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ABSTRACT 

     Longleaf pine (Pinus palustris) savannas were once dominant in East Texas 

and parts of western and central Louisiana. Native understory species have since 

been removed or reduced by exotic plants that were introduced and from the 

reduction in the frequency of both wild and prescribed fires. A diverse layer of 

understory species can still be seen today, but not often in the historical savanna 

setting that is desirable in longleaf pine ecosystems. This project aimed to 

identify site characteristics associated with longleaf ecosystems that support a 

dense, herbaceous understory with little to no midstory cover.  

     A total of 65 plots were established within the Boykin Springs Area to evaluate 

the influence of overstory cover, basal area, aspect, elevation, and slope on the 

number of plant genera. The study area was divided into three sites (A, B, and C) 

which had differing vegetative parameters and site characteristics such as 

elevation and slope. Site A had been recently burned as it has and is currently 

being managed for Red-cockaded Woodpecker habitat. The vegetative 

parameters and site characteristics had significant effects on the number of plant 

genera found in those sites. 

     Six of the plots were confirmed to be on Letney soils and were evaluated for 

their general soil parameters (sand, silt, and clay content). Equipment used to 
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define understory and overstory parameters were the spherical densiometer for 

measuring overstory canopy cover, 1 m² pvc pipe frame for percent cover by 

growth form, and vinyl measuring tape for little bluestem cover. Due to the small 

sample size, these plots were not included in the data analysis for the three study 

sites. These plots were only utilized for their general soil parameters and 

vegetative composition. Soil texture and series did not have any significant 

effects on the number of genera on those plots. 

     Based on the Pearson Correlation method, the number of genera per plot 

increased with elevation and slope (P=0.0044 and 0.0212, R=0.372 and 0.30207, 

respectively). This can also be explained by the negative correlation between 

elevation and both the overstory cover and the basal area (P=0.0918 and 0.0983, 

R= -0.225 and -0.221, respectively). As elevation increased, there was a decline 

in basal area and overstory cover which leads to a more diverse, understory 

layer.  Results from this study suggest that in order to promote or restore a 

diverse, herbaceous understory in historical longleaf pine savannas, efforts to 

plant specific understory species that are important in restoration efforts should 

be aimed at areas with open canopy conditions and on slopes with greater solar 

exposure. 



iii 
 

ACKNOWLEDGEMENTS 

     I extend my thanks to the USDA Forest Service, National Forests and 

Grasslands of Texas, and the Division of Environmental Science at Stephen F. 

Austin State University for providing the funding for this opportunity. I also extend 

gratitude to my two field assistants, Jason Lee and Nadia Garcia, for their hard 

work and determination as well as Ike McWhorter from the USDA Forest Service 

for his thoughts and advice on his expectations of this project. I give thanks to Dr. 

Christopher Comer for his assistance with species identification. I give special 

thanks to my major professor, Dr. Brian Oswald, for his advice, continuous 

support, and motivation throughout this experience. I also give thanks to my 

committee members Drs. Kenneth Farrish, Rebecca Kidd, and Yuhui Weng for 

their contributions. Lastly, I thank my husband, Samuel McCalip, for his support, 

love, and encouragement. 

 

 

 

 

 



iv 
 

TABLE OF CONTENTS 

ABSTRACT ........................................................................................................... i 

ACKNOWLEDGEMENTS ..................................................................................... iii 

TABLE OF CONTENTS ....................................................................................... iv 

TABLE OF FIGURES ........................................................................................... vi 

TABLE OF TABLES ........................................................................................... viii 

INTRODUCTION .................................................................................................. 1 

OBJECTIVES ....................................................................................................... 3 

LITERATURE REVIEW ........................................................................................ 4 

History of Longleaf Pine .................................................................................... 4 

Importance of Fire in Longleaf Pine Savannas .................................................. 8 

Understory Importance ...................................................................................... 9 

Selected Understory Species of Importance ................................................... 10 

Soil Texture Impacts on Understory Vegetation .............................................. 11 

METHODS.......................................................................................................... 13 

Study Area ...................................................................................................... 13 

Plot Layout ...................................................................................................... 14 



v 
 

Study Plots ......................................................................................................... 17 

Svehla Plots........................................................................................................ 17 

Field Methods .................................................................................................. 20 

Seedbank Study ................................................................................................. 20 

Understory Percent Cover .................................................................................. 20 

Beta Diversity Index ............................................................................................ 22 

Overstory Cover and Basal Area ........................................................................ 23 

Aspect, Elevation, and Slope .............................................................................. 23 

Soil Physical Properties ...................................................................................... 24 

Data Analysis .................................................................................................. 27 

RESULTS ........................................................................................................... 28 

DISCUSSION ..................................................................................................... 42 

CONCLUSIONS AND MANAGEMENT IMPLICATIONS .................................... 47 

LITERATURE CITED ......................................................................................... 50 

APPENDIX ......................................................................................................... 55 

VITA ................................................................................................................... 58 

 



vi 
 

TABLE OF FIGURES 

FIGURE PAGE 

1. The longleaf pine range in 2014 across the southeast. Map 
taken on June 24, 2018 from the USDA website (Natural 
Resource Conservation Service). 
 

6 

2. Location of plots within designated study sites that were 
grouped in order to determine if any spatial similarities or 
differences exist. Data acquired from the ArcGIS Database 
at Stephen F. Austin State University and TNRIS. June 28, 
2018. 
 

16 

3. Plot design for all plots located within the Boykin Springs 
area. Basal area was also measured at the center of each 
plot. 
 

18 

4. Plot design used in Svehla’s thesis (2017). Only the center 
plot was used in this study. 
 

19 

5. Soil series map for the Boykin Springs area. Soil series 
data obtained from NRCS website. 
 

26 

6. The total number of genera found in each site along with 
the beta diversity index between the three sites.  
 

29 

7. Scatter plot showing a positive correlation between number 
of genera (y) and the elevation (x) (R=0.372). 
 

31 

8. Scatter plot showing a positive correlation between number 
of genera (y), and slope (x) (R=0.302). 
 

32 

9. Scatter plot showing a positive correlation between basal 
area (y), and overstory cover (x) (R=0.277). 
 

33 



vii 
 

10. Scatter plot showing a positive correlation between 
elevation (y), and percent slope (x) (R=0.465). 
 

34 

11. Scatter plot showing a negative correlation between 
elevation (y), and basal area (x) (R= -0.225). 
 

35 

12. Scatter plot showing a negative correlation between 
elevation (y), and overstory cover (x) (R= -0.221). 

 

36 

13. Scatter plot showing a negative correlation between basal 
area (y), and slope (x) (R= -0.246). 

37 

 



viii 
 

TABLE OF TABLES 

TABLE PAGE 

1. The residual area occupied by longleaf pine range in 
thousands of hectares by state from the year 1955 to 1985 
(1  = 1,000 hectares). From Kelly and Bechtold (1989). 
 

7 

2. Study sites A, B, and C with their respective mean 
vegetative parameters, elevation, and slope. 
 

15 

3. Total number of genera found in each site, the number of 
genera specific to that site or between sites, and the total 
found within the Boykin Springs area. 
 

28 

4. Pearson correlation coefficients along with their respective 
p-values. “Prob > |r| under H0: Rho=0” refers to the p-value 
and indicates the probability of observing the correlation. 
 

30 

5. Results from GLM with the dependent variable of number of 
genera and the independent variables of basal area, 
overstory cover, elevation, slope, and study site. 
 

38 

6. Result from GLM with the dependent variable of percent 
grass cover and independent variables of basal area, 
overstory cover, elevation, aspect, slope, and study site. 

39 

7. Result from GLM with the dependent variable of percent 
tree seedling and the independent variables of basal area, 
overstory cover, elevation, aspect, slope, and study site. 
 

39 

8. Result from GLM with the dependent variable of percent 
shrub/forb cover and the independent variables of basal 
area, overstory cover, elevation, aspect, slope, and study 
site. 
 

40 



ix 
 

9. Result from GLM with the dependent variable of percent 
bluestem from the 5m transect and the independent 
variables of basal area, overstory cover, elevation, aspect, 
slope, and study site. 
 

40 

10. Result from GLM with the dependent variable of understory 
species diversity was put into a general linear model that 
assumes the POISSON distribution to test for soil 
parameter effects. 

41 

 

  



1 
 

INTRODUCTION 

     Longleaf pine (Pinus palustris) forests were once dominant in East Texas and 

parts of western and central Louisiana as practically pure stands (Bray 1904), 

and these ecosystems still play an important role in both timber production and 

wildlife habitat. Historically, longleaf pine ecosystems had a dense, diverse 

herbaceous understory, relatively low midstory cover, and tall, mature longleaf 

pine trees dominating the overstory. Native understory species have since been 

replaced, or reduced, by the introduction of exotic plants and human population 

expansion, which led to fire suppression, logging, and land conversion. Native 

understory species still exist today, but not always in the historical savanna 

setting that is desirable in longleaf pine ecosystems.  

     The historical range of longleaf pine belt extended from the Atlantic Coast to 

East Texas (Mohr and Roth 1897) and contained over 37 million hectares of 

longleaf pine forest (Frost 1993), with just over 526,000 hectares of longleaf pine 

ecosystems remaining (Kelly and Bechtold 1989) (Figure 1). Today, many 

longleaf pine ecosystems resemble many East Texas forests characterized by 

dense stands of woody vegetation. With fire suppression beginning with human 

settlement, the once easily navigable longleaf pine forests have succeeded into a 

mixed pine-hardwood forest with a dense woody midstory with a relatively low, if 



2 
 

non-existent, herbaceous understory. Tree-farming and over-harvesting of old-

growth longleaf pine trees have led to a patchy, scattered range across the 

southeast (Bray 1904).  

     Understory vegetation in longleaf pine ecosystems was historically lush with 

diverse herbaceous vegetation of grasses and forbs. With a historic fire interval 

of 2-3 years, the density of woody midstory plants was reduced, leaving native, 

herbaceous, pyrophytic plants such as little bluestem (Schizachyrium 

scoparium), wiregrass (Aristida spp.), and eastern gammagrass (Tripsacum 

dactyloides). These plants, once well-established, provide the necessary fine fuel 

source to support fires that longleaf pine needs in order to thrive. Without an 

abundant fuel source, fire may not limit competitors such as sweetgum 

(Liquidambar styraciflua). This project aimed to develop more information on the 

site conditions that affect the herbaceous genera of longleaf pine savannas. This 

project will also help to provide further information on how to restore diverse, 

herbaceous understories in longleaf pine, which is also favorable to many 

species of wildlife. 



3 
 

OBJECTIVES 

     The overall goal of this project was to examine sites that have been identified 

as historically supported longleaf pine ecosystems for understory vegetation 

associations based on site factors, and to identify potential restoration efforts to 

be implemented to improve or restore native understory cover.  

Specific objectives of this study were to: 

1. Determine what understory plant species exist in the seedbank of sites 

previously supporting longleaf pine forests. 

2. Correlate vegetation structure and abundance with overstory cover, basal 

area, soil texture, and soil series as identified by Svehla (2017). 

3. Identify what site conditions currently support desired herbaceous 

vegetation in longleaf pine ecosystems in East Texas. 
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LITERATURE REVIEW 

History of Longleaf Pine 

     Pre-settlement longleaf pine ecosystems once spanned over 37 million 

hectares along the Atlantic coast and Gulf of Mexico (Figure 1); 30 million 

hectares consisted of longleaf dominant woodlands, while the other 7 million 

hectares consisted of mixed tree species (other species of pines and hardwood 

trees) with dispersed longleaf pine (Frost 1993). This range consisted of forests, 

savannas, and mixed woodlands on many different sites such as dry sandhills 

that we see in East Texas, Appalachian Mountain ridges, and wet flatwoods 

(Brockway et al. 2005). Within a 30-year period from 1955 to 1985, the range of 

longleaf pine in the Southeastern region of the United States rapidly declined 

from 4.9 to 1.5 million hectares (Kelly and Bechtold 1989). 

     The reduction in the range of longleaf pine has been attributed to human 

population expansion and intervention (Table 1). Human population expansion 

led to increased fire suppression efforts that allowed competitor species such as 

loblolly pine to become more abundant (Stambaugh et al. 2011). With a decrease 

between 1955 and 1985 of 69 percent, Texas had only 14,973 hectares of 

longleaf pine remaining in 1985 (Kelly and Bechtold 1989). Almost 75% of the 
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longleaf pine forest remaining today is privately owned and is used for recreation 

and production of natural resources (Dale et al. 2001). 

     Longleaf pine ecosystems require periodic prescribed fires in the absence of 

wildfires to sustain an understory that will not compete with the longleaf pine 

overstory, and to support the historic savanna ecotype. An increase in fire 

frequency will also produce a graminoid layer capable of providing the necessary 

fuel source to spread fire across the current range of longleaf pine. 
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Figure 1.The longleaf pine range in 2014 across the southeast. Map taken on 
June 24, 2018 from the USDA website (Natural Resource Conservation Service). 
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Table 1.The residual area occupied by longleaf pine in thousands of hectares by 
state from the year 1955 to 1985 (1 = 1,000 hectares). From Kelly and Bechtold 
(1989). 

 Year 

State 1955 1965 1975 1985 

Alabama 555 400 303 275 

Florida 1776 930 555 419 

Georgia 1006 551 315 256 

Louisiana 512 276 156 123 

Mississippi 409 259 144 119 

North Carolina 269 212 184 155 

South Carolina 331 231 195 164 

Texas 81 54 24 15 

All States 4939 2914 1875 1526 
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Importance of Fire in Longleaf Pine Savannas 

     Fire was the most important ecological process that shaped and determined 

the range of the longleaf pine-grassland ecosystem (Van Lear et al. 2005). The 

historic park-like savanna setting that is most desired with longleaf pine was 

maintained before European settlement by very frequent, lightning induced 

wildfires (Chapman 1932; Heyward 1939; Platt et al. 1988). William Bartram in 

the late 1920s mentioned Native Americans hunting parties burning to corral 

game. Woody species such as American beautyberry (Callicarpa americana), 

sweetgum (Liquidambar styraciflua), as well as various oaks (Quercus spp.), 

increased in number with the absence of fire (Heyward 1939; Komarek 1964; 

Gilliam et al. 1993).  

     The rapid loss in coverage of the longleaf pine ecosystem began around 1920 

when logging and human population expansion led to fire suppression as fire 

was considered as a threat to human resources and life (Frost 1993). Fire 

suppression in longleaf pine ecosystems lead to a dense, woody midstory that 

out-competed longleaf pine regeneration (Barnett 1999). Fire is a useful tool in 

suppressing the midstory layer, which can both catch fallen debris and carry 

flames up into the longleaf canopy, which can kill overstory longleaf pine if fires 

become too intense (Outcalt 2006). Fire is also effective in nutrient cycling and 

reducing the organic matter layer that builds up from the shedding of the longleaf 
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pine needles which suppresses the growth of the native grasses (Duvall and 

Whitaker 1964). Increases in shrubs and hardwoods create too much competition 

for longleaf pine to reproduce effectively (Chapman 1926), while burning when 

shrubs are young and small will suppress woody resprouting by depleting the 

underground carbon reserves (Olson and Platt 1995). Native Americans not only 

burned for hunting game, but they also burned in order to keep fuels away from 

their settlements (Williams 1989), to increase the quality of wildlife habitat, and 

also to protect them from their enemies or predators (Hudson 1976; Williams 

1989). 

Understory Importance 

     Longleaf pine ecosystems often contain some of the most important plant 

species for many different species of wildlife as well as maintaining the 

pyrophytic savanna type. Longleaf pine ecosystems contain 187 rare plant 

species, including 27 federally listed species that are threatened or endangered 

that have specific, narrow habitat requirements (Van Lear et al. 2005). Graminoid 

species such as little bluestem (Schizachyrium scoparium), wiregrass (Aristida 

spp.), and pineywoods dropseed (Sporobolus junceus) are just a few in the 

longleaf pine ecosystem identified as important by restoration ecologists. They 

provide an important fuel source for carrying the fire across the landscape and 

help maintain the frequent fire regime (Stambaugh et al. 2011).  
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Selected Understory Species of Importance 

     Little bluestem (Schizachyrium scoparium) is a warm season, native, 

perennial bunch grass that is very important to longleaf pine ecosystems, not 

only because it is a valuable fuel source, but it also provides necessary habitat 

and food for various wildlife species (Tober and Jensen 2013). Numerous song 

birds (e.g., cardinals (Cardinalis cardinalis), painted buntings (Passerina crisis), 

house finches (Haemorhous mexicanus), blue grosbeaks (Passerina caerulea), 

Bachman’s sparrows (Peucaea aestivalis), and eastern towhees (Pipilo 

erythrophthalmus) feed on the abundance of feather-like seeds, and large 

mammals such as white-tailed deer (Odocoileus virginianus) use the basal bunch 

for bedding (Uchytil 1989). Longleaf pine forests with lush herbaceous understory 

layers also provide a bounty of insects and arachnids that are important food 

sources to wildlife species such as the Red-cockaded Woodpecker 

(Leuconotopicus borealis). To increase the abundance of little bluestem in a 

longleaf pine savanna, the use of prescribed fire during a wet-year or after a wet 

season is encouraged (Wright 1974).  

     Longleaf pine plant communities in which pineland threeawn (Aristida stricta) 

is one of the dominant species include xeric, dry-mesic, and wet-mesic sites 

(Drew et al. 1998). Longleaf-wiregrass ecosystems rely on a very short fire return 

interval (1 to 5 years) in order to maintain their historic park-like conditions of 
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having the diverse, herbaceous understory with tall, old growth longleaf pines 

that can rarely be seen today (Wilson et al. 1999). In addition, applications of the 

broad-spectrum herbicide hexazinone can suppress hardwood species that 

compete with wiregrass, thus increasing its abundance on the landscape 

(Brockway et al. 1997; Brockway and Outcalt 1999). In East Texas, this species 

is not common and not a species of concern in restoration efforts. Its range 

extends through Florida and eastward along the Atlantic Gulf Coast (Brockway 

and Lewis 1997). For this reason, pineland threeawn is not discussed further in 

this thesis. 

     Pineywoods dropseed (Sporobolus junceus) is a native, warm season, 

perennial bunchgrass that provides the longleaf ecosystem with a similar function 

as wiregrass in terms of fuel for fire and wildlife forage (Pfaff et al. 2002). This 

species is commonly used in longleaf pine ecosystem restoration and prefers a 

seedbed that is free from other vegetation, which can be accomplished using 

prescribed fire and/or the use of herbicidal treatment of the midstory (Brakie 

2013).  

Soil Texture Impacts on Understory Vegetation 

     Difference in soil texture occur along a gradient, which impacts the distribution 

of species (Knox et al. 1995). Plant type (grass, forb, shrub, tree, etc.), presence 

and/or dominance, and the number of genera can be correlated with parameters 
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such as soil sand content, texture, and water retention (Fan 1993). Soil texture is 

directly related to water retention, which greatly affects understory vegetation, 

because herbaceous vegetation, such as rhizomatous grasses, have shallow 

root systems, unlike woody vegetation that can reach water sources deep in the 

soil (Walter 1979). Longleaf pine forests historically occurred on different soil 

types ranging from well-drained, xeric sandhills and rocky mountainous regions 

to poorly drained flatwoods (Boyer 1990).  
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METHODS 

Study Area 

     This study was conducted within the Boykin Springs area of the Angelina 

National Forest (31.05186°N, -94.26804°W) near Zavalla, Texas. The climate is 

described as humid and subtropical (McWhorter 2005). Boykin Springs is located 

on the Catahoula geologic formation, and the area is characterized by hot 

summers (mean daily high of 34 ˚C in July) with mild winters (mean daily low of 2 

˚C in January). Mean annual rainfall for the study area is 134 cm with December 

and May being the wettest with both months having a mean monthly rainfall of 

14.2 cm. The drier months, August and October, have a mean monthly rainfall of 

approximately 9.1 cm (Oswald et al. 2014). Study plots included those 

established by Svehla (2017) (Svehla plots hereafter) with specific soil series 

currently supporting longleaf pine stands and randomly established plots (study 

plots hereafter) located within what was historically known to be longleaf pine 

ecosystems. Only the plot center from Svehla’s plots was evaluated for 

vegetative composition for this study. Most study plots were chosen “subjectively 

but without preconceived bias” (Mueller-Dombois and Ellenberg 1974) by 

establishing plots in suitable understory chosen based on visual affirmation of a 
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diverse herbaceous understory with few midstory trees or shrubs. Some plots 

were located within longleaf pine ecosystems with more midstory cover.  

Plot Layout 

     This study had 65 total plots which were divided into two categories: 59 

randomly established plots (study plots), and a subset of six plots established by 

Svehla (2017) (Svehla plots). Study plots were located across three study sites 

(A, B, and C) within the Boykin Springs area (Figure 2). The three sites differed in 

soil series, elevation, basal area, and overstory cover which effected the 

understory plant species composition (Table 2). Site A (Figure 2) was in an area 

that had been burned a few months prior to sampling with nesting colonies of 

Red-cockaded Woodpeckers, indicating suitable understory habitat conditions for 

the purposes of this project. Plots located in sites B and C were selected to 

account for potential suitable areas that are not currently in the desired forest 

condition and could be potential target areas for understory restoration 

depending upon differences in site characteristics. These plots were located in a 

more densely vegetated area that had not been burned prior to field 

measurement and had standing water. Inundation in these areas could result in 

unsuccessful herbaceous understory restoration in these sites as species 

composition, elevation, and soil parameters in these two sites were different from 

site A.  
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Table 2. Study sites A, B, and C with their respective mean vegetative 
parameters, elevation, and slope. 

Study 
Site 

Number 
of 

Species 
per Plot 

Grass 
Cover 
(%) 

Tree 
Seedling 

Cover 
(%) 

Shrub/Forb 
Cover (%) 

Basal 
Area 

(ft²/acre) 
Overstory 

Cover (%) 
Elevation 

(m) 
Slope 

(°) 

A 20 35 38 34 86 81 36.1 4.1 

B 20 44 38 31 115 86 31.1 3.4 

C 14 48 15 36 102 89 22.8 1.6 
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Figure 2. Location of plots within designated study sites that were grouped in 
order to determine if any spatial similarities or differences exist. Data acquired 
from the ArcGIS Database at Stephen F. Austin State University and TNRIS. 
June 28, 2018. 
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Study Plots 

     Once plot locations were selected with a plot radius of 5 m, and the distance 

between the plots was at least 50 m to reduce potential spatial autocorrelation. 

This 50 m spacing was based on the plot design by Svehla (2017) (Figure 4). 

Once a plot was established, data were recorded for that plot, and then the next 

plot was established by walking in an arbitrary direction that was at least 50 m 

away from roads and 50 m from other plots.  

Svehla Plots 

     Svehla plots (Figure 4) were utilized to identify the effects of soil series and 

texture on the understory species diversity, using only the center 5 m subplot in 

this study of a 50 m radius plot (0.008 ha) that was used in Svehla’s study, for a 

total area of approximately 78.5 m2. Plot centers locations were recorded with a 

GPS unit.  
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Figure 3. Plot design for all plots located within the Boykin Springs area. Basal 
area was also measured at the center of each plot. 
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Figure 4. Plot design by Svehla (2017). Only the center plot was used in this 
study. 
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Field Methods 

Seedbank Study  

    O and A horizon surface soil samples were collected at each study plot and 

the center subplot in Svehla plots for the seedbank study (Figure 4). Samples 

were collected using a hand shovel to extract surface material within a 0.3 m x 

0.3 m area to a depth of about 15 cm, and placed into labeled brown paper bags, 

then transferred into perforated bins. The plastic bins were perforated by drilling 

five holes into the bottom of each container for the percolation of water. The bins 

were placed into a growth chambers set at approximately 20-25˚C and 40% 

relative humidity with twelve hours of light per day and watered with a hose every 

other day over a period of four weeks and any growth assessed. The amount of 

water for each bin was enough to saturate the soil, but not enough to 

oversaturate or leave water on the surface. The process continued for another 

four weeks, eight weeks in total. Any sprouting vegetation was identified and 

recorded for the respective plots or subplots.  

Understory Percent Cover 

     Within each subplot, a 1 m² PVC pipe frame was randomly placed to visually 

estimate the percent cover of understory species by grass, forb, shrub, and tree 

growth forms (Figure 6). Data for each placement were recorded in Daubenmire 
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(1959) classifications (1: 0 - 5%, 2.5%; 2: 5 - 25%, 15.0%; 3: 25 - 50%, 37.5%; 4: 

50 - 75%, 62.5%; 5: 75 - 100%, 87.5%) for percent grass, forb/shrub, and tree 

coverage. In the field, the ordinal, classified data (1, 2, 3, 4, 5) was used and 

then put into an excel spreadsheet at the average for that respective class (2.5, 

15, 37.5, 62.5, 87.5). The shrub/forb coverage included other herbaceous 

vegetation as well as those species that may become part of the midstory (e.g. 

American beautyberry and poison oak). The shrub/forb category included both 

herbaceous and woody vegetation to further restrict the grasses to the grass 

category. The shrubs and forbs were combined into one category, while the 

grasses were a separate category to emphasize the importance of grasses in 

restoration efforts. Tree classifications included woody species that have the 

potential to become part of the overstory (e.g. sweetgum and longleaf pine).  

     In addition, any plant within the 5m radius circular subplot or study plot was 

identified to genus and species when possible and classified as either native or 

exotic (Table A1). Not all the plants within a plot were identified to species, so the 

number of genera was used to determine richness at each plot. To determine 

understory richness, a genus was recorded if it was present within the plot or if it 

was dominant in the surrounding areas around the subplot. If the plant could not 

be identified in the field, a sample was collected and pressed for identification. In 
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addition, photographs were taken of unidentifiable plants to be viewed and 

identified if possible.  

     A 5m transect was randomly established on each plot to account for percent 

cover by little bluestem. Each time a blade of grass was next to or crossing the 

vinyl tape at a cm mark, a value of 1 recorded. A percentage of little bluestem 

was calculated by taking the ratio of total values recorded over the total transect 

length. For example, in plot BS30 little bluestem covered 27 cm of 500 cm or 

approximately 5.4%.  

Beta Diversity Index 

     The three sites (Figure 2) were analyzed to assess any spatial autocorrelation 

or differences in areas of Boykin Springs. Since the three sites differed in mean 

elevation, slope, basal area, and overstory cover, a beta diversity index 

calculation was performed to determine differences in richness. Beta diversity 

between two of the sites was calculated by using the equation β=(c*2)/(S1+S2) 

where β is equal to the beta diversity index, c is equal to the genera the two 

areas have in common, S1 is equal to the total number of genera in site 1, and 

S2 is equal to the total number of genera in site 2. A beta diversity index of 1 

indicates exact genera composition between the sites. The sites would have 

complete similarity if both sites contained the same number of the same species 
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where c would be equal to both S1 and S2. Beta diversity was calculated 

between all sites with S3 added to the denominator to represent the total number 

of genera present in site 3, and the value of c is multiplied by three instead of 

two. 

Overstory Cover and Basal Area 

     Percent overstory cover was determined using a spherical densiometer at 

each plot center. The densiometer was held at a forearm’s length from the body 

and held at the same angle to have consistent readings, with readings facing 

each cardinal direction and read the densiometer. A reading was taken from 

each cardinal direction and was recorded to calculate percent overstory cover 

(Lemmon 1956). Basal area was estimated using a 20 BAF wedge prism. At the 

center of each plot, the observer stood with the prism over an item or plant of 

choice and rotated around said plant while looking at the prism. If a tree trunk 

was offset from the base completely, the tree was not counted. If the tree’s base 

and trunk were aligned even slightly, the tree was counted. Every other tree was 

counted if the tree was “borderline”. Basal area was recorded in m2 per ha. 

Aspect, Elevation, and Slope 

     Aspect, elevation, and slope were determined using ArcMap version 10.5.1 in 

ArcGIS for desktop. Topographic maps obtained from TNRIS.org were used to 
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determine aspect by determining which way the slope was facing for each plot. A 

Digital Elevation Model (DEM) of the site was used to determine the slope in 

degrees by downloading the DEM file for Boykin Springs and inputting it into 

ArcMap. Elevation was determined by using the data provided by a Garmin GPS 

unit and converted to meters to determine the necessary habitat requirements 

and needs of the associated plants in the plots. 

Soil Physical Properties 

     Soil chemical, physical, and morphological properties from a subset of six 

plots from Svehla (2017), were measured.  Standing in the plot center, four auger 

borings were made at each subplot in each cardinal direction (N, S, E, W) to 

determine that the entire plot is within the same soil series. Once the soil 

samples from each subplot, including the center, had been assured to be similar, 

the plots were accepted for use. 

     Samples derived from the plot center were taken from the first three horizons, 

if applicable, including the A, E, and Bt1 horizons (Svehla 2017).  A brief 

description of the soil characteristics was conducted in order to determine profile 

depths up to 150 cm below the surface. These characteristics, along with the soil 

textures, particle size, and composition were analyzed for correlations with the 

vegetative composition data. Vegetative composition of the understory was also 

analyzed to show correlations associated soil series and textures. Soil orders 
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were identified on these sites were Alfisols and Ultisols. Vegetative composition 

was recorded, and the soil parameters were used to determine the site 

conditions for the desired vegetation associated with soil series, texture, and 

depth. Study plots were not assessed for soil parameters but only accounted for 

vegetative composition and correlated with basal area and overstory cover. 

 Soil texture was obtained from Svehla (2017), who used the Bouyoucos 

(1951) method to determine soil texture. For the Svehla plots, vegetative 

composition of the understory was compared to soil texture in order to further 

analyze which soil parameters the vegetation requires. A soil series map (Figure 

5) for the Boykin Springs area was used to determine the potential soil series for 

the remaining 59 plots, but soil texture and series were not confirmed in the field. 

The subset of six plots were confirmed by Svehla to be on Letney (Arenic 

Paleudults) and Tehran (Grossarenic Paleudults) soils. Five of the six plots were 

Letney, and one was confirmed to be Tehran, shown to be on Letney soil in site 

A (Figure 5). Two of the six plots were located on the Doucette-Boykin series 

according to soil mapping but were confirmed to be Letney in the field.  
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Figure 5. Soil series map for the Boykin Springs area. Soil series data obtained 
from NRCS website. 



27 
 

Data Analysis 

     The Pearson correlation method was used to identify correlations among the 

independent variables (basal area, overstory cover, elevation, slope, study site, 

and aspect) and their correlations with the dependent variable (number of 

genera).  Analyses of variance were carried out to test the impact of independent 

variables (basal area, overstory cover, elevation, aspect, study site, and slope) 

on dependent variables (percent bluestem cover, percent grass cover, percent 

tree seedling cover, and percent shrub/forb cover). Since all dependent variables 

were expressed as percent, generalized linear models were used to test the 

effects of the independent variables on dependent variables for the fifty-nine 

study plots. Since species abundance was recorded as count data, for this 

dependent variable a generalized linear model paired with POISSON distribution 

was used to test the effects of the independent variables. SAS package (SAS 

Institute Inc. 2011) was used for all analyses. Due to small sample size, except 

where otherwise indicated, the term significant refers to P<0.1 to account for 

biological significance. A Generalized Linear Model (GLM) that assumed the 

POISSON distribution was estimated to determine the influence of soil 

parameters and site characteristics (soil series, percent sand, percent silt, 

percent clay, elevation, aspect, and slope) in predicting the dependent variable 

‘number of genera’ in the Svehla plots. 
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RESULTS 

     The seedbank study did not produce any vegetation results other than a few 

sprouts that died before growing large enough to identify to a genus or species 

level. One container began to grow a grass that was covered in trichomes which 

was unidentifiable but thought to be little bluestem.  

     Beta diversity was calculated for the three sites and expressed low similarity 

between each of the sites when comparing only two of the sites (Figure 6) due to 

the low number of genera the sites had in common with each other in 

comparison to their total number of genera (Table 3). When all three sites were 

compared to one another, the beta diversity index increased. 

Table 3. Total number of genera found in each site, the number of genera 
specific to that site or between sites, and the total found within the Boykin 
Springs area. 

Site Number of Genera 

A 15 

B 1 

C 6 

A & B 9 

A & C 2 

B & C 5 

All Sites 29 

Total 67 
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Figure 6. The total number of genera found in each site along with the beta 
diversity index between the three sites.  

       

     The Pearson correlation coefficient method found significant correlations 

between many of the variables (Table 4). Positive correlations existed between 

the number of genera and both elevation and slope, and between basal area and 

overstory cover. In addition, elevation had a significant correlation with basal 

area, overstory cover, and slope. Figures 7 - 13 show the correlations as 

scatterplots: in Figures 11 and 13, the correlation is weak. Study site showed a 
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significant negative correlation with the number of genera, percent slope and 

elevation, and a positive correlation between overstory cover. The effects of 

aspect are shown in the GLMs due to the data being categorical. The data for 

aspect can be converted to numbers, but this did skew the results, and therefore 

was analyzed using the GLMs further discussed in this section. The plots are 

shown in the figures as the colors blue (A), red (B), and yellow (C) and  

 

Table 4. Pearson correlation coefficients along with their respective p-values. 
“Prob > |r| under H0: Rho=0” refers to the p-value and indicates the probability of 
observing the correlation. 

Correlation Variables 
Prob > |r| under 
H0: Rho=0 

Pearson 
Correlation 

Coefficient (R) 

Number of Genera * Elevation 0.0044 0.372 

Number of Genera * Slope 0.0212 0.302 

Number of Genera * Study Site <.0001 -0.625 

Basal Area * Overstory Cover 0.0350 0.277 

Elevation * Slope 0.0003 0.465 

Elevation * Basal Area 0.0918 -0.225 

Elevation * Overstory Cover 0.0983 -0.221 

Basal Area * Slope 0.0622 -0.246 

Study Site * Overstory Cover 0.0269 0.291 

Study Site * Elevation <.0001 -0.713 

Study Site * Slope <.0001 -0.500 
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Figure 7. Scatter plot showing a positive correlation between the number of 
genera (y) and elevation (x) (R=0.372). 
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Figure 8. Scatter plot showing a positive correlation between number of genera 
(y), and slope (x) (R=0.302). 
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Figure 9. Scatter plot showing a positive correlation between basal area (y), and 
overstory cover (x) (R=0.277). 
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Figure 10. Scatter plot showing a positive correlation between elevation (y), and 
slope (x) (R=0.465). 
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Figure 11. Scatter plot showing a negative correlation between elevation (y), and 
basal area (x) (R= -0.225). 
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Figure 12. Scatter plot showing a negative correlation between elevation (y), and 
overstory cover (x) (R= -0.221). 
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Figure 13. Scatter plot showing a negative correlation between basal area (y), 
and slope (x) (R= -0.246). 
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         In GLM the dependent variable ‘number of species’ was used in order to 

test if the independent variables have significant impacts on the number of 

genera (Table 5). Elevation and study site had significant impacts on the number 

of genera (Table 5). Tables 6-9 are the results that used the dependent variables 

of percent grass cover, percent tree seedling cover, percent shrub cover, and 

percent bluestem cover. Significant results are shown in red. The independent 

variables did not have significant impacts on the percent grass cover (Table 6). 

Basal area, elevation, and study site had significant impacts on the percent tree 

seedling cover (Table 7). Elevation had significant impacts on the percent 

forb/shrub cover (Table 8). Overstory cover had significant impacts on the 

percent bluestem cover (Table 9). The GLM of the soil parameters yielded no 

significant results (Table 10). 

 

Table 5. Results from GLM with the dependent variable of number of genera and 
the independent variables of basal area, overstory cover, elevation, slope, and 
study site. 

LR Statistics for Type 3 Analysis 

Source Num 
DF 

Den DF F Value Pr > F Chi-
Square 

Pr > ChiSq 

Basal Area 1 41 0.15 0.7022 0.15 0.7002 

Overstory Cover 1 41 0.51 0.4795 0.51 0.4754 

Elevation 1 41 3.57 0.0660 3.57 0.0589 

Aspect 7 41 0.68 0.6906 4.74 0.6921 

Slope 1 41 0.19 0.6653 0.19 0.6630 

Study Site 2 41 14.22 <.0001 28.45 <.0001 
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Table 6. Result from GLM with the dependent variable of percent grass cover 
and independent variables of basal area, overstory cover, elevation, aspect, 
slope, and study site. 

Source DF Type III SS Mean Square F Value Pr > F 

Basal Area 1 0.0742 0.0742 0.00 0.9920 

Overstory Cover 1 95.0111 95.0111 0.13 0.7193 

Elevation 1 40.8431 40.8431 0.06 0.8136 

Aspect 7 1513.9058 216.2723 0.30 0.9506 

Slope 1 10.6994 10.6994 0.01 0.9039 

Study Site 2 372.4524 186.2262 0.26 0.7748 

 

 

Table 7. Result from GLM with the dependent variable of percent tree seedling 
and the independent variables of basal area, overstory cover, elevation, aspect, 
slope, and study site. 

Source DF Type III SS Mean Square F Value Pr > F 

Basal Area 1 428.7461 428.7461 6.52 0.0145 

Overstory Cover 1 85.9690 85.9690 1.31 0.2595 

Elevation 1 350.6653 350.6653 5.33 0.0261 

Aspect 7 235.7083 33.6726 0.51 0.8201 

Slope 1 80.0371 80.0371 1.22 0.2764 

Study Site 2 460.7686 230.3843 3.50 0.0394 

 

 

 



40 
 

Table 8. Result from GLM with the dependent variable of percent shrub/forb 
cover and the independent variables of basal area, overstory cover, elevation, 
aspect, slope, and study site. 

Source DF Type III SS Mean Square F Value Pr > F 

Basal Area 1 123.5104 123.5104 0.35 0.5557 

Ovestory Cover 1 2.0014 2.0014 0.01 0.9401 

Elevation 1 1355.2320 1355.2320 3.87 0.0559 

Aspect 7 2993.3419 427.6203 1.22 0.3131 

Slope 1 0.4924 0.4924 0.00 0.9703 

Study Site 2 238.7985 119.3992 0.34 0.7129 

 

 

 

 

Table 9. Result from GLM with the dependent variable of percent bluestem from 
the 5m transect and the independent variables of basal area, overstory cover, 
elevation, aspect, slope, and study site. 

Source DF Type III SS Mean Square F Value Pr > F 

Basal Area 1 18.1531 18.1531 0.08 0.7729 

Overstory Cover 1 1015.2624 1015.2624 4.73 0.0365 

Elevation 1 27.5355 27.5355 0.13 0.7224 

Aspect 7 624.4102 89.2015 0.42 0.8860 

Slope 1 15.1199 15.1199 0.07 0.7923 

Study Site 2 288.3691 144.1846 0.67 0.5173 
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Table 10. Result from GLM with the dependent variable of understory species 
diversity was put into a general linear model that assumes the POISSON 
distribution to test for soil parameter effects.  

Analysis of Maximum Likelihood Parameter Estimates 

Parameter DF Estimate Standard 
Error 

Wald 95% Confidence 
Limits 

Wald 
Chi-

Square 

Pr > ChiSq 

Soil Series 1 -0.4519 0.3713 -1.1796 0.2758 1.48 0.2236 

Percent Sand 1 -0.0192 0.0865 -0.1888 0.1503 0.05 0.8242 

Percent Silt 1 -0.0319 0.1053 -0.2383 0.1745 0.09 0.7621 

Elevation 1 0.0058 0.0200 -0.0334 0.0449 0.08 0.7726 

No Aspect (Flat) 1 -0.0666 0.5001 -1.0467 0.9136 0.02 0.8941 
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DISCUSSION 

     In order for a future the seedbank study to be successful, one suggestion is 

for the O and A horizons to be collected in the field and then sifted in order to 

reveal any seeds. The seeds can then be placed in the perforated bins with a 

mixture of a ratio of 1:3 sand to fertilized soil with a thickness of 4-5 cm before 

placing into the growth chambers. The bins should be watered every day instead 

of every other day as performed in this study since the bins were dry by the end 

of the four weeks.  

     The correlation that existed between the number of genera and the elevation 

suggests a relationship where an increase in elevation led to an increase in the 

number of genera (Figure 7), which also increased with an increase in slope 

(Figure 8). In mountainous zones, increases with elevation have led to peaks in 

species diversity accompanied by a decline in overall species richness (Lomolino 

2001). Although East Texas is not a mountainous region, the relatively small 

changes in elevation had an effect on the understory vegetation. An increase in 

elevation also was reflected in a decrease in overstory cover and basal area 

(Table 4, Figures 11 and 12), which contributed to the increase in the number of 

genera due to the greater availability of light reaching the forest floor. (Barbier et 

al. 2008). Slope was not significantly correlated with overstory cover. The 



43 
 

increase in elevation was also positively correlated with slope that also produced 

this effect (Figure 10). However, slope was negatively correlated with basal area; 

as the degree of slope increased, the basal area decreased (Figure 13). 

Herbaceous species respond to soil moisture and can indicate water table 

conditions which is often associated with elevation and slope (Stromberg et al. 

1996). Not surprisingly, the significant correlation between basal area and 

overstory cover indicates where the higher the basal area the higher the 

overstory cover (Figure 9). This could be either due to few, larger overstory trees 

with either larger canopies or a higher number of smaller overstory trees with 

smaller canopies. Overstory cover and basal area are positively correlated with 

each other, and one can be used to predict the other (Mitchell and Popovich 

1996). 

     The study sites (Figures 7-13) were correlated with the number of genera, 

overstory cover, elevation, and slope (Table 4). The site location of the plots 

(Figure 3) or ‘study site’ had significant effects on the percent cover by tree 

seedlings, the number of genera, and percent shrub/forb cover (Table 4). This 

most likely was due to the prescribed burning of site A a few months before data 

collection, and areas B and C were not burned prior to field collection but had 

higher amounts of midstory cover. Site A was higher in elevation than sites B and 

C which also directly influenced the number of genera and overstory cover. Site 

A had a denser herbaceous understory cover with more longleaf pine 
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regeneration. Prescribed burning is not only effective in removing or reducing 

competitive midstory species, in this case it increased the vigor of herbaceous 

understory species by allowing more sunlight to reach the forest floor as well as 

the potential increase in soil nutrients (Olson and Platt 1995). The grouping along 

the x axis with elevation and grouping along the y axis with the number of genera 

(Figure 7) shows that site A had the highest elevation and the highest number of 

genera. Figure 12 also shows the grouping along the y-axis as elevation with site 

A having higher elevation, and site C had the lowest. The grouping along the y-

axis indicates the number of genera was highest in site A. Site B had lower 

elevation than site A, but was higher than site C, and resulted in a similar number 

of genera for sites A and B. All study sites were also correlated with slope 

(Figures 8 and 10) with grouping along the x-axis as slope. Slope affects 

drainage properties in soil, and the herbaceous vegetation in this area are 

located on well-drained soils. Higher genera richness was in site A where the 

elevation and slope was the greatest. While unconfirmed, it is possible that 

higher slopes, even of this degree, might have influenced soil texture to the 

degree that slope was acting as a surrogate of soil drainage differences (Brady 

and Weil 2017). The more plots in lower overstory cover in site A compared to 

sites B and C could be a contributing factor to site A having the most understory 

cover. 
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     Using a GLM that assumed the POISSON distribution identified significant 

impacts of independent variables on the number of genera, as the number of 

genera was affected by the elevation and site (Table 5). Site C had the lowest 

mean elevation and therefore had the lowest number of genera. The POISSON 

distribution suggests that in all cases except for the understory species diversity, 

aspect had a significant impact upon the dependent variable. The direction 

(aspect) and degree of the slope influences sunlight exposure, and in turn 

influences vegetative cover. 

     Generalized linear models (GLMs) were used to determine the site 

characteristics that influenced the percent cover of vegetation by growth form 

(grass, tree seedling, and shrub/forb). The percent grass cover was not 

influenced by basal area, overstory cover, elevation, aspect, slope, and study site 

(Table 6). Although the results showed no significant affects, visual observations 

showed significant effects of overstory cover on the coverage of grasses. From 

field observations, less overstory cover did have an effect of more coverage of 

grasses. Basal area, elevation, and study site had significant effects on the 

percent coverage of tree seedlings (Table 7), possibly contributing to the 

increase in the number of plant genera present (Figure 7) further explaining the 

effect of elevation on the percent cover of tree seedlings. More tree seedlings 

were present with lower overstory cover which as well is explained by an 

increase in available sunlight reaching the forest floor.   
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     Svehla confirmed six of plots within the Boykin Springs area to be on Letney 

soils, which have a high sand content, and therefore low water retention 

capabilities that support an herbaceous understory layer (Brady and Weil 2017). 

The sample size for the soil impacts was too small to observe any significant 

effects on the understory vegetation. To assess the impacts of the soil 

characteristics on the vegetative composition, all plots would need to be sampled 

for soil series and texture. 
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CONCLUSIONS AND MANAGEMENT IMPLICATIONS 

     The main environmental factors driving species abundance and presence 

were elevation and overstory cover. From field observations, less overstory cover 

led to more coverage of grasses, and from data analysis, an increase in elevation 

led to a decrease in basal area and overstory, which leads to more solar 

radiation that reaches the forest floor. This in turn creates a more desirable, 

diverse herbaceous understory (Jameson 1967). Planting projects would need to 

focus primarily on areas with less overstory cover and lower basal area where 

there will be adequate light reaching the forest floor. This would also mean that 

with an overabundance of midstory, thinning would allow for increased viability of 

understory species plantings, either from fire, mechanical, or chemical methods. 

     Little bluestem was present on all 65 plots and is therefore not a species of 

concern for restoration efforts in the Boykin Springs area. Pineywoods dropseed 

was not present on all plots, nor as abundant as little bluestem. This species 

would need to be prioritized for restoration projects in East Texas. It was present 

in all three study sites and would therefore be successful in plantings in more 

well-drained, open canopy areas within the three sites.  

     Prescribed burning is not only effective in removing or reducing competitive 

midstory species, in this case it increased the vigor of herbaceous understory 
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genera by allowing more sunlight to reach the forest floor as well as the increase 

in soil nutrients (Olson and Platt 1995). Area A had been burned prior to data 

collection and had significantly more amounts of little bluestem and pineywoods 

dropseed. Longleaf pine needs these fine fuel species to carry fire across its 

range and eliminate woody species that would compete with the overstory trees 

as well as the herbaceous understory. Important understory species such as little 

bluestem and pineywoods dropseed are necessary in longleaf pine savannas to 

maintain the fine fuel source for periodic fires to reduce midstory competition. 

Periodic prescribed burning will not only reduce competition, but also expose a 

nutrient enriched soil bed that these important understory species need to grow. 

Longleaf pine ecosystems with a two to eight-year fire return interval are most 

effective at producing a dense, diverse herbaceous understory with increases in 

fire dependent species of grasses such as little bluestem and Pineywoods 

dropseed (Brockway and Lewis 1997). 

     Soil characteristics such as soil series and soil texture did not show significant 

effects on understory species diversity in this study, but with a larger sample 

size, further research would need to be performed in order to test for soil 

parameter effects on plant species diversity. In this study, a small sample size of 

six plots was used to determine soil parameter effects on the understory 

vegetation. It would be beneficial to research the soil parameter effects on the 

vegetative composition by confirming soil series and soil texture on a larger 
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sample size while determining the vegetative composition. This would also be 

beneficial in analyzing the effects of elevation and slope on the soil drainage 

properties. Overall, to restore longleaf pine ecosystems in Texas, management 

practices of periodic prescribed fire along with plantings of important understory 

species in areas with open canopy cover on slopes with the most solar exposure 

will provide a denser and more diverse herbaceous understory.  
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APPENDIX 

Table A1. Sixty-seven genera found in the Boykin Springs area near Zavalla, 
Texas with the respective native status, the number of plots that contained each 
respective species, the study sites where the species occurred, and their growth 
form category.  

Genus 
Number of 

Plots 
Native 
Status 

Study 
Site 

Growth 
Form  

Alophia   3 N A Shrub/Forb 

Ambrosia   36 N A,B,C Shrub/Forb 

Ampelopsis   2 N A Shrub/Forb 

Andropogon   1 N A Grass 

Aristolochia   15 N A Shrub/Forb 

Asimina   4 N C Tree 

Berlandiera   16 N A,B,C Shrub/Forb 

Callicarpa   52 N A,B,C Shrub 

Campsis   2 N B,C Shrub/Forb 

Carex   14 N A,B Grass 

Carya   5 N A,B,C Tree 

Ceanothus   4 N A Shrub/Forb 

Centrosema   3 N A,C Shrub/Forb 

Chamaecrista   3 N A Shrub/Forb 

Chasmanthium   2 N C Grass 

Cichorium   1 E A Shrub/Forb 

Cirsium   1 N C Shrub/Forb 

Clitoria   14 N A Shrub/Forb 

Cnidoscolus   22 N A,B,C Shrub/Forb 

Commelina   19 E A,B,C Shrub/Forb 

Conyza   20 N A,B Shrub/Forb 

Croton   50 N A,B,C Shrub/Forb 

Cyperus   17 N A,B Grass 

Desmodium   52 N A,B,C Shrub/Forb 

Dichanthelium   46 N A,B,C Grass 

Echinacea   14 N A,B Shrub/Forb 

Eleocharis   1 N C Grass 
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Eragrostis   5 N B,C Grass 

Eryngium   1 N B Shrub/Forb 

Fragaria   1 N A Shrub/Forb 

Galactia   16 N A,B,C Shrub/Forb 

Gelsemium   5 N A,B,C Shrub/Forb 

Helianthus   18 N A,B Shrub/Forb 

Hypericum   10 N A,B Shrub/Forb 

Ilex   18 N A,B,C Shrub/Forb 

Ipomoea   6 N A,C Shrub/Forb 

Liatris   4 N A Shrub/Forb 

Liquidambar   29 N A,B,C Tree 

Mimosa   45 N A,B,C Shrub/Forb 

Morella   7 N B,C Shrub/Forb 

Osmunda   2 N C Shrub/Forb 

Oxalis   5 N B,C Shrub/Forb 

Parthenocissus   9 N B,C Shrub/Forb 

Paspalum   12 N A,B,C Grass 

Pinus   33 N A,B,C Tree 

Pityopsis   41 N A,B,C Shrub/Forb 

Pteridium   49 N A,B,C Shrub/Forb 

Quercus   21 N A,B Tree 

Rhus   18 N A,B,C Shrub 

Rubus   9 N A,B,C Shrub/Forb 

Sassafras   37 N A,B,C Tree 

Schizachyrium   65 N A,B,C Grass 

Setaria   2 N C Grass 

Smilax   8 N A,B,C Shrub/Forb 

Sporobolus   16 N A,B Grass 

Stillingia   14 N A Shrub/Forb 

Strophostyles   17 N A,B,C Shrub/Forb 

Stylisma   1 N A Shrub/Forb 

Stylosanthes   29 N A,B,C Shrub/Forb 

Taraxacum   1 E A Shrub/Forb 

Tephrosia   33 N A,B,C Shrub/Forb 

Toxicodendron   61 N A,B,C Shrub/Forb 

Tradescantia   5 N A,B Shrub/Forb 

Tragia   10 N A Shrub/Forb 

Tripsacum   33 N A,B,C Grass 
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Vitis   24 N A,B,C Shrub/Forb 

Yucca   3 N A Shrub/Forb 
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