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Abstract Host immune and physical barriers protect against pathogens but also impede the

establishment of essential symbiotic partnerships. To reveal mechanisms by which beneficial

organisms adapt to circumvent host defenses, we experimentally evolved ecologically distinct

bioluminescent Vibrio fischeri by colonization and growth within the light organs of the squid

Euprymna scolopes. Serial squid passaging of bacteria produced eight distinct mutations in the

binK sensor kinase gene, which conferred an exceptional selective advantage that could be

demonstrated through both empirical and theoretical analysis. Squid-adaptive binK alleles

promoted colonization and immune evasion that were mediated by cell-associated matrices

including symbiotic polysaccharide (Syp) and cellulose. binK variation also altered quorum sensing,

raising the threshold for luminescence induction. Preexisting coordinated regulation of symbiosis

traits by BinK presented an efficient solution where altered BinK function was the key to unlock

multiple colonization barriers. These results identify a genetic basis for microbial adaptability and

underscore the importance of hosts as selective agents that shape emergent symbiont populations.

DOI: 10.7554/eLife.24414.001

Introduction
Identifying traits that are under selection by hosts is crucial to understanding the processes govern-

ing nascent symbiotic interactions between animals and microbes. The remarkable efficiency with

which some bacteria evolve variation that enhances access to novel host niches indicates

that adaptability may be an attribute of some bacterial genomes. Adaptive evolution to a new niche,

such as a novel host, may involve reconciliation of constraints imposed by genomic content, conflict-

ing regulation, and pleiotropy (Morley et al., 2015; Bedhomme et al., 2012). Given this context,

global regulators could serve as effective targets of selection that drive adaptive leaps made by

pathogenic or mutualistic microbes, as long as essential metabolic pathways are both sufficiently

insulated from detrimental effects of mutation and available for integration with accessory functions

(Davenport et al., 2015; Wolfe et al., 2004; Jansen et al., 2015). Studies using experimental evolu-

tion have often revealed that adaptive evolution initially proceeds through regulatory changes, but

few have identified the underlying mechanisms that promote adaptation or linked these processes

to natural symbiotic systems (Morley et al., 2015; Bedhomme et al., 2012; Kawecki et al., 2012;

Marchetti et al., 2010; Guan et al., 2013).
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Members of the genus Vibrio, halophilic bacteria with a broad distribution in marine and brackish

environments, have repeatedly evolved to colonize varied host niches (Nishiguchi, 2002;

Takemura et al., 2014; Guerrero-Ferreira and Nishiguchi, 2007), and as such, their study can pro-

vide an understanding of adaptability to host association. Bioluminescent Vibrio fischeri can be

found among marine plankton (Lee and Ruby, 1992) but the species is best known for its mutualistic

light organ symbiosis with squid and fish species. V. fischeri is also well-known for its social quorum-

sensing behavior, whereby communities of bacteria use diffusible pheromone signal molecules to

synchronize gene expression in response to cell density (Schuster et al., 2013; Verma and Miya-

shiro, 2013; Waters and Bassler, 2005). In squid-symbiotic V. fischeri, quorum sensing occurs

through sequential activation by two different pheromone signals: the first signal (C8-HSL) ’primes’

sensitive perception of the second signal (3-oxo-C6-HSL) through enhanced LitR activity, which

increases the levels of the LuxR pheromone sensor, thereby lowering the threshold for signal percep-

tion (Fidopiastis et al., 2002; Lupp and Ruby, 2004; Miyashiro et al., 2010). In turn, when LuxR

binds to 3-oxo-C6-HSL, LuxR homodimerizes and directly activates the expression of the lux biolumi-

nescence operon to produce light, which squid use for counter-illumination camouflage during their

nocturnal foraging behavior (Lupp et al., 2003; Jones and Nishiguchi, 2004).

The symbiotic association between V. fischeri and the squid Euprymna scolopes has become a

powerful system for interrogating mechanisms underlying bacterial colonization of metazoan host

mucosal surfaces where colonists must overcome host defenses that limit infection by non-symbiotic

eLife digest Most bacteria that associate with animals do not cause harm, and many are

essential to health or provide other benefits. An animal’s immune system must permit these

beneficial associations and at the same time block harmful microbes. This ultimately means that even

beneficial bacteria must adapt to the immune barriers that they encounter.

Different species that live in a close relationship with each other are known as symbionts. A

species of bacteria called Vibrio fischeri can form a mutually beneficial symbiotic relationship with

squid. The squid provide food for the bacteria, but only the bacteria that successfully navigate

immune barriers and reach the squid’s “light organ” are fed. In return, the bacteria produce

bioluminescence, making the nocturnal squid appear like moonlight in the water.

As the bacteria reproduce, some individuals randomly acquire genetic mutations, some of which

might improve the bacteria’s chances of survival. Which mutations and associated traits allow

bacteria to beat out the competition and evolve to become animal symbionts? To investigate,

Pankey, Foxall et al. grew V. fischeri bacteria from several ancestors that were poor at colonizing

squid. Groups of newly hatched squid selected potential symbionts from the resulting mix of

bacteria. The selected symbionts were allowed to reproduce within the squid to form a new

population of bacteria and were later vented out for a new batch of squid to sort through. This was

repeated to ultimately form a final group of bacteria that had passed through 15 squid in turn.

Unexpectedly, the bacteria in the final group all found the same solution to help them adapt to

symbiotic life with the squid: mutations to the gene that encodes a signaling protein called BinK.

Eight distinct mutations arose that dramatically changed how the bacteria interacted with squid. The

evolved bacteria created a coating that hid them from squid immune cells and protected them from

chemicals that squid use to kill invaders. The mutations also altered how the bacteria communicated

with each other. This adjusted the intensity of light that they produced for their host to a more

natural level, and improved their ability to grow on squid-provided food.

Overall, the results presented by Pankey, Foxall et al. demonstrate that small genetic mutations

can transform non-symbionts into symbionts, enabling them to evolve rapidly to form a symbiosis

with a new host. This demonstrates that these bacteria already had the ability to coordinate the

complex behaviors necessary to overcome the multiple barriers provided to them by the squid

immune system. Other beneficial animal–bacteria associations are likely to work on similar principles;

the study exemplifies the utility of experimental evolution systems and lays a foundation for further

work to investigate these principles in more detail.

DOI: 10.7554/eLife.24414.002
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bacteria, including pathogens (Figure 1A). Once newly hatched squid entrap bacteria in mucus near

the light organ, symbionts aggregate in this mucus and, in response to host attractants , subse-

quently swim through pores at the entrance of the nascent light organs (Nyholm et al., 2000). As V.

fischeri bacteria swim down the ducts and into the crypts, they face a ’gauntlet’ of defenses that

includes host-derived oxidative species (Davidson et al., 2004; Weis et al., 1996; Small and

McFall-Ngai, 1999), as well as patrolling macrophage-like hemocytes that attach to other species of

marine bacteria with higher affinity, subsequently killing these invading cells (Nyholm et al., 2009;

Nyholm and McFall-Ngai, 1998; Koropatnick et al., 2007). These barriers ensure that only the
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Figure 1. Host selection mechanisms that shape adaptive evolution by V. fischeri. (A) Dorsal view of juvenile host E. scolopes (left) with box indicating

the relative position of the ventrally situated symbiotic light organ. On the right, a schematic illustrating the stages at which host-imposed selection

occurs during squid–V. fischeri symbiosis: host recruitment (mucus entrapment, aggregation at light organ pores), initiation of symbiosis (host defenses,

including hemocyte engulfment and oxidative stress), and colonization and maintenance (nutrient provisioning, sanctioning of non-luminous cheaters,

continued hemocyte patrolling, and daily purging). (B) Symbiont population growth modeled for a single passage on the basis of growth dynamics of

V. fischeri ES114. Light-organ populations are initiated with as few as ~10 cells (Wollenberg and Ruby, 2009; Altura et al., 2013) or as much as 1% of

the inoculum, but are reduced by 95% following venting of the light organ at dawn (every 24 hr) (Boettcher et al., 1996). Shaded areas represent night

periods whereas light areas represent daylight, which induces the venting behavior. (C) Experimental evolution of V. fischeri under host selection as

described in Schuster et al. (2010). Each ancestral V. fischeri population was prepared by recovering cells from five colonies, growing them to mid-log

phase, and sub-culturing them into 100 mL filtered seawater at a concentration sufficient to colonize squid (�20,000 CFU/mL). On day 1, ten un-

colonized (non-luminous) juvenile squid were communally inoculated by overnight incubation, during which bacteria were subjected to the first host-

selective bottleneck. Following venting of ~95% of the light organ population, the squid were separated into isolated lineages in individual wells of a

24-well polystyrene plate containing filtered sea water with intervening rows of squid from an un-inoculated control cohort, the aposymbiotc control

(‘apo control’). Note that only two of the ten passage squid populations are shown. On days 2, 3, and 4, after venting, squid were rinsed and

transferred into 2 mL fresh filtered seawater. Luminescence was measured at various intervals for each squid to monitor colonization and the absence of

contamination in aposymbiotic control squid. On the fourth day, the squid and half of the ventate were frozen at �80˚C to preserve bacteria, and the

remaining 1 mL ventate was combined with 1 mL of fresh filtered seawater, and used to inoculate a new uncolonized 24-hr-old juvenile squid. The

process continued for 15 squid only for those lineages in which squid were detectably luminous at 48 hr post inoculation.

DOI: 10.7554/eLife.24414.003
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correct symbiotic partner gains access to the crypts where host-provided nutrients support bacterial

growth (Graf and Ruby, 1998; Heath-Heckman and McFall-Ngai, 2011). Striking parallels between

beneficial V. fischeri colonization and pathogenic infection suggest that the selective pressures

exerted by animal hosts may act on a common repertoire of bacterial traits used to circumvent host

defensive obstacles (Nyholm and McFall-Ngai, 2004).

Not all lineages of V. fischeri excel in symbiosis; this observation is reflective of the varied selec-

tive regimes that shape both genetic variation and adaptive potential as symbionts (Lee and Ruby,

1994a; Nishiguchi et al., 1998). In habitats where squid hosts are present, they influence local V.

fischeri populations by enriching the planktonic community with those strains that are most adept at

symbiosis (Lee and Ruby, 1994b). Squid recruit small founder populations (~10 bacteria) and subject

these to daily cycles of expulsion (‘venting’) and regrowth of 95% of light organ populations to >105

bacteria (Wollenberg and Ruby, 2009) (Figure 1B), thereby increasing the relative abundance of

their light organ inhabitants in the surrounding seawater (Lee and Ruby, 1994b). The bottlenecks

within the venting cycle limit light organ microbial diversity, including variation that impairs symbio-

sis, such as ’cheaters’ that do not contribute to the mutualism but benefit from symbiotic association

(Wollenberg and Ruby, 2009; Ruby and McFall-Ngai, 1999; Visick and McFall-Ngai, 2000). How-

ever, host-imposed selection that drives the evolution of some lineages towards efficient coloniza-

tion could hinder future adaptation and entail fitness trade-offs in other environments (Soto et al.,

2014; Caley and Munday, 2003). So, by contrast, planktonic V. fischeri strains that reside in habitats

without hosts, or that are unable to compete for prime host niches, may maintain greater adaptabil-

ity while being ineffective as symbionts (Takemura et al., 2014). Deficiency in squid colonization cor-

relates with insufficient or excessive luminescence or inadequate production of a symbiotic

polysaccharide (known as Syp), which is controlled by a horizontally acquired activator (RscS) in squid

native strain ES114 (Nishiguchi et al., 1998; Yip et al., 2006; Mandel et al., 2009). However, the

absence of the rscS gene in some symbiotically proficient V. fischeri strains (and likewise, the pres-

ence of rscS in deficient strains) indicates that this regulator alone does not strictly determine squid

colonization capacity (Figure 1A, Figure 2—figure supplement 1). Genomic similarity among

closely related yet ecologically diverse strains has obscured relevant functional differences that are

sometimes undetectable except in the symbiotic context (Yip et al., 2006; Mandel et al., 2009;

Travisano and Shaw, 2013).

For this study, we conducted a series of evolution experiments in which hatchling squid select

among V. fischeri populations for mutants that are capable of initiating symbiosis, of persisting in

the light organ, and of colonizing new squid when purged from the light organ (Schuster et al.,

2010). This cycle of host selection was designed to identify traits underlying symbiotic adaptive evo-

lution and to reveal the evolutionary and genomic dynamics of this process. We chose as ancestors

of our experimental lineages five V. fischeri strains that had variable aptitudes for squid symbiosis

and were isolated from different niches, including the light organs of squid and fish, and

various planktonic aquatic environments, including one without known hosts (Table 1). After we

experimentally evolved replicate populations derived from each ancestor in parallel, we evaluated

the genetic and phenotypic changes that occurred under host selection to examine how starting fit-

ness and past evolutionary history influenced adaptability to squid symbiosis. To delineate the

effects of host selection from neutral mutation accumulation, we also subjected V. fischeri to labora-

tory evolution in minimal seawater media. Previously, we demonstrated that altered luminescence

was associated with several isolates following 15 serial host passages (Schuster et al., 2010). Here,

we report the genetic basis of this adaptation as well as the population dynamics of the symbionts

under host selection. Importantly, we also identify the precise traits under selection that enabled

these early-sweeping mutants to bypass key barriers imposed by hosts.

Results

Squid experimental evolution of ecologically diverse V. fischeri
repeatedly produced adaptive mutations in the binK sensor kinase
gene
To study the dynamic process of adaptation during symbiosis, we capitalized upon the squid’s natu-

ral recruitment process to found parallel populations of V. fischeri, and used the daily squid venting
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Table 1. Strains and plasmids used in this study.

Strain name Description* Reference/source

Vibrio fischeri strains†

ES114 Isolated from Euprymna scolopes (Boettcher and Ruby, 1990)

MJ11 Isolated from Monocentris japonica light-organ (Haygood et al., 1984)

EM17 Isolated from Euprymna morseii light-organ (Ruby and Lee, 1998)

H905 Isolated from Hawaiian plankton (Lee and Ruby, 1992)

WH1 Isolated from Massachusetts plankton (Lee, 1994)

RF1A4 MJ11 DbinK::ermB; EmR This study

RF1A5 MJ11 DsypK::aphA1; KmR This study

RF1A6 MJ11 DbinK::ermB DsypK::aphA1; EmR KmR This study

RF1A7 MJ11 binK1 DsypK::aphA1; KmR This study

MJ11EP2-3-2 MJ11 binK4 This study

MJ11EP2-3-3 MJ11 binK4 This study

MJ11EP2-3-4 MJ11 binK4 This study

MJ11EP2-3-5 MJ11 binK4 This study

MJ11EP2-3-6 MJ11 binK4 This study

MJ11EP2-3-7 MJ11 binK4 This study

MJ11EP2-3-8 MJ11 binK4 This study

MJ11EP15-3-1 MJ11 binK4 This study

MJ11EP15-3-3 MJ11 binK4 This study

MJ11EP15-3-4 MJ11 binK4 This study

MJ11EP15-3-7 MJ11 binK4 This study

MJ11EP15-3-8 MJ11 binK4 This study

MJ11EP2-4-1 MJ11 binK1 This study

MJ11EP2-4-3 MJ11 binK1 This study

MJ11EP2-4-4 MJ11 binK1 This study

MJ11EP2-4-5 MJ11 binK1 This study

MJ11EP2-4-6 MJ11 binK1 This study

MJ11EP15-4-1 MJ11 binK1 tadC1G593T (Schuster et al., 2010)

MJ11EP15-4-6 MJ11 binK1 This study

MJ11EP15-4-7 MJ11 binK1 This study

MJ11EP15-4-8 MJ11 binK1 This study

MJ11EP2-5-2 MJ11 binK3 This study

MJ11EP2-5-3 MJ11 binK3 This study

MJ11EP2-5-4 MJ11 binK3 This study

MJ11EP2-5-5 MJ11 binK3 This study

MJ11EP2-5-6 MJ11 binK3 This study

MJ11EP15-5-2 MJ11 binK4 This study

MJ11EP15-5-3 MJ11 binK3 This study

MJ11EP15-5-4 MJ11 binK3 This study

MJ11EP15-5-5 MJ11 binK3 This study

MJ11EP2-6-1 MJ11 binK2 This study

MJ11EP15-6-1 MJ11 binK2 (Schuster et al., 2010)

MJ11EP15-6-2 MJ11 binK2 This study

MJ11EP15-6-3 MJ11 binK2 This study

Table 1 continued on next page
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behavior to restrict and re-grow bacterial populations, which were passaged through 15 serial squid,

encompassing 60 bottlenecking events and an estimated 290–360 generations (Figure 1C)

(Schuster et al., 2010). Multiple populations were derived in parallel from each of five ancestral

strains using high-density inocula, up to 10 times the concentration required for native strain coloni-

zation, in order to overcome the colonization deficiencies of squid-maladapted strains (Figure 2A

and Materials and methods).

Genome sequencing of evolved isolates revealed that, although few detectable mutations arose

during squid passaging, the majority of mutations that arose to a detectable frequency converged in

a conserved gene (locus VF_A0360 in V. fischeri ES114) (Figure 2A–B, Figure 2—figure supplement

1, Table 2), which was recently identified as a biofilm inhibition kinase (binK) in the native symbiotic

strain ES114 (Brooks and Mandel, 2016). Nine independent mutations mapping to the binK locus,

most often without other co-occurring mutations, dominated multiple parallel evolved populations

of the two strains initially most impaired at squid symbiosis: MJ11 and H905 (Figure 2A, Table 2).

Table 1 continued

Strain name Description* Reference/source

MJ11EP15-6-4 MJ11 binK2 This study

MJ11EP15-6-5 MJ11 binK2 This study

MJ11CE4-1 MJ11 fliAG80D This study

MJ11CE5-1 MJ11 fliPD476 This study

Strain name Description* Reference/source

Escherichia coli strains

DH5a F� recA1 endA1 hsdR17 supE44 thi-1 gyrA96
relA1D (argF-lacZYA) U169j 80lacZDM15l �

Gibco-BRL

DH5alpir supE44 DlacU169 (flacZDM15) recA1 endA1 hsdR17
thi-1 gyrA96 relA1; lpir phage lysogen

(Kolter and Helinski, 1978)

CC118lpir D(arg-leu) araD DlacX74 galE galK phoA20 thi-1 rpsE
rpoB argE(Am) recA1, lysogenized with l pir dam dcm

(Martı́n-Mora et al., 2016)

NEB 10-beta D(ara-leu)7697 araD139 fhuA DlacX74 galK16 galE15 e14- F80dlacZDM15 recA1
relA1 endA1 nupG rpsL (SmR) rph spoT1 D(mrr-hsdRMS-mcrBC)

New England Biolabs, Ipswich, MA

TOP10 F- mcrA D(mrr-hsdRMS-mcrBC) F80lacZDM15 DlacX74 recA1
araD139 D(ara-leu)7697 galU galK rpsL (SmR) endA1 nupG

Invitrogen, Carlsbad, CA

Plasmids

pCR2.1-TOPO Commercial cloning vector; ApR KmR Invitrogen, Carlsbad, CA

pVSV105 Mobilizable vector; ChR (Dunn et al., 2006)

pRAD2E1 pVSV105 carrying wild-type binK; ChR This study

pRF2A2 pVSV105 carrying binK1; ChR This study

pCLD48 pVSV105 carrying ES114 sypE; ChR (Hussa et al., 2008)

pRF2A3 pVSV105 carrying MJ11 binA; ChR This study

pVSV104 Mobilizable vector; KmR (Stabb and Ruby, 2002)

pRF2A1 pVSV104 carrying sypE; KmR This study

pRF2A4 pVSV104 carrying binA; KmR This study

pKV111 Mobilizable vector containing gfp; ChR (Nyholm et al., 2000)

pRF2B7 pCR2.1-TOPO containing MJ11 DsypK::aph1 SOE fragment; KmR This study

pVSV103 Mobilizable vector containing lacZ; KmR (Dunn et al., 2006)

pCAW7B1 pVSV103 containing lacZD147–1080 bp; KmR This study

*ApR, ampicillin resistance; ChR, chloramphenicol resistance; EmR, erythromycin resistance; KmR, kanamycin resistance;SmR streptomycin resistance.
†Experimentally evolved strains are designated ‘MJ11EP#-#-#’, where the first and second numbers after the ‘P’ designates the squid passage and pop-

ulation from which the strain was isolated, and the third number designates isolate number; strains derived from evolution in culture are designated

‘MJ11CE’.

DOI: 10.7554/eLife.24414.004
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http://dx.doi.org/10.7554/eLife.24414.004Table%201.Strains%20and%20plasmids%20used%20in%20this%20study.%2010.7554/eLife.24414.004Strain%20nameDescription&x002A;Reference/sourceVibrio%20fischeri%20strains&x2020;ES114Isolated%20from%20Euprymna%20scolopes(Boettcher%20and%20Ruby,%201990)MJ11Isolated%20from%20Monocentris%20japonica%20light-organ(Haygood%20et�al.,%201984)EM17Isolated%20from%20Euprymna%20morseii%20light-organ(Ruby%20and%20Lee,%201998)H905Isolated%20from%20Hawaiian%20plankton(Lee%20and%20Ruby,%201992)WH1Isolated%20from%20Massachusetts%20plankton(Lee,%201994)RF1A4MJ11%20&x2206;binK::ermB;%20EmRThis%20studyRF1A5MJ11%20&x2206;sypK::aphA1;%20KmRThis%20studyRF1A6MJ11%20&x2206;binK::ermB%20&x2206;sypK::aphA1;%20EmR%20KmRThis%20studyRF1A7MJ11%20binK1%20&x2206;sypK::aphA1;%20KmRThis%20studyMJ11EP2-3-2MJ11%20binK4This%20studyMJ11EP2-3-3MJ11%20binK4This%20studyMJ11EP2-3-4MJ11%20binK4This%20studyMJ11EP2-3-5MJ11%20binK4This%20studyMJ11EP2-3-6MJ11%20binK4This%20studyMJ11EP2-3-7MJ11%20binK4This%20studyMJ11EP2-3-8MJ11%20binK4This%20studyMJ11EP15-3-1MJ11%20binK4This%20studyMJ11EP15-3-3MJ11%20binK4This%20studyMJ11EP15-3-4MJ11%20binK4This%20studyMJ11EP15-3-7MJ11%20binK4This%20studyMJ11EP15-3-8MJ11%20binK4This%20studyMJ11EP2-4-1MJ11%20binK1This%20studyMJ11EP2-4-3MJ11%20binK1This%20studyMJ11EP2-4-4MJ11%20binK1This%20studyMJ11EP2-4-5MJ11%20binK1This%20studyMJ11EP2-4-6MJ11%20binK1This%20studyMJ11EP15-4-1MJ11%20binK1%20tadC1G593T(Schuster%20et�al.,%202010)MJ11EP15-4-6MJ11%20binK1This%20studyMJ11EP15-4-7MJ11%20binK1This%20studyMJ11EP15-4-8MJ11%20binK1This%20studyMJ11EP2-5-2MJ11%20binK3This%20studyMJ11EP2-5-3MJ11%20binK3This%20studyMJ11EP2-5-4MJ11%20binK3This%20studyMJ11EP2-5-5MJ11%20binK3This%20studyMJ11EP2-5-6MJ11%20binK3This%20studyMJ11EP15-5-2MJ11%20binK4This%20studyMJ11EP15-5-3MJ11%20binK3This%20studyMJ11EP15-5-4MJ11%20binK3This%20studyMJ11EP15-5-5MJ11%20binK3This%20studyMJ11EP2-6-1MJ11%20binK2This%20studyMJ11EP15-6-1MJ11%20binK2(Schuster%20et�al.,%202010)MJ11EP15-6-2MJ11%20binK2This%20studyMJ11EP15-6-3MJ11%20binK2This%20studyMJ11EP15-6-4MJ11%20binK2This%20studyMJ11EP15-6-5MJ11%20binK2This%20studyMJ11CE4-1MJ11%20fliAG80DThis%20studyMJ11CE5-1MJ11%20fliP&x2206;476This%20studyStrain%20nameDescription&x002A;Reference/sourceEscherichia%20coli%20strainsDH5&x03B1;F&x2212;%20recA1%20endA1%20hsdR17%20supE44%20thi-1%20gyrA96%20relA1&x0394;%20(argF-lacZYA)%20U169&x03C6;%2080lacZ&x0394;M15&x03BB;%20&x2212;Gibco-BRLDH5&x03B1;&x03BB;pirsupE44%20&x0394;lacU169%20(&x03D5;lacZ&x0394;M15)%20recA1%20endA1%20hsdR17%20thi-1%20gyrA96%20relA1;%20&x03BB;pir%20phage%20lysogen(Kolter%20and%20Helinski,%201978)CC118&x03BB;pir&x0394;(arg-leu)%20araD%20&x0394;lacX74%20galE%20galK%20phoA20%20thi-1%20rpsE%20rpoB%20argE(Am)%20recA1,%20lysogenized%20with&x00A0;&x03BB;%20pir%20dam%20dcm(Mart&x00ED;n-Mora%20et�al.,%202016)NEB%2010-beta&x0394;(ara-leu)7697%20araD139%20fhuA%20&x0394;lacX74%20galK16%20galE15%20e14-%20&x03A6;80dlacZ&x0394;M15%20recA1%20relA1%20endA1%20nupG%20rpsL%20(SmR)%20rph%20spoT1%20&x0394;(mrr-hsdRMS-mcrBC)New%20England%20Biolabs,%20Ipswich,%20MATOP10F-%20mcrA%20&x0394;(mrr-hsdRMS-mcrBC)%20&x03A6;80lacZ&x0394;M15%20&x0394;lacX74%20recA1%20araD139%20&x0394;(ara-leu)7697%20galU%20galK%20rpsL%20(SmR)%20endA1%20nupGInvitrogen,%20Carlsbad,%20CAPlasmidspCR2.1-TOPOCommercial%20cloning%20vector;%20ApR%20KmRInvitrogen,%20Carlsbad,%20CApVSV105Mobilizable%20vector;%20ChR(Dunn%20et�al.,%202006)pRAD2E1pVSV105%20carrying%20wild-type%20binK;%20ChRThis%20studypRF2A2pVSV105%20carrying%20binK1;%20ChRThis%20studypCLD48pVSV105%20carrying%20ES114%20sypE;%20ChR(Hussa%20et�al.,%202008)pRF2A3pVSV105%20carrying%20MJ11%20binA;%20ChRThis%20studypVSV104Mobilizable%20vector;%20KmR(Stabb%20and%20Ruby,%202002)pRF2A1pVSV104%20carrying%20sypE;%20KmRThis%20studypRF2A4pVSV104%20carrying%20binA;%20KmRThis%20studypKV111Mobilizable%20vector%20containing%20gfp;%20ChR(Nyholm%20et�al.,%202000)pRF2B7pCR2.1-TOPO%20containing%20MJ11%20&x2206;sypK::aph1%20SOE%20fragment;%20KmRThis%20studypVSV103Mobilizable%20vector%20containing%20lacZ;%20KmR(Dunn%20et�al.,%202006)pCAW7B1pVSV103%20containing%20lacZ&x2206;147&x2013;1080%20bp;%20KmRThis%20study&x002A;ApR,%20ampicillin%20resistance;%20ChR,%20chloramphenicol%20resistance;&x00A0;EmR,%20erythromycin%20resistance;%20KmR,%20kanamycin%20resistance;SmR%20streptomycin%20resistance.&x2020;Experimentally%20evolved%20strains%20are%20designated%20&x2018;MJ11EP#-#-#&x2019;,%20where%20the%20first%20and%20second%20numbers%20after%20the%20&x2018;P&x2019;%20designates%20the%20squid%20passage%20and%20population%20from%20which%20the%20strain%20was%20isolated,%20and%20the%20third%20number%20designates%20isolate%20number;%20strains%20derived%20from%20evolution%20in%20culture%20are&x00A0;designated%20&x2018;MJ11CE&x2019;.
http://dx.doi.org/10.7554/eLife.24414


Given that MJ11 is a fish symbiont that lacks rscS, and H905 is a planktonic isolate from the squid

habitat that is a poor squid colonizer despite harboring rscS, starting fitness better predicted the

path of evolution than rscS content or past evolutionary history as inferred by either lineage or life-

style (Figure 2A, Figure 2—figure supplement 1) (Mandel et al., 2009; Lee and Ruby, 1994a). By

contrast, very few mutations, all at unique loci, occurred in representative isolates derived from

strains EM17 (an Euprymna morsei squid symbiont) and WH1 (a planktonic strain from an environ-

ment without known hosts) (Figure 2A, Table 2). Both of these strains have relatively greater starting

fitness than MJ11 and H905, further demonstrating that starting symbiont fitness influences its evolu-

tionary path (Wang et al., 2016). Finally, mutations were not detected in any of the representative

isolates from the native squid symbiont ES114 (Figure 2A, Table 2), even though several mutations

are known to improve its competitive dominance (Fidopiastis et al., 2002; Brooks and Mandel,

2016). Laboratory-culture evolution of strain MJ11 that mimicked the population dynamics of squid-

induced bottlenecks produced few mutations except for those localizing to flagellar genes fliA and

fliP (Table 2).

To examine more thoroughly the evolutionary process giving rise to the convergent binK muta-

tions, we focused on lineages derived from the fully sequenced and relatively well-characterized fish

symbiont MJ11. Only five of ten squid exposed to the same inoculum population successfully pas-

saged symbionts to the second recipient squid, and each successful lineage harbored binK variants

(Table 2). Among these were four unique alleles wherein the acquired substitutions mapped to two

of the five conserved functional domains of the deduced BinK protein (Figure 2B, Table 2). Despite

standing variation in binK across V. fischeri strains, the four point mutations in experimentally

evolved MJ11 lineages occurred at positions that, with the exception of binK3 (S311L), are invariant

in natural strains and thus are likely to represent novel allelic variants that are not convergent with

the native symbiont (Figure 2B). Further analysis of the acquired mutations using a position-specific

scoring matrix (PSSM) also provided evidence that the mutations in binK1 (R537C), binK2 (K482N)

and binK3 (S311L) would influence protein function (Figure 2B). In each of the five successful squid-

evolved lineages of MJ11, binK variants dominated the light-organ populations by the third experi-

mental squid (Table 2). If beneficial variants in this or any other locus were among the remaining five

light-organ populations, their failure to colonize the second experimental squid amounted to early

extinction of these lineages.

The large selective advantage conferred by squid-adapted binK
improved fitness during both the initiation and maintenance stages of
symbiosis, consistent with theoretical predictions
The repeated sweeps of novel binK mutations that occurred during squid evolution, but not during

laboratory culture evolution, suggested that binK variants were squid-adaptive (Table 2)

(Dillon et al., 2017). To evaluate the contribution of evolved binK alleles specifically to improved

symbiotic colonization, we assessed the colonization efficiency of the squid-evolved isolates and the

ancestor using inoculum doses typically used for the native symbiont strain ES114 (Figure 2A). Each

squid-evolved binK variant vastly improved colonization efficiency (Figure 3A), but they were not

significantly more fit in laboratory culture (which would be indicative of mutants enhancing general

vigor) when compared to ancestral MJ11 (Figure 3B). Moreover, whereas two of the five culture-

evolved populations of MJ11 evolved culture-adaptive flagellar mutations that improved fitness in

culture (Figures 2A and 3B, Table 2), none accrued binK mutations (Table 2) or improved as squid

symbionts (Figure 3A). Evolved isolates that have mutations mapping to different binK domains

were competitively indistinguishable from each other in symbiotic fitness (permutation t-test,

p=0.348) (Figure 3—figure supplement 1), despite evidence that the binK1 allele (encoding an

R537C substitution, Figure 2B, Table 2) appeared slightly more efficient at squid colonization when

singly inoculated (Figure 3A).

To quantify empirically the selective advantage (selective coefficient: s) conferred by a representa-

tive binK allele that arose to early dominance before co-occurring mutations, we co-inoculated squid

with MJ11 and low densities of a binK1 variant (a fully sequenced second passage squid isolate

that we named MJ11EP2-4-1, see Tables 1 and 2), simulating the conditions under which we predict

the variants evolved given the low mutation rate of V. fischeri (Dillon et al., 2017) (Figure 4A–B).

These experiments revealed that even at an extremely low frequency (e.g., one binK1 variant per

10,000 wild-type MJ11 bacteria, which amounted to only 50 binK1 variant cells in an 104 CFU.ml�1
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Figure 2. Experimental evolution of Vibrio fischeri produced multiple alleles in the sensor kinase BinK. (A). Phylogenetic relationship, symbiotic

capacity, and mutations accrued during squid experimental evolution of ecologically diverse Vibrio fischeri strains. Strain relationships were inferred

under maximum likelihood using whole genomes with RealPhy (Bertels et al., 2014) and with node supports calculated from 1,000 bootstraps. Graphic

symbols for ecological niches represent the source of isolation. Intrinsic squid symbiotic capacities of the five experimentally evolved strains, as

determined by the minimum inoculum concentration required for successful colonization of 90% of squid with a 3 hr (ES114, EM17, and WH1) or over-

night (H905 and MJ11) inoculum, are represented by color spectrum. Consensus genomes for each of the parallel V. fischeri populations evolved

through E. scolopes are shown on the right, with variants indicated by circles. Mutation details are shown in Table 2. The mutations that were selected

in host-passaged populations improved symbiotic capacity rather than general vigor. (B) BinK mutations arising in squid-evolved populations of MJ11

occurred in the HAMP and HATPaseC domains. A homo-dimer structural model for BinK using TMPRed and hybrid histidine kinase domain modelling

(Anantharaman and Aravind, 2000; Stewart and Chen, 2010) predicts that the accessory sensory Cache1 domain localizes to the periplasm whereas

the remaining four functional domains (accessory HAMP, and conserved HisKA, HATPaseC, and REC phosphorelay domains) are cytoplasmic (shown as

gray band). A position-specific scoring matrix (PSSM) analysis for each of the squid-evolved BinK positions indicates whether a given amino acid is more

(positive) or less (negative) likely to be functionally neutral. Scores for the substitutions incurred at these sites are shown in bold. Please refer to

Figure 2—figure supplement 1 for a phylogenetic assessment of BinK orthology across Aliivibrio and V. fischeri strains.

DOI: 10.7554/eLife.24414.005

The following figure supplement is available for figure 2:

Figure supplement 1. BinK orthology, conserved domains and squid-adapted binK alleles.

DOI: 10.7554/eLife.24414.006
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Table 2. Summary of mutations detected following experimental evolution of V. fischeri using Illumina genome resequencing and tar-

geted Sanger sequencing. For culture-evolved populations of V. fischeri MJ11, five isolates from each evolved population were com-

bined to generate five metagenomes. For squid-evolved populations of MJ11, EM17, WH1 and H905, individual isolates were

sequenced from lineages that ultimately survived 15 host passages. Isolates saved from early evolutionary time-points (host passage 2)

are shown along with isolate genomes from the endpoint (host passage 15). Mean read depth and genome coverage for isolates ana-

lyzed with WGS are also provided.

Ancestor

Evolved
Passage
(EP) Population Isolate†

Detected mutations‡ Illumina sequencing statistics

binK (VFMJ11_A0397) tadC1
(MJ11_0520);
mutation
(reads)

All other mutations
detectected by WGS
gene (locus);
mutation (reads) Reads

%Mapped to
ancestor

Coverage

allele/
mutation

Method
(reads)§ ChI ChII

MJ11 2 1 1 binK3/S311L WGS (35) – – 3753352 99.5 135.2 118

MJ11 2 1 3 binK3/S311L WGS (32) – – 3717088 99.6 134.2 113.5

MJ11 15 1 4 binK3/S311L WGS (17) – – 1716144 99.5 46.8 42.5

MJ11 2 3 3 binK4/
N292T

PCR/SS n.d. n.d.

MJ11 2 3 4 binK4/
N292T

PCR/SS n.d. n.d.

MJ11 2 3 5 binK4/
N292T

PCR/SS n.d. n.d.

MJ11 2 3 6 binK4/
N292T

PCR/SS n.d. n.d.

MJ11 2 3 7 binK4/
N292T

PCR/SS n.d. n.d.

MJ11 2 3 8 binK4/
N292T

PCR/SS n.d. n.d.

MJ11 15 3 1 binK4/
N292T

WGS (42) – – 3031149 98.9 104.3 93.5

MJ11 15 3 3 binK4/
N292T

WGS (63) – – 3777714 99.4 114.6 105.2

MJ11 15 3 4 binK4/
N292T

WGS (42) – – 3420212 99.5 106.4 97.1

MJ11 15 3 7 binK4/
N292T

WGS (41) – – 3304891 99.5 90.3 82.5

MJ11 15 3 8 binK4/
N292T

WGS (63) – – 2948743 99.6 85.5 81.2

MJ11 2 4 1 binK1/
R537C

WGS (62) – – 2511256 99 84 78

MJ11 2 4 3 binK1/
R537C

PCR/SS n.d. n.d.

MJ11 2 4 4 binK1/
R537C

PCR/SS n.d. n.d.

MJ11 2 4 5 binK1/
R537C

PCR/SS n.d. n.d.

MJ11 2 4 6 binK1/
R537C

PCR/SS n.d. n.d.

MJ11 2 4 7 binK1/
R537C

PCR n.d. n.d.

MJ11 2 4 8 binK1/
R537C

PCR n.d. n.d.

MJ11 2 4 9 binK1/
R537C

PCR n.d. n.d.

MJ11 2 4 10 binK1/
R537C

PCR n.d. n.d.

MJ11 2 4 11 binK1/
R537C

PCR n.d. n.d.

Table 2 continued on next page
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Table 2 continued

Ancestor

Evolved
Passage
(EP) Population Isolate†

Detected mutations‡ Illumina sequencing statistics

binK (VFMJ11_A0397) tadC1
(MJ11_0520);
mutation
(reads)

All other mutations
detectected by WGS
gene (locus);
mutation (reads) Reads

%Mapped to
ancestor

Coverage

allele/
mutation

Method
(reads)§ ChI ChII

MJ11 2 4 12 binK1/
R537C

PCR n.d. n.d.

MJ11 2 4 13 binK1/
R537C

PCR n.d. n.d.

MJ11 2 4 14 binK1/
R537C

PCR/SS n.d. n.d.

MJ11 2 4 15 binK1/
R537C

PCR/SS n.d. n.d.

MJ11 2 4 16 binK1/
R537C

PCR/SS n.d. n.d.

MJ11 15 4 1 binK1/
R537C

WGS
(131)

G198V (85) – 4126149 99.4 117.8 106.1

MJ11 15 4 6 binK1/
R537C

WGS (61) G198V (55) – 2266821 99.2 60.8 52.5

MJ11 15 4 7 binK1/
R537C

WGS (89) G198V (93) – 3074437 99.6 92 83.6

MJ11 15 4 8 binK1/
R537C

WGS (47) G198V (96) – 2902977 99.5 84 77.5

MJ11 2 5 2 binK3/S311L WGS (26) – – 3771048 99.6 132.4 123.7

MJ11 2 5 3 binK3/S311L WGS (46) – – 2595518 99.6 84.2 83.7

MJ11 2 5 4 binK3/S311L WGS (20) – – 1785713 99.5 60.6 57.2

MJ11 2 5 5 binK3/S311L WGS (62) – – 3641346 99.6 117.4 113.1

MJ11 2 5 6 binK3/S311L WGS (81) – – 4128751 99.6 141.1 134.8

MJ11 15 5 2 binK4/
N292T

WGS (89) – – 4430823 99.1 152.3 138.4

MJ11 15 5 3 binK3/S311L WGS (10) – – 3248580 99.3 88 81.1

MJ11 15 5 4 binK3/S311L WGS (59) – – 3609382 99.5 106.8 97.1

MJ11 15 5 5 binK3/S311L WGS (28) – – 2915570 99.5 87.4 82.6

MJ11 2 6 1 binK2/
K482N

WGS
(104)

– – 4748569 99.1 164.6 147

MJ11 2 6 2 binK2/
K482N

PCR/SS n.d. n.d.

MJ11 15 6 1 binK2/
K482N

WGS (75) – – 2764910 99.4 83.2 75.5

MJ11 15 6 2 binK2/
K482N

WGS (63) – – 3240968 99.2 88 72.6

MJ11 15 6 3 binK2/
K482N

WGS (93) – – 3814367 99.5 108.1 101.7

MJ11 15 6 4 binK2/
K482N

WGS
(108)

– – 3714638 99.5 121.4 85.7

MJ11 15 6 5 binK2/
K482N

WGS (90) – – 3006362 99.4 85.5 72

MJ11 15 Culture1 mg – – – 10319291 98 272.8 237.8

MJ11 15 Culture3 mg – – – 7496847 98.2 196.7 195

MJ11 15 Culture4 mg – – fliA (VF_1834); G80D
(63)

2894160 98.3 76.6 67.4

MJ11 15 Culture5 mg – – fliP (VF_1842); D1 @
476/870nt (110)

5571439 97.9 148.5 132.1

Table 2 continued on next page
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Table 2 continued

Ancestor

Evolved
Passage
(EP) Population Isolate†

Detected mutations‡ Illumina sequencing statistics

binK (VFMJ11_A0397) tadC1
(MJ11_0520);
mutation
(reads)

All other mutations
detectected by WGS
gene (locus);
mutation (reads) Reads

%Mapped to
ancestor

Coverage

allele/
mutation

Method
(reads)§ ChI ChII

MJ11 15 Culture2 mg – – – 5411032 98 144.2 129.4

WH1 15 4 1 – – – 7273244 98.6 257.8 251.1

WH1 15 4 2 – – – 2144381 99.6 61.4 65.1

WH1 15 4 3 – – – 2260232 99.6 62.1 66.6

WH1 15 4 4 – – – 2341428 99.7 61.6 65

WH1 15 5 1 – – NADH oxidase
(VF_A0027); A402T (62)

1732106 99.5 60.8 64.7

WH1 15 5 2 – – NADH oxidase
(VF_A0027); A402T (61)

1737095 99.4 61.9 64.9

WH1 15 5 3 – – NADH oxidase
(VF_A0027); A402T (80)

2194847 96 60.8 63.4

WH1 15 5 4 – – – 2191986 99.8 61.9 64.9

WH1 15 6 1 – – – 9256547 99.3 212.6 220.3

WH1 15 6 2 – – – 2131144 99.6 62 64.7

WH1 15 6 3 – – – 1908857 99.5 62.4 60.5

EM17 15 6 2 – – – 2611609 99.6 93.3 89.3

EM17 15 7 1 – – – 6690137 98.6 225.8 227.1

EM17 15 7 4 – – – 2977429 99.5 83.4 82.1

EM17 15 7 5 – – icmF (VF_0992);S171N,
(72)

2414288 99.5 71.6 71.5

EM17 15 8 1 – – – 3177981 99.5 97.5 94.6

EM17 15 8 2 – – – 3138175 99.5 92.4 92.3

EM17 15 8 3 – – – 2810099 99.5 81.2 80

EM17 15 8 5 – – – 5230411 99.6 144.9 143.2

EM17 15 9 1 – – – 8022935 99.4 184.2 173.5

EM17 15 9 2 – – – 3346216 99.6 113.7 106.9

EM17 15 9 3 – – gdh2 (VF_1284);
E732D (72)

3484188 99.5 95.7 93.2

EM17 15 9 5 – – – 2445758 99.5 72.8 72.6

H905 15 1 1 (D37168 bp/
25 genes)

WGS
(230)

– IlvY (VF_2529); M25I
(233)

7645508 94.2 250.4 222.1

H905 15 1 2 (D37168 bp/
25 genes)

WGS
(167)

– IlvY (VF_2529); M25I
(112)

3531114 96.8 117.5 104.4

H905 15 1 3 (D37168 bp/
25 genes)

WGS
(175)

– IlvY (VF_2529); M25I
(97)

3596689 97 122.3 109.1

H905 15 2 2 D16 bp@
498/2595

WGS (75) – purR (VF_1572); N71T
(60)

2819387 97.6 91.4 79.6

H905 15 2 4 D16 bp@
498/2595

WGS (94) – purR (VF_1572); N71T
(52)

2992978 96.9 103.3 91.4

H905 15 2 5 D16 bp@
498/2595

WGS (90) – purR (VF_1572); N71T
(95)

3844830 96.3 123.6 109

H905 2 3 1 – – tadF2 (VF_A0228);
G21D (68)

3393611 90.7 99.5 92.2

H905 15 3 1 – – tadF2 (VF_A0228);
G21D (140)

7974773 91.5 147.9 143.9

Table 2 continued on next page
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inoculum for 10 squid), the binK1 variant colonized multiple squid (Figure 4—figure supplement 1).

The estimated selective advantage, based on the ratios of the growth rates (a measure of relative

competitiveness) of wild-type bacteria and the binK1 variant in light-organ populations of co-colo-

nized squid, was independent of initial allele frequencies in the inoculum, consistent with a model of

hard selection (Figure 4B, Figure 4—figure supplement 1) (Saccheri and Hanski, 2006). The esti-

mated selective advantage of the squid-adaptive binK1 allele continued to increase by more than

60% between 24 and 48 hr in squid (24 hr: 1.1; 48 hr: 1.8) (Figure 4B). The competitive advantage

conferred by binK1 therefore extended beyond the initial colonization events (the ‘initiation phase’

during the first 24 hr) to include the period of competitive re-growth following the daily venting of

Table 2 continued

Ancestor

Evolved
Passage
(EP) Population Isolate†

Detected mutations‡ Illumina sequencing statistics

binK (VFMJ11_A0397) tadC1
(MJ11_0520);
mutation
(reads)

All other mutations
detectected by WGS
gene (locus);
mutation (reads) Reads

%Mapped to
ancestor

Coverage

allele/
mutation

Method
(reads)§ ChI ChII

H905 15 3 2 T195I WGS (65) – tadF2 (VF_A0228);
G21D (28)

1989875 95.5 65.4 58.2

H905 15 3 3 – – tadF2 (VF_A0228);
G21D (77)

3253899 96.7 103.8 94.4

H905 15 3 4 – – tadF2 (VF_A0228);
G21D (58)

3242749 97.1 103.3 94.7

H905 15 3 5 – – tadF2 (VF_A0228);
G21D (25)

2190771 95.9 67.5 59

H905 15 4 1 E43* WGS
(102)

– – 6651385 92 125.1 130

H905 15 4 3 E43* WGS
(111)

– – 4032373 96.4 135.9 120.4

H905 15 4 4 E43* WGS
(187)

– – 6122168 95.8 203.4 179.4

H905 15 4 5 E43* WGS (90) – – 3177817 96.7 100.8 90.6

H905 15 5 1 D1 bp @
2325/2595nt

WGS
(113)

– – 7166870 90.4 134.5 130.9

H905 15 5 2 D1 bp @
2325/2595nt

WGS (94) – – 3703946 96.7 118.6 108.3

H905 15 5 3 D1 bp @
2325/2595nt

WGS (66) – – 2828102 97.4 98.6 90.4

H905 15 5 4 D1 bp @
2325/2595nt

WGS
(109)

– – 4721575 97 158.9 143.8

H905 2 6 1 T195I WGS
(105)

– tadF2 (VF_A0228);
G21D (28)

2743693 94 83.3 73.6

H905 15 6 3 T195I WGS
(142)

– tadF2 (VF_A0228);
G21D (49)

5594771 97.5 191.7 175.3

H905 15 6 4 T195I WGS
(105)

– tadF2 (VF_A0228);
G21D (37)

3361206 96 115.9 101.4

†Individual characterized strain collection names assigned to isolates were derived from their ancestral lineage (e.g. MJ11), evolved passage (e.g. EP2),

the population (e.g. 1), and isolate number (e.g. 1), which in the preceding example would give rise to strain collection name of MJ11EP2-1-1. Isolates

in bold served as allelic binK representatives for further assays. mg: metagenome sequencing by pooling five isolates from a population.
‡The presence of mutations was determined from Illumina short read (100PE) whole genome sequencing (WGS), by allele-specific PCR (PCR), and/or by

locus PCR-amplification, followed by Sanger sequencing (SS). ‘–’ indicates that no mutations were identified at this locus by breseq (Deatherage and

Barrick, 2014) in this isolate using WGS. ‘n.d.’ indicates that the presence of mutations at this locus was not determined.
§The number of reads supporting the mutation call from WGS data is provided. Mutations were called for sites with minimum coverage of 20 mappable

reads. Mutations identified by Sanger sequencing (SS) of PCR-generated amplicons were confirmed from alignments of both forward and reverse reads.

Coding genes reference V. fischeri ES114 locus tags.

DOI: 10.7554/eLife.24414.007
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http://dx.doi.org/10.7554/eLife.24414.007Table%202.Summary%20of%20mutations%20detected%20following%20experimental%20evolution%20of%20V.%20fischeri%20using%20Illumina%20genome%20resequencing%20and%20targeted%20Sanger%20sequencing.%20For%20culture-evolved%20populations%20of%20V.%20fischeri%20MJ11,%20five%20isolates%20from%20each%20evolved%20population%20were%20combined%20to%20generate%20five%20metagenomes.%20For%20squid-evolved%20populations%20of%20MJ11,%20EM17,%20WH1%20and%20H905,%20individual%20isolates%20were%20sequenced%20from%20lineages%20that%20ultimately%20survived%2015%20host%20passages.%20Isolates%20saved%20from%20early%20evolutionary%20time-points%20(host%20passage%202)%20are%20shown%20along%20with%20isolate%20genomes%20from%20the%20endpoint%20(host%20passage%2015).%20Mean%20read%20depth%20and%20genome%20coverage%20for%20isolates%20analyzed%20with%20WGS%20are%20also%20provided.%2010.7554/eLife.24414.007AncestorEvolved%20Passage%20(EP)PopulationIsolate&x2020;Detected%20mutations&x2021;Illumina%20sequencing%20statisticsbinK%20(VFMJ11_A0397)tadC1(MJ11_0520);mutation(reads)All%20other%20mutationsdetectected%20by%20WGSgene%20(locus);mutation%20(reads)Reads%%20Mapped%20to%20ancestorCoverageallele/mutationMethod%20(reads)&x00A7;ChIChIIMJ11211binK3/S311LWGS%20(35)&x2013;&x2013;375335299.5135.2118MJ11213binK3/S311LWGS%20(32)&x2013;&x2013;371708899.6134.2113.5MJ111514binK3/S311LWGS%20(17)&x2013;&x2013;171614499.546.842.5MJ11233binK4/N292TPCR/SSn.d.n.d.MJ11234binK4/N292TPCR/SSn.d.n.d.MJ11235binK4/N292TPCR/SSn.d.n.d.MJ11236binK4/N292TPCR/SSn.d.n.d.MJ11237binK4/N292TPCR/SSn.d.n.d.MJ11238binK4/N292TPCR/SSn.d.n.d.MJ111531binK4/N292TWGS%20(42)&x2013;&x2013;303114998.9104.393.5MJ111533binK4/N292TWGS%20(63)&x2013;&x2013;377771499.4114.6105.2MJ111534binK4/N292TWGS%20(42)&x2013;&x2013;342021299.5106.497.1MJ111537binK4/N292TWGS%20(41)&x2013;&x2013;330489199.590.382.5MJ111538binK4/N292TWGS%20(63)&x2013;&x2013;294874399.685.581.2MJ11241binK1/R537CWGS%20(62)&x2013;&x2013;2511256998478MJ11243binK1/R537CPCR/SSn.d.n.d.MJ11244binK1/R537CPCR/SSn.d.n.d.MJ11245binK1/R537CPCR/SSn.d.n.d.MJ11246binK1/R537CPCR/SSn.d.n.d.MJ11247binK1/R537CPCRn.d.n.d.MJ11248binK1/R537CPCRn.d.n.d.MJ11249binK1/R537CPCRn.d.n.d.MJ112410binK1/R537CPCRn.d.n.d.MJ112411binK1/R537CPCRn.d.n.d.MJ112412binK1/R537CPCRn.d.n.d.MJ112413binK1/R537CPCRn.d.n.d.MJ112414binK1/R537CPCR/SSn.d.n.d.MJ112415binK1/R537CPCR/SSn.d.n.d.MJ112416binK1/R537CPCR/SSn.d.n.d.MJ111541binK1/R537CWGS%20(131)G198V%20(85)&x2013;412614999.4117.8106.1MJ111546binK1/R537CWGS%20(61)G198V%20(55)&x2013;226682199.260.852.5MJ111547binK1/R537CWGS%20(89)G198V%20(93)&x2013;307443799.69283.6MJ111548binK1/R537CWGS%20(47)G198V%20(96)&x2013;290297799.58477.5MJ11252binK3/S311LWGS%20(26)&x2013;&x2013;377104899.6132.4123.7MJ11253binK3/S311LWGS%20(46)&x2013;&x2013;259551899.684.283.7MJ11254binK3/S311LWGS%20(20)&x2013;&x2013;178571399.560.657.2MJ11255binK3/S311LWGS%20(62)&x2013;&x2013;364134699.6117.4113.1MJ11256binK3/S311LWGS%20(81)&x2013;&x2013;412875199.6141.1134.8MJ111552binK4/N292TWGS%20(89)&x2013;&x2013;443082399.1152.3138.4MJ111553binK3/S311LWGS%20(10)&x2013;&x2013;324858099.38881.1MJ111554binK3/S311LWGS%20(59)&x2013;&x2013;360938299.5106.897.1MJ111555binK3/S311LWGS%20(28)&x2013;&x2013;291557099.587.482.6MJ11261binK2/K482NWGS%20(104)&x2013;&x2013;474856999.1164.6147MJ11262binK2/K482NPCR/SSn.d.n.d.MJ111561binK2/K482NWGS%20(75)&x2013;&x2013;276491099.483.275.5MJ111562binK2/K482NWGS%20(63)&x2013;&x2013;324096899.28872.6MJ111563binK2/K482NWGS%20(93)&x2013;&x2013;381436799.5108.1101.7MJ111564binK2/K482NWGS%20(108)&x2013;&x2013;371463899.5121.485.7MJ111565binK2/K482NWGS%20(90)&x2013;&x2013;300636299.485.572MJ1115Culture1mg&x2013;&x2013;&x2013;1031929198272.8237.8MJ1115Culture3mg&x2013;&x2013;&x2013;749684798.2196.7195MJ1115Culture4mg&x2013;&x2013;fliA%20(VF_1834);%20G80D%20(63)289416098.376.667.4MJ1115Culture5mg&x2013;&x2013;fliP%20(VF_1842);%20&x2206;1%20@%20476/870nt%20(110)557143997.9148.5132.1MJ1115Culture2mg&x2013;&x2013;&x2013;541103298144.2129.4WH11541&x2013;&x2013;&x2013;727324498.6257.8251.1WH11542&x2013;&x2013;&x2013;214438199.661.465.1WH11543&x2013;&x2013;&x2013;226023299.662.166.6WH11544&x2013;&x2013;&x2013;234142899.761.665WH11551&x2013;&x2013;NADH%20oxidase%20(VF_A0027);%20A402T%20(62)173210699.560.864.7WH11552&x2013;&x2013;NADH%20oxidase%20(VF_A0027);%20A402T%20(61)173709599.461.964.9WH11553&x2013;&x2013;NADH%20oxidase%20(VF_A0027);%20A402T%20(80)21948479660.863.4WH11554&x2013;&x2013;&x2013;219198699.861.964.9WH11561&x2013;&x2013;&x2013;925654799.3212.6220.3WH11562&x2013;&x2013;&x2013;213114499.66264.7WH11563&x2013;&x2013;&x2013;190885799.562.460.5EM171562&x2013;&x2013;&x2013;261160999.693.389.3EM171571&x2013;&x2013;&x2013;669013798.6225.8227.1EM171574&x2013;&x2013;&x2013;297742999.583.482.1EM171575&x2013;&x2013;icmF%20(VF_0992);S171N,%20(72)241428899.571.671.5EM171581&x2013;&x2013;&x2013;317798199.597.594.6EM171582&x2013;&x2013;&x2013;313817599.592.492.3EM171583&x2013;&x2013;&x2013;281009999.581.280EM171585&x2013;&x2013;&x2013;523041199.6144.9143.2EM171591&x2013;&x2013;&x2013;802293599.4184.2173.5EM171592&x2013;&x2013;&x2013;334621699.6113.7106.9EM171593&x2013;&x2013;gdh2%20(VF_1284);%20E732D%20(72)348418899.595.793.2EM171595&x2013;&x2013;&x2013;244575899.572.872.6H9051511(&x2206;37168%20bp/25%20genes)WGS%20(230)&x2013;IlvY%20(VF_2529);%20M25I%20(233)764550894.2250.4222.1H9051512(&x2206;37168%20bp/25%20genes)WGS%20(167)&x2013;IlvY%20(VF_2529);%20M25I%20(112)353111496.8117.5104.4H9051513(&x2206;37168%20bp/25%20genes)WGS%20(175)&x2013;IlvY%20(VF_2529);%20M25I%20(97)359668997122.3109.1H9051522&x2206;16%20bp@%20498/2595WGS%20(75)&x2013;purR%20(VF_1572);%20N71T%20(60)281938797.691.479.6H9051524&x2206;16%20bp@%20498/2595WGS%20(94)&x2013;purR%20(VF_1572);%20N71T%20(52)299297896.9103.391.4H9051525&x2206;16%20bp@%20498/2595WGS%20(90)&x2013;purR%20(VF_1572);%20N71T%20(95)384483096.3123.6109H905231&x2013;&x2013;tadF2%20(VF_A0228);%20G21D%20(68)339361190.799.592.2H9051531&x2013;&x2013;tadF2%20(VF_A0228);%20G21D%20(140)797477391.5147.9143.9H9051532T195IWGS%20(65)&x2013;tadF2%20(VF_A0228);%20G21D%20(28)198987595.565.458.2H9051533&x2013;&x2013;tadF2%20(VF_A0228);%20G21D%20(77)325389996.7103.894.4H9051534&x2013;&x2013;tadF2%20(VF_A0228);%20G21D%20(58)324274997.1103.394.7H9051535&x2013;&x2013;tadF2%20(VF_A0228);%20G21D%20(25)219077195.967.559H9051541E43&x002A;WGS%20(102)&x2013;&x2013;665138592125.1130H9051543E43&x002A;WGS%20(111)&x2013;&x2013;403237396.4135.9120.4H9051544E43&x002A;WGS%20(187)&x2013;&x2013;612216895.8203.4179.4H9051545E43&x002A;WGS%20(90)&x2013;&x2013;317781796.7100.890.6H9051551&x2206;1%20bp%20@%202325/2595ntWGS%20(113)&x2013;&x2013;716687090.4134.5130.9H9051552&x2206;1%20bp%20@%202325/2595ntWGS%20(94)&x2013;&x2013;370394696.7118.6108.3H9051553&x2206;1%20bp%20@%202325/2595ntWGS%20(66)&x2013;&x2013;282810297.498.690.4H9051554&x2206;1%20bp%20@%202325/2595ntWGS%20(109)&x2013;&x2013;472157597158.9143.8H905261T195IWGS%20(105)&x2013;tadF2%20(VF_A0228);%20G21D%20(28)27436939483.373.6H9051563T195IWGS%20(142)&x2013;tadF2%20(VF_A0228);%20G21D%20(49)559477197.5191.7175.3H9051564T195IWGS%20(105)&x2013;tadF2%20(VF_A0228);%20G21D%20(37)336120696115.9101.4&x2020;Individual%20characterized%20strain%20collection%20names%20assigned%20to%20isolates%20were%20derived%20from%20their%20ancestral%20lineage%20(e.g.%20MJ11),%20evolved%20passage%20(e.g.%20EP2),%20the%20population%20(e.g.%201),%20and%20isolate%20number%20(e.g.%201),%20which%20in%20the%20preceding%20example%20would%20give%20rise%20to%20strain%20collection%20name%20of%20MJ11EP2-1-1.%20Isolates%20in%20bold%20served%20as%20allelic%20binK%20representatives%20for%20further%20assays.%20mg:%20metagenome%20sequencing%20by%20pooling%20five%20isolates%20from%20a%20population.&x2021;The&x00A0;presence%20of%20mutations%20was%20determined%20from%20Illumina%20short%20read%20(100PE)%20whole%20genome%20sequencing%20(WGS),%20by%20allele-specific%20PCR%20(PCR),%20and/or%20by%20locus%20PCR-amplification,%20followed%20by%20Sanger%20sequencing%20(SS).%20&x2018;&x2013;&x0027;%20indicates%20that%20no%20mutations%20were%20identified%20at%20this%20locus&x00A0;by%20breseq&x00A0;(Deatherage%20and%20Barrick,%202014)%20in%20this%20isolate%20using%20WGS.%20&x2018;n.d.&x2019;%20indicates%20that%20the%20presence%20of%20mutations%20at%20this%20locus%20was%20not%20determined.&x00A7;The%20number%20of%20reads%20supporting%20the%20mutation%20call%20from%20WGS%20data%20is%20provided.%20Mutations%20were%20called%20for%20sites%20with%20minimum%20coverage%20of%2020%20mappable%20reads.%20Mutations%20identified%20by%20Sanger%20sequencing%20(SS)%20of%20PCR-generated%20amplicons%20were%20confirmed%20from%20alignments%20of%20both%20forward%20and%20reverse%20reads.%20Coding%20genes%20reference%20V.%20fischeri%20ES114%20locus%20tags.
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Figure 3. Evolved binK alleles enhanced host colonization and conferred a fitness tradeoff in non-host

environments. (A) Symbiotic colonization efficiency of MJ11 and derivatives in squid. Percentage of squid

colonized by culture-evolved (c1–c5) and squid-evolved (binK1- binK4, bolded isolates in Table 2) derivatives of

MJ11. Three hours after a cohort of 10–20 squid were inoculated with 3000 CFU/mL of each MJ11 strain, the squid

were separated into individual vials, and colonization percentages determined by detectable luminescence at 24

hr. Bars: 95% CI. (B) Growth rates of MJ11 and evolved strains during competition in laboratory culture. Average

growth rates (realized Malthusian parameters) of DbinK, squid-evolved binK and culture-evolved flagellar mutants

(fliA and fliP variants, see Table 2) following in vitro culture competition in minimal media with ancestral binK+

MJ11, estimated using CFU yields of each competitor recovered at regular intervals. Bars: 95% CI. The diagonal

line indicates 1:1 growth. Please refer to Figure 3—figure supplement 1 for data on the competitive abilities of

binK1 and binK3 during colonization. Please refer to Figure 3—figure supplement 2 for symbiotic yields (CFU) of

ES114 and MJ11 strains after 24 and 48 hr.

Figure 3 continued on next page
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95% of the bacterial population (the ‘maintenance phase’), when several different host sanctions are

implicated (Figure 1A–B; Figure 4A–B). By contrast, squid-adaptive binK alleles reduced fitness rela-

tive to wild-type (binK+) in laboratory planktonic culture (�0.18 > s > �1), demonstrating a modest

fitness cost for some alleles in the absence of hosts (Figure 3B).

Even given the extreme fitness advantage attained by the binK1 variant growing within squid

(Figure 4B), the repeated recruitment of binK variants among the few cells that initiated symbiosis is

remarkable. Not only must the mutations confer exceptional host-selected advantages, but these

rare variants must also survive extinction (i.e., loss from the population as the result of genetic drift)

during repeated host-imposed bottlenecks (Nyholm and McFall-Ngai, 2004; Wollenberg and

Ruby, 2009). To examine how mutation timing, strength of selective advantage and population size

influenced the ability of rare beneficial variants to attain a high frequency in populations passaged

between squid, we modeled the evolutionary dynamics and probability of survival of individual var-

iants within a population experiencing recruitment, growth, and repeated cycles of bottlenecking

within a single squid over a theoretical range of selection coefficients, applying generalized popula-

tion and growth parameters derived from native strain ES114 in the squid–Vibrio symbiosis

(Wollenberg and Ruby, 2009; Altura et al., 2013; Wahl and Gerrish, 2001) (see Materials and

methods) (Figure 4C). The model predicts that in order for beneficial variation to ensure survival dur-

ing the extreme bottleneck imposed by the host during initial recruitment, mutants would have to

arise early during population expansion and confer s ~6. Conversely, any beneficial variants arising in

light organs during the maintenance of symbiosis, which is characterized by daily venting bottlenecks

and re-growth, have increased survival odds even if they confer a lower selective advantage, but the

probability of their occurrence is reduced because of the small effective population size (Materials

and methods and Figure 4C). Thus, the model suggests that the mutants were

most probably present in the starting inoculum and were recruited into symbiosis by members of

the first squid cohort. Using a high-resolution measure of the V. fischeri ES114 genomic mutation

rate (Dillon et al., 2017), we predict that as many as 185 individual mutations could have spontane-

ously arisen in binK (see Materials and methods) during growth of the inoculum (Figure 4A). Despite

their low initial frequency, any new alleles that arose by the tenth generation of inoculum growth

and ultimately conferred a high selective advantage in squid (i.e., s > 1) would be expected to sur-

vive the first host passage ~10% of the time (Figure 4C, red line). Incidentally, the observed survival

of each binK allele amounted to 1 or 2 out of 10 experimental squid. Thus, the empirical estimates

of the selective advantage conferred by binK1 in the symbiotic environment are supported by theo-

retical estimates derived from a model of extraordinarily strong selection during repeated bottle-

necks (Wahl and Gerrish, 2001).

Host-adapted binK improved early colonization behavior, survival to
oxidation and evasion of host immunity through enhanced cell-
associated matrix production
The substantial fitness gain conferred by the binK1 allele within the first 24 hr of colonization

(Figure 4B) suggested that it enhanced the early colonization behaviors of MJ11 (Figure 1A and

B) (Nyholm and McFall-Ngai, 2004). Syp mediates the aggregation of native strain ES114 in squid

mucus and its overproduction enhances the aggregation ability of this same strain (Brooks and Man-

del, 2016; Nyholm and McFall-Ngai, 2003; Shibata et al., 2012). Therefore, we evaluated whether

aggregation of the squid-evolved binK1 variant was altered. binK1 improved aggregation at the

entrance to light organs compared to wild-type MJ11 (Figure 5A, Figure 5—figure supplement 1).

Figure 3 continued

DOI: 10.7554/eLife.24414.008

The following figure supplements are available for figure 3:

Figure supplement 1. Relative competitive ability of binK1 and binK3 variants to colonize squid.

DOI: 10.7554/eLife.24414.009

Figure supplement 2. Growth of strain ES114 and strain MJ11 and its binK variants in squid light organs 24 or 48

hr after inoculation.

DOI: 10.7554/eLife.24414.010
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Figure 4. Empirical and modeled estimates of selective advantage in evolving V. fischeri symbiont populations. (A) Conceptual overview of symbiont

population dynamics during growth in inoculum and following host colonization (black line), including daily host-imposed bottlenecks. (B) Comparison

of the selection coefficients conferred by binK1 in strain MJ11EP2-4-1 (harboring no other mutations) relative to binK+ from co-inoculated squid light

organs after 24 or 48 hr. The selective advantage (i.e., relative competitiveness) of the evolved allele increased significantly during this period from 1.1

to 1.8 (Fisher-Pitman permutation test, **p=0.0011). Each circle represents the selective advantage of each strain measured from the strain ratios

recovered in an individual hatchling. Please refer to Figure 4—figure supplement 1 for the effect of starting binK1 frequencies and inoculum densities

on estimates of selective advantage. (C) Modeled survival probabilities for new beneficial alleles arising in a growing symbiont population facing host-

imposed bottlenecks. The gray shaded curves estimate the survival probability of new mutants following the subsequent population bottleneck, which
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By contrast, it did not cause colony wrinkling (data not shown), a proxy for Syp-mediated biofilm

production by strain ES114 (Brooks and Mandel, 2016; Shibata et al., 2012). Still, binK1 dramati-

cally increased in vitro biofilm production compared to MJ11, as determined by surface adherence

(Figure 5B), perhaps reflecting the presence of more complex biofilm matrices such as cellulose

whose expression was enhanced by the bink1 and DbinK mutations (Figure 5—figure supplement

2, Appendix 1) (Shibata et al., 2012; Darnell et al., 2008; Bassis and Visick, 2010). To investigate

the basis of increased biofilm formation by the binK1 variant, we overexpressed genes encoding a

repressor of Syp, sypE (Morris and Visick, 2013), and of cellulose, binA (Figure 5—figure supple-

ment 3) (Bassis and Visick, 2010). Each regulator abolished the enhanced biofilm phenotype of the

binK1 variant, indicating that both matrix substrates contributed to this trait (Figure 5B). To test the

role of Syp directly, we also introduced a DsypK mutation, which functionally eliminates Syp biofilm

production by strain ES114 (Shibata et al., 2012). The mutation reduced biofilm by the binK1 vari-

ant, indicating that the variant’s improved biofilm production involved Syp production (Figure 5B).

Even as the increase in aggregation could confer a fitness gain by binK variants during the initia-

tion phase of symbiosis, aggregation is a trait that is variable enough to call into question whether it

could explain the dominance of binK variants. Improved aggregation alone would not cause the 60%

increase in fitness observed during maintenance of the symbiosis (Figure 4B, Figure 3—figure sup-

plement 2). Furthermore, to our knowledge, no study has yet evaluated whether biofilm imparts

symbiotic fitness beyond aggregation. Because of the potential that biofilm could confer survival in

the face of environmental insults, we evaluated whether binK1 impacted survival upon peroxide

exposure, as oxidation is among the host’s defensive arsenal (Small and McFall-Ngai, 1999;

Visick and Ruby, 1998) (Figure 1A). The binK1 and DbinK variants survived oxidation better than

MJ11, and overexpression of the Syp repressor sypE or the cellulose repressor binA decreased sur-

vival (Figure 5C). Deletion of sypK in binK variants also reduced survival further, supporting the con-

clusion that Syp production confers resistance to oxidation (Figure 5C). Enhanced biofilm

production and survival following peroxide exposure are correlated, suggesting that Syp and cellu-

lose biofilm contribute to oxidative resistance conferred by binK variants.

During migration and upon reaching the squid light organ, potential symbionts must contend

with host phagocytic, macrophage-like hemocytes which bind, engulf and destroy bacteria

(Figure 1A) (Nyholm and McFall-Ngai, 1998). The ability of squid hemocytes to bind

preferentially to non-symbiotic bacterial species is well established, but differential recognition

among V. fischeri has only been reported for the native strain ES114 and its genetic variants

(Nyholm et al., 2009). Therefore, we evaluated whether squid hemocytes preferentially target non-

symbiotic MJ11, and whether the altered biofilm capacity conferred by binK1 promoted evasion of

the host’s innate immune system (Figure 6, Figure 6—figure supplement 1). Juvenile squid hemo-

cytes bound wild-type MJ11 to a greater extent than they did the native strain ES114, and this bind-

ing was comparable to that observed with other species of bacteria, such as V. harveyi (Figure 6). In

contrast, the binK1 variant resisted host hemocyte binding at a level that was comparable to squid-

native strain ES114 (Figure 6). Overexpression of either sypE or binA reduced immune evasion by

ES114, and sypE also significantly reduced immune evasion by the squid-adaptive binK1 variant,

demonstrating that production of Syp and cellulose extracellular matrices mediated this trait. These

results provide the first experimental evidence that Syp and cellulose production by native and non-

Figure 4 continued

depends on both the generation of growth in the inoculum or host in which they arise (x-axis) and the selective advantage (s) conferred by mutation

(gray shading). Notably, beneficial variants that arise early in inoculum culture are likely to survive extinction at the subsequent bottleneck, and this

probability of survival rapidly decreases even when conferring a large selective coefficient. On the basis of this model, for example, a mutation

conferring a large selective advantage (s ~2) would have less than a 10% chance of surviving the subsequent colonization bottleneck if it arose during

the tenth generation of inoculum growth (red line).

DOI: 10.7554/eLife.24414.011

The following figure supplement is available for figure 4:

Figure supplement 1. Estimates of the selective advantage of the binK1 allele during squid colonization across a range of starting frequencies and

inoculum densities.

DOI: 10.7554/eLife.24414.012
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Figure 5. Host-adapted binK1 improved initiation phenotypes through enhanced biofilm. (A) V. fischeri MJ11 aggregate formation near light-organ

ducts. Host tissue stained with CellTracker Orange. Symbionts carry GFP plasmids (pKV111) (Nyholm et al., 2000). Micrographs show representative V.

fischeri aggregates following the dissection of 30 newly hatched animals incubated with each strain. Aggregates were visualized between 2 and 3hr

after of inoculation using a Zeiss LSM 510 Meta laser-scanning confocal microscope. Please refer to Figure 5—figure supplement 1 for additional

Figure 5 continued on next page
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native V. fischeri strains contribute to host hemocyte response. In addition, these findings demon-

strate that, by altering biofilm substrate production, binK1 could improve the survival of MJ11 dur-

ing multiple host-imposed selective checkpoints.

Figure 5 continued

views of aggregate formation. (B) Biofilm production (crystal violet staining relative to MJ11) by wild-type MJ11(binK+), squid-adaptive binK1 and DbinK

variants in the presence of either empty vector (EV, pVSV105) (white fill), Syp biofilm repressor sypE (pCLD48) (hatched fill), or cellulose repressor binA

(pRF2A3) (gray fill). n = 12–16 biological replicates. See Figure 5—figure supplement 2 for evidence of increased cellulose in binK variants, and

Figure 5—figure supplement 3 for biofilm repressor schematic. Followed by influence of a sypK deletion on biofilm production of MJ11 and binK

variants. n = 10 biological replicates. (C) Binomial mean of survival following exposure to hydrogen peroxide of wild-type MJ11(binK+), squid-adaptive

binK1 and DbinK variants in the presence of either empty vector (EV, pVSV105) (white fill), sypE (pCLD48) (hatched fill), or binA (pRF2A3) (gray fill).

n = 20–50 biological replicates. Followed by influence of a sypK deletion (diagonal line overlay) on population survival of MJ11 and binK

variants (color fill). n = 15–106 biological replicates. Error bars 95% CI. Significant p values (p<0.05) are indicated above each comparison. *p<2.2e-16.

Although the effects of overexpression of binA and deletion of sypK on oxidative resistance in the DbinK variant followed the same trends as these

genes in binK1, the reductions were only marginally significant (p=0.051 and 0.15, respectively). Please refer to Figure 5—figure supplement 2 for

transcriptomic evidence of reduced expression of two cellulose loci in the DbinK mutant. A schematic of the impact of the BinA and SypE repressors on

biofilm substrates is available as Figure 5—figure supplement 3.

DOI: 10.7554/eLife.24414.013

The following figure supplements are available for figure 5:

Figure supplement 1. In vivo aggregation behavioral changes conferred by evolved binK1 variant.

DOI: 10.7554/eLife.24414.014

Figure supplement 2. Transcriptional shifts associated with binK variants.

DOI: 10.7554/eLife.24414.015

Figure supplement 3. Schematic of regulation by the biofilm repressors SypE and BinA.

DOI: 10.7554/eLife.24414.016

0

20

40

60

80

 f
o 

e
g

at
n

ecr
e

p 
n

a
e

M
 

oi r
bi

V
s

et yc
o

m
e

a
h 

ot 
d

n
u

o
b

A 100 

+ sypE

 ∆binK

binK1

MJ11 (binK+)

V. fischeri ES114

(squid symbiont)

V. harveyi B392

(pathogen)

B

+ binA

0

20

40

60

80

 f
o 

e
g

at
n

ecr
e

p 
n

a
e

M
 

oi r
bi

V
s

et yc
o

m
e

a
h 

ot 
d

n
u

o
b

100

0.03

0.002

0.0007 0.0098

0.01

0.001

Figure 6. Biofilm production by squid-adaptive binK1 variants mediates hemocyte evasion. (A) Relative efficiency of squid hemocyte binding of GFP-

labelled V. fischeri strains including: squid-native symbiont ES114, binK+ MJ11, DbinK MJ11 (RF1A4), binK1 MJ11, and shellfish pathogen V. harveyi

B392. (B) Relative efficiency of squid hemocyte binding of squid-native symbiont ES114 and squid-adapted bink1 MJ11 carrying the empty vector

(pVSV104), sypE (pRF2A1) or binA (pRF2A4). N = 30–52 hemocytes quantified per strain. Error bars: 95% CI. Significant p-values (p<0.05) are indicated

above each comparison. Please refer to Figure 6—figure supplement 1 for micrographs of Vibrio–hemocyte interactions.

DOI: 10.7554/eLife.24414.017

The following figure supplement is available for figure 6:

Figure supplement 1. In vitro response of squid hemocytes to wild, squid-evolved and mutant Vibrio.

DOI: 10.7554/eLife.24414.018
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Both Syp and cellulose contributed to enhanced squid colonization
efficiency by binK variants
Given the demonstrated importance of Syp to colonization initiation (Shibata et al., 2012), we pre-

dicted that enhanced Syp production by binK derivatives improved colonization (Figure 3A).

Although both Syp and cellulose conferred several phenotypes that are important to the symbiosis

(Figures 5B,C and 6), a role for cellulose during colonization processes has yet to be demonstrated.

Here, repression of either Syp (through expression of sypE) or cellulose (through expression of binA)

significantly reduced colonization efficiency by MJ11 and its binK derivatives (Figure 7A). However,

sypE impaired colonization by DbinK to a greater extent than did binA. This suggested to us that

Syp may play a greater role than cellulose in colonization, in agreement with the hemocyte evasion

results (Figure 6B). Alternatively, sypE could produce other regulatory effects (Shibata et al., 2012;

Bassis and Visick, 2010; Ray et al., 2015; Miyashiro et al., 2014). To address the contribution of

Syp to improved colonization more directly, we evaluated the impact of a sypK deletion, which elimi-

nates colonization by the native symbiont (Shibata et al., 2012). Loss of sypK had no discernable

effect on the colonization of MJ11, presumably because Syp is already under-produced

(Mandel et al., 2009), but as expected, it significantly reduced colonization by both binK1 and

DbinK variants (Figure 7B). Notably, deletion of sypK only modestly impaired colonization (25%

reduction) by the binK1 variant, suggesting that Syp is not the only contributor to its enhanced colo-

nization. Elimination of sypK had a greater impact on colonization by the DbinK mutant than by the

binK1 variant, reducing its colonization to wild-type levels, which could reflect the greater fitness

cost associated with the DbinK allele (Figure 3A and B) or might allude to unique functions associ-

ated with the evolved binK1 allele. Together, these results suggest that both Syp and cellulose con-

tribute to enhanced colonization efficiency in the binK1 and DbinK variants.
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Figure 7. Contribution of Syp and cellulose to improved squid colonization by binK variants. (A) Colonization efficiency (% colonized squid at 24 hr) by

wild-type MJ11 (binK+), squid-adaptive binK1 and DbinK variants in the presence of empty vector (EV, pVSV105) (white fill), the Syp repressor sypE

(pCLD48) (hatched fill), or the cellulose repressor binA (pRF2A3) (gray fill). n = 15–20 biological replicates. (B) Influence of a sypK deletion on

colonization efficiency of MJ11 and binK variants. n = 31–52 biological replicates. Error bars: 95% CI. Significant p-values (p<0.05) are indicated above

each comparison. *p<2.2e-16.
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Squid-adapted binK reduced luminescence by attenuating quorum
sensing
Bioluminescence serves as the currency of this symbiosis, and yet the correlation of excessive biolu-

minescence with poor symbiotic ability suggests that luminescence intensity is a phenotype shaped

by host selection (Lee and Ruby, 1994a; Nishiguchi et al., 1998; Visick et al., 2000). Squid-

adapted derivatives of MJ11 – where the wild-type ancestor is �1,000 fold brighter than native sym-

biont strain ES114 (Schuster et al., 2010) – evolved a delay in luminescence induction compared to

their ancestors. To determine whether quorum-sensing thresholds had been altered by binK muta-

tions, we quantified the production of AinS-synthesized C8-HSL and LuxI-synthesized 3-oxo-C6-HSL

signals and the concurrent luminescence production by wild-type MJ11 and by binK1, and DbinK var-

iants during the period of induction (OD600 1.1) (Figure 8). For all three strains, luminescence corre-

lated with 3-oxo-C6-HSL concentration (Figure 8A) (r2 = 0.857, p=6.4�10�13) and not C8-HSL

concentration (r2 = 0.105, p=0.1). When compared to the wild-type, both the binK1 and the DbinK

variant alleles reduced 3-oxo-C6-HSL production and the corresponding luminescence by an order

of magnitude (Figure 8). These significant differences were not caused by MJ11’s attaining a higher

cell density (2.0 � 108 CFU.ml�1
.OD600

�1), as both the binK1 and DbinK derivatives produced

slightly higher CFU (Figure 8B) (3.2 � 108 CFU.ml�1
.OD600

�1 and 3.7 � 108 CFU.ml�1
.OD600

�1,

respectively) (Figure 8B). Although there was a modest (<2 fold) increase in the molar concentration

of C8-HSL in DbinK mutant supernatants, which could inhibit light production through competitive

inhibition of LuxR-binding to its cognate 3-oxo-C6-HSL signal (Kuo et al., 1996; Schaefer et al.,

1996), there was no discernable difference in C8-HSL production when controlling for the higher cell

counts produced by the DbinK mutant compared to wild-type MJ11 (p=0.82) (Figure 8B). These

findings are in agreement with previous biological assays and demonstrate that the binK1 mutation

alters quorum sensing and raises the threshold for quorum-sensing activation of luminescence

(Schuster et al., 2010).
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Figure 8. Host-adapted binK1 attenuates quorum-sensing regulation of luminescence. (A) Supernatant concentrations (nM/OD600) of N-(3-oxohexanoyl)

homoserine lactone (C6-HSL), as quantified against synthetic standards (Schaefer et al., 2000; Pearson et al., 1994; Duerkop et al., 2007) and

corresponding luminescence (Lum/OD600) of 10 independent cultures each for wild-type MJ11, binK1 and DbinK derivatives during quorum-sensing

induction of luminescence determined from cultures grown to early log (Average OD600 1.1, range 0.9–1.4,). (B) Average cell density as measured by

absorbance (OD600), colony-forming units (CFU)/mL/OD600, N-(3-oxohexanoyl) homoserine lactone (C6) nM concentration, N-octanoyl homoserine

lactone (C8) nM concentration, and luminescence (Lum)/1 mL culture for ten biological replicates of each variant relative to wild-type MJ11. Error bars:

95% CI. Significant p-values (p<0.05) are indicated above each comparison. *p<2.2e-16.
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Host adaptation produced dominant binK alleles suggestive of altered
function
Comparisons of the squid-evolved binK1 variant and DbinK mutant, especially exemplified by coloni-

zation efficiency (Figure 7B), transcriptional profiles and changes in metabolic activity that were con-

vergent with the native symbiont (Figure 5—figure supplement 2, Appendix 1, Appendix 2),

suggested that squid selection did not favor outright loss of BinK function in MJ11. The evolved

binK1 and null DbinK variants did not differ significantly in biofilm production and exhibited similar

biofilm-linked traits of oxidation survival and hemocyte evasion (Figure 5C and 6). Yet, the squid-

adapted binK1 variant significantly outperformed the null mutant in culture competition with binK+

(Figure 3B). This enhanced fitness could be due to the maintenance of partial function or to regula-

tory effects that are unique to the evolved allele. To investigate this further, we assessed the impact

of multi-copy expression of wild-type and binK1 alleles. Ancestral binK+ complemented adaptive

behaviors conferred by the binK1 and DbinK mutants, including the abilities to form biofilm and

to colonize squid, as would be expected if wild-type BinK function impaired these traits (Figure 9).

Multi-copy expression of binK1 modestly reduced biofilm production by the DbinK mutant,

suggesting that partial function was maintained by this allele, but it also unexpectedly enhanced bio-

film production by MJ11, implying altered function (Figure 5B and 11). Finally, binK1 significantly

enhanced colonization by all variants, even in the presence of a single genomic copy of the wild-

type allele, proiding evidence that binK1 is dominant and consistent with its altered function. Even if

reduced activity of BinK was sufficient to confer some adaptive traits (Figures 5–8), these results

suggest that improved symbiosis could also arise through phenotypes conferred by alteration of its

function (Figures 9–11).

Discussion
In theory, the large population sizes and genetic diversity within bacterial species may enable symbi-

otic lifestyles with eukaryotic hosts to evolve rapidly (Fisher, 1930). While the processes leading to

pathogen emergence have been intensely studied, much less is known regarding the genetic

changes that drive adaptation to novel host niches in nonpathogenic bacteria (Jansen et al., 2015;

Ochman and Moran, 2001; Kwong and Moran, 2015; Guan et al., 2013). In pathogens, mobile

elements encoded on pathogenicity islands are often cited as the cause of repeated and rapid evolu-

tion of host associations, but these elements alone rarely provide bacteria with the ability to colonize

hosts (Reuter et al., 2014). Further, the selective pressures exerted by new hosts may require syn-

chronized phenotypic changes, limiting the number of adaptive ‘solutions’ available to a microbial

genome that is constrained by regulatory structure. Here, rapid adaptation to squid symbiosis

occurred in multiple parallel experimental lineages through convergent mutations in a single gene,

the binK sensor kinase. These mutations altered multiple functions that are known to contribute to

the native symbiosis between strain ES114 and squid (Figure 10), suggesting that that the regula-

tory circuits of V. fischeri may have been pre-wired to coordinate diverse symbiotic traits. Many of

the BinK-regulated behaviors have established crucial roles in symbiotic association, including quo-

rum-sensing activation of bioluminescence and Syp-mediated aggregation, (Nishiguchi et al., 1998;

Brooks and Mandel, 2016; Nyholm and McFall-Ngai, 2003; Shibata et al., 2012; Visick et al.,

2000; Yip et al., 2005), but we provide the first experimental evidence that two different binK-regu-

lated cell-associated matrix substances, Syp and cellulose, modulate host innate immune interactions

that could contribute to strain discrimination during the selection of symbiotic partners.

The convergent paths to adaptation taken by independent lineages evolving experimentally

through squid reveals that squid hosts exert hard selection on colonizing bacteria, driving the evolu-

tion of fitter, symbiotic genotypes. A model of the population-genetic dynamics of bacterial coloni-

zation suggests that in order to survive extinction during the host-imposed bottlenecks, binK alleles

must confer a massive selective advantage in symbiotic association and must arise early during pop-

ulation growth, most probably— prior to host recruitment—rather than later during symbiotic main-

tenance (Figure 4A and C). This prediction is consistent with the improved initiation capacity of

evolved variants (Figures 1, 3A, 7 and 9) and explains their detection in the first few squid passages

(Table 2). These mutants would not be expected to rise to detectable frequency considering

that alleles that confer enhanced fitness in squid are deleterious in broth culture (Figure 3B). The

success of binK mutations, sweeping from undetectable frequency in the ancestral inoculum to
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fixation in as little as ~50 generations, was only realized when under strong squid host selection. Esti-

mated selective coefficients for the binK1 allele of MJ11 ranged as high as s = 5.3 when determined

empirically, similar to estimates obtained by population modeling (s ~6) (see Materials and methods,

Figure 4). Selective coefficients above one are rarely reported from nature; however, these are con-

sistent with the stringent selection pressures imposed on pathogens as they colonize new hosts

(Morley et al., 2015; Bedhomme et al., 2012; Thurman and Barrett, 2016). This enormous selec-

tive advantage is also consistent with the observation that ancestral populations with lower mean fit-

ness (such as strains MJ11 and H905) are more likely than fitter populations (such as WH1, EM17

and ES114) to make a major adaptive leap (Lenski and Travisano, 1994). That is, due to their dis-

tance from optimal fitness (e.g., 100% colonization), less fit ancestors are poised to benefit more

from mutations of greater selective advantage (Orr, 2000, 2003; Wielgoss et al., 2013). Thus, even

though elimination of BinK function also increases competitive fitness by ES114 (Brooks and
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Figure 9. Effect of binK on squid colonization and biofilm production. (A) Improvement in colonization by multi-copy in trans expression of the evolved

binK1 allele and decreased colonization by expression of the ancestral binK+ allele. Colonization assessed by percentage of squid that are luminous

after 24 hr. Error bars: 95% CI. N = 15–25. (B) Increased biofilm production resulting from in trans expression of the binK1 allele, and decreased biofilm

production resulting from expression of the ancestral binK+. Comparisons of biofilm production in control-plasmids (pVSV105= EV) with that in multi-

copy plasmids carrying binK suggest an inhibitory role for BinK in biofilm production, presumably alleviated by the dominance of the binK1 allele.

Biofilm production was quantified by absorbance of crystal violet at A550. Background color depicts strain background in which multicopy plasmid

effects were measured, mirroring those used throughout where blue is wild-type MJ11, green is the evolved binK1 variant and salmon is the DbinK

derivative. Error bars: 95% CI; non-overlap indicates significance. N = 7–8. Significant p-values (p<0.05) are indicated above each comparison. *p<0.05,

**p<0.005, ***p<0.005.
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Mandel, 2016), it is not surprising that binK mutations did not evolve in populations derived from

ancestors with greater starting fitness, such as EM17, WH1, and ES114, as it is unlikely that these

mutations could confer a selective advantage sufficient to survive extinction (Figure 2A and 4C,

Table 2). The high predicted selective advantages of binK mutants evolved from squid-maladapted

strains MJ11 and H905 support the theory that adaptation from unfit ancestors may initially proceed

by large leaps, as opposed to incremental changes of small effect (Wiser et al., 2013).

Requisite to successful symbiosis with squid is the ability of bacteria to bypass host barriers dur-

ing initiation: symbionts first aggregate and then migrate though ducts that are policed by hemo-

cytes and eventually reach the oxidative light organ interior (Figure 1) (Nyholm and McFall-Ngai,

2004). The poor colonization capacity of MJ11 has been attributed to its lack of rscS, a

horizontally acquired regulator in the same hybrid histidine kinase family as binK (Figure 2—figure

supplement 1). RscS that activates Syp polysaccharide and allows the native symbiont ES114 to

overcome the squid initiation barrier (Figure 1A) (Yip et al., 2006; Mandel et al., 2009). Despite its

conserved function as a repressor of Syp in ES114 (Brooks and Mandel, 2016), BinK does not

impede symbiosis in that strain, perhaps owing to the activity of RscS (Yip et al., 2006). But, notably,

strain H905—a close relative to ES114 isolated from the squid habitat and containing rscS—is symbi-

otically impaired and also evolved convergent mutations in binK during our experiments

(Perry, 2009) (Figure 2—figure supplement 1, Table 2). This suggests that its colonization defi-

ciency stems from regulatory constraints on Syp production, from ineffective integration of the hori-

zontally acquired RscS regulator with existing regulatory circuitries, or from the evolution of

attributes relating to a planktonic lifestyle which impair its ability to access squid light organs

(Lee and Ruby, 1994a). Here, MJ11 adapted to experimental squid symbiosis through enhancement

BinK

Biofilm               Quorum           Metabolism        

  Syp         Cellulose                    

Aggregation    Oxidation    Hemocyte      Luminescence      

Initiation

Maintenance

sensing

resistance     evasion

Figure 10. Model of BinK regulation of traits adaptive during squid symbiosis. Arrows originating from BinK point to characteristics that are

activated or enhanced, and blocked lines point to those that are repressed or blocked by BinK. Hashed lines point to polysaccharides that contribute to

biofilm.
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not only of Syp (Figures 5–7), a proposed mechanism for symbiotic evolution in the native symbiont

ES114 (Mandel et al., 2009), but also by producing additional matrix components such as cellulose

(Figure 5—figure supplement 2, Appendix 1), both of which improved colonization (Figure 7).

The finding that biofilm phenotypes conferred by evolved binK alleles improved survival of host

defenses (Figure 5 and 6) expands our understanding of the nature of host selection, and provides

important context for how biofilm can confer enhanced fitness upon individuals. Symbiotic microbes

commonly secrete exopolysaccharides or glycosylated compounds to produce biofilm capsules that

confer protection against macrophages, antibiotics or toxic substances, and that promote adhesion

to epithelial surfaces (Nizet and Esko, 2009; Sengupta et al., 2013; Williams et al., 2013;

Hsieh et al., 2003). Yet beyond its role in aggregate formation, it was not known whether biofilm

contributed to squid colonization (Yip et al., 2006). The binK1 allele enabled immune evasion by

reducing the attachment of host macrophage-like hemocytes to a level comparable with that of

squid-native strain ES114 and by enhancing survival when exposed to oxidation (Figure 5). Both

immune evasion and biofilm production were suppressed by overexpression of either the sypE or

binA repressors, which indicates that these traits are mediated by Syp and cellulose production (Fig-

ure 5). Squid immune response is mitigated by V. fischeri lipopolysaccharide and other microbe-

associated molecular patterns (MAMPs) (Nyholm et al., 2009; Nyholm and McFall-Ngai, 1998;

Koropatkin et al., 2012; Koropatnick et al., 2004; Foster et al., 2000), but this study provides the

first evidence that Syp contributes to host immunomodulation by V. fischeri. The genes for Syp share

little similarity with those encoding the capsular polysaccharide common to immunomodulating Vib-

rio species and other pathogens (Shibata et al., 2012; Yildiz and Visick, 2009), but the Syp polysac-

charide may nonetheless serve a role analogous to that of the polysaccharide ligands of mammalian

macrophage receptors produced by gut symbionts, which also exhibit immunosuppressive activity

that reduces host inflammatory response (Mazmanian et al., 2008; Chu and Mazmanian, 2013;

Jones et al., 2014). Recent evidence in Vibrio parahaemolyticus suggests that the use of Syp is

potentially widespread among host-associated Vibrio, mediating virulence and epithelial colonization

(Ye et al., 2014) as well as evasion of host innate immunity (Hsieh et al., 2003; Vuong et al., 2004).

The pleiotropic effects of Syp on symbiotic competence suggest why single binK mutations provide

such benefit to squid-naı̈ve V. fischeri. Further, they reveal a critical role for cell-associated polysac-

charides in the squid–Vibrio interaction, not only mediating group behaviors that improve initiation

but also contributing to partner selection on an individual cell basis.

Not only do evolved binK alleles increase fitness during the first 24 hr of colonization, they also

further enhance fitness between 24 and 48 hr post-colonization during the maintenance phase of

symbiosis (Figure 4B, Figure 3—figure supplement 2) when the squid selects on symbiont lumines-

cence intensity and resource utilization (Graf and Ruby, 1998; Soto et al., 2014; Schuster et al.,

2010; Visick et al., 2000; Septer et al., 2013; Soto and Nishiguchi, 2014) (Figure 1A). Although

luminescence could be directly under host selection (Figure 8A) (Visick et al., 2000; Whistler and

Ruby, 2003), selection could alternatively favor the altered quorum threshold underlying reduced

luminescence in binK variants (Figure 8B). Mutations in luxO and litR—which, like binK variants,

attenuate quorum sensing—enhance competitive fitness either in culture or in

squid (Fidopiastis et al., 2002; Kimbrough and Stabb, 2015). Impaired quorum sensing by other

species also enhances competitive growth because of the subsequent de-repression of metabolic

functions such as carbohydrate uptake and utilization, and the perturbation of fatty acid and carbo-

hydrate biosynthesis (Davenport et al., 2015; An et al., 2014). Transcriptomics analysis indicated

that similar changes occurred in the DbinK mutant (Figure 5—figure supplement 2; Appendix 1).

Quorum-regulated metabolic pathways that serve as ’private goods’ could be targets of selection if

they facilitated the utilization of host-provisioned resources that support symbiont growth in juvenile

squid (Appendices 1 and 2) (Graf and Ruby, 1998; Pan et al., 2015; Wier et al., 2010;

Miyashiro et al., 2011; Mandel et al., 2012; Dandekar et al., 2012), thereby contributing to a sus-

tained selective advantage following initial colonization (Figures 1A and 4B).

The synchronized changes attained through amino acid substitutions in an existing sensor kinase

highlight how the conserved but malleable components of signal transduction systems make them

key mediators of adaptive evolution (Figure 2C). During bacterial evolution, sensory transduction

pathways may serve as pliable targets because of the modularity of their components (Vogel et al.,

2004; Pasek et al., 2006). Conserved phosphorelay and accessory domains (e.g. Figure 2C) are

shared across numerous pathways and facilitate flexible partner interactions, known as ’cross-talk’
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(Capra and Laub, 2012). Sensor histidine kinases are effective targets of selective regimes in part

because of their dual kinase and phosphatase capabilities, as well as their ability to augment partner

interactions through these shared modules which can allow rapid rewiring of networks (Capra and

Laub, 2012; Taylor et al., 2015; Rowland and Deeds, 2014). The array of phenotypes effected in

binK variants (Figures 5, 6 and 8) implies that BinK sensor kinase may participate in more than one

signal transduction pathway (Nyholm and McFall-Ngai, 2004; Yip et al., 2006; Miyashiro and

Ruby, 2012). Phenotypic changes could be caused by altered interaction with a number of regula-

tors with phosphorelay modules that are already described both for Syp polysaccharide (Brooks and

Mandel, 2016) and for the quorum-sensing pathway that controls luminescence (Miyashiro and

Ruby, 2012; Whistler et al., 2007), although this does not eliminate the possibility that there are

unidentified partner(s) that mediate these effects. Regardless, evolved BinK enacted global effects

by intersecting with pre-existing circuitry, which was presumably shaped by varying interactions with

environments including hosts during V. fischeri adaptive evolution (Gao and Stock, 2013;

Mitrophanov and Groisman, 2008).

This study demonstrates that some strains of V. fischeri can evolve by leaps in host range

that result from single mutations of large effect. That simple point mutations in a regulator can

evoke such broad consequences reveals that disparate traits that are important for symbiosis initia-

tion and maintenance are already co-regulated. Such preexisting coordination is almost certainly an

evolved ability, perhaps reflective of a history of selection and ‘tinkering’ while fluctuating between

the non-host and host-associated environments in which these bacteria naturally reside (Lee and

Gelembiuk, 2008; Jacob, 1977). The immense populations of Vibrio species should, in theory,

empower natural selection to refine even subtle traits, promoting the ability to adapt to uncertain

conditions through appropriate regulation with remarkable efficacy (Dillon et al., 2017). Viewed in

this light, this study suggests that the exceptional adaptability of certain bacteria such as Vibrio

in forming novel intimate associations with various host organisms may be possible in part due to

the structure of existing regulatory pathways formed during thousands of past transient interactions.

Such parsimonious reconciliation of genomic constraints with host selection pressures is

likely paramount in shaping emerging symbioses.

Materials and methods

Bacterial strains, plasmids, and culture conditions
Strains and plasmids are listed in Table 1. Wild-type Vibrio fischeri including strain MJ11 (isolated

from the fish Monocentris japonica [Haygood et al., 1984]) and its derivatives, as well as squid sym-

biont ES114, were routinely grown at 28˚C in either liquid seawater-tryptone broth (SWT) or Luria

Bertani broth with added salt (LBS) with shaking at 200 rpm, or on LBS medium with 1.5% agar (LBS

agar) (Graf et al., 1994). Escherichia coli strains were routinely grown in Luria-Bertani (LB) broth

(Sambrook et al., 1989) or in brain heart infusion medium (BHI) (Difco) at 37˚C. When required,

media were supplemented with antibiotics at the following concentrations: for V.

fischeri, chloramphenicol (Ch) at 2.5 mg/ml, kanamycin (Km) 100 mg/ml and erythromycin (Em) at 5

mg/ml; for E. coli, Ch at 25 mg/ml, Km at 50 mg/ml, and Em at 150 mg/ml (for BHI media). For main-

taining selection in seawater, these antibiotics were used at half this concentration. When applicable,

agar plates were supplemented with 40 mg of 5-bromo-4-chloro-3-indolyl-b-galactopyranosidase (X-

gal)/ml for visualization of b-galactosidase activity. For biofilm quantification, bacteria were grown in

liquid seawater-tryptone broth with added salt (SWTO) (Bose et al., 2007). To generate transcrip-

tomic libraries, bacteria were grown in 3 mL SWTO supplemented with 0.5 mM N-acetyl-D-glucos-

amine. Bacteria were also grown in variations of HEPES minimal medium (HMM) (Ruby and

Nealson, 1977), a seawater-based defined minimal medium with 1x artificial sea water (ASW: 50

mM MgSO4, 10 mM CaCl2, 300 mM NaCl, 10 mM KCl), 0.333 mM K2HPO4, 18.5 mM NH4Cl,

and 0.0144% casamino acids, buffered with 10 mM Hepes with a suitable carbon source. Other buf-

fers were substituted and additional nutrients supplemented as follows: for in vitro competition, the

medium was supplemented with 0.53 mM glucose; for siderophore assessment in reduced iron con-

ditions (Payne, 1994a), the medium was buffered with 100 mM Pipes (pH 6.8), casamino

acids were increased to 0.3%, and the medium was supplemented with 32.6 mM glycerol; and for

qualitative detection of siderophores, this medium was additionally supplemented with 1.5% Difco
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bacto-agar and 10% chrome azurol S-hexadecyltrimethylammonium bromide assay solution (CAS –

HDTMA) (Lee and Ruby, 1994a; Payne, 1994a; Boettcher and Ruby, 1990; Graf and Ruby, 2000).

Plasmids were conjugated between E. coli and V. fischeri as previously described (Stabb and Ruby,

2002).

Recombinant DNA techniques and PCR
Integrated DNA Technologies (Coralville, IA) synthesized the oligonucleotide primers listed in

Table 4. Routine PCR was performed using AccuStart II PCR Supermix (Quanta, Houston, TX). Phu-

sion High Fidelity DNA polymerase (New England Biolabs, Ipswich, MA) was used for cloning and to

produce templates for sequencing reactions. PCR cycling was performed according to

the manufacturer’s protocol in an Eppendorf Mastercycler or Master Cycler Nexus (Eppendorf, Ham-

burg, Germany). Annealing temperatures used for primers were determined by subtracting 2˚C from

the melting temperatures (Tm) determined by Premiere Biosoft’s Netprimer. The lowest annealing

temperature of the primers in the reaction was used during PCR (Table 4).

Standard molecular methods and manufacturer protocols were used for transformations, restric-

tion enzyme digests, ligations, gel electrophoresis, and PCR. Restriction enzymes were purchased

from New England Biolabs (Beverly, MA), and T4 DNA Ligase was from Invitrogen (Waltham, MA).

Gel isolation and extraction of DNA from restriction digests were done using the Qiagen QIAquick

Gel Extraction Kit (Qiagen, Valencia, CA). Plasmids for recombinant work and for sequencing were

purified using Zymo Research Zyppy Plasmid Mini Prep (Irvine, CA). Genomic DNA used in PCR reac-

tions was isolated by the phenol/chloroform extraction method (Wilson, 2001). Routine PCR amplifi-

cations were performed with AccuStart II (Quanta Bio, Beverly, MA).

Genome sequencing and analysis
Genomic DNA was extracted from mid-log cultures grown in LBS using the Promega Wizard Geno-

mic DNA Purification Kit (Madison, WI). The genomes of V. fischeri strains EM17, WH1 and H905

were sequenced de novo using single-molecule sequencing (Pacific Biosciences) and assembled

using HGAP at the Icahn School of Medicine. Gene models for de novo genomes were predicted

and annotated using Prokka with strain ES114 serving as the reference (Seemann, 2014). For all

strains derived from experimental evolution (both squid and culture experiments), genomic libraries

were prepared on isogenic clones following a modified high-throughput Nextera library construction

protocol (Baym et al., 2015) and were sequenced using the Illumina Hi-Seq 2500 platform at the

University of New Hampshire or the New York Genome Center. Nextera PE adapter sequences were

removed from raw reads using Trimmomatic (Bolger et al., 2014) with the clip settings as follows:

ILLUMINACLIP = 2:40:15 LEADING:2 TRAILING:2 MINLEN:25 (Macmanes, 2014). Processed reads

were aligned and analyzed against their respective strain reference (ancestral) genome to identify

mutations, using default settings in breseq (Deatherage and Barrick, 2014) for single isolate

genomes and using the ‘—polymorphism’ setting for libraries constructed from pooled isolate

gDNA. On average, 99% of the processed reads from each isolate mapped to their reference

genome, resulting in an average chromosomal coverage of 95x per isolate (Table 2) for MJ11. Muta-

tions were called only for regions covered by a minimum of 20 reads. To identify which mutation

calls reflected true evolutionary change as opposed to errors in the PacBio or NCBI reference

genome, we compared each putative call across all genomes derived from the same ancestor.

Potential mutation calls for strain ES114 were cross-referenced with known variants (Foxall et al.,

2015). Any mutation calls that were shared amongst at least 50% of independently evolved strain

genomes were assumed to reflect ancestral genotype and thus discarded. All mutations in the binK

locus identified by breseq were subsequently confirmed by targeted PCR amplification and Sanger

sequencing by using primers A0397 F3 and A0397 R4 for amplification and to sequence binK1 and

binK2, and primers A0397 F8 and A0397 R9 for amplification and A0397 F3 and A0397 R6 to

sequence binK3 and binK4 (UNH and GeneWiz).

Phylogenetic relationships among V. fischeri
Nucleotide sequence from published Vibrionaceae genomes (Vibrio parahaemolyticus, Aliivibrio sal-

monicida, A. logei, and V. fischeri strains ES114, MJ11, SR5, ZF-211; Table 3) and newly generated

genomes (V. fischeri strains H905, EM17, SA1, CG101, VLS2, PP3, WH1, WH4) were analyzed in
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REALPHY and RAxML to infer whole-genome maximum likelihood phylogeny under the

GTRGAMMA model of nucleotide substitution (Bertels et al., 2014). Node support was estimated

by running 1,000 bootstrapped analyses.

Squid colonization and experimental evolution of V. fischeri
Squid colonization was conducted as previously described (Whistler and Ruby, 2003). Squid were

bred from adults collected from Maunalua Bay, HI with the original adults collected and bred in

December 2006, and subsequent cohorts collected intermittently from the same location between

2007 and 2016. Squid were routinely held in 32 ppt Instant Ocean (IO) (Blacksburg, VA) in diH2O

water. For determining colonization efficiency, a cohort of squid was placed in bacterial inoculum

derived from mid-log (OD600 0.2) SWT broth cultures diluted in filtered IO. The luminescence of

squid individually housed in 4 mL IO was monitored daily, and bacterial colonization was determined

by plating dilutions of homogenized squid following freezing at �80˚C. For starting capacity meas-

urements, squid were exposed to inoculum for 3 hr (ES114, EM17, and WH1) or overnight (H905

and MJ11) at increasing concentrations of bacteria (from 3,000 to 20,000 CFU/mL), until 90% of

squid became colonized as determined by luminescence detection at 24 and 48 hr post colonization,

and direct plating of light-organ homogenates at 48 hr post colonization. Colonization experiments

were completed with at least 10 replicate squid, included aposymbiotic control squid, and were

repeated a minimum of three times.

Strains MJ11, EM17, WH1, H905, and ES114 were evolved using squid hosts as previously

described (Schuster et al., 2010). Briefly, 10 aposymbiotic hatchling squid were inoculated in an

ancestral population of each strain (20,000 CFU/ml in 50 ml filtered IO for H905 and MJ11, 6,000

CFU/ml for WH1, and 3,000 CFU/ml EM17 and ES114). Following overnight incubation, squid were

isolated and rinsed in filtered IO. Squid with detectable luminescence after 48 hr served as the

founder passage for each parallel replicate population. At 96 hr following initial inoculation, squid

hosts were preserved at �80˚C while their seawater containing ventate was used to inoculate a new

passage of aposymbiotic squid. Half of the ventate was preserved by freezing in 40% glycerol at

�80˚C. Serial passaging with 1 ml ventate combined with 1 mL fresh IO was initiated with a hatchling

squid held overnight to confirm that they were uncolonized on the basis of luminescence measure-

ments. Passaging continued in this manner for a total of 15 host squid per experimental lineage (see

Figure 1C).

Isolates from various passages of the evolutions were recovered and stored from archived ven-

tate. Ten microliters of the ventate were plated onto SWT agar and incubated at 28˚C, and repre-

sentative colonies that were phenotypically similar to V. fischeri were quadrant streaked for isolation

on LBS agar. Isolated colonies were grown in LBS liquid media and preserved by freezing in 40%

glycerol at �80˚C for subsequent analysis. For isolates whose identity as V. fischeri was suspect due

to morphological differences, luminescence was measured from SWT cultures, and the strain diag-

nostic gapA gene was amplified and sequenced using primers gapA F1 and gapA R1 (Table 4) for

confirmation (Nishiguchi et al., 1998).

BinK orthology and hybrid histidine kinase phylogeny
To construct a gene tree for hybrid histidine kinase genes across V. fischeri strains and Vibrio rela-

tives, each of the gene models from the complete genomes listed in Table 4 were queried with the

PFAM Hidden Markov Models for HATPase C (PF02518), HisKA (PF00512), and REC (PF00072)

domains using hmmer. Sequences containing all of these conserved domains were then aligned in

MAFFT (Katoh et al., 2002). A maximum likelihood topology was inferred using RAxML (Stamata-

kis, 2006) under the PROTGAMMAWAG model of amino acid substitution, following model selec-

tion using the Bayesian Information Criterion with IQ-TREE (Nguyen et al., 2015). Gene families

were annotated based on consensus among strain ES114, Vibrio parahaemolyticus, and E. coli anno-

tations identified using the BLAST algorithm (Camacho et al., 2009).

Allele identification
Isolates from the second squid ventate from replicate MJ11 population four were screened for binK

and binK1 alleles using forward primer A0397 F5* and allele-specific reverse primers A0397 WT+ R

and A0397 4+ R for binK and binK1, respectively (Table 4). The presence or absence of amplicons
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was evaluated against controls including MJ11 (binK+), binK1 variant MJ11EP2-4-1 and DbinK variant

RF1A4. PCR amplification was conducted following denaturation at 95˚C for 30 s followed by anneal-

ing at 53˚C for 15 s, and elongation at 72˚C for 50 s. To confirm the identity of alleles, the binK

region in five isolates was amplified by PCR using A0397 F10 and A0397 R13, and unconsumed

dNTPs and primers were removed using ExoSAP-IT (Affymetrix Santa Clara, CA) before Sanger-

sequencing at Genewiz (Cambridge, MA) using primers A0397 F3 and A0397 R4 (Table 4). Results

were aligned with reference MJ11_A0397 using Lasergene Software programs (DNASTAR, Inc. Mad-

ison, WI) and the presence of binK1 in the evolved isolates was confirmed.

DbinK mutant generation
The MJ11 DbinK::EmR (RF1A4) strain was generated by marker exchange mutagenesis using a con-

struct produced by Splicing and Overlap Extension PCR (Horton et al., 1990). Briefly, the primer

pairs HKSoeA F (SalI) and HKSoeA2 R, HKSoeB2 F and HKSoeB2 R, and HKSoeC2 F and HKSoeC R

(KpnI), and the Phusion High Fidelity DNA polymerase were used to amplify the genomic region

upstream and downstream of binK from MJ11 genomic DNA, using EmRcolonies and pEVS170 plas-

mid DNA as the templates (Tables 1 and 4) (Lyell et al., 2008). The purified amplicons were then

fused using Expand Long Template polymerase (Roche) where binK was replaced by an EmR cas-

sette. This purified product was cloned into pCR2.1 TOPO and transformed into TOP10 cells (Invitro-

gen, Waltham, MA), following the manufacturer’s protocol. Putative clones were sequenced by the

Sanger method with primers M13 F, M13 R, TnErm4, and TnErm5 (Table 4) at the Hubbard Center

for Genome Studies at the University of New Hampshire before the fragment was sub cloned into

the suicide vector pEVS79, which was used for allelic exchange (Stabb and Ruby, 2002). Whole

genome re-sequencing (illumina HiSeq) confirmed that the gene was replaced in MJ11 mutant

RF1A4.

Table 3. Genomes used in phylogenetic analyses. This table lists GenBank accessions for nucleotide

genomes used in strain phylogeny and source for gene models used in hybrid histidine kinase

phylogeny.

Strain NCBI accession/de novo Prokka/NCBI gene models

Escherichia coli NC_000913 NCBI

Aliivibrio wodanis LN554846-51 NCBI

A. salmonicida NC_011311–6 NCBI

A. logei NZ_AJYJ00000000 Prokka

Vibrio furnissii NC_016602, NC_016628 NCBI

Vibrio parahaemolyticus NC_004603–5 NCBI

Vibrio fischeri SR5 NZ_AHIH00000000 Prokka

Vibrio fischeri ES114 NC_006840–2 NCBI

Vibrio fischeri MJ11 NC_011184–6 NCBI

Vibrio fischeri EM17 De novo Prokka

Vibrio fischeri WH1 De novo Prokka

Vibrio fischeri ZF211 AJYI01 Prokka

Vibrio fischeri WH4 De novo Prokka

Vibrio fischeri SA1 De novo Prokka

Vibrio fischeri CG101 De novo Prokka

Vibrio fischeri H905 De novo Prokka

Vibrio fischeri PP3 De novo Prokka

Vibrio fischeri VLS2 De novo Prokka

DOI: 10.7554/eLife.24414.023
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Table 4. DNA oligonucleotide primers used in this study.

Primer name Primer DNA sequence (5’�3’) Annealing temperature Source

A0397 F5 AAGAGTCATGGTATACATCGG 51˚C This study

A0397 F5* TGTAGCTGATGAGACTTTGCG 56˚C This study

A0397 F8 TCATTGAAAGGTTTAATCGGTGT 57˚C This study

A0397 R11 CACTTTATGGATGATCTTCGCT 56˚C This study

A0397 F3 GCTGATGAGACTTTCGCTC 52˚C This study

A0397 R4 GGCTGATTAGATCATCCTGC 54˚C This study

A0397 F12 CAGAAGCACTAAATCATGTGAG 52˚C This study

A0397 R9 TCTGACATGCCAATAATGCCAT 59˚C This study

MJ11A0397 R KpnI GGTACCCCGAAATTAACGACCAT 50˚C This study

MJ11A0397 F SalI GTCGACAAATAGAAACACTAACCAC 50˚C This study

HKSoeA F (SalI) GTCGACAATGTAGAAGTGGTAGAACGC 50˚C This study

HKSoeA2 R GTTTCCGCCATTCTTTGTGGTTAGTGTTTCT3 50˚C This study

HKSoeB2 F AGAAACACTAACCACAAAGAATGGCGGAAAC 50˚C This study

HKSoeB2 R GCACCGACACTCATCAATTCGATATCAAGCT 50˚C This study

HKSoeC2 F AGCTTGATATCGAATTGATGAGTGTCGGTGC 50˚C This study

HKSoeC R (KpnI) GGTACCAGCGGCAATAGAATCAGTC 50˚C This study

TnErm4 AATGCCCTTTACCTGTTCC 53˚C This study

TnErm5 CATGCGTCTGACATCTATCTGA 55˚C This study

A0397 R13 GTACACCCGAAATTAACGACCA 59˚C This study

A0397 F10 CAGAGTTATGGGGTTGCTGAGT 58˚C This study

A0397 WT+ R GTCCCACCAAATTGACG 53˚C This study

A0397 4+ R GTCCCACCAAATTGACA 53˚C This study

sypE RF F2 GCAGGTTATGTGCGAGG 52˚C This study

gapA F1 GCCGTAGTGTACTTCGAGCG 55˚C 31

gapA R1 CCCATTACTCACCCTTGTTTG 55˚C 31

PrRF9 AAGCTTATTGGGAATACGGATACCTG 53˚C This study

PrRF10 CATATGCACATCTTCTAACCATTGCTG 53˚C This study

PrRF19 TGTCAGTATCACTCCCCTTCAC 55˚C This study

PrRF20 AGCAGACAGTTTTATTGTTCATTGTTTCACCTCATTTAA 50˚C This study

PrRF21 TTAAATGAGGTGAAACAATGAACAATAAAACTGTCTGCT 50˚C This study

PrRF22 TTTCCTGTTTGTTCTTTTTTAGAAAAACTCATCGAGCA 50˚C This study

PrRF23 TGCTCGATGAGTTTTTCTAAAAAAGAACAAACAGGAAA 50˚C This study

PrRF24 GTTCCTTCTACAAGTCCTATTCC 53˚C This study

PrRF36 ATCCATTGTAATAGTGCTGC 53˚C This study

PrRF52 AATAAGTCCATTTCGTTCTGC 54˚C This study

PrRF53 AAGCGGAAGTAGCGAAAAC 54˚C This study

VSV105InF GCCTGGGGTGCCTAATG 56˚C This study

KanINF ATACAAGGGGTGTTATGAGCC 55˚C This study

KanINR CAAGTCAGCGTAATGCTCTGC 56˚C This study

DOI: 10.7554/eLife.24414.024
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DsypK mutant generation
The DsypK::aphA1 mutant strains RF1A5, RF1A6, and RF1A7 were generated by marker exchange

mutagenesis using a construct produced by Splicing and Overlap Extension PCR (Horton et al.,

1990). Briefly, the primer pairs PrRF19 and PrRF20, PrRF21 and PrRF22, and PrRF23 and PrRF24,

and the Phusion High Fidelity DNA polymerase were used to amplify the genomic region upstream

and downstream of sypK from MJ11 genomic DNA, and using KmR colonies and pVSV103 plasmid

DNA as the template (Tables 1 and 4) (Dunn et al., 2006). The purified amplicons were then fused

using Expand Long Template polymerase (Roche) where sypK was replaced by a KmR cassette. This

purified product was cloned into pCR2.1 TOPO and transformed into TOP10 cells (Invitrogen, Wal-

tham, MA), following the manufacturer’s protocol. Putative clones were sequenced by the Sanger

method with primers M13 F, M13 R, KanINF, KanINR (Table 4) at Genewiz in South Plainfield, NJ

before the construct, RF2B7, was used for allelic exchange with a modified chitin competence proto-

col (Brooks et al., 2015). Briefly, V. fischeri cells were grown in minimal media with a chitin deriva-

tive (n-acetyl glucosamine) until they reached OD600 0.2. Cultures were incubated with 10 mg/mL of

pRF2B7 linearized by up to five cycles of freeze-thawing. After incubation with DNA fragments for

allelic exchange, cells were recovered, plated onto LBS+Km plates and screened by PCR for incorpo-

ration of DsypK::aphA1 fragment using primers PrRF36 and KanINR2 (Table 4).

Transcriptome sequencing and analysis
Single colonies of V. fischeri MJ11 and two of its derived strains, squid-evolved binK1 strain

(MJ11EP2-4-1) and MJ11 mutant DbinK (RF1A4), were grown in quadruplicate until they had an

OD600 of 0.25 (Biophotometer; Eppendorf AG, Hamburg, Germany) in order to capture populations

prior to detectable biofilm activity or flocculation and to minimize effects of spontaneous suppres-

sion due to growth defects of binK variants. Cells were pelleted and flash frozen. RNA was extracted

following the protocol for the Quick-RNA MiniPrep kit (Zymo, Irvine, CA). Ribosomal RNA was

depleted using the RiboZero kit (Illumina). mRNA libraries were constructed using the TruSeq

Stranded mRNA library prep kit (Illumina) and sequenced using the HiSeq 2500 at New York

Genome Center. Quality-trimmed reads were mapped onto the MJ11 reference genome using

bowtie2 (Langmead and Salzberg, 2012) and quantified using RSEM (Li and Dewey, 2011). Differ-

ential expression between strains was assessed using edgeR (Robinson et al., 2010) with a signifi-

cance threshold of FDR < 0.05.

Plasmid construction
binK and binK1 alleles were cloned into pVSV105 (Dunn et al., 2006) following amplification of

MJ11 and binK1 genomic DNA with forward primer MJ11A0397 F SalI and reverse MJ11A0397 R

KpnI (Table 4). The 2.977 Kb product was cloned into pCR2.1 TOPO (Invitrogen) following the man-

ufacturers’ instructions. The constructs were sequenced using M13F, M13R, A0397 F3, A0397 F5,

A0397 F8, A0397 F12, A0397 R4, A0397 R9, and A0397 R11 (Table 4), and aligned to their respec-

tive references to ensure that there were no mutations. The inserts were sub cloned from pCR2.1

TOPO into pVSV105 following digestion using the restriction enzymes SalI and KpnI, and ligation

using T4 DNA ligase. Ligation reactions were transformed into chemically competent DH5alpir cells

(Herrero et al., 1990). Cell lysates of ChR colonies were directly screened for correct insert harbor-

ing plasmids by PCR using M13F and A0397 R4. Positive clones harbored pRAD2E1(binK+) and

pRF2A2(binK1).

binA was cloned into pVSV105 (Dunn et al., 2006) following amplification of MJ11 genomic DNA

with forward primer PrRF9 and reverse PrRF10 (Table 4). The 2.053 Kb product was cloned into

pCR2.1 TOPO (Invitrogen) following the manufacturers’ instructions. The TOPO constructs were

sequenced using M13F, M13R, PrRF9, PrRF10, PrRF52 and PrRF53 (Table 4), and aligned to the

genomic sequence in MJ11 using the DNA Star software package (https://www.dnastar.com/) to

ensure that no mutations were generated during cloning. The inserts were sub-cloned following

digestions with XhoI and NdeI and SalI and NdeI digestions of pVSV105, and ligation using T4 DNA

ligase. Ligation reactions were transformed into chemically competent DH5alpir cells. Cell lysates of

ChR were directly PCR screened for insert-harboring plasmids by PrRF9 and VSV105InF (Table 4).

Positive clones harbored pRF2A3 (binA+) (Table 1).
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To make KmR constructs compatible with pKV111 for hemocyte assays, the sypE SphI and SacI

fragment was sub-cloned from pCLD48 into SphI and SacI digested pVSV104 (Stabb and Ruby,

2002). Following transformation into chemically competent DH5alpir cells, the cell lysates of KmR

colonies were directly screened for sypE insert using M13F and sypE RF F2 (Table 4). Positive clones

harbored pRF2A1 (Table 1). The binA Sph1 and SacI fragment was sub-cloned from TOPO 2.1 into

pVSV104 digested with SphI and SacI (Stabb and Ruby, 2002). Cell lysates of KmR colonies were

directly screened for binA insert using VSV105InF and PrRF9 (Table 4). Positive clones harbored

pRF2A4 (Table 1).

To mark bacteria for direct competition, the lacZ-expressing plasmid pVSV103 (Dunn et al.,

2006), which confers a blue colony on media containing X-gal and confers kanamycin resistance, was

used along with a derivative of this plasmid (pCAW7B1) in which lacZ was inactivated by removal of

an internal 624-bp fragment by digestion with HpaI followed by self-ligation.

Bacterial competition in vivo
Estimates of Malthusian growth rates and fitness for MJ11 strains were calculated by measuring rela-

tive abundances of marked strains in squid hatchings that were co-inoculated with varying ratios of

each strain (Altered Starting Ratio method sensu [Wiser and Lenski, 2015]). Strains were marked

with either an intact version of the plasmid pVSV103 (Dunn et al., 2006) or pCAW7B1 that contains

lacZ, which harbors a 200-amino-acid deletion that renders LacZ unable to produce blue pigment in

colonies (Table 1). Squid were inoculated overnight in 50 ml IO containing 25 mg/ml Km and stored

at �80˚C after 24 or 48 hr (n = 98 and 59, respectively) following initial inoculum exposure if detect-

ably luminous. Inoculations spanned 17 experiments, which contained inoculums with reciprocally

marked strains in order to control for potential plasmid effects, ranging both in total cell density

(from 1,600 to 26,600 CFU/mL) and in relative strain frequency (from ~1 binK1 per 10,000 binK+ up

to approximately equal proportions). To estimate CFU abundance for each strain in squid light

organs, we counted blue and white colonies after 72 hr of plating squid homogenates onto SWT

plates containing 50 mg/ml Km and 1.5 mg/ml X-gal.

To calculate the selective coefficient (s) associated with the evolved variant during competition

with the ancestral genotype in squid, we use the derivation in Chevin (2011). First, Malthusian

growth rates (M) (Fisher, 1930) were estimated by taking the natural-log of the ratio of the CFU esti-

mate from each co-colonized light organ to the starting inoculum concentration (i.e., starting den-

sity) (Lenski and Travisano, 1994; Lenski et al., 1991). The standard plating method to quantify

symbionts from squid light organs can detect as few as 15 CFU (Ruby and Asato, 1993). Then the

relative growth rate difference (sGR) was used to calculate the selection coefficient:

Relative growth rate difference, sGR = (MEvo– MAnc)/ MAnc

Selection coefficient, s = sGR / ln2

Spearman rank correlation tests were then used to test for relationships between Malthusian

growth rates and either starting frequency or starting density of inocula. Significant differences in

growth rate at either 24 or 48 hr between ancestral and evolved binK1 strains were assessed using

exact Fisher-Pitman permutation tests through the ‘oneway_test’ method in the R ‘coin’ package

(Hothorn et al., 2008). Significant differences in competitive colonization by evolved variants binK1

and binK3 (mutations in HATPaseC or HAMP domains, respectively) were assessed with a permuta-

tion t-test in the R package ‘DAAG’ using the method ‘onet.permutation’ with 9,999 simulations

(Maindonald and Braun, 2015).

Bacterial competition in vitro
Malthusian growth rates were estimated similarly to in vivo competitions in which fitness for MJ11

strains was determined following co-inoculation of 150 ml with a single colony from each strain

marked with either pVSV103 (Dunn et al., 2006) or pCAW7B1. Cultures were grown statically at

28˚C and, at 2 hr intervals, a new culture was founded by serial 1/10 dilution into fresh media in a

96-well polystyrene microplate (Corning). At each passage, 20 ml of each competition was diluted,

and plated onto SWT plates containing 50 mg/ml Km and 1.5 mg/ml X-gal. The total number of blue

and white colonies apparent after 72 hr of growth was determined and used for calculations of real-

ized Malthusian parameters. Strain competitions were each conducted with eight replicates and

repeated twice. Differences in growth rate (Malthusian parameter, described above and in
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Fisher (1930) were assessed for significance using exact Fisher-Pitman permutation tests through

the ‘oneway_test’ method from the R package ‘coin’ (Hothorn et al., 2008).

Theoretical estimation of selective advantage and mutation probability
in BinK
Selection coefficient modelling
The analytical approximation developed in Wahl and Gerrish (2001) was used to estimate the range

of selection coefficients required for a novel beneficial variant to overcome the extinction risk in a

population exposed to frequent bottlenecking:

V t; sð Þ ffi 1�
ln2

2t�1
st

� �

Where, V(t,s) represents the probability of extinction given selective coefficient (s) and generation

(t) of growth in which the variant arises. This risk is determined by the number of generations

between bottlenecks (t), selective advantage (s), and the generation of arrival (t). In the context of

the squid–Vibrio colonization dynamic, the following values were applied towards these parameters:

for the initial host colonization bottleneck following inoculum growth, t was 25 generations; for the

subsequent venting bottlenecks experienced by symbiont populations, t was four generations.

To estimate the minimum selection rate (r) conferred by a new rare variant capable of successfully

colonizing a host (i.e., comprising one of the ~10 initiating cells [Wollenberg and Ruby, 2009;

Altura et al., 2013]), first we predicted the number of non-synonymous mutations that would accu-

mulate in the binK locus during growth of the ancestral population under neutral evolution using the

estimated mutation rate for V. fischeri (Dillon et al., 2017): this was ~325 assuming ~25 generations

of cell division to form a final population size of 2.4 � 108. Then, using the method of Lenski and

Travisano (1994) for estimating fitness differences in declining populations, selection rates were

estimated for the rare variant using the Malthusian parameters (Fisher, 1930):

Mðrare variantÞ ¼ lnð1=325Þ
Mðwild-typeÞ ¼ lnð9=2:4� 10

8Þ
r¼Mðrare variantÞ�Mðwild-typeÞ ¼ 5:6 natural logs

Using these approximations, selection coefficients for variants arising during the inoculum’s

growth phase must be much larger than one in order to attain a reasonable chance of surviving the

colonization bottleneck. Conversely, during the venting-regrowth periods,although the probability

of a new mutation arising is low, given how comparatively few generations occur during daily re-

growth, beneficial alleles with coefficients as low at 0.5 may regularly survive (Figure 3C).

A caveat to this approach is that the applied model did not incorporate sub-population dynamics

that could result from nuances in the topology of an individual squid’s light organ, rather it applies

generalized population and growth parameters of a single evolving population through one experi-

mental squid, using data derived from native strain ES114 in the squid–Vibrio symbiosis

(Wollenberg and Ruby, 2009; Altura et al., 2013; Wahl and Gerrish, 2001). While such population

subdivision could potentially facilitate genetic variation among symbionts, it does not affect the esti-

mated selective coefficient of evolved alleles.

BinK mutation probability modelling
To estimate the probability of a neutral mutation occurring within the binK locus during either the

inoculum growth phase or during growth cycles in the host, the following parameters were used.

References are provided for any parameters based on previously published estimates.

Parameter Estimate Source

Genome mutation rate 2.08 � 10�8 bp-1division�1 Dillon et al. (2017)

Genome size of MJ11 4,323,877 bp NCBI

Available non-synonymous binK positions
(approximately 2/3 of codon positions)

2,595 *2/3
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N0 (Inoculum starting population) 5 cells

Ninoc (max. population of inoculum prior to dilution) 2.4 � 108 cells

Ncol (V. fischeri founder population size) 12 (2–3 cells per crypt) Nyholm et al. (2000);
Wollenberg and Ruby, (2009);
Altura et al. (2013)

Nhost (Juvenile light organ V. fischeri population capacity) 5 � 105 cells Koch et al. (2014)

To place the empirical observations in the context of expectations using the model of Wahl and

Gerrish (2001), we predict that mutants carrying a selective advantage of s ~ 2.8 would have origi-

nated within the first 10 generations of inoculum growth, with the probability of any non-synony-

mous mutation in the locus occurring within the first 10 generations of inoculum growth being 0.004

(under Poisson). However, the recovery of four distinct binK alleles suggests that selection could be

much greater than this empirical estimation. Although quantification of the selective advantage is

central to understanding the dynamics of natural selection during evolution, obtaining accurate esti-

mates is made more difficult as fitness differentials diverge and become extreme (Wiser and Lenski,

2015). We suspect that empirical estimates of s using competitive co-inoculations may vastly under-

estimate the strength of selection in this system, not only because of the extreme and diverging fit-

ness differential between ancestor and evolved strains but also because of the difficulty imposed by

the recovery and the challenges of accurate enumeration of rare genotypes.

Bacterial aggregation
Assessment of the capacities of MJ11 and the binK1 variant to form cell aggregates in the squid

mucus prior to entry through the ducts was conducted as previously described (Nyholm and McFall-

Ngai, 2003). Briefly, 1.5 hr after newly hatched squid were inoculated with ~105 CFU/ml GFP-

labeled strains of interest (harboring pKV111 [Nyholm et al., 2000]), squid were incubated in 1 uM

CellTracker Orange (Invitrogen) for 30 min, anesthetized in isotonic magnesium chloride and dis-

sected by removing the mantel to expose the intact light organ. Dissected animals were then

promptly imaged at 20X and 40X using a Zeiss laser scanning confocal microscope 510. N = 15–20

squid tested per strain.

Biofilm quantification
Biofilm production was quantified using a standard assay with minor modifications (O’Toole, 2011).

Briefly, a colony of bacteria from an agar plate was inoculated into either 150 ml (in a Costar 96-well

plate) or 2 mL (in a 15 mm glass tube) of SWTO and grown shaking at 200 rpm for 17 hr at 28˚C.
The biofilm that remained after expulsion of liquid, rinsing, and heat fixation at 80˚C for 10 min was

stained with 0.1% crystal violet and then decolorized in a volume of 200 ml for assays in plates or 2

mL for tube assays. Biofilm production was determined by absorbance at 550 nm using a Tecan Infi-

nite M200 plate reader. Experiments were performed in triplicate and contained 3–5 biological repli-

cates per treatment. Differences in means were evaluated for significance using a two-sample Fisher-

Pitman permutation test conducted using the exact distribution with the ‘oneway_test’ method from

the package coin in R (Hothorn et al., 2008).

Hydrogen peroxide survival
Strains were grown in LBS media at 28˚C with shaking at 200 rpm until cultures reach an OD600

between 1 and 1.5, the cultures were normalized to an OD600 of 1.0 by dilution and 5 ml was subject,

in triplicate, to exposure to hydrogen peroxide at different concentrations (ranging from

0.02% to 0.18%) in 200 ml of LBS media in a 96-well Costar polystyrene plate. The minimum concen-

trations of hydrogen peroxide that restricted all growth (MIC) of wild-type MJ11 and ES114 after

over-night incubation was determined for every batch of hydrogen peroxide. Experimental concen-

trations ranged from 0.02% to 0.18%. Differences in strain survival (binomial outcomes) of at least

three combined experiments that contained 106 replicates of strains without plasmids, 15 replicates

of DsypK variants that were assayed in conjunction with control strains that lacked the mutation

(MJ11, binK1, DbinK) and 50 replicates of strains with plasmids were evaluated for significance using

exact Fisher-Pitman permutation tests with the ‘oneway_test’ method from the R package ‘coin’

(Hothorn et al., 2008). The plasmid harboring pRF2A3 (binA) was assayed 20 times in the in same
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experiment as control strains that harbored pVSV105 and pCLD48 (sypE), which was evaluated in

the same way.

Host hemocyte binding of bacteria
Squid macrophage-like hemocytes were isolated from aposymbiotic hatchling squid using glass

adhesion and then stained with Cell Tracker Orange (Invitrogen) suspended in Squid-Ringers, prior

to exposure to GFP-labeled V. fischeri cells following a previously detailed protocol (Nyholm et al.,

2009; Collins and Nyholm, 2010), with modifications communicated by Dr Bethany Rader. Hemo-

cytes were exposed for one hour to V. fischeri strains ES114, MJ11 (binK+), MJ11EP2-4-1 (binK1) or

non-symbiotic Vibrio harveyi B392, carrying the GFP plasmid pKV111 (Nyholm et al., 2000). To test

for the effect of Syp biofilm on hemocyte binding, additional assays were conducted using GFP-

labeled strains carrying either control plasmid (pVSV104), sypE expression plasmid (pRF2A1), or

binA expression plasmid (pRF2A4) in addition to GFP plasmid (pKV111) (Nyholm et al., 2000)

(Table 1). Following exposure, hemocyte response to bacteria was visualized at 63x magnification by

confocal microscopy and differential interference contrast using a Zeiss LSM 510. Hemocyte binding

was quantified by enumeration of bound Vibrio relative to total Vibrio within a 60 mm radius sur-

rounding each cell. A minimum of 30 hemocyte interactions were quantified per strain. Significant

differences in mean proportional binding across strains were detected using a permutation-based

test of independence in the R package ‘coin’ (‘independence_test’ method, using the exact distribu-

tion) (Hothorn et al., 2008).

Siderophore production
Siderophore was measured qualitatively as an orange halo appearing around cells cultured on CAS

agar (Graf and Ruby, 2000) or from cell free supernatants after 17 hr of growth under iron limited

conditions using a chrom-azurol S liquid assay (Lee and Ruby, 1994a; Payne, 1994b). Colorimetric

reduction in OD630 was measured in a Tecan Infinite M200 plate reader and % siderohpore units

were calculated and normalized by cell density (Lee and Ruby, 1994a). Siderophore units were

below the detection limit for MJ11 and its binK1 derivative but not ES114.

Luminescence, homoserine lactone, and cell density determination
Luminescence, cell density and homoserine lactones were quantified from V. fischeri MJ11 and var-

iants grown in a starting volume of 15 mL SWT broth culture in a 125 ml flask, which incrementally

decreased in volume with sampling. Luminescence produced by the equivalent of 1 mL of culture

was quantified on cells diluted up to 1:1000, to ensure that measurements were within the range of

detection, with a Turner 20/20 luminometer (Turner Designs, Sunnyvale, CA). Concurrently, the opti-

cal density (OD600) was determined with a Biophotometer (Eppendorf AG, Hamburg, Germany),

with cells diluted into medium. In parallel, colony forming units were determined by standard serial

dilution and plating on LBS agar. Published methods were used for the purification and quantifica-

tion of N-(3-oxohexanoyl) homoserine lactone (3-oxo-C6-HSL) and N-octanoyl homoserine lactone

(C8-HSL) (Schaefer et al., 2000; Duerkop et al., 2007). Briefly, acyl-HSLs were extracted twice with

an equal volume of acidified ethyl acetate from cell-free supernatants of MJ11 and derivatives sam-

pled at a several OD600 levels—representing mid-log (OD600 ~0.7 and 1.0), late-log (~1.7), early sta-

tionary (~3.5), and stationary phase (~5.3–8)—to evaluate the dynamic range of AHL synthesis for

each derivative and to determine the optimal OD600 during induction. AHLs were extracted and con-

centrated from 0.5 to 5 mL of MJ11 and variants were detectable and within the assay linear range,

identifying that an OD600 of ~1.0 was optimal. Replicate experiments were performed in which

OD600 was monitored at regular intervals, and AHLs were immediately extracted when cultures

reached an OD600 of 0.9–1.4. Any binK derivative culture identified as being dominated by suppres-

sor mutants (i.e., exhibiting an abnormally fast growth rate accompanied by greater than wild-type

luminescence and a high proportion of large colonies when plated) were discarded. Extracted sam-

ples were concentrated by evaporation under anhydrous nitrogen before analysis. 3-oxo-C6-HSL

was quantified using the reporter strain E. coli VJS533 harboring plasmid pHV200I�, which responds

to 3-oxo-C6-HSL by producing luminescence (Pearson et al., 1994). C8-HSL was quantified using

the reporter strain E. coli MG4 harboring pQF50 (bmaI1-lacZ promoter fusion derived from Burkho-

deria mallei) and pJN105 (an arabinose-inducible R gene), which expresses lacZ specifically in
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response to exogenous C8-HSL with low sensitivity to 3-oxo-C6-HSL (Duerkop et al., 2007). LacZ

activity was measured by a standard assay (Miller, 1972) and using the Dual-Light Luciferase and b-

Galactosidase Reporter Gene Assay System (Applied Biosystems). The amounts of 3-oxo-C6-HSL

and C8-HSL were determined by comparing the activity measured from a dilution series of the

extracted samples to the linear range (R2 �0.98) of each standard curve generated from synthetic

substrates (N-(ß-ketocaproyl)-L-homoserine lactone and N-octanoyl-L-homoserine lactone) (Cayman

Chemical). A total of 10 cultures for each derivative from five combined experiments were assayed

and reported with the exception of CFU, which was from three cultures. Differences in CFU/mL/

OD600, OD600, nM 3-oxo-C6, nM C8-HSL, and luminescence (Lum) per 1 mL of culture for each vari-

ant reported relative to MJ11 were tested for significance using exact Fisher-Pitman permutation

tests in the R package ‘coin’ (‘oneway_test’ method) (Hothorn et al., 2008).

Metabolic profiling
Phenotype MicroArrays (Biolog, Hayward, CA) PM1 and PM2A were performed according to manu-

facturers’ protocols (Bochner et al., 2001) with few modifications for V. fischeri analysis, specifically

including supplementation of IF-0 with 1% NaCl. Briefly, for each strain, enough inoculum for two

replicate plates was prepared by recovering and mixing bacterial colonies into 16 ml IF-0 to obtain a

uniform suspension at OD600 0.175 and mixed with dye D mixture (1:5 dilutions). PM1 and PM2A

duplicate (ES114, binK1- and DbinK-variants) or triplicate (MJ11 and blank) plates were inoculated

with 100 ml of suspension per well, and incubated at 28˚C for 48 hr. OD490 was recorded by a Tecan

Infinite M200 microplate reader every 4 hr to measure kinetic changes in color (redox state) of dye

D. To determine which substrates elicited different kinetic responses among strains, we performed

an ANOVA on OD490 values following normalization against the blank control values for each timed

measurement. The significance of strain activity differences for any substrate was determined after

correcting for multiple tests using a False Discovery Rate of 0.05. To quantify the overall significance

of metabolic responses for MJ11 binK1 and MJ11 DbinK converging with ES114 while diverging

from MJ11, we used the Exact Binomial Test under the null hypothesis that only 12.5% substrates

should yield such a pattern across the four strains assayed (2*0.54) with the R method ‘binom.test’.

Statistical analyses
Unless otherwise specified, differential responses to colonization and experimental assays

for different strains were tested using exact Fisher-Pitman permutation tests with the ‘oneway_test’

in the R package ‘coin’ (Hothorn et al., 2008). Results from experiments conducted in triplicate

were combined by inclusion of a block variable to account for potential technical artefact.

Acknowledgements
We thank Richard Klobuchar, Chris Payne and the Monterey Bay Aquarium, and Deborah S Millikan

for E. scolopes specimens; Marcus Dillon, W Kelley Thomas, and Robert Sebra for library preparation

and genome sequencing expertise; Spencer Nyholm, Sarah McAnulty and Bethany Rader for guid-

ance in performing hemocyte binding; Karen Visick for insightful guidance on symbiotic polysaccha-

ride studies, strains and constructs; Amy Schaefer for insightful guidance on quorum regulation, and

constructs; Matthew Neiditch, Brandon McDonald, Ashley Gagnon, Nicole Clark, and Sarah Martini

for technical assistance; and Louis Tisa, Alicia Ballock, Megan Striplin, Evan DaSilva, Feng Xu, Ashley

Marcinkiewicz, Mark Mandel, Michelle Nishiguchi, William Soto, Stacia Sower, Kevin Culligan, Philip

Gerrish, Caroline Turner, Todd Oakley and David Plachetzki for critical feedback and discussions.

Finally, we are grateful for the critical feedback provided by anonymous reviewers, whose insight

and suggestions improved the final manuscript. Funding was provided by the National Science Foun-

dation (IOS-1258099) and the New Hampshire Agricultural Experiment Station through the USDA

National Institute of Food and Agriculture Hatch program (Accession number 0216015). This is Sci-

entific Contribution Number 2666.

Sabrina Pankey et al. eLife 2017;6:e24414. DOI: 10.7554/eLife.24414 35 of 53

Research article Genomics and Evolutionary Biology Microbiology and Infectious Disease

http://dx.doi.org/10.7554/eLife.24414


Additional information

Funding

Funder Grant reference number Author

National Science Foundation IOS-1258099 Vaughn S Cooper
Cheryl A Whistler

U.S. Department of Agriculture 0216015 Cheryl A Whistler

The funders had no role in study design, data collection and interpretation, or the decision to
submit the work for publication.

Author contributions

MSP, RLF, Conceptualization, Data curation, Formal analysis, Supervision, Investigation, Visualiza-

tion, Methodology, Writing—original draft, Writing—review and editing; IMS, Investigation, Writ-

ing—review and editing; LAP, BMS, RAD, MC, Validation, Investigation; VSC, Conceptualization,

Resources, Data curation, Software, Formal analysis, Supervision, Funding acquisition, Validation,

Investigation, Visualization, Methodology, Writing—original draft, Writing—review and editing;

CAW, Conceptualization, Resources, Supervision, Funding acquisition, Validation, Investigation,

Methodology, Writing—original draft, Project administration, Writing—review and editing

Author ORCIDs

M Sabrina Pankey, http://orcid.org/0000-0002-7061-9613

Randi L Foxall, http://orcid.org/0000-0003-2396-6695

Cheryl A Whistler, http://orcid.org/0000-0002-2301-2069

Additional files
Supplementary files
. Source code 1. Statistical analysis of transcriptome changes in R (Appendix 1, Figure 5—figure

supplement 2).

DOI: 10.7554/eLife.24414.025

. Source code 2. Statistical analysis of metabolic differences in BIOLOG assays in R (Appendix 2).

DOI: 10.7554/eLife.24414.026

Major datasets

The following datasets were generated:

Author(s) Year Dataset title Dataset URL

Database, license,
and accessibility
information

Pankey MS, Foxall
RL, Ster IM, Perry
LA, Schuster BM,
Donner RA, Coyle
M, Cooper VS,
Whistler CA

2016 Genomes of ancestral and evolved
Vibrio fisheri

https://www.ncbi.nlm.
nih.gov/bioproject/?
term=PRJNA316342

Publicly available at
the NCBI BioProject
(accession no:
PRJNA316342)

Pankey MS, Foxall
RL, Ster IM, Perry
LA, Schuster BM,
Donner RA, Coyle
M, Cooper VS,
Whistler CA

2016 Transcriptomes of ancestral,
evolved and mutant binK Vibrio
fischeri MJ11

https://www.ncbi.nlm.
nih.gov/bioproject/?
term=PRJNA316360

Publicly available at
the NCBI BioProject
(accession no:
PRJNA316360)

References
Altura MA, Heath-Heckman EA, Gillette A, Kremer N, Krachler AM, Brennan C, Ruby EG, Orth K, McFall-Ngai
MJ. 2013. The first engagement of partners in the Euprymna scolopes-Vibrio fischeri symbiosis is a two-step
process initiated by a few environmental symbiont cells. Environmental Microbiology 15:2937–2950. doi: 10.
1111/1462-2920.12179, PMID: 23819708

Sabrina Pankey et al. eLife 2017;6:e24414. DOI: 10.7554/eLife.24414 36 of 53

Research article Genomics and Evolutionary Biology Microbiology and Infectious Disease

http://orcid.org/0000-0002-7061-9613
http://orcid.org/0000-0002-7061-9613
http://orcid.org/0000-0002-7061-9613
http://orcid.org/0000-0002-7061-9613
http://orcid.org/0000-0002-7061-9613
http://orcid.org/0000-0002-7061-9613
http://orcid.org/0000-0003-2396-6695
http://orcid.org/0000-0003-2396-6695
http://orcid.org/0000-0003-2396-6695
http://orcid.org/0000-0003-2396-6695
http://orcid.org/0000-0003-2396-6695
http://orcid.org/0000-0003-2396-6695
http://orcid.org/0000-0002-2301-2069
http://orcid.org/0000-0002-2301-2069
http://orcid.org/0000-0002-2301-2069
http://orcid.org/0000-0002-2301-2069
http://orcid.org/0000-0002-2301-2069
http://dx.doi.org/10.7554/eLife.24414.025
http://dx.doi.org/10.7554/eLife.24414.026
https://www.ncbi.nlm.nih.gov/bioproject/?term=PRJNA316342
https://www.ncbi.nlm.nih.gov/bioproject/?term=PRJNA316342
https://www.ncbi.nlm.nih.gov/bioproject/?term=PRJNA316342
https://www.ncbi.nlm.nih.gov/bioproject/?term=PRJNA316360
https://www.ncbi.nlm.nih.gov/bioproject/?term=PRJNA316360
https://www.ncbi.nlm.nih.gov/bioproject/?term=PRJNA316360
http://dx.doi.org/10.1111/1462-2920.12179
http://dx.doi.org/10.1111/1462-2920.12179
http://www.ncbi.nlm.nih.gov/pubmed/23819708
http://dx.doi.org/10.7554/eLife.24414


An JH, Goo E, Kim H, Seo YS, Hwang I. 2014. Bacterial quorum sensing and metabolic slowing in a cooperative
population. PNAS 111:14912–14917. doi: 10.1073/pnas.1412431111, PMID: 25267613

Anantharaman V, Aravind L. 2000. Cache - a signaling domain common to animal ca(2+)-channel subunits and a
class of prokaryotic chemotaxis receptors. Trends in Biochemical Sciences 25:535–537. doi: 10.1016/S0968-
0004(00)01672-8, PMID: 11084361

Bassis CM, Visick KL. 2010. The cyclic-di-GMP phosphodiesterase BinA negatively regulates cellulose-containing
biofilms in Vibrio fischeri. Journal of Bacteriology 192:1269–1278. doi: 10.1128/JB.01048-09, PMID: 20061475

Baym M, Kryazhimskiy S, Lieberman TD, Chung H, Desai MM, Kishony R. 2015. Inexpensive multiplexed library
preparation for megabase-sized genomes. PLoS One 10:e0128036. doi: 10.1371/journal.pone.0128036,
PMID: 26000737

Bedhomme S, Lafforgue G, Elena SF. 2012. Multihost experimental evolution of a plant RNA virus reveals local
adaptation and host-specific mutations. Molecular Biology and Evolution 29:1481–1492. doi: 10.1093/molbev/
msr314, PMID: 22319146

Bertels F, Silander OK, Pachkov M, Rainey PB, van Nimwegen E. 2014. Automated reconstruction of whole-
genome phylogenies from short-sequence reads. Molecular Biology and Evolution 31:1077–1088. doi: 10.1093/
molbev/msu088, PMID: 24600054

Bochner BR, Gadzinski P, Panomitros E. 2001. Phenotype microarrays for high-throughput phenotypic testing
and assay of gene function. Genome Research 11:1246–1255. doi: 10.1101/gr.186501, PMID: 11435407

Boettcher KJ, Ruby EG. 1990. Depressed light emission by symbiotic Vibrio fischeri of the sepiolid squid
Euprymna scolopes. Journal of Bacteriology 172:3701–3706. doi: 10.1128/jb.172.7.3701-3706.1990,
PMID: 2163384

Boettcher KJ, Ruby EG, McFall-Ngai MJ. 1996. Bioluminescence in the symbiotic squid Euprymna scolopes is
controlled by a daily biological rhythm. Journal of Comparative Physiology A 179:65–73. doi: 10.1007/
BF00193435

Bolger AM, Lohse M, Usadel B. 2014. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics
30:2114–2120. doi: 10.1093/bioinformatics/btu170, PMID: 24695404

Bose JL, Kim U, Bartkowski W, Gunsalus RP, Overley AM, Lyell NL, Visick KL, Stabb EV. 2007. Bioluminescence in
Vibrio fischeri is controlled by the redox-responsive regulator ArcA. Molecular Microbiology 65:538–553.
doi: 10.1111/j.1365-2958.2007.05809.x, PMID: 17590235

Brooks JF, Gyllborg MC, Kocher AA, Markey LE, Mandel MJ. 2015. TfoX-based genetic mapping identifies
Vibrio fischeri strain-level differences and reveals a common lineage of laboratory strains. Journal of
Bacteriology 197:1065–1074. doi: 10.1128/JB.02347-14, PMID: 25561715

Brooks JF, Mandel MJ. 2016. The Histidine kinase BinK is a negative regulator of biofilm formation and squid
colonization. Journal of Bacteriology 198:2596–2607. doi: 10.1128/JB.00037-16, PMID: 26977108

Caley MJ, Munday PL. 2003. Growth trades off with habitat specialization. Proceedings of the Royal Society B:
Biological Sciences 270 Suppl 2:S175–S177. doi: 10.1098/rsbl.2003.0040, PMID: 14667374

Camacho C, Coulouris G, Avagyan V, Ma N, Papadopoulos J, Bealer K, Madden TL. 2009. BLAST+: architecture
and applications. BMC Bioinformatics 10:421–429. doi: 10.1186/1471-2105-10-421, PMID: 20003500

Capra EJ, Laub MT. 2012. Evolution of two-component signal transduction systems. Annual Review of
Microbiology 66:325–347. doi: 10.1146/annurev-micro-092611-150039, PMID: 22746333

Chevin LM. 2011. On measuring selection in experimental evolution. Biology Letters 7:210–213. doi: 10.1098/
rsbl.2010.0580, PMID: 20810425

Chu H, Mazmanian SK. 2013. Innate immune recognition of the Microbiota promotes host-microbial symbiosis.
Nature Immunology 14:668–675. doi: 10.1038/ni.2635, PMID: 23778794

Collins AJ, Nyholm SV. 2010. Obtaining hemocytes from the hawaiian bobtail squid Euprymna scolopes and
observing their adherence to symbiotic and non-symbiotic bacteria. Journal of Visualized Experiments. doi: 10.
3791/1714, PMID: 20150890

Dandekar AA, Chugani S, Greenberg EP. 2012. Bacterial quorum sensing and metabolic incentives to cooperate.
Science 338:264–266. doi: 10.1126/science.1227289, PMID: 23066081

Darnell CL, Hussa EA, Visick KL. 2008. The putative hybrid sensor kinase SypF coordinates biofilm formation in
Vibrio fischeri by acting upstream of two response regulators, SypG and VpsR. Journal of Bacteriology 190:
4941–4950. doi: 10.1128/JB.00197-08, PMID: 18469094

Davenport PW, Griffin JL, Welch M. 2015. Quorum sensing is accompanied by global metabolic changes in the
Opportunistic Human Pathogen Pseudomonas aeruginosa. Journal of Bacteriology 197:2072–2082. doi: 10.
1128/JB.02557-14, PMID: 25868647

Davidson SK, Koropatnick TA, Kossmehl R, Sycuro L, McFall-Ngai MJ. 2004. NO means ’yes’ in the squid-vibrio
symbiosis: nitric oxide (NO) during the initial stages of a beneficial association. Cellular Microbiology 6:1139–
1151. doi: 10.1111/j.1462-5822.2004.00429.x, PMID: 15527494

Deatherage DE, Barrick JE. 2014. Identification of mutations in laboratory-evolved microbes from next-
generation sequencing data using breseq. Methods in Molecular Biology 1151:165–188. doi: 10.1007/978-1-
4939-0554-6_12, PMID: 24838886

Dillon MM, Sung W, Sebra R, Lynch M, Cooper VS. 2017. Genome-Wide biases in the rate and molecular
spectrum of spontaneous mutations in Vibrio cholerae and Vibrio fischeri. Molecular Biology and Evolution 34:
93–109. doi: 10.1093/molbev/msw224, PMID: 27744412

Duerkop BA, Ulrich RL, Greenberg EP. 2007. Octanoyl-homoserine lactone is the cognate signal for Burkholderia
mallei BmaR1-BmaI1 quorum sensing. Journal of Bacteriology 189:5034–5040. doi: 10.1128/JB.00317-07,
PMID: 17496085

Sabrina Pankey et al. eLife 2017;6:e24414. DOI: 10.7554/eLife.24414 37 of 53

Research article Genomics and Evolutionary Biology Microbiology and Infectious Disease

http://dx.doi.org/10.1073/pnas.1412431111
http://www.ncbi.nlm.nih.gov/pubmed/25267613
http://dx.doi.org/10.1016/S0968-0004(00)01672-8
http://dx.doi.org/10.1016/S0968-0004(00)01672-8
http://www.ncbi.nlm.nih.gov/pubmed/11084361
http://dx.doi.org/10.1128/JB.01048-09
http://www.ncbi.nlm.nih.gov/pubmed/20061475
http://dx.doi.org/10.1371/journal.pone.0128036
http://www.ncbi.nlm.nih.gov/pubmed/26000737
http://dx.doi.org/10.1093/molbev/msr314
http://dx.doi.org/10.1093/molbev/msr314
http://www.ncbi.nlm.nih.gov/pubmed/22319146
http://dx.doi.org/10.1093/molbev/msu088
http://dx.doi.org/10.1093/molbev/msu088
http://www.ncbi.nlm.nih.gov/pubmed/24600054
http://dx.doi.org/10.1101/gr.186501
http://www.ncbi.nlm.nih.gov/pubmed/11435407
http://dx.doi.org/10.1128/jb.172.7.3701-3706.1990
http://www.ncbi.nlm.nih.gov/pubmed/2163384
http://dx.doi.org/10.1007/BF00193435
http://dx.doi.org/10.1007/BF00193435
http://dx.doi.org/10.1093/bioinformatics/btu170
http://www.ncbi.nlm.nih.gov/pubmed/24695404
http://dx.doi.org/10.1111/j.1365-2958.2007.05809.x
http://www.ncbi.nlm.nih.gov/pubmed/17590235
http://dx.doi.org/10.1128/JB.02347-14
http://www.ncbi.nlm.nih.gov/pubmed/25561715
http://dx.doi.org/10.1128/JB.00037-16
http://www.ncbi.nlm.nih.gov/pubmed/26977108
http://dx.doi.org/10.1098/rsbl.2003.0040
http://www.ncbi.nlm.nih.gov/pubmed/14667374
http://dx.doi.org/10.1186/1471-2105-10-421
http://www.ncbi.nlm.nih.gov/pubmed/20003500
http://dx.doi.org/10.1146/annurev-micro-092611-150039
http://www.ncbi.nlm.nih.gov/pubmed/22746333
http://dx.doi.org/10.1098/rsbl.2010.0580
http://dx.doi.org/10.1098/rsbl.2010.0580
http://www.ncbi.nlm.nih.gov/pubmed/20810425
http://dx.doi.org/10.1038/ni.2635
http://www.ncbi.nlm.nih.gov/pubmed/23778794
http://dx.doi.org/10.3791/1714
http://dx.doi.org/10.3791/1714
http://www.ncbi.nlm.nih.gov/pubmed/20150890
http://dx.doi.org/10.1126/science.1227289
http://www.ncbi.nlm.nih.gov/pubmed/23066081
http://dx.doi.org/10.1128/JB.00197-08
http://www.ncbi.nlm.nih.gov/pubmed/18469094
http://dx.doi.org/10.1128/JB.02557-14
http://dx.doi.org/10.1128/JB.02557-14
http://www.ncbi.nlm.nih.gov/pubmed/25868647
http://dx.doi.org/10.1111/j.1462-5822.2004.00429.x
http://www.ncbi.nlm.nih.gov/pubmed/15527494
http://dx.doi.org/10.1007/978-1-4939-0554-6_12
http://dx.doi.org/10.1007/978-1-4939-0554-6_12
http://www.ncbi.nlm.nih.gov/pubmed/24838886
http://dx.doi.org/10.1093/molbev/msw224
http://www.ncbi.nlm.nih.gov/pubmed/27744412
http://dx.doi.org/10.1128/JB.00317-07
http://www.ncbi.nlm.nih.gov/pubmed/17496085
http://dx.doi.org/10.7554/eLife.24414


Dunn AK, Millikan DS, Adin DM, Bose JL, Stabb EV. 2006. New rfp- and pES213-derived tools for analyzing
symbiotic Vibrio fischeri reveal patterns of infection and lux expression in situ. Applied and Environmental
Microbiology 72:802–810. doi: 10.1128/AEM.72.1.802-810.2006, PMID: 16391121

Fidopiastis PM, Miyamoto CM, Jobling MG, Meighen EA, Ruby EG, LitR JMG. 2002. LitR, a new transcriptional
activator in Vibrio fischeri, regulates luminescence and symbiotic light organ colonization. Molecular
Microbiology 45:131–143. doi: 10.1046/j.1365-2958.2002.02996.x, PMID: 12100554

Fisher RA. 1930. The Genetical Theory of Natural Selection — A Complete Variorum Edition. Oxford University
Press.

Foster JS, Apicella MA, McFall-Ngai MJ. 2000. Vibrio fischeri lipopolysaccharide induces developmental
apoptosis, but not complete morphogenesis, of the Euprymna scolopes symbiotic light organ. Developmental
Biology 226:242–254. doi: 10.1006/dbio.2000.9868, PMID: 11023684

Foxall RL, Ballok AE, Avitabile A, Whistler CA. 2015. Spontaneous phenotypic suppression of GacA-
defective Vibrio fischeri is achieved via mutation of csrA and ihfA. BMC Microbiology 15:180. doi: 10.1186/
s12866-015-0509-2, PMID: 26376921

Gao R, Stock AM. 2013. Evolutionary tuning of protein expression levels of a positively autoregulated two-
component system. PLoS Genetics 9:e1003927. doi: 10.1371/journal.pgen.1003927, PMID: 24204322

Graf J, Dunlap PV, Ruby EG. 1994. Effect of transposon-induced motility mutations on colonization of the host
light organ by Vibrio fischeri. Journal of Bacteriology 176:6986–6991. doi: 10.1128/jb.176.22.6986-6991.1994,
PMID: 7961462

Graf J, Ruby EG. 1998. Host-derived amino acids support the proliferation of symbiotic bacteria. PNAS 95:1818–
1822. doi: 10.1073/pnas.95.4.1818, PMID: 9465100

Graf J, Ruby EG. 2000. Novel effects of a transposon insertion in the Vibrio fischeri glnD gene: defects in iron
uptake and symbiotic persistence in addition to nitrogen utilization. Molecular Microbiology 37:168–179.
doi: 10.1046/j.1365-2958.2000.01984.x, PMID: 10931314

Guan SH, Gris C, Cruveiller S, Pouzet C, Tasse L, Leru A, Maillard A, Médigue C, Batut J, Masson-Boivin C,
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Appendix 1

Transcriptomic profiling
To gain insight into the breadth of pleiotropic effects of binK beyond the biofilm-

associated (Figures 5–7) and luminescence (Figure 8) phenotypes, we used RNAseq to

identify patterns in transcriptional differences among binK variants from cultures grown

to early log phase (OD600 0.25) (see Materials and methods). Although using a low

culture density reduced the potential to capture significant transcriptional changes

relevant to biofilm production (e.g. Syp) or quorum sensing (e.g. luminescence), it

minimized the potential for confounding effects of biofilm differentiation on transcription.

The DbinK mutant had a modest impact on transcription under these conditions.

Although most transcripts that were altered by the null mutation were not significantly

affected by the binK1 mutation, 101 out of the 114 of these significant DbinK-regulated

transcripts were expressed by the binK1 variant at levels intermediate to expression

levels in wild-type MJ11 and the null DbinK mutant (Appendix 1—table 1). Expression

patterns associated with binK variants include the repression of genes involved in

cellulose synthesis, carbohydrate glycosylation, and sugar transport and metabolism. The

DbinK mutant also increased transcription of serine and N-acetyl-glucosamine

transporter genes. Transcriptional differences also indicated a significant effect of binK

on iron metabolism and fatty acid biosynthesis pathways associated with quorum-sensing

regulation, both of which are important during persistent host colonization

(Davenport et al., 2015; Graf and Ruby, 1998; Visick et al., 2000; Septer et al.,

2013, Septer et al., 2011; Whitehead et al., 2001). However, siderophore production

remained undetectable in binK variants as it is in the MJ11 ancestor (Appendix 1—

figure 1).
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Appendix 1—figure 1. Siderophore production in MJ11 and binK variants. (A) Squid-

native ES114, (B) squid-naı̈ve MJ11 binK+ and (c) squid-evolved binK1 plated on CAS agar.

DOI: 10.7554/eLife.24414.027

Appendix 1—table 1. Transcript expression differences between wild-type binK+ (ancestral

MJ11) and binK mutants (DbinK and binK1) as detected by RNAseq under Fisher’s Exact test in

edgeR. Positive fold-changes (logFC) indicate elevated expression in the wild-type relative to

the indicated mutant; negative values indicate reduced expression in the wild-type relative to

mutants. Loci with similar and significant expression changes in both DbinK and binK1 relative to

the wild-type are listed in bold. Only loci showing significant differences in transcript abundance

compared with ancestral MJ11 are listed (FDR < 0.05).
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Wildtype vs mutant DbinK Wildtype vs evolved binK1

Fold-

change in

expression

Average

transcript

abundance

Corr.

P

Fold-

change in

expression

Average

transcript

abundance

Corr.

P

Locus Tag logFC logCPM FDR logFC logCPM FDR Gene description

VFMJ11_0008 �1.4 6.79 0.0027 �0.3 5.94 0.6192 Cystine-binding protein

VFMJ11_0013 2.7 7.87 0.0000 1.3 8.14 0.3143
Small heat shock pro-

tein

VFMJ11_0195 1.0 7.43 0.0015 0.4 7.58 0.6346 Co-chaperonin GroES

VFMJ11_0260 1.2 4.86 0.0003 0.7 4.98 0.2770
Universal stress protein

family protein

VFMJ11_0297 �1.4 5.51 0.0063 �0.6 4.81 0.4928

Sulfite reductase

NADPH flavoprotein al-

pha-component

VFMJ11_0307 �1.4 5.27 0.0058 �0.5 4.46 0.5758
Sulfate adenylyltransfer-

ase subunit 2

VFMJ11_0421 �0.8 6.96 0.0011 �0.6 6.68 0.2201
mutY AG-specific ade-

nine glycosylase

VFMJ11_0578 1.1 9.32 0.0005 0.7 9.37 0.2725
ATP-dependent cha-

perone ClpB

VFMJ11_0628 �1.0 9.16 0.0009 �1.0 9.03 0.0887
Inositol-1-monopho-

sphatase

VFMJ11_0653 �1.1 6.70 0.0000 �0.2 5.95 0.8114
Aminobenzoyl-gluta-

mate transport protein

VFMJ11_0690 1.5 3.25 0.0001 0.6 3.53 0.5043
urease accessory pro-

tein UreE

VFMJ11_0691 1.6 5.18 0.0000 0.4 5.55 0.5650
Urease subunit alpha

UreC

VFMJ11_1133 1.8 3.60 0.0000 0.6 3.94 0.3689 Peptidase T pepT_1

VFMJ11_1137 1.1 8.56 0.0000 0.6 8.69 0.2725
Glutamate decarboxy-

lase

VFMJ11_1138 1.5 7.03 0.0000 0.4 7.34 0.4196
TrkA domain integral

membrane protein

VFMJ11_1253 �0.8 9.48 0.0100 �0.6 9.21 0.3013 Serine transporter

VFMJ11_1268 �1.5 8.45 0.0000 �0.5 7.57 0.3861

Insulin-cleaving metal-

loproteinase outer

membrane protein

VFMJ11_1269 �1.2 6.24 0.0007 �0.6 5.65 0.3122 Thiol oxidoreductase

VFMJ11_1270 �1.0 6.40 0.0062 �0.4 5.87 0.4916
Imelysin superfamily

protein

VFMJ11_1305 �1.4 3.64 0.0082 �0.9 3.14 0.5490 TonB protein

VFMJ11_1317 1.2 8.36 0.0000 0.1 8.77 0.9186 Hemin receptor

VFMJ11_1370 �1.2 7.83 0.0055 �1.4 7.82 0.0530
3-hydroxydecanoyl-
ACP dehydratase fabA

VFMJ11_1398 �0.6 6.43 0.0634 �1.0 6.50 0.0335
Na-dependent nucleo-
side transporter family
protein

VFMJ11_1464 �0.8 7.74 0.0088 �0.3 7.27 0.6058 Peptidase U32

VFMJ11_1477 �0.9 8.48 0.0065 �1.0 8.43 0.1214
Glycine betaine trans-

porter

VFMJ11_1534 �0.8 6.27 0.0098 �0.8 6.10 0.1776
ATP-dependent RNA

helicase RhlE

VFMJ11_1579 �0.8 5.34 0.0094 �0.7 5.09 0.2410 Amidase
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Appendix 1—table 1 continued

Wildtype vs mutant DbinK Wildtype vs evolved binK1

Fold-

change in

expression

Average

transcript

abundance

Corr.

P

Fold-

change in

expression

Average

transcript

abundance

Corr.

P

Locus Tag logFC logCPM FDR logFC logCPM FDR Gene description

VFMJ11_1614 1.2 6.67 0.0000 0.8 6.74 0.2128

VFMJ11_1637 �1.6 6.35 0.0000 �1.1 5.79 0.1727
Long-chain fatty acid

transport protein

VFMJ11_1853 �0.9 8.47 0.0050 �0.6 8.14 0.2725

VFMJ11_1945 �1.1 10.99 0.0001 �1.0 10.79 0.1727
Long-chain fatty acid

transport protein

VFMJ11_2039 �0.6 10.70 0.0678 �1.0 10.90 0.0335
Nitrate reductase cata-
lytic subunit NapA

VFMJ11_2045 1.1 5.71 0.0078 0.5 5.85 0.4159

VFMJ11_2103 �0.9 9.12 0.0017 �0.6 8.78 0.2201
Queuine tRNA-ribosyl-

transferase tgt

VFMJ11_2111 1.5 3.60 0.0002 1.0 3.74 0.2591 Protein YgiW

VFMJ11_2127 �1.0 9.24 0.0018 �0.7 8.93 0.1727 Peptidase U32

VFMJ11_2165 1.2 4.76 0.0062 0.5 4.97 0.4470
DNA-binding transcrip-

tional activator CadC

VFMJ11_2221 1.5 9.28 0.0000 0.1 9.80 0.9638
Autonomous glycyl ra-

dical cofactor GrcA

VFMJ11_2223 0.7 6.55 0.0079 0.4 6.62 0.4482 Homoserine kinase thrB

VFMJ11_2231 1.0 6.47 0.0002 0.5 6.58 0.3889
Glutamate synthase

subunit beta gltD

VFMJ11_2259 �1.0 9.66 0.0011 �0.7 9.32 0.2410

IronIII ABC transporter

periplasmic binding

protein

VFMJ11_2394 1.1 5.83 0.0058 0.4 6.03 0.6194

Succinylglutamic semi-

aldehyde dehydrogen-

ase astD

VFMJ11_2416 1.0 9.76 0.0032 �0.3 10.32 0.6532
Argininosuccinate

synthase argG

VFMJ11_2456 1.3 10.16 0.0000 0.1 10.58 0.9472
Fumarate reductase fla-

voprotein subunit frdA

VFMJ11_2457 1.4 8.35 0.0000 0.0 8.88 1.0000
Fumarate reductase

iron-sulfur subunit

VFMJ11_2458 1.7 6.08 0.0000 0.4 6.50 0.7063
Fumarate reductase

subunit C

VFMJ11_2459 1.4 6.68 0.0069 �0.1 7.22 0.9725
Fumarate reductase

subunit D

VFMJ11_2504 �0.9 5.36 0.0048 �0.5 4.93 0.3940
3-dehydroquinate de-

hydratase aroQ

VFMJ11_2505 �1.0 8.61 0.0015 �0.9 8.47 0.1727

Acetyl-CoA carboxylase

biotin carboxyl carrier

protein subunit accB

VFMJ11_2506 �1.2 10.80 0.0001 �1.0 10.54 0.1384

Acetyl-CoA carboxylase

biotin carboxylase sub-

unit accC

Appendix 1—table 1 continued on next page
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Appendix 1—table 1 continued

Wildtype vs mutant DbinK Wildtype vs evolved binK1

Fold-

change in

expression

Average

transcript

abundance

Corr.

P

Fold-

change in

expression

Average

transcript

abundance

Corr.

P

Locus Tag logFC logCPM FDR logFC logCPM FDR Gene description

VFMJ11_2693 0.9 5.74 0.0083 0.5 5.80 0.3940

Branched-chain amino

acid aminotransferase

ilvE

VFMJ11_2696 �1.6 9.00 0.0000 �1.2 8.52 0.1793
Cold-shock DNA-bind-

ing domain

VFMJ11_A0104 2.0 4.85 0.0000 1.1 5.07 0.1727 dmsC

VFMJ11_A0105 2.0 5.16 0.0000 �0.1 5.83 0.9797 dmsB

VFMJ11_A0106 1.7 7.96 0.0000 0.1 8.50 0.9472

Anaerobic dimethyl

sulfoxide reductase

chain a

VFMJ11_A0107 1.2 4.47 0.0023 0.2 4.82 0.8697 YnfI

VFMJ11_A0111 1.0 7.20 0.0000 0.1 7.49 0.8523
Outer membrane pro-

tein RomA

VFMJ11_A0151 0.9 7.29 0.0001 �0.2 7.72 0.7881

Putative tripeptide

transporter permease

tppB

VFMJ11_A0200 1.5 6.46 0.0000 0.7 6.68 0.3479
L-lysine 6-monooxygen-

ase

VFMJ11_A0201 1.6 7.97 0.0000 0.7 8.18 0.3687
Ferric aerobactin re-

ceptor

VFMJ11_A0222 1.3 6.35 0.0000 0.6 6.54 0.3940
Trimethylamine-n-oxide

reductase 2

VFMJ11_A0224 �1.8 6.14 0.0001 �1.0 5.37 0.1748 FhuE receptor

VFMJ11_A0243 0.9 5.11 0.0075 0.2 5.35 0.7820

VFMJ11_A0256 �1.9 1.54 0.0091 �1.6 1.03 0.3770 Lipoprotein

VFMJ11_A0280 1.2 3.75 0.0064 0.2 4.08 0.8702
Methyl-accepting che-

motaxis protein

VFMJ11_A0317 1.4 7.28 0.0000 0.2 7.65 0.6304

Anaerobic ribonucleo-

side triphosphate re-

ductase

VFMJ11_A0325 1.8 3.04 0.0003 1.5 3.12 0.1801 YgiW

VFMJ11_A0367 2.5 4.82 0.0000 0.6 5.32 0.3479

VFMJ11_A0368 2.3 6.02 0.0000 0.9 6.36 0.1839

VFMJ11_A0388 �0.9 5.94 0.0049 0.4 5.09 0.4808
Cyclic nucleotide bind-

ing protein

VFMJ11_A0389 �2.0 9.66 0.0000 0.2 8.00 0.7303
Sodium glucose cotran-

sporter

VFMJ11_A0390 �3.1 7.57 0.0000 0.4 4.86 0.5426
UDP-glucose 4-epimer-

ase

VFMJ11_A0391 �2.4 7.09 0.0000 0.2 5.11 0.8033
Galactose-1-phosphate

uridylyltransferase

VFMJ11_A0392 �1.8 6.97 0.0000 0.1 5.52 1.0000 Galactokinase

VFMJ11_A0393 �1.5 6.89 0.0000 0.0 5.76 1.0000 Aldose 1-epimerase

VFMJ11_A0394 �6.3 9.93 0.0000 0.3 4.23 0.7720 Transporter AcrB-D-F
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Appendix 1—table 1 continued

Wildtype vs mutant DbinK Wildtype vs evolved binK1

Fold-

change in

expression

Average

transcript

abundance

Corr.

P

Fold-

change in

expression

Average

transcript

abundance

Corr.

P

Locus Tag logFC logCPM FDR logFC logCPM FDR Gene description

VFMJ11_A0395 �7.0 9.15 0.0000 0.1 2.80 0.9802
Acriflavin resistance

periplasmic protein

VFMJ11_A0396 �5.2 6.94 0.0000 0.0 2.50 0.9472
Transcriptional regula-

tor TetR family

VFMJ11_A0397 5.1 4.38 0.0000 0.6 5.10 0.2727

VFMJ11_A0398 �1.4 7.07 0.0000 0.0 6.06 0.9926
HTH-type transcrip-

tional regulator GalR

VFMJ11_A0408 1.5 3.36 0.0010 0.6 3.62 0.5359

VFMJ11_A0487 �1.4 7.99 0.0000 �0.2 7.09 0.7403

Pts system N-acetylglu-

cosamine-specific iibc

component

VFMJ11_A0619 �0.7 8.61 0.0099 �0.2 8.16 0.6350

ABC-type multidrug

transport system AT-

Pase and permease

component

VFMJ11_A0620 �1.7 7.95 0.0000 �0.9 7.22 0.1497
Oxalate-formate anti-

porter

VFMJ11_A0665 2.2 2.92 0.0000 1.2 3.19 0.3019

VFMJ11_A0671 1.6 2.35 0.0051 0.9 2.53 0.4110

VFMJ11_A0710 1.1 4.02 0.0082 1.0 4.01 0.2201

VFMJ11_A0755 1.2 3.78 0.0020 0.8 3.87 0.2319
Restriction endonu-

clease

VFMJ11_A0768 1.4 2.57 0.0029 0.8 2.73 0.5409

VFMJ11_A0875 �1.3 7.69 0.0000 �0.1 6.77 0.9728

VFMJ11_A0879 �0.9 6.03 0.0017 �0.7 5.74 0.4159

VFMJ11_A0882 �1.7 4.69 0.0000 �0.7 3.84 0.3793 Lipoprotein

VFMJ11_A0885 �1.4 7.51 0.0000 �0.6 6.79 0.3687

Cyclopropane-fatty-

acyl-phospholipid

synthase

VFMJ11_A0887 �1.3 5.63 0.0000 �0.4 4.89 0.6304 Amine oxidase

VFMJ11_A0888 �1.6 5.22 0.0000 �0.5 4.35 0.4916
Short chain dehydro-

genase

VFMJ11_A0890 �1.2 6.07 0.0000 �0.2 5.30 0.9034
Transcriptional activator

ChrR

VFMJ11_A0891 �1.2 5.70 0.0013 �0.2 4.94 0.8635
RNA polymerase sigma

factor

VFMJ11_A0909 �1.5 5.52 0.0000 �1.0 5.04 0.1727
Ferrichrome-iron recep-

tor

VFMJ11_A1000 �0.7 6.90 0.0075 �0.3 6.49 0.5856
Cellulose synthase op-

eron C protein
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Appendix 1—table 1 continued

Wildtype vs mutant DbinK Wildtype vs evolved binK1

Fold-

change in

expression

Average

transcript

abundance

Corr.

P

Fold-

change in

expression

Average

transcript

abundance

Corr.

P

Locus Tag logFC logCPM FDR logFC logCPM FDR Gene description

VFMJ11_A1007 �0.9 4.95 0.0040 �0.5 4.55 0.4061
Cellulose synthase op-

eron protein YhjU

VFMJ11_A1038 1.0 3.89 0.0040 0.7 3.94 0.2725
Alkanal monooxygen-

ase beta chain

VFMJ11_A1039 1.4 4.02 0.0000 0.7 4.22 0.4313
Alkanal monooxygen-

ase alpha chain

VFMJ11_A1040 1.7 3.16 0.0005 1.1 3.33 0.2320 Acyl transferase

VFMJ11_A1041 1.5 3.80 0.0003 0.7 4.01 0.3851 Acyl-CoA reductase

VFMJ11_A1048 1.0 7.25 0.0069 �0.4 7.87 0.6194 Carboxypeptidase G2

VFMJ11_A1058 �2.8 8.75 0.0000 �1.7 7.69 0.0887

Pts system fructose-

specific eiibc compo-

nent

VFMJ11_A1059 �3.0 7.69 0.0000 �1.8 6.50 0.0073 pfkB

VFMJ11_A1060 �2.9 7.77 0.0000 �1.6 6.52 0.0335

Bifunctional PTS system
fructose-specific trans-
porter subunit IIA Hpr
protein

VFMJ11_A1061 �2.1 4.34 0.0000 �1.2 3.44 0.1793
DNA-binding transcrip-

tional regulator FruR

VFMJ11_A1228 0.9 4.60 0.0075 0.5 4.70 0.4704

VFMJ11_A1256 1.0 8.21 0.0000 0.4 8.38 0.4150
Iron-regulated protein

FrpC

DOI: 10.7554/eLife.24414.028

Appendix 1—table 1—Source data 1. Read counts estimated by RSEM for chromosome I tran-

script abundance (Appendix 1, Figure 5—figure supplement 2).

DOI: 10.7554/eLife.24414.029

Appendix 1—table 1—Source data 2. Read counts estimated by RSEM for chromosome II tran-

script abundance (Appendix 1, Figure 5—figure supplement 2).

DOI: 10.7554/eLife.24414.030
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http://dx.doi.org/10.7554/eLife.24414.028Appendix%201&x2014;table%201.Transcript%20expression%20differences%20between%20wild-type%20binK+%20(ancestral%20MJ11)%20and%20binK%20mutants%20(&x2206;binK%20and%20binK1)%20as%20detected%20by%20RNAseq%20under%20Fisher&x2019;s%20Exact%20test%20in%20edgeR.%20Positive%20fold-changes%20(logFC)%20indicate%20elevated%20expression%20in%20the&x00A0;wild-type%20relative%20to%20the&x00A0;indicated&x00A0;mutant;%20negative%20values%20indicate%20reduced%20expression%20in&x00A0;the%20wild-type%20relative%20to%20mutants.%20Loci%20with%20similar%20and%20significant%20expression%20changes%20in%20both%20&x2206;binK%20and%20binK1%20relative%20to%20the&x00A0;wild-type%20are&x00A0;listed%20in%20bold.%20Only%20loci%20showing%20significant%20differences%20in%20transcript%20abundance%20compared%20with%20ancestral%20MJ11%20are%20listed%20(FDR&x00A0;%3C&x00A0;0.05).%2010.7554/eLife.24414.02810.7554/eLife.24414.029Appendix%201&x2014;table%201&x2014;source%20data%201.Read%20counts%20estimated%20by%20RSEM%20for%20chromosome%20I%20transcript%20abundance%20(Appendix%201,%20Figure%205&x2014;figure%20supplement%202).%2010.7554/eLife.24414.02910.7554/eLife.24414.030Appendix%201&x2014;table%201&x2014;source%20data%202.Read%20counts%20estimated%20by%20RSEM%20for%20chromosome%20II%20transcript%20abundance%20(Appendix%201,%20Figure%205&x2014;figure%20supplement%202).%2010.7554/eLife.24414.030Wildtype%20vs%20mutant%20&x2206;binKWildtype%20vs%20evolved%20binK1Fold-change%20in%20expressionAverage&x00A0;transcriptabundanceCorr.%20PFold-change%20in%20expressionAverage&x00A0;transcriptabundanceCorr.%20PLocus%20TaglogFClogCPMFDRlogFClogCPMFDRGene&x00A0;descriptionVFMJ11_0008&x2212;1.46.790.0027&x2212;0.35.940.6192Cystine-binding%20proteinVFMJ11_00132.77.870.00001.38.140.3143Small%20heat%20shock%20proteinVFMJ11_01951.07.430.00150.47.580.6346Co-chaperonin%20GroESVFMJ11_02601.24.860.00030.74.980.2770Universal%20stress%20protein%20family%20proteinVFMJ11_0297&x2212;1.45.510.0063&x2212;0.64.810.4928Sulfite%20reductase%20NADPH%20flavoprotein%20alpha-componentVFMJ11_0307&x2212;1.45.270.0058&x2212;0.54.460.5758Sulfate%20adenylyltransferase%20subunit%202VFMJ11_0421&x2212;0.86.960.0011&x2212;0.66.680.2201mutY%20AG-specific%20adenine%20glycosylaseVFMJ11_05781.19.320.00050.79.370.2725ATP-dependent%20chaperone%20ClpBVFMJ11_0628&x2212;1.09.160.0009&x2212;1.09.030.0887Inositol-1-monophosphataseVFMJ11_0653&x2212;1.16.700.0000&x2212;0.25.950.8114Aminobenzoyl-glutamate%20transport%20proteinVFMJ11_06901.53.250.00010.63.530.5043urease%20accessory%20protein%20UreEVFMJ11_06911.65.180.00000.45.550.5650Urease%20subunit%20alpha%20UreCVFMJ11_11331.83.600.00000.63.940.3689Peptidase%20T%20pepT_1VFMJ11_11371.18.560.00000.68.690.2725Glutamate%20decarboxylaseVFMJ11_11381.57.030.00000.47.340.4196TrkA%20domain%20integral%20membrane%20proteinVFMJ11_1253&x2212;0.89.480.0100&x2212;0.69.210.3013Serine%20transporterVFMJ11_1268&x2212;1.58.450.0000&x2212;0.57.570.3861Insulin-cleaving%20metalloproteinase%20outer%20membrane%20proteinVFMJ11_1269&x2212;1.26.240.0007&x2212;0.65.650.3122Thiol%20oxidoreductaseVFMJ11_1270&x2212;1.06.400.0062&x2212;0.45.870.4916Imelysin%20superfamily%20proteinVFMJ11_1305&x2212;1.43.640.0082&x2212;0.93.140.5490TonB%20proteinVFMJ11_13171.28.360.00000.18.770.9186Hemin%20receptorVFMJ11_1370&x2212;1.27.830.0055&x2212;1.47.820.05303-hydroxydecanoyl-ACP%20dehydratase%20fabAVFMJ11_1398&x2212;0.66.430.0634&x2212;1.06.500.0335Na-dependent%20nucleoside%20transporter%20family%20proteinVFMJ11_1464&x2212;0.87.740.0088&x2212;0.37.270.6058Peptidase%20U32VFMJ11_1477&x2212;0.98.480.0065&x2212;1.08.430.1214Glycine%20betaine%20transporterVFMJ11_1534&x2212;0.86.270.0098&x2212;0.86.100.1776ATP-dependent%20RNA%20helicase%20RhlEVFMJ11_1579&x2212;0.85.340.0094&x2212;0.75.090.2410AmidaseVFMJ11_16141.26.670.00000.86.740.2128VFMJ11_1637&x2212;1.66.350.0000&x2212;1.15.790.1727Long-chain%20fatty%20acid%20transport%20proteinVFMJ11_1853&x2212;0.98.470.0050&x2212;0.68.140.2725VFMJ11_1945&x2212;1.110.990.0001&x2212;1.010.790.1727Long-chain%20fatty%20acid%20transport%20proteinVFMJ11_2039&x2212;0.610.700.0678&x2212;1.010.900.0335Nitrate%20reductase%20catalytic%20subunit%20NapAVFMJ11_20451.15.710.00780.55.850.4159VFMJ11_2103&x2212;0.99.120.0017&x2212;0.68.780.2201Queuine%20tRNA-ribosyltransferase%20tgtVFMJ11_21111.53.600.00021.03.740.2591Protein%20YgiWVFMJ11_2127&x2212;1.09.240.0018&x2212;0.78.930.1727Peptidase%20U32VFMJ11_21651.24.760.00620.54.970.4470DNA-binding%20transcriptional%20activator%20CadCVFMJ11_22211.59.280.00000.19.800.9638Autonomous%20glycyl%20radical%20cofactor%20GrcAVFMJ11_22230.76.550.00790.46.620.4482Homoserine%20kinase%20thrBVFMJ11_22311.06.470.00020.56.580.3889Glutamate%20synthase%20subunit%20beta%20gltDVFMJ11_2259&x2212;1.09.660.0011&x2212;0.79.320.2410IronIII%20ABC%20transporter%20periplasmic%20binding%20proteinVFMJ11_23941.15.830.00580.46.030.6194Succinylglutamic%20semialdehyde%20dehydrogenase%20astDVFMJ11_24161.09.760.0032&x2212;0.310.320.6532Argininosuccinate%20synthase%20argGVFMJ11_24561.310.160.00000.110.580.9472Fumarate%20reductase%20flavoprotein%20subunit%20frdAVFMJ11_24571.48.350.00000.08.881.0000Fumarate%20reductase%20iron-sulfur%20subunitVFMJ11_24581.76.080.00000.46.500.7063Fumarate%20reductase%20subunit%20CVFMJ11_24591.46.680.0069&x2212;0.17.220.9725Fumarate%20reductase%20subunit%20DVFMJ11_2504&x2212;0.95.360.0048&x2212;0.54.930.39403-dehydroquinate%20dehydratase%20aroQVFMJ11_2505&x2212;1.08.610.0015&x2212;0.98.470.1727Acetyl-CoA%20carboxylase%20biotin%20carboxyl%20carrier%20protein%20subunit%20accBVFMJ11_2506&x2212;1.210.800.0001&x2212;1.010.540.1384Acetyl-CoA%20carboxylase%20biotin%20carboxylase%20subunit%20accCVFMJ11_26930.95.740.00830.55.800.3940Branched-chain%20amino%20acid%20aminotransferase%20ilvEVFMJ11_2696&x2212;1.69.000.0000&x2212;1.28.520.1793Cold-shock%20DNA-binding%20domainVFMJ11_A01042.04.850.00001.15.070.1727dmsCVFMJ11_A01052.05.160.0000&x2212;0.15.830.9797dmsBVFMJ11_A01061.77.960.00000.18.500.9472Anaerobic%20dimethyl%20sulfoxide%20reductase%20chain%20aVFMJ11_A01071.24.470.00230.24.820.8697YnfIVFMJ11_A01111.07.200.00000.17.490.8523Outer%20membrane%20protein%20RomAVFMJ11_A01510.97.290.0001&x2212;0.27.720.7881Putative%20tripeptide%20transporter%20permease%20tppBVFMJ11_A02001.56.460.00000.76.680.3479L-lysine%206-monooxygenaseVFMJ11_A02011.67.970.00000.78.180.3687Ferric%20aerobactin%20receptorVFMJ11_A02221.36.350.00000.66.540.3940Trimethylamine-n-oxide%20reductase%202VFMJ11_A0224&x2212;1.86.140.0001&x2212;1.05.370.1748FhuE%20receptorVFMJ11_A02430.95.110.00750.25.350.7820VFMJ11_A0256&x2212;1.91.540.0091&x2212;1.61.030.3770LipoproteinVFMJ11_A02801.23.750.00640.24.080.8702Methyl-accepting%20chemotaxis%20proteinVFMJ11_A03171.47.280.00000.27.650.6304Anaerobic%20ribonucleoside%20triphosphate%20reductaseVFMJ11_A03251.83.040.00031.53.120.1801YgiWVFMJ11_A03672.54.820.00000.65.320.3479VFMJ11_A03682.36.020.00000.96.360.1839VFMJ11_A0388&x2212;0.95.940.00490.45.090.4808Cyclic%20nucleotide%20binding%20proteinVFMJ11_A0389&x2212;2.09.660.00000.28.000.7303Sodium%20glucose%20cotransporterVFMJ11_A0390&x2212;3.17.570.00000.44.860.5426UDP-glucose%204-epimeraseVFMJ11_A0391&x2212;2.47.090.00000.25.110.8033Galactose-1-phosphate%20uridylyltransferaseVFMJ11_A0392&x2212;1.86.970.00000.15.521.0000GalactokinaseVFMJ11_A0393&x2212;1.56.890.00000.05.761.0000Aldose%201-epimeraseVFMJ11_A0394&x2212;6.39.930.00000.34.230.7720Transporter%20AcrB-D-FVFMJ11_A0395&x2212;7.09.150.00000.12.800.9802Acriflavin%20resistance%20periplasmic%20proteinVFMJ11_A0396&x2212;5.26.940.00000.02.500.9472Transcriptional%20regulator%20TetR%20familyVFMJ11_A03975.14.380.00000.65.100.2727VFMJ11_A0398&x2212;1.47.070.00000.06.060.9926HTH-type%20transcriptional%20regulator%20GalRVFMJ11_A04081.53.360.00100.63.620.5359VFMJ11_A0487&x2212;1.47.990.0000&x2212;0.27.090.7403Pts%20system%20N-acetylglucosamine-specific%20iibc%20componentVFMJ11_A0619&x2212;0.78.610.0099&x2212;0.28.160.6350ABC-type%20multidrug%20transport%20system%20ATPase%20and%20permease%20componentVFMJ11_A0620&x2212;1.77.950.0000&x2212;0.97.220.1497Oxalate-formate%20antiporterVFMJ11_A06652.22.920.00001.23.190.3019VFMJ11_A06711.62.350.00510.92.530.4110VFMJ11_A07101.14.020.00821.04.010.2201VFMJ11_A07551.23.780.00200.83.870.2319Restriction%20endonucleaseVFMJ11_A07681.42.570.00290.82.730.5409VFMJ11_A0875&x2212;1.37.690.0000&x2212;0.16.770.9728VFMJ11_A0879&x2212;0.96.030.0017&x2212;0.75.740.4159VFMJ11_A0882&x2212;1.74.690.0000&x2212;0.73.840.3793LipoproteinVFMJ11_A0885&x2212;1.47.510.0000&x2212;0.66.790.3687Cyclopropane-fatty-acyl-phospholipid%20synthaseVFMJ11_A0887&x2212;1.35.630.0000&x2212;0.44.890.6304Amine%20oxidaseVFMJ11_A0888&x2212;1.65.220.0000&x2212;0.54.350.4916Short%20chain%20dehydrogenaseVFMJ11_A0890&x2212;1.26.070.0000&x2212;0.25.300.9034Transcriptional%20activator%20ChrRVFMJ11_A0891&x2212;1.25.700.0013&x2212;0.24.940.8635RNA%20polymerase%20sigma%20factorVFMJ11_A0909&x2212;1.55.520.0000&x2212;1.05.040.1727Ferrichrome-iron%20receptorVFMJ11_A1000&x2212;0.76.900.0075&x2212;0.36.490.5856Cellulose%20synthase%20operon%20C%20proteinVFMJ11_A1007&x2212;0.94.950.0040&x2212;0.54.550.4061Cellulose%20synthase%20operon%20protein%20YhjUVFMJ11_A10381.03.890.00400.73.940.2725Alkanal%20monooxygenase%20beta%20chainVFMJ11_A10391.44.020.00000.74.220.4313Alkanal%20monooxygenase%20alpha%20chainVFMJ11_A10401.73.160.00051.13.330.2320Acyl%20transferaseVFMJ11_A10411.53.800.00030.74.010.3851Acyl-CoA%20reductaseVFMJ11_A10481.07.250.0069&x2212;0.47.870.6194Carboxypeptidase%20G2VFMJ11_A1058&x2212;2.88.750.0000&x2212;1.77.690.0887Pts%20system%20fructose-specific%20eiibc%20componentVFMJ11_A1059&x2212;3.07.690.0000&x2212;1.86.500.0073pfkBVFMJ11_A1060&x2212;2.97.770.0000&x2212;1.66.520.0335Bifunctional%20PTS%20system%20fructose-specific%20transporter%20subunit%20IIA%20Hpr%20proteinVFMJ11_A1061&x2212;2.14.340.0000&x2212;1.23.440.1793DNA-binding%20transcriptional%20regulator%20FruRVFMJ11_A12280.94.600.00750.54.700.4704VFMJ11_A12561.08.210.00000.48.380.4150Iron-regulated%20protein%20FrpC
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Appendix 2

Metabolic profiling
To further examine pleiotropic changes associated with binK variants, we employed Biolog

assays which measure redox as an indication of metabolic activity in the presence of

individually arrayed substrates, as these assays have previously aided in identifying

characteristics of experimentally evolved strains (Soto et al., 2014). binK1 moderated

metabolic activity in the presence of compounds found in glycans characteristic of eukaryote

mucosal epithelia (Koropatkin et al., 2012) and in Vibrio biofilms (Appendix 2—table 1,

Appendix 2—figure 1, Appendix 2—figure 2) (Visick, 2009). Compared with MJ11, both

the binK1 and a DbinK derivative decreased redox in the presence of mannose and

galactose derivatives, becoming more similar to the metabolism of ES114 (Appendix 2—

figure 1). Greater substrate utilization in the presence of potentially squid-provisioned chitin

and amino acid derivatives by binK variants was also congruent with the metabolism of

ES114 (D-glucoronic acid, L-glutamine, glucuronamide, galacturonic acid, L-glutamic acid, b-

methyl-D-glucoside) (Graf and Ruby, 1998; Wier et al., 2010; Schwartzman et al., 2015).

In rare instances, metabolic responses that were altered by the binK1 allele were not

similarly altered by the DbinK mutation (e.g. L-glutamine). Overall, the metabolic response of

binK variants converged significantly with ES114, with variants responding more like ES114

than ancestral MJ11 for 17% (33/190) of metabolic substrates (Binomial test, p=0.048).

Several of these metabolic changes also arose in ES114 following experimental evolution in

a novel host, Euprymna tasmanica (Soto et al., 2014). This convergence supported the

hypothesis that pleiotropic effects of the evolved binK1 allele are adaptive and suggested

that responses to these metabolites could contribute to symbiont growth in juvenile squid,

and could promote more robust growth in light organs relative to ancestral MJ11.

Appendix 2—table 1. Metabolic convergence between squid native V. fischeri ES114 and squid-

evolved binK1. The net changes in metabolic activity (as indicated by change in absorption of

the Biolog tetrazolium redox dye) are shown for each V. fischeri strain after 48 hr of exposure to

each substrate. Only substrates which induced significant (FDR < 0.05) differences across strains

are listed. Metabolic changes in each strain relative to wild-type MJ11 binK+ are colored to

indicate relatively increased or decreased activity. Of the 190 substrates tested, 44 substrates

yielded significant differences across strain, including 39 which indicate congruent metabolic

responses by ES114 and binK1 (Exact binomial test, p=1.405e-7).

Metabolic activity

(DA550 over 48 hr)

Metabolic activity change

relative to remS+ MJ11

Well Substrate remS+ remS1 DremS ES114 remS+ remS1 DremS ES114 Convergence

H11 Phenylethylamine 0.012 0.568 0.458 0.667 0.000 46.54 37.33 54.85 +

H07 Glucuronamide 0.017 0.523 0.564 0.558 0.000 30.20 32.69 32.30 +

G10 Methyl pyruvate 0.019 0.677 0.462 0.639 0.000 33.70 22.70 31.78 +

H08 Pyruvic acid 0.013 0.187 0.276 0.395 0.000 13.09 19.76 28.71 +

E01 L-Glutamine 0.026 0.620 0.125 0.665 0.000 22.82 3.78 24.54 +

F03 m-Inositol 0.044 0.724 0.726 0.671 0.000 15.50 15.54 14.28 +

E02 m-Tartaric acid 0.026 0.424 0.338 0.451 0.000 15.10 11.84 16.13 +

D02 D-Aspartic acid 0.040 0.459 0.363 0.735 0.000 10.56 8.16 17.55 +

A12 Dulcitol 0.030 0.402 0.091 0.608 0.000 12.61 2.07 19.63 +

G03 L-Serine 0.032 0.467 0.235 0.360 0.000 13.66 6.39 10.29 +

H02
p-Hydroxy phe-
nyl acetic acid

0.027 0.063 0.037 0.636 0.000 1.27 0.36 22.11 +

Appendix 2—table 1 continued on next page
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Appendix 2—table 1 continued

Metabolic activity

(DA550 over 48 hr)

Metabolic activity change

relative to remS+ MJ11

Well Substrate remS+ remS1 DremS ES114 remS+ remS1 DremS ES114 Convergence

B06 D-Gluconic acid 0.048 0.300 0.324 0.628 0.000 5.24 5.75 12.06 +

B09 L-Lactic acid 0.029 0.068 0.040 0.647 0.000 1.30 0.37 20.93 +

E09 Adonitol 0.026 0.358 0.197 0.085 0.000 12.88 6.63 2.28 +

H01 Glycyl-L-proline 0.039 0.206 0.258 0.443 0.000 4.32 5.65 10.44 +

C05 Tween 20 0.025 0.065 0.001 0.517 0.000 1.60 �0.95 19.54 +

E08
b-Methyl-D-glu-
coside

0.004 0.024 0.022 0.021 0.000 5.66 5.10 4.85 +

G05 L-Alanine 0.056 0.322 0.295 0.355 0.000 4.74 4.25 5.33 +

B11 D-Mannitol 0.018 0.177 0.085 0.034 0.000 8.64 3.64 0.88 +

H09
L-Galactonic
acid—Lactone

0.089 0.275 0.379 0.450 0.000 2.10 3.27 4.06 +

F04 D-Threonine 0.017 0.126 0.044 0.041 0.000 6.37 1.55 1.37 +

D01 L-Asparagine 0.026 0.069 0.080 0.129 0.000 1.61 2.02 3.86 +

H06 L-Lyxose 0.088 0.051 0.036 0.481 0.000 �0.42 �0.59 4.48 -

F8 Mucic acid 0.026 0.072 0.044 0.035 0.000 1.78 0.68 0.36 +

C12 Thymidine 0.071 0.168 0.116 0.052 0.000 1.36 0.63 �0.27 -

G11 D-Malic acid 0.028 0.062 0.036 0.029 0.000 1.21 0.31 0.05 +

F06
Bromo succinic
acid

0.033 0.061 0.037 0.035 0.000 0.82 0.11 0.04 +

A10 D-Trehalose 0.031 0.045 0.038 0.034 0.000 0.45 0.21 0.08 +

D06
�-Keto-glutaric
acid

0.045 0.074 0.043 0.042 0.000 0.65 �0.04 �0.08 -

F9 Glycolic acid 0.039 0.062 0.032 0.040 0.000 0.61 �0.17 0.04 +

C11 D-melibiose 0.028 0.043 �0.006 0.053 0.000 0.53 �1.20 0.90 +

D10 Lactulose 0.045 0.057 0.046 0.035 0.000 0.27 0.02 �0.20 -

A10 Laminarin 0.678 0.546 0.674 0.798 0.000 �0.20 �0.01 0.18 -

E06
2-Hydroxy ben-
zoic acid

0.089 0.070 0.080 0.093 0.000 �0.21 �0.10 0.04 +

A03 �-Cyclodextrin 0.191 0.122 0.089 0.158 0.000 �0.36 �0.54 �0.17 +

H07 D,L-Octopamine 0.200 0.111 0.067 0.186 0.000 �0.45 �0.66 �0.07 +

F07
D-Ribono-1,4-lac-
tone

0.198 0.085 0.070 0.162 0.000 �0.57 �0.65 �0.18 +

D07 Turanose 0.188 0.065 0.060 0.137 0.000 �0.66 �0.68 �0.27 +

E02 Caproic acid 0.241 0.101 0.007 0.215 0.000 �0.58 �0.97 �0.11 +

G10 L-Leucine 0.214 0.051 0.075 0.135 0.000 �0.76 �0.65 �0.37 +

G02 L-Alaninamide 0.164 0.065 0.047 0.045 0.000 �0.60 �0.72 �0.72 +

G02 Tricarballylic acid 0.029 0.018 �0.008 0.006 0.000 �0.37 �1.27 �0.80 +

C10
�-Methyl-D-man-
noside

0.183 0.004 0.024 0.075 0.000 �0.98 �0.87 �0.59 +

D08
�-Methyl-D- Ga-
lactoside

�0.011 0.018 0.008 0.000 0.000 �2.56 �1.68 �0.99 +

DOI: 10.7554/eLife.24414.031

Appendix 2—table 1—Source data 1. Raw data for redox activity over 48 hr in BIOLOG plate

PM1 (Appendix 2).
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Appendix 2—table 1—Source data 2. Raw data for redox activity over 48 hr in BIOLOG plate

PM2A (Appendix 2).
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Appendix 2—figure 1. Metabolic shifts associated with binK variants. Significantly differing

metabolic responses to BIOLOG compounds for wild-type MJ11 (binK+), squid-adapted

MJ11 binK1, MJ11 DbinK and squid-native ES114. Responses to all tested compounds are

reported in the Figure Supplement.
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A01 PM1 Control
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A02 L-Arabinose A03 N-Acetyl-D- Glucosamine A04 D-Saccharic Acid A05 Succinic Acid A06 D-Galactose A07 L-Aspartic Acid A08 L-Proline A09 D-Alanine A10 D-Trehalose A11 D-Mannose A12 Dulcitol

B01 D-Serine B02 D-Sorbitol B03 Glycerol B04 L-Fucose B05 D-Glucuronic Acid B06 D-Gluconic Acid B07 D,L-a-Glycerol-Phosphate B08 D-Xylose B09 L-Lactic Acid B10 Formic Acid B11 D-Mannitol B12 L-Glutamic Acid

C01 D-Glucose-6- Phosphate C02 D-Galactonic Acid-g-Lactone C03 D,L-Malic Acid C04 D-Ribose C05 Tween 20 C06 L-Rhamnose C07 D-Fructose C08 Acetic Acid C09 a-D-Glucose C10 Maltose C11 D-Melibiose C12 Thymidine

D01 L-Asparagine D02 D-Aspartic Acid D03 D-Glucosaminic Acid D04 1,2-Propanediol D05 Tween 40 D06 a-Keto-Glutaric Acid D07 a-Keto-Butyric Acid D08 a-Methyl-D- Galactoside D09 a-D-Lactose D10 Lactulose D11 Sucrose D12 Uridine

E01 L-Glutamine E02 m-Tartaric Acid E03 D-Glucose-1- Phosphate E04 D-Fructose-6- Phosphate E05 Tween 80 E06 a-Hydroxy Glutaric Acid-g-LactoneE07 a-Hydroxy Butyric Acid E08 b-Methyl-D- Glucoside E09 Adonitol E10 Maltotriose E11 2-Deoxy Adenosine E12 Adenosine

F01 Glycyl-L-Aspartic Acid F02 Citric Acid F03 m-Inositol F04 D-Threonine F05 Fumaric Acid F06 Bromo Succinic Acid F07 Propionic Acid F10 Glyoxylic Acid F11 D-Cellobiose F12 Inosine F8 Mucic Acid F9 Glycolic Acid

G01 Glycyl-L- Glutamic Acid G02 Tricarballylic Acid G03 L-Serine G04 L-Threonine G05 L-Alanine G06 L-Alanyl-Glycine G07 Acetoacetic Acid G08 N-Acetyl-b-D- Mannosamine G09 Mono Methyl Succinate G10 Methyl Pyruvate G11 D-Malic Acid G12 L-Malic Acid

H01 Glycyl-L-Proline H02 p-Hydroxy Phenyl Acetic AcidH03 m-Hydroxy Phenyl Acetic Acid H04 Tyramine H05 D-Psicose H06 L-Lyxose H07 Glucuronamide H08 Pyruvic Acid H09 L-Galactonic Acid--Lactone H10 D-Galacturonic Acid H11 Phenylethylamine H12 2-Aminoethanol

A01 PM2A Control A02 Chondroitin Sulfate C A03 a-Cyclodextrin A04 b-Cyclodextrin A05 g-Cyclodextrin A06 Dextrin A07 Gelatin A08 Glycogen A09 Inulin A10 Laminarin A11 Mannan

B01 N-Acetyl-D- Galactosamine B02 N-Acetyl- Neuraminic Acid B03 b-D-Allose B04 Amygdalin B05 D-Arabinose B06 D-Arabitol B07 L-Arabitol B08 Arbutin B09 2-Deoxy-D- Ribose B10 i-Erythritol B11 D-Fucose

C01 Gentiobiose C02 L-Glucose C03 Lactitol C04 D-Melezitose C05 Maltitol C06 a-Methyl-D- Glucoside C07 b-Methyl-D- Galactoside C08 3-Methyl Glucose C09 b-Methyl-D- Glucuronic Acid C10 a-Methyl-D- Mannoside C11 b-Methyl-D- Xyloside

D01 D-Raffinose D02 Salicin D03 Sedoheptulosan D04 L-Sorbose D05 Stachyose D06 D-Tagatose D07 Turanose D08 Xylitol D09 N-Acetyl-D- Glucosaminitol D10 g-Amino Butyric Acid D11 d-Amino Valeric Acid

E01 Capric Acid E02 Caproic Acid E03 Citraconic Acid E04 Citramalic Acid E05 D-Glucosamine E06 2-Hydroxy Benzoic Acid E07 4-Hydroxy Benzoic Acid E08 b-Hydroxy Butyric Acid E09 g-Hydroxy Butyric Acid E10 a-Keto-Valeric Acid E11 Itaconic Acid

F01 D-Lactic Acid Methyl Ester F02 Malonic Acid F03 Melibionic Acid F04 Oxalic Acid F05 Oxalomalic Acid F06 Quinic Acid F07 D-Ribono-1,4- Lactone F08 Sebacic Acid F09 Sorbic Acid F10 Succinamic Acid F11 D-Tartaric Acid

G01 Acetamide G02 L-Alaninamide G03 N-Acetyl-L- Glutamic Acid G04 L-Arginine G05 Glycine G06 L-Histidine G07 L-Homoserine G08 Hydroxy-L- Proline G09 L-Isoleucine G10 L-Leucine G11 L-Lysine

H01 L-Ornithine H02 L-Phenylalanine H03 L-Pyroglutamic Acid H04 L-Valine H05 D,L-Carnitine H06 Sec-Butylamine H07 D.L-Octopamine H08 Putrescine H09 Dihydroxy Acetone H10 2,3-Butanediol H11 2,3-Butanone
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Appendix 2—figure 2. Metabolic profiles using BIOLOG phenotyping assays. Plots enclosed

by boxes indicate substrates that are significantly differentially metabolized across strains

(listed in Table 2). X-axis represents time (0–48 hr); Y-axis represents metabolic activity as

detected by BIOLOG redox (tetrazolium) dye absorbance (OD490).
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