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ABSTRACT 

In the Gypsum Plain, suffosion processes have encouraged road failure through 

dissolution and transport of gypsic soils; however, no prior research has been conducted 

within the Delaware Basin in regard to these processes. These phenomena were 

evaluated in both field and laboratory settings in order to assess the parameters of 

suffosion development associated with Ranch to Market (RM) 652 in Culberson County, 

Texas, where infrastructure extends across Castile and Rustler strata. Field studies 

simulated surficial ponding in various gypsic soils and correlated suffosion potential with 

soil composition and thickness. Soluble fractions of gypsic soils were delineated through 

geochemical analyses, further expanding upon the soil descriptions published in the 

Culberson County Soil Survey (USDA, 2013). Suffosion modeling replicated processes 

observed in the field through repeated infiltration of Dellahunt and Elcor soils—soil piping 

and subsidence were induced within suffosion models. Lineaments inferred as solutional 

fractures were delineated using color infrared (CIR) images to determine regional 

suffosion potential.  

Results obtained from this research were used to form a conceptual model of 

suffosion development in order to better mitigate damage imposed on infrastructure in 

evaporite karst terrains. Regions with thick, heterogeneous soils of low to moderate 

gypsum content (10-70%) and moderate fracture densities (100-800 m/km2) are optimal 

for suffosion development. This model should be considered for future projects in not 
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only the Gypsum Plain, but for other arid environments with significant evaporite karst 

and gypsic soils as well.
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Physical and Chemical Controls on Suffosion Development in Gypsic Soil, 

Culberson County, Texas 

 

ABSTRACT 

In the Gypsum Plain, suffosion processes have encouraged road failure through 

dissolution and transport of gypsic soils; however, no prior research has been conducted 

within the Delaware Basin in regard to these processes. These phenomena were 

evaluated in both field and laboratory settings in order to assess the parameters of 

suffosion development associated with Ranch to Market (RM) 652 in Culberson County, 

Texas, where infrastructure extends across Castile and Rustler strata. Field studies 

simulated surficial ponding in various gypsic soils and correlated suffosion potential with 

soil composition and thickness. Soluble fractions of gypsic soils were delineated through 

geochemical analyses, further expanding upon the soil descriptions published in the 

Culberson County Soil Survey (USDA, 2013). Suffosion modeling replicated processes 

observed in the field through repeated infiltration of Dellahunt and Elcor soils—soil piping 

and subsidence were induced within suffosion models. Lineaments inferred as solutional 

fractures were delineated using color infrared (CIR) images to determine regional 

suffosion potential.  

Results obtained from this research were used to form a conceptual model of 

suffosion development in order to better mitigate damage imposed on infrastructure in 
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evaporite karst terrains. Regions with thick, heterogeneous soils of low to moderate 

gypsum content (10-70%) and moderate fracture densities (100-800 m/km2) are optimal 

for suffosion development. This model should be considered for future projects in not 

only the Gypsum Plain, but for other arid environments with significant evaporite karst 

and gypsic soils as well.
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INTRODUCTION 

 In northern Culberson County, Texas, dissolution of indurated gypsite (gypsic 

soil) and gypsum bedrock has caused substantial damage to infrastructure, primarily in 

the form of road failures (Stafford et al., 2017). The Gypsum Plain of southeastern New 

Mexico and west Texas (Figure 1) is well recognized for extensive epigene and 

hypogene karst development, but suffosion processes have become a growing concern 

related to geohazards in recent years (Stafford et al., 2017). Large sections of Ranch to 

Market (RM) 652 and other infrastructure within the region have been subjected to road 

base failure as suffosion piping transports saturated fluids and sediments into underlying 

karst, predominantly during brief, intense precipitation events. Suffosion is capable of 

operating at rapid rates in gypsite (Stafford, 2016) and its influence on anthropogenic 

and environmental regimes may not immediately manifest at the surface. No dedicated 

studies have been previously conducted of suffosion processes in the Gypsum Plain and 

it is imperative that methods are developed to evaluate suffosion potential for future 

construction projects as this region is one of the most rapidly developing petroleum 

sectors with intense infrastructure usage in North America (Stafford et al., 2017). 

Suffosion features are developed by transport of saturated, unconsolidated 

sediments through soil piping (White, 1988). Laminar transport of fine material through 

adjacent sediments initiates classic soil piping—pipes spread and connect with 

underlying karst (Gunn, 2004). Changes in the water table and rapid groundwater flow 
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can induce collapse by transporting sediments through karstified formations and 

undermining overlying strata (Palmer, 2007). Flooding of low relief areas promotes 

subsidence by transporting soil through vertical pipes and fracture zones (White, 1988). 

Solutional fractures are important for evaporite karst development (White, 1988) and 

discharge from underlying karst may also cause flooding (Palmer, 2007). Infiltration 

through thick unconsolidated or allogenic material can induce suffosion depressions 

(Ford & Williams, 2007), whereas sink-collapse is less probable in thin soils or bedrock 

(Palmer, 2007). Suffosion processes often influence the development of existing karst 

features and induce cover-collapse proximal to infrastructure in karst environments (Ford 

& Williams, 2007). 

In the Gypsum Plain, soil caves develop from suffosion (Figure 2) and dissolution 

of soluble minerals (Stafford et al., 2017). Some soil caves can be laterally extensive 

and contain isolated chambers several meters in diameter. Preferential flow through 

indurated soils and evaporite dissolution of the soluble fraction form lateral and vertical 

soil pipes associated with bedrock solutional conduits and fractures at depth (Stafford et 

al., 2017). Ascending fluids from Guadalupian aquifers migrate through fractured Castile 

evaporites (Stafford et al., 2017) and some hypogene features exhibit artesian-like 

discharge following prolonged precipitation that can be masked by surficial deposits 

susceptible to suffosion (Stafford et al., 2018).
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Figure 1: Study area outlined in black box with general location of Guadalupian and Ochoan 
strata in the Delaware Basin region and associated geomorphology and surficial hydrology 
(modified from Stafford et al., 2018). 
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Parameters related to suffosion 

development in gypsite were evaluated in 

this study along approximately 35 

kilometers of RM 652 starting at the 

intersection of US 62/180 to the west in 

Culberson County, Texas (Figure 1). This 

study area was investigated as a proxy for 

suffosion geohazard development within 

the greater region as RM 652 bisects the 

entire Gypsum Plain from west to east. 

Field-based analyses included infiltration 

testing coupled with suffosion 

characterization, including lab-based and 

remote sensing analyses. Physical 

suffosion modelling and chemical analyses of 

representative gypsite samples were 

conducted in the laboratory. GIS analyses 

focused on spatial delineation of evaporite 

karst and fractures proximal to infiltration sites. Regional suffosion potential in the 

Gypsum Plain may be quantified with an application of the methods introduced below. 

Figure 2: Suffosion features present in the 
Gypsum Plain including cross-section models 
on right and field examples on left: (A) 
Sediments are funneled into an open cover-
collapse sinkhole and transported through 
karstified gypsum bedrock; (B) Lateral soil-
piping transports sediments through gypsite 
macropores; (C) Sediments are transported 
into solutional fractures widened by 
gypsite/gypsum dissolution. 
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GEOLOGIC SETTING 

Situated between the Delaware Mountains to the west, Rustler Hills to the east, 

Guadalupe Mountains to the north, and Apache Mountains to the south, the Gypsum 

Plain is a low relief region that forms the central and western parts of the Delaware 

Basin (Figure 1). The Delaware Basin formed during the late Paleozoic due to 

reactivation of Precambrian basement faults and uplift of the Central Basin Platform 

during the Ouachita Orogeny (Hill, 1996). Precipitation ranges from 20-40 cm/year—

most occurs during late summer, intense storm events (Hill, 1996). The Gypsum Plain 

crops out over ~2,600 km2 as Ochoan strata, primarily the Castile Formation (Kirkland & 

Evans, 1976). Castile evaporites are Late Permian, deep-water, stratified basin deposits 

(Kendall & Harwood, 1989; Stafford, 2013) that formed as open marine circulation 

ceased in the Delaware Basin during the late Guadalupian (Hill, 1996). Castile strata are 

conformable with the underlying Bell Canyon Formation, unconformable with the 

overlying Salado Formation, and do not extend beyond the basin margins (Hill, 1996). 

The Castile Formation is massive to laminated gypsum/anhydrite interbedded with halite 

with extensive intrastratal solutional removal within the western outcrop region 

(Henrickson & Jones, 1952; Hill, 1996). Castile evaporites increase in thickness from 

west to east, reaching 480 m thick in the subsurface (Kelley, 1971; Stafford et al., 

2008a) with strata dipping 3 to 5 degrees northeast as a result of past tectonism (Hill, 

1996).
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Evaporite karst development is promoted by high sulfate and halide solubility 

(Stafford et al., 2008b) which often leads to subsidence, intrastratal collapse and 

brecciation. Gypsum solubility (2.531 g/L at 20°C) is four orders of magnitude greater 

than calcite (1.5 mg/L), with more rapid solution kinetics in gypsum than in anhydrite 

(Klimchouk, 1996). Rock volume increases as anhydrite converts to gypsum; most 

mature gypsum rocks in near-surface exposures originate from hydration of anhydrite, 

while sulfate mineral transitions promote development of endokinetic fissuring 

(Klimchouk, 1996). Anhydrite dominates at depth (>450m) whereas gypsum is most 

common near the surface (Klimchouk, 1996). Past and present evaporite dissolution 

affects the entire Delaware Basin, creating a complex speleogenetic history for the 

region (Hill, 1996). Stafford et al. (2017) classified Castile karst features into the 

following: intrastratal dissolution, hypogene caves, hypergene caves, and suffosion 

caves. 

Guadalupian siliciclastics provide groundwater that ascends through Castile 

evaporites and encourages hypogene speleogenesis (Stafford et al., 2018). Intrastratal 

dissolution forms brecciated structures through hypogene processes coupled with 

subsequent collapse of evaporite strata (Stafford et al., 2008c). Hypergene caves are 

small, laterally-limited features with openings that decrease in average cross-sectional 

area within short distances beyond surface interfaces (Stafford et al., 2017). Suffosion 

caves are generally too small for human entry (Stafford et al., 2008c), but large soil 

chambers have been documented that form when connected to larger voids in gypsum 

bedrock (Stafford et al., 2017). Both natural and anthropogenic sources induce 

preferential soil piping in the Gypsum Plain (Stafford et al., 2017). The largest karst 
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features of the Castile Formation developed through hypogene processes at the 

boundary of the Bell Canyon Aquifer, but most features exhibit variable degrees of 

epigene overprinting (Stafford et al., 2008b). 

Surface drainage is perennial near the Pecos River, semi-perennial near the 

Black River, and ephemeral at creeks and arroyos (Hill, 1996). The Pecos River flows 

across the Delaware Basin’s backreef, reef, and basin strata, and its tributaries—the 

Black and Delaware rivers, are contained within the interior of the Delaware Basin (Hill, 

1996). The Gypsum Plain’s only perennial channel is the Delaware River, but petroleum 

and ranching operations commonly draw from water sources provided by Quaternary 

alluvial deposits throughout the region (Stafford et al., 2018). Flash floods are often 

channeled into arroyos during intense storms (Stafford et al., 2018) and transmitted into 

the subsurface through evaporite karst interface features (Hill, 1996). 

Subsequent to intense precipitation, breached hypogene karst and subsidence 

valleys overlying fractured bedrock exhibit artesian-like discharge at decadal intervals 

(Stafford et al., 2018). These conditions are promoted as recharge to the underlying Bell 

Canyon Aquifer raises the potentiometric surface within the Castile Formation, 

exceeding the land surface as artesian discharge (Stafford & Faulkner, 2016). 

Infrastructure in areas with artesian-like discharge are subjected to considerable 

damage as gypsum laminae are leached from underlying bedrock and overlying gypsic 

soils are saturated (Stafford et al., 2018). 
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GYPSIC SOILS 

 The western outcrop region of the Castile Formation weathers into a dull, gray-

white gypsum soil (gypsite) in the Gypsum Plain (Hill, 1996). Gypsite is composed of 

gypsum and/or anhydrite mixed with insoluble sediments (McGregor, 1954); deposits 

form as chemical sediments in semi-arid to arid climates (Arakel & McConchie, 1982). 

Gypsiferous soils result from both physical and chemical vadose diagenesis of existing 

gypsum strata with subaerial exposure (Arakel & McConchie, 1982). Gypsic crusts 

develop on exposed bedrock due to repeated gypsum dissolution and reprecipitation 

(Stafford et al., 2008b). 

 The change from a cold, humid climate in the Pleistocene to the present arid 

climate has resulted in the Gypsum Plain’s current soil distribution (Hill, 1996; Stafford et 

al., 2017). Humid conditions brought alluvium to the base of the Delaware Basin; terrace 

alluvium accumulated in the Pecos River Valley and soil horizons developed in the drier 

periods (Hill, 1996). Flooding of the Pecos River and its tributaries has distributed 

graveled alluvium throughout the region (Hill, 1996). These alluvial and gypsic soils 

overly bedrock in several areas and range from decimeters to several meters thick 

(Stafford et al., 2017). 

USDA (2013) classified soils vary in gypsum content, and textures range from 

graveled alluvium to gypsiferous loam and fine sand throughout the Gypsum Plain 

(Figure 3). Soil horizons that contain high gypsum content are generally thin, whereas
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low to moderate gypsum content is common in thick, heterogeneous soil profiles. The 

Bissett-Rock Outcrop Complex (BID) consists of 65% Bissett soils (Lithic Ustic 

Haplocalcids) weathered from graveled limestone residuum and 25% limestone rock 

outcrops in areas with 3 to 16% slopes. The Bissett-Rock Outcrop Complex (BIE) in 

areas with 10 to 30% slopes has a similar composition of 65% Bissett soils and 30% 

limestone rock outcrops. The Culberspeth-Chilicotal Complex (CVC) consists of 65% 

Culberspeth soils (Calcic Petrocalcids) weathered from graveled alluvium/colluvium and 

30% Chilicotal soils (Ustic Haplocalcids) weathered from graveled limestone 

pedisediment in areas with 1 to 8% slopes—this complex is located at the western 

margin of the study area proximal to BID and BIE complexes. Monohans (MHA) soils 

(Typic Calcigypsids) form from calcareous and gypsiferous alluvium in areas with 0 to 

2% slopes and are proximal to the Delaware River with Walkerwells (WAB) soils 

(Ustifluventic Haplocambids) derived from alluvial deposits of gypsum and sandstone—

gypsum content varies from 0-40%. These soils constitute about 6% of the total study 

area. 

The remaining 94% of the study area is dominated by gypsiferous loams. 

Dellahunt (DEB) soils (Ustic Calcigypsids) weather from alluvial deposits of gypsum and 

sandstone in areas with 0 to 5% slopes, and Elcor (ELC/ELE) soils (Lithic Haplogypsids) 

weather from gypsum residuum in areas with 1 to 30% slopes. The Dellahunt-Neimahr-

Joberanch Complex (DNB) consists of 30% Dellahunt soils, 25% Neimahr soils (Lithic 

Ustic Haplocambids), and 25% Joberanch soils (Ustic Petrogypsids), all of which are 

weathered from alluvial deposits of gypsum and sandstone. The Elcor-Dellahunt-

Pokorny Complex (EPA) consists of 35% Elcor soils, 30% Dellahunt soils, and 25% 
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Pokorny soils (Ustic Petrogypsids) in areas with 0 to 2% slopes. The Elcor-Pokorny-

Hollomex-Walkerwells Complex (EPE) forms in areas with 0 to 30% slopes and consists 

of 30% Elcor soils, 30% Pokorny soils, 15% Hollomex soils (Ustic Haplogypsids), and 

15% Walkerwells soils. The Hollebeke-Pokorny Complex (HPC) consists of 45% 

Hollebeke soils (Ustic Petrogypsids) and 35% Pokorny soils in areas with 1 to 8% 

slopes. Undifferentiated gypsiferous loams of the Elcor, Dellahunt, and/or Pokorny soil 

series contain 60-90%, 0-10%, and 0-95% gypsum content, respectively. However, 

these soils are undifferentiated as complexes in the soil mapping in ~ 53% of the study 

area and are effectively inseparable. This variation in soluble fractions inhibits the 

development of suffosion models for the region from existing soil delineations based on 

soluble content and complicates geoengineering throughout the region as soil 

classification is too broadly characterized.
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METHODOLOGY 

 Combined field and laboratory methodologies were developed to evaluate 

suffosion processes in the Gypsum Plain. Field studies quantified conditions associated 

with surficial ponding and infiltration in variable gypsite deposits. Laboratory analyses 

identified the composition of soluble fractions and composition of gypsic soils. Physical 

suffosion modeling was designed to replicate suffosion processes observed in field 

conditions within variable mediums and temporally through repeated infiltration analyses. 

Delineation of fractures, surficial karst manifestations and regional suffosion potential 

were conducted through GIS analyses for correlation of observed suffosion phenomena.     

Beginning at the intersection of US 62/180, field analyses were conducted at 

twenty-five locations along the first ~35 kilometers of RM 652 within the Castile outcrop 

area. Field analyses were conducted over a three-day period without prior precipitation 

for more than 28 days, and infiltration rates were measured along with soil electrical 

conductivity, moisture, and temperature. At each site, three Turf-Tec infiltration rings 

were installed into gypsite deposits within the right-of-way of RM 652 but distal to the 

road in minimally-disturbed soils—triplicate infiltration analyses were conducted at each 

infiltration ring site and all infiltration rates were averaged for analyses. GroLine HI98331 

EC Tester and Extech M0750 soil moisture meters were used to collect electrical 

conductivity/temperature and moisture data, respectively. Soil electrical conductivity,
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moisture, and temperature were measured at each infiltration ring both before and after 

infiltration testing. Infiltration rates were correlated to soil classifications designated by 

USDA (2013) surveys. Soil electrical conductivity was assessed between unsaturated 

and saturated conditions. 

Geochemical analyses 

were conducted on representative 

soil samples to delineate soluble 

fractions (Stafford, 2017). Analysis 

samples were extracted from well-

mixed soils, oven-dried at 40°C 

until no mass changes were 

observed to prevent dehydration 

of gypsum to anhydrite and 

dissolved in deionized water for 24 

hours with shaker-induced agitation—sample mass was limited to 0.5 g to ensure 

complete dissolution of soluble minerals (e.g. sulfate minerals) in 250 mL of deionized 

water. Major cations/anions and TDS were determined from filtered solutions with ICP-

MS (Inductively Coupled Plasma Mass Spectrometry) at the SFA Soil, Plant and Water 

Analysis Laboratory; acid titrations were conducted with a Mettler Toledo EasyPlus 

Titrator to determine carbonate/bicarbonate concentrations. Geochemical analyses 

identified three major soil variants based largely on sulfate content (Figure 4): 1) low 

sulfate content, 2) moderate sulfate content; and 3) high sulfate content. 

Figure 4: Solubility values of gypsite samples collected 
from field infiltration sites. Filled circles and dashed line 
represent HCO3+ concentrations whereas squares and 
solid line represent SO42+. 
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Suffosion modeling was conducted with bulk samples gathered from Sites 4 and 

20. Both gypsite samples are classified by the USDA (2013) as part of the Elcor-

Dellahunt-Pokorny Complex (EPA)—these soils constitute 94% of the study area. EPA 

soils are undifferentiated with gypsum contents that range from 0-95%, thus 

considerable variation exists between soil compositions (Figure 5). Sites 4 and 20 soils 

contain 10% and 80% gypsum content, respectively—Site 4 samples represent the 

Figure 5: Piper diagram of gypsite samples collected from field infiltration sites—the point 
designated by the gray arrow is representative of the Dellahunt soil series and the point 
designated by the black arrow is representative of the Elcor soil series. Larger points indicate 
greater TDS (Total Dissolved Solids) values.  
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Dellahunt soil series with low gypsum content (10%) 

and Site 20 samples represent the Elcor soil series 

with high gypsum content (>70%). 

Physical infiltration modeling was conducted 

with gypsite that was homogenously mixed and sieved 

(2 mm) before being packed into butyrate cylinders 10 

cm in height and 5 cm in diameter—tubes filled with 

homogenous soil were percussion-packed with a 

1.5kg cylinder dropped twenty times from height of 

approximately 30cm. Filled cylinders were placed in 

vertical positions and connected to individual water 

reservoirs by polyethylene tubing to simulate 

vadose fluid migration induced by surficial ponding 

(Figure 6). Water flow was restricted to a maximum 

rate of 1 mL/s, allowing 100 mL of deionized water 

to infiltrate through samples with minimal mechanical mass removal. Fluids and 

mobilized sediments were gravity-drained through a central exit point 1 mm in diameter 

into collection containers. Dissolved solids, insoluble sediments and suffosion models 

were oven-dried at 40°C until no mass change was measured, removing soil moisture 

without converting gypsum to anhydrite. Drying of sediment-packed columns between 

infiltration analyses was performed to simulate field conditions where soils are saturated 

during monsoonal rain events and subsequently dried due to high evaporation in the 

natural arid environment. Soil mass and volume of suffosion models were measured 

Figure 6: Diagram of suffosion 
modeling and sediment/solute 
removal: light-gray in the top left 
cylinder represents water, medium-
gray in the bottom left cylinder 
represents unsaturated gypsite, 
dark-gray in the bottom right cylinder 
represents saturated gypsite, and 
dark grey in bottom right trapezoid 
represents sediment and saturated 
fluids transported out of the system 
as sediment/solute. 
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prior and subsequent to infiltration—sediments removed from the system were weighed 

after the oven-drying phase. Three iterations of this process were conducted with 

eighteen replicate samples for each soil type (i.e. Dellahunt and Elcor soils).  

Raster images with 50 cm resolution were used to map lineaments interpreted as 

fractures in gypsum bedrock/soil to define potential regions of increased suffosion 

potential within the study area. Feature selection included lineaments defined by linear 

vegetative growth (Stafford, 2018) and dismissed features related to anthropogenic 

activity (i.e. buried utility cables, roads and fences). Lineament orientations and lengths 

were calculated in ArcGIS and rose diagrams were generated in GeoRose to evaluate 

spatial variability of fracture intensity. Lineament densities were calculated as line 

densities in ArcGIS. LiDAR (Light Detection and Ranging) data of sinkhole delineation 

conducted by Ehrhart (2016) were coupled with mapped lineaments and used to 

examine suffosion potential correlated with karst conduits in soils associated with 

infiltration field sites. Ehrhart (2016) delineated natural sinkholes with depths greater 

than 10 cm by using LiDAR data with a horizontal resolution of 30 cm and vertical 

resolution of 10 cm—anthropogenic features were manually removed from the data set. 

Sinkhole densities were calculated as kernel densities in ArcGIS. 
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RESULTS AND DISCUSSION 

 Suffosion potential was measured according to physical and chemical 

parameters evaluated in representative samples of gypsic soil. Field analyses 

demonstrated the relationship between suffosion potential and soil thickness/type. 

Geochemical delineation of gypsic soils further characterized the broad soil descriptions 

published in the Culberson County Soil Survey (USDA, 2013). Suffosion modeling 

correlated suffosion potential with the soluble/insoluble fractions of gypsite. Fracture and 

sinkhole delineations were coupled with soil thickness to analyze suffosion potential on a 

regional scale.      

Field Analyses 

Field infiltration sites were located within the following USDA (2013) designated 

soil types: 2 sites in DEB; 3 sites in DNB; 4 sites in ELC; 2 sites in ELE; 11 sites in EPA; 

1 site in HPC; 1 site in MHA; and 1 site in WAB (Figure 3). Soils that contain the Elcor, 

Dellahunt, and/or Pokorny series dominate the study area—these gypsiferous loams 

constitute ~94% of total area. The highest (4.7 mm/min) and lowest (0.5 mm/min) 

infiltration rates were measured from DEB and MHA soils, respectively. DEB soils are 

moderate alkaline silt loams formed from gypsum rock and sandstone, whereas MHA 

soils are moderate alkaline fine sands derived from calcareous and gypsiferous alluvium 

(USDA, 2013). The remaining sites (88%) shared an average infiltration rate of ~1.4 

mm/min. Moderate to high infiltration rates were observed in thick, heterogeneous soil 
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mixtures whereas infiltration was 

limited in thin, fine soils overlying 

bedrock. Indurated gypsite 

promoted horizontal infiltration as 

fluids came into contact with 

underlying gypsic cements, and 

heterogeneous soils allowed 

vertical infiltration in the absence 

of high soluble fractions. At Site 

11, active suffosion was induced 

as several liters of water infiltrated 

through a previously unknown 

macropore during infiltration testing, forming a “whirlpool” as sediments were flushed into 

the subsurface, while other infiltration rings within one meter exhibited slow infiltration 

rates thus indicating the potential for extreme local heterogeneity of suffosion 

phenomena and permeability. Suffosion geohazards are more probable in thick, 

heterogeneous soils that promote moderate infiltration.    

Soil electrical conductivity and moisture values were low prior to infiltration, 

ranging from 0.0 to 0.25 mS/cm and 0 to 10%, respectively. Most soil moisture readings 

increased beyond 20% during infiltration and all soil electrical conductivity readings 

surpassed 0.25 mS/cm (Figure 7). These increases indicate that infiltrated fluids reached 

near saturation with respect to sulfate in gypsite deposits and that soluble ions were 

quickly mobilized. Areas where soil moisture increased beyond 40% exhibited gypsite 

Figure 7: Values of soil electrical conductivity and soil 
moisture both prior (circles) and subsequent 
(squares) to infiltration studies. The trend line reflects 
the average increase of soil electrical conductivity as 
saturation increases (r2=0.80). 
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compositions with significant clay content that favored soil swelling over vertical 

infiltration. A direct correlation exists between soil electrical conductivity and moisture 

throughout the study area, suggesting that moisture content is directly associated with 

clay content—organic content is extremely low in most soil series within the Gypsum 

Plain.  

Geochemical Analyses 

 Over 70% of soluble fractions in most soils within the study area are composed 

of gypsum, but some chloride and carbonate minerals are present (Figure 5). Generally, 

chloride and carbonate ions in the study area are most concentrated near the surface 

due to dissolution and vertical transport of calcium sulfates into deeper soils or 

speleogenetic features. Calcium sulfates are also leached at depth when coupled with 

karst features. TDS (Total Dissolved Solids) of soils indicate solubilities exceeding 80% 

within the region with greater concentrations of soluble fractions at depth. 

Soils in the study area can be grouped into three classifications based on their 

geochemical compositions: fluvial deposits, graveled alluvium, and gypsiferous loams. 

Sediments deposited by the Delaware River (fluvial deposits) exhibit the lowest soluble 

sulfate composition (<10%) and total solubility as a result of flooding and surface flow 

through unconsolidated deposits. Graveled alluviums at the western and eastern edges 

of RM 652 also have low solubilities and greater chloride/carbonate (>50%) 

concentrations—these soils are weathered from limestone transported by the Black 

River. Gypsiferous loams contain the highest concentrations of calcium sulfates (>50%), 

but varying amounts of chloride and carbonate minerals are present. Greater 
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concentrations of carbonate/chloride ions are generally in gypsiferous loams with thick 

soil profiles that are proximal to fluvial deposits. Mixing of alluvial and gypsic soils form 

heterogeneous mixtures that promote infiltration and dissolution of soluble fractions 

(gypsum). Soils with almost 100% calcium sulfate compositions appear to be derived in 

situ from underlying gypsum bedrock and form as thin, indurated gypsite that reduces 

infiltration and ion mobilization.     

Suffosion Modelling 

In general, suffosion models exhibited considerable increases in bulk density 

between initial conditions and the first iteration of infiltration—Dellahunt models 

increased in density by ~12% and Elcor models increased by ~11%. Dellahunt models 

transported greater amounts of sediment than Elcor models, but greater consolidation 

was observed in samples from Elcor soils. Porosities increased (1%) in Dellahunt 

models as infiltration was repeated whereas Elcor models decreased (3%) in porosity 

with repeated infiltration.     

 During the first infiltration iteration, Dellahunt and Elcor suffosion models 

exhibited consolidation and mass removal as deionized water flowed through the system 

(Figure 8). Some dissolved solutes were removed from the system with insoluble 

fractions, but most were redistributed during infiltration and cemented around grains 

after oven-drying, occluding pore space. Consolidation continued in Dellahunt models 

with replicate infiltration analyses producing little decrease in porosity, indicating that 

micro-conduits formed during the subsequent iterations—mass removal decreased due 

to secondary grain cementation. Minimal increase in consolidation paired with decreased 
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porosity indicates that fluids were not able 

to readily migrate through Elcor models 

during the replicate infiltrations as 

permeability was reduced. Precipitated 

gypsum removed initial porosity as models 

were dried. 

Dellahunt soil permeability 

decreased with repeated infiltration 

modeling but soils developed connected 

micro-pores coupled with cemented 

horizons that restricted vertical fluid flow 

as a result of relocation and precipitation 

of gypsum.  This was evident from 

increased porosity and decreased 

consolidation between infiltration iterations 

and observable micro-conduits, which 

would provide inception horizons for 

suffosion piping. Infiltration ceased due 

to consolidation and gypsum 

reprecipitation after repeated iteration 

modeling in Elcor soils. Increased consolidation removed porosity between insoluble 

grains; reprecipitation removed secondary porosity formed by dissolution in the initial 

iteration.  

Figure 8: The results of suffosion modeling with 
Dellahunt (n=12) and Elcor (n=18) soil models. The 
left column shows the results of the initial iteration 
and the right column shows the results of the final 
iteration. White boxes represent the Dellahunt soil 
series whereas gray boxes represent the Elcor soil 
series—median values of each data set are 
indicated by the horizontal line and averages are 
indicated by the “x” mark.   
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Modeling demonstrated that suffosion processes are dependent on geochemical 

variations in gypsite. Dellahunt soils were more effective than Elcor soils in transporting 

sediment through suffosion processes. Dissolution of soluble fractions promote soil pipe 

formation, but adequate insoluble material is needed to structurally support conduit 

permeability. In addition, excessive evaporite content reduces porosity as sulfates are 

redistributed around insoluble grains and conduits in repeated wetting/drying phases as 

is common in arid environments. Although suffosion processes are encouraged in 

gypsite with low to moderate soluble fractions, Elcor samples experienced considerable, 

rapid consolidation and reflected compositions that favor general subsidence. 

Geohazards related to suffosion most likely result from a combination of both processes, 

but models indicate that the development of macropores within indurated gypsite is 

essential for continued suffosion and the development of potential geohazards.            

GIS Analyses 

 Suffosion features in the Gypsum Plain occur through a combination of physical 

piping of unconsolidated sediment and dissolution of soluble soil fractions, but soil pipes 

are not the sole mechanisms of creating suffosion geohazards; fractures and sinkholes 

coupled to soils transport sediment into underlying karst as well (Figure 2) by providing 

outlets for removal of insoluble sediments and saturated waters. Overland flow during 

intense precipitation flushes gypsite into void spaces provided by solutional fractures 

and conduits in gypsum bedrock which form the dominant coupling mechanism for 

enhanced suffosion development within the Gypsum Plain. Solutional fractures at the 
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contact between gypsum bedrock and 

gypsic soils have often been correlated with 

suffosion features proximal to infrastructure 

in Castile evaporites (Ehrhart, 2016).  

Stafford et al. (2017) demonstrated 

that GIS studies can correlate vegetative 

growth patterns and available moisture 

content in evaporite karst environments 

through CIR (Color InfraRed) and NDVI 

(Normalized Difference Vegetation Index) 

analyses. In this arid environment, linear vegetative growth near fractures in thin soil 

indicate regions of greater moisture flux—fracture delineation is more difficult in soils 

with greater thicknesses and more uniform soil infiltration (Stafford et al., 2017). In total, 

1,159 lineaments were mapped with general orientations at NW-SE and N-S within the 

study area (Figure 9). A N-S lineament trend is dominant in the westernmost section of 

the study area whereas NW-SE trends are observed to the east; similar fracture trends 

have been observed in caves and subsurface conduits (Stafford et al., 2008c) indicating 

that these lineaments accurately reflect local fracture deformation.  

LiDAR analyses (Ehrhart, 2016) identified the locations of ~ 4,539 natural sinks 

within the study area—sinkholes are the most prevalent karst landform of the Castile 

outcrop region (Stafford et al., 2008c) and form due to solutional incision of meteoric 

water or collapse of strata overlying subsurface voids (White, 1988). Stafford et al. 

(2008c) concluded that about 55% of sinks within the Castile outcrop resulted from 

Figure 9: Orientations of lineaments (n=1159) 
delineated as solutional fractures proximal to 
RM 652. 
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collapse, whereas the remaining 45% were solutional sinks overprinted by surficial 

processes. Suffosion processes are capable of operating in all sinks of the Gypsum 

Plain to some degree because most sinks were filled by gypsite as a result of climate 

shift from the humid Pleistocene to the arid Holocene. Filled sinks often have conduits 

obstructed by sediment infilling, allowing for sediment transport without direct 

observation as meteoric water infiltrates through indurated gypsite or as fluctuations in 

the water table disrupt sediments and increase drainage. Sinks without open, direct 

conduits into underlying karst develop suffosion features along permeable interfaces 

between gypsum bedrock and gypsite as dissolution of soluble fractions redistributes 

soluble ions and insoluble sediments within features.          

Fracture and sinkhole densities correlate well with each other throughout the 

region (Figure 10). The highest densities are often in areas with exposed gypsum 

bedrock, whereas lower densities are in thick alluvial deposits or proximal to major fluvial 

bodies such as the Delaware River. Thin, indurated soils may not promote pipe 

development, but suffosion processes operate in solutional fractures and sinkholes 

during intense storms. Sediments are transported beneath the surface as overland flow 

and shallow vadose flow drains through these suffosion features and open sinks into 

deeper cavities of Castile evaporites. Water table fluctuations and groundwater flow also 

remove sediments that restrict sinkhole drainage, allowing suffosion processes to 

enhance existing collapse structures. However, suffosion potential is greatest in areas 

with moderate fracture and sinkhole densities. Fractures are most noticeable where soils 

are thin and bedrock exposed, but moderate fracture densities indicate soil thicknesses 
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that support soil pipe development. In these areas, suffosion processes operate through 

all three mechanisms. 
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CONCLUSIONS 

 Suffosion features are considerable hazards to infrastructure and human life in 

the Gypsum Plain and are detrimental to transportation and industry operations. 

However, combined field and laboratory methods were effective in characterizing 

suffosion potential in evaporite strata and providing data for improved management of 

infrastructure in susceptible areas. Suffosion potential in the Gypsum Plain was 

determined through studies associated with soil composition, soil thickness, and 

delineation of solutional fractures and evaporite karst. 

 The compositions of gypsic soils influence suffosion and can be evaluated 

according to infiltration rates and soluble fractions present. Regions that promote 

moderate infiltration rates (1.5-2.3 mm/min) are optimal for suffosion development when 

soluble content is moderate. High infiltration rates remove soluble fractions needed to 

support conduits formed through soil piping, and low infiltration rates cannot transport 

insoluble sediment into underlying karst. Soil thicknesses are often related to soil 

types—heterogeneous mixtures form thick soil profiles whereas thin soils overlying 

bedrock are high in gypsum and clay content. Soil piping is most effective in soils with 

low to moderate gypsum content (10-70%) while soils with high gypsum content (>70%) 

are more inclined toward subsidence through consolidation—further refinement of 

suffosion potential would be possible with more detailed characterization of soil 

composition beyond the general, broad characterizations reported by USDA (2013).
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 Soils with high gypsum content are not preferable for soil piping because of insufficient 

insoluble sediment needed for the structural support of pipes. Solutional fractures and 

evaporite karst provide paths for fluid and sediment transport, which thus increase 

suffosion potential. However, high fracture densities correlate with thin soil cover which 

precludes suffosion development. Regions with moderate fracture (100-800 m/km2) and 

karst (100-800 features/km2) densities are most susceptible to suffosion processes 

because associated soils are thick enough to induce soil piping and are coupled with 

high permeability bedrock structures. Suffosion potential (Figure 11) is greatest in thick, 

heterogeneous soils with low to moderate gypsum content (10-70%) and moderate 

fracture densities (100-800 m/km2). 

The methods introduced in this study were economic and effective for discerning 

areas susceptible to suffosion processes near RM 652, and can be extended to other 

regions with gypsic soils coupled to evaporite karst. Future construction and mitigation 

plans should consider suffosion potential when operating in the Gypsum Plain or in 

areas with significant evaporite karst and/or gypsic soils—delineating suffosion potential 

can reduce costs for infrastructural maintenance and reduce human endangerment. 

Field infiltration studies coupled with geochemical analyses provided an effective 

approach for characterizing soil compositions and thicknesses, while suffosion modeling 

demonstrated how the ratio between soluble and insoluble fractions of gypsic soils effect 

suffosion development. Solutional fracture delineation through GIS analyses was useful 

for determining suffosion potential in sparsely-vegetative areas, and its effectiveness 

was substantiated through correlation between fracture and evaporite karst 
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development. It is probable that studies conducted in other evaporite karst environments 

will produce similar results with the above methodologies

Figure 11: A map of regional suffosion potential proximal to RM 652. High potential areas meet all 
three criteria (moderate infiltration rates, low-to-moderate gypsum content, and moderate fracture 
densities) whereas low potential areas fail to meet these criteria. 
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Site Latitude (Decimal Degrees) Longitude (Decimal Degrees) 

1 31.99 -104.53 
2 31.98 -104.52 
3 31.96 -104.51 
4 31.95 -104.5 
5 31.93 -104.5 
6 31.93 -104.48 
7 31.92 -104.46 
8 31.92 -104.43 
9 31.92 -104.43 
10 31.92 -104.42 
11 31.91 -104.41 
12 31.91 -104.4 
13 31.91 -104.39 
14 31.9 -104.37 
15 31.9 -104.36 
16 31.89 -104.35 
17 31.89 -104.34 
18 31.88 -104.32 
19 31.88 -104.31 
20 31.87 -104.3 
21 31.87 -104.29 
22 31.86 -104.27 
23 31.85 -104.24 
24 31.85 -104.23 
25 31.85 -104.22 

Table A-1: Coordinate locations of twenty-five field infiltration sites in the GCS_WGS_1984 
coordinate system. 
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Site 
Initial Soil 

Conductivity 
(mS/cm) 

Final Soil 
Conductivity 

(mS/cm) 

Initial Soil 
Moisture 

(%) 

Final Soil 
Moisture 

(%) 

Initial 
Temperature 

(C°) 

Final 
Temperature 

(C°) 

1a 0.09 0.50 9.4 35.0 16.5 23.5 
1b 0.11 0.43 2.3 32.5 15.6 23.4 
1c 0.03 0.35 4.6 21.0 18.7 18.5 
2a 0.17 0.38 5.9 22.8 9.3 16.5 
2b 0.26 0.43 11.5 23.4 9.5 18.2 
2c 0.15 0.43 7.8 22.9 8.6 19.5 
3a 0.02 0.50 0.0 31.1 16.5 18.7 
3b 0.03 0.44 0.0 25.1 16.0 15.9 
3c 0.05 0.46 0.0 25.5 13.4 17.9 
4a 0.04 1.01 0.0 50.0 18.2 19.1 
4b 0.19 0.89 9.8 50.0 17.6 19.0 
4c 0.05 1.23 0.0 50.0 17.5 18.7 
5a 0.04 1.27 3.8 50.0 20.0 20.5 
5b 0.03 2.51 2.3 50.0 19.7 21.5 
5c 0.03 0.96 0.0 50.0 23.2 20.6 
6a 0.08 0.49 0.0 28.7 13.0 19.3 
6b 0.05 0.38 7.3 23.6 13.9 17.5 
6c 0.01 0.20 5.6 19.4 15.1 13.2 
7a 0.14 0.66 0.0 23.9 17.6 16.9 
7b 0.22 0.78 0.0 25.6 17.4 17.1 
7c 0.04 0.71 0.0 23.1 17.0 17.1 
8a 0.06 0.40 8.7 24.4 5.8 14.0 
8b 0.06 0.42 7.9 24.5 5.5 14.1 
8c 0.06 0.49 2.0 24.4 6.5 12.6 
9a 0.68 0.92 27.0 45.3 8.3 14.9 
9b 0.60 0.84 21.9 50.0 7.1 15.4 
9c 0.52 0.85 18.3 50.0 7.1 21.7 

Table A-2: Values of soil conductivity, soil moisture, and soil temperature at twenty-five field 
infiltration sites both prior and subsequent to infiltration. 
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Site 
Initial Soil 

Conductivity 
(mS/cm) 

Final Soil 
Conductivity 

(mS/cm) 

Initial Soil 
Moisture 

(%) 

Final Soil 
Moisture 

(%) 

Initial 
Temperature 

(C°) 

Final 
Temperature 

(C°) 

10a 0.01 0.46 0.0 25.3 17.1 20.6 

10b 0.03 0.45 0.0 24.0 16.8 19.9 

10c 0.04 0.51 0.0 26.0 16.1 19.6 

11a 0.12 1.10 13.5 16.2 19.9 17.7 

11b 0.13 1.17 9.4 49.9 19.0 18.9 

11c 0.24 1.07 10.9 26.0 18.9 18.4 

12a 0.02 0.41 0.0 18.3 17.2 17.0 

12b 0.00 0.53 0.0 23.0 18.3 17.1 

12c 0.00 0.39 0.0 24.3 17.9 17.6 

13a 0.10 0.46 0.0 25.0 2.6 15.1 

13b 0.11 0.43 8.1 25.0 1.3 15.0 

13c 0.05 0.40 8.9 25.5 3.1 13.1 

14a 0.05 0.37 0.0 23.4 15.5 15.4 

14b 0.05 0.32 0.0 20.1 15.3 15.4 

14c 0.03 0.51 8.4 22.8 15.2 14.7 

15a 0.22 0.92 14.3 45.2 0.3 1.3 

15b 2.04 1.70 16.3 45.1 0.4 0.4 

15c 0.22 0.97 13.5 40.4 0.0 0.8 

16a 0.07 0.57 2.3 23.5 4.6 5.2 

16b 0.03 0.49 2.3 20.6 4.7 5.5 

16c 0.10 0.32 1.2 18.2 4.6 5.5 

17a 0.40 0.48 3.9 22.9 6.0 4.0 

17b 0.09 0.50 4.3 22.3 4.5 4.5 

17c 0.07 0.56 7.3 23.2 4.7 4.5 

Table A-2 (cont.): Values of soil conductivity, soil moisture, and soil temperature at twenty-five 
field infiltration sites both prior and subsequent to infiltration. 
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Site 
Initial Soil 

Conductivity 
(mS/cm) 

Final Soil 
Conductivity 

(mS/cm) 

Initial Soil 
Moisture 

(%) 

Final Soil 
Moisture 

(%) 

Initial 
Temperature 

(C°) 

Final 
Temperature 

(C°) 

18a 0.05 0.77 1.5 48.5 0.8 11.3 

18b 0.04 0.71 0.0 26.0 0.0 11.2 

18c 0.04 0.57 0.0 24.8 0.0 10.5 

19a 0.10 0.79 0.0 23.2 1.9 2.4 

19b 0.26 0.70 5.8 22.8 1.1 3.4 

19c 0.04 0.77 8.5 23.3 0.7 3.7 

20a 0.15 0.62 7.9 24.8 7.4 8.1 

20b 0.09 0.63 7.9 16.0 7.2 7.9 

20c 0.02 0.69 2.5 25.5 5.9 7.9 

21a 0.09 0.45 0.0 23.0 7.3 8.0 

21b 0.12 0.74 0.0 29.5 6.7 7.5 

21c 0.15 0.51 0.0 17.3 6.4 8.0 

22a 0.05 0.42 7.4 15.0 1.3 0.3 

22b 0.21 0.18 3.8 18.7 0.6 0.3 

22c 0.11 2.32 8.4 25.1 1.1 6.2 

23a 0.00 0.31 0.0 23.0 6.5 7.7 

23b 0.09 0.39 0.0 22.0 3.0 7.7 

23c 0.01 0.36 0.0 12.1 3.9 2.5 

24a 0.02 0.29 0.0 22.0 1.4 1.4 

24b 0.01 0.35 0.0 16.5 0.0 1.2 

24c 0.01 0.49 0.0 16.9 0.5 2.3 

25a 0.02 0.19 0.0 9.8 0.0 0.1 

25b 0.02 0.40 0.0 18.0 0.0 1.4 

25c 0.02 0.41 0.0 18.8 0.0 2.6 

Table A-2 (cont.): Values of soil conductivity, soil moisture, and soil temperature at twenty-five 
field infiltration sites both prior and subsequent to infiltration. 
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Site Time Elapsed 
(min) 

Water Infiltrated 
(cm) 

Infiltration Rate 
(mm/min) 

AVG Infiltration Rate 
(mm/min) 

1a 15.0 8.0 5.3 5.5 
 30.0 15.8 5.3  
 39.9 18.8 4.7  

1b 15.0 10.7 7.1  
 30.0 16.3 5.4  
 44.5 22.4 5.0  

2a 15.0 1.4 0.9 3.9 
 30.0 3.3 1.1  
 45.0 4.2 0.9  

2b 15.0 3.3 2.2  
 30.0 6.0 2.0  
 45.0 8.4 1.9  

2c 15.0 7.7 5.1  
 21.2 21.4 10.1  
 30.1 33.2 11.0  

3a 15.0 1.5 1.0 1.1 
 30.0 2.2 0.7  
 45.0 4.8 1.1  

3b 15.0 2.3 1.5  
 30.0 3.5 1.2  
 45.0 4.7 1.0  

3c 15.0 1.9 1.3  
 30.0 3.4 1.1  
 45.0 4.1 0.9  

4a 15.0 0.5 0.3 0.5 
 30.0 1.2 0.4  
 45.0 1.8 0.4  

4b 15.0 0.9 0.6  
 30.0 2.1 0.7  
 45.0 2.2 0.5  

5a 15.0 0.2 0.1 1.5 
 30.0 2.8 0.9  
 45.0 3.0 0.7  

5b 15.0 5.6 3.7  
 30.0 5.7 1.9  
 45.0 7.7 1.7  

Table A-3: Infiltration rates measured at twenty-five locations within the right-of-way of RM 
652. 
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Site Time Elapsed 
(min) 

Water Infiltrated 
(cm) 

Infiltration Rate 
(mm/min) 

AVG Infiltration Rate 
(mm/min) 

6a 15.0 3.1 2.1 2.5 
 30.0 5.9 2.0  
 45.0 8.2 1.8  

6b 15.0 5.5 3.7  
 30.0 8.4 2.8  
 45.0 10.9 2.4  

7a 15.0 4.7 3.1 1.4 
 30.0 7.5 2.5  
 45.0 10.0 2.2  

7b 15.0 1.4 0.9  
 30.0 2.8 0.9  
 45.0 3.9 0.9  

7c 15.0 1.4 0.9  
 30.0 1.9 0.6  
 45.0 2.9 0.6  

8a 15.0 1.8 1.2 1.6 
 30.0 3.0 1.0  
 45.0 5.2 1.2  

8b 15.0 1.7 1.1  
 30.0 2.9 1.0  
 45.0 4.5 1.0  

8c 15.0 4.4 2.9  
 30.0 7.1 2.4  
 45.0 10.2 2.3  

9a 15.0 1.3 0.9 1.6 
 30.0 1.8 0.6  
 45.0 2.5 0.6  

9b 15.0 1.2 0.8  
 30.0 2.0 0.7  
 45.0 2.6 0.6  

9c 15.0 5.5 3.7  
 30.0 9.3 3.1  
 45.0 15.8 3.5  

Table A-3 (cont.): Infiltration rates measured at twenty-five locations within the right-of-way of 
RM 652. 
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Site Time Elapsed 
(min) 

Water Infiltrated 
(cm) 

Infiltration Rate 
(mm/min) 

AVG Infiltration Rate 
(mm/min) 

10a 15.0 4.7 3.1 2.4 
 24.4 13.7 5.6  
 39.4 15.9 4.0  
 54.4 21.4 3.9  

10b 15.0 2.7 1.8  
 30.0 3.8 1.3  
 45.0 5.1 1.1  

10c 15.0 1.7 1.1  
 30.0 2.0 0.7  
 45.0 4.2 0.9  

11a 15.0 2.1 1.4 0.9 
 30.0 2.9 1.0  
 45.0 3.7 0.8  

11b 15.0 1.2 0.8  
 30.0 2.3 0.8  
 45.0 3.7 0.8  

11c 1.3 14.2 110.7  
 2.4 28.4 116.0  
 3.6 42.6 118.4  

12a 15.0 2.2 1.5 2.3 
 30.0 3.8 1.3  
 45.0 6.1 1.4  

12b 15.0 6.7 4.5  
 30.0 12.4 4.1  
 45.0 18.9 4.2  

12c 15.0 2.7 1.8  
 30.0 3.2 1.1  
 45.0 4.5 1.0  

Table A-3 (cont.): Infiltration rates measured at twenty-five locations within the right-of-way of 
RM 652. 
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Site Time Elapsed 
(min) 

Water Infiltrated 
(cm) 

Infiltration Rate 
(mm/min) 

AVG Infiltration Rate 
(mm/min) 

13a 15.0 5.7 3.8 2.9 
 30.0 10.2 3.4  
 39.4 13.2 3.4  

13b 15.0 4.3 2.9  
 30.0 8.3 2.8  
 45.0 11.4 2.5  

13c 15.0 3.7 2.5  
 30.0 6.8 2.3  
 45.0 10.0 2.2  

14a 15.0 0.9 0.6 0.9 
 30.0 1.2 0.4  
 45.0 1.5 0.3  

14b 15.0 2.6 1.7  
 30.0 4.1 1.4  
 45.0 5.5 1.2  

14c 15.0 1.4 0.9  
 30.0 1.8 0.6  
 45.0 2.9 0.6  

15a 15.0 0.5 0.3 0.2 
 30.0 0.8 0.3  
 45.0 0.9 0.2  

15b 15.0 0.3 0.2  
 30.0 0.4 0.1  
 45.0 0.7 0.2  

16a 15.0 1.0 0.7 0.5 
 30.0 1.5 0.5  
 45.0 1.7 0.4  

16b 15.0 1.1 0.7  
 30.0 1.8 0.6  
 45.0 2.6 0.6  

16c 15.0 0.5 0.3  
 30.0 1.2 0.4  
 45.0 1.4 0.3  

Table A-3 (cont.): Infiltration rates measured at twenty-five locations within the right-of-way of 
RM 652. 
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Site Time Elapsed 
(min) 

Water Infiltrated 
(cm) 

Infiltration Rate 
(mm/min) 

AVG Infiltration Rate 
(mm/min) 

17a 15.0 1.2 0.8 0.9 
 30.0 2.5 0.8  
 45.0 3.3 0.7  

17b 15.0 0.9 0.6  
 30.0 1.3 0.4  
 45.0 1.5 0.3  

17c 15.0 2.5 1.7  
 30.0 4.4 1.5  
 45.0 6.0 1.3  

18a 15.0 5.1 3.4 2.2 
 30.0 7.5 2.5  
 40.6 10.2 2.5  

18b 15.0 5.3 3.5  
 30.0 7.8 2.6  
 45.0 11.0 2.4  

18c 15.0 1.3 0.9  
 30.0 2.5 0.8  
 45.0 3.6 0.8  

19a 15.0 2.5 1.7 1.2 
 30.0 2.7 0.9  
 45.0 3.1 0.7  

19b 15.0 3.8 2.5  
 30.0 4.1 1.4  
 45.0 4.5 1.0  

19c 15.0 2.2 1.5  
 30.0 2.6 0.9  
 45.0 2.7 0.6  

20a 15.0 3.9 2.6 1.2 
 30.0 4.5 1.5  
 45.0 5.5 1.2  

20b 15.0 1.3 0.9  
 30.0 2.5 0.8  
 45.0 3.0 0.7  

20c 15.0 1.7 1.1  
 30.0 3.1 1.0  
 45.0 3.6 0.8  

Table A-3 (cont.): Infiltration rates measured at twenty-five locations within the right-of-way of 
RM 652. 
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Site Time Elapsed 
(min) 

Water Infiltrated 
(cm) 

Infiltration Rate 
(mm/min) 

AVG Infiltration Rate 
(mm/min) 

21a 15.0 3.3 2.2 1.7 
 30.0 5.9 2.0  
 45.0 9.1 2.0  

21b 15.0 1.5 1.0  
 30.0 2.2 0.7  
 45.0 2.4 0.5  

21c 15.0 3.6 2.4  
 30.0 6.5 2.2  
 45.0 9.7 2.2  

22a 15.0 1.5 1.0 0.7 
 30.0 1.8 0.6  
 45.0 2.2 0.5  

22b 15.0 1.6 1.1  
 30.0 1.7 0.6  
 45.0 2.2 0.5  

22c 15.0 0.8 0.5  
 30.0 1.6 0.5  
 45.0 3.7 0.8  

23a 15.0 1.5 1.0 1.2 
 30.0 2.2 0.7  
 45.0 3.1 0.7  

23b 15.0 2.5 1.7  
 30.0 5.6 1.9  

24a 15.0 0.8 0.5 0.7 
 30.0 1.6 0.5  
 45.0 3.9 0.9  

24b 15.0 1.2 0.8  
 30.0 2.3 0.8  
 45.0 3.9 0.9  

25a 15.0 0.9 0.6 0.5 
 30.0 1.5 0.5  
 45.0 1.5 0.3  

25b 15.0 0.6 0.4  
 30.0 1.4 0.5  
 45.0 2.3 0.5  

Table A-3 (cont.): Infiltration rates measured at twenty-five locations within the right-of-way of 
RM 652. 
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Sample Initial Soil Mass (g) Water Volume 
(mL) 

Saturated Soil Mass 
(g)  

D1 237.24 100 305.28  
D2 237.7 100 305.93  
D3 237.69 100 304.03  
D4 237.09 100 304.53  
D5 233.01 100 302.58  
D6 235 100 301.32  

     
Sample Initial Soil Volume 

(mL) 
Final Soil Volume 

(mL) Dried Soil Mass (g) Soil Removed 
(g) 

D1 180.96 175.35 237.14 0.22 
D2 180.96 179.15 239.01 0.22 
D3 180.96 177.88 237.11 0.31 
D4 180.96 176.79 237.57 0.29 
D5 180.96 175.35 234.53 0.3 
D6 180.96 176.43 234.9 0.23 

     

Sample Final Porosity (%) Final Bulk Density 
(g/mL) % Mass Removed Volume 

Removed (mL) 
D1 38.9 1.35 0.09 0.16 
D2 37.4 1.33 0.09 0.16 
D3 37.6 1.33 0.13 0.23 
D4 37.9 1.34 0.12 0.22 
D5 38.8 1.34 0.13 0.22 
D6 37.6 1.33 0.10 0.17 

     

Sample % Volume 
Removed 

Volume Removed 
(mL) per mL of 

Water 
Compaction (%) 

 
D1 0.09 0.002 3.10  
D2 0.09 0.002 1.00  
D3 0.13 0.002 1.70  
D4 0.12 0.002 2.30  
D5 0.13 0.002 3.10  
D6 0.10 0.002 2.50  

Table A-4: The initial conditions and results of suffosion modeling with Dellahunt soil models 
D1-D6 for the first iteration. 
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Sample Initial Soil Mass (g) Water Volume 
(mL) 

Saturated Soil Mass 
(g)  

D1 237.14 100 291.56  
D2 239.01 100 295.02  
D3 237.11 100 295.46  
D4 237.57 100 294.59  
D5 234.53 100 290.39  
D6 234.9 100 289.57  

     
Sample Initial Soil Volume 

(mL) 
Final Soil Volume 

(mL) Dried Soil Mass (g) Soil Removed 
(g) 

D1 175.35 169.37 230.27 0.05 
D2 179.15 176.61 231.35 0.07 
D3 177.88 176.79 230.97 0.1 
D4 176.79 174.08 230.98 0.09 
D5 175.35 173.36 227.6 0.05 
D6 176.43 175.35 229.28 0.12 

     
Sample Final Porosity (%) Final Bulk Density 

(g/mL) % Mass Removed Volume 
Removed (mL) 

D1 36.2 1.36 0.12 0.20 
D2 36.1 1.31 0.13 0.22 
D3 36.5 1.31 0.18 0.31 
D4 36.5 1.33 0.16 0.29 
D5 36.2 1.31 0.15 0.27 
D6 34.4 1.31 0.15 0.27 

     

Sample % Volume 
Removed 

Volume Removed 
(mL) per mL of 

Water 
Compaction (%) 

 
D1 0.12 0.002 6.40  
D2 0.13 0.002 2.40  
D3 0.18 0.003 2.30  
D4 0.16 0.003 3.80  
D5 0.15 0.003 4.20  
D6 0.15 0.003 3.10  

Table A-5: The initial conditions and results of suffosion modeling with Dellahunt soil models 
D1-D6 for the second iteration. 
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Sample Initial Soil Mass (g) Water Volume 
(mL) 

Saturated Soil Mass 
(g)  

D1 230.27 100 286.06  
D2 231.35 100 300.37  
D3 230.97 100 295.46  
D4 230.98 100 295.17  
D5 227.6 100 286.81  
D6 229.28 100 295.84  

     
Sample Initial Soil Volume 

(mL) 
Final Soil Volume 

(mL) Dried Soil Mass (g) Soil Removed 
(g) 

D1 169.37 172.23 234.14 0 
D2 176.61 175.53 236.04 0.01 
D3 176.79 176.07 234.58 0.09 
D4 174.08 176.25 234.86 0.01 
D5 173.36 174.08 230.98 0 
D6 175.35 173.36 233.31 0.08 

     
Sample Final Porosity (%) Final Bulk Density 

(g/mL) % Mass Removed Volume 
Removed (mL) 

D1 30.1 1.36 0.12 0.20 
D2 36.6 1.34 0.13 0.22 
D3 34.6 1.33 0.21 0.38 
D4 34.2 1.33 0.17 0.29 
D5 32.1 1.33 0.15 0.26 
D6 36.1 1.35 0.18 0.32 

     

Sample % Volume Removed 
Volume Removed 

(mL) per mL of 
Water 

Compaction (%) 
 

D1 0.12 0.002 4.82  
D2 0.13 0.002 3.00  
D3 0.21 0.004 2.70  
D4 0.17 0.003 2.60  
D5 0.15 0.003 3.80  
D6 0.18 0.003 4.20  

Table A-6: The initial conditions and results of suffosion modeling with Dellahunt soil models 
D1-D6 for the third iteration. 
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Sample Initial Soil Mass 
(g) 

Water Volume 
(mL) 

Saturated Soil Mass 
(g)  

D7 236.66 100 307.73  
D8 235.21 100 294.93  
D9 239.12 100 303.36  
D10 235.79 100 307.12  
D11 237.88 100 299.64  
D12 237.99 100 300.85  

     

Sample Initial Soil Volume 
(mL) 

Final Soil Volume 
(mL) Dried Soil Mass (g) Soil Removed 

(g) 
D7 180.96 176.97 246.61 0.24 
D8 180.96 174.8 244.92 0.52 
D9 180.96 175.53 247.38 0.37 
D10 180.96 174.98 247.79 0.3 
D11 180.96 175.53 247.96 0.54 
D12 180.96 176.79 247.89 0.45 

     
Sample Final Porosity (%) Final Bulk Density 

(g/mL) % Mass Removed Volume 
Removed (mL) 

D7 34.5 1.39 0.10 0.17 
D8 28.6 1.40 0.21 0.37 
D9 31.9 1.41 0.15 0.26 
D10 33.9 1.42 0.12 0.21 
D11 29.4 1.41 0.22 0.38 
D12 30.0 1.40 0.18 0.32 

     

Sample % Volume 
Removed 

Volume Removed 
(mL) per mL of 

Water 
Compaction (%) 

 
D7 0.10 0.002 2.20  
D8 0.21 0.004 3.40  
D9 0.15 0.003 3.00  
D10 0.12 0.002 3.30  
D11 0.22 0.004 3.00  
D12 0.18 0.003 2.30  

Table A-7: The initial conditions and results of suffosion modeling with Dellahunt soil models 
D7-D12 for the first iteration. 
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Sample Initial Soil Mass (g) Water Volume 
(mL) 

Saturated Soil Mass 
(g)  

D7 246.61 100 291.96  
D8 244.92 100 285.84  
D9 247.38 100 302.71  
D10 247.79 100 299.06  
D11 247.96 100 290.6  
D12 247.89 100 292.84  

     

Sample Initial Soil Volume 
(mL) 

Final Soil Volume 
(mL) Dried Soil Mass (g) Soil Removed 

(g) 
D7 176.97 174.8 237 0.15 
D8 174.8 174.08 235.33 0.01 
D9 175.53 175.89 238.24 0.15 
D10 174.98 175.17 236.64 0.16 
D11 175.53 173.17 238.98 0.01 
D12 176.79 171.37 238.28 0.07 

     

Sample Final Porosity (%) Final Bulk Density 
(g/mL) % Mass Removed Volume 

Removed (mL) 
D7 31.4 1.36 0.16 0.29 
D8 29.0 1.35 0.23 0.39 
D9 36.7 1.35 0.22 0.38 
D10 35.6 1.35 0.19 0.34 
D11 29.8 1.38 0.23 0.40 
D12 31.8 1.39 0.22 0.37 

     

Sample % Volume 
Removed 

Volume Removed 
(mL) per mL of 

Water 
Compaction (%) 

 
D7 0.16 0.003 3.40  
D8 0.23 0.004 3.80  
D9 0.22 0.004 2.80  
D10 0.19 0.003 3.20  
D11 0.23 0.004 4.30  
D12 0.22 0.004 5.30  

Table A-8: The initial conditions and results of suffosion modeling with Dellahunt soil models 
D7-D12 for the second iteration. 
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Sample Initial Soil Mass 
(g) 

Water Volume 
(mL) 

Saturated Soil Mass 
(g)  

D7 237 100 291.77  
D8 235.33 100 299.29  
D9 238.24 100 297.45  
D10 236.64 100 294.51  
D11 238.98 100 294.06  
D12 238.28 100 293.24  

     

Sample Initial Soil Volume 
(mL) 

Final Soil Volume 
(mL) Dried Soil Mass (g) Soil Removed (g) 

D7 174.8 174.8 229.77 0.07 
D8 174.08 174.98 228.05 0.06 
D9 175.89 175.17 230.03 0.1 
D10 175.17 177.34 228.42 0.06 
D11 173.17 169.19 230.87 0.04 
D12 171.37 174.26 230.93 0.02 

     
Sample Final Porosity (%) Final Bulk Density 

(g/mL) % Mass Removed Volume 
Removed (mL) 

D7 35.5 1.31 0.20 0.35 
D8 40.7 1.30 0.26 0.45 
D9 38.5 1.31 0.27 0.47 
D10 37.3 1.29 0.23 0.40 
D11 37.3 1.36 0.26 0.43 
D12 35.8 1.33 0.23 0.41 

     

Sample % Volume 
Removed 

Volume Removed 
(mL) per mL of 

Water 
Compaction (%) 

 
D7 0.20 0.003 3.40  
D8 0.26 0.005 3.30  
D9 0.27 0.005 3.20  
D10 0.23 0.004 2.00  
D11 0.26 0.004 6.50  
D12 0.23 0.004 3.70  

Table A-9: The initial conditions and results of suffosion modeling with Dellahunt soil models 
D7-D12 for the third iteration. 
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Sample Initial Soil Mass (g) Water Volume 
(mL) 

Saturated Soil Mass 
(g) 

 

E1 202.98 100 264.06  
E2 212.96 100 272.73  
E3 220.45 100 283.66  
E4 217.23 100 283.99  
E5 216.8 100 276.98  
E6 217.62 100 281.83  

     

Sample Initial Soil Volume 
(mL) 

Final Soil Volume 
(mL) Dried Soil Mass (g) Soil Removed (g) 

E1 180.96 164.85 199.08 0.25 
E2 180.96 170.1 210.91 0.27 
E3 180.96 174.08 219.06 0.08 
E4 180.96 175.17 216.77 0.1 
E5 180.96 173.54 216.89 0.27 
E6 180.96 171.91 215.23 0.13 

     

Sample Final Porosity (%) Final Bulk Density 
(g/mL) % Mass Removed Volume 

Removed (mL) 
E1 39.4 1.21 0.13 0.21 
E2 36.3 1.24 0.13 0.22 
E3 37.1 1.26 0.04 0.06 
E4 38.4 1.24 0.05 0.08 
E5 34.6 1.25 0.12 0.22 
E6 38.7 1.25 0.06 0.10 

     

Sample % Volume 
Removed 

Volume Removed 
(mL) per mL of 

Water 
Compaction (%)  

E1 0.13 0.002 8.90  
E2 0.13 0.002 6.00  
E3 0.04 0.001 3.80  
E4 0.05 0.001 3.20  
E5 0.12 0.002 4.10  
E6 0.06 0.001 5.00  

Table A-10: The initial conditions and results of suffosion modeling with Elcor soil models E1-
E6 for the first iteration. 
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Sample Initial Soil Mass (g) Water Volume (mL) Saturated Soil Mass 
(g) 

 

E1 199.08 100 253.16  

E2 210.91 100 269.8  

E3 219.06 100 279.3  

E4 216.77 100 264.1  

E5 216.89 100 247.05  

E6 215.23 100 272.52  
     

Sample Initial Soil Volume 
(mL) 

Final Soil Volume 
(mL) Dried Soil Mass (g) Soil Removed 

(g) 
E1 164.85 165.39 197.83 0.01 
E2 170.1 172.09 209.04 0.04 
E3 174.08 175.35 217.15 0.07 
E4 175.17 175.17 214.04 0 
E5 173.54 171.73 214.07 0.01 
E6 171.91 173.72 212.83 0.02 

     

Sample Final Porosity (%) Final Bulk Density 
(g/mL) % Mass Removed Volume 

Removed (mL) 
E1 33.5 1.20 0.13 0.22 
E2 35.3 1.21 0.15 0.26 
E3 35.4 1.24 0.07 0.12 
E4 28.6 1.22 0.05 0.08 
E5 19.2 1.25 0.13 0.22 
E6 34.4 1.23 0.07 0.12 

     

Sample % Volume 
Removed 

Volume Removed 
(mL) per mL of 

Water 
Compaction (%)  

E1 0.13 0.002 8.60  

E2 0.15 0.003 4.90  

E3 0.07 0.001 3.10  

E4 0.05 0.001 3.20  

E5 0.13 0.002 5.10  

E6 0.07 0.001 4.00  

Table A-11: The initial conditions and results of suffosion modeling with Elcor soil models E1-
E6 for the second iteration. 
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Sample Initial Soil Mass (g) Water Volume 
(mL) 

Saturated Soil Mass 
(g)  

E7 215.67 100 271.58  
E8 218.71 100 272.92  
E9 217.03 100 271.92  
E10 218.31 100 277.75  
E11 212.06 100 265.24  
E12 215.52 100 270.61  

     

Sample Initial Soil Volume 
(mL) 

Final Soil Volume 
(mL) Dried Soil Mass (g) Soil Removed 

(g) 
E7 180.96 168.11 214.87 0.52 
E8 180.96 172.09 219.44 0.2 
E9 180.96 170.64 219.06 0.22 
E10 180.96 171.37 221.63 0.35 
E11 180.96 168.83 213.41 0.34 
E12 180.96 168.29 217.29 0.25 

     
Sample Final Porosity (%) Final Bulk Density 

(g/mL) % Mass Removed Volume 
Removed (mL) 

E7 33.7 1.28 0.24 0.41 
E8 31.1 1.28 0.09 0.16 
E9 31.0 1.28 0.10 0.17 
E10 32.7 1.29 0.16 0.27 
E11 30.7 1.26 0.16 0.27 
E12 31.7 1.29 0.12 0.19 

     

Sample % Volume 
Removed 

Volume Removed 
(mL) per mL of 

Water 
Compaction (%) 

 
E7 0.24 0.004 7.10  
E8 0.09 0.002 4.90  
E9 0.10 0.002 5.70  
E10 0.16 0.003 5.30  
E11 0.16 0.003 6.70  
E12 0.12 0.002 7.00  

Table A-12: The initial conditions and results of suffosion modeling with Elcor soil models E7-
E12 for the first iteration. 
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Sample Initial Soil Mass (g) Water Volume 
(mL) 

Saturated Soil Mass 
(g) 

 

E7 214.87 100 266.98  
E8 219.44 100 269.54  
E9 219.06 100 269.66  
E10 221.63 100 269.8  
E11 213.41 100 268.72  
E12 217.29 100 270.34  

     
Sample Initial Soil Volume 

(mL) 
Final Soil Volume 

(mL) Dried Soil Mass (g) Soil Removed 
(g) 

E7 168.11 166.84 204.05 0.13 
E8 172.09 170.46 209.27 0 
E9 170.64 168.29 208.47 0.13 
E10 171.37 169.92 209.43 0.02 
E11 168.83 166.12 203.95 0.06 
E12 168.29 169.56 207.25 0.11 

     
Sample Final Porosity (%) Final Bulk Density 

(g/mL) % Mass Removed Volume 
Removed (mL) 

E7 37.7 1.22 0.32 0.53 
E8 35.4 1.23 0.10 0.16 
E9 36.4 1.24 0.17 0.28 
E10 35.5 1.23 0.18 0.30 
E11 39.0 1.23 0.20 0.33 
E12 37.2 1.22 0.17 0.29 

     

Sample % Volume 
Removed 

Volume Removed 
(mL) per mL of 

Water 
Compaction (%)  

E7 0.32 0.005 7.80  
E8 0.10 0.002 6.53  
E9 0.17 0.003 8.05  
E10 0.18 0.003 6.75  
E11 0.20 0.003 9.41  
E12 0.17 0.003 5.73  

Table A-13: The initial conditions and results of suffosion modeling with Elcor soil models E7-
E12 for the second iteration. 
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Sample Initial Soil Mass 
(g) 

Water Volume 
(mL) 

Saturated Soil Mass 
(g)  

E13 214.74 100 272.6  
E14 217.73 100 275.53  
E15 213.57 100 274.39  
E16 217.09 100 275.83  
E17 218.11 100 279.34  
E18 215.85 100 275.42  

     

Sample Initial Soil Volume 
(mL) 

Final Soil Volume 
(mL) Dried Soil Mass (g) Soil Removed (g) 

E13 180.96 168.83 209.03 0.26 
E14 180.96 168.11 211.79 0.21 
E15 180.96 168.47 207.9 0.17 
E16 180.96 171.73 212.14 0.25 
E17 180.96 172.23 212.98 0.33 
E18 180.96 173.36 210.33 0.15 

     
Sample Final Porosity (%) Final Bulk Density 

(g/mL) % Mass Removed Volume 
Removed (mL) 

E13 37.7 1.24 0.12 0.21 
E14 37.9 1.26 0.10 0.17 
E15 39.5 1.23 0.08 0.14 
E16 37.1 1.24 0.12 0.20 
E17 38.5 1.24 0.15 0.27 
E18 37.5 1.21 0.07 0.12 

     

Sample % Volume 
Removed 

Volume Removed 
(mL) per mL of 

Water 
Compaction (%) 

 
E13 0.12 0.002 6.70  
E14 0.10 0.002 7.10  
E15 0.08 0.001 6.90  
E16 0.12 0.002 5.10  
E17 0.15 0.003 4.82  
E18 0.07 0.001 4.20  

Table A-14: The initial conditions and results of suffosion modeling with Elcor soil models E13-
E18 for the first iteration. 
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Sample Initial Soil Mass (g) Water Volume 
(mL) 

Saturated Soil Mass 
(g)  

E13 209.03 100 262.65  
E14 211.79 100 265.32  
E15 207.9 100 256.31  
E16 212.14 100 272.78  
E17 212.98 100 252.43  
E18 210.33 100 265.67  

     

Sample Initial Soil Volume 
(mL) 

Final Soil Volume 
(mL) Dried Soil Mass (g) Soil Removed 

(g) 
E13 168.83 171.37 208.95 0 
E14 168.11 173.17 211.58 0.04 
E15 168.47 169.74 207.78 0.01 
E16 171.73 168.47 211.96 0.06 
E17 172.23 172.27 212.83 0.02 
E18 173.36 171.73 210.37 0.02 

     
Sample Final Porosity (%) Final Bulk Density 

(g/mL) % Mass Removed Volume 
Removed (mL) 

E13 31.3 1.22 0.12 0.21 
E14 31.0 1.22 0.12 0.20 
E15 28.6 1.22 0.09 0.15 
E16 36.1 1.26 0.15 0.25 
E17 23.0 1.24 0.16 0.28 
E18 32.2 1.23 0.08 0.14 

     

Sample % Volume Removed 
Volume Removed 

(mL) per mL of 
Water 

Compaction (%) 
 

E13 0.12 0.002 5.30  
E14 0.12 0.002 4.30  
E15 0.09 0.001 6.20  
E16 0.15 0.002 6.90  
E17 0.16 0.003 4.80  
E18 0.08 0.001 5.10  

Table A-15: The initial conditions and results of suffosion modeling with Elcor soil models E13-
E18 for the second iteration. 
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Sample 
ID: 

Ca 
(ppm) 

Mg 
(ppm) 

Na 
(ppm) 

K 
(ppm) 

CO3 
(ppm) 

HCO3 
(ppm) 

Cl 
(ppm) 

SO4 
(ppm) TDS 

1-1 2.93 0.45 0.00 51.11 0 21.97 5.05 1.10 82.61 
2-1 11.17 1.04 0.00 6.54 0 130.58 15.82 28.98 194.13 
3-1 13.29 0.49 0.00 5.99 0 21.97 15.90 11.75 69.39 
4-1 372.91 0.11 0.00 6.22 0 6.10 15.54 683.99 1084.88 
5-1 33.11 0.48 0.00 5.87 0 15.87 15.74 54.83 125.89 
6-1 327.12 0.18 0.00 16.85 0 6.10 57.75 478.93 886.93 
7-1 342.25 0.33 0.00 5.14 0 9.76 15.99 555.13 928.61 
8-1 234.59 0.93 0.00 5.66 0 7.32 16.76 402.06 667.32 
9-1 28.29 0.20 0.00 5.44 0 9.76 15.73 101.60 161.02 
10-1 301.50 0.12 0.00 4.66 0 26.85 15.26 1198.79 1547.18 
11-1 9.22 0.42 0.00 4.78 0 14.64 15.86 37.64 82.57 
12-1 202.34 0.22 0.84 7.15 0 9.76 15.81 764.63 1000.75 
13-1 329.90 0.53 0.00 0.65 0 12.20 11.70 1261.29 1616.28 
14-1 184.78 0.21 0.00 0.24 0 7.32 0.00 697.02 889.57 
15-1 266.47 0.12 0.00 0.00 0 6.10 0.00 1070.53 1343.23 
16-1 56.38 0.28 0.00 0.44 0 14.64 24.82 218.14 314.71 
17-1 261.91 0.17 0.00 0.00 0 9.76 10.74 10.87 293.46 
18-1 144.53 0.16 1.07 0.00 0 9.76 0.00 1339.82 1495.35 
19-1 1.82 0.15 0.31 0.00 0 23.19 0.00 1186.63 1212.11 
20-1 6.03 0.29 0.00 0.00 0 29.29 11.15 15.11 61.87 
21-1 4.50 0.31 0.00 0.11 0 28.07 27.98 11.34 72.31 
22-1 240.80 0.15 0.00 0.00 0 15.87 11.20 18.01 286.02 
23-1 40.75 0.16 0.00 0.00 0 20.75 0.00 1623.98 1685.64 
24-1 2.87 0.23 0.00 0.00 0 28.07 11.05 323.14 365.36 
25-1 205.57 0.11 0.00 0.00 0 19.53 11.18 0.00 236.40 

Table A-16: Geochemical data of the soluble fraction of soils from twenty-five field infiltration 
sites.  
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