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RESEARCH ARTICLE Open Access

Differential introgression and the
maintenance of species boundaries in an
advanced generation avian hybrid zone
Jennifer Walsh1,4* , W. Gregory Shriver2, Brian J. Olsen3 and Adrienne I. Kovach1

Abstract

Background: Evolutionary processes, including selection and differential fitness, shape the introgression of genetic
material across a hybrid zone, resulting in the exchange of some genes but not others. Differential introgression of
molecular or phenotypic markers can thus provide insight into factors contributing to reproductive isolation. We
characterized patterns of genetic variation across a hybrid zone between two tidal marsh birds, Saltmarsh
(Ammodramus caudacutus) and Nelson’s (A. nelsoni) sparrows (n = 286), and compared patterns of introgression
among multiple genetic markers and phenotypic traits.

Results: Geographic and genomic cline analyses revealed variable patterns of introgression among marker types.
Most markers exhibited gradual clines and indicated that introgression exceeds the spatial extent of the previously
documented hybrid zone. We found steeper clines, indicating strong selection for loci associated with traits related
to tidal marsh adaptations, including for a marker linked to a gene region associated with metabolic functions,
including an osmotic regulatory pathway, as well as for a marker related to melanin-based pigmentation,
supporting an adaptive role of darker plumage (salt marsh melanism) in tidal marshes. Narrow clines at
mitochondrial and sex-linked markers also offer support for Haldane’s rule. We detected patterns of asymmetrical
introgression toward A. caudacutus, which may be driven by differences in mating strategy or differences in
population density between the two species.

Conclusions: Our findings offer insight into the dynamics of a hybrid zone traversing a unique environmental
gradient and provide evidence for a role of ecological divergence in the maintenance of pure species boundaries
despite ongoing gene flow.

Keywords: Ammodramus caudacutus, Ammodramus nelsoni, Introgression, Genomic clines, Geographic clines,
Hybrid zones, Haldane’s rule

Background
Hybrid zones are excellent model systems for evolutionary
studies as they provide a diversity of recombinant geno-
types through generations of mutation, recombination,
and gene flow [1, 2]. Growing empirical evidence indicates
that natural hybrid zones occur across a range of taxo-
nomic groups at rates greater than previously estimated
[3] and that hybridization and introgression are important
forces that can shape the evolutionary trajectory of a

species [4–6]. Studies of hybridizing taxa that maintain
genetic distinction with ongoing gene flow provide insight
into the speciation process [6, 7] and offer a direct meas-
ure of reproductive isolation. Because hybrid zone studies
allow for the quantification of differential patterns of
introgression of foreign alleles, hybrid zones provide the
opportunity to identify the genetic and phenotypic traits
influencing species divergence [8].
Hybrid zones are thought to be semi-permeable

boundaries between genomes as differential fitness of
hybrids can result in reduced introgression of those re-
gions important in maintaining reproductive isolation,
while introgression of regions free of selection is permit-
ted [1, 9, 10]. Loci with no influence on hybrid fitness
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should display uninhibited movement across a hybrid
zone, whereas regions underlying local adaptation or
that are responsible for genetic incompatibilities remain
differentiated, often in the presence of gene flow [1, 8, 11].
Rates of introgression have been found to vary among
genetic and phenotypic markers across a number of nat-
ural hybrid zones [12–14]. These observations have been
linked to numerous demographic and selective processes,
including genetic incompatibilities [15], ecological diver-
gence [16], differential fitness [17], and variations in mate
preference and behavior [11].
Sampling a diversity of genetic and phenotypic

markers provides an unbiased view of introgression and
genetic structure across a hybrid zone [18, 19]. Under-
standing these patterns can offer valuable insight into
the mechanisms responsible for restricting gene flow
across species’ boundaries [11, 20–22], as differential
introgression may be indicative of ecological or evolu-
tionary dynamics in the focal gene regions [13, 23]. For
example, neutral microsatellite markers should diffuse
freely across the hybrid zone, resulting in widespread
movement of alleles. Conversely, diagnostic markers (i.e.
markers that are fixed or highly differentiated between
two parental species) are predicted to be under divergent
selection, exhibiting reduced introgression [19], as the
elevated divergence typically associated with diagnostic
markers suggests association with genomic regions
under selection [24]. Differential introgression of sex-
linked and mitochondrial markers relative to autosomal
loci is often attributed to Haldane’s rule, which predicts
greater fitness reductions in hybrids of the heterogam-
etic sex [25]. This pattern has been observed in a num-
ber of avian [26–28] and mammalian systems [12].
Morphological traits also provide insight into extrinsic

selection and demographic events shaping a hybrid zone
[29]. Bimodal distribution of phenotypes, or an abrupt
clinal transition, can be indicative of high dispersal, dif-
ferential selection, hybrid zone movement [13, 30], or
assortative mating [29, 31]. Assessing introgression of
secondary sexual characteristics (e.g., plumage) can also
aid in identifying patterns of asymmetrical introgression
[11]. Divergence in plumage characteristics can be par-
ticularly important in driving pre-zygotic isolation in
birds [32], as these traits play an important role in mate
selection, providing a range of important cues to females
including individual and territory quality [33, 34] and
offspring attentiveness [35].
Here we investigated patterns of introgression in an

avian hybrid zone between two recently diverged marsh
endemics, the Saltmarsh (Ammodramus caudacutus)
and Nelson’s (A. nelsoni) sparrow (~600,000 years; [36]).
In the USA and Maritime Canada, the two species are
restricted to a linear ribbon of tidal-marsh habitat along
the Atlantic seaboard with a subspecies of caudacutus

(A.c. caudacutus) predominantly inhabiting coastal salt
marshes from southern Maine to New Jersey and a sub-
species of nelsoni (A.n. subvirgatus) predominantly inha-
biting brackish and tidal marshes from the Canadian
Maritimes to northern Massachusetts [37, 38]. Current
knowledge suggests that the two taxa (hereafter cauda-
cutus and nelsoni, respectively) overlap and hybridize in
tidal marshes along a 210 km stretch of the New Eng-
land coast between the Weskeag River estuary in South
Thomaston, Maine and Plum Island in Newburyport,
Massachusetts [39–41].
Recent work in the caudacutus-nelsoni hybrid zone in-

dicates extensive introgression with a high proportion of
backcrossed sparrows in sympatric populations [42].
Despite high rates of admixture, very few individuals are
recent generation (F1/F2) hybrids (3 %; [42]), indicative
of an advanced generation hybrid zone characterized by
high rates of recombination [43, 44]. Accordingly, there
is no intermediate hybrid phenotype, and complex pat-
terns of morphological variation preclude discrimination
of pure and admixed sparrows from morphology alone
[42]. While backcrossing is extensive between caudacu-
tus and nelsoni, variation in habitat affinity, morphology,
and behavior suggest a role for isolating mechanisms in
this system. Abrupt environmental gradients across the
marine-terrestrial ecotone within tidal marshes present
adaptive challenges to terrestrial vertebrates (e.g. tidal
inundation and osmoregulatory demands [45, 46]). A.
caudacutus is a narrow niche specialist, reliant exclu-
sively on salt marshes in both its breeding and wintering
habitat; it has been associated with salt marshes over a
longer evolutionary time frame [47] compared to A.
nelsoni, which, in allopatry, uses a broader range of habi-
tats including brackish and fresh water marshes and hay
fields. In the hybrid zone, a mosaic of fine-scale habitat
types – coastal, bay, and upriver, tidal marshes – occurs,
and the spatial structuring of pure and hybrid individ-
uals follows a patchy distribution consistent with these
local habitat differences [48]. Due to these differences in
niche specificity, there may be stronger selection for
adaptive traits in pure caudacutus individuals, driving
ecological divergence. Tidal marsh adaptations may also
influence morphology and plumage coloration in pure
caudacutus and nelsoni [42, 49, 50] with potential
reinforcement of these traits through sexual selection.
Numerous behavioral differences between caudacutus
and nelsoni males, including differences in flight dis-
plays, song, aggressiveness, and mating strategy [37, 38,
51] further have the potential to shape asymmetries in
mate selection within the hybrid zone.
The aim of this study was to characterize the genetic

structure, including patterns of differential introgression
and selection, across the caudacutus-nelsoni hybrid zone
and to test the hypothesis that adaptive traits are
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important in maintaining pure species boundaries des-
pite ongoing gene flow. We conducted extensive,
systematic sampling across the full extent of the cauda-
cutus-nelsoni hybrid zone, coupled with population gen-
etic analyses and geographic and non-geographic cline
analyses to characterize genetic variation, quantify intro-
gression across genetic and morphological markers, and
identify the width and center of the hybrid zone. We used
plumage features and a diversity of genetic markers, in-
cluding anonymous (putatively neutral) microsatellites,
diagnostic (species-specific and potentially under selec-
tion; [52]) microsatellites, mitochondrial, and sex-linked
markers, to compare introgression patterns across poten-
tially variable selective processes. The diagnostic markers
used in this study were identified from a genome-wide
comparison of microsatellite loci between caudacutus and
nelsoni [52] and were selected because they showed ele-
vated divergence between allopatric caudacutus and
nelsoni individuals (FST = 0.4667) compared to neutral, an-
onymous microsatellites (FST = 0.15). Several of the loci
are linked to genes of known function, indicative of di-
vergent selection for functional traits that differ be-
tween the species [52]. The potential influence of
selection and introgression patterns for these markers
across the geographic extent of the hybrid zone are of
yet unknown. We predicted that the gene-associated
diagnostic markers would show reduced introgression
and more abrupt clines compared to the neutral micro-
satellite markers. We also predicted selection would
occur for sex-linked and mitochondrial markers in ac-
cordance with Haldane’s rule. In birds, females are the
heterogametic sex (ZW), and thus Haldane’s rule pre-
dicts reduced introgression of both sex-linked markers
and mitochondrial markers (due to maternal inherit-
ance) compared to autosomal markers. Lastly, we pre-
dicted strong selection for features related to plumage
darkness, as increased melanin is thought to be an
adaptation to tidal marshes (salt marsh melanism;
[49, 53, 54]), which we hypothesized to be under stronger
selection in caudacutus.

Results
We characterized genotypic data at 24 microsatellite loci
and DNA sequences from two mitochondrial, 2 Z-linked
and one autosomal gene from 286 sparrows from 32
marshes across the caudacutus-nelsoni hybrid zone and
surrounding allopatric populations (Fig. 1). We obtained
morphological data (plumage, bill, and structural mea-
surements) from 254 of these individuals. Microsatellite
loci were highly polymorphic with allelic richness ranging
from 4 to 33 alleles per locus (mean = 12.7). Allelic rich-
ness was greater in pure caudacutus populations (mean =
8.5 alleles per locus, range = 2 – 21) than in pure nelsoni
populations (mean = 7.3 alleles per locus, range = 1 – 14).

Mean observed heterozygosities ranged from 0.531 to
0.704 (Table 1), with heterozygosity generally increasing
from North to South. Six of the 24 microsatellite markers
(Ammo008, Ammo012, Ammo015, Ammo016, Ammo030,
and Ammo036) were candidates for positive selection,
likely a result of their association with coding regions
(Additional file 1: Figure S1). All other microsatellite
markers were within neutral expectations. We detected
significant deviations (Bonferroni adjustment; α = 0.05,
P = 0.001) from Hardy-Weinberg in 7 out of 32 (22 %)
marshes (Table 1). We did not observe significant linkage
disequilibrium in any of our populations.

Genetic structure of the caudacutus-nelsoni hybrid zone
Haplotype distributions among sampling locations varied
by marker, with the least mixing observed in ND2, ND3,
and SLC45A2 (Fig. 2); because ND2 and ND3 were
identical for all individuals, they are combined for subse-
quent descriptions. We detected caudacutus haplotypes
in our putatively allopatric nelsoni populations for four
out of five genes: 4 individuals (10 %) for ND2/ND3, 1
individual (2 %) for SLC45A2, and 4 individuals (10 %)
for SLC30A5. We detected fewer instances of nelsoni
haplotypes in putatively pure caudacutus populations,
with only 1 individual (2 %) for ND2/ND3, SLC30A5,
and RAG-1. We assigned hybrid haplotypes for the two
markers with RFLP banding patterns (RAG-1 and
SLC30A5). In allopatric populations, we identified 4
putatively pure nelsoni (11 %) and 9 putatively pure
caudacutus (25 %) with mixed haplotypes for RAG-1.
For SLC30A5, we found hybrid haplotypes in the pure
nelsoni populations (27 %) but no hybrid haplotypes in
the pure caudacutus populations. In sympatric marshes,
the percentages of nelsoni and caudacutus haplotypes
were as follows: 41 % nelsoni and 59 % caudacutus for
ND2/ND3 and 31 % nelsoni and 69 % caudacutus for
SLC45A2. For SLC30A5 and RAG-1, the percentages of
nelsoni, caudacutus, and hybrid haplotypes were 20, 71,
8 and 26, 50, 24 %, respectively (Fig. 2).
STRUCTURE assigned individuals to one of two gen-

etic clusters (Fig. 3) based on ΔK (Additional file 2:
Figure S2), which corresponded to caudacutus and
nelsoni populations. Consistent with previous findings,
we found few intermediate individuals (F1 hybrids) and
pure and backcrossed individuals appeared to be patchily
distributed across sympatric populations (Fig. 3). Indi-
viduals sampled from allopatric nelsoni populations had
a low probability (mean Q value ± SD = 0.007 ± 0.01) of
being assigned to the caudacutus cluster, while individ-
uals sampled from allopatric caudacutus populations
had a high probability of being assigned to the caudacutus
cluster (mean Q ± SD= 0.995 ± 0.006). Sympatric popula-
tions had intermediate Q values and hybrid indices (mean
Q ± SD = 0.667 ± 0.450, Range = 0 – 1 and mean HI ± SD
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= 0.66 ± 0.38, Range = 0 – 1); however pure caudacutus
and pure nelsoni individuals inhabiting the same marshes
largely drove this pattern (Fig. 3). Twelve individuals (4 %)
had Q values ranging from 0.1 to 0.9 (recent generation
hybrids); these 12 individuals were dispersed across the
sampled marshes (i.e., there were no marshes with a dis-
proportionately high number of recent generation hy-
brids). There were 94 individuals (42 %) with a hybrid
index ranging from 0.1 to 0.9 (indicating they were not
pure parental genotypes). Mean site-specific interspecific
heterozygosity ranged from 0 to 0.76 (mean ± SD = 0.26 ±
0.12), with the greatest interspecific heterozygosities found
on sites near the center of the hybrid zone (Table 1). We
observed significant genetic differentiation among sam-
pled marshes (FST), with values ranging from 0 to 0.375
(θ = 0.1; Additional file 3: Figure S3). The largest FST
values were generally observed between the allopatric
nelsoni populations and all other marshes. We also
detected significant FST values between sympatric
marshes that were predominantly composed of nelsoni

individuals (Maquoit Bay, Cousins River, and Rye
Beach) compared to all other marshes.

Genomic and geographic analyses of introgression
Genomic clines revealed that introgression patterns were
variable among markers (Additional file 4: Figure S4).
Sixty-six percent (19) of the 29 markers showed devia-
tions from patterns of neutral introgression (meaning
they either exhibited more gradual or more abrupt pat-
terns compared to neutral expectation; Fig. 4, Additional
file 5: Figure S5). Clines were steeper than neutral ex-
pectation for 12 of these markers, including six of the
diagnostic microsatellite loci (Ammo markers 001, 003,
006, 008, 027, 036), three of the anonymous microsatel-
lites (Escμ1, Asμ15, Aca08), two mitochondrial markers
(ND2/ND3), and SLC30A5. Six neutral microsatellite
markers and RAG-1 displayed more gradual clines than
neutral expectation. Comparison of individual loci to
multilocus expectation using the logit-logistic model re-
vealed variations in cline slope and position among the

Fig. 1 The location of 32 marshes along the northeastern coast of the United States where A. caudacutus and A. nelsoni individuals were sampled.
Black circles represent allopatric populations from which putatively pure individuals were used for calculating a hybrid index. White circles represent
marshes that are outside of the currently hypothesized overlap zone, yet were treated as sympatric populations due to their close proximity to the
hybrid zone and evidence of introgressed individuals [50]. Gray circles represent marshes within the hybrid zone and the red star represents the
approximate center of the zone, based on geographic cline estimates. The boxplot represents the distribution of hybrid index values for each of the
sympatric marshes sampled; the center of the hybrid zone is colored in red. To demonstrate phenotypic differences between the parental species,
representative photographs are shown for allopatric nelsoni (top) and caudacutus (bottom). Hybrids do not exhibit a clear intermediate phenotype, but
rather display complex combinations of phenotypic traits that do not vary predictably by genotypic class ([42]; see text)
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29 genetic markers (Fig. 5, Table 2). We detected overall
patterns of asymmetrical introgression with 66 % (19) of
the markers shifted toward caudacutus and 34 % (10 loci)
shifted toward nelsoni. Five markers (Ammo006, Ammo036,
ND2, ND3, and SLC45A2) displayed stronger selection
(more abrupt slopes; Table 2); all five of these markers ex-
hibited asymmetrical introgression toward caudacutus.
Twenty-four markers displayed more gradual slopes
(weaker selection) than multilocus expectation.

Geographic cline analyses revealed variation in esti-
mates for cline width (mean = 392 km, range = 248 –
969) but more consistent estimates for cline center
(mean = 330 km, range = 229 – 421; Table 3) across
marker types. Based on these estimates, cline center was
consistently predicted to be around sampling location 10
(Cousins River – Yarmouth, Maine). Estimates for cline
width were the smallest for mitochondrial (264 km) and
z-linked markers (299 and 358 km for SLC45A2 and

Table 1 Sampling locations and descriptive statistics for A. caudacutus and A. nelsoni. Table includes marsh names, distance along
the geographic transect, sampling coordinates, sample size, observed (HO) and expected (HE) heterozygosity, FIS, average Q values,
hybrid index, and interspecific heterozygosity for each marsh based on analyses in STRUCTURE and introgress.

Sampling location Distance from
locality 1 (km)

Latitude Longitude n HO HE FIS Q Value
(average)

Hybrid Index
(average)

Interspecific
Heterozygosity
(Average)

Lubec, ME 0 44.822 −66.991 9 0.537 0.555 0.032 0.021 NA NA

Columbia Falls, ME 61 44.644 −67.719 10 0.583 0.563 −0.037 0.003 NA NA

Narraguagus River - Millbridge, ME 78 44.551 −68.891 9 0.542 0.551 0.018 0.002 NA NA

Mendell Marsh - Penobscot, ME 155 44.591 −68.859 9 0.583 0.555 −0.050 0.004 0.06 0.38

Weskeag Marsh - South Thomaston, ME 216 44.077 −69.142 9 0.592 0.760 0.221* 0.430 0.44 0.31

Sheepscot River - Newcastle, ME 252 44.065 −69.597 7 0.643 0.697 0.077 0.185 0.24 0.42

Morse Cove - Arrowsic, ME 287 43.816 −69.795 5 0.617 0.799 0.228 0.390 0.39 0.36

Popham Beach - Phippsburg, ME 292 43.739 −69.806 15 0.675 0.761 0.113* 0.714 0.69 0.28

Maquoit Bay - Brunswick, ME 313 43.867 −69.988 10 0.613 0.618 0.008 0.083 0.18 0.48

Cousins River - Yarmouth, ME 328 43.811 −70.156 5 0.614 0.714 0.100 0.201 0.28 0.37

Spurwink River - Cape Elizabeth, ME 358 43.588 −70.246 16 0.667 0.779 0.143* 0.632 0.61 0.22

Scarborough Marsh - Scarborough, ME 367 43.575 −70.372 14 0.627 0.773 0.189* 0.645 0.67 0.27

Saco River - Saco, ME 376 43.492 −70.391 7 0.619 0.784 0.211* 0.566 0.53 0.29

Marshall Point - Arundel, ME 388 43.381 −70.433 6 0.583 0.766 0.239 0.334 0.33 0.28

Little River - Wells, ME 398 43.344 −70.538 4 0.594 0.788 0.246 0.540 0.51 0.33

Eldridge Marsh - Wells, ME 404 43.292 −70.572 9 0.652 0.783 0.166 0.760 0.74 0.25

Seapoint - Kittery Point, ME 432 43.087 −70.664 9 0.648 0.691 0.063 0.984 0.90 0.21

Lubberland Creek - Newmarket, NH 452 43.073 −70.903 10 0.704 0.772 0.088 0.747 0.70 0.38

Chapman’s Landing - Stratham, NH 456 43.041 −70.924 10 0.583 0.745 0.217* 0.796 0.74 0.21

Squamscott River - Exeter, NH 458 43.017 −70.935 6 0.653 0.723 0.095 0.832 0.81 0.21

Awcomin Marsh - Rye, NH 473 43.006 −70.752 7 0.531 0.788 0.326* 0.429 0.33 0.23

Drakeside Marsh - Hampton, NH 485 42.931 −70.852 7 0.702 0.678 −0.036 0.995 0.93 0.19

Hampton Beach - Hampton, NH 489 42.926 −70.806 9 0.694 0.681 −0.020 0.992 0.93 0.22

Salisbury Marsh - Salisbury, MA 498 42.844 −70.822 10 0.633 0.691 0.084 0.991 0.94 0.18

Pine Island - Newburyport, MA 505 42.775 −70.827 13 0.660 0.664 0.005 0.996 0.94 0.20

Plum Island - Newburyport, MA 507 42.774 −70.809 9 0.694 0.702 0.011 0.989 0.93 0.19

Castle Hill - Ipswich, MA 512 42.679 −70.773 7 0.702 0.675 −0.040 0.998 0.95 0.17

Farm Creek Marshes - Gloucester, MA 526 42.658 −70.708 10 0.639 0.716 0.107 0.993 0.93 0.16

Rever, MA 565 42.436 −71.011 5 0.617 0.688 0.104 0.997 0.98 0.14

Monomoy Island - Chatham, MA 688 41.603 −69.987 11 0.598 0.646 0.074 0.998 NA NA

Prudence Island - Jamestown, RI 800 41.647 −71.343 9 0.606 0.639 0.053 0.998 NA NA

Hammonasset Beach - Madison, CT 910 41.263 −72.551 10 0.642 0.705 0.089 0.997 NA NA

FIS significance is indicated by an asterisk
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SLC30A5, respectively), followed by diagnostic microsat-
ellite markers (mean ± SD = 390 ± 83). Estimates for cline
width were largest and most variable for the neutral
microsatellite markers (426 ± 235). Similar to the cline
estimates for the genetic markers, cline width was
variable for the morphological traits (mean = 231 km,

range = 17 – 450) and more consistent for cline cen-
ter (338 km, range = 284 – 392; Table 4).
Estimates for cline width were narrower for traits

related to the darkness and definition of plumage
(349 km) compared to traits related to the amount of
plumage streaking (380 km; Table 4). Estimates for cline
center were similar (only 8 km difference in mean) be-
tween morphological traits and genetic markers. Pheno-
typic variance fluctuated across sympatric marshes. For
the five morphological traits, we observed peaks in
phenotypic variance that fell approximately between 350
and 450 km along the sampling transect, consistent with
cline estimates for the center of the hybrid zone (Fig. 6).
We observed peaks in phenotypic variance near the esti-
mated center of the hybrid zone for weight and for traits
related to definition/darkness of streaking; further, vari-
ance in weight exceeded Vmax near the approximate
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Fig. 2 Bar plot showing the distribution of haplotypes by transect point (nelsoni haplotypes are blue, caudacutus haplotypes are in red, and
hybrid haplotypes are in gray). Each panel represents a marker, from top to bottom: ND3/ND2 (mitochondrial), RAG1 (nuclear), SLC45A2 (z-linked),
and SLC30A5 (z-linked). The hybrid zone is located between sampling points 4 and 27

Fig. 3 Population clusters identified by STRUCTURE for 286
individuals genotyped at 24 microsatellite loci. Bar plot shows
individual membership to two genetic clusters. Blue represents
nelsoni genotypes and red represent caudacutus genotypes
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zone center (Fig. 6). Variance in bill length in sympatric
populations was greater than the variance observed in
allopatric populations for all sampled marshes. The de-
gree of introgression (ratio of Vobs and Vmax) was higher
for wing chord (Vobs/Vmax = 0.5) and for plumage traits
related to coloration and amount of streaking (Vobs/
Vmax = 0.46) than it was for weight (Vobs/Vmax = 1.1) and
plumage traits related to the definition and darkness of
streaking (Vobs/Vmax = 0.82).

Discussion
Species boundaries can remain distinct in the face of on-
going introgression, even if only a few regions of the gen-
ome remain differentiated while other regions become
homogenized. Within the caudacutus-nelsoni hybrid zone,
we found patterns indicative of strong selection (more

abrupt slopes compared to a multi-locus average) for 5
out of 29 genetic markers despite extensive introgression
in sympatric populations. We identified 42 % of the sam-
pled individuals as admixed (hybrid index ranging from
0.1 to 0.9). The majority of these admixed individuals were
backcrossed, with the very low proportion of recent gener-
ation hybrids in this system indicative of an advanced gen-
eration hybrid zone [42, 44]. The distribution of pure and
admixed individuals appeared patchy across sympatric
populations, with neighboring marshes exhibiting notice-
able differences in genotypic compositions. Increased het-
erozygosity and FIS at select marshes across the zone,
including Weskeag and Chapman’s Landing (which are
112 and 128 km north and south from the center, respect-
ively) support the idea that certain marshes facilitate mix-
ing more than others.
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Fig. 4 Plots showing patterns of genomic and geographic introgression across 32 A. caudacutus and A. nelsoni populations (n = 286). a Genomic
clines calculated in introgress plotted as the observed frequency of A. caudacutus homozygote genotypes (1.0) against the hybrid index
(calculated as the proportion of A. caudacutus alleles across all loci). Black lines show markers that deviate significantly from neutral introgression
and gray lines show markers that do not deviate from neutral patterns of introgression. b Geographic clines calculated for 29 markers plotted as
the frequency of caudacutus alleles across an 800 km sampling transect. Neutral markers are in gray, diagnostic markers in black, mitochondrial
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Walsh et al. BMC Evolutionary Biology  (2016) 16:65 Page 7 of 18



The evolutionary history of caudacutus and nelsoni is
complex; however, the leading hypothesis suggests that
the current overlap zone is an area of secondary inter-
gradation following a split during a Pleistocene glaci-
ation event [51]. Consistent with this hypothesis, the
results of this study provide evidence for secondary con-
tact and contemporary introgression as opposed to in-
complete lineage sorting. We found strong divergence
across all markers in allopatric populations and high
levels of admixture and a noticeable peak in phenotypic
variation in sympatric populations. Greater genetic dif-
ferentiation in allopatry (average FST between allopatric
caudacutus and nelsoni = 0.313; locus-specific FST as
high as 0.71) than in sympatry (average FST between
sympatric caudacutus and nelsoni = 0.24; locus-specific
FST as high as 0.61) suggests geographic structuring of
alleles. Incomplete lineage sorting, alternatively, would
manifest in random geographic distribution of ancestral
alleles [55, 56]. Furthermore, the occurrence of recent

generation hybrids in sympatric marshes, although in low
frequency, points toward contemporary hybridization
events between these species.
Estimates for cline width were highly variable among

markers, ranging from 248 to 970 km, and were, on
average, most narrow for mitochondrial and z-linked
genes. Estimates for cline center, however, were consist-
ent among marker types (genetic and morphological)
falling around Yarmouth, Maine (328 km from locality 1).
Previous field surveys identified caudacutus and nelsoni
individuals co-occurring from Weskeag, Maine to
Newburyport, Massachusetts (~208 km overlap zone;
Hodgman et al., [39]). Consistent with the field estimates
of the overlap zone, three of the markers analyzed in this
study (ND2, SLC45A2, and Ammo006) exhibited cline
widths in the 250 – 300 km range. The remaining markers
had substantially larger cline widths, indicating extensive
introgression and recombination within and well outside
of the overlap zone.
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Clines varying in width but constrained to the same
center are indicative of differential introgression across
the hybrid zone. This is consistent with predictions that
hybrid zones act as a semi-permeable barrier for the ex-
change of genetic material between taxa [1]. We found
differential introgression consistent with our a priori
predictions for each marker type, including compara-
tively narrow cline estimates for mitochondrial, sex-
linked, and select gene-associated, diagnostic markers
relative to wide clines for neutral loci. This variable

introgression across markers suggests that while most
traits exhibit uninhibited movement, there are certain
traits that do not freely cross the species’ boundaries
and therefore may be important in reproductive isola-
tion. The observed patterns can be explained by both se-
lection against hybrids and adaptive divergence along a
tidal marsh gradient as active mechanisms in shaping
species boundaries between caudacutus and nelsoni.
Consistent with Haldane’s rule, we found that on aver-

age, mitochondrial and z-linked markers show reduced
introgression compared to autosomal markers (including
neutral and selected loci). Haldane’s rule predicts that
fitness reductions should occur more often in hybrids of
the heterogametic sex [25]; these differential fitness re-
ductions appear to play an important role in speciation
[57]. Reduced introgression of mitochondrial or sex-
linked markers in organisms with ZW sex determination
is an expectation of the dominance theory of the
Dobzhansky-Muller incompatibility model [58–60]. This
theory predicts that fitness reductions arise through the
interaction of incompatible alleles, which evolved in al-
lopatry. If these incompatible alleles are recessive, fitness
reductions will be greater for the heterogametic sex if
these genes are located on the sex chromosomes. In sys-
tems where females are the heterogametic sex, Haldane’s
rule also predicts reduced introgression of mitochondrial
markers because they are maternally inherited. There is
extensive empirical support for Haldane’s rule [61],
increasingly so in avian systems, including sterility
(Ficedula hypoleuca and F. albicollis; [62]) and lower
survival rates (Larus argentatus and L. cachinnans; [63]
of hybrid females, and reductions in female-mediated
gene flow (Larus occidentalis and O. glaucescens; [64]
and Aquila clanga and A. pomarina; [65]). Accordingly,
adaptive behavioral differences in pure caudacutus and
nelsoni females associated with nesting synchrony in re-
lation to tidal cycles [66] suggest a potentially important
influence of differential fitness among pure and admixed
females in shaping zone dynamics. Evidence for reduced
survival in F1/F2 females provide further support for
Haldane’s Rule in this system [67]. Nonetheless, other
causes of the observed patterns of restricted introgres-
sion of mitochondrial and sex-linked genes cannot be
discounted. Differences in marker-specific inheritance
patterns, effective population sizes, genetic drift, and
sex-biased dispersal can generate disparate rates of gene
flow across the genome and lead to differential intro-
gression across markers [1].
Only one marker (diagnostic microsatellite marker

Ammo006) exhibited narrower clines than the z-linked
and mitochondrial markers. Based on annotation with
the zebra finch genome, Ammo006 was found to be as-
sociated with a gene that codes for a mitogen-activated
protein kinase (MAPK; 52). Specifically, the MAPK

Table 2 Summary of v and u estimates from concordance tests.
These parameters were estimated based on the comparison of
each focal locus to a multilocus expectation using a logit-logistic
model. Parameter estimates are presented for 24 microsatellite loci,
2 mitochondrial genes, 2 z-linked genes, and 1 autosomal locus.
Perfect concordance between a focal locus and the multilocus
expectation is a diagonal line (u = 0 and v =1)

Locus Asymmetry (u) Slope (ν)

nelsoni caudacutus Gradual Abrupt

Ammo001 +0.359 −0.124

Ammo006 +0.822 +0.217

Ammo017 +0.077 −0.670

Ammo008 −0.007 −0.306

Ammo027 −0.08 −0.366

Ammo015 +0.098 −0.035

Ammo003 +0.009 −0.451

Ammo023 −0.274 −0.117

Ammo012 +0.146 −0.221

Ammo030 +0.026 −0.275

Ammo036 +0.234 +0.013

Ammo016 +0.028 −0.037

Escu1 −0.083 −0.564

Aca01 −0.220 −0.590

Asu18 −0.197 −0.706

Aca12 +0.028 −0.958

Aca08 +0.429 −0.379

Ammo028 +0.028 −0.915

Ammo034 −0.485 −0.461

Ammo002 −0.332 −0.175

Asu15 +0.198 −0.279

Aca05 −0.046 −0.832

Ammo020 +0.019 −0.596

Aca04 +0.125 −0.998

ND2 +4.892 +2.014

ND3 +4.892 +2.014

SLC45A2 +0.259 +1.414

SLC30A5 −1.104 −0.073

RAG1 +0.264 −0.236
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Table 3 Parameter estimates for the best fitting clines for 29 markers, including (in order from top to bottom): 12 diagnostic microsatellites, 12 anonymous microsatellites, 2
mitochondrial markers, 2 z-linked markers, and 1 autosomal marker. Geographic clines were fit using the R package HZAR. For each locus, we present the top model, estimates for
cline width (w), cline center (c), pMin/pMax (allele frequencies at the end of the cline), estimates for the shape of the left, right, and mirrored tails, and the AICc

Locus Best model ω c ρmin ρmax deltaL tauL deltaR tauR deltaM tauM AICc - 15-model
best fit

Ammo001 Pmin/Pmax fixed, no tails 401.26 (313.01 – 532.13) 325.42 (288.98 – 356.22) 0 (fixed) 1 (fixed) NA NA NA NA NA NA 59.40733

Ammo006 Pmin/Pmanx fixed, left tail 248.12 (142.16 – 420.99) 349.82 (294.33 – 393.54) 0 (fixed) 1 (fixed) 0.85 0.5 NA NA NA NA 51.26572

Ammo017 Pmin/Pmax fixed, no tails 619.85 (469.9 – 871.3) 229.08 (158.21 – 279.31) 0 (fixed) 1 (fixed) NA NA NA NA NA NA 38.49596

Ammo008 Pmin/Pmax fixed, mirror tails 430.16 (341.34 – 598.06) 332.66 (292.59 – 361.66) 0 (fixed) 1 (fixed) NA NA NA NA 271.5 0.0 48.94506

Ammo027 Pmin/Pmax fixed, right tail 377.28 (292.21 – 511.31) 350.59 (318.50 – 378.73) 0 (fixed) 1 (fixed) NA NA 156.78 0.07 NA NA 44.69117

Ammo015 Pmin/Pmax fixed, no tails 336.68 (263.38 – 441.98) 333.40 (301.87 – 360.36) 0 (fixed) 1 (fixed) NA NA NA NA NA NA 50.7184

Ammo003 Pmin/Pmax observed, no tails 393.52 (290.96 – 557.14) 349.81 (312.31 – 382.95) 0 0.9 NA NA NA NA NA NA 29.95087

Ammo023 Pmin/Pmax fixed, right tail 328.79 (260.80 – 438.51) 336.03 (306.35 – 362.53) 0 (fixed) 1 (fixed) NA NA 175.86 0.00 NA NA 52.34138

Ammo012 Pmin/Pmax fixed, no tails 377.14 (294.25 – 498.37) 331.05 (296.75 – 360.29) 0 (fixed) 1 (fixed) NA NA NA NA NA NA 38.59027

Ammo030 Pmin/Pmax fixed, mirror tails 414.72 (301.59 – 545.14) 303.25 (266.38 – 339.25) 0 (fixed) 1 (fixed) NA NA NA NA 240.3 0.0 45.33692

Ammo036 Pmin/Pmax fixed, no tails 390.91 (304.64 – 517.59) 329.39 (294.13 – 359.47) 0 (fixed) 1 (fixed) NA NA NA NA NA NA 42.29739

Ammo016 Pmin/Pmax fixed, no tails 355.08 (277.59 – 467.45) 330.41 (297.40 – 358.50) 0 (fixed) 1 (fixed) NA NA NA NA NA NA 51.76902

Escu1 Pmin/Pmax estimated, no tails 324.79 (164.62 – 564.91) 305.76 (236.92 – 375.68) 0.02 0.71 NA NA NA NA NA NA 45.11181

Aca01 Pmin/Pmax fixed, no tails 573.52 (438.09 – 794.12) 230.56 (165.18 – 278.01) 0 (fixed) 1 (fixed) NA NA NA NA NA NA 27.04802

Asu18 Pmin/Pmax estimated, no tails 278.57 (64.34 – 676.36) 279.66 (166.01 – 368.15) 0.11 0.67 NA NA NA NA NA NA 40.47708

Aca12 Pmin/Pmax observed, no tails 969.57 (607.18 – 969.99) 313.39 (229.74 – 395.79) 0.125 0.889 NA NA NA NA NA NA 22.28862

Aca08 Pmin/Pmax fixed, no tails 613.14 (464.93 – 853.43) 350.56 (303.09 – 391.63) 0 (fixed) 1 (fixed) NA NA NA NA NA NA 36.1816

Ammo028 Null Model NA NA NA NA NA NA NA NA NA NA 30.08239

Ammo034 Pmin/Pmax fixed, mirror tails 405.81 (309.38 – 547.61) 295.14 (254.16 – 328.33) 0 (fixed) 1 (fixed) NA NA NA NA 239.7 0.086 35.99985

Ammo002 Pmin/Pmax observed, no tails 327.93 (239.38 – 456.58) 313.40 (272.38 – 346.71) 0.109 1 NA NA NA NA NA NA 41.30775

Asu15 Pmin/Pmax fixed, mirror tails 394.21 (295.34 – 556.81) 330.15 (290.51 – 361.28) 0 (fixed) 1 (fixed) NA NA NA NA 237.2 0.013 37.69459

Aca05 Pmin/Pmax observed, mirror tails 341.90 (53.34 – 921.18) 421.24 (357.34 – 469.42) 0.278 0.929 NA NA NA NA 87.45 0.002 18.60483

Ammo020 Pmin/Pmax observed, no tails 418.56 (291.17 – 625.28) 333.47 (280.87 – 374.64) 0.222 1 NA NA NA NA NA NA 41.08943

Aca04 Pmin/Pmax estimated, no tails 37.73 (0 – 434.56) 419.01 (337.95 – 483.85) 0.283 0.454 NA NA NA NA NA NA 24.34919

ND2 Pmin/Pmax estimated, no tails 264.11 (172.17 – 373.17) 391.96 (356.44 – 430.66) 0.129 0.999 NA NA NA NA NA NA 80.13945

ND3 Pmin/Pmax estimated, no tails 264.11 (172.17 – 373.17) 391.96 (356.44 – 430.66) 0.129 0.999 NA NA NA NA NA NA 80.13945

SLC45A2 Pmin/Pmax fixed, no tails 299.01 (233.91 – 390.53) 322.41 (292.12 – 348.18) 0 (fixed) 1 (fixed) NA NA NA NA NA NA 63.3274

SLC30A5 Pmin/Pmax observed, no tails 358.56 (250.63 – 527.95) 297.83 (244.79 – 337.22) 0.12 1 NA NA NA NA NA NA 60.4083

Rag1 Pmin/Pmax fixed, right tails 424.55 (267.63 – 591.59) 341.84 (287.23 – 374.29) 0 (fixed) 1 (fixed) NA NA 169.01 0.14 NA NA 53.77633
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superfamily consists of three distinct signaling pathways
with roles linked to numerous cellular functions includ-
ing immune responses, host-parasite interactions, and
adaptive responses to thermal, osmotic, and oxygen
stresses [68, 69]. Of particular interest is the response of
MAPK to osmotic stress, which has been documented in
a range of organisms [69], including in mammalian kid-
ney [70] and liver astrocytes [71] and in the osmosen-
sory signaling pathways of fish (Fundulus heteroclitus;
[72]). MAPKs therefore may have a critical role in salin-
ity adaptation [69] and may serve an important role in
osmoregulatory functions of A. caudacutus. The transi-
tion from upland and brackish habitat (nelsoni) to salt
marsh (caudacutus) presents major adaptive challenges
to terrestrial vertebrates [45], and adaptive divergence
across this salinity gradient may thus play an important
role in reproductive isolation between the species [73].
Pathways related to osmotic stress (i.e., MAPK) would
arguably be under strong selection in this system. The
MAPK gene region likely plays an important ecological
role for A. caudacutus, which exhibits a pre-Pleistocene
association with tidal salt marshes [37, 47], and thereby
a longer time to evolve adaptations to salt marshes com-
pared to A. nelsoni, which exhibits a broader ecological
niche, breeding also in grassland and brackish marshes and
a more recent association with tidal marshes [38, 51, 74].
Restricted introgression of additional molecular and

phenotypic traits provided evidence for selection on in-
creased melanin in A. caudacutus, consistent with the
hypothesized adaptive role for melanin in vertebrates
that inhabit saltmarsh ecosystems [49]. Here we present
two lines of support for this hypothesis. First, we found
narrow cline estimates for the z-linked marker SLC45A2
(299 km) along with a more abrupt transition in slope
compared to a multilocus average (+1.41). SLC45A2
(solute carrier family 45, member 2, protein) is associ-
ated with melanin-based pigmentation and has been
linked to plumage phenotypes in birds, including silver
and cinnamon colored phenotypes (Gallus gallus and
Coturnix japonica; [75]) and the gray plumage of hooded
crows (Corvus cornix; [76]). Similarly, mutations in
SLC45A2 may relate to the differences in plumage color-
ation between caudacutus and nelsoni. A. caudacutus in-
dividuals have dark chestnut streaking patterns on the

breast and flanks and dark chestnut backs, while A. nel-
soni have gray streaking on the breast and flanks and
more gray on the back [40, 42, 51]. Walsh et al. [42]
found that plumage traits related to plumage darkness
(particularly in the breast and flanks) are more strongly
correlated with genotype. Secondly, we found that the
introgression of traits related to plumage darkness was
reduced (Vobs/Vmax = 0.82) compared to traits related to
streaking amount (Vobs/Vmax = 0.46). Natural selection
for the adaptive benefits of salt marsh melanism (includ-
ing reduced predation risk and resistance to mechanical
and bacterial degradation; [49, 77, 78]) may be rein-
forced by sexual selection [34]. The darkness of streak-
ing in the breast and flanks may offer strong visual cues
for individuals during mate selection.
We detected strong patterns of asymmetrical introgres-

sion across the 29 genetic markers, with 19 showing pat-
terns of asymmetrical introgression toward A. caudacutus
and 10 markers showing patterns of asymmetrical intro-
gression toward A. nelsoni. A majority of these markers,
including all of the markers that showed asymmetries to-
ward nelsoni, displayed gradual slopes indicative of weak
selection. Five markers exhibited abrupt clines and all of
them showed patterns of asymmetry toward caudacutus.
These findings are consistent with previous work suggest-
ing that backcrossing is asymmetrical and biased toward
A. caudacutus [40, 41], possibly due to differences in mat-
ing systems [40] or population density.
Both species exhibit an unusual mating system among

emberizines, characterized by non-territoriality, lack of
male parental care, and high levels of promiscuity facili-
tating intense male-male competition for receptive fe-
males [51, 79]. The two species differ in their mating
tactics, however. Nelsoni males spend substantial time
mate guarding and have more distinctive song and flight
displays for attracting females [51, 66, 80]. Caudacutus
males are highly polygamous and exhibit a scramble
competition mating system whereby males search for
and attempt to mate with multiple receptive females
[37, 79]. Size differences between nelsoni and caudacutus
males (14.9 – 19.2 g versus 19 – 24 g, respectively) may
thus place nelsoni at a substantial competitive disadvan-
tage when competing with caudacutus males to secure
mates in sympatric marshes. Admixed females are thus

Table 4 Parameter estimates for the best fitting clines for 5 morphological traits using the package HZAR. For each trait, we present
the best model, cline center (c), cline width (w), and AICc

Trait Best Model ω c AICc - 15-model best fit

Weight Pmin/Pmax estimated, no tails 17.18 (0.98 – 307.37) 392.52 (314.01 – 440.56) 916.6954

Wing Chord Pmin/Pmax estimated, no tails 53.82 (0.98 – 578.22) 390.811 (337.14 – 608.62) 1116.321

Bill Length Pmin/Pmax estimated, no tails 353.06 (248.19 – 488.88) 292.73 (236.07 – 319.97) 227.5175

Plumage Amount Pmin/Pmax estimated, no tails 450.36 (323.83 – 641.37) 284.05 (246.73 – 331.35) 1380.459

Plumage Definition Pmin/Pmax estimated, no tails 283.15 (244.47 – 356.67) 328.57 (310.13 – 344.55) 1435.932
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more likely to backcross with caudacutus males leading to
asymmetries. This is particularly true in sites toward the
southern portion of the hybrid zone, where caudacutus
males outnumber nelsoni males by approximately 4:1 [67].
Cline estimates for weight coupled with a peak in weight
variance near the center of the zone provide supportive
evidence that size is an important factor in shaping zone
dynamics in this system. The cline for weight was the
most abrupt of the five morphological traits analyzed, in-
dicative of strong selection against intermediately sized in-
dividuals, which may be ineffective in securing mates
using either of the mating tactics (direct male-male com-
petition or flight displays and mate guarding). Further-
more, variance in weight at the center of the hybrid zone
exceeded variance in allopatry, which may be indicative of
character displacement with smaller nelsoni and larger
caudacutus in sympatric versus allopatric populations.

Asymmetrical introgression has been documented in
a number of avian contact zones [81–83] and may also
be indicative of hybrid zone movement or of one spe-
cies being displaced by the other. Moving hybrid zones
leave tails of clines of unlinked neutral markers in their
wake, giving the appearance of asymmetrical introgres-
sion [30]. Distinguishing hybrid zone expansion from
asymmetrical introgression poses a challenge, and is
best addressed with temporally replicated sampling.
However, multiple alleles introgressing in one direction
offers additional support for zone movement [30, 84].
Previous research has documented a potential south-
ward expansion of nelsoni into the range of caudacutus,
with nelsoni alleles documented as far south as Rhode
Island [41]. Extensive field surveys also suggest a more
pronounced decline in caudacutus abundance across
their range in comparison to nelsoni (Correll et al.,
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unpublished data); however, a direct temporal compari-
son of genetic data is required to test hypotheses of a
hybrid zone expansion.

Conclusions
In conclusion, we found support for hybrid zones act-
ing as semi-permeable boundaries to foreign alleles
across a tidal marsh gradient. While a majority of the
markers used for this analysis showed patterns of
weak selection and uninhibited movement across the
hybrid zone, we found evidence for strong selection
for a few molecular markers and plumage characteris-
tics, consistent with evolutionary processes contribut-
ing to reproductive isolation. Specifically, we detected
reduced introgression of mitochondrial and z-linked
markers, providing evidence for Haldane’s rule, along
with divergent selection for traits conferring adaptive
benefits to tidal marshes. Despite the overall low gen-
etic differentiation between caudacutus and nelsoni,
niche differentiation may be driving ecological speci-
ation between the species, with strong selective pres-
sures for a few critical gene regions playing an
important adaptive role. We conclude that adaptive
divergence across a tidal marsh ecotone may promote
isolating mechanisms and prevent the erosion of pure
species boundaries in this system.

Methods
Geographic transect and sample collection
For this study, we used a previously published pheno-
typic and microsatellite genotypic dataset collected from
the caudacutus-nelsoni hybrid zone [42], along with new
DNA sequence data from two mitochondrial, 2 Z-lined,
and one autosomal marker. The sampling design cap-
tured the extent of genetic and phenotypic variation
across the hybrid zone, via 34 tidal marshes sampled
along a linear, coastal transect from Lubec, Maine (44°
49′22 N, 66°59′20 W) to Madison, Connecticut (41°15′
46 N, 72°33′00 W; Fig. 1; Table 1) during the 2012 and
2013 breeding seasons (June – August). The marshes
sampled for this study represent a gradient of tidal
marsh habitat types (including coastal, bay, and upriver
marshes) and exhibited a range of variation in salinity,
vegetation structure, isolation, and tidal amplitude [48].
Within the hybrid zone, marshes were sampled approxi-
mately every 10 km; allopatric marshes were also sam-
pled north and south of the hybrid zone (Fig. 1). We
sampled 290 sparrows and collected a suite of morpho-
logical measurements from 254 of them [50]. Due to in-
adequate sample sizes (n = 2) in two of the sampled
locations, we used data from 286 individuals from 32
sites for all analyses (Table 1; Fig. 1). Of these individ-
uals, 37 sparrows were sampled from putatively pure
nelsoni populations (n = 4 marshes), 52 individuals were

sampled from putatively pure caudacutus populations
(n = 6 marshes), and 197 individuals were sampled from
sympatric populations (n = 22 marshes). Because this
was the first extensive sampling and genetic evaluation
of the hybrid zone, we initially defined all marshes out-
side of the currently hypothesized overlap zone of
Hodgman et al. [39] to be putatively allopatric. We
scored each individual sparrow for 13 plumage traits de-
veloped for evaluating levels of phenotypic introgression
[40, 42]. Briefly, the plumage scores capture basic
phenotypic differences between the species and include
the color of the bill, the color and definition of the face
and back, the width and definition of the whisker line
and crown, and the amount and definition of the streak-
ing on the back and flanks. We used digital calipers to
measure tarsus length and bill length (nares to tip; mm),
a wing-chord ruler to measure unflattened wing chord
(mm), and a digital scale to measure weight (to the near-
est 0.1 g). We collected blood samples (10 – 20 μl) from
the brachial vein and transferred drops to Nobuto blood
filter strips (Sterlitech, Kent, Washington) for storage at
room temperature until later genetic analysis.

Analysis of molecular markers
The genotypic dataset consisted of 24 microsatellite loci,
including 12 putatively neutral, anonymous microsatellite
loci [85–87] and 12 diagnostic microsatellites developed
specifically to differentiate caudacutus, nelsoni, and
hybrids [52]. Information on these markers and PCR
amplification conditions can be found in Walsh et al.
[42]. Owing to elevated divergence in the diagnostic
marker panel relative to the anonymous microsatel-
lites (FST = 0.4667 and FST = 0.15, respectively; [52]),
we considered these two marker sets separately for
some analyses and interpretation.
We also amplified each individual at two mitochon-

drial genes [1100 bp of NADH dehydrogenase subunit
2 (ND2); 356 bp of NADH dehydrogenase subunit 3
(ND3)], two z-linked genes [183 bp of solute carrier
family 45, member 2 (SLC45A2), 724 bp of solute car-
rier family 30 (SLC30A5)], and one autosomal marker
[900 bp of recombination activating gene 1 (RAG1);
Primer information for these markers can be found in
Additional file 6: Table S1]. PCR reactions included the
following: 3 μl of eluted genomic DNA, 0.5 μM of each
primer, 2.0 mM MgCl2, 1X PCR buffer (Promega,
Madison, Wisconsin), 0.12 mM of deoxyribonucleo-
tides, and 1 unit of Taq DNA polymerase (Promega).
Cycling conditions were as follows: 35 – 40 cycles of
94 °C for 30 s, 46–60 °C for 45 s, 72 °C for 90 s, and a
final extension step at 72 °C for 5 min. For the two
shorter fragments (ND3, SLC45A2), we sequenced all
individuals sampled along the geographic transect;
sequences were visually inspected in 4Peaks
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(Nucleobytes, Amsterdam, NL) and aligned in Geneious
Pro 4.7.6 (Biomatters Ltd, Auckland, NZ). We assigned
sequences to one of two haplotypes (caudacutus or
nelsoni) based on visual inspection of species-specific
polymorphic sites identified in putatively allopatric
populations. For the three longer fragments (ND2,
SLC30A5, and RAG1), we sequenced a subset of 14 pu-
tatively pure individuals (based on morphology and
microsatellite data) and designed a Restriction Frag-
ment Length Polymorphism (RFLP) analysis to identify
species-specific haplotypes in the PCR-amplified frag-
ments. We digested amplified products in 25 μl reac-
tions, with 10 μl template DNA, 0.2 μl of enzyme TseI,
PstI, and MwoI (for ND2, SLC30A-5, and RAG-1 frag-
ments respectively), and 2.5 μl of NEBuffer (New
England BioLabs, Ipswich, MA, USA) and incubated ac-
cording to manufacturer protocols. We resolved the
resulting fragments on a 2 % agarose gel and assigned hap-
lotypes (see Additional file 7: Table S2 for protocols and
fragment patterns). For SLC30A-5 and RAG-1, the RFLP
method allowed us to assign individuals to one of three
haplotypes (caudacutus, nelsoni, or hybrid) based on the
combination of observed banding patterns. We checked
the validity of the RFLP assay using the 20 sequenced indi-
viduals (see above) and found no discrepancy between
RFLP and sequence haplotypes.

Population structure
For each site, we characterized genetic diversity using
standard population genetic metrics. Specifically, we cal-
culated unbiased estimates of expected and observed
heterozygosities and tested for deviations from Hardy-
Weinberg equilibrium in GENEPOP V4 [88]. We also
calculated genetic diversity metrics, including FIS, num-
ber of alleles, and allelic richness in FSTAT [89]. To
quantify patterns of admixture for each site, we esti-
mated a hybrid index (proportion of caudacutus alleles
in an individual) and interspecific heterozygosity (pro-
portion of an individuals’ genome with alleles inherited
from both parental populations) for all individuals using
the R package introgress [90, 91]. To identify markers
under selection, we performed selection tests for all loci
using an FST outlier approach [92] in the program LOSI-
TAN [93]. To test for genetic differentiation among
populations, we calculated pairwise FST values and per-
formed significance testing using 1000 permutations in
FSTAT. To characterize genetic structure of the cauda-
cutus-nelsoni hybrid zone, we used the Bayesian cluster-
ing approach of STRUCTURE, version 2.3.2 [94].
STRUCTURE uses membership proportions to assign all
individuals into appropriate population clusters (K). We
conducted five runs for each value of K = 1–5; each run
consisted of a 300,000 burn-in followed by 200,000 itera-
tions. We also ran STRUCTURE with the 12 anonymous

microsatellites separately to ensure that the gene-
associated diagnostic markers were not biasing the re-
sults. Because we detected the same patterns with both
marker sets, we ran all subsequent analyses with the full
set of 24 microsatellites. We used the admixture
model and assumed correlated allele frequencies [95].
We determined the most likely number of population
clusters (K) using the ΔK method of Evanno et al.
[96]; STRUCTURE output was visualized using the
program STRUCTURE HARVESTER [97]. Lastly, we
tested for linkage disequilibrium using GENEPOP. P-
values for multiple comparisons were adjusted with the
Bonferroni correction.

Patterns of differential introgression: genomic clines
We used the R-package introgress to estimate genomic
clines for each locus using a multinomial regression to es-
timate individual clines for each locus along an admixture
gradient (represented by the hybrid index, calculated as
the proportion of caudacutus alleles in an individual in
introgress). Calculating hybrid index requires a priori def-
inition of pure individuals of each parental species. In
doing so, we took a conservative approach to minimize
the potential for including introgressed individuals in our
parental samples; we defined pure individuals as those
sampled from allopatric populations >115 km north and
south of the currently recognized overlap zone (Fig. 1;
[42]). To identify loci that displayed deviations from neu-
tral expectations, we compared the likelihoods of the re-
gression models to a null model of neutral introgression.
Null models were generated using parametric simulations
described in Gompert & Buerkle [90]. Using this ap-
proach, a large simulated admixed population is generated
based on expected genotype frequency distributions (esti-
mated using hybrid index and heterozygosity values equal
to the observed data). We simulated 2000 admixed indi-
viduals and adjusted all significance thresholds using the
false discovery rate procedure [98]. Deviations from neu-
trality were summarized as either gradual clines (homozy-
gote excess or deficit and/or heterozygote excess) or
abrupt clines (heterozygote deficit indicative of disruptive
selection or assortative mating; 90).
To test for concordance among genomic clines, we com-

pared genomic clines at individual loci against the multilo-
cus expectation using the logit-logistic model of Fitzpatrick
[99]. This approach compares the mean hybrid index over
all loci to a hybrid index for a focal locus. The logit-logistic
model estimates two parameters: u gives the relative differ-
ence in cline position (positive values indicate a shift of the
cline toward caudacutus and negative values indicate a
shift toward nelsoni) and v gives the relative difference in
slope (values greater than one indicate a more abrupt slope
and stronger selection whereas values less than one indi-
cate a more gradual slope and weaker selection compared
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to the multilocus average). Perfect concordance between a
focal locus and the mean hybrid index would result in u =
0 and v =1. Thus, the expectation for equal introgression
over all loci lies on the diagonal. We fit the parameters u
and v using the function “mle2” in the R package bblme.

Patterns of differential introgression: geographic clines
To evaluate the distribution of caudacutus and nelsoni al-
leles across the transect, we used the Metropolis-Hastings
Markov chain Monte Carlo algorithm employed in the R
package HZAR [100, 101] to fit a series of geographic cline
models to allele frequencies for each genetic marker and a
suite of morphological traits. We reduced the variation ob-
served in the 24-microsatellite loci to a two-allele system
using species-specific compound alleles [29, 102, 103].
Using this approach, each allele was assigned to a species
group based on its coordinates on the first axis of a mul-
tiple correspondence analysis (MCA), conducted using the
CA package in R. We ran fifteen separate models for each
genetic marker, all of which estimated cline center (dis-
tance from sampling location 1, c) and width (1/maximum
slope, w). The tested models included all possible combi-
nations for fitting tails (none fitted, left only, right only,
mirror tails, or both tails estimated separately) and for esti-
mating allele frequencies at the cline ends (pMin, pMax;
fixed to 0 and 1, observed values, or estimated values).
To compare introgression patterns between genetic and

phenotypic data, geographic clines were also fitted to five
morphological traits, including: bill length, wing chord,
weight, and two separate groups of plumage traits. We used
plumage traits predominantly related to 1) the amount of
streaking and the width of plumage features observed on an
individual (including crown width, malar width, face defin-
ition, streaking amount on the breast, flanks, and back, and
color of the back) and 2) traits predominantly related to the
darkness and definition of plumage traits on an individual
(including bill darkness, face color, and definition of plum-
age on the crown, malar, breast, and flanks). Traits related
to plumage streaking amount and those related to plumage
darkness and definition were previously found to differ with
respect to their correlation with genotype [42]. We ran five
separate models for each morphological trait, all of which
estimated trait mean and variance (right, left, and center)
along with cline center and width; models varied in how the
tails were fitted. We compared all models using Akaike in-
formation criterion corrected for small sample sizes (AICc)
and considered models with the lowest AICc score as the
best-fitting model [104].

Patterns of differential introgression: phenotypic variance
In addition to comparing cline width and center for pheno-
typic traits, we quantified the variation in introgression
among the morphometric and plumage features. We
compared the phenotypic variance observed within our

populations (Vobs) to the maximum phenotypic variance ex-
pected under a hypothesis of complete reproductive isola-
tion (Vmax) following the methods of Barton & Gale [105]
and Gay et al. [29]. For each of our morphological traits, we
compared Vmax with Vobs (average variance calculated from
the phenotypic clines) and measured the degree of intro-
gression for each trait by the Vobs/Vmax ratio [29]. Traits in-
volved in reproductive isolation are predicted to exhibit
large variance in the center of the hybrid zone. The closer
the observed peak in phenotypic variance (Vobs) is to the
variance expected under complete reproductive isolation
(Vmax), the lower the degree of introgression is for that par-
ticular morphological trait.
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