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Abstract. Round goby (Neogobius melanostomus) and western tubenose goby 

(Proterorhinus semilunaris) invaded the Laurentian Great Lakes at approximately the 

same time and area yet have shown substantial differences in their post-invasion success 

with more rapid establishment and development of much larger abundances of round 

goby populations throughout the invaded habitat. In this study, we compared differences 

in physiological performance (thermal tolerance and standard metabolic rate) between 

round and tubenose goby collected from the Huron-Erie corridor. Tubenose goby were 

observed to have lower thermal tolerance but exhibited similar standard metabolic rate 

across environmental temperatures compared to round goby. At temperatures exceeding 

31oC, tubenose goby demonstrated significantly higher mortalities and shorter times to 

death relative to round goby. The observed differences in thermal tolerance were 

consistent with differences in the native geographic ranges observed for each species at 

their southern ranges.  The observed differences in physiological performance combined 

with species differences in other life history traits such body size, reproduction, feeding 

ecology and habitat affiliation may also explain differences in the invasiveness 

experienced by these two Great Lakes invasive fish including a greater ability of round 

gobies to occupy extreme habitats with large water temperature fluctuations. 

 

Keywords. Fundamental niche, Respirometry, Thermal tolerance, Aquatic invasive 

species, Gobiidae 

 

Introduction.  Round goby (Neogobius melanostomus) and western tubenose goby 

(Proterorhinus semilunaris; hereafter referred to as tubenose goby) were first reported in 

the St. Clair River of the Laurentian Great Lakes in 1990 (Jude et al., 1992). Both species 

entered the Great Lakes at approximately the same time via ship ballast water, although 

the subsequent range expansion and degree of invasiveness attributed to each species 

post-invasion substantially differed. Round goby established populations throughout the 

entire Great Lakes basin within the first decade of their reported appearance, while 

confirmation of tubenose goby presence remained restricted to Lake St. Clair and the 

western basin of Lake Erie for most of its invasion history (Vanderploeg et al., 2002; 

Kocovsky et al., 2011).  Only within the last decade have the tubenose goby been 



Drouillard et al. 2018.  Journal of Great Lakes Research, Accepted Feb 28, 2018 

 
 

2 
 

reported in eastern Lake Erie and more recently in Lake Superior and Lake Ontario 

(Kocovsky et al., 2011.; Fuller e. al., 2013). The two species have also exhibited similar 

differences in their rate of invasive range expansion in other regions such as the Rhine 

basin, France (Manné et al., 2013).  

The two fish species in question exhibit a number of differences in their life 

history traits which may impact their ability to survive transport vectors (e.g. ship 

ballast), exploit various habitats and food resources, and/or overcome competition and 

predator interactions (Shea and Chesson, 2002). Although both species share many 

commonalities in near shore habitats and substrate affiliations (Jude and DeBoe, 1996; 

Erös et al., 2005; Dopazo et al., 2008; Didenko, 2013), round goby achieve larger body 

sizes, show a broader diet niche including utilizing higher trophic level prey items, and 

have higher diet plasticity in time and space compared to tubenose goby and other goby 

species (Andraso et al., 2011a,b; Števove and Kováč, 2013; Pettitt-Wade et al., 2015).  

Species-specific differences in physiological tolerance and/or metabolic 

performance attributes may also contribute to differences in each invader's ecological 

footprint and/or ability to exploit extreme habitats.  Differences in physiological tolerance 

such as acute thermal tolerance correspond to differences in fundamental niche, whereas 

differences in metabolic performance, e.g. standard metabolic rate, are likely to relate to 

realized niche differences depending on the nature of resource availability, community 

composition and interactions of the above factors with abiotic conditions (Beever et al., 

2016). Pörtner and Farrell (2008) introduced the oxygen- and capacity-limited thermal 

tolerance (OCLTT) hypothesis, which states that thermal tolerance, physiological 

performance and field distribution of ectothermic animals are causally determined by 

oxygen transport capacity representing a key limitation to their fundamental niche. In 

contrast, differences in metabolic performance measured as feeding rate versus water 

temperature interaction between native (Mysis salemaai) and invasive (Hemimysis 

anomala) mysids of Ireland showed competitive advantages of the invasive species under 

climate warming scenarios (Penk et al., 2016).  The latter implies a greater realized 

adaptive capacity of the invader (Beever et al., 2016) under disturbance regimes (climate 

warming) that occur due to differences in metabolic temperature optima between the 

species of contrast corresponding to a higher invasive impact. 

Between the two Great Lakes invasive gobies, round goby has achieved much 

greater attention with respect to metabolic rate and acute thermal tolerance 

characterization. Lee and Johnson (2005) characterized the standard metabolic rate 

(SMR) of round goby across a wide range of temperatures and body sizes, while Cross 

and Rawding (2009) characterized the critical thermal maximum (CTMax) of this 

species.  No comparable data for tubenose goby are available, and such data are vital to 

understand whether species-specific differences in physiology have contributed to the 

species geographic expansion histories or differences in ecological impact. Therefore, the 

objective of the present study was to determine and compare thermal tolerance and SMR 

of round and tubenose goby in order to determine if physiological tolerance and/or 

differences in bioenergetics requirements occur between the two invasive fish species. 

 

Methods. Sample collection and fish husbandry. Fish used for studies were collected by 

beach seine and minnow trap from the Detroit River during summer and fall of 2012 and 
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2014.  Both species were collected at the same locations and times. Round goby typically 

are larger bodied and more abundant than tubenose goby.  As such, tubenose goby were 

retained at the rate of their capture, whereas round goby were size sorted at the time of 

collection, with only those of comparable size to tubenose goby being retained. Fish were 

held for 2 months (for use in acute thermal stress trials) or 4 months (for use in standard 

metabolic rate measurement trials) acclimation periods post field collection in single 

species communal tanks. Water quality (pH, dissolved oxygen, temperature and 

conductivity) was monitored weekly. Water temperature was measured using in situ 

Hobo Tidbit temperature loggers (Hoskin Scientific, Burlington, ON, Canada). 

Individuals utilized for acute thermal stress trials were maintained in a recirculating 

system maintained at 22 ± 0.5˚C, which is the preferred temperature of round goby (Lee 

and Johnson, 2005). Individuals used in standard metabolic rate measurements were held 

in a flow-through system subject to normal seasonal temperature changes associated with 

the Detroit River. During the holding period all fish were initially fed live tubificid 

worms and weaned onto a commercial fish pellet formulation. All experimental studies 

were performed following ethical review by the University of Windsor Animal Care 

Committee.  

 Acute thermal stress.  Experimental trials were conducted in two 50 L glass 

aquaria designated for ‘control’ and ‘treatment' animals.  Each tank was partitioned into 

two equal sections by plastic mesh. The control tank received 5 fish per species, while the 

treatment 10 fish per species. All individuals were fasted for 24 h prior to trials. Each trial 

was initiated at 22˚C.  The control tank was maintained at 22˚C throughout the 

experimental period.  Water temperatures in the treatment tank was increased at a 

constant rate of 2˚C·hr-1 until the target temperature (31, 32, 33, 34, 35˚C) was reached 

for a the trial.  After the target temperature was reached, water temperature was held 

constant for 12 h (measured every 10 minutes) until the trial completion. 

Pilot observations and previous work on round goby (Cross and Rawding, 2009) 

indicated that the onset of muscle spasms is indicative of impending death. This endpoint 

was used as a surrogate measure of death during each 12 hour trial period. Immediately 

following onset of muscle spasm, individuals were removed and euthanized by overdose 

of anesthetic agent and the time of death recorded. At trial end the cumulative %mortality 

of each species was determined. Acute thermal stress trials were performed sequentially 

using different sets of fish from the communal tank for each trial.  Triplicate trials were 

performed at each target temperature. 

A general linear model (GLM) was applied to test for species x temperature 

interactions using the combined data to determine if differences in LC50 between species 

occurred according to the following model: 

              Mortality (Probit) = ln T + Species + Species x ln T + Constant         (1) 

Where Mortality (Probit) is the probit transformed percent of individuals for a given 

species succumbing to death after 12 h, ln 'T'' is the natural logarithm of temperature (oC) 

for the trial and Species was set to a categorical value (round goby = 1 or western 

tubenose goby = 0).  Values of 0% and 100% mortality are undefined under probit 

transformation and therefore were removed before analysis. Prior to performing the 

GLM, data normality was tested using Lilliefors Test.  After testing the model, the 

interaction term (Species x ln T) was found to be significant (F1,16 = 6.673, p<0.05) 
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indicating differences in LC50 between the species.  As such, linear regressions were 

subsequently performed separately for each species and used to extrapolate the 12 h LC50 

and 95% confidence interval (CI) around the LC50 value. 

 Standard metabolic rate. Prior to initiating the SMR study, ambient water 

temperature of holding tanks was 5˚C and all fish were assumed to have acclimated to 

cold conditions.  Both communal tanks were then switched from flow-through to a 

recirculation system, with water temperature brought up to 10˚C over 72 h. Following 

respiration trials at 10˚C, experimental water temperatures within aquaria were then 

slowly increased to the next temperature treatment over a 72 h period (18ºC, 23ºC, 26ºC, 

30ºC) and maintained until the next set of measurements were completed.  

 To measure individual oxygen consumption a single chamber intermittent flow 

respirometer (Loligo® Systems, Denmark) was used following Leadley et al. (2016). The 

respirometry chamber had dimensions of 33mm diameter x 100mm length. A 

submersible galvanic oxygen probe (MINI-DO, Loligo Systems, Denmark) was used to 

measure oxygen concentration in the respirometry chamber during measurement periods. 

AutoResp software provided automated system control and data collection. Each 

measurement trial used one fish per chamber and lasted for 18 to 27 h.  During each trial 

the system was sequentially looped through two stages: (i) the measuring period, where 

the chamber was sealed with O2 concentration logged through time, and (ii) the flush 

period, where oxygenated water was pumped through the chamber until the next 

measurement period. Measurement/flush periods were set to 300s and 130s, respectively 

except for the 30ºC temperature trials where periods were set to 120s and 110s to reduce 

oxygen sags. 

Respirometry trials were conducted under dark conditions using three separate 

trials on individual fish of each species within each temperature treatment. All 

individuals were fasted for 24 h prior to trial initiation. Each individual had its total 

length (mm), standard length (mm), weight (g) and volume (mL; by water displacement) 

measured (under sedation within a solution of MS222), and was then placed within the 

trial chamber. Individuals from each species were used only once per trial. The exception 

was the 26˚C and 30˚C tubenose goby trials, where, due to limited availability of fish, the 

same three individuals were used at both temperatures. To control for effects of 

background oxygen depletion within the respirometer, trials blanks were incorporated by 

adding a 3.8g glass flask stopper as a fish surrogate within the chamber and oxygen 

measurements taken over the 24 h period at each experimental temperature. Blank 

oxygen consumption readings were subtracted from oxygen consumption readings within 

each temperature treatment. 

 Respirometry data for round and tubenose goby trials were censored to eliminate 

the first 4 hours of measurements, where fish were still recovering from anesthesia and 

handling stress (Leadley et al., 2016). To remove additional artifact measurements during 

the trial period, SMR data were censored to include only measurements that fell within 

the 25-75% quartiles of the distribution of measurements taken during a trial. The mean 

of the censored data was then used to establish an integrated SMR estimate for each 

individual.  The integrated SMR value for each individual was used as the unit of 

replication. All SMR data are expressed in units of mg O2·g-1·d-1.   
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GLM was used to test for species differences in SMR while accounting for body 

mass, temperature and all interactions according to: 

ln SMR = ln BW + ln T + Species + ln BW x Species + ln BW x T + ln T x 

Species + ln T x ln BW x Species + Constant       (2) 

Where ‘BW’ is body mass (g).  Following initial model fit to the data, it was observed 

that all interaction terms were non-significant (ln BW x Species F1,36=0.289, p>0.5; ln 

BW x Temperature F1,36 = 0.023, p>0.8; ln Temperature x Species F1,36=0.201, p>0.6; ln 

Temperature x ln BW x Species F1,36=0.218, p>0.6).  The adjusted R2 of the model fit 

was 0.51 and corrected Akaiki Information Criterion (AIC) was 90.8.  Given the lack of 

significance, all interaction terms were removed and the model was re-run to the 

simplified model: 

 ln SMR = ln BW + ln T + Species + Constant    (3) 

The simplified model explained nearly the same degree of variance as the full model (R2 

= 0.54) and showed an improved AIC of 80.52.  As such, the simplified model was 

retained and used for analysis. For data presentation purposes, SMR values were size-

corrected to a standard 5 g fish based on the best fit GLM model to the data (Eq 11): 

  𝑆𝑀𝑅𝑠𝑐 =
5−0.894

BW−0.894 𝑥𝑆𝑀𝑅      (4) 

Where SMRsc refers to the body size corrected SMR for a 5 g equivalent sized fish and 

SMR is the empirically measured SMR in an individual fish.  Similarly, SMR values 

were temperature corrected (SMRtc) to a common water temperature of 21oC to illustrate 

body size relationships according to: 

  𝑆𝑀𝑅𝑡𝑐 =
ln(1.339𝑥21)

ln(1.339𝑥𝑇)
𝑥𝑆𝑀𝑅      (5) 

 

Results. Acute thermal stress. The mean ± standard error (range) body mass of round 

and tubenose goby was 2.27 ± 0.06 (1.63 to 3.07 g) and 1.92 ± 0.06 g (1.29 to 3.02 g), 

respectively.  Despite attempts to size grade fish and use similar size ranges within 

experiments, tubenose goby were significantly smaller (p<0.001; Kruskal Wallis) than 

round goby.  

 Average temperature induced mortalities were 7% for round goby and 3% for 

tubenose goby at the lowest temperature treatment (30.5˚C) (Figure 1). Mortality 

increased for both species with increasing water temperature. Average mortality for 

tubenose goby was 90% at 33.9˚C so no trials were conducted for this species at 35.4˚C. 

At this highest temperature, average mortality was 90% for round goby. Regression 

equations of probit transformed mortality versus water temperature were: 

 

Round goby: Probit (%Mortality) = 0.52±0.063·T – 12.4±2.1; R2 = 0.84; p<0.001; df=12;     

           (6) 

 

Tubenose goby: Probit (%Mortality) = 0.81±0.069·T – 21.0±2.2; R2 = 0.93; p<0.001; 

df=10;            (7) 

 

Figure 2 presents LT50's as a function of water temperature for each species as described 

by Eqs. 4 and 5. 
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Based on Eq. 6, the 12h LC50 (95% CI) for round goby was 33.4˚C (32.0 – 

34.9˚C), while the 12h LC50 (95% CI) for the tubenose goby was 32.2˚C (31.5 – 32.8˚C).  

Notably, the 12h LC50 determined for round goby in the present study was identical to the 

CTMax (crtical thermal maximum) of 33.4±0.3oC reported for this species by Cross and 

Rawding (2009). GLM revealed that 12h mortality differed significantly between species 

(F1,22 = 6.56; p<0.05; ANOVA), with a significant Species x Temperature interaction 

(F1,22 = 7.69; p<0.05; ANOVA).  Given the different slopes of Eqs 6-7, the two models 

intersect at 29.7oC, corresponding to a %mortality of <3% and below the lowest 

temperature used among trials. 

Table 1 provides linear regression fits and LT50 estimates (time against 

temperature in which 50% of the population show mortality) for each temperature and 

species where cumulative mortalities were sufficient to establish significant linear 

relationships.  For round goby, LT50 was computed for temperature trials of 32.6, 33.9 

and 35.4˚C and showed an expected decrease as a function of water temperature, with 

mortality occurring sooner as temperature increases. For tubenose goby, LT50 was 

estimated for temperature trials 31.9, 32.6 and 33.9oC and also showed a decrease with 

temperature.  Overall both species show a decline in LT50 with increasing water 

temperature and tubenose goby typically exhibit shorter time to death relative to round 

goby (Fig. 2). At 32.6˚C, where an LT50 was available for both species, the GLM 

indicated a significant species effect (F1,27 = 77.903; p<0.001) and Species * Time to 

death interaction (F1,27 = 68.15; p < 0.001).  For the 33.9˚C trial there was a non-

significant interaction term (F1,49 = 0.268; p > 0.6).  For extrapolation purposes the 

relationship between Log LT50 (h) and water temperature (T; oC) is described below and 

summarized in Figure 2: 

 

Round goby: log (LT50) = -0.17 ± 0.03·T + 6.6 ± 0.9; R2 = 0.96; p > 0.05; df=3   (8) 

 

Tubenose goby: Log (LT50) = -0.20 ± 0.02·T + 7.3 ± 0.8; R2 = 0.97; p > 0.05; df=2  (9) 

 

 Standard metabolic rate. The mean ± standard error (range) body mass of round 

and tubenose goby used within SMR trials was 5.93 ± 0.33 g (2.4 – 10.6 g) and 3.27 ± 

0.29g (1.2 to 5.1 g), respectively.  Despite the Species * ln BW interaction term not being 

significant in the general model (Eq 1), there were highly significant differences in body 

sizes between the species (Kruskal-Wallis; p<0.001).  The GLM equation fitted to Eq. 3 

was as follows: 

 

ln SMR = -1.09±0.23·ln BW + 1.36±0.25· ln T + 0.29±0.23·(species) – 1.35±0.80; 

R2=0.54; df=40            (10) 

 

Where a categorical value of 1 is given for round goby and a value of 0 is provided for 

tubenose goby.  According to the GLM fit, the temperature coefficient and effect of body 

weight coefficients were highly significant (ln T F1,40 = 28.82; p < 0.001; ln BW F1,40 = 

21.92; p < 0.001).  However, the effect of species within the GLM was not significant 

(F1,40 = 1.61; p > 0.2).  As such, Eq. 10 was simplified to remove the effect of species 

yielding a single model to explain SMR for both species: 
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     Ln SMR = -0.89±0.18·ln BW + 1.34±0.26·ln T – 1.40±0.81; R2 = 0.54; df=41  (11) 

 

The corrected AIC for Eq. 10 was 80.5 compared to 79.7 for Eq. 11. Given the similar R2 

value for both equations, smaller AIC of Eq 11 and lack of significance of the species 

interaction term of Eq. 10, Eq. 11 was considered the more parsimonious model.  Species 

differences in SMR was also tested for individual temperatures categorized into 2oC 

increments using ANOVA.  There were no species differences (p>0.05 all tests) in SMR 

at any tested temperature. Fig 3 presents the model fit of Eq. 11 to the SMR data 

generated for both species after adjusting for a common body size (5 g) or common 

temperature (21oC) to illustrate body size and temperature SMR relationships. 

 

Discussion.  Thermal tolerance in invasive species is most commonly inferred based on 

their geographic distribution and the thermal maxima apparent within their native range 

(Braby and Somero, 2006; Miller, 2016). The native range distribution of both round and 

tubenose goby populations in the Ponto-Caspian region indicate relatively high co-

existence along the 45ºN latitude (Neilsen and Stepien, 2009). Round goby, however, are 

distributed over greater latitudes at both their northern and southern (50ºN and 40ºN 

latitude) range with corresponding environmental temperatures ranging from -1 to 31oC 

(Ng and Gray, 2011). The results from the present research are consistent with the native 

southern latitudinal range difference between the species.  The present study did not 

characterize thermal tolerance of the two gobies under cold conditions, however the 

native range difference between the two species at the northern range would also imply 

greater fundamental niche for round goby under cold conditions. Indeed, round goby 

exhibited heightened transcriptional response relative to tubenose goby at both high and 

low temperature challenges suggestive of expanded fundamental niche at the cold 

temperature range as well (Welland and Heath, 2017). 

 Water temperatures in the lethal range (>31oC) of round and tubenose goby are 

not likely to be encountered in the open lake or riverine environment of the Huron-Erie 

corridor or other Great Lakes habitats. However, these temperature extremes may occur 

on an intermittent basis in shallow/turbid ditches and small creeks which provide 

connectivity between adjacent aquatic habitats. Differences in life history and resource 

use behavior may also interact with the above thermal tolerance attributes. For example, 

round goby utilize a more diverse array of structurally complex benthic habitats 

(Charlebois et al., 1997; Ray and Corkum, 2001) while tubenose goby show greater 

preference for still waters (Jude et al., 1992; Kocovsky et al., 2011). Thus a combination 

of higher temperature tolerance and ability to exploit flowing waters in small channels 

subject to high temperature fluctuations is consistent with round gobies exploiting 

extreme habitats and connecting corridors that can better facilitate their local dispersal.  

 There was no evidence for differences in metabolic performance (standard 

metabolic rate) over the temperature range of 10oC – 30oC between the species given that 

oxygen consumption conformed to the same model predictions in both species (Eq. 9). 

Compared to Lee and Johnson's (2005) model of round goby respiration, Eq 11 generated 

similar weight and temperature trajectories but somewhat higher SMR estimates that 

averaged 17.9% higher oxygen consumption compared to the earlier published model. 

These differences may be attributed to different measurement methodologies and 
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differences in the body size and temperature range conditions applied across studies.  Lee 

and Johnson (2005) used a manually operated closed respirometer with replicated (n=3 to 

10) oxygen consumption measurements taken for each fish after they were sealed in 

chambers from between 10 minutes to 2 h. The current study used an automated 

intermittent flow respirometer which collected more numerous measurements (100's of 

measurements per fish during each trial) over a 24 h period.  However, Lee and Johnson's 

(2005) study applied measurements over a larger body size range for round goby (1.67 to 

64 g sized fish) and temperature range (3.2 to 31.3oC) while round gobies in the present 

research were limited to fish between 2.4 to 10.6 g in size and temperatures of 10 to 

30.4oC.  However, the main objective of this work was to contrast metabolic rate between 

the two goby species rather than to reformulate an oxygen consumption model for round 

goby.  

 Size differences between round and tubenose goby were significant in both 

thermal tolerance and SMR measurement trials.  In the thermal tolerance trials, the 

differences in size was relatively small, with mean body weights of 2.27 g vs 1.92 g in 

round and tubenose gobies. These differences were not considered biologically 

significant and unlikely to interfere with inferences about thermal tolerance between the 

two species.  However, for SMR measurements the differences in body weight between 

species was larger with average body weights of 5.93 g vs 3.27 g for round and tubenose 

gobies, respectively (See Figure 3).  These differences in fish body size ranges could 

have contributed to the lack of statistical power in the GLM tests used to detect species 

differences in SMR.  Thus, repeating this study over a larger body size range would be 

useful to determine if the lack of species difference in SMR holds under data with higher 

statistical resolution. 

 Some studies have suggested that higher thermal tolerance entails a tradeoff 

against metabolic performance (Tepolt and Somero, 2014; Magozzi and Calosi, 2015). 

Thermal acclimation comes with additional metabolic costs related to the synthesis of 

protein isoforms/heat stress proteins enabling metabolic function over different 

temperature ranges (Zerebecki and Sorte, 2011) as well as behavioral responses involving 

feeding and/or avoidance activity (Ford et al., 2004). Indeed, round goby exhibited higher 

transcriptional response relative to tubenose goby under acute high and low temperature 

challenges that correspond to the greater acclimation response of round goby (Welland 

and Heath, 2017).  Such differences in transcription response and associated metabolic 

activity during may not have been great enough to detect under respirometry studies 

given measurement error of the technique and that the majority of measurements used for 

metabolic rate determination were taken under non-thermal stress conditions.  

 Differences in the behavioral responses to chronic thermal stress between the two 

species are not known.  Penk et al. (2016) demonstrated comparable 

respiration/temperature responses between native (Mysis salemaai) and invasive 

(Hemimysis anomala) mysids in Ireland.  Despite similar metabolic rates between the 

above species, the invasive mysid exhibited higher food consumption at warmer 

temperatures that enabled the invader to achieve higher growth potentials under warm 

conditions (Penk et al., 2016). Lee and Johnson (2005) characterized maximum food 

consumption rates of round goby and demonstrated a peak in food consumption at 23oC 

and rapidly decreasing consumption after 26oC with cessation of feeding at 30oC. This 
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implies optimal growth at 23oC and potentially weight loss at temperatures higher than 

26oC. The food consumption/temperature relationship for tubenose goby is not known but 

would be useful to determine in order to evaluate if energy assimilation potentials differ 

between the two species at higher temperatures.  

 Beyond thermal tolerance and potential thermal behavior differences, there are 

other life history traits that are known to differ between round and tubenose goby which 

may contribute to differences in their North American dispersal, population sizes and 

ecological impacts. Tubenose goby are smaller at the first age of reproduction (Corkum et 

al., 1998; Vanderploeg et al., 2002; Jude et al., 1992) and spawn only once per season 

whereas larger round goby females will span more than once per season (Corkum et al 

1998; MacInnis and Corkum, 2000; Meunier et al., 2009). Round gobies also achieve 

higher overall body sizes (Kocovsky et al., 2011), exhibit more aggressive behaviors 

(Groen et al., 2012) and have greater diet plasticity (Pettitt-Wade et al., 2015) compared 

to tubenose goby. Indeed, the pre-establishment of Dreissenid mussels in the Great Lakes 

prior to their invasion, coupled with ability of round goby, but not tubenose goby, to 

exploit this abundant food resource has been noted as a strong contributor to the round 

goby's establishment success (DeVanna et al., 2011).  Finally, round goby have a 

tendency to drift over a longer number of days during their larval stages compared to 

tubenose goby which has been hypothesized to both increase their probability of 

incorporation into ship ballast waters as well as contribute to heightened dispersal in their 

invasive habitat post establishment (Hensler and Jude, 2007; Janáč et al., 2013).  

  

Conclusion. The standard metabolic rate and acute thermal tolerance of round goby 

and western tubenose goby was determined in order to contrast metabolic performance 

and fundamental niche in two Great Lakes aquatic invasive fish species.  Both species 

exhibited similarities in standard metabolic rate over the environmental temperature 

range of 18 – 30oC.  However, round gobies exhibited significantly higher thermal 

tolerance to high temperature stress compared to tubenose. This provides support for 

differences in fundamental niche between the two species that is consistent with 

differences in their native geographic range distribution.  
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Table 1. Linear regression coefficients and constants between cumulative mortality and 

time for round goby and tubenose goby at different water temperatures. LT50 is the 

regression extrapolated time to 50% lethality (minutes) and associated 95% confidence 

interval. 

 

Species 

 

Temp 

(oC) 

Slope 

 ±SE 

Constant 

±SE 

R2 

 

P 

 

df LT50
 

(95CI) 

RG 32.6 0.12 ± 0.02 3.4 ± 0.2 0.66 <0.01 8 13.9 (0-32.9) 

RG 33.9 0.15 ± 0.02 3.5 ± 0.2 0.76 <0.001 16 9.8 (5.4-14.2) 

RG 35.4 0.19 ± 0.02 4.1 ± 0.1 0.78 <0.001 25 4.8 (0.8-8.8) 

TG 31.9 0.19 ± 0.04 3.5 ± 0.2 0.70 < 0.001 9 8.0 (0 – 18.0) 

TG 32.6 0.21 ± 0.03 3.9 ± 0.1 0.74 <0.001 19 5.2 (2.0-8.3) 

TG 33.9 0.16±0.05 4.5±0.2 0.28 <0.01 25 3.1 (0 – 11.8) 

 

Fitted regression:  Cumulative Mortality = Slope * Time + Constant.  
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Fig. 1.  Mean ± standard error cumulative mortality after 12 h exposure to 

target temperature in round and tubenose goby. 
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Fig. 2.  Mean ± 95% confidence interval of LT50 (h) as a function of water 

temperature in round and tubenose goby 
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Fig 3. Temperature corrected standard metabolic rate (SMRtc) of round and tubenose 

goby (Top) and size corrected standard metabolic rate (SMRss) of  round and tubenose 

goby (Bottom) determined in respirometry study. 
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Data Statement. 

 

Raw data used within manuscript are published as a data statement in spreadsheet format 

accompanying the publication in J. Great Lakes Research.  Requests for the data 
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