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Abstract Products may be returned over their life cycle. Industrial experiences show that there are three main
return-recovery pairs. Commercial returns are repaired. End of use returns often are remanufactured. In addition, end
of life returns are recycled. However, up to now no optimization model is proposed for closed-loop configuration
based on three return-recovery pairs. The repaired and remanufactured products can be sold in the same or
secondary market. In this paper, we design and configure a general closed-loop supply chain network based on
product life cycle. The network includes a manufacturer, collection, repair, disassembly, recycling, and disposal
sites. The returned products are collected in a collection site. Commercial returns go to a repair site. End of use and
end of life returns are disassembled. Then, end of life returns are recycled. The manufacturer uses recycled and end
of use parts and new parts to manufacture new products. The new parts are purchased from external suppliers. A
mixed-integer linear programming model is proposed to configure the network. The objective is to maximize profit
by determining quantity of parts and products in the network. We also extend the model for the condition that the
remanufactured products are sent to the secondary market. The mathematical models are validated through

computational testing and sensitivity analysis.

Keywords Reverse logistics (RL); Closed-loop supply chain (CLSC); Mixed-integer linear
programming (MILP); Product life cycle

1 Introduction

Nowadays, the majority of companies try to reuse and remanufacture products because of
economic incentives and a growing environmental concern [7]. There are three main
requirements for sustainable development: resource conservation, environmental protection, and
social development. Reverse logistics is an important concept that emphasizes on decreasing and
reusing disposal [25]. Reverse logistics is defined as the movement of product or material in the
opposite direction for the purpose of creating or recapturing value, or for proper disposal [30].
Implementation of reverse logistics would allow not only for savings in inventory carrying cost,
transportation cost, and waste disposal cost, but also for the improvement of customer loyalty
and futures sales [16, 18].

Recovery options for returned products consist of reuse, resale, repair, refurbishing,
remanufacturing, cannibalization, and recycling [38]. In the remanufacturing process, used
products are disassembled in disassembly sites. Usable parts are cleaned, refurbished, and they
are transmitted into part inventory. Then the new products are manufactured from the old and
new parts [13, 22]. By adding issues such as remanufacturing, recycling and refurbishing to the
supply chain, two problems will be come to exist: firstly, collection and transportation of these
products, containers, and packaging. Secondly, the uncertainty associated with the recovery
process [5, 22, 38].

In reality, three main return-recovery pairs exist. Commercial returns are repaired. End of use
returns often are remanufactured. In addition, end of life returns are recycled [8, 39]. However,



to the best of our knowledge no quantitative model is proposed based on three return-recovery
pairs. It is noticeable that not only the quantity of manufactured products depends on the market
demand, but also it is related to commercial returns because they can be used as new products
after light repairs. Another challenge appears when some external suppliers and recycling sites
exist. In this condition, the manufacturer prefers to minimize the costs. Although the majority of
remanufactured products can compete with newly manufacturing products, markets tend to be
separated for new and remanufactured products [1]. In other words, the new products may be
sold in the same market, and the remanufacturing products may be sent to the secondary market.

In this paper, we propose a general network based on product life cycle and return-recovery
pairs. The closed-loop supply chain network consists of manufacturer, collection, repair,
disassembly, recycling, and disposal sites. Demand can be either satisfied by commercial returns
(after light repair) or new products. The manufacturer uses recycled parts, end of use returns and
new parts to produce new products. New parts are purchased from external suppliers. To our
knowledge, no investigation has examined a general network for return-recovery pairs including
commercial, end of life, and end of use returns. We propose a mixed-integer linear programming
model to maximize the profit and determine the number of products and parts in each part of the
network. The model is designed for multi products, parts, suppliers, and recycling sites. Not only
manufacturing, purchasing, collecting, disposing, disassembly, and repairing costs are taken into
account, but also set up costs of disassembly, and repair sites are considered. Besides, the model
determines the number of recycling sites. We also extend the model for a secondary market. In
this condition, demands of same and secondary markets should be satisfied separately. The
MILP models are solved, and they are validated through computational testing and sensitivity
analysis.

The remainder of the paper is organized as follows. Section 2 presents the literature review. In
Section 3, the problem is defined. Section 4 is devoted to the proposed mathematical model. In
Section 5, we present computational testing to validate the model. In Section 6, a sensitivity
analysis is examined. Section 7 consists of the extended model. Finally, in Section 8 we present
conclusions.

2 Literature review

Reverse logistics has absorbed a lot of attention. Some literature reviews and surveys have been
published in the RL field. The summary of these articles are written in Table 1.



Table 1 Literature reviews in reverse logistics context

Reference  Subject Abstract

[5] Reverse They categorized the field into three main areas: distribution planning,
logistics inventory, and production planning. They reviewed mathematical models.

[20] Sustainable  They described the relationship between supply chain and sustainability.
supply chain

[31] Reverse They provided abstract of the reverse logistics papers that were published
logistics between 1995 and 2005.

[8] Closed-loop  They categorized closed-loop supply chain networks to five phases: 1- The

supply chain  golden age of remanufacturing as a technical problem 2- From
remanufacturing to valuing the reverse logistics process 3- Coordinating the
reverse supply chain 4- Closing the loop 5- Prices and markets.

[22] Supply They examined facility location models in the context of SCM. The literature
chain dedicated to reverse logistics is divided to closed-loop networks and recovery

management  networks.

[28] Reverse They focused on all aspects of RL from collection of used products, their
L processing and finally to the outputs of processing, namely, recycled
logistics - A
materials, spare parts, remanufactured products and waste material disposal.
[9] Reverse The author identified 45 papers dealing with issues of RL networks. A few of
i them are case studies.
logistics

Some researchers have investigated network configuration in reverse logistics. They examined
the application of facility location models in RL. Jayaraman et al. [10] presented a mixed-integer
linear programming (MILP) model that simultaneously determines the location of
remanufacturing/distribution facilities, the transhipment, production, and stocking of the optimal
quantities of remanufactured products and cores (used parts). Fleischmann et al. [6] presented a
generic model for recovery network configuration. The model is designed based on forward
facility location model. They illustrated the model by means of two examples: copier
remanufacturing and paper recycling. Krikke et al. [15] proposed a mathematical model to
support both product design and logistics network, simultaneously. The model is applied for
refrigerators with real data. Kim et al. [13] proposed a network and a mathematical model to
maximize the total cost savings by determining the quantity of parts to be processed at each
remanufacturing facilities, and the number of purchased parts from external supplier. Although
the model is adopted for multiple periods, it is designed for single supplier. Debo et al. [2]
studied the effects of new and remanufacturing products in the same market over the life cycle.
In addition, they examined the production system when demand for new and remanufactured
products is segmented into same and secondary markets. Ko and Evans [14] presented a mixed-



integer nonlinear programming (MINLP) model to configure forward and return networks.
Moreover, they utilized genetic algorithm to solve the problem. Listes [21] considered a
stochastic model for design of networks comprising both supply and return channels in a CLSC.
The model is solved by a decomposition approach. Salema et al. [32] presented a general model
for reverse logistics network where capacity limits, multi-product management and uncertainty
on product demands and returns exist. The model minimizes the cost function. Lieckens and
Vandaele [19] developed a MINLP model on the basis of stochastic lead time and queuing
theory. The model is solved by genetic algorithm. However, it is designed for a single product.
Selim and Ozkarahan [34] proposed a fuzzy goal programming approach for a RL network. The
uncertainty in demand and decision makers’ (DM) aspiration levels for the goals are taken into
account. Du and Evans [3] proposed a bi-objective model including minimization of total costs
and minimization of the overall tardiness of cycle time. In addition, scatter search is used to
solve the model. Srivastava [37] according to the literature and interviews with 84 stakeholders
developed a conceptual model for simultaneous location—-allocation of facilities for a cost
effective and efficient reverse logistics network. Pati et al. [24] formulated a mixed-integer goal
programming model to assist in proper management of the paper recycling logistics system. The
model takes into account multiple objectives of a recycled paper distribution network. Lee and
Dong [17] developed a stochastic programming model that can consider uncertainty. They also
proposed a heuristics solution. Kannan et al. [11] utilized genetic algorithm and particle swarm
to optimise a CLSC. Francas and Minner [7] studied the network design problem of a firm that
manufactures new products and remanufactures returned products in its facilities. They examined
the capacity decisions and expected performance of two alternative manufacturing network
configurations when demand and return flows are uncertain. They distinguished between the
case that products are sold in the same market and the case that they are remanufactured for
secondary market. Mutha and Pokharel [23] proposed a mathematical model for design of a RL
network with deterministic parameters. Lee et al. [16] proposed a model for minimizing
shipment costs of a CLSC and opening costs of disassembly centers and processing centers. In
other words, the model can determine the optimal numbers of disassembly and processing
centers. But, it does not include inventory costs such as holding costs. In addition, the model is
designed for single supplier. Wang and Hsu [40] designed a closed-loop network and utilized a
spanning-tree based genetic algorithm. Pishvaee et al. [26] developed a bi-objective MILP model
to minimize the total costs and maximize the responsiveness of a logistics network. They applied
a memetic algorithm. El-Sayed et al. [4] proposed a multi-period forward and reverse logistics
network. They considered both deterministic and stochastic demands. Kannan et al. [12]
investigated a closed-loop network by mixed-integer programming and a heuristics algorithm.
Qin and Ji [29] utilized fuzzy programming in RL to take into account uncertainty. Pishvaee et
al. [27] applied MILP model and simulated annealing to configure a RL network. Sasikumar et
al. [33] developed a MINLP model to configure a CLSC network. They applied the model for
truck tire manufacturer. Shi et al. [35] proposed a mathematical model to maximize the profit of
a remanufacturing system using Lagrangian relaxation approach. Shi et al. [36] studied the
production planning problem for a multi-product closed-loop system with uncertain demand and
return.

Guide and Van Wassenhove [8] categorized product returns according to product life cycle.
Besides, they linked product return types to specific recovery activities. However, they did not
examine the effects of returns pair on network configuration. Commercial returns are products
that are returned by consumers within a certain period of time (for instance, 60 days after
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buying). These returned products often are repaired. End of use returns happen when a functional
product is replaced by a technological upgrade. The majority of these products are
remanufactured. End of life returns are available when the product becomes technically obsolete
or no longer contains any utility for the current user. The option of recycling is more suitable for
this kind of return. Cell phone industry is a good example of three types of returns [8].
According to this category, we propose a novel mathematical model.

3 Problem definition

Supply chain networks are divided to open and closed loop networks. The degree of complexity
in closed loop networks usually is higher than open ones. There are several types of closed loop
supply chain networks. Unlike the previous investigations that suppose one or two returns, the
proposed network is designed based on product life cycle and three types of returns (as a novel
innovation). In this study, the reverse logistics consists of a manufacturer, collection, repair,
disassembly, recycling, and disposal sites. Fig. 1 shows the proposed network. The purchasing
decision is a challenge for manufacturer because he must take into account the amount of end of
use and end of life returns. Besides, some of the returned parts are not usable and should be
disposed. The number of commercial returns is another challenge for manufacturer. The
commercial returns can supply a portion of market demand. The objective of the proposed model
is to maximize the profit by simultaneously determining quantity of products and parts in each
part of the network. After using the products by customers, some of them are returned. The
returned products are taken to the collection site. Then, they are separated to commercial returns,
end of use returns, and end of life returns. Commercial returns are repaired in the repair site.
These products can be used as new ones. On the other hand, end of use and end of life returns are
disassembles. In this stage, the wastes are separated. End of life returns are recycled in recycling
sites. The parts are added to part inventory as new parts. It is noticeable that capacities of
manufacturer, repair, disassembly, and recycling sites are limited. According to the number of
returned parts, the manufacturer purchases new parts from external suppliers. There are several
suppliers who can supply required parts. The capacities of suppliers are known. Besides, it is
supposed that suppliers reserve certain key resources for the manufacturer. A cell phone industry
is a good example of this general network.
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4 Proposed mathematical model

The closed loop supply chain network can be formulated as a mathematical model. Indices,
decision variables, and parameters of the proposed mathematical model are written in Table 2.
The following assumptions are made in the designing the model:

- If the quantity of end of life and end of use returns is not enough for requirement of
manufacturer, manufacturer should buy parts from suppliers.

- The demands of products are known.

- Maximum capacity of manufacturer, disassembly, repair, and recycling sites are known.

- The capacity of collection site is unlimited.

- The sum of disassembly and recycling costs of parts is less than purchasing cost of new ones.

- The proposed model is a single period one. Therefore, the beginning inventory is zero.



Table 2 Indices, decision variables, and parameters of the proposed mathematical model

Indices Parameters
i Set of parts, i=1,...,1 Sj Unit selling price for the product j
j Set of products, j=1,...,J aj Resource usage to produce one unit of
product j
k Set of suppliers, k=1,...,K Hj Unit inventory holding cost for collecting
product j
| Set of recycling sites, 1=1,...,L Vi Unit direct manufacturing cost of product j
Decision ej Resource usage to repair one unit of product j
variables
Xj Units of product j to be repaired Cj Max capacity of repair site for product j
pj Units of product j to be produced Dj Demand for product j
Y Units of product j in collection site Cj Unit collection cost of product j
Z; Units of returned product j to be dj Unit repair cost of product j
disassembled
Qik Units of part i to be purchased from external fj Set-up cost of disassembly site for product j
supplier k
Ei Units of part i that are obtained in Ji Set-up cost of repair site for product j
disassembly site
Fi Units of part i to be recycled in recycling site B; Max capacity of disassembly site to
| dissemble part i
Gi Units of part i to be disposed hi Unit disassembly cost for part i
Ri Units of end of use return of part i mi Unit disposing cost for part i
Ui Binary variable for set-up of recycling site | ri Resource usage to disassemble one unit of
f . part i
or part i
VJ- Binary variable for set-up of disassembly site Nii Unit recycling cost for part i in recycling site
|
V\/j Binary variable for set-up of repair site Oil Set-up cost of recycling site | for part i
Parameters Sil Resource usage to recycle one unit of part i
in recycling site |
M1 Max percent of end of use returns Oil Max capacity of recycling site | to recycle
part i
M- Max percent of end of life returns Qi Unit requirements for part i to produce one
unit of product j
N Max percent of total returns Pik The cost of purchasing part i from external
supplier k
7 Max percent of commercial returns bik Internal resource usage of supplier k to
produce one unit of part i
A Max capacity of the manufacturer plant Tk Max capacity reserved of external supplier k
t Max number of recycling sites M A big number
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The objective function (1) maximizes the total profit. The first term of the objective function
represents the selling profits of new and repaired products. The second part represents total cost
of purchasing parts from external suppliers. Total cost of disassembly site is calculated by the
third part, consists of unit disassembly cost multiplied by the amount of disassembled parts.
Besides, the forth part represents total recycling costs. The fifth part represents total disposing
costs. The sixth part represents total cost of manufacturer happens from the internal production
cost, consists of unit manufacturing cost multiplied by the amount of finished product produced
by him. Total cost of operation and holding costs of collection site is calculated in the seventh
part. The eights part represents total cost of repair site. In addition, the ninth and tenth and
eleventh parts include set up costs for recycling, disassembly, and repair sites respectively.

Constraints (2) ensure that the number of manufactured parts is equal to the number of recycled
parts and the number of purchased parts from external suppliers, and the number of end of use
parts. Constraints (3) show that the number of disassembly parts is equal to the summation of
end of use and recycled and disposed parts. Constraints (4) ensure the relationship between parts
and products in disassembly site. Besides, the constraints (5) represent that collected products are
sent to repair or disassembly sites. Constraints (6)-(10) represent maximum capacity of
manufacturer, external suppliers, disassembly, and recycling and repair sites. Constraints (11)
show that the demand should be satisfied by manufactured products and repaired returns.
Constraints (12) and (13) reflect the maximum percent of commercial returns. Furthermore,
Constraints (14)-(16) show the limitation of end of use and end of life returns. The maximum
percent of total returned products is considered in constraints (17). In addition, Constraint (18)
represents the limitation of the number of recycling sites. Constraints (19) and (20) are related to



the units of returned products to be disassembled and repaired. Finally, decision variables are
defined in constraints (21) and (22).

5 Computational testing

In this section, a numerical example is presented. Suppose that a computer manufacturer
assembles and sells 5 models of computer. Each product is produced by 5 parts. The
manufacturer is interested to know how much should be manufactured according to demand. In
addition, it is important to know how much should be purchased from each supplier. The
required parameters are written in Appendix. In this paper, GAMS (Generalised Algebraic
Modeling System) is used to obtain optimal solutions. The GAMS is specifically designed for
modeling linear, nonlinear and mixed-integer optimization problems. The system is especially
useful for large and complex problems.

The results are written in Table 3. According to the results of MILP, the manufacturer should
produce 1050 units of product 1. These products are sent to the customers. Then, 700 units are
returned. 350 units of them go to repair site, and they are used to satisfy demand. Another 350
units are disassembled. Part related variables also are illustrated in Table 3. For example, 3600
units of part 1 are divided to 1199 units of end of use parts, 1202 units of wastes, and 1199 units
of end of life parts. The shortage of required parts is purchased from external suppliers. For
instance, the manufacturer buys part 1 from supplier 4 because he has suggested the least
purchasing cost ($6). The units of recycled parts also are written in Table 3. The part 1 is
recycled in recycling site 2 because cost of recycling in this site ($2) is less than the others.



Table 3 The computational results

Product-related variables

i 1 2 3 4 5
Xj 350 375 350 350 375
PJ- 1050 1125 1050 1050 1125
Yj 700 750 700 700 750
Zi 350 375 350 350 375

Part-related variables

i 1 2 3 4 5

Ei 3600 3275 3925 4325 4000
Gi 1202 1095 1311 1445 1336
Ri 1199 1090 1307 1440 1332

Qik (Units of part i to be purchased from external supplier k)

i/k 1 2 3 4 5
1 - - - 3607 -
2 - - - - 3281
3 3932 - - - -
4 - 4333 - - -
5 - 4008 - -

Fi1 (Units of part i to be recycled in recycling site I)

i/l 1 2 3 4 5
1 - 1199 - - -
2 - - 1090 -
3 1307 - - -
4 - 1440 - - -
5 1332 - - - -

6 Sensitivity analysis

In order to validate the proposed model, sensitivity analysis is performed. We observed the
changes of objective function by varying the capacity of disassembly site for part 1, while the
other factors are fixed. Fig. 2 shows the result. This analysis illustrates that the maximum
objective function can be obtained with a certain capacity of disassembly site (in this example,
4000). Therefore, in reality the capacity of disassembly site should be expanded to a specific
level. Therefore, the costs of investment will decrease. On the other hand, the effects of change
in max percent of total returns (N) are illustrated in Fig. 3. It is undeniable that by increasing the
amount of returns, the profit will increase. However, it is noticeable that the value of objective
function for N > 0.67 is fixed. In this situation, the major portion of demand is satisfied by
commercial returns. Besides, the rest of demand can be supplied by the parts that are obtained by
the end of use and end of life returns. As a result, the manufacturer does not purchase new parts
from external suppliers, and there is no any purchasing cost. Fig. 4 shows the effects of max
percent of commercial returns on the objective function. It is obvious that by increasing z, the
value of objective function increases because the commercial returns only need some light
repairs. In other words, the costs of light repairs are less than the costs of disassembly, recycling,



and manufacturing new products. Therefore, the manufacturer prefers to have commercial
returns as much as possible. Similar effects have been observed in Fig. 5 for M1 (max percent of
end of use returns), and M2 (max percent of end of life returns).
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7 Extended model

In this section, it is supposed that remanufactured products are sent to the secondary market. This
process may happen because of the lower quality of remanufactured products. The secondary
market may be another country. The manufacturer has to satisfy the demand of same and
secondary markets. The shortage of products in the secondary market should be supplied by new
products. The manufacturer is interested to know how much should be produced to satisfy the
demands of same and secondary markets. The new variables and parameters are written in Table
4. Other parameters are as same as Table 2.

The objective function and some constraints are similar to the proposed model. Constraints
(23) ensure that the number of manufactured parts for the secondary market is equal to the
number of recycled parts and the number of purchased parts from external suppliers (for the
secondary market), and the number of end of use parts. Constraints (24) represent that the
number of manufactured parts for the same market is equal to the number of purchased parts
from external suppliers for the same market. Furthermore, Constraints (25) and (26) are related
to the demand. Constraints (27) show the maximum percent of total returned products.
Constraints (28) ensure that the summation of parts of same and secondary markets is equal to
the total parts. In the same order, Constraints (29) are designed for products. Constraints (30) and
(31) are related to decision variables. The extended model is solved by GAMS. The results of
sensitivity analyses are illustrated in Figures 6-9. Sensitivity analysis for the max capacity of



disassembly site to dissemble part 1 (Fig. 6) shows that there is a certain maximum capacity of
disassembly site. These results are useful for managers because they can prevent additional costs
in remanufacturing network configuration.

Table 4 Additional variables and parameters for the secondary market

Variables Parameters
PAJ' Units of product j to be produced for the DAj Demand for product j in the same market
same market
|:>Ej Units of product j to be produced for the DEJ- Demand for product j in the secondary
secondary market market
QAix Units of part i to be purchased from external

supplier k for the same market
QEik Units of part i to be purchased from external

supplier k for the secondary market

(1)
Subject to
3). (4). (5), (6), (7). (8), (9), (10), (12), (13), (14), (15), (16), (18), (19), (20)

J L K
> q,PE; = > F, +Y.QE, +R, Vi (23)
j=1 1=1 k=1

J K A

Zqij PAj :ZQAik Vi (24)
j=1 k=1

PA, = DA, V] (25)
PE, + X, = DE, Vj (26)
Y, <N PA, vj (27)

QA +QE; =Qy Vi, k (28)



PA, +PE, =P, vj (29)
U,.v, W, {01} Vi, j,1 (30)

P,Z,,Qu.E F .G ,R Y, X, QA QE,,PA PE >0 Vi, jkl (31)
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Insert Fig. 7
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Insert Fig. 8
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8 Conclusions

We proposed a closed-loop supply chain that consists of manufacturer, collection, repair,
disassembly, recycling, and disposal sites. The major contribution of this research lies in
designing and solving a general network based on return-recovery pairs and product life cycle.
We proposed a novel mathematical model to optimize the closed-loop network. The mixed-
integer linear programming model determines the units of products to be produced,
disassembled, and repaired. In addition, it determines units of parts to be purchased from
external suppliers, units of parts to be disassembled, recycled, and disposed while maximizing
the profit. The model is solved by GAMS. We also developed the model for situation that
remanufactured products are sent to a secondary market. A numerical example is performed to
analyze the results. Furthermore, sensitivity analysis is utilized to validate the models. The
results of our paper indicate that the manufacturer should take into account key factors such as
production capacity, demand, supplier’s capacity, end of life, end of use, and commercial



returns. One of the insights from our study is that the maximum objective function can be
obtained with a certain capacity of disassembly site. Therefore, managers can decrease the costs
of investment. We also observed that the value of objective function for primary market is more
than the extended model which is formed of primary and secondary markets because the
manufacturer needs to purchase fewer parts from external suppliers. This result is obtained when
total demands are equal.

Many research directions still require intensive research. Uncertainty is one of the important
problems in supply chain management. It is worthwhile to take into account uncertainty of
parameters such as demand, and return. Besides, the proposed model is designed for a single
period. The model can be extended to consider multiple periods. In this condition, the inventory
level of t is different from t-1. In addition, beginning inventory should be taken into account. In
the proposed model, recycling and end of use returns and new parts were used to manufacture
new products. The price of reused products is a function of other factors such as demand,
manufacturing process, and environmentally concerns particularly for products that have short
life cycle. Determining the price of remanufactured parts based on the market demand can be a
subject of future research. Moreover, it is hard to solve the model, when the numbers of variables
and constraints increase. In this situation, heuristics algorithms such as Genetic Algorithm and
Scatter Search can be useful.

Acknowledgments

The work of authors is supported by NSERC Discovery grant (298482). The authors would like
to thank the referees for their helpful comments and suggestions.

References

1. Atasu A, Sarvary M, Van Wassenhove LN (2008) Remanufacturing as a marketing strategy. Manage Sci
54(10):1731-1746

2. Debo L, Toktay B, Van Wassenhove LN (2006) Joint life-cycle dynamics of new and remanufactured products.
Prod Oper Manag 15(4):498-513

3. Du F, Evans GW (2008) A bi-objective reverse logistics network analysis for post-sale service. Comput Oper Res
35(8):2617-2634

4. El-Sayed M, Afia N, EI-Kharbotly A (2010) A stochastic model for forward-reverse logistics network design
under risk. Comput Ind Eng 58(3):423-431

5. Fleischmann M, Bloemhof-Ruwarrd JM, Dekker R, Van Der Laan E, Van Nunen JAEE, Van Wassenhove LN
(1997) Quantitative models for reverse logistics: a review. Eur J Operat Res 103(1):1-17

6. Fleischmann M, Beullens P, Bloemhof-ruwaard JM, Wassenhohve V (2001) The impact of product recovery on
logistics network design. Prod Oper Manag 10(2):156-173


http://www.scopus.com/search/submit/author.url?author=El-Sayed%2c+M.&origin=resultslist&authorId=35747863100&src=s
http://www.scopus.com/search/submit/author.url?author=Afia%2c+N.&origin=resultslist&authorId=25654525500&src=s
http://www.scopus.com/search/submit/author.url?author=El-Kharbotly%2c+A.&origin=resultslist&authorId=6602701529&src=s

7. Francas D, Minner S (2009) Manufacturing network configuration in supply chains with product recovery.
Omega 37(4):757-769

8. Guide Jr VDR, Van Wassenhove LN (2009) The Evolution of Closed-Loop Supply Chain Research. Oper Res
57(1):10-18

9. Jamsa P (2009) Opportunities for research in Reverse Logistics networks: a literature review. Int J Manag Enterp
Dev 6(4):433-454

10. Jayaraman V, Guide VDR Jr, Srivastava R (1999) A closed-loop logistics model for remanufacturing. J Oper
Res Soc 50(5):497-508

11. Kannan G, Noorul Hag A, Devika M (2009) Analysis of closed loop supply chain using genetic algorithm and
particle swarm optimisation. Int J Prod Res 47(5):1175-1200

12. Kannan G, Sasikumar P, Devika K (2010) A genetic algorithm approach for solving a closed loop supply chain
model: A case of battery recycling. Appl Math Model 34:(3)655-670

13. Kim K, Song I, Kim J, Jeong B (2006) Supply planning model for remanufacturing system in reverse logistics
environment. Comput Ind Eng 51(2):279-287

14. Ko HJ, Evans GW (2007) A genetic algorithm-based heuristic for the dynamic integrated forward/reverse
logistics network for 3PLs. Comput Oper Res 34(2):346-366

15. Krikke H, Bloemhof-Ruwaard J, Van Wassenhove LN (2003) Concurrent product and closed-loop supply chain
design with an application to refrigerators. Int J Prod Res 41(16):3689-3719

16. Lee JE, Gen M, Rhee KG (2009) Network model and optimization of reverse logistics by hybrid genetic
algorithm. Comput Ind Eng 56(3):951-964

17. Lee DH, Dong M (2009) Dynamic network design for reverse logistics operations under uncertainty. Transp Res
Part E Logist Transp Rev 45(1):61-71

18. Li X, Olorunniwo F (2008) An exploration of reverse logistics practices in three companies. Supply Chain
Manag Int J 13(5):381-386

19. Lieckens K, Vandaele N (2007) Reverse logistics network design with stochastic lead times. Comput Oper Res
34(2):395-416

20. Linton JD, Klassen R, Jayaraman V (2007) Sustainable supply chains: An introduction. J Oper Manag
25(6):1075-1082

21. Listes O (2007) A generic stochastic model for supply-and-return network design. Comput Oper Res 34(2):417-
442

22. Melo MT, Nickel S, Saldanha-da-Gama F (2009) Facility location and supply chain management - A review.
Eur J Operat Res 196(2):401-412

23. Mutha A, Pokharel S (2009) Strategic network design for reverse logistics and remanufacturing using new and
old product modules. Comput Ind Eng 56(1):334-346

24. Pati RK, Vrat P, Kumar P (2008) A goal programming model for paper recycling system. Omega 36(3):405-417
25. Petek J, Glavic P (1996) An integral approach to waste minimization in process industries. Resour Conserv
Recycl 17(3):169-188


http://www.inderscience.com/browse/index.php?journalID=89&year=2009&vol=6&issue=4
http://www.scopus.com/search/submit/author.url?author=Kannan%2c+G.&origin=resultslist&authorId=35610891600&src=s
http://www.scopus.com/search/submit/author.url?author=Noorul+Haq%2c+A.&origin=resultslist&authorId=6506177725&src=s
http://www.scopus.com/search/submit/author.url?author=Devika%2c+M.&origin=resultslist&authorId=8620488900&src=s
http://www.scopus.com/search/submit/author.url?author=Kannan%2c+G.&origin=resultslist&authorId=35609254800&src=s
http://www.scopus.com/search/submit/author.url?author=Sasikumar%2c+P.&origin=resultslist&authorId=23569983400&src=s
http://www.scopus.com/search/submit/author.url?author=Devika%2c+K.&origin=resultslist&authorId=35168864900&src=s
http://www.scopus.com/source/sourceInfo.url?sourceId=28065&origin=resultslist
http://www.scopus.com/search/submit/author.url?author=Krikke%2c+H.&origin=resultslist&authorId=6603015007&src=s
http://www.scopus.com/search/submit/author.url?author=Bloemhof-Ruwaard%2c+J.&origin=resultslist&authorId=6602637314&src=s
http://www.scopus.com/search/submit/author.url?author=Van+Wassenhove%2c+L.N.&origin=resultslist&authorId=7004884518&src=s
http://www.scopus.com/search/submit/author.url?author=Lee%2c+D.-H.&origin=resultslist&authorId=25626679000&src=s
http://www.scopus.com/search/submit/author.url?author=Dong%2c+M.&origin=resultslist&authorId=8365421500&src=s
http://www.scopus.com/source/sourceInfo.url?sourceId=20909&origin=resultslist
http://www.scopus.com/source/sourceInfo.url?sourceId=20909&origin=resultslist
http://www.sciencedirect.com/science?_ob=ArticleURL&_udi=B6VCT-4SHMCGF-4&_user=1010624&_coverDate=07%2F16%2F2009&_alid=866232158&_rdoc=1&_fmt=high&_orig=search&_cdi=5963&_docanchor=&view=c&_ct=1&_acct=C000050266&_version=1&_urlVersion=0&_userid=1010624&md5=bc12bc8b185435546e31cd23912ca2ef
http://www.scopus.com/search/submit/author.url?author=Mutha%2c+A.&origin=resultslist&authorId=24481678000&src=s
http://www.scopus.com/search/submit/author.url?author=Pokharel%2c+S.&origin=resultslist&authorId=6701391379&src=s

26. Pishvaee MS, Farahani RZ, Dullaert W (2010) A memetic algorithm for bi-objective integrated forward/reverse
logistics network design. Comput Oper Res 37(6):1100-1112

27. Pishvaee MS, Kianfar K, Karimi B (2010) Reverse logistics network design using simulated annealing. Int J Adv
Manuf Technol 47(1-4):269-281

28. Pokharel S, Mutha A (2009) Perspectives in reverse logistics: A review. Resour Conserv Recycl 53(4):175-182
29. Qin Z, Ji X (2010) Logistics network design for product recovery in fuzzy environment. Eur J Operat Res
202(2):479-490

30. Rogers DS, Tibben-Lembke R (2001) An examination of reverse logistics practices. J Bus Logist 22(2):129-148
31. Rubio S, Chamorro A, Miranda FJ (2008) Characteristics of the research on reverse logistics (1995-2005). Int J
Prod Res 46(4):1099-1120

32. Salema MIG, Barbosa-Povoa AP, Novais AQ (2007) An optimization model for the design for a capacitated
multi-product reverse logistics network with uncertainty. Eur J Operat Res 179(3):1063-1077

33. Sasikumar P, Kannan G, Hag AN (2010) A multi-echelon reverse logistics network design for product recovery-
a case of truck tire remanufacturing. Int J Adv Manuf Technol 49(9-12):1223-1234

34. Selim H, Ozkarahan | (2008) A supply chain distribution network design model: An interactive fuzzy goal
programming-based solution approach. Int J Adv Manuf Technol 36(3-4):401-418

35. Shi J, Zhang G, Sha J, Amin S H (2010) Coordinating production and recycling decisions with stochastic
demand and return. J Syst Sci Syst Eng 19(4):385-407

36. Shi J, Zhang G, Sha J (2011) Optimal production planning for a multi-product closed loop system with uncertain
demand and return. Comput Oper Res 38(3):641-650

37. Srivastava SK (2008) Network design for reverse logistics. Omega 36(4):535-548

38. Thierry M, Salomon M, Van Nunen J, Van Wassenhove L (1995) Strategic issues in product recovery
management. Calif Manage Rev 37(2):114-135

39. Tibben-Lembke RS (2004) Strategic use of the secondary market for retail consumer goods. Calif Manage Rev
46(2):90-104

40. Wang HF, Hsu HW (2010) A closed-loop logistic model with a spanning-tree based genetic algorithm. Comput
Oper Res 37(2):376-389


http://www.scopus.com/search/submit/author.url?author=Pishvaee%2c+M.S.&origin=resultslist&authorId=27267794900&src=s
http://www.scopus.com/search/submit/author.url?author=Farahani%2c+R.Z.&origin=resultslist&authorId=15019088000&src=s
http://www.scopus.com/search/submit/author.url?author=Dullaert%2c+W.&origin=resultslist&authorId=35239797700&src=s
http://www.scopus.com/search/submit/author.url?author=Pishvaee%2c+M.S.&origin=resultslist&authorId=27267794900&src=s
http://www.scopus.com/search/submit/author.url?author=Kianfar%2c+K.&origin=resultslist&authorId=26428263000&src=s
http://www.scopus.com/search/submit/author.url?author=Karimi%2c+B.&origin=resultslist&authorId=35519669600&src=s
http://www.scopus.com/search/submit/author.url?author=Qin%2c+Z.&origin=resultslist&authorId=24832121700&src=s
http://www.scopus.com/search/submit/author.url?author=Ji%2c+X.&origin=resultslist&authorId=11839165200&src=s
http://www.scopus.com/search/submit/author.url?author=Rubio%2c+S.&origin=resultslist&authorId=23006187100&src=s
http://www.scopus.com/search/submit/author.url?author=Chamorro%2c+A.&origin=resultslist&authorId=23003342500&src=s
http://www.scopus.com/search/submit/author.url?author=Miranda%2c+F.J.&origin=resultslist&authorId=23005414300&src=s
http://www.scopus.com/search/submit/author.url?author=Sasikumar%2c+P.&origin=resultslist&authorId=23569983400&src=s
http://www.scopus.com/search/submit/author.url?author=Kannan%2c+G.&origin=resultslist&authorId=35609254800&src=s
http://www.scopus.com/search/submit/author.url?author=Haq%2c+A.N.&origin=resultslist&authorId=8334109400&src=s
http://www.scopus.com/search/submit/author.url?author=Selim%2c+H.&origin=resultslist&authorId=14421721200&src=s
http://www.scopus.com/search/submit/author.url?author=Ozkarahan%2c+I.&origin=resultslist&authorId=6601996431&src=s
http://www.scopus.com/search/submit/author.url?author=Wang%2c+H.-F.&origin=resultslist&authorId=7501734642&src=s
http://www.scopus.com/search/submit/author.url?author=Hsu%2c+H.-W.&origin=resultslist&authorId=25630586700&src=s

Appendix

Table 5 Product-related parameters

j 1 2 3 4 5

S; 150 200 220 230 250
aj 1 2 2 2 3

H 25 25 35 25 35
i 30 35 30 30 35
6 1 2 1 1 1

Ci 9000 10000 8500 10000 9500
D 1400 1500 1400 1400 1500
G 4 55 25 35 35
dj 1 2 1 2 1

f 5 5 4 5 4

o] 5 5 4 5 4

Table 6 Part-related parameters

i 1 2 3 4 5
B 9000 10000 8500 10000 9500
hi 4 55 25 35 35
m 3 4 4 4 3

r 1 1 1 1 1

Table 7 gi; (The usage of part i per unit of product j)

[EY
N

i/j

O wWN
PN WERE N
Wk NWR
NN RN Wlw
NW SR RPN
w AP N wlo




Table 8 Recycling site-related parameters

Nil (Unit recycling cost for part i in recycling site 1)

i/l 1 2 3 4 5
1 3 2 3 3 4
2 4 4 3 2 4
3 4 3 4 3 4
4 4 3 3 4 3
5 3 3 4 4 4
Oil (Set-up cost of recycling site | for part i)
i/l 1 2 3 4 5
1 4 5 4 4 4
2 4 4 4 4 5
3 5 5 4 5 5
4 4 5 5 5 5
5 4 4 4 5 4
Sil (Resource usage to recycle one unit of part i in recycling site |)
i/l 1 2 3 4 5
1 1 1 1 1 1
2 1 1 1 1 1
3 1 1 1 1 1
4 1 1 1 1 1
5 1 1 1 1 1
Oil (Max capacity of recycling site | to recycle part i)
i/l 1 2 3 4 5
1 9000 10000 8500 10000 9500
2 10000 9000 8500 10000 9500
3 9000 10000 8000 9500 10000
4 8500 9000 10000 9500 8500
5 9000 9500 10000 9000 8500
Table 9 Supplier-related parameters
Pik (The cost of purchasing part i from external supplier k)
i/k 1 2 3 4 5
1 8 8 12 6 15
2 10 15 8 10 5
3 5 7 14 9 8
4 9 5 10 13 8
5 12 9 5 7 6
bik (Internal resource usage of supplier k to produce one unit of part i)
i/k 1 2 3 4 5
1 15 2 3 1 3
2 2 1 1 3 1
3 2 15 1 3 25
4 15 3 2.5 2 3
5 3 2 3 2 15
Tk (The capacity of supplier k)
k 1 2 3 4 5
Tk 100000 75000 90000 60000 125000




Table 10 A (Max capacity of manufacturer plant), M; (Max percent of end of use returns), M, (Max percent of end

of life returns), N (Max percent of total returns), z (Max percent of commercial returns), t (Max number of recycling

sites)
A 200000 N 0.5
M 0.333 z 0.5
Ma 0.333 t 6
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