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Abstract
Genetic taxonomic assignment can be more sensitive than morphological taxonomic 
assignment, particularly for small, cryptic or rare species. Sequence processing is es-
sential to taxonomic assignment, but can also produce errors because optimal param-
eters are not known a priori. Here, we explored how sequence processing parameters 
influence taxonomic assignment of 18S sequences from bulk zooplankton samples 
produced by 454 pyrosequencing. We optimized a sequence processing pipeline for 
two common research goals, estimation of species richness and early detection of 
aquatic invasive species (AIS), and then tested most optimal models’ performances 
through simulations. We tested 1,050 parameter sets on 18S sequences from 20 AIS 
to determine optimal parameters for each research goal. We tested optimized pipe-
lines’ performances (detectability and sensitivity) by computationally inoculating se-
quences of 20 AIS into ten bulk zooplankton samples from ports across Canada. We 
found that optimal parameter selection generally depends on the research goal. 
However, regardless of research goal, we found that metazoan 18S sequences pro-
duced by 454 pyrosequencing should be trimmed to 375–400 bp and sequence qual-
ity filtering should be relaxed (1.5 ≤ maximum expected error ≤ 3.0, Phred score = 10). 
Clustering and denoising were only viable for estimating species richness, because 
these processing steps made some species undetectable at low sequence abun-
dances which would not be useful for early detection of AIS. With parameter sets 
optimized for early detection of AIS, 90% of AIS were detected with fewer than 11 
target sequences, regardless of whether clustering or denoising was used. Despite 
developments in next-generation sequencing, sequence processing remains an im-
portant issue owing to difficulties in balancing false-positive and false-negative er-
rors in metabarcoding data.
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1  | INTRODUC TION

Newly introduced populations that colonize novel ecosystems are 
usually small and inconspicuous (Leung, Drake, & Lodge, 2004). 
Detection of small and geographically restricted populations is 
technically challenging, yet critically important to management of 
aquatic invasive species (AIS; Beric & MacIsaac, 2015). Traditional 
early detection relies on techniques such as recruitment plates, 
video, scuba diving, trawling and netting—which may require tre-
mendous amounts of sampling effort (Hoffman, Kelly, Trebitz, 
Peterson, & West, 2011)—typically followed by morphological iden-
tification. Furthermore, they may be ineffective if the introduced 
species is small, cryptic or morphologically variable (Ficetola, Miaud, 
Pompanon, & Taberlet, 2008). These attributes characterize many 
AIS, rendering monitoring of underwater environments an especially 
challenging task. Generally, genetic approaches are promising in the 
early detection of AIS, circumventing numerous challenges of tradi-
tional surveillance (Smart, Tingley, Weeks, van Rooyen, & McCarthy, 
2015).

When applied to complex communities, genetic detection of 
AIS or characterization of species composition typically involves 
sampling whole organisms (bulk sampling) or environmental DNA 
(eDNA) shed by them. In either case, a small “barcode” region of the 
genome (Hebert, Cywinska, Ball, & DeWaard, 2003) can be used to 
determine the taxonomic identity of mixed sequences (Cristescu, 
2014). There are two genetic approaches to the detection of AIS. 
In the first, one must have a particular target (typically, a species) in 
mind (the “targeted” or “active” approach). Alternatively, metazoan 
metabarcoding (Fonseca et al., 2010) aims to recover a wide range 
of taxa in a community and passively discover AIS (the “passive” 
approach; Simmons, Tucker, Chadderton, Jerde, & Mahon, 2016). 
Metazoan metabarcoding typically involves the use of universal 
primers and PCR to amplify available genetic material aiming to 
recover all taxa from the captured sample. However, in reality, not 
all taxa are discovered with equal sensitivity due to primer design 
or choice, and consequently inconsistent amplification may occur 
(Creer et al., 2010; Xiong, Li, & Zhan, 2016). Owing to the complex 
process of metabarcoding metazoan bulk samples (Figure 1, applied 
to detection of AIS, described in Data S1), many potential sources 
of both false-positive (type I) and false-negative (type II) errors 
have been identified. A nonexhaustive list of potential sources of 
errors in this process includes primer design (Freeland, 2017), PCR 
(Piggott, 2016), next-generation sequencing (Fonseca et al., 2010), 
sequence processing (Flynn, Brown, Chain, MacIsaac, & Cristescu, 
2015), reference library preparation (Zhan, He et al., 2014) and taxo-
nomic assignment inconsistencies, although it is difficult to quantify 
the impact of each (Xiong et al., 2016). Fortunately, by appropriately 
selecting parameters in computational sequence processing, the im-
pact and frequency of errors can be reduced (Brown, Chain, Crease, 
MacIsaac, & Cristescu, 2015; Flynn et al., 2015; Zhan, Xiong, Song, 
& MacIsaac, 2014).

Over the last decade, several sequence processing suites 
have been developed, including USEARCH (Edgar, 2010), mothur 

(Schloss et al., 2009), QIIME (Caporaso et al., 2010) and RDP 
(Cole et al., 2014), each making simplifying assumptions that im-
prove computational efficiency. Many of these suites share fea-
tures, algorithms or even programs. Intraspecific genetic variation 
within barcode regions can exist, so many programs allow users 
to cluster sequences into operational taxonomic units (OTUs) 
based upon genetic similarity (Edgar, 2013; Schloss et al., 2009). 
OTUs are groups of sequences that share high similarity, typ-
ically at the species or genus level. UPARSE, which is built into 
the USEARCH program, can create clusters in order of decreasing 
sequence abundance after sequence dereplication (Edgar, 2013). 
Although the most abundant sequence may not represent the true 
center of a species, this approach is computationally efficient and 
is more effective than other approaches (such as UCLUST or hi-
erarchical clustering of mothur; Edgar, 2013; Flynn et al., 2015). 
Other approaches to clustering—such as Bayesian (Hao, Jiang, & 
Chen, 2011), modularity-based (Wang, Yao, Sun, & Mai, 2013) and 
agglomerative clustering (Mahé, Rognes, Quince, de Vargas, & 
Dunthorn, 2014)—may use different sequence identity definitions; 
that is, they penalize gaps in alignments differently. Several of 
these sequence processing suites have similar or shared features 
and algorithms; for example, the clustering algorithms in QIIME are 
strictly third-party and some are closed source (Caporaso et al., 
2010). USEARCH is comprehensive and allows sequence trimming, 
minimum Phred score (Q) filtering, maximum expected error (MEE) 
filtering, clustering, denoising (Edgar, 2016) and removal of se-
quences not meeting any arbitrary abundance threshold. These are 
all options that are regularly used in the related literature in some 
capacity, even in computational suites other than USEARCH (Bista 
et al., 2017; Bokulich et al., 2013; Brown, Chain, Zhan, MacIsaac, 
& Cristescu, 2016; Brown et al., 2015; Chain, Brown, MacIsaac, 
& Cristescu, 2016; Elbrecht & Leese, 2015; Flynn et al., 2015; 
Hänfling et al., 2016; Pawlowski, Esling, Lejzerowicz, Cedhagen, 
& Wilding, 2014; Port et al., 2016). USEARCH also has many other 
utilities for analysis after sequences have been processed, such as 
computation of diversity indices and phylogenetic analysis.

F IGURE  1 Flowchart of the general metazoan metabarcoding 
process applied to bulk sampling in the context of aquatic invasions. 
In this study, we focus on the computational aspects of the process 
(sequence processing, BLAST and identification of AIS)
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The objective of sequence processing is to improve the integrity 
of results, but it may also be a source of error if performed poorly 
(Brown et al., 2015; Flynn et al., 2015; Xiong et al., 2016). Parameter 
selection in sequence processing involves a delicate balance be-
tween false-positive and false-negative error (Zhan et al., 2013). 
With overly stringent quality filtration, for example, sequences that 
identify truly present taxa in a sample may be removed, leading one 
to incorrectly infer absence of these taxa (false-negative error). On 
the other hand, insufficient filtration can lead to false-positive er-
rors, because in downstream analyses, erroneous sequences could 
map to species not present in the sample. Filtering is discussed here 
for illustrative purposes; all other components of the pipeline (clus-
tering, denoising, length cutoffs, abundance thresholds, etc.) simi-
larly participate in this balance between false positives and false 
negatives, and thus, parameter selection is not straightforward. The 
optimal parameter sets (which minimize either or both types of error) 
depend on the aim of the study and are usually not known prior to 
processing. Currently, users have limited knowledge on which to 
base parameter selection.

Although computational processing of sequences is an essential 
part of taxonomic assignment for genetic sequence data, very few 
studies have attempted to rigorously address the problem of pa-
rameter selection (i.e., Bokulich et al., 2013). Instead, few (or single) 
aspects of sequence processing have been previously tested—often 
with low resolution (i.e., Brown et al., 2015, 2016; Flynn et al., 2015; 
Pawlowski et al., 2014)—although numerous processing steps and 
parameter values interact to produce the resultant set of sequences 
or OTUs. Parameter selection also depends on the goals and meth-
ods of the study (identification of AIS, species richness estimation, 
eDNA, bulk sampling, etc.). Thus, there is a need to test a wide range 
of processing steps and parameter values in concert and for differ-
ent research scenarios.

We primarily sought to determine how users should select pa-
rameters when using a sequence processing pipeline (Figure 2) in a 
metazoan, bulk sample, metabarcoding context. Simultaneously, we 

wanted to determine whether and how research goals influence op-
timal parameter selection. Finally, we aimed to determine the per-
formance of such a pipeline when parameters were appropriately 
selected given these research goals. Consequently, this study had 
two main investigations: optimization, in which we searched for opti-
mal parameter selection for the computational sequence processing 
pipeline, and performance testing, in which we performed simulations 
to assess the performance of selected “most optimal parameter 
sets” in two ways, sensitivity and detectability (defined below under 
Performance Testing). In both parts of the study, we considered two 
common research applications of metabarcoding: accurate estima-
tion of species richness and early detection of AIS. These research 
goals differ in how researchers will utilize sequence processing pipe-
lines to shift the balance between protection against false positives 
and false negatives. Although it is always important to control for 
both types of errors, researchers estimating species richness via 
metabarcoding are typically concerned with minimizing both false 
positives and false negatives, while those involved in early detection 
of AIS are mainly concerned with minimizing false negatives.

2  | MATERIAL S AND METHODS

Below, we give a brief overview of our study. We then describe our 
sequence processing pipeline, introduce our sequence datasets, ex-
plain the optimization process and discuss our performance testing 
procedure.

First, we optimized a sequence processing and taxonomic as-
signment pipeline (Figure 2) employing USEARCH v10.0.240_i86l-
inux32 (Edgar 2010) and BLASTn v2.6.0+ (Altschul et al. 1990) 
using a mock (i.e., deliberately assembled) community of se-
quences from 20 AIS obtained via 454 pyrosequencing. We used 
the USEARCH package because it is comprehensive, fully autom-
atable through scripting, and exhibits strong performance and ef-
ficiency (Edgar, 2013). We optimized the pipeline separately for 

F IGURE  2 Flowchart of the sequence processing pipeline used in this study. Relevant USEARCH commands and options used are shown 
in parentheses. The first step combines sequence trimming (truncation) and quality filtration (Phred score—Q, and maximum expected 
error—MEE). In the next step, sequences are dereplicated. Next, the sequences are sorted in terms of decreasing abundance (necessary for 
clustering and denoising) and singletons are removed. Clustering or denoising of the sequences may subsequently be performed. Finally, 
BLASTn is used to perform taxonomic assignment with a minimum identity threshold of 97% using BLASTn defaults
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two common research goals: accurate estimation of species rich-
ness (which favors minimizing false negatives and false positives 
when sequences vary in abundance) and early detection of AIS 
(which favors sensitivity and minimizing false negatives, even for 
sequences of low abundance). This stage involved a search for pa-
rameter sets that generated OTUs that most accurately reflected 
the makeup of the mock community samples, which we described 
in detail below under the section “Optimization.” Secondly, we 
took some of the most optimal parameter sets from the optimiza-
tion phase and tested their performance through simulation. We 
tested performance using 20 different AIS, community samples 
from 10 ports and the most effective 24 parameter sets (of 1,050 
total parameter sets tested), allowing us to observe dependencies 
between these factors. This allowed us to make recommendations 
for sequence processing parameter selection from a more general 
standpoint.

2.1 | Sequence processing

We defined a parameter set as a combination of sequence length, Q 
filter stringency, MEE filter stringency, clustering identity threshold 
(if clustering was used), denoising minimum sequence abundance (if 
denoising was used) and minimum sequence abundance after derep-
lication. The values we tested for each parameter can be found under 
Optimization. To elaborate, sequences shorter than the sequence 
length threshold were removed, while those longer than that length 
were trimmed accordingly. The Q filter we used was a minimum Q 
score filter, meaning that a sequence with any single base call with 
Q below the threshold was removed. The MEE filter computed the 
maximum number of expected errors across the entire sequence 
using Q scores of each base call. Sequences with an expected num-
ber of errors above the MEE threshold were removed. Clustering 
identity was the similarity threshold between an OTU’s representa-
tive sequence and all other sequences in that OTU using UPARSE. 
Denoising in USEARCH (UNOISE3) considered sequence abundance 
and number of differences between sequences to predict whether a 
sequence was correct or not (Edgar, 2016). In UNOISE3, the prob-
ability of incorrectness of a sequence was computed based on the 
abundance skew ratio (ratio of abundance) and number of differ-
ences between it and other sequences already deemed correct, and 
sequences were compared in order of decreasing abundance for ef-
ficiency (see Edgar, 2016 for algorithm details). Denoising minimum 
abundance was the minimum abundance for a sequence to not be 
considered noise, which also affected abundance skew ratio ratios 
for retained sequences. With any given denoising minimum abun-
dance, retained (but noisy) low-abundance sequences counted to-
ward abundances of their “correct” counterparts. This could impact 
classification of sequences at the denoising step and could also influ-
ence downstream abundance-based analyses. Further, as the lower 
limit on sequence abundance was increased, remaining sequences 
could be classified as noisy or correct with greater confidence with 
the UNOISE3 algorithm (Edgar, 2016). We left the other clustering 
and denoising parameters to their default values. Minimum sequence 

abundance after dereplication was simplified by either allowing or 
removing singletons.

We used the same sequence processing procedure in both op-
timization and performance testing (Figure 2). We used USEARCH 
for all sequence processing. This procedure took as input a single 
FASTQ file, although it could also be adapted for merged paired 
reads. In the first step, we truncated sequences, removed those 
not meeting the length requirement and then filtered the se-
quences by quality. Next, we dereplicated and sorted sequences 
by abundance, which was necessary for the UPARSE clustering 
and UNOISE3 denoising algorithms built into USEARCH. In this 
step, if singletons were to be removed, only sequences with two 
or more replicates were retained. Whether clustering or denoising 
was performed or not was determined by the parameter set being 
tested (i.e., the iteration of the optimization stage or the selected 
parameter sets in performance testing). We did not test combin-
ing clustering and denoising due to computational constraints. A 
chimera detection algorithm is embedded in the denoising algo-
rithm of USEARCH that we used (UNOISE3), so chimera detec-
tion occurred if denoising was performed using the defaults for 
UNOISE3. Once sequence processing was complete, we checked 
the resultant set of sequences (or OTU representative sequences) 
against precomputed BLAST results (see Dataset preparation below 
for BLAST precomputing procedure). All computing was per-
formed on the Shared Hierarchical Academic Research Computing 
Network (SHARCNET).

2.2 | Dataset preparation

We acquired four published metabarcoding datasets of 18S V4 
rDNA sequences. The amplified fragment length was ≥400 bp for 
our target taxa. Primers for this marker effectively amplify a broad 
range of zooplankton taxa, making 18S a suitable marker for zoo-
plankton metabarcoding studies (Zhan, Bailey, Heath, & MacIsaac, 
2014). Conversely, the COI marker is highly variable for these taxa 
(sometimes, even in the primer binding sites) which may make it 
more suitable for studies taking the targeted approach than for me-
tabarcoding highly divergent communities (Deagle, Jarman, Coissac, 
Pompanon, & Taberlet, 2014; Hatzenbuhler, Kelly, Martinson, Okum, 
& Pilgrim, 2017; Zhan, Bailey et al., 2014). The drawback of 18S is 
that due to lower variability, it may be more difficult to assign iden-
tity at the species level. For each dataset, we obtained unprocessed 
sequences in FASTQ format. The first dataset, which we called D1, 
was a mock community of 20 AIS obtained from bulk zooplankton 
samples, with derived sequences grouped by species. Preparation of 
this dataset is detailed (see Data S2).

In performance testing, we also utilized a dataset that consisted 
of V4 18S rDNA derived from bulk zooplankton samples from ten 
Canadian ports (Chain et al., 2016). We kept each of these samples 
separated by port and refer to this as D2 (Table S1). Sequences of D1 
were computationally inoculated into samples from D2, as explained 
in more detail below under “Performance Testing.” Primers and tags 
were removed from all sequences. In cases where, after sequencing, 
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the primer or tag of a sequence did not match any original primers or 
tags, the sequence was removed.

For optimization and performance testing, we needed to clas-
sify each sequence in D1 as correct, ambiguous or incorrect (see 
Data S3 for further details on sequence classification). A correct se-
quence was one that aligned best with a reference sequence of its 
true identity, with identity ≥97%, whether alignments to other taxa 
were tied in similarity score or not. An ambiguous sequence was one 
that aligned with a higher score to a reference sequence of a differ-
ent taxon, although it still aligned to its correct taxon with identity 
≥97%. An incorrect sequence aligned with a reference sequence of 
its true identity with identity <97%.

2.3 | Optimization

We tested 1,050 parameter sets (see summary, Table S2). It is impor-
tant to note that we tested 150 parameter sets without clustering 
or denoising, but tested 450 parameter sets with clustering and 450 
with denoising because we explored three values for each clustering 
and denoising parameter. Testing fewer parameter sets without clus-
tering or denoising implies that we explored a smaller space of pos-
sibilities for that method of processing, which can potentially lead 
to reduced observed optimality for this method. However, it was 
more important that, for each common parameter across the pro-
cessing methods, we tested the same parameter values to keep the 
methods comparable. The parameters and values we tested were 
informed by related studies in the field and the characteristics of our 
sequence datasets (see Data S4 for parameters and values used in 
related studies).

Optimization consisted of two parts. In both parts, ranking of 
parameter sets was based on the number of correct, ambiguous, in-
correct and redundant OTUs generated by the pipeline (see Data S5 
for details of the ranking process). For each taxon, we classified only 
one OTU as correct or ambiguous and all other correct or ambiguous 
OTUs were reclassified as redundant (see Data S5 for specifics on re-
dundant OTUs). Part I was designed to find parameter sets that most 
accurately estimated species richness (i.e., minimized false negatives 
and false positives with varied sequence abundances) from a bulk 
zooplankton sample (Figure 3a). Part II was designed to find param-
eter sets with high sensitivity (i.e., minimized false negatives with 
low sequence abundances, Figure 3b), which is more useful in the 
detection of AIS. In part I, we combined the samples from all 20 taxa 
from D1 to construct a single mock community sample. The number 
of sequences for each D1 taxon ranged from 200 to 46,915. In part II 
of optimization, we generated 100 samples, each consisting of 1,000 
sequences. We generated these samples by randomly resampling 
D1, aggregating subsamples of 50 sequences from each taxon to 
form mock communities with low sequence abundance. Using only 
50 sequences from each taxon forced the optimization process to 
favor more sensitive parameter sets—those that could successfully 
recover taxa even with low sequence abundance—which was more 
appropriate when minimization of false-negative error was vital. In 
both part I and part II, we then tested all 1,050 parameter sets on 

all samples and computed the number of correct, ambiguous, incor-
rect and redundant OTUs generated by the pipeline using the given 
parameter set across all samples. Finally, we ranked the parameter 
sets according to the optimization ranking scheme (see Data S5 for 
details of the optimization ranking scheme).

To determine the concordance of parameter set rankings be-
tween the two research goals, we computed the Kendall rank 
correlation coefficient on the ranked parameter set lists for each 
sequence processing method. Furthermore, we determined the rel-
ative contribution to false-negative and false-positive errors of each 
of the parameters for six cases: three sequence processing methods 
across two research goals. In each case, we performed a multiple 
regression analysis using optimization results. The predictors were 
the parameter values, and the response variables were the number 
of correct + ambiguous OTUs (which indicates increasing false-
negative error as it decreases from 20) and the number of incorrect 
OTUs (which indicates increasing false-positive error as it increases 
from zero). We standardized parameter values for each regression, 
which allowed us to use the magnitude of the regression coefficients 
to rank parameters by their relative contributions. In each case, 
we reported the regression coefficients (to indicate relative con-
tribution) and associated p values (to indicate significance of their 
contributions).

2.4 | Performance testing

We ran a series of simulations to test performance of the pipeline 
in detecting target sequences that were computationally inocu-
lated into real bulk zooplankton samples using 24 selected param-
eter sets from optimization (Figure 3c). The “target” sequences 
were a subset of sequences all belonging to a single AIS from D1. 
We chose 12 parameter sets from optimization part I and 12 from 
part II. We did not simply choose the top 12 parameter sets from 
each part of optimization because many of the top parameter sets 
were quite similar. For both parts of the optimization stage, we 
chose four parameter sets for each processing method—clustering, 
denoising, and neither clustering nor denoising. We always chose 
the top parameter set for a processing method and subsequently 
selected parameter sets that performed the next best but were at 
least two parameters different from any other previously selected 
parameter set until we had a total of four parameter sets for that 
category. We conducted performance testing in two parts, mirror-
ing the two parts of optimization. In part I, a simulation consisted 
of inoculating each port sample in D2 with target sequences, iter-
ating from 1 to 100 randomly selected sequences of a target taxon 
from D1. We did this for every taxon in D1. We then ran the pipe-
line with all selected parameter sets from optimization part I on 
the simulated data. For each combination of target taxon, port and 
parameter set, we performed 25 simulations. For each simulation, 
we recorded if the target was detected with up to 100 sequences 
inoculated into the sample and, if so, how many sequences were 
required to detect it. Therefore, we defined two measures of per-
formance: detectability and sensitivity. Detectability was defined 
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as the ratio of simulations in which the target was found given 
some number of target sequences inoculated into a community 
sample. Sensitivity was defined as the number of sequences re-
quired to detect the target. Sensitivity was not recorded if the 
target was not detected. Part II was identical to part one, except 

we used selected parameter sets from optimization part II and in-
oculated only up to 50 sequences of the target into the sample be-
cause the parameter sets from optimization part II were expected 
to be far more sensitive. We inoculated up to 50 sequences of 
the target due to computational constraints and because we found 

F IGURE  3 The optimization method for accurate species richness estimates (a), early detection of AIS (b) and the performance testing 
method (c). Different colored boxes represent different taxa in dataset 1 (D1), and different colored circles represent different community 
samples in dataset 2 (D2). For performance testing of parameter sets optimized for accurate species richness estimates, k = 100. For 
performance testing of parameter sets optimized for early detection of AIS, k = 50. For a given iteration i, where 1 ≤ i ≤ k, different random 
subsamples with i sequences from a given taxon were used to inoculate each community
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in preliminary work that if the target was not found with 50 se-
quences in the sample, it was likely undetectable.

3  | RESULTS

3.1 | Optimization

Classification of sequences prior to optimization revealed that D1 
could yield, at most, 1,484 incorrect OTUs and trimming alone could 
be responsible for false-negative error (see Data S6 for classifica-
tion of sequences and OTUs during optimization). The most optimal 
parameter sets favored longer sequences with relatively weak filter-
ing. For example, of the top 20 parameter sets from each category 
(clustering, denoising, or neither, for estimation of species richness 
or early detection of AIS—120 parameter sets in total), 106/120 
(88.3%) trimmed sequences at length ≥375 bp. Trimming at shorter 
lengths was only viable if no clustering or denoising was performed, 
and even then it was suboptimal. No top 20 parameter sets in any 
category used a Q filter with strength >10. Of top ten parameter sets 
from each category, the mean MEE filter was 2.23, which was relaxed 
with respect to the range tested and relative to the literature (Bista 
et al., 2017; Brown et al., 2015; Flynn et al., 2015; Port et al., 2016). 
When aiming to optimize species richness estimation, the MEE filter 
had a mean of 2.12 (Table S3, selected parameter sets—see support-
ing information for full optimization results), whereas for early de-
tection of AIS, it was 2.33 (Table S4, selected parameter sets). When 
denoising, the MEE filter in top ten parameter sets was more relaxed, 
particularly for early detection of AIS (mean MEE = 2.60). The top 12 
parameter sets for accurate species richness estimation for pipelines 
without clustering or denoising all discarded singletons, as did the 
top five optimized for early detection of AIS. For pipelines involving 
clustering, the top eight parameter sets discarded singletons when 
seeking to optimize species richness estimation. Conversely, the top 
nine parameter sets with clustering kept singletons when optimiz-
ing for early detection of AIS. For denoising, keeping or discarding 
singletons did not matter because the minimum denoising abun-
dance threshold tested was two. Using clustering, the top 18 param-
eter sets for accurate species richness estimation used an identity 
threshold of 99%, whereas the top 24 parameter sets for early de-
tection of AIS also used an identity of 99%. For denoising, the top 
14 parameter sets for species richness estimation used a minimum 
abundance threshold of eight, whereas the top 12 parameter sets for 
early detection of AIS used a threshold of two sequences.

We observed concordance of parameter set rankings determined 
by optimization for the two research goals. When clustering was used, 
the Kendall tau was 0.80, signifying strong concordance (p < .001). 
The Kendall tau was 0.79 when denoising was used and 0.77 when no 
clustering nor denoising was used (p < .001 in each case). Multiple re-
gression analysis determined that parameter selection accounted for 
less variation in the number of correct + ambiguous OTUs recovered 
when determining species richness (80%, 89% and 80%, when clus-
tering, denoising or neither, respectively; see Table S5 for summary of 
multiple regression results) than when aiming for early detection of AIS 

(95%, 94% and 95%, respectively). Conversely, given either research 
goal, parameter selection accounted for comparable amounts of varia-
tion in the number of incorrect OTUs recovered (41%, 51% and 47% for 
estimation of species richness, 48%, 55% and 50% for early detection 
of AIS).

We found that, regardless of research goal or processing 
method, Q filter strength most strongly determined both the num-
ber of correct + ambiguous OTUs recovered and the number of in-
correct OTUs recovered (p < .001 in each case; ranking of parameter 
importance, Table 1; coefficient and p values, Table S5). Generally, 
MEE filtration had little contribution to correct + ambiguous OTU 
counts and was most significant (p = .13) when denoising was used 
for early detection of AIS. Conversely, MEE filtration was generally 
important in reducing the number of incorrect OTUs (p < .05 in all 
cases, except when denoising for species richness estimates), always 
ranking third except when denoising was performed (in which case 
it ranked fourth). Sequence length was generally important in deter-
mining correct + ambiguous OTUs (p < .05 except when no cluster-
ing nor denoising was used for species richness estimation), with a 
mean rank of three. On the other hand, sequence length generally 
had a weaker contribution to the number of incorrect OTUs (mean 
rank = 3.8) and was insignificant when neither clustering nor denois-
ing was used for either research goal (p > .05 in both cases). Keeping 
or discarding singletons was insignificant in determining either OTU 
count (correct + ambiguous or incorrect) when denoising was used, 
for either research goal. Otherwise, its mean rank was 2.5 for recov-
ering correct + ambiguous OTUs and 2.0 in all cases for recovering 
incorrect OTUs (p < .05 in all cases except when no clustering or de-
noising was used for estimation of species richness). When cluster-
ing was used, identity threshold ranked fourth for each research goal 
and OTU count, and was not significant in determining the number 
of correct + ambiguous OTUs (otherwise, p < .05). Conversely, clus-
tering identity threshold strongly impacted the number of incorrect 
OTUs (p < .05 for each research goal). When denoising was used, the 
denoising minimum abundance had a significant impact in all cases 
(p < .05) with a mean rank of 2.3.

3.2 | Performance testing

Distributions of the number of sequences necessary to detect tar-
gets varied by parameter set and exhibited positive skewness (i.e., 
parameter sets optimized for early detection of AIS without clus-
tering or denoising, Figure S1—long tails above the mean and fewer 
samples below). No distribution for any single taxon, port or parame-
ter set (optimized for either research goal) was normal (Kolmogorov–
Smirnov test for normality, p < .05 in all cases), yielding generally 
high variance.

For parameter sets optimized for species richness estimation, 
detectability with 10 target sequences inoculated into the port sam-
ple was nearly perfect without clustering or denoising for all taxa 
aside from Brachionus, Dreissena and Mesocyclops (Figure 4a, left 
column). The latter species detectability was poor owing to the low 
quality of their sequences relative to those for other taxa. A similar 
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pattern was observed with clustering, although several ports (e.g., 
Hamilton, Nanticoke and Thunder Bay) yielded low detectability for 
several taxa (Figure 4b, left column). Detectability across all combi-
nations of port and taxon was very poor when denoising was used 
(Figure 4c, left column).

A similar but slightly improved detectability pattern was observed 
for parameter sets optimized for early detection of AIS not using 
clustering or denoising, when compared to those optimized for spe-
cies richness (Figure 4a). Detectability of Brachionus and Mesocyclops 
was significantly improved across ports for parameter sets using 
clustering optimized for early detection of AIS when compared to 
those optimized for estimation of species richness (p < .001); other-
wise, there were no significant differences in detection for any port 
or taxon (p > .05). A similar detectability pattern was observed for 
clustering using parameter sets optimized for early detection of AIS 
as compared to those optimized for estimation of species richness 
(Figure 4b), although a slight overall improvement was observed 
(only Brachionus detectability was significantly improved; p < .001). 
Overall, we observed high variation in recovery ratio across ports 
and target when clustering or denoising was performed with pa-
rameter sets optimized for early detection of AIS (Figure 4b,c, right 
column). For example, the freshwater ports of Nanticoke, Thunder 
Bay and Hamilton yielded low detectability, as recovery ratios were 
only 0.806, 0.887 and 0.939, respectively, when clustering was used. 
When denoising, the respective recovery ratios were even lower, only 

0.648, 0.782 and 0.765. We observed no cases where a taxon could 
not be detected if 10 target sequences were present in the sample 
when clustering was optimized for early detection of AIS. Although 
the pattern for denoising was similar to that of clustering, many com-
binations of taxon and port yielded no detectability (Figure 4c, right 
column). Nevertheless, denoising parameter sets optimized for early 
detection of AIS yielded a significant improvement in detectability 
over those optimized for estimation of species richness for all taxa 
and all ports (p < .05).

Using parameter sets optimized for species richness estimation, 
detectability confidence reached 90% and 95% with the fewest se-
quences required using pipelines without clustering or denoising 
(Figure 5a). For example, on average 6.3 and 8.5 sequences were 
required to detect the target in 90% and 95% of replicates, respec-
tively, when neither clustering nor denoising was used. With clus-
tering, these values rose to 8.6 and 16.6 sequences, respectively. 
Denoising performed much worse, requiring 69.8 target sequences 
to reach 90% detectability while 95% detectability was unattain-
able. Detectability confidence was maximized in parameter sets 
optimized for early detection of AIS when clustering and denoising 
were not performed (Figure 5b). Without clustering or denoising, 
only 5.3 and 6.6 sequences were required for 90% and 95% detect-
ability, respectively, 15.2% and 22.6% lower than when parameter 
sets were optimized for species richness estimates. These values 
rose to 6.8 and 11.3 target sequences, respectively, when clustering 

TABLE  1 Parameter rankings (denoted as “Rank”) for each goal (estimation of species richness or early detection of AIS) and for each 
sequence processing method (clustering, denoising or neither), in terms of relative impact on the two optimization criteria 
(correct + ambiguous OTUs, incorrect OTUs). “Q” denotes Q filter, “Length” denotes sequence length cutoff, “Singletons” denotes whether 
singletons were kept or discarded, “MEE” denotes maximum expected error filter, “ID” denotes clustering identity threshold, and “DMA” 
denotes denoising minimum abundance. See Table S5 for coefficients and p values related to parameter impacts, determined by 
standardized multiple regression. Asterisk denotes significant impact at α = .05

Rank Correct + Ambiguous Incorrect Rank Correct + Ambiguous Incorrect

Species richness Early detection of AIS

Clustering Clustering

1 Q* Q* 1 Q* Q*

2 Length* Singletons* 2 Singletons* Singletons*

3 Singletons* MEE* 3 Length* MEE*

4 ID ID* 4 ID ID*

5 MEE Length* 5 MEE Length*

Denoising Denoising

1 Q* Q* 1 Q* Q*

2 DMA* DMA* 2 DMA* Length*

3 Length* Length* 3 Length* DMA*

4 MEE MEE 4 MEE MEE*

5 Singletons Singletons 5 Singletons Singletons

Neither Neither

1 Q* Q* 1 Q* Q*

2 Length Singletons* 2 Singletons* Singletons*

3 Singletons MEE* 3 Length* MEE*

4 MEE Length 4 MEE Length
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was used (11.2% and 31.8% lower than parameter sets optimized for 
species richness estimates, respectively), and 10.6 and 43.4 target 
sequences when denoising was used (84.9% fewer sequences for 
the 90% interval than parameter sets optimized for species richness 
estimates).

With parameter sets optimized for species richness estimation, 
sensitivity was far worse if denoising was used than if clustering or 
neither clustering nor denoising was used. Without clustering or de-
noising, only 3.9 (SD = 3.1) sequences were required to detect the 
target. This increased to 4.5 (SD = 7.0) sequences when clustering, 
and to 25.3 (SD = 16.4) when denoising. As expected, sensitivity 
improved with the top parameter sets that had been optimized for 
early detection of AIS. We found that 3.6 (SD = 4.9) reads were re-
quired to detect AIS (when they were detectable) using clustering, 
whereas denoising required 5.5 (SD = 5.8) reads. Without cluster-
ing or denoising, the pipeline was very sensitive, requiring only 2.9 
(SD = 2.2) sequences. With clustering, we detected the AIS in only 
98.5% of cases with 50 sequences inoculated. In contrast, denoising 
and neither clustering nor denoising detected the AIS in 95.5% and 
100% of cases, respectively.

For parameter sets optimized for early detection of AIS, four taxa 
(Daphnia, Diacyclops, Dreissena and Leptodiaptomus; Figure 6a—sen-
sitivity for parameter sets optimized for early detection of AIS across 
taxa) required more than five sequences to be detected if clustering 
was used. This value rose to nine taxa if denoising was used, with 
the highly invasive Dreissena requiring the most sequences (mean 
10.3; SD = 6.0). Without either clustering or denoising, only one 
taxon (Brachionus) required more than five sequences for detection 
(5.8; SD = 3.5). Variance in sensitivity was greater in taxa that yielded 
reduced sensitivity.

Using parameter sets optimized for early detection of AIS, we 
found that sensitivity varied little across ports (Figure 6b; sensitivity 
for parameter sets optimized for early detection of AIS across ports) 
except for Nanticoke when clustering (sequences required = 6.3; 
SD = 9.3) or denoising (sequences required = 11.2; SD = 12.9) was per-
formed. Hamilton and Thunder Bay also yielded relatively lower sensi-
tivity when clustering was performed, requiring 3.9 (SD = 5.4) and 5.2 
(SD = 8.1) sequences, respectively, or 6.6 (SD = 7.8) and 6.5 (SD = 7.5) 
sequences when denoising was performed. Sensitivity across ports 
was very consistent with or without clustering and denoising.

F IGURE  4 Detectability of taxa in mock samples, given as a value between 0 (no detectability of the target taxon at the port; red) and 
1 (perfect detectability of the target taxon at the port; yellow) for parameter sets optimized for estimation of species richness (left column) 
and parameter sets optimized for early detection of AIS (right column) using no clustering or denoising (a), clustering (b) and denoising (c), 
across all ports and taxa, with 10 sequences of each taxon inoculated into the original port sample. Detectability for a given port and taxon 
was computed using all replicates involving the given port and taxon (i.e., across all parameter sets tested). See Table S6 for species names
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4  | DISCUSSION

In this study, we sought to assist users to optimally select processing 
steps and parameter values for sequence processing pipelines during 
metabarcoding of bulk zooplankton samples for the 18S marker on 
the 454 platform. Generally, we observed that trimming sequences 
to 375–400 bp was most favorable when a 400- to 600-bp fragment 
was sequenced, and mild sequence quality filtration (1.5 ≤ MEE ≤ 3.0, 
Q = 10) worked best when overall sequence quality varied across 
samples (see summary of our findings on optimal parameter selec-
tion in Table 2). In optimization, denoising outperformed pipelines 
using clustering or neither clustering nor denoising regardless of the 
research objective. However, performance testing revealed that se-
quences—particularly at low abundance—of some taxa could wrongly 
be classified as noise during denoising, which resulted in false-
negative errors (see Figure 4c). Denoising pipelines also yielded very 
different distributions for sensitivity when compared to those that 
used clustering or neither clustering nor denoising. Denoising could 
drastically reduce sensitivity, particularly if the minimum abundance 
threshold for denoising was high (eight sequences). However, a high 
denoising minimum abundance threshold did reduce false-positive 
errors, which indicated that it was useful for species richness esti-
mates but not for early detection of AIS (when sensitivity and de-
tectability are imperative). Naturally, without clustering or denoising, 
the pipeline was most sensitive and yielded highest detectability, as 

the AIS targets were detected in every case. Both clustering and de-
noising reduced false-positive errors in optimization; however, these 
errors could be mitigated with further processing, so skipping clus-
tering and denoising proved the best way to process metabarcoding 
sequences for the early detection of AIS.

Our study is the first to optimize such a sequence processing 
pipeline for metazoan bulk sample metabarcoding. In addition, we 
tested 1,050 parameter combinations for two different research ob-
jectives (i.e., estimating species richness and early detection of AIS). 
Other studies have focused on a single aspect of the sequence pro-
cessing pipeline (Brown et al., 2015; Zhan, Xiong et al., 2014), tested 
relatively few combinations of parameters (Flynn et al., 2015), tested 
the ordering of processing steps (May, Abeln, Crielaard, Heringa, & 
Brandt, 2014) or tested bulk sample processing prior to sequencing, 
with mostly fixed sequence processing parameters (Piggott, 2016; 
Zhan et al., 2013). Brown et al. (2015) focused specifically on clus-
tering sequence identity and found that a 97% identity threshold 
was sufficient in UPARSE to recover most taxa. Testing many pa-
rameter combinations also allowed us to explore interdependency 
between parameters and processing methods, even though it was 
computationally intensive. For example, even with high paral-
lelization (~200 concurrent runs) of optimization and performance 
testing, the computational time required for this project was approx-
imately 2 months on a high-performance computing network (with 
CPU speeds of 2.2–2.7 GHz).

F IGURE  5 Overall detection probability of taxa for parameter sets optimized for estimation of species richness (a) and early detection 
of AIS (b) using no clustering or denoising (“NCOD”—red), clustering (green) and denoising (blue), per number of target sequences inserted 
into the original sample. Detection probability was computed using all combinations of taxon, port and parameter sets, across 25 replicates. 
Shown as dotted lines are 90% and 95% detection for each sequence processing method. Note the difference in x-axis labels. For estimation 
of species richness using denoising, 95% detection was not achieved
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Further, our study is novel in that we tested the performance 
of optimized pipelines by computationally inoculating sequences of 
20 species into real community samples to determine what can be 
expected for sensitivity and detectability given different combina-
tions of community structure and ecosystem. In related work, Zhan, 
Xiong et al. (2014) spiked biomass of two AIS into two community 
samples. They found that relationships between false-negative er-
rors and exclusion of singletons, doubletons and tripletons with var-
ied Phred score filters and biomass of target species spiked into real 

community samples. With strong filtering (Q = 30), spiked biomass 
of the marine scallop Argopecten irradians could not be detected in 
a real freshwater sample collected at Nanticoke, Lake Erie, although 
doubletons were usually recovered provided relatively weak filtering 
was carried out (Q ≤ 20) and sufficient biomass was present (Zhan, 
Xiong et al., 2014). Flynn et al. (2015) tested the ability of a similar 
pipeline to determine species richness of a mock zooplankton com-
munity using relaxed (length 250–600 bp, average Q ≤ 20) and strin-
gent (length ≥ 400 bp, MEE ≤ 0.5) filtering methods, in combination 

F IGURE  6 The sensitivity per taxon 
across all ports (a) and per port across all 
taxa (b), for parameter sets optimized for 
early detection of AIS using no clustering 
or denoising (“NCOD”—red), clustering 
(green) and denoising (blue). Error bars 
show standard deviation from the mean. 
See Table S6 for species names

TABLE  2 Summary of optimal sequence processing pipeline parameter selection for zooplankton 18S metabarcoding, given two research 
goals: estimation of species richness and early detection of AIS. “Q” denotes Q filter, “Length” denotes sequence length cutoff, “Singletons” 
denotes whether singletons should be kept or discarded, “MEE” denotes maximum expected error filter, and NCOD denotes “No Clustering 
or Denoising”. Note that keeping or discarding singletons in the early detection of AIS depends on whether the user will be clustering the 
data or not

Parameter/Option Estimation of species richness Early detection of AIS

Length 375–400 bp 375–400 bp

Q 10 10

MEE 1.5–2.5 2–3

Singletons Discard Depends on processing method. NCOD? Discard.
Clustering? Keep

Clustering identity 99% 99%

Denoising minimum abundance 8 2

Processing method Denoising No clustering or denoising
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with three different clustering algorithms with fixed clustering 
identity (97%). They concluded that UPARSE creates clusters most 
precisely and that stringent filtering was needed to accurately de-
scribe species richness. With a deeper optimization of this pipeline, 
we have corroborated their suggestions with respect to sequence 
length; however, our findings indicate that filtration can be more 
relaxed than they suggested. They also speculated that relaxed fil-
tering might be necessary to recover rare taxa or sequences (i.e., in 
detection of AIS), a finding we explicitly tested and confirmed in this 
study.

Here, optimization of the pipeline revealed that keeping single-
tons generally did not reduce false-negative errors except when 
using clustering in the context of early detection of AIS (in which 
the best nine parameter sets all kept singletons). Otherwise, remov-
ing singletons was a simple and uncostly means of reducing false-
positive errors. Generally, during optimization, retaining singletons 
increased redundancy and false-positive errors without decreasing 
corresponding false-negative errors. Although singletons could rep-
resent extremely rare taxa (see Brown et al., 2015; Zhan et al., 2013), 
they were more likely to be artifacts (Edgar, 2013; Flynn et al., 2015). 
Owing to the high sensitivity of the pipeline despite removal of sin-
gletons, we recommend that the advantages of reduced redundancy 
and false-positive errors outweigh the disadvantage of slightly re-
duced sensitivity. Thus, singletons can generally be removed with 
little negative impact.

Previous studies covering different taxa, amplified fragments 
and applications have utilized sequence processing strategies that 
included more stringent Q filtering, typically between 20 and 30 
(Bista et al., 2017; Elbrecht & Leese, 2015; Hänfling et al., 2016). In 
our study, with moderate filtering (Q ≥ 20, MEE ≤ 1.5), and especially 
at longer sequence lengths, all sequences of some species (particu-
larly Brachionus and Mesocyclops) were removed, resulting in false-
negative errors whether the aim was to estimate species richness 
or to maximize sensitivity. This finding corroborated that of Zhan, 
He et al. (2014), who noted that rare taxa were more likely to be 
lost with increasing Q filter strength and informational sequences 
(those that represented otherwise undetected taxa) were removed 
at any stringency. Relaxed filtration allowed longer sequences to be 
analyzed downstream, as sequence quality generally decreased with 
sequence length. This is important because longer sequences gen-
erally provided greater taxonomic resolution and accuracy, allowing 
more appropriate definition of clusters (if clustering is used), more 
appropriate classification of a read as noisy (if denoising is used), and 
more accurate taxonomic assignment during BLAST. The downside 
of relaxed filtration was that it can increase false-positive error.

We found that the most optimal parameter sets for estimating 
species richness allowed slightly more stringent filtration, which 
corroborated findings of Flynn et al. (2015). If the aim of the study 
is to accurately estimate species richness, sacrificing sensitivity and 
detectability (i.e., increasing false-negative error) to decrease false-
positive error is justifiable. However, users should not increase the 
stringency of the Q filter as it is extremely sensitive and will remove 
a sequence if it has a single low-quality base call. Conversely, if the 

objective is the early detection of AIS, false-negative error is typ-
ically more costly than false-positive error (a false-positive error 
can potentially be mitigated downstream, e.g., when identifying se-
quences in BLAST), so filtration should be relaxed. Therefore, with 
respect to filtration and sequence length, we recommend mild MEE 
filtration (1.5–2.5 for species richness estimation, 2.0–3.0 for early 
detection of AIS), relaxed Q filtration (10 at most) and trimming se-
quences ≥375 bp. The upper bound on MEE and lower bound on Q 
filtration holds regardless of sequencing platform, as we used 454 
pyrosequencing but cutting-edge sequencers may improve read 
quality. The lower bound on MEE filtration could be reduced with 
newer sequencing technology, but Q filtration strength should not 
be increased for the reasons outlined above. The optimal sequence 
length depends on the amplified fragment and the length of se-
quences in the sample (which depends on sampling method and se-
quencing technology). Our amplified fragment was at least ~400 bp 
in target taxa—and 98% of target sequences were ≥400 bp—because 
we used 454 pyrosequencing of DNA extracted from bulk samples 
(eDNA sequences will likely be shorter due to degradation). Hence, 
it is sensible that our optimal sequence length (375–400 bp) was 
close to the minimum amplified fragment length in our taxa; tax-
onomic resolution was maximized while very few sequences were 
wrongfully excluded due to failing to meet the length cutoff. In stud-
ies where most sequences reach the minimum amplified fragment 
length in target taxa, we recommend using a length cutoff of ap-
proximately 90%–100% of the minimum amplified fragment length 
in target taxa.

We found that both clustering and denoising were useful in re-
ducing false positives in the estimation of species richness. However, 
both should be avoided in the context of early detection of AIS 
because both sensitivity and detectability were reduced. We also 
found that a 99% clustering identity threshold was more optimal 
than the commonly used 97% identity threshold for bulk zooplank-
ton 18S metabarcoding for either research goal, and a denoising 
minimum abundance threshold of 8 was best for estimation species 
richness (see Data S7 for a more detailed discussion of clustering 
and denoising).

Application of next-generation sequencing in surveillance of AIS 
requires careful consideration of many options including sequenc-
ing technology, genetic marker and computational pipeline. Choice 
in sequencing technology has complex implications, manifested pri-
marily in differences in sequence quality and length. We used 454 
pyrosequencing in our study, although newer sequencing platforms 
could reduce sequencing errors. When this pipeline is used to de-
termine species richness, one can potentially utilize more stringent 
filtering, although two or three base call errors in a sequence of 
length ≥375 bp are unlikely to cause a serious problem. Regardless, 
longer sequences improve taxonomic resolution and weaker filtra-
tion allows rare (and potentially otherwise undetectable) taxa to be 
discovered; thus, care must be taken to not filter too strongly in the 
context of surveillance for AIS.

With respect to marker choice, we used 18S in our study but 
COI has shown higher sequence variability and improved taxonomic 
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assignment (Hatzenbuhler et al., 2017; Tang et al., 2012; Zhan, Bailey 
et al., 2014). This variability can be a double-edged sword; as it is ap-
parent even in primer binding sites, COI can have issues with primer 
generality (Deagle et al., 2014; Ficetola et al., 2010; Hatzenbuhler 
et al., 2017; Zhan, Bailey et al., 2014). Consequently, false-negative 
errors may be more likely to occur because of inconsistent ampli-
fication which would be particularly detrimental to early detection 
of AIS. In the metabarcoding context, the variability of COI relative 
to 18S may impact sequence clustering, denoising and taxonomic 
assignment (e.g., through BLAST). With a higher-resolution marker, 
sequences of different species will be more likely to be split into 
different OTUs during clustering (given some arbitrary identity 
threshold) and some sequences when denoising may be less likely 
to be considered noise because of increased sequence divergence. 
Downstream, taxonomic assignment in BLAST may be more confi-
dent for some taxa when using COI. Therefore, higher-resolution 
markers could increase sensitivity and reduce false negatives 
whether clustering or denoising is used (because of the aforemen-
tioned advantages in sequence processing). However, even with a 
higher-resolution marker (for example COI), we do not recommend 
clustering or denoising when conducting early detection of AIS for 
the reasons mentioned above. Many computational sequence pro-
cessing suites offer similar (if not identical) features or algorithms for 
trimming, filtering, clustering and denoising (Caporaso et al., 2010; 
Cole et al., 2014; Edgar, 2010; Schloss et al., 2009). Consequently, 
many of our findings are generalizable to different sequence pro-
cessing suites.

Regardless of marker and despite advancements in next-
generation sequencing technologies, sequence quality and process-
ing are, and will continue to be, important issues (van Dijk, Auger, 
Jaszcyszyn, & Thermes, 2014; O’Rawe, Ferson, & Lyon, 2015). 
Benchmarking and optimizing computational pipelines for exper-
iments that use different markers and target aquatic taxa will be 
helpful for refining metabarcoding analytical guidelines. Testing with 
different markers may yield different recommendations in terms of 
sequence length—as it depends on marker length and variability of 
target regions—and quality filtration—as it depends on sequence 
length. Testing with different taxa may yield different results across 
the entire pipeline, depending on the marker used. Because of the 
prevalence of metabarcoding in current research (and accordingly, 
the prevalence of computational sequence processing), there is a 
need for more studies that deeply explore and optimize sequence 
processing pipelines for different applications. We advise users 
conducting biological invasions research with metabarcoding to 
test multiple parameter sets when processing data and, when pos-
sible, skip clustering or denoising. One can obtain a consensus from 
multiple runs with different parameters, improving confidence and 
gaining different perspectives of the data. In the context of early 
detection of AIS and across the range of parameters tested, we ob-
served no situation where a parameter did not contribute to either 
false-positive or false-negative error in a significant manner (aside 
from singletons when denoising was used, Table S5). Thus, all param-
eters should be carefully considered in this context.

One important implication of our study is that, in metabarcod-
ing, there will almost always be some false-positive error and some 
false-negative error. To fully eliminate false-negative error—espe-
cially with low sequence abundance for some taxa, as is ideal in the 
context of early detection of AIS—there will almost surely be some 
false-positive error and it can become a serious issue. Given the 
potential difficulty in balancing false-positive and false-negative 
errors in this context, does metabarcoding have a place in the early 
detection of AIS? We believe it does, although it may be difficult 
to confirm that a target AIS is in a sampled waterbody using me-
tabarcoding (or a single marker) alone. A more effective strategy 
for conservation or AIS management applications would be to first 
use metabarcoding with the sequence processing strategy that we 
suggested, followed by a targeted genetic approach using highly 
species-specific markers and primers (e.g., using COI) or tradi-
tional sampling methods to confirm the presence of the species 
with greater confidence. For a given combination of marker, tar-
get taxon, and sampling method, until a deep optimization is per-
formed, analyzing sequence retention given length and filtering 
strength can provide some information with which to start a small 
search for good parameters.
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