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Abstract:  28 

In recent years, the effects of anthropogenic noise on freshwater fish has been of 29 

increasing interest for fishery managers due to rising levels of this background noise. While it is 30 

clear that anthropogenic noise can have important impacts on mammals and marine fish, much 31 

less is known about these effects in fresh water. The influence of anthropogenic noise on 32 

freshwater fish can be quantified using the same methods as with marine species — through 33 

measuring changes in behavioural and physiological outputs. Here, we briefly review the 34 

literature regarding behavioural and physiological impacts of noise pollution on freshwater fish 35 

and further note the lack of incorporation of both behavioural and physiological measures within 36 

current studies. We call for an increased research emphasis on possible effects of anthropogenic 37 

noise on freshwater fish and further suggest that the integration of behavioural and physiological 38 

techniques is critical for a full understanding of these effects. While freshwater fish face many 39 

stressors, it is unclear how important anthropogenic noise really is and this issue can only be 40 

properly resolved through careful study. 41 
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Introduction: 49 

 Sound is an important sensory stimulus for fish as it can be used actively for 50 

reproduction, prey/predator detection and territory defense as well as for identification of 51 

important habitat parameters (Fay & Popper 2000; van der Sluijs et al. 2010). Sound propagates 52 

very efficiently in deep water but is difficult to model in shallow environments due to interaction 53 

with surfaces and sediments (Kuperman 1977; Akyildiz et al. 2005) yet it is a critical sensory 54 

stimulus in most environments (Popper & Fay 1973). Many fish species are particularly reliant 55 

on sound as a form of communication (van der Sluijs et al. 2010), especially as visual cues can 56 

be obstructed in dark or turbid environments (Heuschele et al. 2012; Fisher & Frommen 2013). 57 

Some sounds in underwater environments are more harmful than they are helpful, particularly 58 

anthropogenic noise, which is a common manmade disturbance for aquatic species (Popper & 59 

Hastings 2009; Radford et al. 2014; Solan et al. 2016). Anthropogenic noise is primarily caused 60 

by urban developments, the expansion of shipping transportation networks, underwater resource 61 

extraction and seismic exploration devices and has been increasing in the past six decades 62 

(Hildebrand 2009; Frisk 2012; Solan et al. 2016; Vazzana et al. 2017). These sources of 63 

anthropogenic noise are hypothesized to disrupt acoustic communications and have far-reaching 64 

effects on aquatic species (Wysocki et al. 2006; Popper & Hastings 2009). Most aquatic studies 65 

have focused on high-power, acute noise sources such as sonar, airguns and pile driving due to 66 

the direct damage they can cause on animals (Popper & Hastings 2009); however, shipping is 67 

the most dominant source of anthropogenic noise which propagates at low underwater 68 

frequencies and overlaps with the hearing range/vocal outputs of many aquatic species (Ross 69 

1976; Dyndo et al. 2015; Solan et al. 2016). Soundscape data collected from a marine protected 70 

area for one year in the Mediterranean Sea indicates that vessel traffic masks fish choruses 71 
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46% of the time during peak vocalization hours (7:30-11:30 pm) therefore fish may be 72 

protected from some human impacts like overfishing in these refuge areas but can still be 73 

negatively impacted by anthropogenic noise (Buscaino et al. 2016). With some exceptions 74 

(Buscaino et al. 2010; Celi et al. 2013), the majority of documented impacts of such noise 75 

pollution on aquatic species have focused on detecting perceptible behavioural changes in an 76 

animal, including changes to their foraging efficiency (Purser & Radford 2011; Sabet et al. 2015; 77 

McLaughlin & Kunc 2015) or resulting in physiological changes, such as increasing stress levels 78 

or causing a hearing impairment (Smith et al. 2004; Wysocki et al. 2006; Nichols et al. 2015). 79 

While individual effects can be important, most aquatic noise research lacks integration of 80 

multiple techniques within each study when determining the impacts of anthropogenic noise on 81 

animals.  82 

While effects of anthropogenic noise are well studied in marine species, particularly 83 

focusing on marine mammals (Weilgart 2007; Heide et al. 2013; Dyndo et al. 2015); there are 84 

generally fewer studies that examine the effects of noise pollution on freshwater species (Popper 85 

2003; Slabbekoorn et al. 2010; see Table 1). The acoustic landscape of marine vs. freshwater 86 

environments differs quite markedly. Sound transmission in the open ocean can be effectively 87 

modeled as an unbounded medium but, especially for shallow freshwater environments, acoustic 88 

modelling is much more difficult when depth is often very shallow and substrates poorly defined 89 

(Kupperman 1977; Rogers & Cox 1988), although coastal marine environments can also be 90 

difficult to properly model. Freshwater systems may be less efficient at sound transmission than 91 

marine environments and only comprise 1% of the water on the globe, however they harbour a 92 

disproportionately high proportion of earth’s biodiversity (Combes 2003). Biodiversity in 93 

freshwater habitats is especially vulnerable to human-induced environmental change due to the 94 
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high human populations around freshwater ecosystems along with their high species richness 95 

(Abell 2002; Dudgeon et al. 2005). Freshwater ecosystems are experiencing a decline in 96 

biodiversity greater than those in terrestrial environments and with a global demand for 97 

freshwater; this is arguably one of the most important ecosystems to study (Dudgeon et al. 2005). 98 

In particular, fish are an important occupant of freshwater ecosystems and represent over half of 99 

all of the vertebrate species on the planet (Thomson & Shaffer 2010) and dominate global 100 

aquaculture production (Radford et al. 2014), highlighting their importance to humans and the 101 

need for further research. Noise pollution research in marine ecosystems is studied quite 102 

extensively, generally indicating that the impacts of noise can range from a behavioural change 103 

in an animal to death (Weilgart 2007; Popper & Hawkins 2012). We can use these studies as a 104 

marker and guideline for future freshwater noise pollution research.  Due to the outsize 105 

importance of freshwater habitats for fish diversity and the dearth of studies on noise effects in 106 

these habitats this review will focus on what is known about anthropogenic noise and freshwater 107 

fish (Table 1) and suggest ways forward on these sets of research questions. The observed 108 

impacts of noise levels on freshwater fish can be broadly categorized into behavioural changes 109 

and physiological changes, and listed below are common techniques used to determine the 110 

impacts noise has on aquatic animals and a summary of overall findings and results. This is not 111 

intended to be an exhausted review as they can be found elsewhere (Popper & Hastings 2009; 112 

Kight & Swaddle 2011) but instead to be used as a resource when determining which scientific 113 

technique best fits a given study species or research question and as an attempt to stimulate more 114 

research and possibly guidelines on acceptable levels of anthropogenic noise in freshwater 115 

environments (Popper et al. 2014). 116 

 117 
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Physiological studies: 118 

Glucocorticoids 119 

Glucocorticoids (GC) are used as an indicator of stress in a wide array of animals and 120 

chronic increases in GC levels can have detrimental effects on survival and reproduction 121 

(Sheriff et al. 2011; Dantzer et al. 2014; Narayan 2016). The mechanisms behind GC response 122 

are now well understood (e.g. Vazzana et al. 2010 and references therein) and include 123 

dysregulation of the hypothalamic pituitary axis or the hypothalamic pituitary interrenal axis in 124 

the brain brought on by environmental challenges (Bronson 1995; Dantzer et al. 2014). Often 125 

chronically-stressed individuals exhibit higher baseline plasma GC levels and an increased 126 

amount of time taken to return back to baseline levels (Sapolsky et al. 2000; Dantzer et al. 127 

2014). Anthropogenic disturbances, such as noise, are consistently associated with increased 128 

GC regardless of the type of human disturbance, ranging from habitat fragmentation to climate 129 

change (Dantzer et al. 2014). Glucocorticoid measurements can be collected from blood, 130 

saliva, faeces/urine, hair, feathers (for birds) and water (fish) (Sheriff et al. 2011; Dantzer et al. 131 

2014). Cortisol, a glucocorticoid that is indicative of a stress response, has been shown to 132 

increase in three European freshwater fishes when exposed to noise (Wysocki et al. 2006). 133 

Two fish species capable of hearing a wide range of frequencies —  the common carp (Cyprinus 134 

carpio) and the gudgeon (Gobio gobio) — and one species that hears primarily lower frequencies 135 

of sound — the European perch (Perca fluviatilis) — exhibit an increase in cortisol when 136 

exposed to ship noise but no increase in cortisol when exposed to Gaussian noise, indicating all 137 

three species are stressed when exposed to anthropogenic noise (Wysocki et al. 2006). Blacktail 138 

shiner (Cyprinella venusta) exhibit both an increase in cortisol and a shift in hearing threshold 139 

when exposed to acute levels of road traffic noise which can ultimately have negative 140 
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consequences on the fishes’ fitness (Crovo et al. 2015). Research should include both acute 141 

and chronic measures when studying physiological stressors to determine if habituation comes 142 

into play, as this could be important when determining if fitness will be impacted or if animals 143 

can habituate to the stressor. Johansson and colleagues, presented motorboat noise to Eurasian 144 

perch (Perca fluviatilis) and roach (Rutilus rutilus) in their natural environment and determined 145 

after short-term noise exposure both species exhibited an increase in cortisol, whereas during 146 

the long-term exposure (11 days) fish no longer had elevated cortisol levels, suggesting the 147 

role of habituation. As outlined in a review by Madliger and Love (2014) there are two main 148 

advantages to GC measurements; first, baseline levels can be obtained in one sample, therefore it 149 

is not always essential for the animals to be sacrificed. Secondly, GC exhibit an essential role in 150 

energy regulation, as anthropogenic disturbances may influence general energy expenditures GC 151 

can provide a good insight on the organisms overall state (Madliger & Love 2014).  However, 152 

there are considerations associated with this method, notably, individual differences in 153 

physiological stress responses, seasonal and diurnal variations in GC production and the time 154 

sensitivity related to collection of GC (Madliger & Love 2014). However, under natural 155 

circumstances animals may modify their lifestyle characteristics without an alteration in GC 156 

levels, for example, while nesting during Antarctic winter, king penguins (Aptenodytes 157 

patagonicus) fast for weeks without experiencing a rise in their GC levels (Sapolsky et al. 2000). 158 

This may be considered a stressful situation for humans, however it is perfectly natural for these 159 

animals. Glucocorticoid measurements are a common technique used to detect a physiological 160 

stress response in fish but it is important to take careful baseline measurements and show clear 161 

links to other integrative measures before just assuming that elevations of GC in response to 162 

noise demonstrates an actual stressor. These considerations have not always been taken into 163 
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account in previous research on noise as a physiological stressor but are critical to truly 164 

understand chronic and acute responses to noise in fish. 165 

Body and Tissue Samples 166 

 A second physiological measure to indicate impacts of noise on freshwater fish 167 

involves examination of body and tissue samples. Loud intensities of noise can significantly 168 

alter the auditory system or physiology of animals (Welch & Welch 1970; Smith et al. 2004b; 169 

Popper et al. 2014). Noise exposure can result in a temporary hearing loss, termed “temporary 170 

threshold shift”, which affects the audibility of signals and can prevent normal behavioural 171 

responses to signals, or permanent threshold shift which can lead to injury (Popper & Hawkins 172 

2012). Previous work has determined that intense sounds can cause temporary changes to the 173 

hearing thresholds of fish, or cause damage to sensory hair cells in the ear (Smith et al. 2003; 174 

Smith et al. 2004a). Goldfish (Carassius auratus) exposed to white noise (160-170 dB re 1 µPa) 175 

for a long period of time exhibit a decrease in hearing threshold and an increase in cortisol and 176 

glucose levels compared to controls (Smith et al. 2003). When exposed to three increments of 177 

decibel levels (115, 130 and 150 dB re 1 µPa ) cultured juvenile rainbow trout (Oncorhynchus 178 

mykiss) exhibit a significant difference in hearing threshold when compared to fish exposed to 179 

ambient noise (Wysocki et al. 2007). Rainbow trout are a member of the salmonid family and 180 

have no known hearing specializations, unlike goldfish, so it was somewhat surprising that even 181 

trout can exhibit a shift in hearing threshold when exposed to noise (Wysocki et al. 2007). Oscars 182 

(Astronotus ocellatus) exposed to differing frequencies and intensities of sound show clear 183 

evidence of auditory hair cell damage when exposed to sound at 400 Hz and 180 dB re 1 µPa and 184 

allowed to survive for four days after treatment (Hastings et al. 1996). Hybrid striped bass (Cross 185 

between Morone chrysops and Morone saxatilis) and Mozambique tilapia (Oreochromis 186 
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mossambicus) exhibit swim bladder ruptures, herniations and some instances of hair cell damage 187 

when exposed to loud playbacks (210-216 dB re 1 µPa) of pile driving noise (Casper et al. 2013). 188 

Halvorsen et al. (2012) discovered that lake sturgeon (Acipenser fulvescens) and Nile tilapia 189 

(Oreochromis niloticus), species with two different types of swim bladders, both exhibited 190 

damage to their swim bladder after exposure to pile driving. Hair cell density following loud 191 

noise exposure has been shown to have regenerative characteristics in some regions of the 192 

auditory system but not others (Smith et al. 2006). When goldfish were exposed to 170 dB re 1 193 

µPa for two days, hair cells regenerated in the central saccule region after 8 days, however hair 194 

cells in the caudal saccule did not return to pre-exposure hair cell counts in this time frame, 195 

suggesting evidence for tonotopic organization (Smith et al. 2006).  Following noise exposure, 196 

goldfish exhibit a significant shift in hearing threshold, however, 7 days post-exposure their 197 

hearing recovered significantly, indicating that only a subset of hair cells are required for 198 

auditory response (Smith et al. 2006).   199 

With relatively few studies examining anthropogenic influences on auditory damage in 200 

freshwater fish (but see Casper et al. 2013), more research is needed to determine the extent of 201 

hair cell damage when fish are exposed to differing levels of noise frequency and intensity found 202 

in their natural environment.  Measuring physiological damage or a shift in hearing threshold is a 203 

powerful method when determining the extent to which noise impacts animals. For example, if a 204 

researcher uncovers that a fish species has damage or a threshold shift after exposure to 180 dB 205 

re 1 µPa, this could provide pertinent information for conservation methods to protect the species 206 

by limiting human activities in at-risk areas. The limited data on actual damage in freshwater fish 207 

with anthropogenic noise makes regulatory and mitigation techniques limited in their 208 

effectiveness; therefore in order to properly regulate noise levels for conservation methods the 209 
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first step is to collect evidence regarding noise impacts on freshwater species (Popper et al. 210 

2014). 211 

Metabolic/ Ventilation Rate 212 

The final physiological measure that is studied in aquatic ecosystems, although not as 213 

commonly, is the impact of noise on metabolic rate. An example of increased metabolic rate 214 

was observed when European eels (Anguilla anguilla) were exposed to motorboat noise as they 215 

displayed a significant increase in oxygen usage compared to those in the control experiment, 216 

leading to a physiological impairment of the eels in the treatment group (Simpson et al. 2014). 217 

This method is non-invasive , as determining oxygen content in water can be done through a 218 

dissolved oxygen (DO) reader. Measuring ventilation rate of fish species is another method used 219 

to indicate stress levels, usually measured by counting opercular beat rate (OBR). Nedelec et al. 220 

(2016) discovered that short-term boat noise exposure resulted in an increase in OBR in a coral 221 

reef fish (Dascyllus trimuculatus), however the effect decreased over long-term exposure, 222 

indicating possible habituation to the noise. While measuring ventilation rate is a robust and easy 223 

method to carry out, it can also be subjective based on the audience analyzing the response and 224 

has some logistical issues. Ventilation frequency (VF) was used as an indicator of stress in Nile 225 

tilapia, and based on inconsistency of results it was concluded that VF is not a good indicator of 226 

stress and caution should be used when using this measure alone (Barreto & Valpato 2004). 227 

Using metabolic rate and ventilation frequency to determine a stress response fish can be 228 

considered powerful as it is non-invasive and relatively easy to carry out, however, few studies 229 

use these methods as indicators of stress in freshwater fish, therefore more research is needed to 230 

determine the validity of his method. 231 

Page 10 of 33
C

an
. J

. F
is

h.
 A

qu
at

. S
ci

. D
ow

nl
oa

de
d 

fr
om

 w
w

w
.n

rc
re

se
ar

ch
pr

es
s.

co
m

 b
y 

U
N

IV
 W

IN
D

SO
R

 o
n 

11
/1

1/
17

Fo
r 

pe
rs

on
al

 u
se

 o
nl

y.
 T

hi
s 

Ju
st

-I
N

 m
an

us
cr

ip
t i

s 
th

e 
ac

ce
pt

ed
 m

an
us

cr
ip

t p
ri

or
 to

 c
op

y 
ed

iti
ng

 a
nd

 p
ag

e 
co

m
po

si
tio

n.
 I

t m
ay

 d
if

fe
r 

fr
om

 th
e 

fi
na

l o
ff

ic
ia

l v
er

si
on

 o
f 

re
co

rd
. 



 

Is Noise a Physiological Stressor? 232 

Stress data collected from aquatic species can have a direct relation with conservation 233 

efforts and determining the appropriate habitat for aquaculture production (Pickering 1992; 234 

Smith et al. 2003). Research regarding suitable acoustic environments needed for a fish’s optimal 235 

growth or survivorship in an aquaculture setting may also have direct implications on human 236 

demand for fish (Smith et al. 2004). For example, goldfish (Carassius auratus) exhibit a shift in 237 

hearing threshold and masking of sounds when exposed to four different types of filters in 238 

aquaria, however, there was no shift in threshold when goldfish were housed in ponds (Gutscher 239 

et al. 2011). Graham and Cooke (2008) subjected Largemouth bass (Micropterus salmoides) to 240 

three different boat noise disturbances and discovered that fish exposed to canoe paddle noise 241 

increased their heart rate 29%, 44% when exposed to an electric trolling motor and 67% when 242 

exposed to a combustion motor. Detection of stress response is not always cut and dry as it is 243 

important to determine the “context, severity and duration” of the challenge presented (in this 244 

case noise), when indicating if the animal is indeed impacted (Bronson 1995). For example, if 245 

the stress response of the animal lasts for only one hour, is growth rate or fitness actually 246 

impacted? Future research should include the collection of glucocorticoid levels at different time 247 

intervals to determine a stress vs. time gradient which would also indicate if habituation has 248 

occurred. Future research may also benefit from integrating physiological techniques to 249 

determine if the animal is indeed stressed and if so, to what extent. For example, Flodmark and 250 

colleagues (2002) collected cortisol and glucose levels of brown trout (Salmo trutta) exposed to 251 

fluctuating water levels and flow to indicate a stress response. Furthermore, it is important to 252 

determine if the stress response is a result of natural diurnal or seasonal changes in 253 

gluccocorticoid levels, as opposed to the stressor. To determine noise impacts on fish, it is also 254 
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possible to measure cardiac output as a measure of stress, as it has similar mechanisms to 255 

humans (Graham & Cooke 2008). The increase in cardiac output that the bass experienced is 256 

consistent with an increasing magnitude of noise (combustion engine being the loudest). 257 

Measuring cardiac output is seldom performed to determine stress response of fish to noise, 258 

therefore more research should be done on this topic to increase validity. In some studies, 259 

researchers use biomarkers such as glucose, lactate and heat shock protein to determine a stress 260 

response (Celi 2016; Vazzana et al. 2017). For example, Vazzana and colleagues (2017) 261 

discovered that damselfish (Chromis chromis) experienced an increase in levels of glucose, 262 

lactate, proteins present in plasma and heat shock protein (HSP70) when exposed to low 263 

frequencies of noise. However, when determining if anthropogenic stressors cause damage to an 264 

animal it is often invasive, so it is also advantageous to develop less invasive physiological 265 

measures or to use behavioural mechanisms first. 266 

Behavioural studies: 267 

Examining a change in behaviour to indicate the state of an animal’s well-being is readily 268 

accessible, but can be easily misinterpreted without special knowledge of the species of interests’ 269 

“normal” behaviour. Behavioural responses to sound are influenced by cognitive processes such 270 

as detecting, classifying and decision making; therefore any form of disturbance in the 271 

environment can compromise this process and cause a decrease in fitness of the animal 272 

(Slabbekoorn et al. 2010). For example, if acoustic information is masked by noise pollution, 273 

important communication methods can be negatively impacted (Amoser et al. 2004; Slabbekoorn 274 

et al. 2010). To fully comprehend the extent of noise influence on behavioural characteristics of 275 

an animal, consideration of the species’ full behavioural repertoire is needed as the response of 276 

the animal is dependent on their current state (Bruintjes & Radford 2013). To determine boat 277 
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noise impacts on cichlids (Neolamprologus pulcher), Bruintjes and Radford (2013) studied nest-278 

digging behaviours, anti-predator defense, and social interactions in cichlids by taking into 279 

account breeding context, sex and dominance hierarchy, showing that the full behavioural 280 

repertoire of the animal did impact their reaction to noise. The following are different 281 

behavioural changes observed in freshwater fish species when exposed to noise.  282 

Foraging Efficiency  283 

Fish can be impacted by noise through masking important acoustic signals (Codarin et 284 

al. 2009; Slabbekoorn et al. 2010), causing a change in normal movement or activity which can 285 

ultimately decrease the time spent foraging. Noise may also impact foraging efficiency as it is 286 

a stressor which can alter behaviour of animals and cause a narrowing in attention (where 287 

animals focus on a smaller area) or focusing their attention on the noise itself (Slabbekoorn et 288 

al. 2010; Purser & Radford 2011). Currently there is a poor understanding of how noise 289 

pollution affects wild populations of fish as it is easier to track and quantify their behaviour in a 290 

manipulated experimental setting. However, Payne and colleagues (2015) examined the impact 291 

of anthropogenic noise on wild mulloway (Argyrosomus japonicus) populations using two 292 

experimental factors.  In the first experiment researchers captured and tagged 10 mulloway and 293 

placed noise receivers at multiple positions along their aquatic habitat. The researchers also 294 

caught and dissected 278 mulloway on weekdays and 83 on the weekends over a three year 295 

period to compare gut content. Mulloway were less active and inhabited greater depths on the 296 

weekend compared to the week which is consistent with boat activity records showing higher 297 

activity on the weekend. Stomach fullness was also significantly lower on weekends compared to 298 

weekdays, displaying an impact of boat noise on foraging efficiency. Studying animals in their 299 

natural environment is beneficial as it decreases the need to control for multiple variables that 300 
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experimental manipulations can include, however finding and tracking the animals can be 301 

difficult and quite expensive.  302 

The addition of brief white noise (10sec) to an acoustic habitat has been shown to 303 

increase performance errors and ultimately decrease foraging efficiency in three-spined 304 

sticklebacks (Purser & Radford 2011), demonstrating the large range of detriments noise can 305 

have on aquatic species. Predator-prey interactions in zebrafish (Danio rerio) are also impacted 306 

when exposed to differing levels of noise; zebrafish display an increase in handling error and a 307 

delayed response to food as noise increases (Sabet et al. 2015). Besides the obvious 308 

consequences exhibited by a decrease in foraging efficiency, if animals were to consistently 309 

increase effort needed to forage, their “net energetic gains” may decrease, impacting 310 

reproductive success or survival (Purse & Radford 2011).  Determining a change in foraging 311 

status or efficiency is a good indicator of health status for an animal as it is an essential 312 

component of survival for all animal species. However, often during experimental manipulations 313 

other confounding factors can cause stress for the animal and affect their foraging abilities; it is 314 

therefore essential to form an appropriate control and maintain consistencies in all environmental 315 

conditions.   316 

Startle and Sheltering Response 317 

An increase in startle response when anthropogenic noise is present has been shown to 318 

negatively impact the escape response of some marine organisms (McLaughlin & Kunc 2015; 319 

Nedelec et al. 2016; Sabet et al. 2016) and the same effects would be expected for freshwater 320 

fish. Increases in noise cause a reduced startle response in juvenile eels, resulting in an increased 321 

predator vulnerability (Simpson et al. 2014). As previously mentioned in this review, eels also 322 
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display a significant increase in oxygen usage in noise conditions compared to fish in control 323 

environments (Simpson et al. 2014). Coral reef fish (Dascyllus trimaculatus) exhibit an increase 324 

in sheltering when exposed to two days of motorboat noise, but stop responding after one week, 325 

showing evidence for behavioural and physiological attenuation (Nedelec et al. 2016). Sheltering 326 

behaviour and a significant increase in OBR were no longer observed in the fish after chronic 327 

exposure (1 week), indicating animals that continually respond to anthropogenic stressors may 328 

be negatively impacted in terms of growth, reproduction and survival, whereas those that 329 

habituate may have a decreased impact of noise and a better chance of survival (Nedelec et al. 330 

2016). Zebrafish exhibit a startle response and a brief increase in swimming speed when exposed 331 

to anthropogenic noise (Sabet et al. 2016). Behavioural responses, such as an increase in startle 332 

events, sheltering and a change in swim speed can impact predation risks (Sabet et al. 2016).  333 

Measuring sheltering and startle response as an indicator of stress is easy to recognize, non-334 

invasive (particularly of benefit to endangered or at risk species) and can be necessary when 335 

physiological measures are not always feasible.   336 

Change in Activity Levels/ Avoidance Behaviour 337 

A change in activity level in response to noise may have repercussions on lifestyle 338 

characteristic in animals, such as increasing predation levels (Simpson et al 2016). Using 339 

activity levels as an indicator of stress or impact created by anthropogenic disturbances can be 340 

useful as it is easy to record/and interpret and is often the first signs of stress an animal 341 

exhibits. However, it is necessary to have a strong background knowledge on the normal 342 

behaviour exhibited by an animal, which requires observation and analyses of multiple controls 343 

to ensure a change in behaviour is present due to the stressor and not the experimental set up or 344 

design. When presented with noise, fish may simply respond through evasion techniques. Cod 345 
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(Gadus marhua) hear low-frequency sounds and can discriminate engine/propeller noise at 346 

distances up to 2.0km away (Ona & Godø 1990). Cod exhibit avoidance behaviours (vertical or 347 

horizontal movements away from noise source) during trawling events and even demonstrate 348 

pre-vessel avoidance at depths less than 200m (Ona & Godø 1990). A review by De Robertis 349 

and Handegrad (2012) shows fish often avoid approaching boats/vessels which can lead to a 350 

potential bias in fishery surveys. To contest the issue of boat noise impacting fishery surveys, 351 

noise-reduced research vessels have been constructed and implemented in some areas 352 

(DeRobertis & Handegrad 2012). Noise-reduced vessels have been shown to represent a more 353 

accurate measure of walleye pollock (Gadus chalcogrammus) detection (DeRobertis & Wilson 354 

2011); however more research is needed to determine the impact on other fish species, 355 

especially freshwater species. Using activity levels as an indicator of stress in freshwater fish is 356 

not commonly performed but it is a powerful method to ascertain natural responses of fish and 357 

will allow a better understanding of true anthropogenic impacts.  358 

Behavioural techniques provide a good measure of anthropogenic influences on 359 

animals, however, as with all methods, there are caveats with using this technique. For 360 

example, when using fish as a model species it is common to perform these studies in an 361 

artificial setting. The housing condition itself may be stressful to the animal and can potentially 362 

confound the results of physiological or behavioural measures of stress. Therefore, variables 363 

that may impact the results, such as pH levels, background noise, and lighting conditions, must 364 

all be accounted for. The acoustics of experimental tanks are also problematic (e.g. Parvulescu, 365 

1967; Akamatsu et al. 2002; Rogers et al. 2016). Having said that, experimental manipulation 366 

is important as it is a powerful tool to pinpoint the exact cause of stress, where some of the 367 

field studies, such as those performed by Heide and colleagues (2013), can be considered 368 
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correlational as some confounding variables cannot be controlled for. As long as important 369 

caveats are kept in mind, both laboratory and field experiments can provide useful insight into 370 

noise as a possible behavioural stressor in freshwater fish. 371 

What can we gain from integrating?  372 

While using individual behavioural or physiological techniques as a measure of stress is 373 

often used as a proxy for impacts on growth and survival (Pickering 1992; Ellis et al. 2004; 374 

Huntingford et al. 2006), a more integrative approach would better assess the true impacts of 375 

noise as a potential stressor. Most documented impacts of noise pollution exhibited in studies 376 

look at specific behavioural or physiological characteristics of a species, for example 377 

determining the effects of noise on Mauthner-mediated startle responses (Zottoli et al. 1977) or 378 

the impacts of noise on hair cell damage in goldfish (Smith et al. 2006). This is important as it 379 

increases our knowledge base on the topic of noise pollution; however the majority of these 380 

studies lack integration within their design. Future studies should incorporate integrative 381 

examinations of noise on freshwater fish species to determine the extent to which noise affects 382 

them. For example, when studying the impacts of stress on a local freshwater species, it may be 383 

beneficial to measure behavioural characteristics such as foraging efficiency and avoidance 384 

response but also look at physiological responses such as glucocorticoid levels. Data collected 385 

from integrative studies can provide critical information on the extent of noise impacts; for 386 

example if cortisol data was collected and no significant differences were found after noise 387 

exposure it could be that hair cell damage occurred rendering fish deaf to the noise and therefore 388 

no longer physiologically stressed by a noise they can no longer hear. However, this finding 389 

would not occur without the presence of an integrative study that examined noise impacts at 390 

multiple levels. Understandably, such integrative studies require more work and knowledge on 391 
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the topic, however the results attained will be stronger and more comprehensive. When 392 

interpreting findings from each technique it is important to form a strong control to have a good 393 

comparison of “normal” behaviours to determine what constitutes a stress response.  394 

More research is also needed to determine the hearing threshold of freshwater fish 395 

species, and background noise levels in the freshwater environments in which they reside to 396 

better understand possible anthropogenic influences. Amoser et al. (2004) were one of the first 397 

researchers to estimate hearing thresholds species both with and without known hearing 398 

specializations in a freshwater lake (Lake Traunsee) and determine noise levels during boating 399 

activities to predict impacts this noise may have on these species. Boat noise overlaps within the 400 

most sensitive hearing range of cyprinids in Lake Traunsee, thus possibly masking sounds 401 

present in their natural habitat and impairing signal detection (Amoser et al. 2004). Braun (2005) 402 

argues that although there is increasing concern and documentation of noise pollution on fish, 403 

research should include data on how measures of stress affect sensory system function, again 404 

furthering the need for integration. When determining the impacts of anthropogenic influences, it 405 

is important to describe the background noise level first (Codarin et al. 2009). As well argued by 406 

Mann et al. (2009), to create regulations of anthropogenic noise the following information is 407 

needed: the amount of noise created, the audiograms of fish in the surrounding area, data on 408 

sound propagation of particular source and finally an assessment of the impact noise may have 409 

on surrounding species. Before regulations are implemented, further research needs to be 410 

conducted to determine the hearing range/vocal output of a number of fish species and finally, 411 

what sort of impact noise has on their lifestyle characteristics. Improvements to the field should 412 

also include: a deeper focus into low frequency chronic stressors commonly found underwater, 413 

more research on freshwater ecosystems, further research examining habituation (as exhibited by 414 
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Nedelec & Radford 2016) and to conduct studies based in the field rather than exclusively in a 415 

lab setting.   416 

To summarize the results from this perspective, a stress response can be visualized 417 

through behavioural characteristics such as a change in: foraging efficiency, avoidance response, 418 

startle/shelter response or activity levels and physiological such as changes in: glucocorticoid 419 

levels, body/tissue samples and metabolic rate. Some techniques contain more drawbacks than 420 

others and have not been researched as extensively, however, the type of technique used is 421 

ultimately dependent on the study species, resources available and experimental setup. Here we 422 

suggest using at least one behavioural and one physiological measure when studying noise 423 

impacts on freshwater fish to determine the full extent of the impact, which can further lead to 424 

predictions on animal welfare. As mentioned in this perspective all of the techniques used to 425 

determine anthropogenic influences on aquatic species include strengths and weaknesses, 426 

therefore to create a more powerful study and avoid confounding variables, it should be common 427 

protocol to include integration of multiple techniques within each study.  428 

 429 

 430 

 431 

 432 
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 435 
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Table 1: A partial review of effects and techniques used in noise pollution research in freshwater 666 

and ecosystems, outlining the need for more integration across studies. 667 

Species  Techniques 

Used 

Integration 

within study 

References  Title 

Rainbow trout 

(Oncorhynchus 

mykiss) 

Physiological: 

hearing threshold 

shift 

Partial: using three 

physiological 

markers to 

determine noise 

impact 

Wysocki et al. 

2007 

Effects of aquaculture 

production noise on hearing, 

growth, and disease resistance 

of rainbow 

trout Oncorhynchus mykiss 

Common carp 

(Cyprinus 

carpio), gudgeon 

(Gobio gobio), 

European perch 

(Perca fluviatilis) 

Physiological: 

increase in 

cortisol 

No: using one 

physiological 

marker 

Wysocki et al. 

2006 

Ship Noise and Cortisol 

Secretion in European 

Freshwater Fishes 

Blacktail shiner 

(Cyprinella 

venusta)  

Physiological: 

increase in 

cortisol, shift in 

hearing threshold 

Partial: Using two 

physiological 

measures  

Crovo et al. 

2015 

Stress and Auditory 

Responses of the Otophysan 

Fish, Cyprinella venusta, to 

Road Traffic Noise 

Eurasian perch 

(Perca fluviatilis), 

Roach (Rutilus 

rutilus) 

 

 

 

 

 

 

Physiological: 

increase in 

cortisol 

No: only using one 

physiological 

measure to indicate 

stress 

Johansson et 

al. 2016 

Stress Response and 

Habituation to Motorboat 

Noise in Two Coastal Fish 

Species in the Bothnian Sea 
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Goldfish 

(Carassius 

auratus)  

Physiological: 

increase 

cortisol/glucose 

levels, shift in 

hearing threshold 

Partial: Using two 

physiological 

measures when 

determining impact 

of noise 

Smith et al. 

2003  

Noise induced stress response 

and hearing loss in goldfish 

(Carassius auratus) 

Hybrid striped 

bass, 

Mozambique 

tilapia 

(Oreochromis 

mossambicus) 

Physiological: 

damage to hair 

cells, swim 

bladder ruptures, 

herniations 

Partial: Looking at 

multiple tissues to 

determine damage 

from noise  

Casper et al. 

2013 

Effects of exposure to pile 

driving sounds on fish inner 

ear tissues 

Zebrafish (Danio 

rerio), Lake 

Victoria cichlids 

(Haplochromis 

piceatus) 

Behavioural: 

startle response, 

increase in 

swimming speed 

Partial: using two 

behavioural 

responses 

Sabet et al. 

2016 

Behavioural responses to 

sound exposure in captivity by 

two fish species with different 

hearing ability 

Three-Spined 

Stickelback 

(Gasterosteus 

aculeatus) 

Behavioural: 

attention shift, 

decreasing 

foraging 

efficiency 

Partial: using two 

behavioural 

responses  

Purser & 

Radford 2011  

Acoustic noise induces 

attention shifts and reduces 

foraging performance in three-

spines sticklebacks 

(Gasterosteus aculeatus) 

Oscars 

(Astronotus 

ocellatus) 

 

 

 

 

Physiological: 

hair cell damage. 

No: using one 

physiological 

measure 

Hastings et al. 

1996 

Effects of low-frequency 

underwater sound on hair cells 

of the inner ear and lateral line 

of the teleost fish Astronotus 

ocellatus 
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Goldfish 

(Carassius 

auratus)  

Physiological: 

damage to hair 

cells 

No: using one 

physiological 

measure 

Smith et al. 

2006 

Stress Response and 

Habituation to Motorboat 

Noise in Two Coastal Fish 

Species in the Bothnian Sea 

Daffodil Cichlids 

(Nedamprologus 

pulcher) 

Behavioural: anti-

predator, social 

interactions 

Partial: using two 

behavioural 

markers  

Bruintjes & 

Radford 2013 

Context-dependent impacts of 

anthropogenic noise on 

individual and social 

behaviour in a cooperatively 

breeding fish 

Largemouth bass 

(Micropterus 

salmoides) 

Physiological: 

cardiac output 

No: one 

physiological 

marker 

Graham & 

Cooke 2008 

The effects of noise 

disturbance from various 

recreational boating activities 

common to inland waters on 

the cardiac physiology of a 

freshwater fish, the 

largemouth bass (Micropterus 

salmoides) 

Zebrafish (Danio 

rerio) 

Behavioural: 

predator prey 

interaction, 

foraging 

efficiency 

Partial: using two 

behavioural 

markers 

Sabet et al. 

2015 

The Effect of Temporal 

Variation in Sound Exposure 

on Swimming and Foraging 

Behaviour of Captive 

Zebrafish 

Cod (Gadus 

marhua) 

Behavioural: 

avoidance 

behaviour 

No: one 

physiological 

measure 

Ona & Godø 

1990 

Fish reaction to trawling 

noise: the significance for 

trawl sampling 

 668 
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