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An index to characterize the spatial distribution of land use
within watersheds and implications for river network
nutrient removal and export
Madeleine M. Mineau1, Wilfred M. Wollheim1,2, and Robert J. Stewart1

1Earth Systems Research Center, University of New Hampshire, Durham, New Hampshire, USA, 2Department of Natural
Resources and the Environment, University of New Hampshire, Durham, New Hampshire, USA

Abstract The spatial distribution of land use and associated nutrient inputs may influence the efficacy of
in-stream nutrient removal; however, the effect of source location on N removal and watershed N export has
not been quantified. We present the skewness index, a metric to quantify the spatial distribution of land
use within watersheds. Using this index and a river network nitrogen removal model, we quantified the effect
of varying the location of developed land use within two watersheds on nutrient removal and export. The
quantity and location of developed land use as well as runoff affected nitrogen removal and export. Because
river network nitrogen removal is bypassed when sources are skewed toward the watershed mouth, varying
the location of land use alone can double aquatic nitrogen removal. Nutrient sources skewed toward the
distant headwaters maximized in-stream removal which in turn can reduce watershed export.

1. Introduction

Human activity has accelerated the nitrogen (N) cycle and enriched the landscape with reactive N [Galloway
et al., 2008]. As a consequence, most coastal rivers and bays in the U.S. are degraded by nutrient pollution
[Howarth et al., 2002], resulting in eutrophication [Cloern, 2001] which has negative ecological effects, such
as algal blooms, anoxic zones, and loss of habitat, as well as associated economic impacts like declining prop-
erty value and tourism [Pretty et al., 2003; Dodds et al., 2009]. The effect of human land use on water quality,
nutrient enrichment, and export from watersheds is well established [Beaulac and Reckhow, 1982; Carpenter
et al., 1998; Foley et al., 2005]. Of particular concern are nonpoint nutrient sources associated with human land
uses such as urban/suburban and agricultural areas that are a major source of nutrients contributing to eutro-
phication [Carpenter et al., 1998].

Studies considering the effects of land use on watershed nutrient export typically consider the aggregate
measure of total area in a watershed and pay little attention to the spatial distribution of this land use [.e.g.
Cronan et al., 1999, Goodridge and Melack, 2012]. Percent watershed impervious cover is also commonly used
as an indicator of environmental degradation fromurbanization [Arnold and Gibbons, 1996]. However, the spatial
distribution of landscape patches and the spatial scale at which land use is considered can be important [Strayer
et al., 2003; King et al., 2005]. Some studies have shown that land use in the riparian corridor [Sponseller et al.,
2001; Strayer et al., 2003; Van Sickle and Johnson, 2008] or subcatchment [Allan et al., 1997] can better predict
in-stream conditions. King et al. [2005] found that the Euclidean distance of land use to a sampling point
improved predictions of nitrate concentration in some streams. Though some have found that land use at
the whole watershed scale may best predict nitrate flux [Strayer et al., 2003], the distribution of land use patches
within the watershed and watershed size may affect nutrient export due to cumulative in-stream processes.

N fluxes to coastal zones are a function of N inputs to the watershed, terrestrial retention, and N removal in
transit through the river network. In-stream processing in river networks can remove substantial proportion
of N flux controlling the magnitude and timing of N export [Bernhardt et al., 2005, Mulholland et al., 2008,
Wollheim et al., 2008a, Lin et al., 2015]. Model simulations suggest that water residence time affects nutrient
removal [Wollheim et al., 2006]; therefore, landscape position of nutrient sources and their associated flow
path distance may affect the potential for nutrient processing before reaching the ocean [Seitzinger et al.,
2002; Alexander et al., 2002]. However, it is challenging to summarize complex spatial information regarding
the distribution of nutrient sources within watersheds. Perhaps, because of this, the potential effect of source
location on N removal and watershed N export has not been quantified.
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Our goal for this study is to evaluate the sensitivity of N processing and export in river networks to watershed
land use distribution. We first propose a metric to summarize the distribution of land use within watersheds
in a river network context that may help to better understand N removal potential. We then evaluate the
export and aquatic processing of N for two coastal watersheds in New England under current and scenarios
of land use distribution patterns. We hypothesized that the location of land use within watersheds would
control the opportunity for in-stream N removal, as denitrification, by regulating the time N inputs spent in
the river network and therefore have a large effect on N removal and, to a lesser extent, N export.

2. Methods

We quantified land use distribution within watersheds in terms of skewness toward or away from the river
mouth. Because there was no established metric, we developed an index to summarize the spatial distribu-
tion of land uses within watersheds considering the surface water flow path distance from potential sources
to the watershed mouth. This skewness index (SI) is

SIlu ¼ lu weighted mean flow path distance
unweighted mean flow path distance

(1)

The unweighted mean flow path distance is the average distance traveled by water through the hydrologic
network. We calculated land use weighted mean flow path distance for grid cell i to grid cell n as

Xn

i¼l
lu * FD

Xn

i¼l
lu

(2)

where lu is the proportion of each grid cell in the watershed occupied by a given land use type and FD is the
flow path distance from that grid cell along the river network to the watershed mouth. To calculate SI values,
we used land use data from the 2006 National Land Cover Database (NLCD) [Fry et al., 2011]. A SI value of 1
represents no skewness in the distribution of land use within the watershed while SI< 1 represents skewness
of land use and associated N sources toward the river mouth, and SI> 1 represents skewness toward the
most distant headwaters.

We modeled export and in-stream processing of dissolved inorganic N (DIN) using the N removal model
within the Framework for Aquatic Modeling in the Earth System (FrAMES) [Wollheim et al., 2008a, Wollheim
et al., 2008b, Stewart et al., 2011]. FrAMES is a spatially distributed, grid-based model of river network hydrol-
ogy and biogeochemical processes that operates on a daily time step. Modeled N removal, as denitrification,
is based on measured denitrification rates from the Lotic Intersite Nitrogen eXperiments 2 [Mulholland et al.,
2008] and varies with water temperature and ambient DIN concentrations in each grid cell (equations (3)–(5))
[Wollheim et al., 2008b].

Denitrification uptake velocity (md�1) at the reference temperature of 20°C (Vfden-Ref) was calculated for
every grid cell

Vf den�Ref ¼ 10 den_int þ log10 DINconcð Þ * den_slopeð Þ* 864 (3)

where denit_int and denit_slope are�2.975 and �0.493, respectively [Mulholland et al., 2008], DINconc is the
concentration of DIN in microgram per liter, and 864 is a conversion factor. Denitrification uptake velocity in
the grid cell is then calculated as

Vf den ¼ Vf den�Ref* Q10
waterT – 20ð Þ = 10ð Þ (4)

where water T is the water temperature (°C) in the grid cell and Q10 = 2. Total DIN removal (mass/mass) in
each grid cell is calculated as

R ¼ 1:0� e � 1:0 * Vf den=HLð Þ (5)

where HL =discharge/(width * length). Simulated discharge (m3 s�1), width (m), and length and water
temperature (m) for each grid cell are provided by FrAMES and are described in Stewart et al. [2013].

We used the DIN loading function developed for the Ipswich watershed [Wollheim et al., 2008b] in both water-
sheds. This loading function uses grid cell percent human land use, defined as the sum of residential, industrial,
and agricultural, to predict runoff DIN concentration as a function of runoff quantity [Wollheim et al., 2008b].
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Therefore, we aggregated the developed (residential and industrial) and agricultural (crop and hay/pasture)
land use categories from the NLCD data to quantify human land use for each grid cell. Though lumping agricul-
ture with urban/suburban land uses would not be appropriate in areas where agriculture is intensive, it is an
acceptable simplification where agricultural land represents a relatively small contribution to nutrient loading
compared to developed land use and agriculture primarily represents low-intensity uses such as pastures
and hay fields. In addition, in the Lamprey watershed, we added a waste water treatment facility to DIN loading.
The waste water facility is a point source input to the grid cell where it is located. We assumed that daily DIN
input from this facility to the river is the annual DIN mass/365 (Annual data: Piscataqua Region Estuaries
Partnership [2012]).

We calculated flow path distances and the skewness index using RiverGIS (version 2.1), a river network based
geographic information system developed at University of New Hampshire which allows for flow path ana-
lysis of hydrological data sets [Vorosmarty et al., 1998]. We used a stream topological network of gridded river
channels with a spatial resolution of 15 s latitude by 15 s longitude (approximately 500m) for the Ipswich and
Lamprey river networks. To calculate the skewness index in large Northeast U.S. watersheds, we used a river
network with spatial resolution of 3min latitude by 3min longitude (approximately 4.75 km) [Stewart et al.,
2013]. Both networks were derived from Hydrological data and maps based on SHuttle Elevation
Derivatives at multiple Scales (http://hydrosheds.cr.usgs.gov) using the regridding algorithm described in
Fekete et al. [2001] and verified against the National Hydrography Dataset (nhd.usgs.gov).

We assessed the potential effect of land use distribution on watershed export and river network removal of
dissolved inorganic N (DIN) by varying the location of land use within two watersheds to generate a range of
SI. We used two watersheds of similar size with differing amounts of developed land use (Figure 1). The
Lamprey River watershed is located in southeast New Hampshire draining to the Great Bay estuary with
9% and 5% of the area developed and agricultural, respectively (Table 1). The Ipswich River watershed
located in northeast Massachusetts has much more developed land use due to its proximity to the city of
Boston with 32% of the watershed area and developed and also 5% of the area classified as
agricultural (Table 1).

To quantify the effect on river network DIN removal and watershed export of one aspect of land use distribu-
tion within watersheds, the skewness toward or away fromwatershed outlet, we aggregated human land use
in the two test watersheds and varied the location of developed grid cells to generate contrasting SI values
(Figure 1). We aimed to produce a SI of 1 (land use centered within the watershed) and the largest and smal-
lest SI values possible given watershed template and human land use area. To accentuate skewness and
generate a wider range of SI values, we aggregated human land use into the least possible number of grid
cells while maintain the same total area of human land use. Though this aggregation allows to best test
the effect of varying SI, this aggregation also makes the results of these scenarios not realistic and not com-
parable to model output using actual land use distribution because land use intensity affects DIN loading. So
that DIN input is equal for each scenario, we used evenly distributed runoff set to generate annual average
discharge (from 2000 to 2010). To illustrate variability of effect of land use skewness on river network DIN
removal with changing discharge, we also reran the model for double and half the annual discharge.

To gain a broader understanding of how land use distribution varies in the Northeast U.S., we conducted a
regional analysis of the distribution of land use within large watersheds. We considered the James,
Susquehanna, Delaware, Hudson, Connecticut, Merrimack, and Penobscot watersheds which cover a large
area of the region, encompass several urban centers, and represent a range of land use intensity (Table 2).
We calculated SI for developed and agricultural land use in each watershed.

3. Results and Discussion

The amount, intensity, and location of land use within watersheds affected nitrogen export. Because it has
more than twice as much developed land use, the Ipswich watershed exported more DIN than the
Lamprey under actual land use distribution (Table 1). Concentrating developed land use for the scenarios also
increased watershed DIN export regardless of where in the watershed the developed land use occurred
(Table 1 and Figure 2). However, the location of land use within a watershed can also affect in-stream DIN
removal (Figure 3) and watershed DIN export (Figure 2).
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Actual land use distribution in the Lamprey has a SI of 0.89 indicating that human land use is skewed toward
the watershed outlet while the SI of 1.09 in the Ipswich indicates skewness toward the headwaters (Figure 1).
Even though a SI greater than 1 in the Ipswich watersheds indicates more potential for in-stream DIN removal
than in the Lamprey, increased DIN loading from the greater amount of developed land use still results in
larger DIN export from the Ipswich watershed compared to the Lamprey (Table 1).

In the Lamprey watershed, we generated SI values ranging between 0.35 and 1.53, but in the Ipswich the
range was more constrained between 0.50 and 1.47 due to a larger area of the watershed being developed

Table 1. Characteristics of the Study Watershedsa

Watershed Area (km2) Population Density (km�2) Area Developed (%) Skewness
Measured DIN Export

(kg km�2 yr�1)
Modeled DIN Export

(kg km�2 yr�1)

Lamprey 474 72 14 089 77 71
Ipswich 400 310 37 1.09 171 185

aArea developed and land use skewness represent both developed and agricultural land use categories (5% of each watershed is agricultural land with the
remaining developed area being residential/commercial). Population density is calculated from 2010 census data. Both measured and modeled DIN export values
are median for 2009–2009. Lamprey-measured DIN export from Daley et al. [2010] and Ipswich-measured DIN export from Morse and Wollheim [2014].

Figure 1. The (left) Lamprey and (right) Ipswich watersheds showing actual distribution of human land use (proportion
developed + agricultural) and the three scenarios for which human land use was concentrated and located to generate
a range of skewness indices from skewed toward the headwaters, centered, and skewed toward the watershed outlet.
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(Figure 1). Land use skewed toward the headwaters resulted in the highest local DIN concentration due to
lower dilution capacity (data not shown), but twofold greater in-stream DIN removal at the network scale
compared to land use skewed toward the watershed outlet (Figure 3). Land use skewed toward the head-
waters results in higher DIN flux (H mix line) throughout the river network (Figure 2). Because land use area
is the same across scenarios regardless of SI, DIN export without in-stream removal processing (conservative
mixing, “mix” solid lines) is identical (Figure 2). However, the location of land use, as well as the amount of

Figure 2. Modeled DIN flux watershed profiles with land use skewed toward the headwaters (H, red), centered
(C, purple), and toward the watershed mouth (M, blue) for the (a) Ipswich and (b) Lamprey watersheds. Solid lines
represent modeled conservative mixing of DIN (mix), and the dashed line shows modeled DIN concentration with
in-stream processing (removal).

Table 2. Land Use Skewness in Large Northeast U.S. Watersheds

% Land Use Skewness Index

Watershed Developed Agriculture Developed Agriculture

Connecticut 10 7 0.67 0.93
Delaware 20 19 0.61 0.86
Hudson 11 15 0.64 0.98
James 10 14 0.75 0.99
Merrimack 17 5 0.69 0.86
Penobscot 2 2 0.56 0.60
Susquehanna 8 26 0.81 0.94
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land use, and discharge affected in-stream removal of DIN (Figure 3). For the Lamprey watershed, at average
annual discharge, in-stream processes reduced DIN concentration by 7, 12, and 14% when SI was 0.35, 1.00,
and 1.53, respectively (Figure 3). In the Ipswich watershed, in-stream removal of DIN reduced concentrations
by 6, 9, and 11% when SI was 0.50, 0.97, and 1.47, respectively (Figure 3). Increasing discharge reduced in-
stream DIN removal (Figure 3). For similar SI, DIN removal was greater in the Lamprey compared to the
Ipswich (Figure 3) due to lower DIN concentrations resulting from less DIN input from a smaller area of human
land use (Figure 1 and Table 1). Nutrient uptake becomes less efficient as ambient nutrient concentrations
increase [Mulholland et al., 2008]; therefore, increased loading can reduce the efficiency of in-stream nutrient
removal. At average annual discharge, land use skewed toward the headwaters results in a reduction in DIN
export of 8 and 9 kg d�1 in the Lamprey and Ipswich, respectively, compared to the same land use skewed
toward the watershed outlet (Figure 2).

Though it is well established that human population is concentrated in coastal areas [Crowell et al., 2007], the
distribution of land use within smaller coastal watersheds can vary as illustrated by the patterns in the
Lamprey and Ipswich watersheds. To place the land use distribution of the Ipswich and Lamprey as well as
the scenarios we generated in a regional context, we also calculated SI for developed and agricultural land
use in large watersheds of the Northeastern US. In these watersheds, agricultural and developed land uses
were strongly skewed toward the watershed mouth as indicated by SI< 1, though in some cases, such as
the Hudson and the James, agriculture was minimally skewed (Table 2). SI for developed land use ranged
from 0.81 in the Susquehanna to 0.56 in the Penobscot and SI for agricultural land use ranged from 0.99 in
the James to 0.60 in the Penobscot (Table 2). In each case, the distribution of developed land use was more
skewed toward the watershed mouth than was agricultural land use indicating that farmland is located in the
hinterlands beyond cities (Table 2).

The SI characterizes the spatial distribution of land use within watersheds in a manner that indicates the
average residence time of developed land use runoff in the river network and the potential for N removal.
On average, developed land use had a SI of 0.68, indicating that flow path distances to the watershed mouth,
and therefore residence times, of runoff from developed land is less than that of average runoff for each
watershed. The average SI for agricultural land use was 0.88, suggesting that N inputs from agricultural land
use have a greater opportunity to be processed within the river network compared to inputs from
urban/suburban land use. Furthermore, the spatial distribution of human land use may help to explain

Figure 3. The percent of dissolved inorganic nitrogen (DIN) concentration that is removed by in-stream processing
with varying location of human land use within the Ipswich and Lamprey watersheds. The skewness index on the x axis
indicates if land use is skewed toward the headwaters (>1), centered (1), or skewed toward the watershed outlet (<1). Black
symbols represent results of simulations at annual average discharge, open symbols half of annual average discharge (low),
and gray circles double annual average discharge (high) in each watershed.
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why some watersheds are more retentive of N inputs than others. For example, in the James River watershed,
both developed and agricultural land are less skewed toward the watershed outlet than other watersheds
(Table 2) and have lower proportions of riverine N export [Boyer et al., 2002, Figure 6].

When there is a mismatch between the location of ecosystem services supply and demand, the utility of the
ecosystem service can be limited [Bagstad et al., 2013, Wollheim et al., 2013]. The ecosystem service of N
removal occurs throughout the river network [Hale et al., 2014]. Headwater streams play an important role
in controlling nitrogen export from watersheds [Peterson et al., 2001]. However, larger rivers may also be
important in processing N and regulating watershed N export [Wollheim et al., 2006; Tank et al., 2008;
Stewart et al., 2011; Hall et al., 2013]. When sources of N are skewed toward the watershed mouth, potential
N processing in the headwaters and midorder streams is bypassed, therefore limiting the utility of the eco-
system service. Nutrient processing in streams is strongly controlled by hydrology with in-stream nutrient
processing declining as discharge increases and water residence time decreases [Royer et al., 2004]. The spa-
tial distribution of land use and discharge both affect river network N removal so that more DIN is removed
when land use is skewed toward the distant headwaters, but the proportion of DIN removed is less with
increasing discharge for all SI values (Figure 3). Thus, coastal watersheds where human land use is clustered
near river mouths may be more vulnerable to eutrophication from land use change, especially during high
flow periods.

Maximizing in-stream DIN removal by exploiting surface water flow path length and water residence time
between DIN sources and watershed mouth may lead to reduced DIN export [Behrendt and Opitz, 2000,
Alexander et al., 2008; Green et al., 2009] but would produce trade-offs in water quality within the river net-
work. Concentrating N sources in the headwaters would result in higher nutrient concentrations throughout
the river network (Figure 2). This would shift the impact from the coastal zone to degrading water quality
throughout the river network. Reduced water quality would limit ecosystem services of the river systems such
as providing drinking water. Elevated levels of nitrate in drinking water are a health hazard [Terblanche, 1991],
and 66% of public water supply in the U.S. is withdrawn from surface waters [Kenny et al., 2005]. Using eco-
system services should be done in a manner to maximize the utility of the environment without damaging
the resource and considering trade-offs.

Our findings highlight that this ecosystem service of in-stream N removal is maximized when N sources are
skewed toward the distant headwaters, especially during low flow periods, which in turn can reduce
watershed N export. Therefore, the spatial distribution of land use rather than simply the total land use
amount can influence ecosystem health, function, and services. Analytical approaches to evaluate and quan-
tify the spatial distribution of land use, such as the SI, can be used to understand ecosystem current condition
and future risk as well as inform management and development planning. We found that the skewness of N
sources likely influences N processing and export on an annual scale, and it is likely to have the largest effect
on DIN fluxes during warm low flow periods when the potential for in-stream processing is greatest. The SI
could be used to prioritize subwatersheds and areas for nutrient runoff management.
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