1/2
a ΣFΣ

1/2
a . Let ρ∗

denotes the eigenvalue of Σ
1/2
a ΣFΣ

1/2
a . One can verify that ρ∗ is also the eigenvalue

of ΣaΣF . Therefore, the `-th diagonal element of Va is the same as the `-th largest

eigenvalue of ΣaΣF . Recall that in Assumption 3, there exists a positive definite

matrix ΣΛ ∈ Rra×ra such that ‖Σa − ΣΛ‖ → 0 as N → ∞. Here, Σa is a sequence

of symmetric positive definite matrix. By Lemma 1 in Strawderman (1993)[25], we

have

Σa
p−−−→

N→∞
ΣΛ. (B.3)

Then, we have

ΣaΣF
p−−−→

N→∞
ΣΛΣF (B.4)

where ΣF ∈ Rra×ra is positive definite matrix. Carl de Boor (2002)[16] proved that

the convergence of matrices is entry-wise such that

(
Σa ΣF

)
i,j

p−−−→
N→∞

(
ΣΛ ΣF

)
i,j

for all i, j. (B.5)

In addition, Alexanderian (2013)[2] mentioned that the characteristic roots, which

are eigenvalues, of a polynomial depend continuously on its entries. Then, we have

λ`(ΣaΣF )
p−−−→

N→∞
λ`(ΣΛΣF ) (B.6)
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Therefore, the `-th largest eigenvalue of ΣaΣF converges to the `-th largest eigenvalue

of ΣΛΣF as N → ∞, denoted by ρ`(ΣΛΣF ). Similarly, the `-th diagonal element of

Vb converges to the `-th largest eigenvalue of ΣΨΣF as N →∞, denoted by ρ`(ΣΨΣF ).

Let a` be a selection vector that selects the `-th column of a matrix, note that a′`

selects the `-th row of a matrix. Part (i) holds because

N−1‖ΛR
` ‖2 = N−1(ΛR′

` ΛR
` ) = a′`

ΛR′ΛR

N
a` = a′`Vaa` = ρ`(ΣΛΣF ) + o(1). (B.7)

To prove part (ii), note that for ra < ` < rb, the `-th column of ΓR is equivalent to

the `-th column of ΨR. Therefore,

N−1‖ΓR` ‖2 = N−1(ΨR′

` ΨR
` ) = a′`

ΨR′ΨR

N
a` = a′`Vba` = ρ`(ΣΨΣF ) + o(1). (B.8)

This completes the proof.

Proof of Theorem 3.4. First, we need to prove Pr(r̂a ≥ ra)→1 as N, T →∞.

Theorem 3.3(i) and Lemma 3.1(i) indicate that

N−1/2‖Λ̂` − ΛR
` ‖ = Op(C

−1
NT ) for ` = ra (B.9)

and

N−1/2‖ΛR
` ‖ = [ρ`(ΣΛΣF )]1/2 + o(1) for ` = 1, · · · , ra. (B.10)

By the triangle inequality, we have

Op(C
−1
NT ) = N−1/2‖Λ̂` − ΛR

` ‖ ≥ |N−1/2‖Λ̂`‖ −N−1/2‖ΛR
` ‖|. (B.11)
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Then, we get rid of the absolute value on the right hand side,

−N−1/2‖Λ̂` − ΛR
` ‖ ≤ N−1/2‖Λ̂`‖ −N−1/2‖ΛR

` ‖

N−1/2‖ΛR
` ‖ −N−1/2‖Λ̂` − ΛR

` ‖ ≤ N−1/2‖Λ̂`‖

[ρ`(ΣΛΣF )]−1/2 + o(1) ≤ N−1/2‖Λ̂`‖+OP (C−1
NT ).

(B.12)

Since ΣΛ and ΣF are positive definite matrices, we have

Pr(‖Λ̂`‖ > 0)→ 1 as N, T →∞ for ` = ra. (B.13)

Here, the ra-th column of Λ̂ has value greater than 0 with probability approaching

to 1. By definition of r̂a in (3.7), the r̂a-th column is the largest column where the

column of Λ̂ has the value not equal to 0. Therefore, Pr(r̂a ≥ ra)→ 1 as N, T →∞.

Second, we need to prove Pr(r̂a ≤ ra)→ 1 as N, T →∞.

Theorem 3.3(ii) indicates that

Pr(‖Λ̂`‖ = 0 for ` = ra + 1, · · · , k)→ 1 as N, T →∞. (B.14)

Here, the (ra + 1)-th to k-th column of Λ̂ have the value of 0 with probability ap-

proaching to 1. the definition of r̂a in (3.7), Then, we have Pr(r̂a ≤ ra) → 1 as

N, T →∞. Therefore, we have lim
N,T→∞

Pr(r̂a = ra) = 1.

Third, we consider the case under the existence of the instability and we need to
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prove Pr(r̂b ≥ rb)→1 as N, T →∞. The procedure is similar to the first step. With

the existence of the instability where rb > ra and B0 = 1. Theorem 3.3(iii) for ` = rb

and Lemma 3.1(ii) imply that Pr(‖Γ̂`‖ > 0) → 1 as N, T → ∞ for ` = rb, together

with the definition of r̂b in (3.7), hence, Pr(r̂b ≥ rb)→ 1 as N, T →∞.

To prove Pr(r̂b ≤ rb)→1 as N, T → ∞, the procedure is similar to the second step.

Theorem 3.3 (v) and definition of r̂b in (3.7) imply that Pr(r̂b ≤ rb)→ 1 as N, T →∞,

since with the existence of the instability, rb > ra and B = 1 imply r̂b > r̂a and B̂ = 1.

Hence, lim
N,T→∞

Pr(r̂b = rb) = 1 for a the existence of the instability.

Now, we need to prove Pr(B̂ = 1) as N, T →∞ with the existence of the instability

where rb > ra. We have lim
N,T→∞

Pr(r̂b = rb) = 1 and lim
N,T→∞

Pr(r̂a = ra) = 1 proved in

second step. By definition of r̂b in 3.7 and Theorem 3.3(v), we have

{
‖Γ̂rb‖ > 0

}
⊂
{
‖Γ̂‖ > 0

}
, (B.15)

then, we have

Pr(‖Γ̂rb‖ > 0) ≤ Pr(‖Γ̂‖ > 0) ≤ 1. (B.16)

Since the r̂b-th column is the largest column where the column of Γ̂ has value not

equal to 0 and we proved that Pr(r̂b ≥ rb)→ 1 as N, T →∞, then, we have

Pr(‖Γ̂rb‖ > 0)→ 1 as N, T →∞. (B.17)



APPENDIX B. SOME PROOFS 62

Thus, the inequality in (B.16) can be written as

Pr(‖Γ̂‖ > 0)→ 1 as N, T →∞. (B.18)

From (B.15), we also have

{
I‖Γ̂rb‖>0 = 1

}
⊂
{
I‖Γ̂‖>0 = 1

}
,

Pr
(
I‖Γ̂rb‖>0 = 1

)
≤ Pr

(
I‖Γ̂‖>0 = 1

)
≤ 1. (B.19)

Consider the two events
{
‖Γ̂‖ = 0

}
and

{
‖Γ̂‖ > 0

}
. We have{

‖Γ̂‖ = 0
}
∩
{
‖Γ̂‖ > 0

}
= ∅ and Pr(‖Γ̂‖ = 0) + Pr(‖Γ̂‖ > 0) = 1. By the law of

total probability,

Pr
(
I‖Γ̂rb‖>0 = 1

)
= Pr

({
I‖Γ̂rb‖>0 = 1

}
∩
{
‖Γ̂‖ > 0

})
+

Pr
({
I‖Γ̂rb‖>0 = 1

}
∩
{
‖Γ̂‖ = 0

})
,

(B.20)

then

Pr
(
I‖Γ̂rb‖>0 = 1

)
= Pr

({
‖Γ̂rb‖ > 0

}
∩
{
‖Γ̂‖ > 0

})
+

Pr
({
‖Γ̂rb‖ > 0

}
∩
{
‖Γ̂‖ = 0

})
,

and then,

lim
N,T→∞

Pr
(
I‖Γ̂rb‖>0 = 1

)
= lim

N,T→∞
Pr
(
‖Γ̂rb‖ > 0

)
+

lim
N,T→∞

Pr
({
‖Γ̂rb‖ > 0

}
∩
{
‖Γ̂‖ = 0

})
,
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this gives

lim
N,T→∞

Pr
(
I‖Γ̂rb‖>0 = 1

)
= lim

N,T→∞
Pr
(
‖Γ̂rb‖ > 0

)
+ 0,

together with (B.17), therefore,

lim
N,T→∞

Pr
(
I‖Γ̂rb‖>0 = 1

)
= 1. (B.21)

Finally, in (B.19) we have

lim
N,T→∞

Pr
(
I‖Γ̂rb‖>0 = 1

)
= 1 ≤ lim

N,T→∞
Pr
(
I‖Γ̂‖>0 = 1

)
≤ 1,

this gives,

lim
N,T→∞

Pr
(
I‖Γ̂‖>0 = 1

)
= 1, (B.22)

which implies that lim
N,T→∞

Pr(B̂ = 1) = 1. Therefore, we complete the proof of Theo-

rem 3.3.

Fourth, we need to prove Pr(r̂b = rb) → 1 as N, T → ∞ and Pr(B̂ = 0) →1 as

N, T → ∞ in no break date case, i.e., ra = rb and B = 0. Together with the defi-

nition of r̂b in (3.7) and the fact that ra = rb, we conclude that Pr(r̂b = rb) → 1 as

N, T →∞.

By applying the same procedure from (B.19) to (B.22), we have

lim
N,T→∞

Pr
(
I‖Γ̂‖>0 = 0

)
= 1. (B.23)
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Thus, by the definition of B̂ in (3.6), we conclude that

Pr(B̂ = B = 0)→ 1 as N, T →∞ (B.24)

Therefore, we complete the proof of Theorem 3.3 in no break date case.

This completes the proof.



Appendix C

Supplemental Table for Empirical

Analysis

In this appendix, we present a table of the macroeconomic and financial indicators

that data series used from Cheng et al. (2016, see Supplemental Appendix Tables

S3-S5)[13].

Table C.1: List of Financial Indicators-Part I
Name Long Description

Cons: Dur Real Personal Consumption Expenditures: Durable
Goods

Cons: Svc Real Personal Consumption Expenditures: Services
Cons: NonDur Real Personal Consumption Expenditures: Non-

durable Goods
Real InvtCh Component for Change in Private Inventories, deflated

by JCXFE
Real WageG Component for Government GDP: Wage and Salary

Disbursements by Industry, Government, deflated by
JCXFE

IP: DurGds materials Industrial Production: Durable Materials
IP: NondurGds materials Industrial Production: Nondurable Materials
IP: DurConsGoods Industrial Production: Durable Consumer Goods
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Table C.2: List of Financial Indicators-Part II
Name Long Description

IP: Auto IP: Automotive products
IP: NonDurConsGoods Industrial Production: Nondurable Consumer Goods
IP: BusEquip Industrial Production: Business Equipment
IP: EnergyProds IP: Consumer Energy Products
CapU Tot Capacity Utilization: Total Industry
CapU Man Capacity Utilization: Manufacturing (FRED past 1972)
Emp: DurGoods All Employees: Durable Goods Manufacturing
Emp: Const All Employees: Construction
Emp: Edu & Health All Employees: Education & Health Services
Emp: Finance All Employees: Financial Activities
Emp: Infor All Employees: Information Services
Emp: Bus Serv All Employees: Professional & Business Services
Emp: Leisure All Employees: Leisure & Hospitality
Emp: OtherSvcs All Employees: Other Services
Emp:Mining/NatRes All Employees: Natural Resources & Mining
Emp: Trade&Trans All Employees: Trade, Transportation & Utilities
Emp: Retail All Employees: Retail Trade
Emp: Wholesal All Employees: Wholesale Trade
Emp: Gov(Fed) All Employees: Government: Federal
Emp: Gov (State) All Employees: Government: State Government
Emp: Gov (Local) All Employees: Government: Local Government
URate: Age16-19 Unemployment Rate - 16-19 yrs
URate: Age > 20 Men Unemployment Rate - 20 yrs. & over, Men
URate: Age > 20 Women Unemployment Rate - 20 yrs. & over, Women
U: Dur < 5wks Number Unemployed for Less than 5 Weeks
U: Dur 5-14wks Number Unemployed for 5-14 Weeks
U: Dur > 15-26wks Civilians Unemployed for 15-26 Weeks
U: Dur > 27wks Number Unemployed for 27 Weeks & over
U: Job Losers Unemployment Level - Job Losers
U: LF Reentry Unemployment Level - Reentrants to Labor Force
U: Job Leavers Unemployment Level - Job Leavers
U: New Entrants Unemployment Level - New Entrants
Emp: SlackWk Employment Level - Part-Time for Economic Reasons, All In-

dustries
AWH Man Average Weekly Hours: Manufacturing
AWH Privat Average Weekly Hours: Total Private Industrie
AWH Overtime Average Weekly Hours: Overtime: Manufacturing
HPermits New Private Housing Units Authorized by Building Permit
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Table C.3: List of Financial Indicators-Part III
Name Long Description

Hstarts: MW Housing Starts in Midwest Census Region
Hstarts: NE Housing Starts in Northeast Census Region
Hstarts: S Housing Starts in South Census Region
Hstarts: W Housing Starts in West Census Region
Constr. Contracts Construction contracts (mil. sq. ft.) (Copyright, McGraw-

Hill)
Ret. Sale Sales of retail stores (mil. Chain 2000 $)
Orders (DurMfg) Mfrs new orders durable goods industries (bil. chain 2000 $)
Orders (ConsumerGoods/Mat.) Mfrs new orders, consumer goods and materials (mil. 1982 $)
UnfOrders (DurGds) Mfrs unfilled orders durable goods indus. (bil. chain 2000 $)
Orders (NonDefCap) Mfrs new orders, nondefense capital goods (mil. 1982 $)
VendPerf Index of supplier deliveries vendor performance (pct.)
MT Invent Manufacturing and trade inventories (bil. Chain 2005 $)
PCED-MotorVec Motor vehicles and parts
PCED-DurHousehold Furnishings and durable household equipment
PCED-Recreation Recreational goods and vehicles
PCED-OthDurGds Other durable goods
PCED-Food-Bev Food and beverages purchased for off-premises consumption
PCED-Clothing Clothing and footwear
PCED-Gas-Enrgy Gasoline and other energy goods
PCED-OthNDurGds Other nondurable goods
PCED-Housing-Utilities Housing and utilities
PCED-HealthCare Health care
PCED-TransSvg Transportation services
PCED-RecServices Recreation services
PCED-FoodServ-Acc. Food services and accommodations
PCED-FIRE Financial services and insurance
PCED-OtherServices Other services
PPI: FinConsGds Producer Price Index: Finished Consumer Goods
PPI: FinConsGds(Food) Producer Price Index: Finished Consumer Foods
PPI: IndCom Producer Price Index: Industrial Commodities
PPI: IntMat Producer Price Index: Intermediate Materials: Supplies &

Components
NAPM ComPrice NAPM COMMODITY PRICES INDEX (PERCENT)
Real Price: NatGas PPI: Natural Gas, deflated by PCEPILFE
Real Price: Oil PPI: Crude Petroleum, deflated by PCEPILFE
FedFunds Effective Federal Funds Rate
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Table C.4: List of Financial Indicators-Part IV
Name Long Description

TB-3Mth 3-Month Treasury Bill: Secondary Market Rate
BAA-GS10 BAA-GS10 Spread
MRTG-GS10 Mortg-GS10 Spread
TB6m-TB3m tb6m-tb3m
GS1-TB3m GS1-Tb3m
GS10-TB3m GS10-Tb3m
CP-TB Spread CP-Tbill Spread: CP3FM-TB3MS
Ted-Spread MED3-TB3MS (Version of TED Spread)
Real C&I Loan Commercial and Industrial Loans at All Commercial BanksDefl by

PCEPILFE
Real ConsLoans Consumer (Individual) Loans at All Commercial Banks Outlier Code

because of change in data in April 2010 see FRB H8 ReleasDefl by
PCEPILFE

Real NonRevCredit Total Nonrevolving Credit Owned and Securitized, OutstandingDefl by
PCEPILFE

Real LoansRealEst Real Estate Loans at All Commercial BanksDefl by PCEPILFE
Real RevolvCredit Total Revolving Credit OutstandingDefl by PCEPILFE
S&P500 S&PS COMMON STOCK PRICE INDEX: COMPOSITE (1941-

43=10)
DJIA COMMON STOCK PRICES: DOW JONES INDUSTRIAL AVER-

AGE
VXO VXO (Linked by N. Bloom) .. Average daily VIX from 2009
Ex rate: Major FRB Nominal Major Currencies Dollar Index (Linked to EXRUS in

1973:1)
Ex rate: Switz FOREIGN EXCHANGE RATE: SWITZERLAND (SWISS FRANC

PER USD)
Ex rate: Japan FOREIGN EXCHANGE RATE: JAPAN (YEN PER USD)
Ex rate: UK FOREIGN EXCHANGE RATE: UNITED KINGDOM (CENTS PER

POUND)
EX rate: Canada FOREIGN EXCHANGE RATE: CANADA (CAD PER USD)
Cons. Expectations Consumer expectations NSA (Copyright, University of Michigan)
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