
University of Windsor University of Windsor 

Scholarship at UWindsor Scholarship at UWindsor 

Mechanical, Automotive & Materials 
Engineering Publications 

Department of Mechanical, Automotive & 
Materials Engineering 

3-15-2013 

A multi-objective facility location model for closed-loop supply A multi-objective facility location model for closed-loop supply 

chain network under uncertain demand and return chain network under uncertain demand and return 

Saman Hassanzadeh Amin 
University of Windsor 

Guoqing Zhang 
University of Windsor 

Follow this and additional works at: https://scholar.uwindsor.ca/mechanicalengpub 

 Part of the Business Administration, Management, and Operations Commons, Business Intelligence 

Commons, Environmental Engineering Commons, Industrial Engineering Commons, Management 

Sciences and Quantitative Methods Commons, and the Operations and Supply Chain Management 

Commons 

Recommended Citation Recommended Citation 
Amin, Saman Hassanzadeh and Zhang, Guoqing. (2013). A multi-objective facility location model for 
closed-loop supply chain network under uncertain demand and return. Applied Mathematical Modelling, 
37 (6), 4165-4176. 
https://scholar.uwindsor.ca/mechanicalengpub/12 

This Article is brought to you for free and open access by the Department of Mechanical, Automotive & Materials 
Engineering at Scholarship at UWindsor. It has been accepted for inclusion in Mechanical, Automotive & Materials 
Engineering Publications by an authorized administrator of Scholarship at UWindsor. For more information, please 
contact scholarship@uwindsor.ca. 

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Scholarship at UWindsor

https://core.ac.uk/display/215510676?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://scholar.uwindsor.ca/
https://scholar.uwindsor.ca/mechanicalengpub
https://scholar.uwindsor.ca/mechanicalengpub
https://scholar.uwindsor.ca/mame
https://scholar.uwindsor.ca/mame
https://scholar.uwindsor.ca/mechanicalengpub?utm_source=scholar.uwindsor.ca%2Fmechanicalengpub%2F12&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/623?utm_source=scholar.uwindsor.ca%2Fmechanicalengpub%2F12&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/1326?utm_source=scholar.uwindsor.ca%2Fmechanicalengpub%2F12&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/1326?utm_source=scholar.uwindsor.ca%2Fmechanicalengpub%2F12&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/254?utm_source=scholar.uwindsor.ca%2Fmechanicalengpub%2F12&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/307?utm_source=scholar.uwindsor.ca%2Fmechanicalengpub%2F12&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/637?utm_source=scholar.uwindsor.ca%2Fmechanicalengpub%2F12&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/637?utm_source=scholar.uwindsor.ca%2Fmechanicalengpub%2F12&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/1229?utm_source=scholar.uwindsor.ca%2Fmechanicalengpub%2F12&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/1229?utm_source=scholar.uwindsor.ca%2Fmechanicalengpub%2F12&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholar.uwindsor.ca/mechanicalengpub/12?utm_source=scholar.uwindsor.ca%2Fmechanicalengpub%2F12&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarship@uwindsor.ca


A multi-objective facility location model for closed-loop supply chain 

network under uncertain demand and return 

 

 

Saman Hassanzadeh Amin, Guoqing Zhang * 
 

 

Department of Industrial and Manufacturing Systems Engineering, 

University of Windsor, Windsor, ON, Canada N9B 3P4 

 

 

* Corresponding author, Tel: 519-253-3000 Ext. 2637, Fax: 519-973-7062 

Email addresses: gzhang@uwindsor.ca (G. Zhang); hassanzs@uwindsor.ca (S. H. 

Amin) 

 

 



A multi-objective facility location model for closed-loop supply chain 

network under uncertain demand and return 

 

A closed-loop supply chain (CLSC) network consists of both forward and 

reverse supply chains. In this paper, a CLSC network is investigated which 

includes multiple plants, collection centres, demand markets, and products. To 

this aim, a mixed-integer linear programming model is proposed that minimizes 

the total cost. Besides, two test problems are examined. The model is extended 

to consider environmental factors by weighed sums and ε-constraint methods. In 

addition, we investigate the impact of demand and return uncertainties on the 

network configuration by stochastic programming (scenario-based). 

Computational results show that the model can handle demand and return 

uncertainties, simultaneously.  

 

 
Keywords: Reverse logistics (RL); Closed-loop supply chain (CLSC); Mixed-

integer linear programming (MILP); Multi-objective programming; Stochastic 

programming 

 

 

1. Introduction 

 

   Supply chain management (SCM) has received a lot of attentions. There are two 

types of supply chains: forward and reverse supply chains. The forward supply chain 

(FSC) contains of series of activities which result in the conversion of raw materials 

to finished products. Managers try to improve forward supply chain performances in 

areas such as demand management, procurement, and order fulfilment [1, 2]. Reverse 

supply chain (RSC) is defined as the activities of the collection and recovery of 

product returns in SCM. Economic features, government directions, and customer 

pressure are three aspects of reverse logistics [3]. The integration of a forward supply 

chain and a reverse supply chain results in a closed-loop supply chain (CLSC) [4]. In 

other words, there are both forward and reverse channels in CLSC networks.  

   Several investigations have been done about forward facility location models. 

Facility location models try to answer the following questions: How many facilities 

should be open? Where each facility should be located? What is the allocation? 

Which set of collection centres should be opened and operated? What products should 

be processed in these open facilities? Some authors have examined facility location 

models for closed-loop supply chain networks (such as [5]). The objective of these 

models is to determine decision variables of both forward and reverse channels. 

Minimization of total cost is considered as main objective function. A minority of 



authors not only considered the total cost, but also they took into account other factors 

by multi-objective models (such as [6]). On the other hand, some researchers 

investigated uncertainty in CLSC configuration (for instance [7]). Uncertainties in 

supply and demand are two major sources of vagueness in SCM. Uncertainty in 

supply is appeared because of the mistakes or delays in the supplier’s deliveries. 

Demand uncertainty is defined as inexact forecasting demands or as volatility 

demands [8, 9, 10]. Uncertain return is another important source of ambiguity in 

reverse logistics. To our knowledge, most of authors have not taken into account 

multi-objective closed-loop supply chain models under uncertainty. Thus, it is 

valuable to examine integrated models including multi-objective models with 

uncertain parameters.  

   In this paper, a facility location model is proposed for a general closed-loop supply 

chain network. The model is designed for multiple plants (manufacturing and 

remanufacturing), demand markets, collection centres, and products. The goal is to 

know how many and which plants and collection centres should be open, and which 

products and in which quantities should be stock in them. The objective function 

minimizes the total cost. In this paper, two test problems are examined. In addition, 

the model is developed to multi-objective by considering environmental factors 

including environmental friendly materials and clean technology. Then, the model is 

solved by two methods including weighted sums and ε-constraint methods. 

Furthermore, trade-off surfaces of test problems are examined. The multi-objective 

model also is extended by stochastic programming (scenario-based) to examine the 

effects of uncertain demand and return on the network configuration. Finally, 

computational results are discussed and analysed. This research is among the first 

investigations that consider multi-objective mathematical models under uncertainty in 

CLSC network configuration.  

   The organization of this paper is as follows. Literature review is discussed in 

Section 2. In Section 3, a general network is described. In Section 4, the mathematical 

model is provided. Then, two test problems are presented in Section 5. An extension 

to multi-objective programming is provided in Section 6. In addition, the model is 

developed by stochastic programming in Section 7. Finally, conclusions are discussed 

in Section 8.  

 

 



2. Literature review 

 

   Jayaraman et al. [11] presented a mixed-integer linear programming model to 

determine optimal quantities of remanufactured products and used parts in a reverse 

supply chain network. Fleischmann et al. [5] extended a forward logistics model to a 

reverse logistics system and discussed the differences. They utilized mixed-integer 

linear programming model. Kannan et al. [12] proposed a model using genetic 

algorithm and particle swarm techniques. They applied the model by considering two 

cases including a tyre manufacturer and a plastic goods manufacturer. Kannan et al. 

[13] developed a mathematical model for a case of battery recycling. However, they 

did not consider uncertainty of parameters. Amin and Zhang [14] designed a network 

based on product life cycle. They utilized mixed-integer linear programming to 

configure the network. Fleischmann et al. [15], Rubio et al. [16], Guide and Van 

Wassenhove [4], and Akcali and Cetinkaya [17] provided literature review and survey 

for the papers of RL and CLSC.  

   Multi-objective and goal programming models have been developed by some 

authors for CLSC networks. Some of the papers have been categorized in Table 1. 

Krikke et al. [18] considered minimization of the supply chain costs, energy use, and 

residual waste of a closed-loop supply chain network. Pati et al. [19] formulated a 

mixed-integer goal programming model to determine the facility location, route and 

flow of different varieties of recyclable wastepaper CLSC network. They examined 

minimization of the reverse logistics cost, maximization of the product quality 

improvement, and environmental benefits. Du and Evans [20] developed a bi-

objective model for a reverse logistics network by considering minimization of the 

overall costs, and the total tardiness of cycle time. Gupta and Evans [21] proposed a 

non-preemptive goal programming approach to model a closed-loop supply chain 

network. Pishvaee et al. [22] considered minimization of the total costs, and 

maximization of the responsiveness of a logistics network.  

   Some authors have examined uncertainty in CLSC network configuration. Table 1 

shows the summary of the articles. Salema et al. [7] extended the reverse logistics 

model of Fleischmann et al. [5] and took into account uncertainty in demand and 

return by defining scenario-dependent cases. They utilized mixed-integer 

programming and Branch & Bound technique and solved the problem by CPLEX. 

Francas and Minner [23] proposed a two-stage stochastic model to design a closed-

http://www.scopus.com/search/submit/author.url?author=Kannan%2c+G.&origin=resultslist&authorId=35610891600&src=s
http://www.scopus.com/search/submit/author.url?author=Kannan%2c+G.&origin=resultslist&authorId=35610891600&src=s


loop network under uncertain demand and return. Pishvaee et al. [24] proposed a 

deterministic optimization model for a reverse logistics network. Then, they 

developed a stochastic model. However, environmental factors have not been 

considered in the model. Lee and Dong [25] proposed a two-stage stochastic 

programming model for a closed-loop supply chain network. They also developed a 

solution approach by Simulated Annealing. Pishvaee and Torabi [26] developed a 

possibilistic mixed integer programming model to deal with uncertainty in closed-

loop supply chain configuration. Shi et al. [27] proposed a mathematical model to 

maximize the profit of a remanufacturing system by developing a solution approach 

based on Lagrangian relaxation method. Wang and Hsu [28] proposed an interval 

programming model where the uncertainty has been expressed by fuzzy numbers. Shi 

et al. [29] studied a production planning problem for a multi-product closed-loop 

system. The authors considered uncertain demand and return by stochastic 

programming. Pishvaee et al. [30] proposed a robust optimization model for a closed-

loop supply chain network to consider uncertainty. Amin and Zhang [31] developed 

an optimization model under uncertain demand and decision environment for a CLSC. 

Vahdani et al. [32] applied fuzzy multi-objective robust optimization to configure a 

CLSC network.  

   The research papers of Table 1 have not considered multi-objective and uncertainty 

issues in CLSC configuration, simultaneously. In this paper, we develop a multi-

objective model under uncertainty for a CLSC network.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Table 1 

CLSC configuration models 
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Multi-objective models for CLSC              

[18] x x x x x x       

[19]  x x  x   x     

[20]  x     x  x x   

[21] x x x  x    x    

[22]     x  x x   x  

CLSC under uncertainty             

[7]  x  x x    x x  x 

[23]  x       x    

[24]    x x   x   x  

[25]  x   x    x    

[26]     x x x x x    

[27]  x           

[28]   x  x   x x   x 

[30]     x  x x   x  

[31] x x x  x        

[32]   x x  x  x x x    

 

 

 

3. Network description 

 

   In this section, a general closed-loop supply chain network is described. Fig. 1 

shows the network which includes plants, collection centres, and demand markets. 

The plants can manufacture new products and remanufacture returned products. The 

products are sent to demand markets by plants. Then, the returned products are sent to 

collection centres. Collection centres have the following responsibilities: collecting of 

used products from demand markets, determining the condition of the returns by 

inspection and/or separation to find out whether they are recoverable or not, sending 

recoverable returns to the plants, sending the unrecoverable returns (because of 

economic and/or technological reasons) to the disposal centre. The objective is to 

know how many and which plants and collection centres should be open, and which 

products and in which quantities should be stock in them. 

   The following assumptions are made in the network configuration: 

• The model is designed for a single period. 



• All of the returned products from demand markets are collected in collection 

centres.  

• Locations of demand markets are fixed.  

• Locations and capacities of plants and collection centres are known in 

advance. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 
Fig. 1. The closed-loop supply chain network 

 

 

4. Mathematical model 

 

   The network can be formulated as a mixed-integer linear programming model. Sets, 

parameters, and decision variables are defined as follows:  

 

Sets 

I = set of potential manufacturing and remanufacturing plants locations (1 ... i ...  I)  

J = set of products (1 ...  j ...  J) 

K = set of demand markets locations (1 ... k ... K) 

L = set of potential collection centres locations (1 ... l ... L) 

 

Parameters 

Aj = production cost of product j 

Bj = transportation cost of product j per km between plants and demand markets 

Forward 

supply 

chain 

Plants 

1 ... i ... I 

 

Disposal centre 

 

Collection centres 

1 ... l ... L 

 

Reverse 

supply 

chain 

Demand markets 

1 ... k ... K 

 



Cj = transportation cost of product j per km between demand markets and collection 

centres 

Dj = transportation cost of product j per km between collection centres and plants 

Oj = transportation cost of product j per km between collection centres and disposal 

centre 

Ei  = fixed cost for opening plant i  

Fl  = fixed cost for opening collection centre l  

Gj = cost saving of product j (because of product recovery) 

Hj = disposal cost of product j 

Pij = capacity of plant i for product j 

Qlj = capacity of collection centre l for product j 

tik = the distance between location i and k generated based on the Euclidean method 

(tkl and tli are defined in the same way). tl is the distance between collection centre l 

and disposal centre 

dkj = demand of customer k for product j 

rkj = return of customer k for product j 

αj = minimum disposal fraction of product j 

 

Variables 

Xikj = quantity of product j produced by plant i for demand market k  

Yklj = quantity of returned product j from demand market k to collection centre l  

Slij = quantity of returned product j from collection centre l to plant i 

Tlj = quantity of returned product j from collection centre l to disposal centre 

Zi = 1, if a plant is located and set up at potential site i, 0, otherwise 

Wl = 1, if a collection centre is located and set up at potential site l, 0, otherwise 

 
 

 

 

 

 

 

 

s.t. 
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   The objective function is minimization of the total cost. The first and second parts 

show the fixed costs of opening plants and collection centres, respectively. The third 

part represents the production and transportation costs of new products. The forth part 

is related to product recovery and transportation costs of returned products. Besides, 

the fifth part represents the total recovery and transportation costs of returned 

products from collection centres to plants. Besides, the sixth part calculates disposal 

and transportation costs.  

   The constraint (1) ensures that the total number of each manufactured product for 

each demand market is equal or greater than the demand. Constraint (2) is a capacity 

constraint of plants. Constraint (3) represents that forward flow is greater than reverse 

flow. Constraint (4) enforces a minimum disposal fraction for each product. 

Constraint (5) is capacity constraint of collection centres. Constraint (6) shows that 

the quantity of returned products from demand market is equal to the quantity of 

returned products to plants and quantity of products in disposal centre for each 

collection centre and each product. Constraint (7) shows the returned products. 

Constraint (8) ensures the binary nature of decision variables while Constraint (9) 

preserves the non-negativity restriction on the decision variables.  
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5. Application of the proposed model 

 

   Copier remanufacturing has been investigated in some papers such as [5]. Major 

manufacturers such as Canon are reselling and remanufacturing used copy machines 

collected from their customers. During an initial inspection at a collection site, quality 

standards of used machines are checked to make sure the returned products have 

certain quality standards. Remanufacturing is often carried out in the original 

manufacturing plants using the same equipment. Machines that cannot be reused as a 

whole may still provide a source for reusable spare parts. The remainder is typically 

sent to a disposal centre.  

   The goal of this section is to show the application of the mathematical model by 

numerical examples. To this aim, two test problems are examined. In the test problem 

1, a deterministic example is considered. Data of costs and minimum disposal fraction 

are adopted from [5]. Table 2 shows the data in detail. The potential locations for 

manufacturers, demand markets, collection centres, and disposal centre were 

generated from uniform distribution between 0 and 100 units of distance on the x and 

y coordinates. Test problem 1 consists of deterministic parameters. However, it is 

hard to estimate the values of parameters in real world. In the test problem 2, it is 

supposed that parameters (except demand and return) follow uniform distribution. 

The reason is that each parameter under uniform distribution can be shown by two 

numbers (not exactly one). Table 2 shows the values. The objective is to consider a 

realistic model by using uniform distribution.  

 

 

 

 

 

 

 

 

 

 

 

 

 



Table 2 

Data for copier remanufacturing example  

Test problem 1 
I = 4 (number of plants) Cj = 0.005 Hj = 2.5 

J = 3 (number of products) Dj = 0.003 Pij = 84,000 

K = 5 (number of demand markets) Oj = 0.00155 Qlj = 34,000 

L = 4 (number of collection centres) Ei = 5,000,000 dkj = 30,000 

Aj = 15 Fl = 500,000 rkj = 10,000 

Bj = 0.01455 Gj = 7 αj = 0.4 

Test problem 2 
I = 4 (number of plants) Cj = uniform (0.0045, 0.0055) Hj = uniform (2.25, 2.75) 

J = 3 (number of products) Dj = uniform (0.0027, 0.0033) Pij = uniform (75,600, 92,400) 

K = 5 (number of demand markets) Oj = uniform (0.0014, 0.0017) Qlj = uniform (30,600, 37,400) 

L = 4 (number of collection centres) Ei = uniform (4,500,000, 5,500,000) dkj = 30,000 

Aj = uniform (13.5, 16.5) Fl = uniform (450,000, 550,000) rkj = 10,000 

Bj = uniform (0.0131, 0.0160) Gj = uniform (6.3, 7.7) αj = uniform (0.27, 0.33) 

 

   Test problems have been solved by CPLEX 9.1.0. CPLEX is an optimization 

software package which is suitable for solving mixed-integer linear programming 

problems. All computational work was performed on a personal computer (32-bit 

operating system, 2.33 GHz CPU, and 4.00 GB). The model statistics are 797 non-

zero elements, 78 single equations, 189 single variables, and 8 discrete variables. The 

objective value (total cost), in the test problem 1 is 17,878,724 (solved in 0.031 

seconds) and in the test problem 2 is 17,406,850 (solved in 0.124 seconds). Fig. 2 and 

Fig. 3 show the optimal networks for test problems 1 and 2, respectively (product 2). 

It can be seen that in the test problem 1, plants 1 and 3 are open. However, plants 2 

and 3 work in the test problem 2. In addition, different collection centres are open in 

the test problems 1 and 2. As a result, considering uniform distribution not only 

changes the total cost of network configuration, but also it alters the open facilities.  

 

http://en.wikipedia.org/wiki/Optimization_%28mathematics%29


 

 
Fig. 2. Optimal closed-loop supply chain network (test problem 1, product 2) 

 

 

 

 
 

Fig. 3.  Optimal closed-loop supply chain network (test problem 2, product 2) 

 

6. An extension to multi-objectives 

 

   In the mentioned mathematical model, the total cost is minimized. However, 

environmental issues also should be considered. To this aim, new parameters are 

defined. Mij is parameter of using environmental friendly materials by plant i to 

produce product j. Recyclable materials is an example of this parameter [33]. Another 

parameter is Nli which is defined as parameter of using clean technology by collection 

centre l to process product j. Clean technology consists of renewable and recycling 

energy such as solar power [34]. Both of two parameters are qualitative and should be 

determined by decision makers. These two parameters are between 0 and 1. Some 

decision making techniques such as analytic hierarchy process (AHP) can be helpful 



to convert qualitative assessments to quantitative results. AHP method has different 

stages including developing hierarchy of problem, constructing pairwise comparison 

matrix, synthesization, and consistency test. The second objective function can be 

written as Eq. (10).   

 

 

 

6.1. Solution approach 

   To solve the multi-objective problem, two methods are utilized including weighted 

sums method, and ε-constraint method. These methods can transform our problem to 

a mono-objective optimization problem. Weighted sums method is the most popular 

multi-objective method. However, determining the weights is a challenge. To 

compare the results, we also apply ε-constraint method. For more information you can 

refer to [35].  

 

6.1.1. Weighted sums method 

   In this method, objective functions are combined by assigning appropriate weights. 

The weights (w1 and w2 in this case) are determined by decision makers. Some 

methods such as AHP also can be applied in determining the weights of objectives. It 

is noticeable that w1, w2 ≥ 0 and w1 + w2 = 1. Eq. (11) shows the formula for our 

problem.  

 

 

 

 

 

6.1.2. ε-constraint method 

   In this method, the multi-objective optimization problem is transformed to a mono-

objective optimization problem with additional constraints. The objective function 

with a high priority is considered as objective function. Other objectives are written as 

constraints by using a constraint vector ε. The transformed problem is written in Eq. 

(12).  
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6.2. Trade-off surfaces 

   The goal of multi-objective programming models is to find efficient solutions. An 

efficient solution has the property that it is impossible to improve any one objective 

values without sacrificing on at least one other objective. The small number of 

efficient solutions produces the trade-off surface or Pareto front [35, 36]. In this 

section, the test problem 2 is solved by two mentioned methods and trade-off surfaces 

are depicted in the Fig. 4. To this aim, different weights are assigned and the values of 

objective functions are calculated. In addition, the trade-off surface of the problem is 

obtained by changing the value of ε. As mentioned before, CPLEX 9.1.0 is utilized to 

solve the problem. In this example, it is supposed that Mij and Nli have uniform 

distribution between 0 and 1.  
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Fig. 4.  Trade-off surfaces for the test problem 2: (a) weighted sums method,  

(b) ε-constraint method, (c) weighted sums and ε-constraint methods  

 
 

   It is easy to use weighted sums method, but it can be applied only to the convex 

sets. This is a weakness of this method that makes it difficult to identify the trade-off 

surface of the problem. The ε-constraint method can be applied for non convex 

problems. However, it is very sensitive to the selection of parameter ε. A good choice 

can provide a good spread of solutions on the trade-off surface. This issue can be 

considered as a weakness of this method.  

   It can be seen in the Fig. 4 that weighted sums method cannot identify some 

solutions between 17,891,000 and 34,684,000 values of the first objective function. 

However, ε-constraint method can obtain more solutions. As a result, for the test 

problem 2, ε-constraint method is more efficient rather than weighted sums method. 

The values of objective functions of ε-constraint method have been written in the 

Table 3. The numbers of open facilities (plants and collection centres) also have been 

written. We can see that results of some test problems in Table 3 are different from 

Fig. 3. For example, collection centres 2 and 4 are open in Fig. 3 (single objective). 

However, collection centres 2 and 3 are open in some cases in Table 3 (multi-

objective). This issue shows the effect of second objective function on the results. In 

addition, we show the sensitivity analysis of ε according to the objective function in 

Fig. 5.  
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Table 3 

Results of ε-constraint method 

ε Value of the first 

objective 

Value of the 

second objective 

Open plants Open collection 

centres 
50,000 17,407,000 319,120 2, 3 2, 4 

100,000 17,407,000 319,120 2, 3 2, 4 

200,000 17,407,000 319,120 2, 3 2, 4 

300,000 17,407,000 319,120 2, 3 2, 4 

350,000 17,407,000 350,000 2, 3 2, 4 

400,000 17,413,000 400,000 2, 3 2, 4 

450,000 17,440,000 450,000 2, 3 2, 3 

500,000 17,473,000 500,000 2, 3 2, 3 

600,000 22,094,000 600,000 2, 3, 4 2, 3 

650,000 22,794,000 650,000 2, 3, 4 2, 3 

700,000 24,298,000 700,000 2, 3, 4 1, 2, 3 

800,000 31,091,000 800,000 1, 2, 3, 4 2, 3 

900,000 33,870,000 900,000 1, 2, 3, 4 1, 2, 3 
 

 

 

Fig. 5.  Sensitivity analysis of ε 

 

7. An extension to consider uncertainty 

 

   Several parameters have uncertain values in practice. Uncertainty in demand is 

major source of uncertainty in supply chain management. Uncertain return is another 

important source of vagueness in reverse logistics. It is useful to take into account this 

issue in the optimization model.    

 

7.1. Stochastic programming 

   The uncertainty in parameters can be modelled by stochastic programming. The 

goal of stochastic programming is to discover a solution that will perform well under 

any possible realization of the random parameters. The random parameters can be 

stated as continuous values or discrete scenarios [9]. In this paper, a scenario-based 

analysis is utilized to consider uncertainty. For more information, you can refer to [37, 



38]. Suppose that vector y includes all binary variables. Besides, vector x has all non-

negative variables. Moreover, q and C are vectors related to fix and variable costs, 

respectively. It is also assumed that a, b, e, and f are matrices. Minimization problem 

can be written as follow:    

 

 

 

 

 

 
 

   Assume that there are U scenarios and scenario u can happen with probability pu. 

The expected value of the objective function can be calculated by (14).  

 

 

 

 

 

    

    

   To formulate the closed-loop supply chain network under uncertainty, new sets, 

parameters, and variables should be added to the previous definitions.  

 

Sets 

U = set of scenarios (1 ... u ... U)  

 

Parameters 

dkju = demand of customer k for product j for scenario u 

rkju = return of customer k for product j for scenario u 

pu = probability of scenario u 

 

Variables 

Xikju = quantity of product j produced by plant i for demand market k in scenario u 
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Yklju = quantity of returned product j from demand market k to collection centre l in 

scenario u 

Sliju = quantity of returned product j from collection centre l to plant i in scenario u 

Tlju = quantity of returned product j from collection centre l to disposal centre in 

scenario u 

 

   The multi-objective stochastic model (scenario-based) can be written as: 

 

 

 

 

 

 

 

s.t. 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

7.2. Computational results 

   To consider the effects of uncertainty, scenario analysis is performed. The selected 

scenarios for analysis and discussion are listed in Table 4. Parameters of scenario 5 
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(base-case) are similar to the test problem 2. Each of the scenarios (1-9) represents 

different scenario reflecting variations in demand and return. Actually, different 

combinations of 10% increase and decrease in demand and return have been 

considered. In addition, the scenarios are compared in terms of changes in the value of 

objective function with respect to the base-case (scenario 5), as illustrated in Table 4 

(e.g. (18,531,389-17,412,507)/17,412,507=6.43%). Besides, stochastic model has 

been solved and change in the value of objective function has been written in Table 4. 

Fig. 6 shows the value of objective functions in deterministic and stochastic models.  

   Sensitivity analysis of results shows that the optimum closed-loop supply chain 

network is very sensitive to changes in demand and return. As shown in Table 4, 

planning for a 10% increase in demand (scenario 6) would result to a network that has 

about 6.67% more cost than the base-case, while assuming 10% decrease in demand 

(scenario 7) reduces the cost about 6.49%. Deviations in cost also can be observed for 

return (scenarios 3 and 4). However, it can be seen that the effect of uncertainty in 

demand is higher than return because the demand has more significant contribution 

than return in the objective function. Such deviations in cost reveal that planning 

under uncertain situation (demand and return) is risky, and forecasts of vague 

parameters can be helpful. Results of the stochastic scenario (scenario 10) show that 

the stochastic programming model can obtain flexible optimum closed-loop supply 

chain configuration with the objective function near to the base-case (0.05% change). 

This observation shows that the proposed stochastic programming model takes into 

account the risks related to different sources of uncertainty including demand and 

return.  

Minimum disposal fraction of product j (αj) is an important parameter which is 

related to reverse supply chain. To show the effect of this parameter on the objective 

function, sensitivity analysis is performed. Fig. 7 shows the results for both of 

deterministic (base-case) and stochastic models. It can be seen that by increasing the 

parameters, the values of objective functions are increased.  

 

 

 

 

 

 



Table 4 

Scenario analysis  

Deterministic models          797 non-zero elements, 78 single equations, 189 single variables, and 8 

discrete variables.  

 

Scenario  Demand  Return Probability  Change % 

1 33,000 9,000 0.075 6.43 

2 27,000 11,000 0.075 -3.53 

3 30,000 11,000 0.1 0.23 

4 30,000 9,000 0.1 -0.22 

5 (base-case) 30,000 10,000 0.3 0.00 

6 33,000 10,000 0.1 6.67 

7 27,000 10,000 0.1 -6.49 

8 33,000 11,000 0.075 6.91 

9 27,000 9,000 0.075 -6.75 

10 

   Stochastic model 

 

 

Combination of nine scenarios           

8,723 non-zero elements, 704 single equations, 

1,630 single variables, and 8 discrete variables. 

 

0.05 

 

 

 

 

 

Fig. 6.  Objective values of deterministic scenarios (1-9) and stochastic case (scenario 10) 

 

 



 
Fig. 7.  Sensitivity analysis of αj in deterministic (base-case) and stochastic scenarios 

 

 

8. Conclusions  

 

   In this research, a facility location model is proposed for a closed-loop supply chain 

network. The model is designed for multiple plants, demand markets, collection 

centres, and products. To show the application of the mathematical model, two test 

problems are examined for a copier remanufacturing example. Besides, the model is 

extended to consider environmental objective. Two methods are utilized to solve the 

multi-objective programming model including weighted sums and ε-constraint 

methods. The results of test problem 2 show that ε-constraint method can obtain more 

efficient solutions than weighted sums method. Therefore, ε-constraint method is 

selected for this example. The model also is developed by stochastic programming 

(scenario-based) to examine the effects of uncertain demand and return on the 

network configuration. The computational results demonstrate that the stochastic 

programming model can gain flexible optimal closed-loop supply chain configuration 

with the objective function near to the base-case. This paper is among the first 

investigations that consider multi-objective mathematical models under uncertain 

environment in CLSC network configuration.  

   There are some potential future works. One of the weaknesses of scenario-based 

analysis is the small number of scenarios because of computational reasons. It is 

useful to examine the effects of uncertainty on the model by other methods such as 

robust optimization and compare the results. In this research, two qualitative factors 

(environmental friendly materials and using clean technology) have been considered. 

It is helpful to propose a new method based on some environmental standards such as 



Eco-indicator 99. Another future research is to develop heuristic approaches such as 

Genetic Algorithm and Scatter Search because it is hard to solve large problems in a 

reasonable time. Meanwhile, the proposed model has been designed for a single 

period. The model can be developed to consider multiple periods. In this condition, 

the inventory level should be taken into account. Finally, it is valuable to apply the 

models in real cases and analyse the results.  
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