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Low levels of heterozygosity can have detrimental effects on
life history and growth characteristics of organisms but more
subtle effects such as those on trade-offs of expensive tissues
and morphological laterality, especially of the brain, have not
been explicitly tested. The objective of the current study was
to investigate how estimated differences in heterozygosity
may potentially affect brain-to-body trade-offs and to explore
how these heterozygosity differences may affect differential
brain growth, focusing on directional asymmetry in adult
Chinook salmon (Oncorhynchus tshawytscha) using the laterality
and absolute laterality indices. Level of inbreeding was
estimated as mean microsatellite heterozygosity resulting in
four ‘inbreeding level groups’ (Very High, High, Medium,
Low). A higher inbreeding level corresponded with a decreased
brain-to-body ratio, thus a decrease in investment in brain
tissue, and also showed a decrease in the laterality index for
the cerebellum, where the left hemisphere was larger than the
right across all groups. These results begin to show the role
that differences in heterozygosity may play in differential tissue
investment and in morphological laterality, and may be useful
in two ways. Firstly, the results may be valuable for restocking
programmes that wish to emphasize brain or body growth
when crossing adults to generate individuals for release, as
we show that genetic variation does affect these trade-offs.
Secondly, this study is one of the first examinations to test

2017 The Authors. Published by the Royal Society under the terms of the Creative Commons
Attribution License http://creativecommons.org/licenses/by/4.0/, which permits unrestricted
use, provided the original author and source are credited.
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the hypothesized relationship between genetic variation and laterality, finding that in Chinook
salmon there is potential for an effect of inbreeding on lateralized morphology, but not in the expected
direction.

1. Introduction
The brain is responsible for the direction of body movements, decision making and hormone production,
which directs somatic growth [1,2], and it is also one of the most costly vertebrate organs to produce
and maintain [3]. The expensive-tissue hypothesis previously suggested a trade-off in growth of gut
size to compensate for larger brain size [4], but this formulation of somatic trade-offs has been met
with some scepticism [5] leading to an extension of this hypothesized relationship, known as the energy
trade-off hypothesis. The energy trade-off hypothesis suggests that increases in brain size are associated
with corresponding decreases in energy consumption from ‘flexible functions’, such as reproduction,
digestion and locomotion [6,7]. The energy trade-off hypothesis, therefore, may be an evolutionary
mechanism to explain constraints on brain and body function.

A decrease in size of some expensive tissues (e.g. brain, gut, reproductive tissue) or the reduction in
energy consumption of ‘flexible functions’ could allow for an increase in brain size without increasing
net metabolic costs. However it is possible that there are other drivers, thus far overlooked, that are
responsible for the size of the brain and other organs. Inbreeding, or mating between closely related
individuals, will often lead to inbreeding depression: a decrease in an individual’s fitness due to
increased genetic homozygosity and the expression of recessive deleterious alleles [8,9]. While life-
history traits related to fitness may experience the highest inbreeding effects [10], morphological traits
can also be significantly impacted. Inbreeding has led to body weight reductions in rainbow trout
(Oncorhynchus mykiss), where the consequences of inbreeding became more pronounced with increasing
age, and resulted in significantly decreased female reproductive fitness (i.e. egg production) [11,12].
Thus, inbreeding effects on body size, which may be a characteristic crucial to some flexible functions,
would also be expected to affect brain size with the energetic trade-offs outlined above.

In addition to energetic trade-offs at the whole brain level, inbreeding may also affect differential
investment of the right and left brain hemispheres. Differential responses of brain hemispheres, also
known as directional asymmetry or lateralization, have been proposed as a mechanism for increased
efficiency of neural processing [13,14] and therefore may respond to differing ‘flexible functions’. In many
vertebrate species, it has become apparent that the right and left hemispheres of the brain are responsible
for different and specific tasks [14–18], and while most studies of laterality have focused on lateralization
of behaviour (e.g. [19–22]), there is increasing evidence of the asymmetry or differential contributions
of underlying bilateral neural structures that underpin the roots of asymmetry [23,24]. It has been
hypothesized [25–28] that there is a link between levels of genetic variation and directional asymmetry
in vertebrates but support for this hypothesis remains inconclusive, with some studies finding a positive
relationship between asymmetry of meristic characteristics and inbreeding [25] while others found no
association [29]. While the hypothesized role of genetic variation in laterality makes intuitive sense, more
testing is required, and on other characteristics including mensual (measured) characters, to either refute
or support this hypothesis.

The purpose of the current study is to examine effects of genetic variation on potential trade-offs
between brain and somatic growth as hypothesized in the energy trade-off framework, as well as
inbreeding effects on brain laterality, as both have been postulated to fluctuate with genetic variation
[10,11,26,27]. In addition, lateralization and brain growth have shown evidence of being passed on
through some, as yet unidentified, heritable component. Artificial selection on turning behaviour (i.e.
greater left or right turning preference) in minnows (Girardinus falcatus) over five generations results in
offspring showing the same turning preferences as the parental fish [30]. In that study, there might be
an underlying lateralized brain component leading to the specific lateralized behavioural output. Indeed
brain morphology can be inherited from parents, as demonstrated in guppy (Poecilia reticulata) offspring,
who were artificially selected for large or small brain size [31], and showed brain size comparable to
their parental fish overall. Therefore, we would expect that morphological lateralization of the brain
would be inherited from generation to generation. By using offspring from previously created lines
of Chinook salmon (Oncorhynchus tshawytscha) with different levels of inbreeding, assessed as per cent
heterozygosity using fin clips from representative fish of the same genetic lines but different cohorts,
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Table 1. Heterozygosity (observed, Ho and expected, He) and number of individuals genotyped (N) for six groups of captive Chinook
salmon.

genetic crosses N Ho He

self-crossed hermaphrodite offspring 29 0.456a 0.451a
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Hermie 1 x High 1 and reciprocal cross (H1 x HH; HH x H1) 27 0.676ab 0.660ab
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Hermie 3 x High 3 and reciprocal cross (T3 x HH; HH x H3) 27 0.677ab 0.619ab
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

CRD purebred (LLxLL) 31 0.765ab 0.683ab
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

CRD purebred (HHxHH) 34 0.787b 0.766b
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

CRD hybrid (HHxLL and LLxHH) 29 0.835b 0.811b
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Different letters represent significant differences between groups (alpha level= 0.0083).

we are able to begin to test the potential role of inbreeding in both energetic trade-offs as well as in
lateralized differences in gross brain morphology, which has not yet been rigorously investigated. Here
we hypothesize that the group deemed to have the highest level of inbreeding (‘Very High’) will show the
lowest investment into energetic trade-offs (i.e. brain-to-body ratio) and, based on the suggested genetic
variation and asymmetry relationship, will show the greatest asymmetry on our measures of laterality.

2. Methods
2.1. Sample collection

2.1.1. Study species

All measures were collected from seven different crosses of 3 year old Chinook salmon in the fall of 2012–
2014 from Yellow Island Aquaculture Ltd (YIAL) (Quadra Island, British Columbia, Canada), where
distinct genetic crosses have been created and maintained since the late 1990s [32]. Our seven genetic
crosses consisted first of offspring from self-crossed hermaphrodites which originated at YIAL in 2009 as
the result of the incomplete sex-reversal of a female broodstock fish (see [33] for further breeding details).
Secondly, we used offspring from crosses maintained as YIAL’s broodstock; their ‘high performance’
(HHxHH) and ‘low performance’ (LLxLL) purebred lines. These HHxHH and LLxLL lines were created
from fish chosen for high or low performance based on gene markers related to growth and survival
(see [32] and [34] for detailed breeding information) rather than from crosses specifically designed to test
inbreeding effects. We also used offspring from crosses involving a hermaphrodite fish (H1 or H3) and
high performance line (HH) fish (H1 x HH and H3 x HH); and our final crosses were made up of hybrid
performance offspring (HHxLL and LLxHH fish) from crosses of the purebred genetic lines (see [34] for
detailed breeding information). The first letters of the notation for all crosses indicate the maternal line
and the second letters indicate the paternal line.

Fin clips were collected from fish from each of the above outlined crosses (see table 1; hybrid
performance crosses pooled) of Chinook salmon at YIAL at different times and different stages of
development. First, fin clips were collected and preserved in June 2009 from offspring of hybrid
performance crosses (HHxLL and LLxHH) when fish were approximately seven months post-
fertilization. Fin clips were also collected and preserved from fish from hermaphrodite crosses
(self-crossed hermaphrodite offspring; hermaphrodite offspring×normal fish crosses) at approximately
1.5 years post-fertilization in April 2011. Finally, in the fall of 2011, fin clips were collected and preserved
from sexually mature individuals from purebred crosses (HHxHH and LLxLL), where individuals
ranged from 4 to 5 years in age. It should be noted here that fin clips were not collected from the fish
that were sampled for brain and body measurements; instead fin clips were collected from fish in the
same genetic lines as our study fish; however some samples may represent groups of different cohorts.
Therefore, different samples were used for genotyping to infer heterozygosity of our sample groups.

Finally, prior to all analyses, genetic crosses were separated into groups based on parental lineage
to test the hypothesized relationship between laterality and genetic variation. Thus, all offspring
derived from self-fertilization (i.e. hermaphrodites) composed the first group, all offspring derived from
hermaphrodite×HH (and the reciprocal) crosses made up the second group, all purebred cross fish (both
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OT

CB

Figure 1. The two salmonid brain regions of interest measured in the present study: the optic tectum (OT) and the cerebellum (CB).
The black line indicates where the cerebellum was divided into a right and left hemisphere using the midline of the optic tectum lobes
as an anchoring point.

HHxHH and LLxLL) were a third group, and all hybrid performance fish (HHxLL and LLxHH crosses)
constituted our fourth group.

2.1.2. Somatic and brain measurements

To address the energy trade-off hypothesis, two absolute somatic measures, brain mass and body mass,
were collected from all fish. After sacrifice and prior to brain removal, the weight of all fish was measured
on site in kilograms to two decimal places (Marel M1100, Marel, Gardabaer, Iceland). A small section of
the head containing the brain was removed from each fish and preserved in a 50 ml Falcon tube (Corning,
Inc., https://www.fishersci.com/) containing 30 ml of 10% buffered formalin for 48–72 h. The formalin
was removed and the head sections were transported to the laboratory at the University of Windsor
where the brains were dissected from the head section and placed in 70% ethanol. Total brain mass,
in grams, was obtained in the laboratory using a two decimal standard scale (Ohaus Scout Pro SP202,
Ohaus Corporation, New Jersey, USA). To estimate the growth energy invested into brain versus body
growth, a brain-to-body ratio measure was obtained using the two absolute measurements of brain and
body mass (absolute brain mass (g)/absolute body mass (g)) [35].

Following brain removal and weighing, dorsal images of all brains were taken with a digital
camera (Q-imaging Q1 Cam Fast 1394) connected to a dissecting microscope (Leica L2 10445930). Area
and perimeter measurements were collected for the right and left hemispheres of the optic tectum
and cerebellum (figure 1) from dorsal brain images using Northern Eclipse imaging software (Empix
Inc., http://www.empix.com). Whole brain mounts were used in place of histological sectioning to
avoid irregularities of fixation which can cause differential shrinkage of brain regions following tissue
dehydration and embedding (e.g. [36]). To obtain left and right hemisphere measurements from the
single-lobed cerebellum, this region was superficially bisected. The midline between the right and left
optic tecta was used as an anchoring point of reference for the superficial bisection line through the
cerebellum (figure 1), as the tectal ventricle and rhombencephalic ventricle within the brain make up
the internal midline of the optic tectum lobes, continuing through the cerebellum providing an internal
left–right division [37].

2.1.3. Genetic analyses of heterozygosity

DNA was extracted from fin clips following an automated plate-based extraction protocol [38].
Individual genotypes were determined through polymerase chain reactions (PCR) using 10 previously
described microsatellite loci, specifically OtsG68, OtsG432, OtsG78b [39], RT212, RT36 [40], Ots 211,
Ots213 [41], Ots1 [42], Ots107 [43] and Omy325 [44]. All primers were fluorescently dye-labelled and thus
PCR products could be visualized using a LiCor 4300 DNA analyzer (LiCor Biosciences, Inc.). Fragment
sizes (alleles) were then scored using GENE IMAGIR 4.05 software (Scanalytics Inc.).

Using the heterozygosity estimates we were able to assign each of our previously organized genetic
crosses into a ‘level of inbreeding’ group, ranging from low to very high, allowing us to more
readily hypothesize about where each group may fall according to the genetic variation and laterality
hypothesis. The four ‘levels’ defined from the analyses of heterozygosity were as follows. The ‘Very High’
inbreeding level label was given to our offspring derived from self-fertilization (i.e. from self-crossed
hermaphrodites); these were the fish with the lowest average genetic variation (average heterozygosity:
46%). The label of ‘High’ inbreeding (average heterozygosity: 68%) was for those fish whose parentage
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consisted of a hermaphrodite parent (H1 or H3) and normal stock (HH) fish (denoted as H1 x HH or H3 x
HH crosses, and the reciprocals; see table 1). Fish from purebred crosses (HHxHH and LLXLL) (average
heterozygosity: 77%) were given the label of ‘Medium’ inbreeding level, and the ‘Low’ inbreeding level
label was given to the hybrid performance offspring (average heterozygosity: 84%).

2.2. Statistical analyses

2.2.1. Somatic and brain measurements

Prior to analyses, assumptions of normality, homogeneity of variance and lack of outliers were assessed.
For assumptions to be met, 15 cases were removed due to incomplete dissection and damage to key brain
regions, leaving us with a total sample size of 118 fish.

The brain-to-body ratio was used as a measure of the energy trade-off hypothesis, calculated using
the formula: brain mass (g)/body mass (g). Differences between the inbreeding level groups were
investigated using a univariate ANOVA. Tukey’s post hoc analyses provided clarification of significant
effects of inbreeding level.

Left and right hemisphere measurements of perimeter and area were collected from dorsal images
of all brains extracted and were used to obtain the ‘laterality index’, LI = (L − R)/(L + R), where ‘L’
indicates the left side measurements and ‘R’ indicates right side measurements [24]. This formula allows
for a determination of side dominance and a consideration of asymmetry of each region independent of
overall brain size. Positive values (from 0 to +1) are indicative of greater left hemisphere size whereas
negative values (from 0 to −1) are indicative of greater right hemisphere size. In addition, the absolute
(unsigned) value of the LI was taken (i.e. | LI |) as a measure of the strength of asymmetry irrespective of
direction [45,46]. Because of a strong correlation between the laterality index and absolute index values
of the optic tectum (r = 0.215, p = 0.019), and between laterality index and absolute index values of the
cerebellum (r = 0.531, p < 0.001)—but no correlation between the laterality and absolute index values
across regions—two separate MANOVAs were run: one for the laterality index measures and one for the
absolute index measures. Analyses were carried out in this way as results are more reliable when the
dependent variables being investigated in a MANOVA are not, themselves, related [47,48]. Because two
separate tests were run we used a Bonferroni corrected alpha value of p = 0.025 (0.05/2) for our brain
morphology results. Perimeter values are reported here as patterns for differences between groups were
similar with respect to area and perimeter measurements.

2.2.2. Heterozygosity

Individuals that were genotyped at fewer than 6 loci were removed from subsequent analyses. All genetic
analyses therefore included 27–34 individuals for each of the six groups (table 1). We tested for significant
deviations from Hardy–Weinberg equilibrium (HWE) at all loci using GenePop v. 4.2 [49]. We also tested
for significant linkage disequilibrium using GenePop v. 4.2 [49], with an adjusted alpha level of 0.005
(p = 0.05/10) given multiple pairwise comparisons among the 10 loci. Mean observed (HO) and expected
(HE) heterozygosity across all loci were calculated using GenAlEx v. 6.5 [50]. Heterozygosity estimates
were compared among groups using the Kruskal–Wallis test, and if significant differences were detected
then Tukey’s post hoc tests were performed. Given that we conducted multiple comparisons among the
six groups, we chose an adjusted alpha level of 0.0083 (p = 0.05/6) for the analyses.

3. Results
3.1. Heterozygosity estimates
No loci showed significant deviations from HWE in any of the six groups, and no pairs of
loci showed significant linkage disequilibrium (p < 0.005) in more than two of the six groups.
Observed heterozygosity ranged from 45.6 to 83.5%, and was significantly different between groups
(table 1; p = 0.0005). Post hoc tests revealed that self-crossed hermaphrodite offspring experienced
statistically significantly lower heterozygosity compared to both HHxHH (p = 0.006) and hybrid groups
(p = 0.0003). Expected heterozygosity was also statistically significantly different between the groups
(table 1; p < 0.001), where self-crossed hermaphrodite offspring showed significantly lower expected
heterozygosity relative to both HHxHH and hybrid groups (p values < 0.001).
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Figure 2. As a measure of the energy trade-off hypothesis, the mean brain-to-body ratio values across inbreeding levels indicate that
those fish with the lowest inbreeding level, and thus highest per cent of heterozygosity, show the greatest investment into brain mass
when body mass is taken into account. Error bars represent mean± 1 standard error.

3.2. Somatic trade-offs
There was a statistically significant effect of inbreeding level on the brain-to-body ratio measure,
indicating differential investment of growth energy into the brain versus the body (F (3, 114) = 5.140,
p = 0.002 (figure 2)). The Low inbreeding level group showed an overall greater investment into brain
growth when body growth was taken into account, whereas the Very High inbreeding group showed
the lowest brain versus body investment. A Tukey’s post hoc analysis revealed that these differences were
greatest between the Low and Very High (p = 0.004), and Low and High (p = 0.029) groups (figure 2).

3.3. Laterality measures
Multivariate tests indicated that there was no effect of inbreeding level on the absolute asymmetry
values (Wilks’ lambda, Λ = 0.950, F (6, 226) = 0.988, p = 0.434). Multivariate tests on the laterality index
values showed that, while not significant, the effect of inbreeding level was close to our threshold for
statistical significance (Λ = 0.890, F (6, 226) = 2.261, p = 0.039). Despite the overall non-significant effect
for the laterality index (at our corrected alpha value) the between-subjects effects of inbreeding level were
examined. These tests showed that there was no significant effect of inbreeding level on the directionality
of the optic tectum (F (3, 114) = 1.566, p = 0.202) but there was an effect on the cerebellum (F (3,
114) = 3.005, p = 0.033), and while all four groups showed a larger left cerebellar hemisphere as indicated
by the positive laterality index values (figure 3), the Low inbreeding level had the highest laterality index
(see table 2 for all values). Post hoc tests were not statistically significant between all groups and only the
difference between the Low and High inbreeding groups approached marginal significance (p = 0.081)
(figure 3), but the differences appear to be driven mainly by the Low inbreeding level group.

4. Discussion
4.1. Somatic trade-offs
The energy trade-off hypothesis has not explicitly been investigated with reference to genetic variation
and its effects on potential differences between the brain and the body, but our results begin to suggest
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Figure 3. Representation of the laterality index of the cerebellum. Note that the values are all positive, indicating a larger left side of the
cerebellum in fish of all inbreeding levels. Error bars represent mean± 1 standard error.

Table 2. Mean (M), standard error (s.e.) and confidence intervals (95% CI) for the effect of inbreeding level on four measures of
morphology.

morphology measure inbreeding level M s.e. 95% CI (lower, upper)

optic tectum, laterality index very high −0.00297 0.00415 −0.01170, 0.00575
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

high 0.00822 0.00520 −0.00255, 0.01898
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

medium 0.01305 0.00408 −0.00470, 0.02139
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

low 0.00579 0.00446 −0.00320, 0.01478
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

optic tectum, absolute index very high 0.01625 0.00176 0.01256, 0.01993
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

high 0.02149 0.00315 0.01497, 0.02801
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

medium 0.02053 0.00282 0.01476, 0.02631
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

low 0.02397 0.00276 0.01841, 0.02953
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

cerebellum, laterality index very high 0.00132 0.00299 −0.00496, 0.00760
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

high 0.00151 0.00245 −0.00355, 0.00657
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

medium 0.00324 0.00236 −0.00158, 0.00806
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

low 0.00934 0.00197 0.00538, 0.01331
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

cerebellum, absolute index very high 0.01091 0.00155 0.00765, 0.01417
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

high 0.01052 0.00113 0.00820, 0.01285
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

medium 0.00998 0.00158 0.00675, 0.01320
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

low 0.01305 0.00141 0.01022, 0.01589
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

that there may be differential effects of genetic variation on a brain-to-body trade-off measure, although
this would need to be confirmed with a breeding design specifically set up to test inbreeding effects.
Other work on the energy trade-off hypothesis has examined the relationship between the brain and
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the gonads in bats [51], pectoral muscle mass in multiple bird species [6], the number of offspring
produced in guppies [31], and egg size and duration of parental care in cichlids, which both showed
a positive correlation with brain size [7]. In our study, when the brain and body mass were considered
together as a reflection of the energy trade-off hypothesis we saw that the Very High inbreeding group
showed the lowest brain-to-body ratio, and differed significantly from the most genetically variable
group (Low inbreeding) that showed the highest ratio. This relative measure of brain to body mass is
a reliable proxy for investigating patterns of somatic investment [35] and here we are seeing divergence
in brain size as a function of body size between groups of differing heterozygosities [52], based on our
grouping system. Because there may be other uncontrolled for genetic differences between our groups,
it is possible that differences in heterozygosity are not solely responsible for the differences observed
so a follow-up study could use a controlled breeding design. A higher relative investment in brain
size coupled with a higher level of heterozygosity may be a potent combination for overall fitness and
survival given that genetic history has shown important influences on body size (e.g. [11,12,53,54]) and
on gonadosomatic index (i.e. a trade-off between body size and gonad size) [55] in fish, and that inbred
(i.e. low heterozygosity) individuals have, overall, shown decreases in growth, fitness and survival rates
[8,56]. Enhanced investment in brain over body, then, may indicate enhanced sensory or behavioural
abilities [31]. Fish in aquaculture facilities are often highly inbred (e.g. [57]) and optimized for high
growth rates (e.g. [58]) but when aquaculture fish are released into the wild for restocking purposes
they often experience high levels of mortality due to predation (e.g. [59,60]). One option to enhance post-
release survival when restocking may be to focus on increasing genetic diversity in offspring to enhance
relative brain size and, perhaps, cognitive abilities since our results showed a potential linkage between
heterozygosity and relative brain size.

4.2. Genetic effects on laterality
As a test of the hypothesized relationship between genetic variation and measured asymmetry, our
results, like others [25,29], showed mixed support. Of the three brain regions measured, only one
region—the cerebellum—showed any indication of differences of measured laterality between groups.
Interestingly, it was not the Very High inbreeding level group made up of offspring of self-crossed
hermaphrodites that showed the greatest asymmetric differentiation. The genetic variation/asymmetry
hypothesis suggests that organisms with the highest inbreeding levels would have correspondingly
high measures of asymmetry, yet here the only significant result of laterality indicates that our group
with the lowest inbreeding level had the highest measured morphological asymmetry since the Low
inbreeding group was driving significant effects seen. Granted, all fish in the present sample from
whom morphological measures were obtained are from farmed crosses and are likely to experience more
inbreeding than their wild conspecifics, but it seems that a higher degree of inbreeding, or at least a lower
degree of heterozygosity, is not completely sufficient to predict greater values of measured asymmetry
on a morphological measure, at least in Chinook salmon.

Previous studies investigating brain differences in fish have done so using brain size as a function
of environmental rearing conditions generally focusing on each brain region as a whole [3,50,61–63].
Fewer studies, however, have actually investigated asymmetric differences of brain regions and, when
looking at neuroanatomy, have been more likely to focus on smaller neuroanatomical features like the
habenular nuclei (see [64] for review). Ours is one of the first studies to investigate the morphological
differences between hemispheres of the salmonid brain, whose growth is continuous throughout the life
cycle [36,65] responding to both external stimuli, such as environmental rearing conditions, and internal
physiological status. Previous work has shown that larger overall brain size is related to increased
cognitive ability in a fish species, Poecilia reticulata [31], suggesting perhaps a greater number of or
larger neurons within the brain. Differential growth of the left versus right hemispheres in a fish, then,
may be related to greater reliance on and use of one hemisphere of a given region due to increased
dependence for stimulus processing. Having a lateralized brain has been hypothesized to be beneficial
([28] and references therein) but there has been little connection to how this benefit might correlate with
or be explained by larger brain regions. In fish, the cerebellum is responsible for motor control, muscle
coordination and general movement [66]; therefore if a greater number of synaptic connections, or larger
or more numerous neurons are found delegated to the left hemisphere, for example, fish may show a
propensity for and efficiency of escape, random turns, or general movement in a rightward direction.
However the connection between motor asymmetries and hemispheric differences of the cerebellum has
yet to be rigorously investigated.
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5. Conclusion
Here we have presented one of the first studies to use crosses with different levels of heterozygosity,
likely caused by inbreeding to examine the potential effect of genetic variation on somatic trade-offs and,
using measures of lateralization of brain morphology, to assess the hypothesis outlining a relationship
between genetic variation and measured asymmetry. While our lines were not specifically bred to control
for inbreeding and there may be other genetic differences involved in the response, our results suggest
that a reduction in genetic variation does lead to a reduced brain-to-body ratio. Our study is only
beginning to examine patterns that may exist with respect to genetic variation but because we did not
carry out a specific and controlled inbreeding design we can only suggest potential effects of genetic
variation. In the future, more controlled studies of inbreeding will need to be carried out to get at the true
effect that genetic variation has on somatic trade-offs and lateralized brain morphology. Investigating
through controlled breeding how genetic makeup may influence the division of energy to certain tissues
could hold potential for aquaculture facilities and restocking programmes aiming to ensure the healthiest
fish possible with the greatest chance of survival [55]. In investigating differences in laterality as an effect
of our grouping variables of ‘inbreeding level’, we found some evidence that greater heterozygosity
may lead to greater laterality and our study is the first, to our knowledge, to address this hypothesis
in detail with respect to brain hemisphere differences. Further work on this hypothesis must be done
to gain a better understanding of how genetic variation may affect measures of lateralization. Studies of
lateralized morphology and behaviour to date have largely left out the component of genetic background
of the study organisms but moving forward studies wishing to test the genetic variation and laterality
hypothesis must incorporate breeding designs necessary to test inbreeding effects to truly understand
the nature of the suggested relationship. Based on the inbreeding level groups estimated herein, we have
shown that there may be effects of genetic background, yet not in the manner that has been previously
hypothesized.
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