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Coordinating production and recycling decisions with 

stochastic demand and return 
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aSchool of Information System and Management, National University of Defense Technology, Changsha, Hunan, 

China 
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Canada 
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Abstract: In this paper, the joint production and recycling problem is investigated for a hybrid manufacturing 

and remanufacturing system where brand-new products are produced in the manufacturing plant and recycled 

products are remanufactured into as-new products in the remanufacturing facility. Both the brand-new products 

and remanufactured products are used to satisfy customer demands. Returns of used products that are recycled 

from customers are assumed to be stochastic and nonlinearly price-dependent. A mathematical model is 

proposed to maximize the overall profit of the system through simultaneously optimizing the production and 

recycling decisions, subject to two capacity constraints − the manufacturing capacity and the remanufacturing 

capacity. Based on Lagrangian relaxation method, subgradient algorithm and heuristic algorithm, a solution 

approach is developed to solve the problem. A representative example is presented to illustrate the system, and 

managerial analysis indicates that the uncertainties in demand and return have much influence on the production 

and recycling policy. In addition, twenty randomly produced examples are solved, and computational results 

show that the solution approach can obtain very good solutions for all examples in reasonable time. 

Keywords: closed loop supply chain; uncertain demand; uncertain return; reverse logistics; Lagrangian 

relaxation 

1. Introduction 

Due to increased concerns on environment, awareness of natural resource limitation and government legislations, 

closed loop supply chain (CLSC) has received considerable attention throughout last decades. In US and EU, 

many recent producer responsibility laws require manufacturers to take the responsibility of their products after 

use, and encourage them to collect and reuse their products (Guide et al., 2001; Mitra, 2007). In U.S. more than 

73,000 firms participate in remanufacturing and act some role in CLSC, while about $53 billion remanufactured 

products are sold annually and over 350,000 work opportunities are created (Lund, 1998; Nasr et al., 1998). 

Another important driver for CLSC is its economic potential. Environmental friendly products have more 

attractiveness to customers, and their market increases quickly, which has been over $200 billions (Carter and 

Ellram 1998). Meanwhile, manufacturers can reduce their production cost through reusing the components and 

materials in used products. Compared with normal production, manufacturers can save about 40-60 percent of 

the cost while paying for only 20 percent of the manufacturing effort (Dowlatshahi 2000). As a result, CLSC has 

become one of the most sustainable strategies for the 21th century. 

In this paper, a hybrid manufacturing and remanufacturing system is investigated, where the manufacturer 

has two alternatives to satisfy customer demands: either manufacturing brand-new products or remanufacturing 

returns into as-new products. In the remanufacturing process, the manufacturer recycles used products from 

customers and remanufactures them into as-new products. Usually, remanufactured products are not enough to 

satisfy all the demands, thus brand-new products are produced in the manufacturing plant. In order to obtain the 
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overall profit of the hybrid system, the manufacturer has to jointly optimize two kinds of decisions: determining 

the production quantities for brand-new products and remanufactured products to satisfy the demand, and 

determining the recycling price to buy back enough used products for remanufacturing. 

To address the joint production and recycling problem, a mathematical model is developed for the hybrid 

system to maximize the manufacturer’s total expected profit, subject to the manufacturing and remanufacturing 

capacities. The main contributions of this paper are as follows. First, the return quantity of used products is 

assumed to be nonlinearly price-dependent, and a new model is presented to characterize the relationship 

between the recycling price and the return quantity. Second, two capacities are considered in the problem, which 

are the capacity for the manufacturing plant and the capacity for the remanufacturing facility. Third, through 

combining subgradient algorithm and heuristic algorithm, a Lagrangian based solution approach is developed to 

solve the problem. Additionally, the uncertainties of demand and return are considered, and their influence on 

the hybrid system is analyzed. 

The organization of the paper is as follows. Related literature review is presented in Section 2. Section 3 

provides a detailed description for the system and develops the mathematical model. Section 4 presents a 

solution approach based Lagrangian relaxation, followed by computational results and managerial analysis in 

Section 5. Finally, conclusions are presented in Section 6. 

2. Literature review 

Many aspects of CLSC have been investigated, such as return flow management, distribution planning, 

production management, inventory control and remanufactured product pricing (Fleischmann et al., 1997; 

Pokharel and Mutha, 2009). During 1995-2005, more than 180 articles are published on main international 

journals in production and operations research area (Rubio et al., 2008). Over the past decades, closed loop 

supply chain has grown up from solving isolated OR subproblems and become a critical research area in 

operations research and management (Guide and Van Wassenhove, 2009). 

Production planning is a challenging topic in CLSC, especially when both manufacturing and 

remanufacturing processes are involved. Compared to the traditional system, the production planning and 

control of the hybrid manufacturing and remanufacturing system is more complex. The correlation between 

demand and return uncertainties is the source of these complexities and has much influence on the PUSH and 

PULL controlled production/inventory policies in the hybrid system (Van Der Laan et al., 1999). Balancing 

return with demand has been considered to be one of the most important challenges to the production planning 

and control for remanufacturing (Guide, 2000). 

Various models have been presented to optimize the production planning problem for different closed loop 

supply chains. Inderfurth et al. (2001) develop a period review model to solve the production planning problem 

for an uncertain remanufacturing system where there are multiple reuse options for the used products. Through 

extending a traditional Poisson-demand inventory model, Fleischmann et al. (2002) present a new inventory 

model for a hybrid system where used products are taken back and enter the production process again. 

Ferrer and Swaminathan (2006) investigate a reverse system where the firm produces new goods with 

monopoly in the first period and offers new products as well as remanufactured products in subsequent periods. 

The monopoly and duopoly situations are both analyzed. The results show that, when competition increases, the 

original equipment manufacturer (OEM) prefers to completely remanufacture all available used product returns 

and resell them at a lower price. 

Dobos and Richter (2004) study a production/recycling system where the production-inventory policy is 

predetermined and the demand is assumed to be constant. Zhou et al. (2006) investigate a hybrid system with 

manufacturing and remanufacturing, in which the inventory control strategy is an automatic pipeline, inventory 
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and order based production control system. Choi et al. (2007) develop a joint EOQ and EPQ model for an 

inventory system where the stationary demand can be satisfied by newly purchased products and 

remanufactured products. Rubio and Corominas (2008) present a production management model and investigate 

under what conditions a reverse logistics system can be implemented in a lean production environment. They 

analyze the transfer of capacity between manufacturing and remanufacturing and present the optimal production 

policies. 

The used product returns are usually uncertain and have a direct influence on the production/inventory 

management. Guide and Van Wassenhove (2001) analyze the potential economic attractiveness of 

remanufacturing and show that used product acquisition management may serve as a foundation tool to control 

the operational planning and management activities in closed loop supply chain. They encourage firms to 

positively acquire used products according to their quality. Guide et al. (2003) further investigate a closed loop 

supply chain where the quantity, quality and timing of returns can be controlled by the price offered to buy back 

the used products. Fleischmann and Kuik (2003) examine the impact of product return flow on inventory 

management. 

Inderfurth (2005) investigate the influence of uncertainties on recovery behavior in a closed loop system. 

By a numerical analysis, it is shown that the product recovery management becomes much difficult because the 

manufacturer usually has to balance the production, recovery and disposal decisions under considerable 

uncertainties of demand and return. Dobos and Richter (2006) consider the quality of the used product in an 

integrated production-recycling system, and show that it is better for the manufacturer to buy back only the 

reusable products. In a closed loop supply chain studied by Jayaraman (2006), the used products are acquired by 

a certain price according to their quality. 

Qu and Williams (2008) investigate an automotive reverse system where the automotive shredder usually 

balances the quality and quantity of the incoming hulks by adjusting their acquisition prices. A nonlinear 

programming formulation is presented for the automotive reverse production planning and pricing problem, in 

which the quantity of the incoming hulks is a function of the hulk purchase price. Liang et al. (2009) present a 

model to evaluate the acquisition price of the used products. In the model the acquisition price is determined 

based on the manufacturing cost and the anticipated future sale prices of the remanufactured products. 

So far, the uncertainties of the return flow have also been widely investigated, and used product pricing has 

been widely realized as a tool to decrease these uncertainties. But there still needs a further investigate on how 

to integrate this tool with production/inventory control policy of the closed loop supply chain. When the 

production and recycle activities are optimized coordinately, more value and profit of the hybrid manufacturing 

and remanufacturing system can be obtained. 

3. Model formulation 

3.1 The framework and assumptions 

In the hybrid manufacturing and remanufacturing system, the manufacturer can produce multiple products 

through two channels: either producing brand-new products in the manufacturing plant or remanufacturing the 

recycled products and bringing them into ‘as-new’ conditions in the remanufacturing facility. The framework of 

the system is presented in Figure 1. In the remanufacturing process, the manufacturer first buys back the used 

products and stock them in a recoverable inventory where the used products are sent to the remanufacturing 

facility according to the remanufacturing order. When the used products are recycled, they are carefully 

inspected and only are the products that can be remanufactured bought back. Then in the remanufacturing 

facility, the recycled products are disassembled into parts which should enter a quality test. The parts satisfying 
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the quality requirements are reused, while the parts with lower quality are repaired, upgraded or replaced. 

Finally, these parts are remanufactured into ‘as-new’ products. Most of the time, the units of remanufactured 

products are not enough to satisfy all the demands. Thus, brand-new products need to be produced at the 

manufacturing facility. There is no difference between brand-new products and remanufactured ones, and both 

of them are stocked in the serviceable inventory to satisfy the demands. 

Manufacturing

Facility

Serviceable

Inventory

Remanufacturing

Facility

Recoverable

Inventory

Bran-new Products

As-new Products

Customers

Used Products

 

Figure 1 Framework for the hybrid manufacturing and remanufacturing system 

The manufacturer’s objective is to maximize the total expected profit for the whole system. To achieve the 

goal, the manufacturer should optimize the production and recycle decisions together. In the production decision, 

the manufacturing and remanufacturing quantities are determined. Therefore, the stocking level is determined 

for the serviceable inventory. In the recycling decision, the manufacturer should determine how much to pay for 

the used products to recycle enough used products for remanufacturing but not recycle too many products 

because of overstocking cost. The problem can be optimized by the mathematical model. 

Before presenting the model, some assumptions are introduced. 

 There is no distinction between a brand-new product and a remanufactured product, and they are sold 

together in the same market at the same price. 

 Only the used products satisfying certain quality parameters are bought back and all of them can be 

remanufactured into as-new products. 

 The demands for all products are uncertain and independent of each other. 

 The return is price-sensitive and stochastic. The relationship between return and price is known, 

which is     iiiiii uRuR  Pr,Pr
~

, where iPr  is the recycling price of used product i; 

  iib

ii eaR
Pr

Pr   is the expected return quantity of used product i ( 0ia  and 0ib ) and iu  

is a random return defined on the range  ii BA ,  with mean 
r

i  and standard deviation
r

i . 

 Only single period is considered, thus the return and the demand are assumed to be independent 

identically distributed. 

In economics literatures, both additive and multiplicative (exponential) decreasing functions are 

widely used to represent the relationship between demand and the selling price (Petruzzi and Data 1999). It is 

natural to use similar increasing functions to capture the dependency between return quantity and recycling price, 

including the additive form, like 



R Pr  a bPr , and the multiplicative forms, such as 



R Pr  aeb Pr , 



R Pr  aPr b  and 



R Pr  alogb Pr . The additive case has been studied in Bakal and Akcali (2006). In 

this paper, we investigate one of the multiplicative functions, 



R Pr  aeb Pr . Analogous results for this paper 

also apply for the other two multiplicative price-sensitive return functions.  
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3.2 Model formulation 

The following notations are used in the formulation of the joint production and recycling problem for the 

hybrid manufacturing and remanufacturing system: 

Indices: 

i = 1,..., I: index of products 

Parameters: 

ip = the selling price of product i 

is = per unit overstocking cost of product i 

ig = per unit understocking cost of product i 

icp = the unit production cost of brand-new product i 

icr = the unit remanufacturing cost of used product i, which is much less than icp  

ihr = the unit inventory cost of used product i 

ims = the capacity consumed by producing one unit of product i 

irs = the capacity consumed by remanufacturing one unit of used product i 

MC = the total manufacturing capacity 

RC = the total remanufacturing capacity 

 d

if ,  d

iF = pdf and cdf of the distribution of the demand Di for product i 

d

i = the mean of demand for product i 

d

i = the standard deviation of demand for product i 

 r

if ,  r

iF = pdf and cdf of the distribution of the random return iu  for product i 

r

i = the mean of the random return iu  

r

i = the standard deviation of the random return iu . 

Variables: 

Qi= the stocking quantity of product i 

iXp = the newly manufacturing quantity of product i 

iPr = the unit recycling price of the used product i 

iXr = the remanufacturing quantity of product i 

 iii RXrz Pr , where   iib

ii eaR
Pr

Pr  , then 
i

b

ii zeaXr ii 
Pr . 

The production cost, 
icp , is a sum of the costs related with manufacturing one unit of brand-new product i, 

which includes all the material and components cost, manufacturing and other related costs. The 

remanufacturing cost, icr , does not include the cost used to buy back the used products or the parts reused 

from the used products, but includes the cost for dismantling, inspection, quality assurance, remanufacturing, 

components used to replace the worn out ones and other remanufacturing related costs. 

The model for the production and recycling problem can be formulated as follows: 

Max 



R  piDi  si Qi Di  f i
d Di dDi0

Qi

  piQi  gi Di Qi  f i
d Di dDiQi



 
i1

I



 cpiXpi
i1

I

  cri  Pri Xri
i1

I

  hri  Pri  ui  zi  f i
r ui duizi

B i


i1

I



       (1) 
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subject to 

MCXpms
I

i

ii 
1

,                    (2) 



rsiXri
i1

I

  RC ,                      (3) 

iii QXrXp  ,  i ,                         (4) 

izeaXr i

b

ii
ii  ,

Pr
,                    (5) 

r

iiii nzA  ,  i ,                     (6) 

0iXp , 0Pr i , 0iXr , 0iQ , i .              (7) 

In the objective function, the first term is the total expected revenue minus the overstocking cost and the 

understocking cost. The second term is the production cost of brand-new products. The third and fourth terms 

are the remanufacturing related costs which include the remanufacturing cost, the recycling and overstocking 

costs of the used products. 

Similar to Inderfurth and Van Der Laan (2001) and Inderfurth et al. (2001), the understocking costs of used 

products are not considered in the objective function. But the understocking risk is considered by constraint (6). 

In constraints (6), the value of iz  is restricted and in  is a parameter that can be adjusted according to the 

requirement of the manufacturer. in  can be set to negative or positive, and the understocking risk of used 

product i can controlled in an acceptable level by adjusting the value of in . Since the understocking cost of the 

return is not included in the objective function, it is just an approximation of the total expected profit. The same 

approximating and handling strategy for the understocking risk of the return has been adopted in Rouf and 

Zhang (2009). 

Constraint (2) is the crucial capacity restriction for manufacturing. Constraint (3) is the crucial capacity 

restriction for remanufacturing. Constraint (4) ensures that the stocking quantity is a sum of the manufacturing 

quantity and the remanufacturing quantity. Constraints (5) restrict the relationship between the remanufacturing 

quantity and the recycle price of used products. Constraints (6) restrict the value range of 
iz . Constraints (7) are 

nonnegative constraints for the variables. 

In formula (1)-(7), it can be seen that there is no constraint to restrict the upper bound of the recycling price. 

The recycling price can not increase infinitely because the objective function is to maximize the expected profit. 

There is an upper bound for the recycling price in the optimal solution, which is explained in detail in Section 

4.1.1. 

4. Solution approach 

The proposed model is a nonlinear programming model, which can be solved by many methods, such as 

Lagrangian method, feasible direction methods, and interior point methods. . We develop a Lagrangian method 

to solve the problem based on the following reasons: first, the model has a separable structure that it can be 

decomposed into independent subproblems when constraints (2) and (3) are relaxed; second, the numbers of 

variables and constraints increase fast when the number of products increases, which means that the problem is 

difficult to solve when the number of products becomes very large. Lagrangian method based on the 

decomposition strategy has advantages to solve large scale problems.  

There are three basic phases for the Lagrangian based solution approach: first, the Lagrangian dual problem 

is obtained by relaxing capacity constraints (2) and (3); then, the Lagrangian dual problem is solved by 

http://www.scopus.com/search/submit/author.url?author=Inderfurth%2c+K.&origin=resultslist&authorId=6602162766&src=s
http://www.scopus.com/search/submit/author.url?author=Van+Der+Laan%2c+E.&origin=resultslist&authorId=6701566007&src=s
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subgradient algorithm. The dual solution obtained by subgradient algorithm provides an upper bound to the 

original problem, but it may be not primal feasible, such as it may violate constraints (2) or (3). Therefore, in the 

last phase, a heuristic algorithm is developed to form a feasible solution from the dual bound. 

4.1 Lagrangian Relaxation 

Constraints (2) and (3) are relaxed and the Lagrangian dual problem can be described as follows: 



Min
, 

Max
Qi ,Xp i ,Xri ,Pr i ,zi 

LR  piDi  si Qi Di  f i
d Di dDi0

Qi

  piQi  gi Di Qi  f i
d Di dDiQi



 
i1

I



 cpiXpi
i1

I

  cri  Pri Xri
i1

I

  hri  Pri  ui  zi  f i
r ui duizi

B i


i1

I



 MC  msiXpi
i1

I










  RC  rsiXri

i1

I












    

(8) 

subject to (4)-(7). 

In the objective function (8), λ and η are the Lagrange multiplier associated with the relaxed constraints (2) 

and (3) respectively. For any fixed value of the Lagrange multipliers λ and η, the relaxed problem can be 

decomposed into I independent single product subproblems. 

Subproblem iLRP : 

Max 



LRPi  piDi  si Qi Di  f i
d Di dDi0

Qi

  piQi  gi Di Qi  f i
d Di dDiQi





 cpi  msi Xpi  cri rsi  Pri Xri  hri  Pri  ui  zi  f i
r ui duizi

B i


        (9) 

subject to 

 iii QXrXp  ,                          (4) 

i

b

ii zeaXr ii 
Pr

,                (5) 

r

iiii nzA  ,                      (6) 

0iXp , 0Pr i , 0iXr , 0iQ .              (7) 

Substituting (9) into (8), the objective function of the relaxed problem can be described as follows: 

RCMCLRPLR
I

i

i  
1

. 

4.1.1 Properties of subproblem iLRP  

For fixed values of the Lagrange multipliers λ and η, the solution for the relaxed problem can be obtained 

by solving the subproblems iLRP  for i=1,…,I. Subproblem iLRP  consists of five variables and four 

constraints. Although the variables and constraints can be reduced by substituting constraints (4) and (5) into the 

objective function, it is still difficult to obtain the optimal solution for the subproblem. Therefore, some 

properties of subproblem iLRP  are investigated, through which the five-variable subproblem is reformulated 

into three single-variable subproblems that are easy to solve. 

In subproblem iLRP , if the remanufacturing quantity iXr  is fixed, the decisions related with 

remanufacturing can be separated from the problem. Let TRCi denote the expected remanufacturing related cost, 
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then: 



TRCi  cri rsi  Pri Xri  hri  Pri  ui  zi  f i
r ui duizi

Bi

                  (10) 

subject to 

i

b

ii zeaXr ii 
Pr

,                  (4) 

r

iiii nzA  ,                         (5) 

0Pr i .                     (6) 

Proposition 1: For any fixed iXr , there are unique 
*Pri  and 

*

iz  to minimize iTRC , which are 

presented below: 

a) if 
r

iiii naXr  , 









 


i

r

iii

i

i
a

nXr

b


ln

1
Pr*

 and 
r

iii nz *
; 

b) if 
r

iiii naXr  , 0Pr* i  and iii aXrz *
. 

The proof of Proposition 1 is provided in the Appendix. 

Proposition 1 shows that the optimal recycling price of the used product i is determined uniquely as a 

function of iXr . 

Proposition 2: For a fixed iQ , if 



ai  ni i
r i ni i

r  0  

and 




ai  ni i

r i ni i
r 

aibi
 cpi  msi  cri rsi  0 , the optimal solutions to maximize 

function iLRP  are as follows: 

a) if 
H

ii XrQ  , 



Pri
* 
1

bi
ln
Xri

H  ni i
r

ai









, 

r

iii nz *
, 

H

ii XrXr 
 and 

H

iii XrQXp 
; 

b) if 



ai  ni i
r Qi  Xri

H
, 



Pri
* 
1

bi
ln
Qi  ni i

r

ai









, 

r

iii nz *
, ii QXr 

 and 0

iXp ; 

c) if 
r

iiii naQ  , 0Pr* i , iii aQz *
, ii QXr 

 and 0

iXp , 

where 



i ni i
r  ui  ni i

r f ir ui duin i i
r

Bi

  and 
H

iXr  is the unique solution that satisfies 

02 ii dXrdLRP  (It is explained in the proof). 

The proof of Proposition 2 is provided in the Appendix. The two conditions in Proposition 2 usually hold 

for real production systems: Firstly, ia  usually is a big number, while ni usually is negative (or a very small 

positive value) to ensure that the understocking risk of return is low 



i ni i
r  is also a small value, therefore it 

is easy to satisfy the condition that 



ai  ni i
r i ni i

r  0 . Secondly, the remanufacturing cost, icr , is 

usually about 50% (or less) of the manufacturing cost icp , and the capacity used for remanufacturing also is 

much less than that for producing brand-new product, that is, ii msrs   (Dowlatshahi 2000). Thus, the second 

condition can be satisfied by most practical systems.  

     Proposition 2 shows that the manufacturer would not produce any brand-new product i if the 

remanufactured products can satisfy the demand since the remanufacturing cost is lower. The remanufacturing 

quantity given in Proposition 2 gives the upper bound of the remanufacturing quantity. By the relationship 

between recycling price and the remanufacturing quantity in Proposition 1, it follows that there is also an upper 

bound for the recycling price. 

By Proposition 2, Subproblem 
iLRP  can be reformulated as three single-variable subproblems. 
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Subproblem 
1iLRP : 

Max 



LRPi1  piDi  si Qi Di  f i
d Di dDi0

Qi

  piQi  gi Di Qi  f i
d Di dDiQi





 cpi  msi  Qi  Xri
H  cri rsi 

1

bi
ln
Xri

H  ni i

r

ai



















Xri

H

 hri 
1

bi
ln
Xri

H  ni i

r

ai



















ui  ni i

r f ir ui duin i i
r

B i



 

subject to H

ii XrQ  . 

Subproblem 
2iLRP : 

Max 



LRPi2  piDi  si Qi Di  f i
d Di dDi0

Qi

  piQi  gi Di Qi  f i
d Di dDiQi





 cri rsi 
1

bi
ln
Qi  ni i

r

ai



















Qi  hri 

1

bi
ln
Qi  ni i

r

ai



















ui  ni i

r f ir ui duin i i
r

B i



 

subject to 



ai  ni i
r Qi  Xri

H
. 

Subproblem 
3iLRP : 

Max 



LRPi3  piDi  si Qi Di  f i
d Di dDi0

Qi

  piQi  gi Di Qi  f i
d Di dDiQi





 cri rsi Qi  hri ui Qi  ai  f i
r ui duiQi a i

B i


 

subject to r

iiii naQ 0 . 

Subproblem LRPi can be solved by solving the three single-variable subproblems 
1iLRP , 

2iLRP  and 

3iLRP . 
1iLRP  is a single-product single-period newsvendor problem which can be solved easily. 

Proposition 3: Function 
2iLRP  is concave in the region  H

i

r

iii Xrna , . 

Proposition 4: Function 
3iLRP  is concave. 

The proofs of Propositions 3 and 4 are provided in the Appendix. 

4.1.2 Solution algorithm of subproblem LRPi 

By Propositions 1-4, the following algorithm can be developed to solve subproblem LRPi. Let 
j

iQ  denote 

the optimal solution for LRPi-j, for j=1,2,3. 

Algorithm A: 

Step 0: Initialization  

     Initialize subproblem LRPi and calculate 
H

iXr  by solving equation 02 ii dXrdLRP . 

Step 1: Solve subproblem LRPi-1 

     Solve equation 01  ii dQdLRP  and obtain its optimal solution 1

iQ . 

     If H

ii XrQ 1 , 11

ii QQ  ; otherwise 
H

ii XrQ 1
 

Step 2: Solve subproblem 2iLRP  

     Let D2=
ii dQdLRP 2

. 

     If D2(
r

iii na  )*D2(



Xri
H

)>0, 



Qi
2  argmax D2 ai  ni i

r ,D2 XriH  ; 

     otherwise solve equation 02  ii dQdLRP  and obtain its optimal solution 
2

iQ . 

Step 3: Solve subproblem 3iLRP  

Let D3=
ii dQdLRP 3
. 

     If D3(0)*D3(



ai  ni i
r
)>0, 



Qi
3  argmax D3 0 ,D3 ai  ni i

r  ; 
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     otherwise solve equation 03  ii dQdLRP  and obtain its optimal solution 
3

iQ . 

Step 4: Evaluate 

     The optimal stocking quantity for subproblem iLRP  is 



Qi
  argmax LRPi1 Qi

1 ,LRPi2 Qi2 ,LRPi3 Qi3  . 

The optimal values for the other variables are obtained by Proposition 2. 

Since the investigation of this paper focuses on the hybrid system, that is, the demand for the product is big 

and the manufacturer need to produce both brand-new and remanufactured products. Thus usually the optimal 

solutions for subproblems LRPi-2 and 
3iLRP  are obtained at H

iXr  and 
r

iii na   respectively. Only in the 

special case that the demand for the product is very small and the hybrid system is changed into purely 

remanufacturing system, should 02  ii dQdLRP  and 03  ii dQdLRP  need to be solved. In this situation, 

the function provided by Matlab is employed to solve them. 

4.2 Solving the Lagrangian Dual Problem 

Subgradient algorithm has been widely used to solve the Lagrangian dual problem, but the detail of 

procedure may be quiet different for different problems. In this Section, the subgradient algorithm is presented 

to solve the Lagrangian dual problem and obtain an upper bound on the optimal objective value of model (1)-(7). 

The detailed procedure is described as follows: 

Step 0: Initialization 

     Set 
0  , 

0   and 2 , 

let LB  be a lower bound for the problem, and initialize 0LB , 

let LR  be the objective value of the relaxed problem, and initialize 0LR , 

let UB  be the best upper bound for the original problem, and initialize UB . 

0  and 
0  are estimated values for the multipliers   and   respectively. 

Step 1: Solve the relaxed problem 

     Given   and  , solve all the subproblems iLRP , for Ii ,...,1 , by Algorithm A, and obtain 

the objective value of LR . 

Step 2: Update upper bound 

     If LRUB  , update LRUB  . 

If there is no improvement on UB  after N iterations, set 2/  , 

where N is a parameter set according to the problem and here N=10. 

Step 3: Update lower bound 

If LBLR   and the solution satisfies constraints (2) and (3), set LRLB  . 

Step 4: Calculate new step size 

     Let 



norm  MC  msiXpi
i1

I












2

 RC  rsiXri
i1

I












2

, 

     if 0norm , normLBLRstepsize /)(  ; 

     otherwise 2/stepsizestepsize  . 



 11 

Step 5: Update multiplier 

     



 max 0,  stepsize MC  msiXpi
i1

I




















, 

and 



 max 0,  stepsize RC  rsiXri
i1

I




















. 

If 
max  , 2max  . 

If 




ai  ni i

r  ni i
r 

aibi
 cpi  msi  cri rsi  0, set 1  . 

Here max  is the upper bound of  , which is explained later. 

Step 6: Stopping criteria 

     If iteration times > Ni or the gaps of   and   between two coterminous iterations are both less 

than З, STOP; otherwise GOTO Step 1. 

     Here Ni and З are parameters defined according to requirement. 

In the subgradient algorithm, a good solution can be obtained in less number of iterations by properly 

updating the multipliers. As the step size determines how far the multipliers will go along the subgradients, thus 

its calculating strategy has an important influence on the efficiency of the algorithm (Wolsey, 1999; D’alfanso et 

al., 1995). 

Not only updating of the multipliers is important, but also there are some restrictions on the Lagrange 

multipliers that should be noticed. 

There is an upper bound for the Lagrangian multiplier   

From the property of the single-period newsvendor problem, it can be known that the optimal value of iQ  

that maximizes the objective function 1iLRP  is 



Qi
1  Fi

d1 pi  gi  cpi  msi
pi  gi  si









. 

In order to make the above function meaningful, the Lagrange multiplier λ must satisfy 

i

iii

ms

cpgp 
 , for i=1,…I.               (a) 

Let 



max min
pi  gi  cpi

msi
i









, then max  is the upper bound of  . 

From Proposition 2, one of the sufficient conditions is related with the multipliers, that is, 




ai  ni i

r  ni i
r 

aibi
 cpi  msi  cri rsi  0.                             (b) 

When updating the multipliers, some unreasonable values of the multipliers may be produced. If conditions 

(a) and (b) are violated, the values of the multipliers can not be optimal to the problem. Thus in each iteration, 

the multipliers must be checked and adjusted if conditions (a) and (b) are violated. The computational results in 

Section 5 show that the above updating strategy for the Lagrange multipliers can help to obtain a good solution 

in less iterations. 
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4.3 Feasibility algorithm 

Although the solution obtained from the subgradient algorithm provides a good upper bound for the 

optimal objective value of the original problem, it can not be always primal feasible to model (1)-(7), because it 

may violate constraints (2) or (3). Thus, a feasibility algorithm is developed to form a feasible solution from the 

dual solution. 

The feasibility algorithm is described as follows. 

Step 1: Check constraint (2). 

If constraint (2) is violated, sort the products in the ascending order in terms of unit manufacturing 

capacity consuming. 

Decrease the manufacturing quantities for the products in the order until the total manufacturing 

capacity reaches its balance. 

Step 2: Check constraint (3). 

If constraint (3) is violated, sort the products in the ascending order in terms of unit 

remanufacturing capacity consuming. 

Decrease the remanufacturing quantities for the products in the order until the total 

remanufacturing capacity reaches its balance. 

Step 3: Recalculate the recycling prices. 

Recalculate the optimal recycling prices for the used products according to their adjusted 

remanufacturing quantities by Proposition 1. 

The basic idea of the feasibility algorithm is straightforward. Computational experience shows that, for 

most of the problems, the feasible solution usually can be obtained by adjusting only one product’s stocking 

quantity because the Lagrangian dual solutions are very near to the optimal solution. 

The framework of the solution approach is presented in Figure 2. 

Solve the dual problem by 

Subgradient Algorithm

Does the dual solution 

satisfy constratints (2)-(3) ?

NO

YES

Find a feasible solution by 

the Feasibility Algorithm

Solution for Model(1)-(7)

START

END

Obtain the Lagrangian dual problem

 

Figure 2. The framework for the Lagrangian relaxation based approach 
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5. Computational results and managerial analysis 

All of the algorithms are implemented by MARLAB. The computational experiences for the examples are 

conducted on the IBM T60 laptop with Windows XP (Intel® Core™2 Duo CPU, 1GB of RAM). 

5.1 Numerical example 

In this section, a numerical example reflecting real business situation is presented to illustrate the hybrid 

production system. In the system, the manufacturer manages one manufacturing plant and one remanufacturing 

facility which produces the brand-new product and remanufactures the used products respectively. Five different 

types of products are produced and all of their demands follow normal distribution. The uncertain parts for the 

return, zi, for i=1,…,5, also follow normal distribution with mean of zero. The capacity for the manufacturing 

plant is 20000 and the capacity for the remanufacturing facility is 11000. Moreover, ni is set to -0.25 for i=1,…,5. 

The other parameters of the example are presented in Table 1. 

Table 1. Parameters for the example 

product ip  icp  ig  is  
d

i  
d

i  ia  ib  
r

i  icr  ihr  ims  irs  

1 195 97.65 78.1 39.05 2000 880 335 0.036 340 35.05 13.65 3.72 3.2 

2 170 85.2 68.15 34.08 2450 670 380 0.041 280 36.28 11.93 3.34 2.08 

3 190 97.69 78.16 39.07 2260 675 260 0.045 270 41.72 13.67 2.95 2.29 

4 160 79.9 63.93 31.96 1800 745 430 0.038 285 30.16 11.18 3.85 3.62 

5 185 92.05 73.64 36.81 2320 695 325 0.042 360 42.35 12.89 3.21 2.24 

The example is first solved by the Lagrangian based approach and the solution is presented in Table 2. The 

optimal profit obtained by the Lagrangian based approach is 621,470.12. Furthermore, the example is solved by 

the General Algebraic Modeling System (GAMS), and the solution is presented in Table 3. GAMS is a 

high-level modeling system for mathematical programming and optimization. The optimal profit obtained by 

GAMS is 621,531.36. Comparing the two solutions, it can be seen that the Lagrangian based approach presents 

a solution that is very close to the optimum. The computational time for the Lagrangian based approach is 0.735 

second, while GAMS presents the solution by 1.084 second. 

Table 2. Solution for the example obtained by the Lagrangian based approach 

product Qi Xpi Xri Pri zi 

1 1854 1097 757 25.61 -85.00 

2 2332 1156 1176 28.96 -70.00 

3 2178 1201 977 30.90 -67.50 

4 1614 1073 541 9.28 -71.25 

5 2228 1365 863 25.62 -90.00 

Table 3. Solution for the example obtained by GAMS 

product Qi Xpi Xri Pri zi 

1 1856 1099 757 25.61 -85.00 

2 2331 1154 1177 28.99 -70.00 

3 2178 1201 977 30.91 -67.50 

4 1615 1075 540 9.26 -71.25 

5 2227 1363 864 25.64 -90.00 
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5.2 Managerial analysis 

By the above example, sensitivity analyses are conducted for several key parameters to gain some insight 

into the hybrid manufacturing and remanufacturing system. 

The manufacturer’s profit versus manufacturing and remanufacturing capacities 

Sensitivity analyses are conducted for the manufacturing capacity and the remanufacturing capacity, and 

the results are shown as graphs in Figures 3 and 4. From Figure 3, it can be seen that the total expected profit of 

the manufacturer increases when the manufacturing capacity increases, but it stays unchanged beyond about 

MC=24,000. Similarly, Figure 4 illustrates that the manufacturer’s total profit increases as the remanufacturing 

capacity increases, and it will remain unchanged when the remanufacturing capacity is over 15,000. The 

analysis shows that the manufacturer can increase his profit by increasing the capacities of the facilities, but 

there are specific limits for each of the facility. Beyond these limits, additional profit will not be obtained 

anymore, because the additional capacities are not fully utilized due to the limitation of demands. 
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Figure 3. The optimal expected profit under different manufacturing capacities 
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Figure 4. The optimal expected profit under different remanufacturing capacities 

 

The stocking quantity versus the standard deviation of a product’s demand 

The relationship between the stocking quantity and the standard deviation of a product’s demand also is 

investigated. Figure 5 shows that the stocking quantity of product 1 decreases when the standard deviation of its 

demand increases. It indicates that the manufacturer shifts the capacity from product 1 to other products with 

relatively lower risk to reduce profit loss. It can also be seen that the manufacturing quantity decreases very 

quickly while there is no much vary on the remanufacturing quantity. The analysis shows that the change of the 
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standard deviation of a product’s demand has more influence on the manufacturing plan than the 

remanufacturing plan. 
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Figure 5. The manufacturing and remanufacturing quantities under different value of 
d

1  

The production and recycling policy versus the standard deviation of a product’s return 

Figures 6 and 7 investigate how the production and recycling policy changes as the standard deviation of 

the return for product 1 varies from 150 to 450. Figure 6 illustrates that the manufacturing quantity of product 1 

increases when the standard deviation of its return increases, while its remanufacturing quantity decreases, but 

the total stocking quantity does not show much change. It indicates that, when the uncertainty on return 

increases, the manufacturer more likely satisfies the demands by producing the brand-new products than by 

remanufacturing used products. Figure 7 shows that the recycling price of used product 1 decreases when the 

standard deviation of its return increases. It indicates that the manufacturer tends to pay less for the used 

products with higher uncertainty. Figures 6 and 7 show that the uncertainty of the return does have much 

influence on its production and recycling policy. 
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Figure 6. The manufacturing and manufacturing quantities under different value of 
r

1  
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Figure 7. The acquisition price of used product 1 under different value of 
r

1  

5.3 Performance of the solution approaches 

In order to further affirm the robustness of the solution approach, twenty numerical examples are randomly 

produced and solved: ten of them are small size examples that involve 5 products, and the other ten examples 

are large size that involves 50 products. The data for all the twenty examples can be obtained from the authors 

on request. 

Table 4 illustrates the computational results for all the examples. The upper bound means the optimal 

objective value for the relaxed problem obtained by the subgradient algorithm. The relative gap is defined as 

(upper bound-feasible solution)/ feasible solution. In Table 4, the maximal relative gap for the small size 

examples is 3.50E-05, while the maximal relative gap for the large size examples is 1.49E-05. It can be seen that 

the Lagrangian based solution approach can present very good solution to all the examples. The computational 

time for the small examples is controlled in 1 second, while the large examples’ is a little longer, but still 

controlled in 10 seconds. In all, the Lagrangian based approach can present very good solution for all examples 

in acceptable computational time. 

Table 4. Computational results of the solution approaches. 

Problem 

size 
5 products 50 products 

 
Upper 

Bound 

Feasible 

Solution 

Absolute 

Gap 

Relative 

Gap 

Time 

Used(s) 

Upper 

Bound 

Feasible 

Solution 

Absolute 

Gap 

Relative 

Gap 

Time 

Used(s) 

1 755557.86 755555.44 2.41 3.19E-06 0.682 6564930.91 6564892.27 38.64 5.89E-06 8.215 

2 706432.20 706432.14 0.05 7.34E-08 0.617 6890517.62 6890509.13 8.49 1.23E-06 9.306 

3 661391.06 661391.04 0.02 2.74E-08 0.793 6595094.58 6595070.82 23.76 3.60E-06 6.958 

4 785846.50 785776.40 70.10 8.92E-05 0.926 7282701.88 7282687.13 14.75 2.03E-06 7.549 

5 762307.00 762306.29 0.71 9.33E-07 0.674 7120688.41 7120679.73 8.68 1.22E-06 7.863 

6 636659.94 636652.94 7.00 1.10E-05 0.805 6826744.79 6826726.18 18.61 2.73E-06 8.914 

7 697502.70 697500.14 2.56 3.67E-06 0.824 6998789.43 6998745.63 43.80 6.26E-06 9.025 

8 628405.01 628404.94 0.07 1.04E-07 0.751 6996886.22 6996841.97 44.25 6.32E-06 8.782 

9 679360.32 679336.53 23.80 3.50E-05 0.749 6972501.39 6972495.66 5.73 8.22E-07 7.497 

10 660059.20 660049.43 9.77 1.48E-05 0.837 6909374.55 6909271.93 102.62 1.49E-05 7.395 

 

Table 5 shows the solutions when the MC capacity varies from 16000 to 22000 for the example in 

Section 5.1. Columns LS and FA are the objective values from Lagrangian heuristic without and with 

feasibility algorithm respectively. Columns Gap1 and Gap2 evaluate the gap of LS and FA to upper bound. 



 17 

The last column represents relative gap of solutions with feasibility algorithm. Comparing Gap2 with Gap1, 

it is noted that the average gap is reduced from 6853.76 to 79.14 by employing feasible algorithm. It 

implies the feasible algorithm obviously improves the solution. From Table 5 we find that although there 

are some fluctuations on the gaps, the relative gaps vary from 8.68E-06 to 4.27E-04 with the average of 

1.33E-04. It illustrates that the proposed approach performs well as the capacity varies in the range. 

Table 5. Computational results under different MC capacities. 

MC 
Lagrangian 

Solution (LS) 

With Feasibility 

Algorithm (FA) 

Upper 

Bound (UB) 

Gap1 

(UB-LS) 

Gap2 

(UB-FA) 

Relative  

Gap 

16000 557099.93 560764.44 560781.08 3681.15 16.64 2.97E-05 

17000 572272.64 579097.44 579275.07 7002.43 177.63 3.07E-04 

18000 584833.04 595311.15 595565.10 10732.06 253.95 4.27E-04 

19000 585336.04 609631.35 609640.54 24304.50 9.19 1.51E-05 

20000 621250.71 621470.12 621533.46 282.75 63.33 1.02E-04 

21000 630099.47 631155.03 631160.51 1061.04 5.48 8.68E-06 

22000 637590.16 638474.78 638502.57 912.41 27.79 4.35E-05 

Average    6853.76 79.14 1.33E-04 

When the capacities become large enough, the multi-product problem can be directly decomposed 

into single-product problems without taking into account constraints (2) and (3) since they are always 

satisfied with the solution of single-product problems. The exactly optimal solution of the single-product 

problems can be obtained without applying the Lagrangian method. When the capacities become too low, 

more issues, such as product list selection, hybrid system optimization, should be considered. The solution 

approach on the scenario is beyond the range of this research, but deserves for the future study. 

6. Conclusions 

This paper investigates the joint production and recycling problem for a hybrid manufacturing and 

remanufacturing system. A mathematical model is developed for the problem, in which the total expected profit 

is maximized through determining the production quantities of bran-new products, the recycling prices of the 

used products and their remanufacturing quantities. A Lagrangian based solution approach is developed to solve 

the problem. A numerical example is presented to illustrate the problem and gain some insight into the hybrid 

system. Sensitivity analyses show that the uncertainty of demand has more influence on manufacturing than 

remanufacturing, while the uncertainty of return has much more impact on both production and recycling policy. 

Furthermore, twenty randomly produced examples are used to test the solution approach. Computational results 

show that the solution approach can present very good solutions to all the examples. 

The understocking cost of the return is not considered in the proposed model. The estimation for the cost 

depends how to find substituted parts for the remanufacturing when the return is less than expected. Further 

research on the exact formulation of the expect profit and optimization analysis for the hybrid remanufacturing 

system is needed. Furthermore, in practical closed loop supply chains, there are usually multiple options for the 

recovery of used products, such as direct reuse, repair, refurbishing, remanufacturing, and cannibalization since 

the used products have different quality. Therefore an important extension to our model is to incorporate 

multiple recovery options and more flexible recycling strategy with considering the quality of returned products, 

which will make the model more practical and applicable. In addition, form methodology point of view, it 

deserves to develop different solution methods and compare their performance, especially for large scale hybrid 

manufacturing and remanufacturing systems with the large number of products. 
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Appendix 

Proof of Proposition 1 

As 



Xri  aie
bi Pri  zi, we can obtain 
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bi
ln
Xri  zi

ai









. 

Substitute  ii zPr  to iTRC , then 



TRCi zi,Pri zi   cri rsi 
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bi
ln
Xri  zi

ai
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The first derivative of function   iiii zzTRC Pr,  is 



dTRCi zi,Pri zi  
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, 

and 



dTRCi zi,Pri zi  
dzi

 0. 

Thus 



TRCi zi,Pri zi   is a monotonically decreasing function of iz . 

Since 



Pri 
1

bi
ln
Xri  zi

ai









 0 , iii aXrz  . 

From constraint (6), 
r

iiii nzA  , thus 



z min Xri  ai,ni i
r . 

If 



Xri  ai  ni i
r
, then 
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r
, and 
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* 
1
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Xri  ni i
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 which is obtained by substituting 



zi
*  ni i

r
 into  ii zPr . 

If 



Xri  ai  ni i, then 



zi
*  Xri  ai  and 0Pr* i .□ 

 

Proof of Proposition 2 

First, if the nonnegative restriction of iPr  is relaxed, form Proposition 1, it can be known that, for a fixed 

iXr , the optimal values of iPr  and iz  are 



Pri
* 
1

bi
ln
Xri  ni i

r

ai









 and 

r

iii nz *
. 

Substitute them into the objective function (8), then 
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where 
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From constraint (4), it can be obtained that 



Xpi Qi  Xri . Substitute it into (10), then 
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If Qi is fixed, then the first and second derivatives of iLRP2  are 
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thus there is an unique iXr  in the region 



ai  ni i
r , that satisfies 02 ii dXrdLRP . 

Let 
H

iXr  denote the unique solution for 02 ii dXrdLRP . 

For any fixed Qi, if 
H

ii XrQ  , the optimal solutions to maximize function (10) are
H

ii XrXr 
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H

iii XrQXp 
; 

if 
H
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for any fixed Qi that 
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In this condition, by Proposition 1 we know that, for any fixed iXr , the optimal values of iPr  and iz  are 
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We can obtain the optimal solutions to maximize function (12), which are ii QXr 
 and 0

iXp . 

Therefore for any fixed Qi that 



Qi  ai  ni i
r
, 



Pri
*  0 , 



zi
*  Xri  ai , 



Xri
 Qi and 0

iXp .□ 

 

Proof of Proposition 3. 

The first and second derivatives of function 2iLRP  are as follows: 



dLRPi2

dQi
 pi  gi  cri rsi  pi  gi  si Fi

d Qi 


Qi i ni i

r 
bi Qi  ni i

r 

1

bi
ln
Qi  ni i

r

ai









,

 

and 



d2LRPi2

dQi
2

  pi  gi  si  f i
d Qi 

Qi  2ni i

r  i ni i

r 
bi Qi  ni i

r 
2

. 

For 



ai  ni i
r Qi  Xri

H
, 



d 2LRPi2 dQi
2
 0, 

thus function 2iLRP  is concave in region 



ai  ni i

r,Xri
H .□ 

 
Proof of Proposition 4. 

The first and second derivatives of function 3iLRP  are as follows: 



dLRPi3

dQi
 pi  gi  cri  rsi  pi  gi  si Fi

d Qi  hri 1 Fi
r Qi  ai  , 

and 



d2LRPi3

dQi
2

  pi  gi  si  f i
d Qi  hri f i

r Qi  ai  0 . 

Thus function 3iLRP  is concave.□ 
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