
University of Windsor University of Windsor 

Scholarship at UWindsor Scholarship at UWindsor 

Major Papers Theses, Dissertations, and Major Papers 

September 2018 

Topological vector spaces Topological vector spaces 

Chunqing Li 
li1e6@uwindsor.ca 

Follow this and additional works at: https://scholar.uwindsor.ca/major-papers 

 Part of the Analysis Commons 

Recommended Citation Recommended Citation 
Li, Chunqing, "Topological vector spaces" (2018). Major Papers. 56. 
https://scholar.uwindsor.ca/major-papers/56 

This Major Research Paper is brought to you for free and open access by the Theses, Dissertations, and Major 
Papers at Scholarship at UWindsor. It has been accepted for inclusion in Major Papers by an authorized 
administrator of Scholarship at UWindsor. For more information, please contact scholarship@uwindsor.ca. 

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Scholarship at UWindsor

https://core.ac.uk/display/215510995?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://scholar.uwindsor.ca/
https://scholar.uwindsor.ca/major-papers
https://scholar.uwindsor.ca/theses-dissertations-major-papers
https://scholar.uwindsor.ca/major-papers?utm_source=scholar.uwindsor.ca%2Fmajor-papers%2F56&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/177?utm_source=scholar.uwindsor.ca%2Fmajor-papers%2F56&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholar.uwindsor.ca/major-papers/56?utm_source=scholar.uwindsor.ca%2Fmajor-papers%2F56&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarship@uwindsor.ca


Topological vector spaces

by

Chunqing Li

A Major Research Paper

Submitted to the Faculty of Graduate Studies

through the Department of Mathematics and Statistics

in Partial Fulfillment of the Requirements for

the Degree of Master of Science at the

University of Windsor

Windsor, Ontario, Canada

2018

© 2018 Chunqing Li



Topological vector spaces

by

Chunqing Li

APPROVED BY:

—————————————————————–

M. Monfared

Department of Mathematics and Statistics

—————————————————————–

Z. Hu, Supervisor

Department of Mathematics and Statistics

September 14, 2018



iii

Author’s Declaration of Originality

I hereby certify that I am the sole author of this major paper and that no part of

this major paper has been published or submitted for publication.

I certify that to the best of my knowledge, my major paper does not infringe upon

anyone’s copyright nor violate any proprietary rights and that any ideas, techniques,

quotations, or any other material from the work of other people included in my major

paper, published or otherwise, are fully acknowledged in accordance with the standard

referencing practices. Furthermore, to the extent that I have included copyrighted

materials that surpasses the bounds of fair dealing within the meaning of the Canada

Copyright Act, I certify that I have obtained a written permission of the copyright

owner(s) to include such materials in my major paper and have included copies of

such copyright clearances to my appendix.

I declare that this is a true copy of my major paper, including any final revisions,

as approved by committee and the Graduate Studies Office, and that this major paper

has not been submitted for a higher degree to any other University or Institution.



iv

Abstract

This major paper is a report on author’s study of some topics on topological

vector spaces. We prove a well-known Hahn-Banach theorem and some important

consequences, including several separation and extension theorems. We study the

weak topology on a topological vector space X and the weak-star topology on the

dual space X∗ of X. We also prove the Banach-Alaoglu theorem. Consequently, we

characterize the closed convex hull and the closed linear span for sets in X and X∗,

identify the dual of a subspace of X with the quotient of its annihilator, and obtain

the Goldstine theorem as well as some characterizations of reflexive normed spaces.
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CHAPTER 1

Introduction

This major paper is a report on author’s study of some materials on topological

vector spaces contained in the references, mainly in [2,3]. We begin the paper with

some basic definitions and properties on topological spaces.

Chapter 3 contains some basic results for topological vector spaces, in particu-

lar, for those topological vector spaces where the topology is induced by seminorms.

We discuss quotient spaces and linear functionals of topological vector spaces. We

prove a well-known Hahn-Banach theorem for real linear spaces and prove some con-

sequences of this Hahn-Banach theorem, which include several separation theorems

and an extension theorem for topological vector spaces.

In Chapter 4, we consider the weak topology on a topological vector space X and

the weak-star topology on its dual space X∗, and give some of their basic properties.

We study dual spaces over these topologies, and characterize the closed convex bal-

anced hull and the closed linear span for sets in X and X∗. We identify the dual

of a quotient space with the annihilator of the subspace, and identify the dual of a

subspace of a locally convex topological vector space with the quotient space of the

annihilator of the subspace.

In Chapter 5, we prove Banach-Alaoglu theorem and Goldstine theorem, which

say that for a normed space X, the closed unit ball of X∗ is weak-star compact and

the closed unit ball of X∗∗ is the weak-star closure in X∗∗ of the canonical image of

the closed unit ball of X. We give a number of characterizations of reflexive normed

spaces. We prove that every reflexive space is weakly sequentially complete, and show

that the converse is not true by checking the non-reflexivity of the weakly sequentially

complete space `1. We end the paper by proving that X is separable if and only if

the closed unit ball of X∗ is weak-star metrizable.
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CHAPTER 2

Basics of topological spaces

In this chapter, we give some basic definitions and properties on topological spaces

mainly involving convergence, continuity and compactness, which will be used in later

chapters. The main reference for this chapter is [5].

Definition 2.1. Let X be a topological space, and let x ∈ X. A subset N of X

is called a neighborhood of x if there exists an open subset U of X with x ∈ U ⊆ N.

The collection of all neighborhoods of x is denoted by Nx .

Definition 2.2. Let X be a topological space.

(a) A base for the topology on X is a collection B of open sets in X such that

each open set in X is a union of sets in B.

(b) A subbase for the topology on X is a collection S of open sets in X such that

the collection of all finite intersections of sets in S is a base for the topology.

Definition 2.3. Let X be a topological space and let x ∈ X. A net (xα)α∈A in

X is said to converge to x if for each N ∈ Nx, there exists αN ∈ A such that xα ∈ N

for all α ∈ A with α < αN .

Definition 2.4. Let X and Y be topological spaces, and let x0 ∈ X. A function

f : X → Y is said to be continuous at x0 if f−1(N) ∈ Nx0 for each N ∈ Nf(x0). If f

is continuous at every point of X, we simply call f continuous.

Proposition 2.1. Let X and Y be topological spaces, let f : X → Y , and let

x0 ∈ X. Then the following statements are equivalent.

(i) f is continuous at x0.

(ii) If (xλ) is a net in X with xλ → x0, then f(xλ)→ f(x0) in Y .

2



2. BASICS OF TOPOLOGICAL SPACES 3

Definition 2.5. Let {Xi}i∈I be a family of topological spaces. Let X =
∏

i∈I Xi.

The product topology on X is the coarest topology on X making all the coordinate

projections πi : X → Xi (i ∈ I) continuous. We call X the product space of {Xi}i∈I .

Proposition 2.2. Let {Xi}i∈I be a family of topological spaces and let X be the

product space of {Xi}i∈I . Let (fα)α∈Λ be a net in X and f ∈ X. Then fα → f in X

if and only if fα(i)→ f(i) in Xi for all i ∈ I.

Definition 2.6. Let X be a topological space and let S ⊆ X. The closure of S

is defined as S =
⋂
{E : S ⊆ E and E is a closed subset of X}. Therefore, S is the

smallest closed subset of X containing S.

Proposition 2.3. Let X be a topological space and let S ⊆ X. Then S is closed

in X if and only if S = S.

Proposition 2.4. Let X be a topological space and let S ⊆ X. Then

S = {x ∈ X : x is a limit of a net in S}.

In particular, S = {x ∈ X : x is a limit of a sequence in S} if X is first countable.

Corollary 2.5. Let X be a topological space and let S ⊆ X. Then S is closed

in X if and only if every net in S that converges in X has its limit in S.

Proposition 2.6. Let X be a metric space and let Y be a subspace of X such

that Y is complete. Then Y is closed in X.

Definition 2.7. Let X be a topological space. A subset D of X is said to be

dense in X if D = X. X is called separable if it contains a countable dense subset.

Proposition 2.7. Let X be a separable metric space and let Y be a subspace of

X. Then Y is separable.

Proposition 2.8. Let X be a topological space, let x ∈ X, and let (xα)α∈A be a

net in X with xα → x. Then each subnet of (xα)α∈A converges to x.
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Definition 2.8. Let X be a topological space and let (xα)α∈A be a net in X. A

point x in X is called an accumulation point of (xα)α∈A if for all α ∈ A and N ∈ Nx,

there exists β ∈ A such that β < α and xβ ∈ N .

Proposition 2.9. Let X be a topological space and let S ⊆ X. Then

S = {x : x is an accumulation point of a net in S}.

Theorem 2.10. Let X be a topological space. Then the following statements are

equivalent.

(i) X is compact.

(ii) Every net in X has an accumulation point.

(iii) Every net in X has a convergent subnet.

Proposition 2.11. Let X be a topological space and let Y ⊆ X.

(i) If X is Hausdorff and Y is compact in X, then Y is closed in X.

(ii) If X is compact and Y is closed in X, then Y is compact in X.

Proposition 2.12. Let X be a compact topological space and let f : X → R be

continuous. Then f attains both a minimum and a maximum on X.

Proposition 2.13. Let X and Y be topological spaces such that X is compact

and Y is Hausdorff, and let f : X → Y be a continuous bijection. Then f : X → Y

is a homeomorphism.

Proposition 2.14. Let X and Y be topological spaces such that Y is Hausdorff.

Let A be a dense subset of X and let f, g : X → Y be continuous functions such that

f(x) = g(x) for all x ∈ A. Then f(x) = g(x) for all x ∈ X.



CHAPTER 3

Topological vector spaces and separation theorems

In Section 3.1, we give basic definitions and results on topological vector spaces.

In Section 3.2, we summarize some essential properties about quotient spaces and

linear functionals of topological vector spaces. In Section 3.3, we prove a fundamental

Hahn-Banach theorem for real topological vector spaces. Section 3.4 contains some

consequences of the Hahn-Banach theorem, including several separation theorems and

an extension theorem. The main references for this chapter are [2] and [4].

In this paper, we use the symbol F to denote R or C.

3.1. Topological vector spaces and seminorms

Definition 3.1.1. A topological vector space (TVS) is a linear space X over F

together with a topology such that with respect to this topology,

(i) the map X ×X → X, (x, y) 7→ x+ y is continuous;

(ii) the map F×X → X, (α, y) 7→ αy is continuous.

In this case, it follows that for all x1, x2 ∈ X, if V is a neighborhood of x1 + x2,

then there exists a neighborhood Vi of xi (i = 1, 2) such that V1 + V2 ⊆ V . Similarly,

for all x ∈ X and α ∈ F, if V is a neighborhood of αx, then for some r > 0 and some

neighborhood W of x, we have βW ⊆ V whenever |β − α| < r.

Definition 3.1.2. Let X be a linear space over F. A function ‖ · ‖ : X → [0,∞)

is called a norm on X if for all x, y ∈ X and α ∈ F, we have

(i) ‖x‖ = 0 if and only if x = 0;

(ii) ‖αx‖ = |α|‖x‖;

(iii) ‖x+ y‖ 6 ‖x‖+ ‖y‖.

A function p : X → [0,∞) satisfying (ii) and (iii) above is called a seminorm on X.

5



3.1. TOPOLOGICAL VECTOR SPACES AND SEMINORMS 6

Example 3.1.1. The function R2 → [0,∞) defined by x = (x1, x2) 7→ |x1| is a

seminorm on R2, but not a norm since x1 = 0 does not imply that x = 0.

Definition 3.1.3. Let X be a linear space and let P be a family of seminorms

on X. Let T be the topology on X that has a subbase consisting of the sets

{x : p(x− x0) < ε},

where p ∈ P , x0 ∈ X and ε > 0. Thus a subset U of X is open if and only if for every

x0 in U , there are p1, · · · , pn in P and positive scalars ε1, · · · , εn such that

n⋂
j=1

{x ∈ X : pj(x− x0) < εj} ⊆ U.

This topology T is called the topology defined by P .

Lemma 3.1.2. Let X be a linear space, let P be a family of seminorms on X, and

let T be the topology on X defined by P . Let x ∈ X and let (xi)i∈I be a net in X.

Then p(xi − x)→ 0 for all p ∈ P if and only if xi → x in (X,T ).

Proof. Suppose p(xi − x) → 0 for all p ∈ P . Let N ∈ Nx. Then there exist

p, · · · , pn ∈ P and ε1, · · · , εn > 0 such that
n⋂
j=1

Upj ,εj ⊆ N , where

Upj ,εj = {y ∈ X : pj(y − x) < εj}.

Let δ = min{ε1, · · · , εn}. Then
n⋂
j=1

Upj ,δ ⊆ N . Since pj(xi − x)→ 0 for j = 1, · · · , n,

there exists i0 ∈ I such that when i < i0, pj(xi − x) < δ for all 1 6 j 6 n. That is,

for all i < i0, xi ∈
n⋂
j=1

Upj ,δ ⊆ N . Therefore, xi → x in (X,T ).

Conversely, suppose xi → x in (X,T ). Let p ∈ P . Let ε > 0 and let

Uε = {y ∈ X : p(y − x) < ε}.

Then Uε is a neighborhood of x. Thus there exists i0 ∈ I such that xi ∈ Uε for all

i < i0. That is, p(xi − x) < ε for all i < i0. Therefore, p(xi − x)→ 0. �
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Proposition 3.1.3. Let X be a linear space, let P be a family of seminorms on

X, and let X be equipped with the topology defined by P . Then

(i) X is a TVS;

(ii) each p ∈ P is continuous on X.

Proof. (i) We just need show that the addition and scalar multiplication on X

are continuous.

Let x, y ∈ X. Let (xi) and (yi) be two nets in X with xi → x and yi → y. Let

p ∈ P . Then

p((xi + yi)− (x+ y)) = p((xi − x) + (yi − y)) 6 p(xi − x) + p(yi − y).

By Lemma 3.1.2, p(xi− x)→ 0 and p(yi− y)→ 0. So, p((xi + yi)− (x+ y))→ 0. By

Lemma 3.1.2 again, xi + yi → x+ y. Therefore, the addition on X is continuous.

Let λ ∈ F and x ∈ X. Let (λi) be a net in F with λi → λ, and let (xi) be a net

in X with xi → x. Then

p(λixi − λx) = p((λi − λ)xi + λ(xi − x)) 6 |λi − λ|p(xi) + |λ|p(xi − x).

Since p(xi− x)→ 0 (by Lemma 3.1.2), p(xi) 6 p(xi− x) + p(x), and λi → λ, we have

|λi − λ|p(xi) 6 |λi − λ|p(xi − x) + |λi − λ|p(x)→ 0.

Hence, p(λixi − λx) → 0. By Lemma 3.1.2, λixi → λx. Therefore, the scalar multi-

plication on X is continuous.

(ii) Let p ∈ P . Let (xi) be a net in X with xi → x ∈ X. By Lemma 3.1.2,

p(xi − x)→0. Since p(xi − x) > p(xi)− p(x) and p(x− xi) > p(x)− p(xi), we have

|p(xi)− p(x)| 6 p(xi − x)→ 0.

Thus p(xi)→ p(x). Therefore, p is continuous on X. �

Definition 3.1.4. A locally convex space (LCS) is a TVS whose topology is

defined by a family P of seminorms such that
⋂
p∈P

ker(p) = {0}.
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Theorem 3.1.4. Let X be a TVS with the topology defined by a family P of

seminorms on X. Then X is a LCS if and only if X is Hausdorff.

Proof. Suppose X is a LCS. Then ∆ =
⋂
p∈P

ker(p) = {0}. Let x, y ∈ X with

x 6= y. Then x − y 6= 0, and thus x − y /∈ ∆. Hence, there exists p ∈ P such that

p(x− y) > 0. Let δ = p(x− y). Then Ux = {z ∈ X : p(z− x) < δ
3
} is a neighborhood

of x, Uy = {z ∈ X : p(z−y) < δ
3
} is a neighborhood of y, and Ux∩Uy = ∅. Therefore,

X is Hausdorff.

Conversely, suppose X is Hausdorff. Let x0 6= 0. Then there exists a neighborhood

N0 of 0 such that x0 /∈ N0. Thus there exist pi ∈ P and εi > 0 such that
n⋂
i=1

Bpi ⊆ N0,

where Bpi = {y ∈ X : pi(y) < εi} (i = 1, · · · , n). So, x0 /∈
n⋂
i=1

Bpi . It implies that

pi(x) 6= 0 for some i. Thus x0 /∈
⋂
p∈P

ker(p). Therefore, X is a LCS. �

Definition 3.1.5. Let X be a TVS and let E be a non-empty subset of X. The

closed linear span of E, denoted by span(E), is the intersection of all closed linear

subspaces of X which contain E.

Lemma 3.1.5. Let X be a TVS and let E be a non-empty subset of X. Then

span(E) = span(E).

Proposition 3.1.6. Let X be a TVS and let A be a countable non-empty subset

of X. Then span(A) is separable.

3.2. Quotient spaces and linear functionals

Definition 3.2.1. Let X be a linear space over F and let M be a linear subspace

of X. For x, y ∈ X, define x ∼ y if x− y ∈M . Then ∼ is an equivalence relation on

X. For x ∈ X, let [x] = {y ∈ X : y ∼ x}. Then [x] = x + M = {x + m : m ∈ M}.

Let

X/M = {[x] : x ∈ X}.

Then X/M is a linear space over F with scalar multiplication and addition defined by

α[x] = [αx] and [x] + [y] = [x + y] (α ∈ F, x, y ∈ X). The map X → X/M , x 7→ [x]

is linear and surjective, called the canonical quotient map.
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Proposition 3.2.1. Let (X,T ) be a topological space, let Y be a set, and let

q : X → Y be a map. Then TY = {U : U ⊆ Y and q−1(U) ∈ T} is the largest topology

on Y that makes q continuous, called the quotient topology on Y induced by q.

Proposition 3.2.2. Let (X,T ) be a TVS and let M be a linear subspace of X.

Let X/M be equipped with the quotient topology TM induced by the canonical quotient

map Q : X → X/M . Then Q : X → X/M is open.

Proof. Let U ∈ T . Then we have Q−1(Q(U)) = U + M =
⋃

m∈M
(U + m). Since

U+m ∈ T for all m ∈M , Q−1(Q(U)) ∈ T . By the definition of the quotient topology,

Q(U) ∈ TM . Therefore, the map Q : X → X/M is open. �

Proposition 3.2.3. Let X be a linear space, let M be a linear subspace of X, and

let p be a seminorm on X. Define p : X/M → [0,∞) by

p(x+M) = inf{p(x+ y) : y ∈M}.

Then p is a seminorm on X/M .

If X is a LCS and P is the family of all continuous seminorms on X, then the

family P = {p : p ∈ P} defines the canonical quotient topology on X/M .

Proof. Let x ∈ X. If α ∈ F− {0}, then

p(αx+M) = inf{p(αx+ y) : y ∈M} = inf{|α|p(x+
y

α
) : y ∈M}

= |α| inf{p(x+ z) : z ∈M} = |α|p(x+M).

If α = 0, then p(αx+M) = inf{p(y) : y ∈M} = 0. Hence,

p(αx+M) = |α|p(x+M) for all x ∈ X and α ∈ F.

Let x1, x2 ∈ X. Then

p(x1 + x2 +M) = inf{p(x1 + x2 + y) : y ∈M}

= inf{p((x1 + y1) + (x2 + y2)) : y1, y2 ∈M}
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6 inf{p(x1 + y1) + p(x2 + y2) : y1, y2 ∈M}

= inf{p(x1 + y1) : y1 ∈M}+ inf{p(x2 + y2) : y2 ∈M}

= p(x1 +M) + p(x2 +M).

Therefore, p is a seminorm on X/M .

Suppose X is a LCS and P is the family of all continuous seminorms on X. Then

P = {p : p ∈ P} is a family of seminorms on X/M . Let TP be the topology on X/M

defined by P , let Q : X → X/M be the canonical quotient map, and let TM be the

quotient topology on X/M induced by Q. We show below that TM = TP .

Note that V ⊆ X/M is TM -open if and only if Q−1(V ) is open in X. So, we only

have to prove that V ⊆ X/M is TP -open if and only if Q−1(V ) is open in X.

Suppose V is TP -open in X/M . Let x0 ∈ Q−1(V ). Then x0 + M ∈ V . By the

definition of Tp and Definition 3.1.3, there exist pi ∈ P and εi > 0 (i = 1, · · · , n) such

that
n⋂
i=1

{x+M ∈ X/M : pi(x+M − (x0 +M)) < εi} ⊆ V . Let

U =
n⋂
i=1

{x+M ∈ X/M : pi(x+M − (x0 +M)) < εi}.

Then x0 +M ∈ U ⊆ V . We have

Q−1(U) =
n⋂
i=1

Q−1({x+M ∈ X/M : pi(x+M − (x0 +M)) < εi})

=
n⋂
i=1

Q−1({x+M ∈ X/M : pi(x− x0 +M) < εi})

=
n⋂
i=1

{x ∈ X : inf{pi(x− x0 + y) : y ∈M} < εi}.

Now we show that for 1 6 i 6 n, we have

{x ∈ X : inf{pi(x− x0 + y) : y ∈M} < εi} =
⋃
y∈M

(
y + {x ∈ X : pi(x− x0) < εi}

)
.
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Let a ∈ X be such that inf
y∈M

pi(a− x0 + y) < εi. Let

δi = εi − inf
y∈M

pi(a− x0 + y).

Then there exists y0 ∈M such that

pi(a− x0 + y0) < inf
y∈M

pi(a− x0 + y) + δi = εi.

Let z0 = a + y0. Then pi(z0 − x0) < εi. Since a = (−y0) + z0 and −y0 ∈ M ,

a ∈
⋃
y∈M

(
y + {x ∈ X : pi(x− x0) < εi}

)
. Hence,

{x ∈ X : inf{pi(x− x0 + y) : y ∈M} < εi} ⊆
⋃
y∈M

(
y + {x ∈ X : pi(x− x0) < εi}

)
.

Conversely, suppose a = y0 + z0 for some y0 ∈ M and z0 ∈ X with pi(z0 − x0) < εi.

Then pi(a − x0 + (−y0)) = pi(z0 − x0) < εi, and thus inf
y∈M

pi(a − x0 + y) < εi. So,

a ∈ {x ∈ X : inf{pi(x− x0 + y) : y ∈M} < εi}. Therefore,

{x ∈ X : inf{pi(x− x0 + y) : y ∈M} < εi} =
⋃
y∈M

(
y + {x ∈ X : pi(x− x0) < εi}

)
.

Hence, Q−1(U) =
n⋂
i=1

⋃
y∈M

(
y + {x ∈ X : pi(x− x0) < εi}

)
, which is open in X. Since

x0 +M ∈ U ⊆ V , x0 ∈ Q−1(U) ⊆ Q−1(V ). Therefore, Q−1(V ) is open in X.

On the other hand, suppose Q−1(V ) is open in X. Let x0 +M ∈ V . Since X is a

LCS, the topology on X is defined by a family P ′ of seminorms on X. By Proposition

3.1.3, P ′ ⊆ P . Since x0 ∈ Q−1(V ), by Definition 3.1.3, there exist pi ∈ P ′ and εi > 0

(i = 1, · · · , n) such that

n⋂
i=1

{x ∈ X : pi(x− x0) < εi} ⊆ Q−1(V ).

Let p = max{p1, · · · , pn}, ε = min{ε1, · · · , εn}, and B = {x ∈ X : p(x − x0) < ε}.

Then p ∈ P , ε > 0, and x0 ∈ B ⊆
n⋂
i=1

{x ∈ X : pi(x− x0) < εi} ⊆ Q−1(V ). We have

Q(B) = {x+M ∈ X/M : p(y − x0) < ε for some y ∈ x+M}.
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Now we show that

{x+M ∈ X/M : p(y − x0) < ε for some y ∈ x+M}

={x+M ∈ X/M : inf
m∈M

p(x+m− x0) < ε}.

Let a+M ∈ {x+M ∈ X/M : p(y− x0) < ε for some y ∈ x+M}. Then there exists

b ∈ a + M such that p(b− x0) < ε. Thus there exists m0 ∈ M such that b = a + m0

and p(a+m0 − x0) < ε. Hence, inf
m∈M

p(a+m− x0) < ε. Therefore,

a+M ∈ {x+M ∈ X/M : inf
m∈M

p(x+m− x0) < ε}.

Conversely, let a + M ∈ X/M be such that inf
m∈M

p(a + m − x0) < ε. Let δ =

ε− inf
m∈M

p(a+m− x0). Then there exists m0 ∈M such that

p(a+m0 − x0) < inf
m∈M

p(a+m− x0) + δ = ε.

Let b = a+m0. Then p(b− x0) < ε. Thus

a+M ∈ {x+M ∈ X/M : p(y − x0) < ε for some y ∈ x+M}.

So, we obtain that

{x+M ∈ X/M : p(y − x0) < ε for some y ∈ x+M}

={x+M ∈ X/M : inf
m∈M

p(x+m− x0) < ε}.

Hence, we have

Q(B) = {x+M ∈ X/M : inf
m∈M

p(x+m− x0) < ε}

= {x+M ∈ X/M : p((x+M)− (x0 +M)) < ε},

which is Tp-open. Since x0 ∈ B ⊆ Q−1(V ), x0 + M ∈ Q(B) ⊆ V . Therefore, V is

Tp-open. �
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If (X, ‖ · ‖) is a normed space and M is a linear subspace of X, we define

‖x+M‖ = inf{‖x+ y‖ : y ∈M} (x ∈ X).

Proposition 3.2.4. Let X be a normed space and let M be a closed linear subspace

of X. Then the function ‖ · ‖ on X/M defined above is a norm on X/M .

Proof. By Proposition 3.2.3, the function ‖ · ‖ on X/M is a seminorm. Suppose

that x ∈ X and ‖x + M‖ = 0. Then there exists a sequence (yn) in M such that

‖x+ yn‖ → 0; that is, (−yn)→ x. Since M is closed and the sequence (−yn) is in M ,

by Corollary 2.5, x ∈M . Hence, x+M = 0. Therefore, ‖ · ‖ is a norm on X/M . �

Proposition 3.2.5. Let X be a normed space and let M be a closed linear subspace

of X. Then the canonical quotient map Q : X → X/M is a bounded linear map and

‖Q‖ 6 1.

Definition 3.2.2. Let X be a linear space and let M be a linear subspace of X.

Then M is called a hyperplane in X if dim(X/M) = 1.

Lemma 3.2.6. Let M be a linear subspace of a linear space X over F.

(i) M is a hyperplane in X if and only if M = ker(f) for some non-zero linear

functional f on X.

(ii) If f and g are linear functionals on X, then ker(f) = ker(g) if and only if

g = βf for some β ∈ F− {0}.

Proposition 3.2.7. Let X be a TVS and let f be a linear functional on X. Then

the following statements are equivalent.

(a) f is continuous.

(b) f is continuous at 0.

(c) f is continuous at some x0 ∈ X.

(d) ker(f) is closed in X.

(e) x 7→ |f(x)| is a continuous seminorm on X.

(f) f is bounded in some neighborhood of 0.
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If the topology on X is defined by a family P of seminorms on X, then each of (a)-(f)

is equivalent to

(g) there exist p1, · · · , pn in P and positive scalars α1, · · · , αn such that

|f(x)| 6
n∑
k=1

αkpk(x) for all x ∈ X.

Proof. (a)⇒(c). This is obvious.

(c)⇒(b). Suppose (c) holds. Let (xn) be a net in X with xn → 0 in X. Then

xn + x0 → x0. Since f is linear and continuous at x0 ∈ X, we have

f(xn) + f(x0) = f(xn + x0)→ f(x0).

Hence, f(xn)→ 0. Therefore, f is continuous at 0.

(b)⇒(d). Suppose (b) holds. Let x ∈ X and let (xn) be a net in ker(f) with

xn → x. Then xn − x→ 0. Since f is continuous at 0, we have

f(xn)− f(x) = f(xn − x)→ f(0) = 0.

It follows that f(x) = lim
n
f(xn) = 0; that is, x ∈ ker(f). By Corollary 2.5, ker(f) is

closed.

(d)⇒(a). Suppose ker(f) is closed in X. If f = 0, then f is continuous. Assume

that f 6= 0. By Lemma 3.2.6, ker(f) is a hyperplane in X. Then there exists a

linear isomorphism T : X/ker(f) → F. Let q : X → X/ker(f) be the quotient map

x 7→ x+ ker(f), and let g = T ◦ q. Then g : X → F is linear and continuous. Now

x ∈ ker(f) ⇐⇒ q(x) = 0 ⇐⇒ T (q(x)) = 0 ⇐⇒ g(x) = 0 ⇐⇒ x ∈ ker(g).

Hence, ker(f) = ker(g). By Lemma 3.2.6, f = βg for some β ∈ F− {0}. Therefore,

f is continuous.

(a)⇒(e)⇒(b). This is obvious.

(b)⇔(f). Suppose M > 0 and |f(x)| < M for all x in a neighborhood V of 0.

Let r > 0 and let W = (r/M)V . Then W is a neighborhood of 0, and |f(x)| < r

for all x ∈ W . Hence, f is continuous at 0. Conversely, suppose f is continuous at
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0. Let A = {α ∈ F : |α| < 1} and B = f−1(A). Then B is a neighborhood of 0 and

|f(x)| < 1 for all x ∈ B.

In the rest of the proof, we assume that X is a LCS with the topology defined by

a family P of seminorms on X.

(g)⇒(b). This follows immediately from Lemma 3.1.2.

(b)⇒(g). Suppose f is continuous at 0. Since f(0) = 0, for ε = 1, there exist

p1, · · · , pn ∈ P and ε1, · · · , εn > 0 such that |f(z)| < 1 for all z ∈
n⋂
i=1

upi,εi , where

upi,εi = {y ∈ X : pi(y) < εi} (i = 1, · · · , n). Let δ = min{εi : 1 6 i 6 n}. Then

|f(z)| < 1 for all z ∈
n⋂
i=1

upi,δ. Let x ∈ X. We consider the following two cases.

Case 1: pi(x) = 0 for all i. Then for all t > 0, pi(tx) = tpi(x) = 0, and thus

tx ∈
n⋂
i=1

upi,δ. So, |f(tx)| < 1 for all t > 0. It follows that |f(x)| < 1
t

for all t > 0.

Hence, |f(x)| = 0. Therefore, in this case, the inequality in (g) holds with any choice

of positive scalars α1, · · · , αn.

Case 2: pi0(x) 6= 0 for some i0. Then

pk

(
δ

2
∑n

i=1 pi(x)
x

)
=
δ

2

pk(x)∑n
i=1 pi(x)

6
δ

2
< δ

for k = 1, · · · , n. Hence, δ
2
∑n
i=1 pi(x)

x ∈
n⋂
i=1

upi,δ. Therefore,

∣∣∣∣f(
δ

2
∑n

i=1 pi(x)
x)

∣∣∣∣ =
δ

2

1∑n
i=1 pi(x)

|f(x)| < 1,

which implies that |f(x)| 6
∑n

i=1
2
δ
pi(x).

Let αi = 2
δ

(i = 1, · · · , n). Then |f(x)| 6
∑n

i=1 αipi(x) for all x ∈ X. �

For the convenience of later use, we close this section with some results about

linear functionals.

Lemma 3.2.8. Let X be a linear space over C.

(i) Let f : X → R be an R-linear functional. Then g(x) = f(x)−if(ix) (x ∈ X)

defines a C-linear functional on X and Re(g) = f .
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(ii) Let g : X → C be a C-linear functional and let f = Re(g). Then g(x) =

f(x)− if(ix) (x ∈ X) and f is an R-linear functional on X.

Lemma 3.2.9. Let X be a linear space over F, let f be a linear functional on X,

and let A be a convex subset of X. Then f(A) is convex.

Lemma 3.2.10. Let X be a linear space over F and let f , f1, · · · , fn be linear

functionals on X such that
n⋂
k=1

ker(fk) ⊆ ker(f). Then there exist scalars α1, · · · , αn
in F such that f =

∑n
k=1 αkfk.

Proof. Let F be a subset of {1, · · · , n} such that
⋂
i∈F

ker(fi) ⊆ ker(f) but for

all k ∈ F ,
⋂

i∈F−{k}
ker(fi) *

⋂
i∈F

ker(fi). Let us write F = {1, · · · , n}.

Case 1: n = 1. In this case, ker(f1) ⊆ ker(f).

If ker(f) = ker(f1), then by Lemma 3.2.6, there exists α1 ∈ F − {0} such that

f = α1f1.

If ker(f1) $ ker(f), then there exists y0 ∈ ker(f)−ker(f1). Let x0 = y0
f1(y0)

. Then

f(x0) = 0 and f1(x0) = 1. Let x ∈ X and let y = x− f1(x)x0. Then

f1(y) = f1(x)− f1(x)f1(x0) = 0.

Since ker(f1) ⊆ ker(f), f(y) = 0. Hence, f(y) = f(x) − f(x0)f1(x) = 0; that is,

f(x) = f(x0)f1(x) = 0 for all x ∈ X. Putting α1 = 0, we get f = α1f1.

Case 2: n > 1. Now
n⋂
j=1

ker(fj) $
⋂
j 6=k

ker(fj) for all 1 6 k 6 n.

Then for each 1 6 k 6 n, there exists yk ∈
⋂
j 6=k

ker(fj) such that yk /∈
n⋂
j=1

ker(fj).

So, fk(yk) 6= 0 but fj(yk) = 0 for all j 6= k. Let xk = [fk(yk)]
−1yk. Then fk(xk) = 1

and fj(xk) = 0 if j 6= k. Let x ∈ X and let y = x−
∑n

k=1 fk(x)xk. Then for each j,

fj(y) = fj(x)−
n∑
k=1

fk(x)fj(xk) = fj(x)− fj(x)fj(xj) = fj(x)− fj(x) = 0.
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Hence, y ∈
n⋂
j=1

ker(fj). Since
n⋂
j=1

ker(fj) ⊆ ker(f),

f(y) = f(x)−
n∑
k=1

fk(x)f(xk) = 0;

that is, f(x) =
∑n

k=1 fk(x)f(xk) for all x ∈ X. Taking αk = f(xk) (k = 1, · · · , n), we

get f =
∑n

k=1 αkfk. �

3.3. A Hahn-Banach theorem for real linear spaces

Definition 3.3.1. Let X be a linear space. A function q : X → R is called

sublinear if

(i) for all x, y ∈ X, q(x+ y) 6 q(x) + q(y);

(ii) for x ∈ X and α > 0, q(αx) = αq(x).

Theorem 3.3.1. Let X be a real linear space and let q : X → R be a sublinear

functional. Let M be a linear subspace of X and let f : M → R be a linear functional

such that f(x) 6 q(x) for all x ∈M . Then there exists a linear functional F : X → R

such that F (x) 6 q(x) for all x ∈ X and F |M = f .

Proof. We can assume that M is a proper linear subspace of X.

First we assume that dim(X/M) = 1. Let x0 ∈ X −M . Then {x0 +M} is a basis

of X/M , and X = {tx0 + y : t ∈ R, y ∈ M}. Now for all x ∈ X, there exist unique

t ∈ R and y ∈M such that x = tx0 + y.

Suppose that F : X → R is such a linear extension of f . We want to see how F

looks like in order to conclude that such F does exist. Write α = F (x0). Then for all

t ∈ R and y ∈M ,

F (tx0 + y) = tF (x0) + F (y) = tF (x0) + f(y) = tα + f(y).

Let t > 0. If y1 ∈M , then F (tx0 + y1) = tα + f(y1) 6 q(tx0 + y1), and thus

α 6
1

t
q(tx0 + y1)− 1

t
f(y1) = q(x0 +

1

t
y1)− f(

1

t
y1).
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Therefore,

α 6 q(x0 + y1)− f(y1) for all y1 ∈M .

Similarly, if y2 ∈M , then F (−tx0 + y2) = −tα + f(y2) 6 q(−tx0 + y2), and thus

α > −1

t
q(−tx0 + y2) +

1

t
f(y2) = −q(−x0 +

1

t
y2) + f(

1

t
y2).

Therefore,

α > −q(−x0 + y2) + f(y2) for all y2 ∈M .

It follows that the number α = F (x0) satisfies

−q(−x0 + y2) + f(y2) 6 α 6 q(x0 + y1)− f(y1) for all y1, y2 ∈M .

Note that for all y1, y2 ∈M ,

f(y1) + f(y2) = f(y1 + y2) 6 q(y1 + y2) 6 q(x0 + y1) + q(−x0 + y2);

that is, −q(−x0 + y2) + f(y2) 6 q(x0 + y1)− f(y1) for all y1, y2 ∈M . Hence,

sup
y∈M

(−q(−x0 + y) + f(y)) 6 inf
y∈M

(q(x0 + y)− f(y)).

Let α ∈ [sup
y∈M

(−q(−x0 + y) + f(y)), inf
y∈M

(q(x0 + y)− f(y))], and let

F (tx0 + y) = tα + f(y) (t ∈ R, y ∈M).

Since for all x ∈ X, there exist unique t ∈ R and y ∈ M such that x = tx0 + y,

F : X → R is well defined. For all y1, y2 ∈M and t1, t2, λ ∈ R, we have

F (t1x0 + y1 + λ(t2x0 + y2)) = (t1 + λt2)α + f(y1 + λy2)

= t1α + f(y1) + λ(t2α + f(y2)) = F (t1x0 + y1) + λF (t2x0 + y2).

Hence, F : X → R is linear. For all y ∈M , we have F (y) = 0 ·α+f(y) = f(y). Thus

F |M = f . For all t > 0 and y ∈M , we have

F (tx0 + y) = t(α + f(
1

t
y)) 6 t(q(x0 +

1

t
y)− f(

1

t
y) + f(

1

t
y)) = q(tx0 + y),
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and

F (−tx0 + y) = t(−α + f(
1

t
y)) 6 t(q(−x0 +

1

t
y)− f(

1

t
y) + f(

1

t
y)) = q(−tx0 + y).

Hence, F (x) 6 q(x) for all x ∈ X.

For the general case, let S be the collection of all pairs (M1, f1), where M1 is

a linear subspace of X such that M ⊆ M1 and f1 is a linear extension of f with

f1(x) 6 q(x) for all x ∈M1. Then S 6= ∅ since (M, f) ∈ S.

For (M1, f1), (M2, f2) ∈ S, define (M1, f1) 4 (M2, f2) if M1 ⊆M2 and f2|M1 = f1.

Then 4 is a partial order on S. Let C = {(Mi, fi) : i ∈ I} be a chain in S, and let

M̃ =
⋃
i∈I
Mi. Then M̃ is a linear subspace of X since C is a chain in S. For x ∈ M̃ ,

define f̃(x) = fi(x) if x ∈ Mi for some i ∈ I. Suppose x ∈ Mi ∩Mj. Since C is a

chain, we can assume that (Mi, fi) 4 (Mj, fj), and thus fi(x) = fj(x). Therefore,

f̃ : M̃ → R is well defined. Let x, y ∈ M̃ and α ∈ R. Then x, y ∈ Mj for some j ∈ I

and hence x+ αy ∈Mj. Thus

f̃(x+ αy) = fj(x+ αy) = fj(x) + αfj(y) = f̃(x) + αf̃(y).

Hence, f̃ : M̃ → R is linear. Since M ⊆Mi ⊆ M̃ and f̃ |Mi
= fi for all i ∈ I, f̃ |M = f

and f̃ 6 q on M̃ . Thus (M̃, f̃) ∈ S and (Mi, fi) 4 (M̃, f̃) for all i ∈ I. Hence, (M̃, f̃)

is an upper bound of C. By Zorn’s lemma, (S,4) has a maximal element (Y, F ).

Assume that Y 6= X. Let x0 ∈ X − Y and let Z = {tx0 + y : t ∈ R, y ∈ Y }.

Then Z is a linear subspace of X containing M and dim(Z/Y ) = 1. By the proof

above, there exists a linear functional G : Z → R such that G(x) 6 q(x) for all

x ∈ Z and G|Y = F . Hence, (Z,G) ∈ S, (Y, F ) 4 (Z,G) and (Y, F ) 6= (Z,G), which

is contradicting to the fact that (Y, F ) is a maximal element of (S,4). Therefore,

Y = X; that is, F is a linear functional on X such that F (x) 6 q(x) for all x ∈ X

and F |M = f . �
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3.4. Some consequences of the Hahn-Banach theorem

Proposition 3.4.1. Let X be a TVS, let G be an open convex subset of X that

contains the origin, and let

q(x) = inf{t : t > 0 and x ∈ tG} (x ∈ X).

Then q is a non-negative continuous sublinear functional on X and

G = {x ∈ X : q(x) < 1}.

Proof. For all x ∈ X, we have x
n
→ 0 when n→∞. Since G is a neighborhood of

0, there exists n0 > 0 such that x
n0
∈ G; that is, x ∈ n0G. Hence, {t > 0 : x ∈ tG} 6= ∅.

Therefore, q is well defined and non-negative.

If α > 0, then

αq(x) = α inf{t : x ∈ tG} = inf{αt : x ∈ tG} = inf{αt : αx ∈ αtG} = q(αx).

Note that q(0) = inf{t : 0 ∈ tG} = 0. Hence, q(αx) = αq(x) if α > 0.

Let x ∈ X and let r = q(x). Then for every δ > 0, there exists t1 such that

0 < t1 < r + δ and x ∈ t1G. Now we claim that aG ⊆ bG if 0 6 a < b. Let g ∈ G.

Then ag ∈ aG. Since G is convex and contains 0, (1− a
b
)0+ a

b
g ∈ G, and thus ag ∈ bG.

Hence, aG ⊆ bG. Since x ∈ t1G, by the claim above, x ∈ t1G ⊆ (r + δ)G, and thus

x ∈ (r + δ)G for all δ > 0.

Now let y ∈ X and s = q(y). Then y ∈ (s + δ)G for all δ > 0. Thus x
r+δ
∈ G

and y
s+δ
∈ G. Since G is convex, we have r+δ

r+s+2δ
x
r+δ

+ s+δ
r+s+2δ

y
s+δ
∈ G. It implies that

x+y
r+s+2δ

∈ G; that is, x + y ∈ (r + s + 2δ)G. It follows that q(x + y) 6 r + s + 2δ.

Let δ → 0. Then q(x + y) 6 r + s; that is, q(x + y) 6 q(x) + q(y). Therefore, q is a

sublinear functional on X.

For any given ε > 0, we define u = εG ∩ (−εG). Since G contains 0 and εG

and −εG are open, u is open and contains 0, and thus u is a neighborhood of 0. Let

x0 ∈ X and let (xi)i∈I be a net in X with xi → x0. Then there exists i0 ∈ I such that

xi − x0 ∈ u for all i < i0. It follows that xi − x0 ∈ εG and x0 − xi ∈ εG. Since q is
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sublinear, we have

q(xi)− q(x0) 6 q(xi − x0) 6 ε and q(x0)− q(xi) 6 q(x0 − xi) 6 ε;

that is, |q(xi) − q(x0)| 6 ε. Hence, q(xi) → q(x0). Therefore, q is a non-negative

continuous sublinear functional on X.

Since X is a TVS, the map F ×X → X, (α, x) 7→ αx is continuous. Let x0 ∈ G

and α = 1. Then G is a neighborhood of x0, and for some r > 0, there exists a

neighborhood U of x0 such that βU ⊆ G whenever |β − 1| < r. Now let β = r
2

+ 1.

Then (1 + r
2
)U ⊆ G. In particular, it follows that x0 ∈ (1 + r

2
)−1G. Thus

q(x0) 6 (1 +
r

2
)−1 < 1.

So, G ⊆ {x ∈ X : q(x) < 1}.

Conversely, suppose q(x0) < 1 for some x0 ∈ X. Let ε = 1 − q(x0) and let

a = 1− ε
2

= q(x0)+ ε
2
. By the proof in the 3rd paragraph, we have x0 ∈ aG. Since G is

convex and a ∈ (0, 1), we have x0 = (1−a)0+ax0
a
∈ G. Thus {x ∈ X : q(x) < 1} ⊆ G.

Therefore, G = {x : q(x) < 1}. �

Theorem 3.4.2. Let X be a TVS and let G be an open convex non-empty subset

of X that does not contain the origin. Then there exists a closed hyperplane M in X

such that M ∩G = ∅.

Proof. Case 1. Suppose X is a TVS over R. Let x0 ∈ G and let H = x0 − G.

Then x0 − x ∈ H for all x ∈ G. Now let x1, x2 ∈ G. Then for all t ∈ [0, 1], we have

t(x0 − x1) + (1− t)(x0 − x2) = x0 − [tx1 + (1− t)x2] ∈ x0 −G = H,

since G is convex. Thus H is convex, and 0 = x0 − x0 ∈ H. Therefore, H is an open

convex set containing 0. By Proposition 3.4.1, there exists a non-negative continuous

sublinear functional q : X → R such that H = {x ∈ X : q(x) < 1}. Since G does not

contain 0, we have x0 /∈ H, and thus q(x0) > 1.
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Let Y = {αx0 : α ∈ R}. Define f0 : Y → R by f0(αx0) = αq(x0). If α > 0,

then f0(αx0) = αq(x0) = q(αx0); if α < 0, then f0(αx0) = αq(x0) 6 α < 0 6 q(αx0).

Hence, f0 6 q on Y . By Theorem 3.3.1, there exists a linear functional f : X → R

such that f |Y = f0 and f 6 q on X. Put M = ker(f). Then M is a hyperplane in

X. Now if x ∈ G, then x0 − x ∈ H, and thus

f(x0)− f(x) = f(x0 − x) 6 q(x0 − x) < 1.

Hence, f(x) > f(x0)− 1 = q(x0)− 1 > 0 for all x ∈ G. Therefore, M ∩G = ∅.

Since f 6 q on X and q(x) < 1 for all x ∈ H, f(x) < 1 for all x ∈ H. It follows

that f(−x) = −f(x) > −1 for all x ∈ H. Thus |f(x)| < 1 for all x ∈ H ∩ (−H).

Let V = H ∩ (−H). Then V is an open neighborhood of 0. By Proposition 3.2.7,

M = ker(f) is a closed hyperplane in X.

Case 2. Suppose X is a TVS over C. Since X is also a TVS over R, by Case 1

above, there exists a non-zero continuous R-linear functional f : X → R such that

(ker(f)) ∩ G = ∅. Let F (x) = f(x) − if(ix) (x ∈ X). Then by Lemma 3.2.8, F is

a non-zero continuous C-linear functional on X and f = Re(F ). Hence, F (x) = 0 if

and only if f(x) = f(ix) = 0. Let M ′ = ker(F ). Then M ′ is a closed hyperplane in

X and M ′ ∩G ⊆ (ker(f)) ∩G = ∅. �

Definition 3.4.1. Let X be a TVS. The dual space X∗ of X is the linear space of

all continuous linear functionals on X together with the pointwise linear operations.

Lemma 3.4.3. Let X be a real TVS, let A be a non-empty open convex subset of

X, and let f ∈ X∗ be non-zero. Then f(A) is an open interval in R.

Proof. By Lemma 3.2.9, we only need show that f(A) is open in R. Let x ∈ A.

Then A− x is a neighborhood of 0 since A is open and 0 ∈ A− x. Since f 6= 0, there

exists x0 ∈ X such that f(x0) = 1. Since the map F → X,α 7→ αx0 is continuous,

there exists ε > 0 such that αx0 ∈ A− x whenever |α| < ε. Thus

f(x) + α = f(x+ αx0) ∈ f(A) if |α| < ε.
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Hence, (f(x)− ε, f(x) + ε) ⊆ f(A). Therefore, f(A) is open in R. �

The next result is a Hahn-Banach separation theorem over real TVS. We will also

prove some other separation theorems that follow from this one.

Theorem 3.4.4. Let X be a real TVS and let A and B be two disjoint non-empty

convex sets in X with A open. Then there exist f ∈ X∗ and α ∈ R such that

f(a) < α 6 f(b) for all a ∈ A and b ∈ B.

If B is also open, then f(b) > α for all b ∈ B.

Proof. Let G = {a − b : a ∈ A, b ∈ B}. Let a1, a2 ∈ A, let b1, b2 ∈ B, and let

t ∈ [0, 1]. Then

t(a1 − b1) + (1− t)(a2 − b2) = [ta1 + (1− t)a2]− [tb1 + (1− t)b2] ∈ G,

since A and B are convex. So, G is convex. Also, since G =
⋃
b∈B

(A − b), G is open.

Moreover, since A∩B = ∅, 0 /∈ G. By Theorem 3.4.2, there exists a closed hyperplane

M in X such that M ∩G = ∅. Let f : X → R be a continuous linear functional such

that M = ker(f). Then 0 /∈ f(G). Assume that there exist x1, x2 ∈ G such that

f(x1) > 0 and f(x2) < 0. Since G is convex, by Lemma 3.2.9, f(G) is convex. Let

t0 = f(x2)
f(x2)−f(x1)

. Then t0 ∈ (0, 1) and

t0f(x1) + (1− t0)f(x2) =
f(x2)f(x1)

f(x2)− f(x1)
− f(x1)f(x2)

f(x2)− f(x1)
= 0 /∈ f(G),

contradicting that f(G) is convex. Therefore, either f(x) > 0 for all x ∈ G or f(x) < 0

for all x ∈ G.

Suppose f(x) < 0 for all x ∈ G. Then for all a ∈ A and b ∈ B,

f(a− b) = f(a)− f(b) < 0;

that is, f(a) < f(b). Let α = sup{f(a) : a ∈ A}. Then α 6 inf{f(b) : b ∈ B}. Since

A is open, by Lemma 3.4.3, f(a) < α for all a ∈ A, and now f(b) > α for all b ∈ B.

If B is also open, by Lemma 3.4.3 again, f(b) > α for all b ∈ B.
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Suppose f(x) > 0 for all x ∈ G. Let g = −f . Then g is a continuous linear

functional on X and g(x) < 0 for all x ∈ G. Thus the assertion follows by replacing

f above by g. �

Lemma 3.4.5. Let X be a TVS, let K be a compact subset of X, and let V be an

open subset of X such that K ⊆ V . Then there exists an open neighborhood U of 0

in X such that K + U ⊆ V .

Proof. Let U be the family of all open neighborhoods of 0. Assume that for each

U in U , K + U is not contained in V . Then for each U in U , there exist xU ∈ K

and yU ∈ U such that xU + yU ∈ X − V . Order U by reverse inclusion. Then U is

a directed set, and (xU) and (yU) are nets. Now yU → 0 in X. Since K is compact,

by Theorem 2.10, (xU) has a subnet (xu) such that xu → x for some x ∈ K. By

Proposition 2.8, yu → 0. Hence, xu + yu → x. Since xu + yu ∈ X − V , by Proposition

2.4, x ∈ X − V = X − V , which is contradicting to the fact that x ∈ K ⊆ V .

Therefore, there exists an open neighborhood U of 0 such that K + U ⊆ V . �

Theorem 3.4.6. Let X be a real LCS and let A and B be two disjoint non-empty

closed convex subsets of X with B compact. Then there exist f ∈ X∗, α ∈ R, and

ε > 0 such that

f(a) 6 α < α + ε 6 f(b) for all a ∈ A and b ∈ B.

Proof. Since B ⊆ X − A, by Lemma 3.4.5, there exists an open neighborhood

U1 of 0 such that B + U1 ⊆ X − A. Let P be the family of seminorms that defines

the topology on X. Then by Definition 3.1.3, there exist pi ∈ P and εi > 0 such that

V1 =
n⋂
i=1

Bi ⊆ U1, where Bi = {x ∈ X : pi(x) < εi} (i = 1,· · · , n). Let 1 6 i 6 n and

x1, x2 ∈ Bi. Then for all t ∈ [0, 1] and x3 = tx1 + (1− t)x2, we have

pi(x3) 6 pi(tx1) + pi((1− t)x2) = tpi(x1) + (1− t)pi(x2) < tεi + (1− t)εi = εi.

Thus each Bi is convex. Hence, V1 is an open convex subset of U1. It follows that

B + V1 is an open convex set and (B + V1) ∩A = ∅. By Theorem 3.4.4, there exist a
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continuous linear functional f on X and α ∈ R such that

f(a) 6 α < f(c) for all a ∈ A and c ∈ B + V1.

Since B is compact, by Proposition 2.12, inf{f(b) : b ∈ B} = f(b0) for some b0 ∈ B.

Thus f(b) > f(b0) = α + ε for all b ∈ B, where ε = f(b0) − α > 0 since f(b0) > α.

Therefore, f(a) 6 α < α + ε 6 f(b) for all a ∈ A and b ∈ B. �

Theorem 3.4.7. Let X be a complex LCS and let A and B be two disjoint non-

empty closed convex subsets of X with B compact. Then there exist f ∈ X∗, α ∈ R,

and ε > 0 such that

Re(f(a)) 6 α < α + ε 6 Re(f(b)) for all a ∈ A and b ∈ B.

Proof. Since a complex LCS is also a real LCS, by Theorem 3.4.6, there exist a

continuous R-linear functional f1 on X, α ∈ R, and ε > 0 such that

f1(a) 6 α < α + ε 6 f1(b) for all a ∈ A and b ∈ B.

By Lemma 3.2.8, f(x) = f1(x)− if1(ix) is a C-linear functional on X and Re(f) = f1.

Therefore,

Re(f(a)) 6 α < α + ε 6 Re(f(b)) for all a ∈ A and b ∈ B.

Clearly, f : X → C is continuous since f1 : X → R is continuous. �

Theorem 3.4.8. Let X be a LCS, let M be a closed linear subspace of X, and let

x0 ∈ X −M . Then there exists h ∈ X∗ such that h(x0) = 1 and h|M = 0.

Proof. Since {x0} and M are disjoint closed convex sets in X with {x0} compact,

by Theorems 3.4.6 and 3.4.7, there exist g ∈ X∗, α ∈ R, and ε > 0 such that

Re(g(m)) 6 α < α + ε 6 Re(g(x0)) for all m ∈M.

Assume that Re(g(m0)) 6= 0 for some m0 ∈ M . Let λ = α+1
Re(g(m0))

. Then λm0 ∈ M

and Re(g(λm0)) = λRe(g(m0)) = α + 1, which is contradicting to Re(g(λm0)) 6 α.
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Hence, Re(g(m)) = 0 for all m ∈ M . By Lemma 3.2.8, g(m) = 0 for all m ∈ M .

Since Re(g(x0)) > Re(g(0)) = 0, we have g(x0) 6= 0. Let h = 1
g(x0)

g ∈ X∗. Then

h(x0) = 1 and h(m) = 0 for all m ∈M . �

Corollary 3.4.9. Let X be a LCS and let M be a linear subspace of X. Then

M =
⋂
{ker(f) : f ∈ X∗ and M ⊆ ker(f)}.

Therefore, M is dense in X if and only if 0 is the only element of X∗ that vanishes

on M .

Theorem 3.4.10. Let X be a LCS, let M be a linear subspace of X, and let

f ∈M∗. Then there exists h ∈ X∗ such that h|M = f .

Proof. We can assume that f 6= 0. Let M0 = ker(f). Let x0 ∈ M be such that

f(x0) = 1. Then x0 /∈ M0 by the continuity of f . By Theorem 3.4.8, there exists

h ∈ X∗ such that h(x0) = 1 and h(m) = 0 for all m ∈ M0. Now for all x ∈ M , we

have

f(x− f(x)x0) = f(x)− f(x)f(x0) = 0,

and thus x − f(x)x0 ∈ M0 ⊆ M0. Hence, h(x) − f(x) = h(x − f(x)x0) = 0 for all

x ∈M . Therefore, h|M = f . �

The proposition below holds by Theorem 3.3.1, Lemma 3.2.8 and Proposition 2.14.

Proposition 3.4.11. Let X be a normed space and let Y be a linear subspace of

X. Let f ∈ Y ∗. Then there exists g ∈ X∗ such that g|Y = f and ‖f‖ = ‖g‖.

Furthermore, if Y is dense in X, then the extension g ∈ X∗ of f is unique.

Corollary 3.4.12. Let X be a normed space and let x ∈ X. Then

‖x‖ = sup{|f(x)| : f ∈ X∗ and ‖f‖ 6 1}.



CHAPTER 4

Weak topology and weak-star topology

In Section 4.1, we consider the weak topology wk on a TVS X and the weak-star

topology wk∗ on its dual X∗, and give some of their basic properties. In Section 4.2,

we study basic results on the dual of (X,wk) and (X∗, wk∗), and characterize the

closed convex balanced hull and the closed linear span for sets in X and (X∗, wk∗)

via bipolars and biannihilators, respectively. In Sections 4.3 and 4.4, we identify the

dual of a quotient space with the annihilator of the subspace, and identify the dual of

a subspace of a LCS with the quotient space of the annihilator of the subspace. The

main references for this chapter are [2] and [3].

For x ∈ X and x∗ ∈ X∗, 〈x, x∗〉 and 〈x∗, x〉 both will stand for x∗(x).

4.1. Definitions and basic properties

Proposition 4.1.1. Let X be a linear space and let f be a linear functional on

X. Then the function pf : X → [0,∞), x 7→ |f(x)| is a seminorm on X.

Let T1 and T2 be two topologies on a set X. If T1 ⊆ T2, then we say that T1 is

weaker that T2, or that T2 is stronger than T1.

Definition 4.1.1. Let X be a TVS. The weak topology σ(X,X∗) on X, also

denoted by “wk”, is the topology on X defined by the family {px∗ : x∗ ∈ X∗} of

seminorms on X.

Proposition 4.1.2. Let (X,T ) be a TVS. Then (X,wk) is a TVS, and σ(X,X∗)

is weaker than T .

Proof. By Proposition 3.1.3, (X,wk) is a TVS. Let x0 ∈ X and let (xi) be a net

inX with xi → x0 in (X,T ). Then for all x∗ ∈ X∗, px∗(xi−x0) = |x∗(xi)−x∗(x0)| → 0.

By Lemma 3.1.2, xi → x0 in (X,wk). Therefore, σ(X,X∗) is weaker than T . �

27
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Proposition 4.1.3. Let X be a normed space. Then (X,wk) is a LCS.

Proof. Let x0 ∈ X − {0}. Then by Theorem 3.4.8, there exists x∗ ∈ X∗ such

that x∗(x0) 6= 0; that is, px∗(x0) 6= 0. Hence, x0 /∈
⋂
x∗∈X∗{x : px∗(x) = 0}. Therefore,

(X,wk) is a LCS. �

Definition 4.1.2. Let X be a TVS and let x ∈ X. Then x defines a linear

functional x̂ on X∗ via x̂(f) = f(x) (f ∈ X∗).

Definition 4.1.3. Let X be a TVS. The weak-star topology σ(X∗, X) on X∗,

also denoted by “wk∗”, is the topology on X∗ defined by the family {px̂ : x ∈ X} of

seminorms on X∗.

Since (X∗, wk∗) is a Hausdorff space, the proposition below follows immediately

from Theorem 3.1.4.

Proposition 4.1.4. Let X be a TVS. Then (X∗, wk∗) is a LCS.

By Proposition 3.1.3 and the definition of σ(X∗, X), x̂ ∈ (X∗, wk∗)∗ for all x ∈ X.

Clearly, the map X → (X∗, wk∗)∗, x 7→ x̂ is linear. We will use X̂ to denote the linear

subspace {x̂ : x ∈ X} of (X∗, wk∗)∗.

Proposition 4.1.5. Let X be a TVS. Then the linear map X → X̂, x 7→ x̂ is

injective if and only if (X,wk) is a LCS.

Proof. Suppose the map X → X̂, x 7→ x̂ is injective. Let x ∈
⋂

f∈X∗
ker(pf ).

Then x̂(f) = f(x) = 0 for all f ∈ X∗. Thus x̂ = 0 and hence x = 0. Therefore,

(X,wk) is a LCS.

Conversely, suppose (X,wk) is a LCS. Let x ∈ X be such that x̂ = 0. Then

f(x) = x̂(f) = 0 for all f ∈ X∗. Since (X,wk) is a LCS, x = 0. Therefore, the map

X → X̂, x 7→ x̂ is injective. �

We will see in the next section that for all TVS X, X̂ = (X∗, wk∗)∗ and hence

σ(X∗, X) = σ(X∗, (X∗, wk∗)∗).
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4.2. Duality

Theorem 4.2.1. Let X be a TVS. Then (X,wk)∗ = X∗.

Proof. Let g ∈ X∗. Let x ∈ X and let (xi) be a net in X such that xi
wk−→ x.

Then 〈g, xi〉 → 〈g, x〉. So, g is weakly continuous on X. Therefore, X∗ ⊆ (X,wk)∗.

Conversely, let f ∈ (X,wk)∗. Then for all open sets G in F, f−1(G) is open in

(X,wk). Since σ(X,X∗) is weaker than the original topology on X, f−1(G) is open

in X. Hence, f ∈ X∗. Therefore, (X,wk)∗ ⊆ X∗. �

Recall that for a TVS X, X̂ denotes the linear subspace {x̂ : x ∈ X} of (X∗, wk∗)∗.

Theorem 4.2.2. Let X be a TVS. Then (X∗, wk∗)∗ = X̂.

Proof. We only have to show that (X∗, wk∗)∗ ⊆ X̂. Let f ∈ (X∗, wk∗)∗. By

Proposition 3.2.7, there exist x1, · · · , xn ∈ X and positive scalars c1, · · · , cn such that

|f(x∗)| 6
n∑
k=1

ck|〈xk, x∗〉| for all x∗ ∈ X∗.

Thus
n⋂
k=1

ker(x̂k) ⊆ ker(f). By Lemma 3.2.10, there exist α1, · · · , αn ∈ F such that

f =
∑n

i=1 αix̂i. Let x =
∑n

i=1 αixi. Then f = x̂ ∈ X̂. Hence, (X∗, wk∗)∗ ⊆ X̂. �

Theorem 4.2.3. Let X be a LCS and let A be a convex subset of X. Then

A = A
wk

(the weak closure of A in X).

Proof. Since σ(X,X∗) is weaker than the original topology on X, every weakly

closed set is closed in X. By the definition of a closure, we have A ⊆ A
wk

.

Conversely, let x ∈ X−A. Then by Theorems 3.4.6 and 3.4.7, there exist x∗ ∈ X∗,

α ∈ R and ε > 0 such that Re〈a, x∗〉 6 α < α + ε 6 Re〈x, x∗〉 for all a ∈ A. Hence,

A ⊆ B = {y ∈ X : Re〈y, x∗〉 6 α}. Since x∗ is weakly continuous by Theorem

4.2.1, B is weakly closed in X, and thus A
wk ⊆ B. Since x /∈ B, we have x /∈ Awk.

Therefore, A
wk ⊆ A. �

The corollary below follows immediately from Proposition 2.3 and Theorem 4.2.3.
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Corollary 4.2.4. Let X be a LCS. Then a convex subset of X is closed if and

only if it is weakly closed.

Definition 4.2.1. Let X be a TVS. Let A ⊆ X and B ⊆ X∗. The polar of A,

denoted by A◦, is the subset of X∗ defined by

A◦ = {x∗ ∈ X∗ : |〈a, x∗〉| 6 1 for all a ∈ A},

and the prepolar of B, denoted by ◦B, is the subset of X defined by

◦B = {x ∈ X : |〈x, b∗〉| 6 1 for all b∗ ∈ B}.

The bipolar of A is the set ◦(A◦) (also denoted by ◦A◦), and the bipolar of B is the

set (◦B)◦ (also denoted by ◦B◦).

Definition 4.2.2. A subset S of a linear space is called a balanced set if αS ⊆ S

for all scalars α in F with |α| 6 1.

Proposition 4.2.5. Let X be a TVS. Let A ⊆ X and B ⊆ X∗.

(a) A◦ and ◦B are convex and balanced.

(b) If A1 ⊆ A and B1 ⊆ B, then A◦ ⊆ A◦1 and ◦B ⊆ ◦B1.

(c) If α ∈ F and α 6= 0, then (αA)◦ = α−1A◦ and ◦(αB) = α−1(◦B).

(d) A ⊆ ◦A◦ and B ⊆ ◦B◦.

(e) A◦ = (◦A◦)◦ and ◦B = ◦(◦B◦).

Proof. It is trivial that (a) and (b) hold.

(c) Let α ∈ F−{0}. Let x∗ ∈ A◦. Then for all a ∈ A, |〈αa, α−1x∗〉| = |x∗(a)| 6 1.

Thus α−1x∗ ∈ (αA)◦. Hence, α−1A◦ ⊆ (αA)◦; that is, A◦ ⊆ α(αA)◦. Replacing α by

α−1 and A by αA, we get (αA)◦ ⊆ α−1A◦. Therefore, (αA)◦ = α−1A◦. Similarly, we

can prove that ◦(αB) = α−1(◦B).

(d) Let a ∈ A. Then |〈a, x∗〉| 6 1 for all x∗ ∈ A◦. By the definition of a prepolar,

a ∈ ◦A◦. Therefore, A ⊆ ◦A◦. Similarly, we have B ⊆ ◦B◦.
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(e) By (d), we have A ⊆ ◦A◦. Then by (b), (◦A◦)◦ ⊆ A◦. Taking B = A◦ in (d),

we have A◦ ⊆ ◦(A◦)◦ = (◦A◦)◦. Therefore, A◦ = (◦A◦)◦. The equality ◦B = ◦(◦B◦)

can be obtained similarly. �

Definition 4.2.3. Let X be a TVS. If A ⊆ X, then the closed convex hull

(respectively, closed convex balanced hull) of A in X is the intersection of all closed

convex (respectively, closed convex balanced) subsets of X that contain A.

Theorem 4.2.6 (Bipolar theorem). Let X be a LCS and let A ⊆ X. Then ◦A◦ is

the closed convex balanced hull of A in X. In particular, if A is convex and balanced,

then ◦A◦ = A.

Proof. Let A1 be the closed convex balanced hull of A in X. Then A1 ⊆ ◦A◦,

since ◦A◦ is closed, convex and balanced, and A ⊆ ◦A◦.

Let x0 ∈ X − A1. Since A1 is a closed convex set, by Theorems 3.4.6 and 3.4.7,

there exist x∗ ∈ X∗, α ∈ R and ε > 0 such that

Re〈a1, x
∗〉 6 α < α + ε 6 Re〈x0, x

∗〉 for all a1 ∈ A1.

Since A1 is balanced, 0 ∈ A1, and hence Re〈0, x∗〉 = 0 < α. So, we can replace x∗

with α−1x∗ in the above. It follows that there exists δ > 0 such that

Re〈a1, x
∗〉 6 1 < 1 + δ 6 Re〈x0, x

∗〉 for all a1 ∈ A1.

If a1 ∈ A1 and 〈a1, x
∗〉 = |〈a1, x

∗〉|eiθ for some θ ∈ R, since |e−iθ| = 1 and A1 is

balanced, we have e−iθa1 ∈ A1, and thus

|〈a1, x
∗〉| = Re〈e−iθa1, x

∗〉 6 1 < Re〈x0, x
∗〉.

Hence, x∗ ∈ A◦1. Since A ⊆ A1, by Proposition 4.2.5, A◦1 ⊆ A◦. It follows that

x∗ ∈ A◦. On the other hand, since |〈x0, x
∗〉| > Re〈x0, x

∗〉 > 1, we have x0 /∈ ◦A◦.

Therefore, ◦A◦ ⊆ A1. �
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Theorem 4.2.7 (Bipolar theorem, dual version). Let X be a TVS and let B ⊆ X∗.

Then ◦B◦ is the wk∗ closed convex balanced hull of B in X∗. In particular, if B is

convex and balanced, then ◦B◦ = B
wk∗

.

Proof. Let Y = (X∗, wk∗). Then Y is a LCS and Y ∗ = X̂ by Proposition 4.1.4

and Theorem 4.2.2. By Theorem 4.2.6, the bipolar ◦(B◦) of B in Y is the wk∗ closed

convex balanced hull of B in X∗. On the other hand, due to Definition 4.2.1, we have

B◦ = {x̂ ∈ X̂ : |〈x, x∗〉| 6 1 for all x∗ ∈ B} = ◦̂B, and thus we get

◦(B◦) = {y ∈ Y : |〈y, x̂〉| 6 1 for all x ∈ ◦B}

= {x∗ ∈ X∗ : |〈x∗, x〉| 6 1 for all x ∈ ◦B} = ◦B◦.

Therefore, ◦B◦ is the wk∗ closed convex balanced hull of B in X∗. �

Definition 4.2.4. Let X be a TVS. Let A ⊆ X and B ⊆ X∗. The annihilator of

A, denoted by A⊥, is the subset of X∗ defined by

A⊥ = {x∗ ∈ X∗ : 〈a, x∗〉 = 0 for all a ∈ A},

and the pre-annihilator of B, denoted by ⊥B, is the subset of X defined by

⊥B = {x ∈ X : 〈x, b∗〉 = 0 for all b∗ ∈ B}.

The biannihilator of A is the set ⊥(A⊥), and the biannihilator of B is the set (⊥B)⊥.

Proposition 4.2.8. Let X be a TVS. Let A ⊆ X and B ⊆ X∗. Then A⊥ is a

weak-star closed linear subspace of X∗, and ⊥B is a closed linear subspace of X.

Proof. Let a ∈ A. Then â ∈ X̂ = (X∗, wk∗)∗ by Theorem 4.2.2. It follows from

Proposition 3.2.7 that ker(â) is a weak-star closed linear subspace of X∗. Therefore,

A⊥ =
⋂
a∈A

ker(â) is a weak-star closed linear subspace of X∗.

For each x∗ ∈ B, by Proposition 3.2.7, ker(x∗) is a closed linear subspace of X.

Hence, ⊥B =
⋂

x∗∈B
ker(x∗) is a closed linear subspace of X. �

Proposition 4.2.9. Let X be a LCS and let A ⊆ X. Then ⊥(A⊥) = span(A).
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Proof. Since A⊥ ⊆ X∗, by Proposition 4.2.8, ⊥(A⊥) is a closed linear subspace

of X. By the definition of A⊥, A ⊆ ⊥(A⊥), and thus span(A) ⊆ ⊥(A⊥). Assume that

x0 ∈ ⊥(A⊥) − span(A). Since span(A) is a closed linear subspace of X, by Theorem

3.4.8, there exists f ∈ X∗ such that f(x0) = 1 and f(x) = 0 for all x ∈ span(A).

In particular, f(x) = 0 for all x ∈ A; that is, f ∈ A⊥. Thus f(x0) = 0, which is a

contradiction. Therefore, ⊥(A⊥) = span(A). �

Proposition 4.2.10. Let X be a TVS and let B ⊆ X∗. Then (⊥B)⊥ = spanwk
∗
(B).

Proof. Let Y = (X∗, wk∗). Then Y is a LCS and Y ∗ = X̂ by Proposition 4.1.4

and Theorem 4.2.2. Let E denote the annihilator of B in Y ∗ and let F denote the

biannihilator of B in Y . By Proposition 4.2.9, F = spanwk
∗
(B). By Definition 4.2.4,

E = {x̂ ∈ X̂ : 〈x, x∗〉 = 0 for all x∗ ∈ B} = ⊥̂B, and thus we get

F = {y ∈ Y : 〈y, e〉 = 0 for all e ∈ E}

= {x∗ ∈ X∗ : 〈x∗, x〉 = 0 for all x ∈ ⊥B} = (⊥B)⊥.

Therefore, (⊥B)⊥ = spanwk
∗
(B). �

4.3. The dual of a quotient space

Theorem 4.3.1. Let X be a TVS, let M be a closed linear subspace of X, and

let X/M be equipped with the quotient topology induced by the canonical quotient map

Q : X → X/M . Then ρ : (X/M)∗ →M⊥, f 7→ f ◦Q is a linear bijection.

If (X/M)∗ has its weak-star topology σ((X/M)∗, X/M) and M⊥ has the relative

σ(X∗, X) topology, then ρ : (X/M)∗ →M⊥ is a homeomorphism.

Furthermore, if X is a normed space, then ρ : (X/M)∗ →M⊥ is an isometry.

Proof. Let f ∈ (X/M)∗. Then for all x ∈M ,

ρ(f)(x) = (f ◦Q)(x) = f(x+M) = f(0) = 0;

that is, ρ(f) ∈M⊥. So, f 7→ f ◦Q defines a map from (X/M)∗ to M⊥.
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Clearly, ρ is linear. If ρ(f) = f ◦Q = 0, then f = 0 since Q is surjective. Hence,

ρ is injective. Let x∗ ∈ M⊥. Define f : X/M → F by f(x + M) = 〈x, x∗〉 (x ∈ X).

Then f is well defined, since if x1 +M = x2 +M , then x1 − x2 ∈M and hence

〈x1, x
∗〉 − 〈x2, x

∗〉 = 〈x1 − x2, x
∗〉 = 0.

Obviously, f : X/M → F is linear. Now f ◦ Q = x∗ : X → F is continuous. By the

definition of the quotient topology, f : X/M → F is continuous. Thus f ∈ (X/M)∗

and x∗ = ρ(f). Hence, ρ : (X/M)∗ → M⊥ is surjective. Therefore, ρ is a linear

bijection between (X/M)∗ and M⊥.

For a net (fi) in (X/M)∗, we have fi → 0 in σ((X/M)∗, X/M) if and only if

fi(x + M) → 0 for all x ∈ X, and ρ(fi) → 0 in σ(X∗, X) if and only if ρ(fi)(x) =

fi(x + M) → 0 for all x ∈ X. Therefore, ρ : (X/M)∗ → M⊥ is a homeomorphism

when (X/M)∗ has its weak∗-topology and M⊥ has its relative σ(X∗, X) topology.

Suppose X is a normed space. Let f ∈ (X/M)∗. It follows from Proposition 3.2.5

that

‖ρ(f)‖ = ‖f ◦Q‖ 6 ‖f‖ · ‖Q‖ 6 ‖f‖.

Let (xn+M) be a sequence in X/M such that ‖xn+M‖ < 1 and |f(xn+M)| → ‖f‖.

Since for each n, there exists yn ∈M such that ‖xn + yn‖ < 1, we have

‖ρ(f)‖ > |ρ(f)(xn + yn)| = |f(xn +M)| → ‖f‖.

Hence, ‖ρ(f)‖ > ‖f‖. Therefore, ρ : (X/M)∗ →M⊥ is an isometry. �

4.4. The dual of a subspace

Theorem 4.4.1. Let X be a LCS, let M be a closed linear subspace of X, and let

r : X∗ →M∗ be the restriction map and Q : X∗ → X∗/M⊥ be the canonical quotient

map. Then r induces a linear bijection r̃ : X∗/M⊥ →M∗ given by r̃(f +M⊥) = f |M .

If X∗/M⊥ has the quotient topology when X∗ is equipped with σ(X∗, X) and M∗

has its weak-star topology σ(M∗,M), then r̃ : X∗/M⊥ →M∗ is a homeomorphism.

Furthermore, if X is a normed space, then r̃ : X∗/M⊥ →M∗ is an isometry.
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Proof. Clearly, r̃ : X∗/M⊥ → M∗, f + M⊥ 7→ f |M is well defined and linear. If

r̃(f + M⊥) = f |M = 0, then f ∈ M⊥ and thus f + M⊥ = 0. Hence, r̃ is injective.

By Theorem 3.4.10, for all f ∈ M∗, there exists F ∈ X∗ such that F |M = f . Hence,

r : X∗ →M∗ is surjective. Since r̃◦Q = r, r̃ : X∗/M⊥ →M∗ is surjective. Therefore,

r̃ : X∗/M⊥ →M∗ is a linear bijection.

Let X∗/M⊥ be equipped with the quotient topology when X∗ is equipped with

σ(X∗, X) and M∗ is equipped with weak-star topology σ(M∗,M). Let g ∈ X∗ and

let (gi) be a net in X∗ with gi → g in σ(X∗, X). Then gi|M → g|M in σ(M∗,M).

Hence, r : X∗ →M∗ is wk∗-wk∗ continuous. Since r̃ ◦Q = r, by the definition of the

quotient topology, r̃ : X∗/M⊥ →M∗ is continuous.

Recall that for all x ∈ X, px̂(x
∗) = |〈x, x∗〉| (x∗ ∈ X∗) is a seminorm on X∗.

By Proposition 3.2.3, the quotient topology on X∗/M⊥ is defined by the seminorms

{px̂ : x ∈ X}, where px̂(x
∗ +M⊥) = inf{|〈x, x∗ + z∗〉| : z∗ ∈M⊥}.

Let x ∈ X −M . We claim that px̂ = 0. Let x∗ ∈ X∗. By Theorem 3.4.8, there

exists h ∈ M⊥ such that h(x) = −x∗(x). Thus px̂(x
∗ + M) 6 |〈x, x∗ + h〉| = 0. That

is, px̂(x
∗ +M) = 0 for all x∗ ∈ X∗. Hence, px̂ = 0 for all x ∈ X −M .

Now let (x∗i + M⊥) be a net in X∗/M⊥ such that r̃(x∗i + M⊥) = x∗i |M
wk∗−→ 0

in M∗. If x ∈ X − M , then by the claim above, px̂(x
∗
i + M⊥) = 0. If x ∈ M ,

then px̂(x
∗
i + M⊥) 6 |〈x, x∗i 〉| → 0. Thus px̂(x

∗
i + M⊥) → 0 for all x ∈ X. Since the

quotient topology on X∗/M⊥ is defined by the seminorms {px̂ : x ∈ X}, by Lemma

3.1.2, x∗i +M⊥ → 0 in X∗/M⊥. Hence, r̃−1 : M∗ → X∗/M⊥ is continuous. Therefore,

r̃ : X∗/M⊥ →M∗ is a homeomorphism.

Suppose X is a normed space. Let f ∈ X∗. Then for all g ∈M⊥,

‖f |M‖ = ‖(f + g)|M‖ 6 ‖f + g‖.

Taking the infimum over all g ∈ M⊥, we get ||f |M || 6 ‖f + M⊥‖. Now let ϕ ∈ M∗.

Then by Proposition 3.4.11, there exists f ∈ X∗ such that f |M = ϕ and ‖f‖ = ‖ϕ‖.

Thus ‖f |M‖ = ‖ϕ‖ = ‖f‖ > ‖f + M⊥‖. Hence, ‖f + M⊥‖ = ‖f |M‖. Therefore,

r̃ : X∗/M⊥ →M∗ is an isometry. �



CHAPTER 5

Banach-Alaoglu theorem, Goldstine theorem, and reflexivity

and separability of normed spaces

We begin this chapter with Banach-Alaoglu theorem and Goldstine theorem, which

say that for a normed space X, the closed unit ball of X∗ is weak-star compact and

the closed unit ball of X∗∗ is the weak-star closure in X∗∗ of the canonical image of

the closed unit ball of X. In Section 5.2, we give a number of characterizations of

reflexive normed spaces. We prove that every reflexive space is weakly sequentially

complete, and show that the converse is not true by checking the non-reflexivity of

the classical weakly sequentially complete space `1. In Section 5.3, we prove that X is

separable if and only if the closed unit ball of X∗ is weak-star metrizable. The main

references for this chapter are [1], [2], [3], and [6].

5.1. Banach-Alaoglu theorem and Goldstine theorem

For a normed space X, the closed unit ball of X is denoted by ball X.

Theorem 5.1.1 (Banach-Alaoglu theorem). Let X be a normed space. Then

ball X∗ is weak-star compact.

Proof. Let Dx = {α ∈ F : |α| 6 1} for each x ∈ ball X. Let

D =
∏
{Dx : x ∈ ball X}.

For each x ∈ ball X, since Dx is a bounded closed subset of F, Dx is compact in F.

By Tychonoff’s theorem, D is compact with the product topology. Also, we equip

ball X∗ with the relative weak-star topology of X∗. Define τ : ball X∗ → D by

τ(x∗)(x) = 〈x, x∗〉 (x ∈ ball X). That is, τ(x∗) is the element of the product space D

whose x coordinate is 〈x, x∗〉. Let x∗ ∈ ball X∗ and let (x∗i ) be a net in ball X∗ with

36
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x∗i
wk∗−→ x∗. Then for each x ∈ ball X,

τ(x∗i )(x) = 〈x, x∗i 〉 → 〈x, x∗〉 = τ(x∗)(x).

By Proposition 2.2, τ(x∗i )→ τ(x∗) in D. Therefore, τ : ball X∗ → D is continuous.

Suppose τ(x∗1) = τ(x∗2) for x∗1, x
∗
2 ∈ ball X∗. Then we have 〈x, x∗1〉 = 〈x, x∗2〉 for

all x ∈ ball X and hence for all x ∈ X, and thus x∗1 = x∗2. Hence, τ : ball X∗ → D

is injective. Let x∗ ∈ ball X∗ and (x∗i ) be a net in ball X∗ with τ(x∗i ) → τ(x∗) in

D. Then for all x ∈ ball X, τ(x∗i )(x) → τ(x∗)(x). Thus 〈x, x∗i 〉 → 〈x, x∗〉 for all

x ∈ ball X and hence for all x ∈ X. That is, x∗i
wk∗−→ x∗ in ball X∗. Therefore,

τ−1 : τ(ball X∗) → ball X∗ is continuous, and hence τ : ball X∗ → τ(ball X∗) is a

homeomorphism.

Let f ∈ D and let (x∗i ) be a net in ball X∗ with τ(x∗i ) → f in D. Then for all x

in ball X, lim
i
〈x, x∗i 〉 = lim

i
τ(x∗i )(x) = f(x) exists. Let x ∈ X. Choose α 6= 0 such

that ||αx|| 6 1. Then lim
i
〈x, x∗i 〉 = α−1 lim

i
〈αx, x∗i 〉 exists. Now define F : X → F

by F (x) = lim
i
〈x, x∗i 〉. Clearly, F : X → F is linear, and |F (x)| = |f(x)| 6 1 for all

x ∈ ball X since f(x) ∈ Dx. It implies that F : X → F is a bounded linear functional

with ||F || 6 1; that is, F ∈ ball X∗. Note that τ(F )(x) = 〈x, F 〉 = f(x) for all

x ∈ ball X. Thus f = τ(F ) ∈ τ(ball X∗). By Corollary 2.5, τ(ball X∗) is closed in

D. It follows from Proposition 2.11 that τ(ball X∗) is compact. Therefore, ball X∗ is

weak-star compact since ball X∗ is homeomorphic to τ(ball X∗). �

For a normed space X, we have |x̂(x∗)| = |x∗(x)| 6 ‖x∗‖ · ‖x‖ for all x ∈ X and

x∗ ∈ X∗, and thus X̂ ⊆ X∗∗.

Proposition 5.1.2. Let X be a normed space. Then map X → X∗∗, x 7→ x̂ is a

linear isometry, called the canonical embedding of X to X∗∗.

Proof. Clearly, the map X → X∗∗, x 7→ x̂ is linear. Let x ∈ X. Then

‖x̂‖ = sup{|x̂(x∗)| : x∗ ∈ X∗ and ‖x∗‖ 6 1} = sup{|x∗(x)| : x∗ ∈ X∗ and ‖x∗‖ 6 1}.
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It follows from Corollary 3.4.12 that ‖x̂‖ = ‖x‖. Therefore, the map X → X∗∗, x 7→ x̂

is a linear isometry. �

The proof of the Goldstine theorem given below was suggested by Dr. Hu.

Theorem 5.1.3 (Goldstine theorem). Let X be a normed space. Then ball X∗∗ is

the weak-star closure of b̂all X in X∗∗, where b̂all X = {x̂ : x ∈ ball X}.

Proof. Let Y = (X∗, ‖ · ‖) and let B = b̂all X. Then Y is a LCS and B is a

convex balanced subset of Y ∗. Thus by Theorem 4.2.7, we only have to show that

◦B◦ = ball X∗∗. By definition, we have

◦B = {y ∈ Y : |〈y, b〉| 6 1 for all b ∈ B}

= {f ∈ X∗ : |〈f, x〉| 6 1 for all x ∈ ball X} = ball X∗.

Hence, ◦B◦ = (◦B)◦ = {x∗∗ ∈ X∗∗ : |〈x∗∗, f〉| 6 1 for all f ∈ ball X∗} = ball X∗∗. �

5.2. Reflexivity of normed spaces

Two linear spaces V and W over the same field are said to be isomorphic if there

is a linear bijection T : V → W . Such T is called a linear isomorphism from V to W .

If two normed spaces X and Y are isometrically isomorphic, we write X ∼= Y .

Definition 5.2.1. A normed space X is reflexive if X∗∗ = X̂.

When X̂ is equipped with the restriction of the norm on X∗∗ to X̂, we have X ∼= X̂

by Proposition 5.1.2. Since X∗∗ is a Banach space, the corollary below is immediate.

Corollary 5.2.1. Let X be a reflexive space. Then X is a Banach space.

Lemma 5.2.2. Let X and Y be normed spaces with an isometric isomorphism

φ : X → Y . Then the dual map φ∗ : Y ∗ → X∗, λ 7→ λ◦φ is an isometric isomorphism.

Proof. Since φ : X → Y an isometric isomorphism, φ−1 : Y → X an isometric

isomorphism. Let f ∈ X∗ and let g = f ◦ φ−1. Then g ∈ Y ∗ and φ∗(g) = g ◦ φ = f .
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Hence, φ∗ : Y ∗ → X∗ is surjective. For all λ ∈ Y ∗, we have

‖λ ◦ φ‖ 6 ‖λ‖ · ‖φ‖ = ‖λ‖ = ‖(λ ◦ φ) ◦ φ−1‖ 6 ‖λ ◦ φ‖ · ‖φ−1‖ = ‖λ ◦ φ‖.

That is, ‖λ◦φ‖ = ‖λ‖ for all λ ∈ Y ∗. Therefore, the dual map φ∗ : Y ∗ → X∗, λ 7→ λ◦φ

is an isometric isomorphism. �

Proposition 5.2.3. Let X and Y be normed spaces such that X ∼= Y . Then X

is reflexive if and only if Y is reflexive.

Proof. Since X ∼= Y , there exists an isometric isomorphism φ : X → Y . By

Lemma 5.2.2, Y ∗ ∼= X∗ via φ∗ and hence X∗∗ ∼= Y ∗∗ via φ∗∗. Let πX : X → X∗∗ and

πY : Y → Y ∗∗ be the canonical embeddings. Let x ∈ X and let f ∈ Y ∗. Then

φ∗∗(x̂)(f) = x̂(φ∗(f)) = x̂(f ◦ φ) = f(φ(x)) = φ̂(x)(f).

Thus φ∗∗(x̂) = φ̂(x) for all x ∈ X; that is, the diagram

X
φ−−−→ Y

πX

y yπY
X∗∗ −−−→

φ∗∗
Y ∗∗

commutes. Since φ and φ∗∗ are bijective, the commutativity of the diagram above

implies that πX : X → X∗∗ is surjective if and only if πY : Y → Y ∗∗ is surjective;

that is, X is reflexive if and only if Y is reflexive. �

For each 1 6 p <∞, let `p be the linear space consisting of all sequences x = (xn)

in F for which ‖x‖p = (
∞∑
n=1

|xn|p)
1
p < ∞. Then ‖ · ‖p is a norm on `p, and `p is a

Banach space with respect to this norm.

Let `∞ be the linear space consisting of all bounded sequences x = (xn) in F.

Then ‖x‖∞ = sup{|xn| : n ∈ N} defines a norm on `∞, and `∞ is a Banach space with

respect to this norm. Let c0 be the linear space of all sequences in F that converge

to 0. Then c0 is a closed linear subspace of `∞, and hence c0 is a Banach space.
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Remark 5.2.4. Let 1 < q 6∞ and let p = q
q−1

. Then 1 6 p <∞ and 1
p

+ 1
q

= 1.

Let x = (xn) ∈ `q. Then gx(y) =
∞∑
n=1

xnyn (y = (yn) ∈ `p) defines a bounded linear

functional on `p. In fact, ϕq : `q → `p
∗, x 7→ gx is an isometric isomorphism. Also,

for each z = (zn) ∈ `1, fz(y) =
∞∑
n=1

znyn (y = (yn) ∈ c0) defines a bounded linear

functional on c0, and ϕ1 : `1 → c0
∗, z 7→ fz is an isometric isomorphism. See Theorem

6.13 and Corollary 6.14 in [6] for the proof of the isomorphisms `q
ϕq∼= `p

∗ and `1

ϕ1∼= c0
∗.

Now let 1 < p < ∞ and let q = p
p−1

. Then `p ∼= `q
∗ and `q ∼= `p

∗ via ϕp and

ϕq, respectively. By Lemma 5.2.2, ϕq
∗ : `p

∗∗ → `q
∗, λ 7→ λ ◦ ϕq is an isometric

isomorphism. Let T : `p → `p
∗∗ be the canonical embedding. Then for x = (xn) ∈ `p

and y = (yn) ∈ `q, we have ϕq
∗(x̂)(y) = x̂(ϕq(y)) = ϕq(y)(x) =

∞∑
n=1

xnyn = ϕp(x)(y).

Thus ϕq
∗ ◦ T = ϕp; that is, the diagram

`p
∗∗

`p `q
∗

ϕq∗T

ϕp

commutes. Since ϕp and ϕq
∗ are bijective, the diagram implies that the embedding

T : `p → `p
∗∗ is surjective. Therefore, we have the following proposition.

Proposition 5.2.5. Let 1 < p <∞. Then `p is a reflexive space.

By Proposition 5.1.2, the map X → X̂, x 7→ x̂ is a linear bijection. Then the

proposition below holds obviously.

Proposition 5.2.6. Let X be a normed space. Equip X with the weak topology

and X̂ with the relative weak-star topology of X∗∗. Then the map X → X̂, x 7→ x̂ is

a homeomorphism.

Proposition 5.2.7. Let X be a normed space. Then X̂ is norm closed in X∗∗ if

and only if X is a Banach space.

Proof. Suppose X is a Banach space. Since X̂ ∼= X, X̂ is a Banach space. By

Proposition 2.6, X̂ is norm closed in X∗∗. Conversely, suppose X̂ is norm closed in
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X∗∗. Let (fn) be a Cauchy sequence in X̂. Then (fn) is a Cauchy sequence in X∗∗,

and hence fn → f for some f ∈ X∗∗. Since X̂ is norm closed in X∗∗, by Corollary

2.5, f ∈ X̂. Thus X̂ is complete. Since X ∼= X̂, X is a Banach space. �

The corollary below follows immediately from Proposition 5.2.7 and Corollary

4.2.4.

Corollary 5.2.8. Let X be a normed space. Then the following statements are

equivalent.

(a) X is complete.

(b) b̂all X is norm closed in X∗∗.

(c) b̂all X is weakly closed in X∗∗.

Proposition 5.2.9. Let X be a normed space and let Y be a dense linear subspace

of X. Then X∗ ∼= Y ∗ via τ ∗ : f 7→ f |Y , where τ : Y → X is the inclusion map.

Proof. By Proposition 3.4.11, τ ∗ : X∗ → Y ∗ is surjective, and

‖τ ∗(f)‖ = ‖f |Y ‖ = ‖f‖ for all f ∈ X∗.

Hence, τ ∗ : X∗ → Y ∗ is an isometric isomorphism. �

For any normed space X, since X̂ ⊆ X∗∗, we have σ(X∗, X) ⊆ σ(X∗, X∗∗).

Theorem 5.2.10. Let X be a normed space. Then the following statements are

equivalent.

(a) X is reflexive.

(b) σ(X∗, X) = σ(X∗, X∗∗).

(c) ball X is weakly compact in X.

Furthermore, each of (a)-(c) implies the following

(d) X∗ is reflexive,

and (a)-(d) are equivalent if X is a Banach space.
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Proof. (a)⇒(b). SupposeX is reflexive. We only need to show that σ(X∗, X∗∗) ⊆

σ(X∗, X). Let f ∈ X∗ and let (fi) be a net in X∗ with fi → f in σ(X∗, X). Then for

all x ∈ X,

〈x̂, fi〉 = 〈fi, x〉 → 〈f, x〉 = 〈x̂, f〉.

Since X̂ = X∗∗, fi → f in σ(X∗, X∗∗). Therefore, σ(X∗, X∗∗) ⊆ σ(X∗, X).

(b)⇒(a). Suppose σ(X∗, X) = σ(X∗, X∗∗). Then

X∗∗ = (X∗, wk)∗ = (X∗, wk∗)∗ = X̂

by Theorems 4.2.1 and 4.2.2. Therefore, X is reflexive.

(a)⇒(c). Suppose X is reflexive. By Proposition 5.1.2,

b̂all X = ball X̂ = ball X∗∗.

It follows from Banach-Alaoglu theorem that b̂all X is weak-star compact in X∗∗. By

Proposition 5.2.6, ball X is weakly compact in X.

(c)⇒(a). Suppose (c) holds. By Proposition 5.2.6, b̂all X is weak-star compact in

X∗∗. Since the weak-star topology on X∗∗ is Hausdorff, by Proposition 2.11, b̂all X

is σ(X∗∗, X∗) closed in X∗∗. By Theorem 5.1.3, b̂all X = ball X∗∗. It follows from

Proposition 5.1.2 that

X̂ = ̂span(ball X) = span(b̂all X) = span(ball X∗∗) = X∗∗.

Therefore, X is reflexive.

(b)⇒(d). Suppose σ(X∗, X) = σ(X∗, X∗∗). Then ball X∗ is σ(X∗, X∗∗) compact

in X∗ by Banach-Alaoglu theorem. Since X∗ is a normed space, by the equivalence

of (a) and (c) proved already, we obtain that X∗ is reflexive.

In the rest of the proof, we assume that X is a Banach space.

(d)⇒(a). Suppose (d) holds (that is, X̂∗ = X∗∗∗). Since X is a Banach space,

by Corollary 5.2.8, b̂all X is σ(X∗∗, X∗∗∗) closed in X∗∗. Note that σ(X∗∗, X∗∗∗) =

σ(X∗∗, X∗) by the equivalence of (a) and (b) for X∗. Therefore, b̂all X is σ(X∗∗, X∗)

closed in X∗∗, and hence X is reflexive as shown in the proof of (c)⇒(a). �
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The corollary below was suggested by Dr. Hu. However, the author was unable

to give a complete proof.

Corollary 5.2.11. Let X be a normed space. Then the following statements are

equivalent.

(a) X is reflexive.

(b) b̂all X is weak-star compact in X∗∗.

(c) b̂all X is weak-star closed in X∗∗.

(d) b̂all X is weakly compact in X∗∗.

As seen below, (a)-(c) and (d) in Theorem 5.2.10 are not equivalent if the normed

space is not complete but its completion is reflexive. For this case, we will show the

negation for each of (a)-(c) directly without using their equivalence.

The following example and its proof were suggested by Dr. Hu.

Example 5.2.12. Let X be a reflexive space and let Y be a dense linear subspace

of X with Y 6= X (e.g., X = `p with 1 < p < ∞ and Y = (c00, ‖ · ‖p)). Then Y ∗ is

reflexive, but Y does not satisfy any of (a)-(c) in Theorem 5.2.10.

Proof. Let τ : Y → X be the inclusion map. Then X∗ ∼= Y ∗ via τ ∗ (cf.

Proposition 5.2.9). By Theorem 5.2.10 and Proposition 5.2.3, Y ∗ is reflexive.

Since Y 6= X = Y , Y is not closed in X. By Proposition 2.6, Y is not complete.

It follows from Corollary 5.2.1 that Y is not reflexive.

Now we show that ball Y is not weakly compact in Y . Choose x0 ∈ X with

‖x0‖ = 1 and x0 /∈ Y . Then there exists a sequence (yn) in Y such that yn → x0

by Proposition 2.4. Since ‖yn‖ → ‖x0‖ = 1, we can assume that yn 6= 0 for all n;

furthermore, replacing yn by ‖yn‖−1yn, we can take the sequence (yn) from ball Y .

Assume that ball Y is weakly compact in Y . Then (yn) has a subnet (ynα) such that

ynα → y weakly in Y for some y ∈ ball Y . Hence, ynα → y weakly in X. Note that

we also have ynα → x0 weakly in X, since ‖ynα − x0‖ → 0. The uniqueness of the
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limit implies that x0 = y, and hence x0 ∈ Y , contradicting that x0 /∈ Y . Therefore,

ball Y is not weakly compact in Y .

Finally, we show σ(Y ∗, Y ) 6= σ(Y ∗, Y ∗∗) by finding a net in Y ∗ that is convergent

in σ(Y ∗, Y ) but not in σ(Y ∗, Y ∗∗). Let M be the family of all finite dimensional

linear subspaces of Y . ThenM is a directed set under the inclusion order. Now each

M ∈ M is closed in X. By Theorem 3.4.8, for each M ∈ M, there exists fM ∈ X∗

such that fM(x0) = 1 and fM |M = 0. Let gM = τ ∗(fM) = fM |Y . Then (gM)M∈M is

a net in Y ∗ and gM(y)→ 0 for all y ∈ Y . Therefore, gM → 0 in σ(Y ∗, Y ). Note that

τ ∗∗ : Y ∗∗ → X∗∗ is an isometric isomorphism since X∗ ∼= Y ∗ via τ ∗. Let y∗∗ ∈ Y ∗∗ be

such that τ ∗∗(y∗∗) = x̂0. Then for all M ∈M, we have

y∗∗(gM) = y∗∗(τ ∗(fM)) = τ ∗∗(y∗∗)(fM) = x̂0(fM) = fM(x0) = 1.

Hence, (gM) is not convergent (to 0) in σ(Y ∗, Y ∗∗). �

Remark 5.2.13. Note that the isometric isomorphism τ ∗ : X∗ → Y ∗ given in

Example 5.2.12 is not a wk∗-wk∗ homeomorphism though, as an adjoint map, it is

automatically wk∗-wk∗ continuous.

Corollary 5.2.14. Let X be a reflexive space and let M be a norm closed linear

subspace of X. Then M is a reflexive space.

Proof. Since ball M is norm closed in M and M is a norm closed linear subspace

of X, ball M is norm closed in X. By Corollary 4.2.4, ball M is weakly closed in X.

Since X is reflexive, by Theorem 5.2.10, ball X is σ(X,X∗) compact in X. Since

ball M ⊆ ball X, by Proposition 2.11, ball M is σ(X,X∗) compact in X. It follows

from Theorem 3.4.10 that X∗|M = M∗ and hence σ(X,X∗)|M = σ(M,M∗). Thus

ball M is σ(M,M∗) compact in M . By Theorem 5.2.10, M is reflexive. �

Definition 5.2.2. Let X be a normed space. A sequence (xn) in X is called

weakly Cauchy if for all x∗ ∈ X∗, (〈xn, x∗〉) is a Cauchy sequence in F. X is called

weakly sequentially complete if every weakly Cauchy sequence in X converges weakly.
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Theorem 5.2.15. Every reflexive space is weakly sequentially complete.

Proof. Let (xn) be a weakly Cauchy sequence in a reflexive space X. Then for

each x∗ in X∗, (〈xn, x∗〉) is a Cauchy sequence in F and hence (〈xn, x∗〉) is bounded.

Thus sup
n
|x∗(xn)| < ∞ for all x∗ ∈ X∗; that is, sup

n
|x̂n(x∗)| < ∞ for all x∗ ∈ X∗.

Since X∗ is a Banach space and F with the absolute value norm is a normed space,

by the Principle of Uniform Boundedness, sup
n
‖x̂n‖ <∞. It follows from Proposition

5.1.2 that M = sup
n
‖xn‖ = sup

n
‖x̂n‖ <∞.

Let yn = xn
M

(n ∈ N). Then (yn) is a weakly Cauchy sequence in ball X. Since

X is reflexive, by Theorem 5.2.10, ball X is weakly compact in X. By Theorem 2.10,

(yn) has a subnet (yn′) such that yn′
wk−→ y for some y ∈ ball X. Thus (xn′) is a

subnet of (xn) such that xn′
wk−→ x = My ∈ X. Let x∗ ∈ X∗. Then 〈xn, x∗〉 → α for

some α ∈ F, since (xn) is weakly Cauchy in X. By Proposition 2.8, 〈xn′ , x∗〉 → α.

Since xn′
wk−→ x in X, by the uniqueness of limit in F, 〈xn, x∗〉 → α = 〈x, x∗〉. Hence,

xn
wk−→ x ∈ X. Therefore, X is weakly sequentially complete. �

Note that the converse of Theorem 5.2.15 is not true. In fact, as shown below, `1

is not reflexive, though it is weakly sequentially complete (see Proposition 2.3.12 in

[1] for the proof of the fact that `1 is weakly sequentially complete).

Example 5.2.16. Recall that `∞ ∼= `1
∗ and `1

∼= c0
∗ via the maps ϕ∞ and ϕ1,

respectively (cf. Remark 5.2.4). It follows from Lemma 5.2.2 that the dual map

ϕ1
∗ : c0

∗∗ → `∗1, λ 7→ λ ◦ ϕ1 is an isometric isomorphism.

Let τ : c0 → `∞ be the inclusion map. Then τ : c0 → `∞ is not surjective since

x0 = (1, 1, · · · ) ∈ `∞ − c0. Let T : c0 → c0
∗∗ be the canonical embedding. Similar

arguments as given in Remark 5.2.4 shows that the diagram

c0
τ−−−→ `∞

T

y yϕ∞
c0
∗∗ −−−→

ϕ1
∗

`1
∗
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commutes. Since ϕ∞ and ϕ1
∗ are bijective and τ : c0 → `∞ is not surjective, the

embedding T : c0 → c0
∗∗ is not surjective. Hence, c0 is not reflexive. By Theorem

5.2.10, c0
∗ is not reflexive. Since `1

∼= c0
∗, `1 is not reflexive by Proposition 5.2.3.

5.3. Separability of normed spaces

Definition 5.3.1. A topological space X is said to be metrizable if the topology

on X is induced by a metric on X.

Theorem 5.3.1. Let X be a normed space. Then ball X∗ is weak-star metrizable

if and only if X is separable.

Proof. We can assume that X 6= {0}. Suppose X is separable. By Proposition

2.7, ball X is separable. Let C = {x1, x2, x3, · · · } be a countable dense subset of

ball X. Define d : ball X∗ × ball X∗ → [0,∞) by d(x∗, y∗) =
∞∑
n=1

|〈xn,x∗−y∗〉|
2n

. For all

x∗, y∗ ∈ ball X∗ and n ∈ N, we have

|〈xn, x∗ − y∗〉|
2n

6
|〈xn, x∗〉|+ |〈xn, y∗〉|

2n
6

2

2n
= 21−n,

and thus d(x∗, y∗) 6
∞∑
n=1

21−n = 2 <∞. Hence, the function d is well defined.

Let x∗, y∗ ∈ ball X∗. Then d(x∗, x∗) = 0, d(x∗, y∗) > 0, and d(x∗, y∗) = d(y∗, x∗).

Suppose d(x∗, y∗) = 0. Then |〈xn, x∗ − y∗〉| = 0 for all n ∈ N. Since C is dense in

ball X, by Proposition 2.14, 〈x, x∗ − y∗〉 = 0 for all x ∈ ball X and hence for all

x ∈ X. Thus x∗ = y∗. Hence, d(x∗, y∗) = 0 if and only if x∗ = y∗. Also, for all

x∗, y∗, z∗ ∈ ball X∗, we have

d(x∗, y∗) 6
∞∑
n=1

|〈xn, x∗ − z∗〉|
2n

+
∞∑
n=1

|〈xn, z∗ − y∗〉|
2n

= d(x∗, z∗) + d(z∗, y∗).

Therefore, d is a metric on ball X∗.

Let T be the topology on ball X∗ induced by d, let σ be the weak-star topology

on ball X∗, and let I be the identity map from (ball X∗, σ) to (ball X∗, T ). To show

that (ball X∗, σ) is metrizable, we only have to show that I is a homeomorphism.

By Banach-Alaoglu theorem, (ball X∗, σ) is compact. Since I is a bijection from a
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compact space to a Hausdorff space, by Proposition 2.13, we only need to show that

I : (ball X∗, σ) → (ball X∗, T ) is continuous. Let x∗ ∈ ball X∗ and let (x∗α)α∈A be a

net in ball X∗ with x∗α
σ−→ x∗. Then 〈xn, x∗α − x∗〉 → 0 for all n. Let ε > 0. Choose

N ∈ N such that 21−N < ε
2
. For each n ∈ {1, · · · , N}, there exists αn ∈ A such that

|〈xn, x∗α− x∗〉| < 2nε
2N

for all α ∈ A with α < αn. Since A is a directed set, there exists

α0 ∈ A such that α0 < αi for all 1 6 i 6 N . Hence, we have

d(x∗α, x
∗) =

N∑
n=1

|〈xn, x∗α − x∗〉|
2n

+
∞∑

n=N+1

|〈xn, x∗α − x∗〉|
2n

<
N∑
n=1

ε

2N
+

∞∑
n=N+1

21−n =
ε

2
+ 21−N <

ε

2
+
ε

2
= ε

for all α ∈ A with α < α0. Thus x∗α
d−→ x∗. Hence, I : (ball X∗, σ)→ (ball X∗, T ) is

continuous. Therefore, ball X∗ is weak-star metrizable.

Conversely, suppose ball X∗ is weak-star metrizable. Then there exists a metric

d on ball X∗ such that the weak-star topology on ball X∗ is induced by d. For each

n ∈ N, let Un = {x∗ ∈ ball X∗ : d(x∗, 0) < 1
n
}. Then each Un is open in (ball X∗, σ)

with 0 ∈ Un, and
∞⋂
n=1

Un = {0}. Let n ∈ N. Since 0 ∈ Un, by the definition of the

weak-star topology on ball X∗ and Definition 3.1.3, there exist xni ∈ X and εni > 0

(i = 1, · · · , mn) such that

mn⋂
i=1

{x∗ ∈ ball X∗ : |〈xni , x∗〉| < εni } ⊆ Un.

Let Fn = {xn1 , · · · , xnmn} and let F =
∞⋃
n=1

Fn. Then

{x∗ ∈ ball X∗ : |〈x, x∗〉| = 0 for all x ∈ Fn} ⊆ Un

for all n, F is countable, and F⊥ is a linear subspace of X∗. Let x∗ ∈ ball F⊥. Then

|〈x, x∗〉| = 0 for all x ∈ Fn and n ∈ N. Thus x∗ ∈
∞⋂
n=1

Un = {0}. It follows that

ball F⊥ = {0}. Hence, F⊥ = span(ball F⊥) = {0}. By Propositions 3.1.6 and 4.2.9,

⊥(F⊥) = span(F ) is separable. Therefore, X = ⊥{0} = ⊥(F⊥) is separable. �
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