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Abstract

Employed primarily for outreach and education, the three-dimensional (3D)

printer used in this analysis provides a means of producing tangible models of

fragile and restricted-use specimens for students from a wide variety of disci-

plines, and is used here to produce prints associated with historic and prehis-

toric cultural objects. Recognizing that inconsistencies occur in 3D prints due

to environmental variables, this exploratory effort was aimed at identifying the

geometry that deviates most from the original scan data. A total of five repli-

cas were printed then compared by calculating the gap distance between the

nominal (original scan data) and measured data (scan of 3D printed replica)

in Geomagic Control X. Results indicate that computer-aided inspection may

prove useful in the refinement of 3D printing work flows, finishing, and the it-

erative refinement of 3D printer settings for specific real-world education- and

outreach-based endeavors.

Keywords: 3D, scanning, printing, computer aided inspection, museum
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1. Introduction

Three-dimensional (3D) prints of archaeological specimens have been used

for research (Baaklini, 2016; Di Giuseppantonio Di Franco et al., 2016; Ioannides

et al., 2014; Reilly, 2015), as well as outreach and education purposes (Compton

et al., 2017; Di Franco et al., 2015; Kęsik et al., 2017; Means, 2015, 2017). The

addition of open access 3D meshes to digital repositories and archives (Davies

et al., 2017; Niven & Richards, 2017; Selden Jr. et al., 2014b) provides access to

artifacts from across the world; many of which are available for download as 3D

print-ready files. Those investigators adding to the growing corpus of accessible

meshes are to be applauded, as their efforts continue to increase global exposure

to the history and prehistory of different regions and cultures, adding digital

and—when printed or manufactured—physical access to important collections

of artifacts to a wide range of students and the general public.

In some ways, the full potential of many 3D digitally documented archaeo-

logical remains, ironically, may not be realized until they are replicated through

3D printing. Accurate identification of some artifacts and ecofacts, bone in

particular, is most readily achieved through examination of physical objects,

either real or replica. The use of 3D printed artifact and ecofact replicas aids

archaeologists in meeting their ethical obligations to present their findings and

interpretations to the general public, who directly or indirectly support their

research, while simultaneously meeting ethical obligations to ensure that those

collections are preserved for future generations (Selden Jr. et al., 2014a).

There are hundreds of 3D printers available to consumers, which vary from

kits requiring considerable assembly to plug-and-play options. Prices also vary

considerably, ranging from under one hundred dollars to those costing in the

thousands. 3D Hubs, a network of 3D printer owners, evaluated over 400 differ-

ent 3D printers for 2016 (3D Hubs, 2015) and the number of new 3D printers

coming to the market changes on an almost weekly basis. Fused deposition

modeling (FDM) printers are the most common because they are simple to op-

erate and are less costly than other 3D printers. FDM printers basically work
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in the same fashion. Plastic filament is fed from a spool through a super-heated

head, which melts the filament into a thin strand. The head moves in patterns

dictated by the 3D file, laying down layer upon layer to create the object. For

irregular objects, additional plastic supports are generated to ensure that ob-

jects do not fall or incur other printing failures (Strano et al., 2012; Yang et al.,

2002). The two primary types of filament used in FDM printers are Acryloni-

trile Butadiene Styrene (ABS) and Polylactic Acid (PLA) (Cole et al., 2016;

Gao et al., 2017; Powell, 2014). The latter exhibits little shrinking relative to

the former. An additional major printer technology involves the use of optical

power to cure liquid resin into a solid object. Resin-based printers tend to be

more expensive, and can be more difficult to operate, but the prints are of high

quality and more precise than FDM printers (3D Hubs, 2015).

While accuracy is less of a concern for outreach, the utility of prints remains

high (Porter et al., 2017, 2016). Replicas can be scaled up or down, allowing

participants to view and handle specific elements, while mitigating impact on

the original specimen (Selden Jr. et al., 2014b). As 3D printing continues

to permeate classroom-based education (Chen et al., 2017; Eberhardt et al.,

2017; Giraud et al., 2017; Hall et al., 2017; Yoo et al., 2017), the diffusion of

those methods and approaches employed by practitioners continues to spread

further. Through the integration of computer aided inspection—in this case,

aimed at discussions of critical thinking, work flow refinement, and finishing

among faculty, staff, and students—3D scans and prints can be further refined

(Fastowicz & Okarma, 2017; Mendricky, 2016; Okarma & Fastowicz, 2017, 2018).

Methods

To investigate the variability introduced by the printer, five 3D replicas were

printed using a LulzBot Taz 6: a Clovis-era wrench from Murray Springs (ASM

A-32640), a Caddo effigy bowl (rounded base) from the Belcher site (NSU-773),

a Caddo effigy bowl (flat base) from 41UR2 (TARL-41UR2-23), and a late-stage

Clovis preform from the Kincaid site (TARL-41UV2-908-1258). The printed

3
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items were scanned at the Bullock Texas State History Museum (courtesy of

the Texas Historical Commission), the Arizona State Museum at the University

of Arizona, the Williamson Museum at Northwestern State University, and the

Texas Archeological Research Laboratory at the University of Texas at Austin.

Following production, each print was scanned with a Creaform GoSCAN20 run-

ning VXElements at a resolution of ± 0.3 mm, then refined to ± 0.1 mm in post.

Meshes were cleaned in VXModel, correcting issues associated with isolated

patches, self-intersections, spikes, small holes, singular vertices, creased edges,

narrow triangles, outcropping triangles, narrow bridges, and non-manifold tri-

angles. The point cloud associated with each was saved as an ASCII ply, and

exported prior to post-processing (Weyrich et al., 2004).

Structured light scan data (Georgopoulos et al., 2010; Mahmoud et al., 2015)

were subsequently imported to Geomagic Design X, where the final mesh was

aligned and post-processed. Post-processing of each mesh addressed issues with

non-manifold poly-vertices, folded poly-faces, dangling poly-faces, small clus-

ters, small poly-faces, non-manifold poly-faces, crossing poly-faces, and small

tunnels.

Computer Aided Inspection

Following post-processing, Geomagic Control X was used to compare the

topology of the original scan data (nominal data) against that of the six meshes

produced by scanning the 3D prints (measured data) (Figure 1). Measured

data were compared against the nominal data (Li & Gu, 2004; Minetola et al.,

2015; Obeidat & Raman, 2008; Poniatowska, 2012) to identify the gap distances

between the meshes, based upon the percentage of the mesh that remains within

a pre-specified—arbitrary—tolerance (0.1 mm; same as scan resolution) (Budzik

et al., 2016; Wong et al., 2006; Yogi et al., 2014). Once identified, a series of two-

dimensional (2D) slices (2D compare) were generated for the meshes to further

clarify the character of the geometry associated with gap distances.

The minimum and maximum call-outs include the highest deviations for the

part overall or for a cluster selection of the part. This process differs from the

4
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Figure 1: 3D Compare (a) illustrates the nominal data (left), paired points from nominal

data/point cloud (center), and gap distances (right) for UCB-6B36-B34-2-15925 (Note: in-

spection parameters were altered to more dramatically illustrate gap distances in this figure),

and 2D Compare (b) illustrates gap distances for a single cross-section for Caddo effigy vessel

NSU-773.

gap distance in that gap distances are the deviations between the reference and

measured data at a particular location. The histogram shown in each of the

following figures illustrates the Gaussian distribution for the number of errors

over the whole deviation. The graph is split into six segments: 1-Sigma at 31

percent from the average to the maximum deviation in each direction, 2-Sigma

at 69 percent from the average to the maximum deviation in each direction,

and 3-Sigma at 93.3 percent from the average to the maximum deviation in

each direction. The AVG (average) is the sum of all deviations divided by

the number of all deviations, and the RMS is the square root of all squared

deviations divided by the number of all deviations (sometimes referred to as the

effective deviation). In Tol and Out Tol percentages indicate the percentage of

deviations in or out of a given tolerance, and Over Tol and Under Tol percentages

indicate the percentage of deviations over (positive direction) or under (negative

direction) the tolerance range by the mesh normal of the reference mesh.

Results

Figure 1 illustrates the nominal data, point cloud, and gap distances popu-

lated for an analysis of the mandible. Comparisons are limited to the topology

of the nominal data due to the fact that some of the prints are representative of

5

5Published by SFA ScholarWorks, 2018



a single component of a larger object. It is, however, possible to compare each

mesh by limiting the analysis to the topology of the nominal data, ensuring that

internal structures and/or scaffolding were excluded from the inspection process

(Selden Jr. et al., 2017).

Modern human mandible (UCB-6B36-B34-2-15925)

The 3D print of the modern human (Homo) mandible was 43.3471 percent

in tolerance (± 0.1 mm), with 43.6886 percent of the print over tolerance, and

12.9643 percent under (Figure 2). Areas surrounding the left and right rami—

to include the temporal crests, mandibular notches, and condylar processes—

appear to have warped slightly outward, as interior areas are under tolerance,

and exterior areas are over (Supplemental Information). Further, the left molars

and areas of the alveolar yokes appear slightly above tolerance.

The 2D compare results (Supplementary Information) similarly demonstrate

the gap distances associated with a single section. For 2D Compare 1, which

sectioned the mandible from the mental foramina to the angle, the rear of the 3D

print demonstrates more variability. Overall, 42.7079 percent of the 2D Compare

1 section was in tolerance with 51.9764 percent over and 5.3158 percent under.

The maximum distance in 2D Compare 1 was 0.5081 mm, and the minimum

was -0.9622 mm.

In an effort to further clarify the gap distances associated with the rear of the

mandible, 2D Compare 2 runs from the base of the mandibular body near the

angle to the mandibular notch. The outer areas of this section were often above

tolerance, where the internal areas were more regularly below. Overall, 28.4483

percent of the 2D Compare 2 section was in tolerance with 42.4808 percent

over and 29.0709 percent under. The maximum distance in 2D Compare 2 was

0.5823 mm, and the minimum was -1.2724 mm.

The next section (2D Compare 3) runs from the base of the area near the

mental protuberance to the top of the dental arcade (Supplementary Informa-

tion). Overall, 43.1644 percent of the 2D Compare 3 section was in tolerance

with 42.4731 percent over tolerance and 14.3625 percent under. The maximum

6
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Figure 2: 3D compare results of nominal and measured data for UCB-6B36-B34-2-15925.

Areas in green reflect the geometry of the mandible that is in tolerance. Call-outs were issued

for the maximum above/below gap distances for each.

distance in 2D Compare 3 was 0.4961 mm, and the minimum was -0.2289 mm.

The last section (2D Compare 4) encircles the dental arcade and the rami;

however, it should be noted that the whole of the dental arcade is not captured

at the alveolar yoke. Overall, 37.4746 percent of the 2D Compare 4 section

was in tolerance with 47.4272 percent over and 15.0982 percent under. The

maximum distance in 2D Compare 4 was 0.5053 mm, and the minimum was

-0.7668 mm.

Clovis wrench (ASM A-32640)

The 3D print of the Clovis wrench—a bone tool—was found to be 28.3637

percent in tolerance (Figure 3), with 62.2274 percent of the print over tolerance,

and 9.4089 percent under tolerance. Those areas of the print near the closed-end

7
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of the wrench include the highest deviations. The maximum distance in the 3D

Compare was 1.1697 mm, and the minimum was -1.1495 mm.

Figure 3: 3D compare results of nominal and measured data for ASM A-32640. Areas in

green reflect the geometry of the artifact that is in tolerance. Call-outs were issued for the

maximum above/below gap distances for each.

In an effort to further clarify gap distances, 11 2D Compare sections were

collected along the long (Y-) axis of the wrench (Supplementary Information).

One final section, 2D Compare 12, runs from the closed-end of the wrench to the

base. Overall, 26.3471 percent of the 2D Compare 12 section was in tolerance

with 64.9486 percent over and 8.7043 percent under. The maximum distance in

2D Compare 12 was 1.1594 mm, and the minimum was -0.355 mm.

Caddo effigy bowl (rounded base) (NSU-773)

The 3D print of Caddo effigy bowl NSU-773 was found to be 50.1606 percent

in tolerance (Figure 4), with 30.5019 percent of the print over, and 19.3374

8
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percent under tolerance. Those areas of the print near the base, and on the

bottom of the tab tail of the vessel include the highest deviations. The maximum

distance in the 3D Compare was 1.0223 mm, and the minimum was -1.024 mm.

Figure 4: 3D compare results of nominal and measured data for NSU-773. Areas in green

reflect the geometry of the artifact that is in tolerance. Call-outs were issued for the maximum

above/below gap distances for each.

The vessel was sectioned from the tip of the effigy head to the center of the

tab tail (2D Compare 1). Overall, 40.4971 percent of 2D Compare 1 was in

tolerance, with 34.6772 percent over and 24.8257 percent under tolerance. The

maximum distance was 0.7843 mm, and the minimum was -1.003 mm.

An additional section (2D Compare 2) was collected along the axis associated

with the effigy’s appendages. Overall, 39.2786 percent of 2D Compare 2 was in

tolerance, with 29.9247 percent over and 30.7967 percent under tolerance. The

maximum distance was 0.3913 mm, and the minimum was -0.9747 mm.

9
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Caddo effigy bowl (flat base) (41UR2-23)

The 3D print of Caddo effigy bowl 41UR2-23 was found to be 53.9231 percent

in tolerance (Figure 5), with 40.4989 percent of the print over, and 5.578 percent

under tolerance. The area of the print near the base includes the highest gap

distances. The maximum distance in the 3D Compare was 0.7405 mm, and the

minimum was -0.5369 mm.

Figure 5: 3D compare results of nominal and measured data for 41UR2-23. Areas in green

reflect the geometry of the artifact that is in tolerance. Call-outs were issued for the maximum

above/below gap distances for each.

The first section (2D Compare 1) was collected near the mid-line of the vessel.

Overall, 49.5912 percent of 2D Compare 1 was in tolerance, with 44.1537 percent

over, and 6.2551 percent under tolerance. The maximum distance was 0.8323

mm, and the minimum was -0.3088.

The second section (2D Compare 2) was collected from the tip of the effigy

head to the tip of the tail. Overall, 53.6955 percent of 2D Compare 2 was in
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tolerance, with 39.2166 percent over, and 7.0879 percent under tolerance. The

maximum distance was 0.658 mm, and the minimum was -0.3078 mm.

Clovis preform (TARL-41UV2-908-1258)

The 3D print of the Clovis preform from the Kincaid site (TARL-41UV2-

908-1258) was found to be 36.8608 percent in tolerance (Figure 6), with 56.7688

percent of the print over, and 6.3704 percent under tolerance. Those areas of

the print near the edges, and near the removal closest to the base include the

highest gap distances. The maximum distance in the 3D Compare was 1.035

mm, and the minimum was -1.0253 mm.

Figure 6: 3D compare results of nominal and measured data for NSU-773. Areas in green

reflect the geometry of the artifact that is in tolerance. Call-outs were issued for the maximum

above/below gap distances for each.

In an effort to further clarify gap distances, 10 2D Compare sections were

collected along the long (Y-) axis of the wrench (Supplementary Information).
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One final section, 2D Compare 11, runs from the point to the base. Overall,

32.1765 percent of the 2D Compare 11 section was in tolerance with 67.08235

percent over and 0.9771 percent under. The maximum distance in 2D Compare

11 was 1.1336 mm, and the minimum was -0.1476 mm.

Discussion

Gap distances that occur between the original scan data and the 3D printed

replicas were illustrated. In addition to the 3D Compare results, 2D compare

results were employed to illustrate the variability in specific sections of the

replicas. Results help to clarify the range and character of the deviations that

occur between printed replicas and the meshes used to produce them. Additional

implications for these results include the refinement of work flows associated

with 3D printing, and the refinement of printed replicas using computer aided

inspection to guide finishing decisions.

3D/2D Compare

The 3D compare results demonstrate the variegated results produced by

the printer, for which the in-tolerance results ranged from 28.3637 to 53.9231

percent (Table 1). All meshes had a higher OverTol percentage. In future

iterations of the inspection protocol, it may be worth including a measure of

thickness to explore whether those areas found to be under tolerance on one

side of the object are over tolerance on the opposing side, which may indicate

some degree of warping during the printing process.

Table 1: Results of 3D comparison between the nominal and measured data.

Specimen InTol (%) OutTol (%) OverTol (%) UnderTol (%)

UCB-6B36-B34-2-15925 43.3471 56.6529 43.6886 12.9643

ASM A-32640 28.3637 71.6363 62.2274 9.4089

NSU-773 50.1606 49.8394 30.5019 19.3374

TARL-41UR2-23 53.9231 46.0769 40.4989 5.578

TARL-41UV2-908-1258 36.8608 63.1392 56.7688 6.3704
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The combined 2D/3D Compare results (Figure 7) help to better characterize

the variation that occurs in each of these six replicas. The subjective process

of finishing could also be guided by the results of computer-aided inspections.

While scaffolding was removed from the replicas used in this study, additional

modifications were not undertaken due to the highly subjective nature (art)

of finishing. Computer aided inspection could aid in the finishing process by

pointing out areas of the replica that are over tolerance, and warrant touch-up

(whether by Dremel, flex-shaft, sanding, or other means). For all but one of

the prints (UCB-6B36-B34-2-15925), those areas with the highest gap distances

include regions of the prints where scaffolding was attached. However, touch-ups

(finishing) should only be applied on areas of the replica that are over-tolerance.

Figure 7: Composite of the 3D/2D compare results for the nominal and measured data for

TARL-41UV2-908-1258.

Ancillary observations

Results indicate that some prints are more true to form than others. Two

replicas—one of the mandible, and the other of the Clovis preform—failed during

the initial print, resulting in the need for a second print (those used in this

study). Another possible avenue of gainful inquiry may be to print multiples

of each replica to explore deviations for a single replica to identify any issues
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with replicability. This latter approach may be particularly useful for those

wishing to incorporate 3D printed replicas in classroom- or laboratory-based

activities. Many practitioners also paint the printed replicas, and it may be

the case that some paints and stains—particularly when applied in multiple

coats—may further alter the replica’s morphology.

With regard to the refinement of work flows, inspections could be used to

iteratively identify printer settings that result in the most accurate prints pos-

sible for a specific printer. While not explored here, the use of computer aided

inspection might be used to test variable settings associated with printing; for

instance, by printing the same replica at variable resolutions to identify accuracy

versus time investment. Given the differential environments where printers are

employed, an iterative refinement process could be used to identify the optimal

settings for a specific printer in a specific location (accounting for variabilities

in local temperature, humidity, etc).

Conclusion

This analysis was aimed at the inspection of 3D prints for six specimens

related to cultural heritage with the goal of identifying and characterizing the

variability that occurs between the original mesh and printed replicas prior to

their distribution to students and workshop participants to collect orthogonal

measurements. Through the use of 3D and 2D Compare analyses in Geomagic

Control X, the character of the gap distances between nominal and measured

data was further clarified. Ancillary avenues of inquiry were identified and

include (1) the systematic, iterative refinement of those settings that can be

used to consistently generate the most accurate 3D print possible; and (2) the

possible utility of computer aided inspection in the finishing of printed and

painted replicas. These lines of inquiry lie beyond the scope of this study;

however, this study lays the foundation necessary for those pursuits.
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