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ABSTRACT 

Rotavirus (RV) causes severe, life-threatening diarrhea, in infants, young 

children and immunocompromised adults. There are several effective vaccines 

for young children, however they are strain specific and are not protective against 

many RV strains in developing countries. Therefore, it is important to investigate 

anti-RV therapeutic agents. Our laboratory has shown arachidin-1 (A1) and 

arachadin-3 (A3) significantly inhibit RV replication in two cell lines, however the 

molecular mechanism(s) of action are not known. A synthetic molecule of A3 

(sA3) has been produced, but its’ antiviral effects have not been examined. Our 

hypothesis is that sA3 produces the same effects on RV-infected cells as natural 

A3. This study used plaque forming unit (PFU) assays to show a significant 

decrease in the amount of infectious RV particles released from arachidin treated 

cells, and tunable resistive pulse sensing technology (TRPS) revealed changes 

in the size distribution of released nanoparticles. Transmission electron 

microscopy (TEM) was utilized to observe alterations of nucleus to cytoplasm 

ratios which were confirmed with whole cell fluorescent staining techniques. This 

suggested that the arachidins modified the apoptosis and autophagy pathways. 

To support these observations, transcripts of initiator genes in both pathways 

were investigated using qRT-PCR, and the expression of two effector proteins in 
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the apoptosis pathway were measured. Only small changes in the transcripts and 

proteins were detected which implied the regulation of other genes in the cell 

death signaling pathways that requires further examination. Both A3 and sA3 

have similar antiviral activity that results in significant decreases in the production 

of infectious RV particles, thus revealing therapeutic potential for rotavirus 

infections. 
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INTRODUCTION 

 

Rotavirus (RV) is a member of the Reoviridae family and is a major source 

of viral gastroenteritis affecting infants and young children (Bernstein, 2009; 

Ward, 1996) as well as in immunocompromised adults such as those with SCIDs, 

HIV, chemotherapy patients, or transplant patients (Bakare et al., 2010; 

Stelzmuller et al., 2007, Cui et al., 2015; Lee and Ison, 2014; Sugata, et al., 

2012; Yin et al., 2015; Liakopoulou et al., 2005; Anderson and Weber, 2004; 

Patel et al., 2010). RV infections are characterized by vomiting, fever, and watery 

diarrhea with symptoms usually lasting for 4-6 days (Heymann, 2015). The 

prevalent nature of RV and the serious health risks it poses have made it a major 

studied pathogen over the past 70+ years (Bernstein, 2009). Globally, by the age 

of five almost all children have been infected by RV (Ward, 1996). It is estimated 

that approximately 215,000 rotavirus deaths in children under the age of five 

occur globally each year (Tate, et al., 2016). RV is transmitted via the fecal-oral 

route and is extremely contagious (Cook, 1990). Infected persons may remain 

asymptomatic or have an acute gastroenteritis (AGE) with mild to severe 

Diarrhea and vomiting (Desselberger, 2014). AGE can lead to a massive 

electrolyte imbalance; leading to severe dehydration (Desselberger, 2014).  
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Dehydration and cardiac failure are the leading causes of deaths 

associated with RV infections (Desselberger, 2011; Tate et al., 2012). The WHO 

recommends oral rehydration therapy and zinc supplementation for rotavirus-

induced diarrhea management (Gandhi et al., 2016).  

In 1973, stool samples from several severe gastroenteritis cases in young 

children at the Royal Children’s Hospital in London, England, were obtained for 

transmission electron microscopy (TEM) and spherical particles were observed 

(Bishop et al., 1973). These 1973 TEM images were the first authentication of RV 

infection in humans using TEM and led to the use of EM in the diagnosis of RV 

infections (Bishop et al., 1973). Polyacrylamide gel electrophoresis (PAGE), 

enzyme linked immunosorbent assays (ELISA), and latex agglutination tests are 

used to test for RV infections (Esona and Gautam, 2015; Heymann, 2015). After 

the visualization of RV using EM in 1973 one of Ruth Bishop’s collaborators, 

Thomas Flewett, and his team put forward the Latin name “rota”, meaning wheel, 

due to RV’s unique wheel-like microscopic appearance (Flewett and Woode, 

1978). Four years later, in 1977, the International Committee on Taxonomy of 

Viruses agreed to officially name the pathogen “rotavirus” (Mathews, 1979).  

The Centers for Disease Control (CDC) and the World Health 

Organization (WHO) report that fatality rates associated with RV have fallen 

steadily since 1980 (Bishop, 2009; Gandhi et al., 2016). This decline is attributed 

mainly to the use of RV vaccines and the improvement of treatment protocols 



3 
 

 

(Bishop, 2009; Jiang et al., 2010). There are two licensed attenuated RV 

vaccines: RotaTeq® (Merck) and RotaRix® (GlaxoSmithKline). Rotarix® is an 

attenuated human RV vaccine made with a tissue-culture-adapted human strain, 

and RotaTeq® is a bovine (WC3)-human reassortment vaccine composed of 5 

strains, each containing a human rotavirus gene (Angel et al., 2007). These 

vaccines only protect against specific RV strains (Leshem et al., 2014). Recently 

a new attenuated RV vaccine, Rotavac®, was recently released in India by 

Hyderabad-based Bharat Biotech International (Bhandari et al., 2014; John, 

2014). Rotavac® only protects against an RV strain that is a common cause of 

severe diarrhea in children in India (Bhandari et al., 2014).   

Vaccines represent a major means in which to prevent the severe 

negative outcomes of rotavirus infection, especially in impoverished regions 

where resources and access to care may be limited (Madhi et al., 2016). 

However, the vaccines efficacies are dependent on the timing of vaccination, and 

are designed to protect against common RV strains in specific areas of the world 

and therefore do not provide universal protection (Glass, 2006; John, 2014). 

Neither natural RV infections nor RV vaccines provide full protection from future 

infections (Centers for Disease Control and Prevention, 2017). Vaccinated 

children are much less likely to get sick from rotavirus, and if they do, their 

symptoms are usually much less severe than unvaccinated children (Centers for 

Disease Control and Prevention, 2017). 
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Mature RVs are segmented double-stranded RNA viruses (Patton, 2012). 

RV particles (virions) are approximately 75 nanometers (nm) in diameter, non-

enveloped, and have three concentric icosahedral protein layers that encapsulate 

11 double stranded RNA segments (Estes, 2001; Heymann, 2015). Each RNA 

segment codes for one viral protein (VP) except for gene segment 11 which 

codes for two proteins (Estes, 2001). There are six viral structural proteins (VP1-

VP4, VP6 and VP7) and six nonstructural proteins (NSP1-NSP6) (Matthijnssens, 

et al., 2008). VP4 is then cleaved into two polypeptides, VP5 and VP8 (Jayaram 

et al., 2004). 

These proteins function either as a structural component of the virus 

particle (VP) or as a nonstructural protein (NSP) which is involved in various 

aspects of the viral replication cycle (Jayaram et al, 2004). The inner core of the 

RV particle is made up of 60 dimers of VP2 and encloses the complete viral 

genome as well as viral RNA dependent RNA polymerase, VP1 and the capping 

enzyme VP3 (Desselberger, 2014; Jayaram et al., 2004; Patton, 1995). The 

intermediate capsid layer is composed of VP6 and is arranged in a lattice form 

with 260 trimers forming the icosahedral layer (Desselberger, 2014; Payne et al., 

2006).  

In immature virus particles, the outside protein coats are made from only 

VP6 (Payne et al., 2006). These immature particles are known as noninfectious 

double layered particles (DLPs) (Payne et al., 2006). VP6 is large in size and 
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participates in communication with the inner VP2 layer in addition to the outer 

proteins, VP4, and VP7 (Payne et al., 2006). Rotavirus particles contain large 

channels that breach through the VP7 and VP6 layers (Payne et al., 2006). 

These channels facilitate the passage of aqueous materials through the capsid 

(Payne et al., 2006). When an RV particle contains both VP4 and VP7 it is 

considered a triple layered particle (TLP) and is considered infectious (Payne et 

al. 2006). The outermost layer consists of an icosahedral capsid made of VP7, a 

glycoprotein, with 60 projecting spikes that are made up of VP4 dimers (Payne et 

al., 2006). These spikes are required by the virions for efficient cell entry (Payne 

et al., 2006). When RV attaches to the host’s cell surface VP4 is cleaved by the 

small intestine enzyme trypsin (Estes et al., 1981). This produces a 

conformational change and the production of VP5 and VP8 which are necessary 

for viral entry into the host cell (Estes et al., 1981). 

 The process of viral entry is still not wholly understood. The process of 

receptor mediated endocytosis was the first accepted method of RV entry 

(Bernstein, 2009). It has also been found that low calcium levels in endosomes 

make it possible for direct membrane penetration via the solubilization of the 

outer capsid protein VP7 (Desselberger, 2014).  

The newly formed transcriptionally active DLPs are released into the 

cytoplasm (Gardet et al., 2006). The DLPs make their way into specialized 
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structures called viroplasms where viral replication begins to take place (Patton, 

1995).  

Viroplasms vary in size and shape depending on the replication cycle but 

are usually located adjacent to the nucleus (Desselberger, 2014). Viroplasms 

produce new DLPs which then bud into the endoplasmic reticulum (ER) by the 

attachment to a nonstructural protein (NSP4) (Desselberger, 2014; Greenberg 

and Estes, 2009). As VP4 and VP7 assemble, the ER membranes are removed, 

resulting in a mature TLP (Greenberg and Estes, 2009). TLPs are released in 

epithelial cells via budding (Gardet et al., 2006).  

There are many challenges in the attempt to combat RV. One major 

challenge is posed by reassortment, which leads to new RV strains (Patton, 

2012). All of the 11 rotavirus gene segments are responsible in creating rotavirus 

diversity in nature (Matthijnssens, et al., 2008). Reassortment can take place 

during co-infections producing novel RV strains (Ball, et. al., 2005; Patton, 2012; 

Yakshe et al., 2015). The differences in the efficacies of vaccines in developed 

and developing countries are also a major challenge (Lopman et al, 2012).  

Recent studies in the Parr laboratory have shown that two stilbenoids 

Arachidin-1 and -3 (A1 and A3) (natural products from peanut hairy root cultures) 

significantly reduce the production of infectious RV particles and decrease viral 

replication (Ball et al., 2015). These findings demonstrate the potential for the 

development of these stilbenoids as antiviral therapeutics.  
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 Stilbenoids are secondary metabolites which act as phytoalexins (a 

substance that is produced by plant tissues in response to contact with a parasite 

and that specifically inhibit the growth of that parasite) which are produced by 

plants including grape, berry, and peanut plants in response to pathogens and 

are derived from the phenylpropanoid/ acetate pathway (Huang et al., 2010; 

Moss et al., 2013). Phytoalexins tend to accumulate rapidly in areas of 

pathogenic infection and demonstrate anti-oxidative/anti-pathogenic properties 

(Chong et al., 2009; Jeandet et al., 2010).  

 Resveratrol is a stilbenoid commonly found in grapes used for making red 

wine, has received much attention due to its wide range of biological activities 

and potential health benefits (Berardi et al., 2009; Moss et al., 2013). These 

benefits may include: anti-oxidative-, anti-inflammatory-, cardioprotective-, 

antiviral-, anticancer-, and anti-aging-properties (Huang et al., 2010, Sobolev et 

al., 2006, Velayudhan et al., 2014).  

 Many in vitro and in vivo studies have demonstrated significant biological 

effects of resveratrol (Berardi et al., 2009; Nakamura et al., 2010; Palamara et 

al., 2005). However, at times it lacks biological activity due to its limited oral 

bioavaibility (Gambini et al., 2015; Vitaglione et al., 2005). Rapid absorption and 

metabolism leading to the formation of various metabolites such as resveratrol 

glucoronides and sulfates which are quickly released from the body may be 
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responsible for resveratrols curbed oral bioavailability (Gambini et al., 2015; 

Vitaglione et al., 2005).  

Resveratrol strongly inhibits the replication of influenza virus, improves 

survival, and decreases pulmonary viral infectivity titers in influenza virus-infected 

mice (Palamara et al., 2005). Furthermore, resveratrol exhibits no toxic effects in 

vitro or in vivo (Palamara et al., 2005). However, another study testing the effects 

of different concentrations of resveratrol on polyomavirus showed cytotoxicity in a 

time- and dose-dependent manner and inhibition of polyomavirus DNA synthesis 

(Berardi et al., 2009). Another study identified resveratrol derivatives with potent 

anti-HSV-1 and HSV-2 activity showing antiherpetic activity at single-digit 

micromolar concentrations (Chen et al., 2012). 

 In peanuts, the some of the known stilbenoids are prenylated, having an 

isopentenyl moiety as in A1 and A3 (Sobolev et al., 2006). Studies have shown 

that A1 has a higher efficacy in inducing programmed cell death in leukemia HL-

60 cells (Huang et al., 2010). These results show the potential use of A1 as an 

anti-cancer drug.  

Once peanut (Arachis hypohaea) hairy root cultures are exposed to abiotic 

(environmental) and biotic (caused by living organisms) stresses they produce 

stilbenoids including:  resveratrol, piceatannol, A3 and A1 (Chong et al., 2009). 

These stilbenoids have been shown to possess anti-inflammatory, anti-cancer 

and anti-proliferative properties (Chang et al., 2006; Djoko et al., 2007).  
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A synthetic version of A3 (sA3) has been produced by the laboratory of Dr. 

Medina-Bolivar (personal communications). A U.S. utility patent 9,981,895 was 

awarded on May 29, 2018 titled “Compositions and Methods of Synthesizing 

Arachidin-3 from Resveratrol”. Briefly, organic synthesis using primary 

alkylamines or primary hydroxyalkyl amines, or carboxy amines with natural 

carboxylic acids as catalysts to react isovaleraldehyde with trans-resveratrol is 

utilized in the production of sA3 (Clayton and Bandy, 2018). An azeotropic 

mixture comprising toluene with pyridine, n-butanol, n-propanol, 2-propanol, 2-

methyl-1-propanol, or other alcohols that form an azeotrope with toluene used as 

the organic solvent in which the synthesis is carried out (Clayton and Bandy, 

2018). Column chromatography (neutral), high performance liquid 

chromatography (HPLC), high performance counter-current chromatography, thin 

layer chromatography (TLC), nuclear magnetic resonance spectroscopy (NMR), 

and infrared spectroscopy (IR) are all utilized as purification and qualification 

analysis techniques in sA3 production (Clayton and Bandy, 2018).   

 One study suggests that the enhanced therapeutic activity of stilbenoids is 

likely the result from the increased ability to dissolve fats, oils, and non-polar 

solvents which is imparted by single or multiple groups present within their 

structure (Huang et al., 2010). It has been proposed that the greater lipophilicity 

of prenylated trans-Resveratrol (t-Res) analogues may allow for easier 

interactions between substances and cell membranes (Huang et al., 2010). This 
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may increase access and association with potential membrane-bound molecular 

targets responsible for the beneficial activities of these compounds (Huang et al., 

2010). Another study suggests that the lipophilic side chain (3-methyl-1-butenyl 

group) might hinder the addition of glucuronic acid to a substrate and thereby 

enhance the bioavailability of the analogues (Brents et al., 2012). Additionally, A3 

exhibits higher biological activities both in vitro and in vivo when compared to 

resveratrol, also demonstrating antiviral activity (Ball et al., 2015; Yang et al., 

2015).  

Our hypothesis is that the addition of the sA3 to RV-infected HT29.f8 cells 

decreases the amount of infectious viral particles in an infection and produces 

the same effects on the host cell as the natural A3. My hypothesis is that the 

addition of either the natural A3 or sA3 to a human RV-infected HT29.f8 cell line 

effects the infected host and effects the maturation of infectious RV particles. 

This results in the decrease of infectious viral particles produced, changes in the 

host cell ultrastructure, and regulation of the host gene transcripts.  This 

hypothesis will be tested using four objectives:  

(1) Establish that the viability of the cells are not affected with the addition of 20 

µM final concentration sA3 by performing cell viability assays;  

(2) Measure the progeny infectious RV particles using plaque forming unit (PFU) 

assays and total RV particles using tunable pulse sensing technology (TRPS); 
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(3) Visualize the effects of treatments on the cells using TEM, whole cell 

fluorescent staining, and morphometric analysis;     

(4) Determine the effects of treatments on gene expression and regulation of cell 

death pathways in treated host cells using qRT-PCR.
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Materials and Methods 

 

Cells, MycoFind™ Mycoplasma PCR detection kit, and virus  

MA104 cells were obtained from ATCC (Rockville, MD) and HT29.F8 

cells, a spontaneously polarizing cell line, were derived from the parent human 

adenocarcinoma (HT29) intestinal line (Mitchell & Ball, 2004). RV Wa (G[1] P[8] 

genotype) (Matthijnssens et al., 2008) was amplified, viral titers determined to be 

3.66E+11 PFU/mL by plaque forming unit (PFU) assays using MA104 cells, and 

stored at -80°C. Stilbenoid efficacy against RV was tested using HT29.f8 cells 

obtained from Dr. Judith Ball (Texas A&M University, College Station, TX).  The 

cell line was maintained in Dulbecco's Modified Eagle Medium (DMEM; Genesee 

Scientific, San Diego, CA) supplemented with 7.5% fetal bovine serum (FBS; 

Caisson, Smithfield, UT), L-glutamine (2 mM) (Caisson, Smithfield, UT), 

penicillin-streptomycin (100 µg/mL) (Caisson, Smithfield, UT) and non-essential 

amino acids (Caisson, Smithfield, UT) as a 100X solution. The amino acids were 

used at a 1X concentration of 100 µM each.) (Mitchell & Ball, 2004).  The cell 

lines were confirmed to be free of mycoplasma contamination using the PCR 

Mycoplasma Test Kit I/C (PromoKline, PromoCell GmbH, Heidelberg, Germany).  
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Briefly, the cell lines were cultured for 2 weeks in media lacking Pen/Strep. 

1 mL of supernatants from each cell line was transferred into sterile labelled 1.5 

mL microfuge tubes and centrifuged at 500 x g for 5 minutes in order to pellet 

cellular debris. The supernatants were then transferred into fresh sterile 1.5mL 

microfuge tubes and centrifuged at 14,000 x g for 15 minutes. The cell pellets 

were re-suspended with 100 µL of DNA free water. The test samples, positive 

control, and negative control were prepared as per Table 1.  

 

Table 1. PCR Mycoplasma Test Kit I/C sample preparation 

 Test 

sample 

Positive 

Control 

Negative 

Control 

Rehydration Buffer 23 µL 23 µL 23 µL 

Sample 2 µL   

DNA-free water  2 µL  

Fresh Cell Culture 

Medium  

  2 µL 

 

The contents of the test sample tubes, positive control tube, and negative 

control tube were mixed thoroughly via flicking the tubes. The lyophilized 



14 
 

 

components were allowed to dissolve by incubating the tubes for 5 minutes at 

25°C. The thermal cycling parameters laid out in Table 2 were used.  

 

Table 2. Thermal Cycling parameters used for PCR Mycoplasma Test Kit I/C 

1 cycle 95° for 2 minutes 

40 cycles 94°C for 30 seconds  

55°C for 30 seconds  

72°C for 40 seconds  

Hold  4°C  

 

The tubes were quickly tap-spun and 8 µL of the resulting products were 

run on a 1.5% agarose gel (0.75g Molecular Biology Certified agarose (IBI 

Scientific, Peosta, CA), 50 mL 1X TAE (Apex BioResearch Products, Genesee 

Scientific, San Diego, CA), 5 µL GelRed dye (Biotium Inc., Fremont, CA)) 

alongside the Apex 100 bp-Mid DNA marker (Genesee Scientific, San Diego, 

CA) for 1 hour at 100 volts using the BioRad PowerPac and Mini-Sub Cell GT 

(BioRad Laboratories, Hercules, CA). The gel was visualized on the Typhoon 

FLA 9000 (GE Healthcare Life Sciences, Uppsala, Sweden) using the following 

settings: Fluorescence, EtBr, 100 µM.  
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 Bio-production of stilbenoids in peanut hairy root cultures 

Natural A3 were purified from methyl-β-cyclodextrin (CD)-elicited peanut 

(A. hypogea) hairy root cultures as recently described (Abbott et al., 2010; 

Condori et al., 2010; Yang et al., 2015).  Briefly, 9-day peanut hairy root cultures, 

line 3 (Condori et al. 2010), were elicited with methyl-β-cyclodextrin (fresh MSV 

medium with 9 g/L methyl-β-cyclodextrin (Cavasol® W7 M)) (Medina-Bolivar et al. 

2007; Medina-Bolivar et al. 2010). Cultures were incubated in the dark at 28°C for 

an additional 72 hours to induce synthesis and secretion of stilbenoids into the 

culture medium (Abbott et al., 2010; Yang et al., 2015).  After the elicitation 

period, the culture medium was removed from each flask and combined. This 

pooled medium was mixed with an equal volume of ethyl acetate in a separator 

funnel to extract the stilbenoids as described previously (Jose Condori et al., 

2010).  The ethyl acetate phase was recovered and dried in a rotavapor (Buchi 

Corp., New Castle, DE), and A3 was purified from the extract with HPCCC.  

Fractions were collected every 30 seconds, dried in a speed-vac and selected 

fractions were checked for purity by mass spectrometry using an UltiMate 3000 

ultrahigh performance liquid chromatography (UHPLC) system (Dionex, Thermo 

Scientific, Waltham, WA) coupled with a LTQ XL linear ion trap mass 

spectrometer (Thermo Scientific, Waltham, MA) as previously described (Marsh 

et al., 2014).  HPCCC fractions containing A3 with over 95% purity based on 

HPLC analysis (UV 340 nm) were combined, dried under a nitrogen stream and 
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used for viral assays.  The dry mass of the purified stilbenoids were reconstituted 

in 0.02% DMSO with 1 µg/mL Worthington trypsin (WT) (Worthington 

Biochemical, Lakewood, NJ) in MEM medium.  

A synthetic version of A3 (sA3) has been produced by the laboratory of Dr. 

Medina-Bolivar (personal communications). A U.S. utility patent application was 

filed on March 29, 2016 titled “Compositions and Methods of Synthesizing 

Arachidin-3 from Resveratrol”. Briefly, organic synthesis using primary 

alkylamines or primary hydroxyalkyl amines, or carboxy amines with natural 

carboxylic acids as catalysts to react isovaleraldehyde with trans-resveratrol is 

utilized in the production of sA3 (Clayton and Bandy, 2018). An azeotropic 

mixture comprising toluene with pyridine, n-butanol, n-propanol, 2-propanol, 2-

methyl-1-propanol, or other alcohols that form an azeotrope with toluene used as 

the organic solvent in which the synthesis is carried out (Clayton and Bandy, 

2018). Column chromatography (neutral), high performance liquid 

chromatography (HPLC), high performance counter-current chromatography, thin 

layer chromatography (TLC), nuclear magnetic resonance spectroscopy (NMR), 

and infrared spectroscopy (IR) are all utilized as purification and qualification 

analysis techniques in sA3 production (Clayton and Bandy, 2018).   
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 RV Infections in HT29.f8 Cells 

To test the biological activity of A3 and sA3 on RV infections in HT29.f8 

cells, the cells were grown to 80% confluence in T25 tissue culture flasks 

(Corning Life Sciences); starved for fetal bovine sera 8 hours prior to infection, 

and then infected with RV Wa as previously described (Arnold et al., 2009; Ball et 

al., 2015; Yakshe et al., 2015).  Briefly, Wa RV stock was sonicated 10 min using 

a cup horn attachment and ice bath in a Misonix Sonicator 3000 (Misonix, Inc., 

Farmingdale, NY) and incubated in serum-free DMEM with 10 μg/mL trypsin 

(WT) for 45 min at 37°C. The activated viral inoculum was incubated with the 

cells for 1 hour at 37°C in 5% CO2 at an MOI of 2. At the scheduled collection 

times, cells were washed with Dulbecco’s PBS (Caisson Laboratories, Smithfield, 

UT) and released from the flasks using a 0.25% trypsin (0.25% trypsin in HBSS, 

Caisson Labs (North Logan, UT)). The supernatants were collected, clarified at 

10 000 x g for 5 min, and stored at -80°C for plaque assays and TRPS analysis 

(see below).  The cells were washed in 1X cold Dulbecco's PBS   (Caisson 

Laboratories, Smithfield, UT), fixed with 5% glutaraldehyde and used for TEM 

analysis as described below.  
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Toxicity of A3 and sA3 to HT29.f8 cells: Trypan Blue cell exclusion viability 

assay 

Viability assays were performed with RV alone, RV + 0.02% DMSO 

(bioWORLD, Dublin, OH), RV with 20 µM A3 or sA3,  20 µM A3 alone, 20 µM 

sA3 alone, cells without treatments (NV, no virus), and cell with 0.02% DMSO 

using the trypan blue cell exclusion assay (Ball et al., 2015; Freshney, 1994).  

Briefly, HT29.f8 cells were grown to 80% confluence in 6-well tissue culture 

plates (Corning Life Sciences, Corning, NY); starved from fetal bovine sera 8 

hours prior to the addition of 0.02% DMSO, 0.02% DMSO with 20 µM 

concentrations of the arachidins, RV (MOI 2), and RV (MOI 2) with 20 µM 

concentrations of the arachidins.  At 18 hours after the treatments, a suspension 

of ~106 cells/mL was diluted 1:1 with a 0.4% trypan blue solution (Sigma-Aldrich, 

St. Lois, MO. T8154, Lot RNBC8659), and loaded onto a Neubauer-improved 

hemocytometer (Paul Marienfeld Gmbh & Co. Kg., Lauda-Königshofen, 

Germany). Each of the four corner squares was used for counts. Any cell sitting 

on or outside a division line was not counted. The number of stained dead cells 

and total number of cells were counted, and the calculated percentage of live 

cells was reported. Each treatment was performed in triplicate, Data were 

statistically analyzed in Microsoft Office Excel 2016 software using one-way 

analysis of variance (ANOVA) and two-tailed Student’s t tests (significance level, 
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P <0.05) with Bonferroni’s post hoc test to correct for multiple comparisons (P < 

0.004545). 

 

Production of infectious virus particles with the addition of A3 or sA3 

6-well, flat bottom tissue culture plates (Olympus plastics, tissue culture 

plate, 6-well, flat bottom, cat. #25-105, Genesee Scientific) in were seeded with 

approximately 0.5X106 MA104 cells/well with 3mL complete MEM. Cells were 

grown to confluency (approximately 2 days). Plaque forming unit (PFU) assays 

were performed in triplicate as previously described (Arnold et al., 2009; Ball et 

al., 2015; Yakshe et al., 2015).  Briefly, 0.5 mL of 10-fold dilutions of RV alone 

and RV with 20 µM of A3 or sA3 supernatants collected at 18hpi from previous 

infections were added to serum starved MA104 cells for 1 hour at 37°C, 5% CO2. 

The virus inoculum was removed and the wells were washed gently with pre-

warmed Dulbecco’s PBS (GE Healthcare Life Sciences, HyClone Laboratories, 

Logan, Utah) after which 3 mL of a medium overlay consisting of a 1:3 mixture of 

5% agarose (Apex Low Melting Point Agarose, Genesee Scientific Inc., San 

Diego, CA) and complete serum-free MEM with a 1:100 dilution of 100X 

Pen/Strep was overlaid and allowed to set and incubated at 37°C in 5% CO2 for 

approximately 1-2 days or until plaques became visible.  A neutral red overlay 

consisting of a 1:3 mixture of 5% agarose with serum-free MEM containing 50 
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μg/mL neutral red was prepared and 1 mL per well of stain overlay was added on 

top of the first agarose/medium overlay and allowed to set. The six-well plates 

were incubated at 37°C until plaques were clearly visible (approximately 12 to 36 

hours).  The individual plaques were counted, and the titers were calculated as 

follows:   

 

Number of plaques x 1/dilution factor x 1/ (mL of inoculum) = PFU/mL 

 

Plaque forming assays were performed four times in triplicate as outlined 

above.  Data were expressed as mean  SD, and comparisons were statistically 

evaluated by analysis of variance (ANOVA) and two-tailed Student’s t tests using 

Microsoft Excel 2016 software (significance level, P < 0.05). 

 

Quantification of nanoparticles and size distribution by TRPS analysis 

TRPS analysis using the qNano system (Izon Science, Cambridge, MA) 

was performed on the RV-infected cell supernatants to display the concentration 

of virus particles/mL, diameter of RV particles and size distribution of particles.  

TRPS is based on a coulter counter that is composed of two fluid reservoirs filled 

with an electrolyte or other conductive medium and separated by a membrane 
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containing a nanopore (Kozak et al., 2011; Weatherall et al., 2016).  When an 

electrical field is applied across the pore, the resistance to the resulting ionic 

current is indirectly proportional to the cross-sectional area of the pore.  When a 

non-conducting particle passes through the pore, the increase in resistance is 

proportional to the particle volume relative to pore size. This change in resistance 

is detected as a pulse in an ionic current. The pulse frequency is proportional to 

particle flow rate and particle concentration (DeBlois, 1970). This system 

provides a quick and accurate method with which to measure sizes of individual 

nanoparticles and their volume in a solution.  All qNano experiments were 

performed using the manufacturer's established protocols (Bo et al., 2014; Jones, 

2015; Vogel et al., 2011).  Briefly, samples were purified using a qEV 10 size 

exclusion column from Izon (Izon Scientific, Cambridge, MA) (containing resin 

with approximately 75nm pore size). The samples were suspended in Dulbecco’s 

PBS with 0.025% Tween 20 to reduce particle aggregation and facilitate the 

wetting of the nanopore. A 1:1000 dilution of the sample was placed on the 

qNano size-tunable nanopore (NP100, Izon), and each sample was measured as 

a transient change in the ionic current flow using the custom assistant application 

in IZON proprietary software v3.2.2.268 (Izon). Samples are driven through the 

nanopore by applying a combination of pressure and voltage, and each particle 

causes a blockade signal which is detected and measured by the application 

software. Blockade magnitude is proportional to the volume of each particle 
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(Vogel et al., 2012), and the blockade frequency is used to determine particle 

concentration (Roberts et al., 2012). These values are converted into particle 

properties (size and concentration, respectively) by calibration with particles of 

known size and concentration (CPX100B, Izon). The size distribution and 

concentration analysis was performed using IZON proprietary software 

v3.2.2.268 (Izon). 

 

 TEM morphometric analysis of arachidin treated RV-infected HT29.f8 cells 

TEM analysis was performed on RV-infected HT29.f8 cells to visualize the 

effects of A3 and sA3 on progeny virus and cellular morphology as described by 

Wright (2000).  Briefly, RV-infected HT29.f8 cells with and without 20 µM A3 or 

sA3 were incubated for 16 and 18 hpi, washed with Dulbecco’s PBS and then 

trypsinized.  Cells were pelleted and fixed with 5% glutaraldehyde (Electron 

Microscopy Sciences, Hatfield, PA) and refrigerated overnight at 4°C. The cells 

were post-fixed with 2% osmium tetroxide (Electron Microscopy Sciences, 

Hatfield, PA) followed by an overnight incubation in a uranyl acetate solution 

(Electron Microscopy Sciences, Hatfield, PA). Cells were dehydrated with a 

graded ethanol series (2x wash with deionized water at 10-15 minute intervals, 

followed by ethanol series at 10-15 minute intervals: 20% EtOH, 40% EtOH, 60% 

EtOH, 80% EtOH, 95% EtOH, 2x 100% EtOH, 2x 100% Acetone) (Electron 



23 
 

 

Microscopy Sciences, Hatfield, PA). Acetone was used for the transitional 

solvent, after which the samples were infiltrated and embedded in Spurr’s resin  

(Electron Microscopy Sciences, Hatfield, PA) (70% Spurr’s resin, 30% Acetone, 

replaced with 100% Spurr’s resin after 8 hours and polymerized at 70°C 

overnight in a Robbins Scientific Model 400 Hybridization Incubator (Robbins 

Scientific Corporation, Sunnyvale, CA)). Ultra-thin sections (~50-80 nm) were 

obtained with an RMC MT-X ultra-microtome (Boeckeler instruments, Tucson, 

AZ) and stained with uranyl acetate and lead citrate (Electron Microscopy 

Sciences, Hatfield, PA). Samples were examined and photographed  with a 

Hitachi H-7000 transmission electron microscope operating at 75 KeV (Wright, 

2000), negatives were digitized at 600 dpi using the HP Scanjet G4050 (HP Inc., 

Palo Alto, CA), and image analysis was performed using Macnification Version 2 

(Orbicule, Inc., www.orbicule.com). The mean ratio of the cell nucleus to 

cytoplasm was determined using 10 micrographs of cells from each treatment to 

compare between test and control groups. Data were statistically analyzed in 

Microsoft Office Excel 2016 software using one-way analysis of variance 

(ANOVA) and two-tailed Student’s t tests (significance level, P <0.05) with 

Bonferroni’s post hoc test to correct for multiple comparisons (P <0.0033). 

 

 

http://www.orbicule.com/
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Whole cell fluorescent staining for morphometric analysis  

The nucleus and plasma membranes of HT29.f8 cells were fluorescently 

labelled to determine the ratios of the nucleus to cytoplasm of whole cells to 

compare to the nucleus to cytoplasm ratios obtained with TEM.  Briefly, cells 

were grown to 80% confluence in 8-well slides (Lab-Tek Chamber Slide System, 

Nunc, Inc. Naperville, IL) and RV-infected and treated with the arachidins as 

described above (RV alone, RV with 20 µM A3 or A3, 20 µM sA3 alone, or 20 µM 

sA3 alone, and cells without treatments (NV-no virus). At 18 hpi, the cells were 

washed with PBS 1x one time at 25°C, and then fixed with 1% Glutaraldehyde 

(Electron Microscopy Science, Hatfield, PA) for one hour at 25°C in a fume hood 

(Harlow and Lane, 1988). Following fixation, the cells were washed twice with 

PBS 1x at 25°C. The Image-IT™ LIVE Plasma Membrane and Nuclear Labeling 

Kit (I34406) (Molecular Probes, Invitrogen detection Technologies, Eugene, OR) 

was used to label the cells. Briefly, one solution for the single step staining for 

both stains was prepared by adding 5.0 µg/mL Alexa Flour 594-labeled wheat 

germ agglutinin and 1 µM Hoechst 33342 stain into 1x PBS. Two hundred µLs of 

the labelling solution was added to each well in 8-well chambered slides, and 

incubated for ten minutes at 25ºC, removed and the cells were washed twice with 

PBS 1x, and mounted in PBS 1x. The microscopic analysis was carried out using 

the Olympus BX50 with DP Manager System compound light microscope with 

epifluorescense illumination for Alexa Flour 594 labeled wheat germ (Excitation 
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480-550nm, dichroic mirror DM 570nm, barrier filter 590nm) and Hoechst 33342 

(Excitation 330-385nm, dichroic mirror DM 400nm, barrier filter BA420nm) with 

the DP71 camera (Olympus Corporation, Shinjuku, Tokyo, Japan) equipped with 

x 40 and X100 objectives. The images were digitized using the DP Controller 

software (Olympus Corporation), and the pixels of the nucleus and whole cell 

were measured using Macnification Version 2 (Orbicule, Inc., www.orbicule.com). 

Excel was used to determine the mean nucleus to cytoplasm ratio of the cells (N 

= 50 cells of each treatment). Data were statistically analyzed in Microsoft Office 

Excel 2016 software using one-way analysis of variance (ANOVA) and two-tailed 

Student’s t tests (significance level, P <0.05) with Bonferroni’s post hoc test to 

correct for multiple comparisons (P <0.0033). 

 

Quantification of Transcripts for Cell Death Pathway Genes in HT29.f8 Cells 

QuantiFluor dsDNA System 

 The QuantiFluor dsDNA System contains a fluorescent DNA-binding dye 

(504nmEX/531nmEM) that enables sensitive quantitation of small amounts of 

double-stranded DNA (dsDNA) in a purified sample. Before conducting the qRT-

PCR studies a QuantiFluor assay standard curve was conducted to determine 

accuracy of pipettes and handling. Briefly, a working solution was prepared by 

diluting the QuantiFluor dsDNA dye 1:400 in 1X TE buffer to make the 

http://www.orbicule.com/
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Quantifluor dsDNA de working solution. A standard curve was prepared resulting 

in 0.05-200ng/well as shown in table 3.  

 

Table 3. Preparing Recommended dsDNA standard Curve Samples. 

Standard Volume of dsDNA 

Standard (µl) 

Volume of 1X TE 

Buffer (µl) 

Final dsDNA 

Concentration (ng/µl) 

A 20 80 20 

B 25 of standard A 75 5 

C 25 of standard B 75 1.25 

D 25 of standard C 75 0.31 

E 25 of standard D 75 0.078 

F 25 of standard E 75 0.02 

G 25 of standard F 75 0.005 

 

200µl of QuantiFluor dsDNA Dye working solution was pipetted into each 

well intended for an unknown, blank or standard. Each standard and unknown 

was performed in triplicate. 10 µl of the dsDNA standards prepared as in table 3 

was dispensed into the plate using a multichannel pipet. For the blanks, 10 µl of 

1X TE buffer was loaded into the blank wells. 10-fold dilutions of the unknown 

were made and plated in triplicate. The plate was loaded into the VERSAmax 
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tunable microplate reader (Molecular Devices, Sunnyvale, CA) and the plate was 

shaken for 10 seconds to facilitate thorough mixing. The plate was incubated at 

room temperature for 5 minutes protected from light. The fluorescence 

(504nmEX/531nmEM) was measured using VERSAmax tunable microplate reader 

(Molecular Devices, Sunnyvale, CA) and the SoftMax Pro v5 software (Molecular 

Devices Corp., Sunnyvale, CA). The dsDNA was calculated as follows: the 

florescence of the blank sample (1X TE Buffer) was subtracted from all of the 

standard and unknown samples. The corrected data from the DNA standards 

was then used to generate a standard curve of fluorescence versus DNA 

concentration. The unknown samples DNA concentration was then determined 

from the standard curve and multiplying the resulting number by the dilution 

factor if applicable.  

 

Efficiency Assay 

 Robust and accurate qPCR assays are typically associated with high PCR 

efficiencies (Bustin et al., 2009). The ∆∆Ct method was utilized to determine 

differences in concentrations between samples and is based on normalization 

with a reference gene(s) (Bustin et al., 2009). The ∆∆Ct method assumes a 

uniform PCR amplification of 100% across all samples (Rao et al., 2014). 

Therefore, genes must be amplified with comparable efficiencies for this 
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comparison to be accurate (Bustin et al., 2009). Efficiencies usually are not 

exactly 100% due to factors such as the presence of PCR inhibitors or enhances, 

RNA extraction, and different uses of probes, primers, and enzymes (Rao et al., 

2014). Efficiencies of 90-100% are considered usable for publication (Rao et al., 

2014). Amplification efficiency should be determined from the slope of the log-

linear portion of the calibration curve (Bustin et al., 2009).The equation: 

 

PCR efficiency= 10-1/slope -1 

 

In which the logarithm of the initial template concentration is plotted on the x axis 

and the Ct is plotted on the y axis was used to determine efficiencies. The 

theoretical maximum of 1.00 (100%) indicates that the amount of product 

doubles with each cycle (Bustin et al., 2009).  

RNA was extracted from each experimental set described above. The 

ZYMO Research Quick-RNA Miniprep (Catalog number R1054) (Zymo research 

corp., Irvine, CA) was used to extract and purify total RNA according to the 

manual protocol.  cDNA was synthesized using the ThermoFisher cDNA 

synthesis kit (Thermo Fisher Scientific, Inc., Waltham, MA). Efficiency assays 

were run using the suggested Luna Universal Probe and qPCR Master Mix (New 

England Biolabs, Ipswich, MA) thermal cycling protocol described below.  
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Briefly, the samples were lysed and homogenized by adding 600 µL of 

lysis buffer directly to each T75 flask, rocking gently, transferring cells to 1.5 mL 

microfuge tubes, and passing each sample through a clean 26G3/8 syringe 5-10 

times. Sample cleaning and gDNA removal was performed by centrifuging the 

samples at 12 000 x g for 1 minute, transferring the samples to spin-away filters 

(yellow) in a collection tube and centrifuging at 12 000 x g for 1 minute. The flow-

through was used for RNA purification. RNA purification was performed by 

adding 1 volume of 200-proof ethanol to each RNA sample and mixing well. The 

samples were then transferred to Zymo-spin III CG columns (green) in collection 

tubes and centrifuged at 12 000 x g for 30 seconds. In-column DNase I treatment 

was then performed: The samples were washed with 400 µL RNA wash buffer, 

centrifuged at 12 000 x g for 30 seconds, the flow-through discarded, and then 

80 µL of DNase I treatment mix (5 µL DNase I, 75 µL DNA digestion buffer) was 

added to each column matrix and incubated at room temperature for 15 minutes 

followed by a 12 000 x g centrifugation for 30 seconds. The samples were 

washed with 400 µL RNA prep buffer and centrifuged at 12 000 x g for 30 

seconds. 700 µL of RNA wash buffer was added to each sample and they were 

centrifuged at 12 000 x g for 30 seconds. A further wash was performed using 

400 µL RNA wash buffer and a centrifugation at 12 000 x g for 2 minutes. The 

columns were places in RNase-free tubes and 50 µL of DNase/RNase free 

deionized water was used to elute the samples; after placing the 50 µL of water 
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on each sample they were spun at top speed for 30 seconds, the flow through 

was recovered and re-applied to the columns for a further spin at top speed for 

30 seconds. Total RNA was analyzed using a full spectrum analysis at 240 nm- 

300 nm in the Cary 50 spectrophotometer (Agilent, Corp., Santa Clara, CA). The 

total RNA was stored at -80C for future studies. A conversion factor of 40 μg/mL 

was used to convert the A260 to concentration and the value of 10 corrected for 

path length of 0.1 mm (Sean and Wiley, 2008). The concentration of RNA was 

calculated using the formula as follows:  

 

Concentration of RNA= A260 x 40 μg/mL x 10 x Dilution factor 

 

 cDNA was then synthesized using the Thermo Scientific Verso cDNA 

Synthesis Kit from each experimental set using 500 ng of purified total RNA.  A 

Master Mix was prepared as described in the manufacturer’s protocol as shown 

in Table 4 (Thermo Fisher Scientific, Inc., Waltham, MA).  
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Table 4. cDNA Master Mix 

 Volume (µL) Final Concentration 

5x cDNA synthesis 
buffer 

4 1x 

dNTP Mix 2 500µM each 

Anchored oligo dT and 
random hexamer mix a 

1  

Verso Enzyme Mix 1  

RT enhancer 1  

Template RNA  5 500ng/5µL 

Nuclease-free water 6  

Total volume 20  
a 3:1 mix of random hexamer and anchored oligo dT 
 

The samples were then placed into the BioRad Real-Time System C1000 

Thermal Cycler Instrument (BioRad, Hercules, CA) for the following cycle (Table 

5). 

 

Table 5.  cDNA synthesis thermal cycling parameters.   
 

 

 

 

cDNA samples were purified using the Monarch PRC & DNA Cleanup Kit 

(New England Biolabs, Ipswich, MA) as per the quick protocol for oligonucleotide 

cleanup and then quantified using the Cary 50 spectrophotometer (Agilent, Corp., 

Santa Clara, CA). Briefly, samples were brought up to 50 µl with nuclease-free 

  Temperature  Time  Number of cycles  

cDNA synthesis  42°C 30 min 1 cycle 

Inactivation  95°C 2 min  1 cycle 
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water. 100 µl of DNA Cleanup Binding Buffer was added to each 50 µl sample 

after which 300 µl of 200-proof ethanol (Decon Laboratories Inc., King of Prussia, 

PA) was added to each sample. The samples were mixed well by gentle 

pipetting. Samples were loaded onto columns in collection tubes and centrifuged 

at 16 000 x g for 1 minute, the flow-through discarded, and the columns re-

inserted into the collection tubes. Two washed with 500 µL of DNA Wash Buffer 

were performed at 16 000 x g for 1 minute with the flow-through discarded. The 

columns were transferred into clean 1.5 mL microfuge tubes and 10 µl of elution 

buffer placed in the center of the matrix and incubated for 1-2 minute before 

centrifuging at 16 000 x g for 1 minute. An additional 5 µl of elution buffer was 

added to the matrix and incubated for 1-2 minutes before spinning at 16 000 x g 

for 1 minute. The cDNA of the same samples was pooled.  

Total cDNA was analyzed using a full spectrum analysis at 230 nm- 300 

nm in the Cary 50 spectrophotometer (Agilent, Corp., Santa Clara, CA). Total 

cDNA concentrations were calculated using the formula as follows:  

 

Concentration of cDNA= A260 x 33 µg/mL x 10 x dilution factor 

 

Samples of cDNA were stored at -20°C and were diluted to a 50 ng/ 5 µl 

concentration as needed for qRT-PCR experiments.  
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The qRT-PCR experiment was performed using a CFX96 Touch Real-

Time PCR Detection System (BioRad, Des Plaines, IL).  For all experiments, 

reactions were performed in triplicate with Luna Universal qPCR Master Mix 2X 

concentration (New England Biolabs, Ipswich, MA) that contained all necessary 

components to perform a DNA-binding dye base real-time DNA amplification 

experiment. Primers were purchased from Integrated DNA Technologies 

(Coralville, IA) with the sequences, Tm, and base pairs sizes of the products 

shown in Table 6. 

 

Table 6. Primers for qRT-PCR studies 
Genes Primer 

name Primer sequence (5′-3′) 

Size 
(bp) Ref Number 

GAPDH GAPDH For GAGTCCACTGGCGTCTTCA  190 NM_001289746.1 
  GAPDH Rev GGGGTGCTAAGCAGTTGGT    

β-Actin β-Actin For ATCCTCACCCTGAAGTACCC 183 NM_001101.3 
  β-Actin Rev TAGAAGGTGTGGTGCCAGAT   

Caspase 3 Casp3 For AGAACTGGACTGTGGCATTGAG  191 NM_004346.3 
  Casp3 Rev GCTTGTCGGCATACTGTTTCAG   

Caspase 6 Casp6 For ACAGGAGGAGAGGAATTGCT 201 NM_001226.3 
  Casp 6 Rev GGCTAACAGTTGACACCTCATG   

Caspase 7 Casp 7 for2 TCAGTGGATGCTAAGCCAGA 199 NM_001267056.1 
  Casp 7rev2 GAACGCCCATACCTGTCACT   

Caspase 8 Casp8 For GGTCACTTGAACCTTGGGAA 146 NM_001080124.1 
  Casp8 Rev CGGAATGTAGTCCAGGCTCA   

Caspase 9 Casp9 For ACACCCAGACCAGTGGACAT 148 NM_001229.4 
  Casp9 Rev CACGGCAGAAGTTCACATTG   

BCL2 BCL2 For  CAGTTGGGCAACAGAGAACCAT 171 NM_000633.2 
  BCL2 Rev AGCCCTTGTCCCCAATTTGGAA   

 

http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Search&db=Nucleotide&term=NM_022900
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Each reaction mixture contained 10 l of 2X Luna Universal qPCR Master 

Mix, 0.5 l of 10 M forward/reverse primers, 5 l template cDNA (200ng, 100ng, 

50ng, 25ng, 12.5ng, and 6.25ng) and nuclease-free water to a final volume of 20 

l. The 96-well plates were centrifuged at 2500 x g for 4 minutes using the 

Beckman induction drive centrifuge J-6M (Beckman Coulter, Brea, CA). The 

suggested Luna thermal cycling protocol (Table 7) was used for the initial time 

course study.  

 

Table 7.  LUNA PCR thermal cycling conditions used for qRT-PCR.   
 

 

 

 

 

 

In order to conduct the efficiency assays duplicated of cDNA dilutions 

were plated in concentrations of 200 ng, 100 ng, 50 ng, 25 ng, 12.5 ng, and 6.25 

ng/well. With the appropriate 0.5 µl forward and reverse primers, 10 µl Luna 

Universal qPCR Master Mix (NEB BioLabs, Ipswich, MA) and 4 µl RNase and 

DNase free water.  

 

Initial denaturation 95°C  1 minutes 

 PCR (45 cycles) 95°C 15 seconds 

60°C 30 seconds 

Melt curve 
60-95°C Increments of 0.5°C  

5 seconds 
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The following thermal cycling conditions were used: 

 

Table 8. qRT-PCR thermal cycling parameters  

 

 

 

 

 

The Ct values obtained were exported into Microsoft Excel and the 

logarithm of the initial cDNA template concentration is plotted on the x axis and 

the Ct is plotted on the y axis per primer set (GOI). A standard curve was created 

and the equation and R2 inserted. The slope from the generated equation was 

inserted into the following equation in order to determine the efficiencies.  

 

E=10(-1/slope)-1x100 to determine % efficiency 

 

 Experiments were performed twice in duplicate. Due to the fact that the 

efficiency for BCL2 could not be determined it was dropped from further studies 

and I concentrated on the caspase GOI.  

Initial denaturation 95°C  1 minutes 

 PCR (45 cycles) 95°C 15 seconds 

60°C 30 seconds 

Melt curve 
60-95°C Increments of 0.5°C  

5 seconds 
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Quantitative real time polymerase chain reaction assays (qRT-PCR) 

 The structural changes observed by TEM and whole cell staining were 

validated by quantitative real-time polymerase chain reaction (qRT-PCR) assays.  

 Infections, RNA extraction at 6-, 7-, 8-, and 9-hpi, and cDNA synthesis 

were performed as previously described. 50ng of cDNA was used per reaction. 

Plates were run in triplicate as previously described.   

GAPDH and -actin were used as housekeeping genes to normalize for 

relative expression analyses. The cycle threshold (Ct) value or cycle number 

obtained from a single reaction for each standard reaction were all values that fell 

within a linear portion of the standard curve.  The obtained Ct values from the 

qRT-PCR experiment were exported to Microsoft Excel 2016 for data analyses.  

Fold change in signals of expression of the genes of interest relative to GAPDH 

and -Actin were determined by using the Ct method.  The results were 

expressed as mean  SD.   

 

CellTiter 96 AQueous One Solution Cell Proliferation Cell Viability Assay 

 Determining seeding density 

 In order to get accurate readings for the CellTiter 96 AQueous One Solution 

Cell Proliferation Cell Viability Assay (Promega, Madison, WI) readings at 490nm 

need to be less than 1 abs on the VERSAmax tunable microplate reader and 
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SoftMax Pro software (Molecular Devices, Sunnyvale, CA). In order to determine 

what seeding density of cells would give accurate measurements and what 

incubation period to use cells were seeded at 105, 104, 103, 102, and media only 

in triplicate and incubated at 37°C, 5% CO2 for approximately 24 hours. Cells 

were serum starved for 8 hours by replacing the media with DMEM +all without 

FBS media and incubated at 37°C, 5% CO2. Treatments were prepared as 

previously described. Briefly, 25 µL/well of DMEM +all without FBS + 1:1000 WT 

was used for the NV treatments. 25 µL/well of RV treatment made up in DMEM + 

all without FBS + 1:1000 WT having an MOI of 2 was used for the RV treatment. 

DMEM + all without FBS + 1:1000 WT was placed in the blank wells. Treatments 

were left on for an hour as previously described. After an hour the treatment were 

removed and replaced with DMEM + all without FBS + 1:10 000 WT and 

incubated at 37°C, 5% CO2 for 18 hours. At 18 hpi 20 µL of AQueous One Solution 

Reagent was added to each well. The plate was incubated at 37°C, 5% CO2 for 1 

hour protected from light. At the one hour incubation period the plate was 

transferred to the VERSAmax tunable microplate reader (Molecular Devices, 

Sunnyvale, CA) where it was mechanically shaken for 10 seconds before the 490 

nm absorbance was recorded. The data was then blanked using the blank row. 

The cell viability was calculated as follows:  

 

Cell viability (%)= Treatmentabs/NVabs x 100 
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The results from the initial cell seeding experiment were used when 

designing the protocol for the full CellTiter 96 AQueous One Solution Cell 

Proliferation Cell Viability Assay and APO 3/7 assay.   

 

CellTiter 96 AQueous One Solution Cell Proliferation Cell Viability Assay 

Viability assays were performed with RV alone, RV with 20 µM A3 or sA3, 

20 µM A3 or sA3 alone, and cells without treatment (NV) using the CellTiter 96 

AQueous One Solution Cell Proliferation Assay (Promega, Madison, WI). Briefly, 

cells were seeded at a density of 104 in 96 well plates (Evergreen Scientific, Los 

Angeles, CA). Approximately 24-hours after plating the cells were serum starved 

for 8 hours by replacing the media with DMEM + all without FBS media and 

incubated at 37°C, 5% CO2. Treatments prepared as described in the RV 

Infection section were performed. Briefly, Wa RV stock was sonicated 10 min 

using a cup horn attachment and ice bath in a Misonix Sonicator 3000 (Misonix, 

Inc., Farmingdale, NY) and incubated in serum-free DMEM with 10 μg/mL trypsin 

(WT) for 45 min at 37°C. The activated viral inoculum was incubated with the 

cells for 1 hour at 37°C in 5% CO2 at an MOI of 2. After which the treatments 

were removed and DMEM + all without FBS + 1:10 000 WT was placed on the 

cells (100 µl/well) and incubated for 12-18 hours at 37°C, 5% CO2. At 12-, 14-, 

16-, and 18hpi 20 µl of the CellTiter 96 AQueous One Solution Reagent was added 

to each well containing 100 µl of culture medium using a multi-channel pipet. The 
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plates were incubated at 37°C, 5% CO2 for 1 hour protected from light. After the 

incubation time the plates were read on the VERSAmax tunable microplate reader 

and SoftMax Pro software (Molecular Devices, Sunnyvale, CA). The plates were 

shaken for 10 seconds and then the absorbance at 490 nm was recorded. Cell 

viability was calculated by blanking data against the blank well (media + AQueous 

One Solution Reagent). The blanked data was then used to calculate the cell 

viability using the following formula:  

 

Treatment 490nm absorbance/NV 490nm absorbance x 100 = % cell viability 

 

Each treatment was performed in triplicate and experiments were 

repeated three times. Data were statistically analyzed in Microsoft Office Excel 

2016 software using one-way analysis of variance (ANOVA) and two-tailed 

Student’s t tests (significance level, P <0.05) with Bonferroni’s post hoc test to 

correct for multiple comparisons (P <0.005). 

 

Apo-ONE Homogeneous Caspase-3/7 Assay  

Apo-ONE Homogeneous Caspase-3/7 assays were carried out at 12-, 14-, 

16-, and 18-hpi using the Apo-ONE Homogeneous Caspase-3/7 Assay 

(Promega, Madison, WI). Briefly, HT29.f8 cells were plated in 96-well tissue 

culture microplates (#333-8000-01F) (Evergreen Scientific, Los Angeles, CA) per 
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time point at 104 cells/well and incubated at 37°C, 5% CO2 for 24 hours. The cells 

were then serum starved overnight by replacing media with DMEM + all without 

FBS. The cells were infected as previously described and accounting for blanks 

and negative controls. After treatment 100 µl of DMEM + all without FBS + 1:10 

000 WT was placed in each well. At the 12-, 14-, 16-, and 18-hpi time points the 

media was removed and replaced with 25 µl/well of fresh DMEM + all without 

FBS media. 25 µl of Apo-ONE Caspase-3/7 Reagent was added to each well and 

the plates shaken for 15 minutes using the Bio-Rad iMark Microplate Reader 

(Bio-Rad, Hercules, CA) and then kept in the dark at room temperature for a 

further 45 minutes. The contents of the wells were then transferred to a 

microplate 96 well black plate (Greiner bio-one, 655096) (Greiner bio-one Inc., 

Denver, CO). The contents of the wells were gently spun down at 2500 rpm 

using the Beckman Coulter Avanti J-15R centrifuge (Beckman Coulter, Brea, 

CA).  

Fluorescence was measured at 499nm using the Typhoon FLA 9000 (GE 

Healthcare Bio-Sciences AB, Uppsala, Sweden) and determined empirically. 

 Caspase-3/7 activity was calculated as follows: 

 

Assay RFU-Blank RFU 

Blanked Assay RFU- Blanked Negative Control RFU/Negative control 
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The percent cell viability for each treatment obtained from the AQeous One assay 

was used to further correct the data. 

 

Data were statistically analyzed in Microsoft Office Excel 2016 software 

using one-way analysis of variance (ANOVA) and two-tailed Student’s t tests 

(significance level, P <0.05) with Bonferroni’s post hoc test to correct for multiple 

comparisons (P <0.005). 
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RESULTS 

 

Mycoplasma Detection  

The PCR Mycoplasma Test Kit I/C from PromoKine was used to detect 

over seven species of Mycoplasma. The positive control shows a distinct band at 

265-278bp which represents a highly conserved 16S rRNA operon region in the 

Mycoplasma genome. The negative internal control and both samples only 

showed a band at 479bp indicating that the amplification process was successful 

and that both cell lines are mycoplasma free (Fig. 1). 
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Figure 1. PCR Mycoplasma testing in HT29.f8 and MA104 cell lines. PCR 
products from the PCR Mycoplasma Test Kit I/C and the Apex 100 bp-Mid DNA 
marker (Genesee Scientific, San Diego, CA) were run on a 1.5% agarose gel, 
and visualized on the Typhoon FLA 9000 (GE Healthcare Life Sciences, 
Pittsburgh, PA). The positive control shows a distinct band at 265-278 bp. The 
internal control band was present in all samples at 479bp indicating that the PCR 
reaction was successful in all samples and that both cell lines are mycoplasma 
free. 
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Toxicity of A3 and sA3 on HT29.f8 cells  

Percent live/dead cells were calculated using the trypan blue exclusion 

dye assay as previously described (Ball et al., 2015).  At 18hpi, the cells treated 

with NV, A3, and sA3 had cell viabilities of 93.5% ±1.73, 95.25% ±2.50, and 

93.75% ±2.06, respectively. Cells infected with RV alone had a viability of 

90.75% ±2.06 and cells with RV and 0.02% DMSO had a viability of 91.25% 

±1.89. RV-infected cells treated with the A3 and sA3 showed an increased 

viability of 94.75% ±2.22 and 92.50% ±1.25, respectively (Fig. 2). Therefore, the 

arachidins had no cytotoxic effect on the cells when applied at 20 µM 

concentrations.  
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Figure 2. HT29.f8 cell viability assay at 18hpi using a trypan blue exclusion dye 
assay. Cells were counted in quadruplicate for each treatment at 18hpi and 
percent live/dead cells were calculated. Data were statistically analyzed in 
Microsoft Office Excel 2016 software using a one-way analysis of variance 
(ANOVA) and a two-tailed Student’s t tests (significance level, P <0.05) with 
Bonferroni’s post hoc test to correct for multiple comparisons (P < 0.004545). 
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Production of infectious RV with the addition of A3 and sA3 

Supernatants collected at 18hpi from the RV-infected and RV-infected with 

20 µM concentrations of A3 or sA3 were used for plaque forming assays to 

quantify the amount of infectious viral progeny produced (Arnold et al., 2009).  

The PFU assays demonstrated statistically significant differences between RV 

and RV+A3 (P = 0.0075) and RV and RV+sA3 (P = 0.0075); representing 48-fold 

change decrease in PFU with A3 treatment and a 51-fold change decrease in 

PFU with sA3 treatment (Fig.3).   
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Figure 3. Quantification of infectious Wa RV particles using plaque forming 
assays (PFU/mL) at 18 hpi. HT29.f8 cells were infected with RV, RV+20 µM A3, 
or RV +20 µM sA3.  At 18 hpi, the supernatants were collected, clarified by 
centrifugation, and used in plaque forming assays. The RV titer was 3.66E11, RV 
with A3 titer was 7.67E09, and RV with A3 titer was 7.17E09. Experiments were 
conducted in triplicate during four different experiments.  *Comparison of RV only 
and RV+A3, P= 0.0075 **Comparison of RV only and RV+sA3, P= 0.0075. 
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Quantification of nanoparticles and size distribution by TRPS 

analysis 

The concentrations and diameters of nanoparticles (~50-150 nm) were 

measured using the Izon qNano system at 16 and 18hpi. Figure 4 are the 

resultant images created from one representative run in the IZON proprietary 

software v3.2.2.268 (Izon). RV-only samples showed the concentration of 

1.71E13 and 2.13E13 particles/mL at 16 and 18hpi, respectively (Fig. 4A), and 

the average particle populations’ diameter was 79 nm and 74 nm at 16 and 18hpi 

(Fig. 4A). RV-infected cells treated with A3 demonstrated a nanoparticle 

concentration of 1.71E13 and 2.01E13 particles/mL at 16 and 18hpi, respectively 

(Fig. 4B). However, the RV-infected cell treated with A3 demonstrated 

nanoparticle diameter averaged 97 nm at 16 hpi that shifted to a population of 

larger particles (116 nm) particles at 18hpi (Fig. 4B). Likewise, RV-infected cells 

treated with sA3 demonstrated a nanoparticle concentration of 2.01E13 and 

2.10E13 particles/mL at 16 and 18hpi, respectively (Fig. 4C). With sA3 treatment 

16hpi nanoparticle sizes were averaging 95 nm; however, at 18hpi a shift to a 

population of larger particles (117 nm) was revealed (Fig. 4C).  

Data from triplicate runs at 16 and 18hpi were statistically analyzed in 

Microsoft Office Excel 2016 software using a one-way analysis of variance 

(ANOVA) and a two-tailed Student’s t tests (significance level, P <0.05) with 
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Bonferroni’s post hoc test to correct for multiple comparisons (P <0.017) is shown 

in table 9. At both the 16 and 18hpi time points there was a statistical difference 

in the mean nanoparticle diameter of the RV and RV with the addition of either of 

the arachadins (A3 or sA3). (16hpi: RV/RV+A3 (P= 0.000133986), RV/RV+sA3 

(P= 0.000218321), 18hpi: RV/RV+A3 (P= 0.000242047), RV/RV+sA3 (P= 

0.000181715).  
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Figure 4. Overlaid tunable resistant pulse sensing technology (TRPS) analyses 
of nanoparticles/mL released from RV-infected and RV-infected-arachidin treated 
HT29.f8 cells at 16 and 18hpi. 4A (RED  ) RV only 16 
and 18hpi particles/mL= 1.71E13 and 2.13E13 respectively, mean diameter 
(nm)= 79 and 74 respectively, and N= 426 and 387 respectively. 4B (BLUE

) RV+A3 16 and 18hpi particles/mL= 1.71E13 and 
2.01E13 respectively, mean diameter (nm)= 97 and 116 respectively, and N= 
480 and 344 respectively. 4C (GREEN ) RV+sA3 16 and 
18hpi particles/mL= 1.68E13 and 2.10E13 respectively, mean diameter (nm)= 95 
and 117 respectively, and N= 472 and 353 respectively.  
 

A 
 
 
 
 
 
 
 
 
 
 

B 
 
 
 
 
 
 
 
 
 
 

C 
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Table 9. Statistical analysis of triplicate TRPS runs 

 
a-d Data from triplicate runs at 16 and 18hpi were statistically analyzed in 
Microsoft Office Excel 2016 software using a one-way analysis of variance 
(ANOVA) and a two-tailed Student’s t tests (significance level, P <0.05) with 
Bonferroni’s post hoc test to correct for multiple comparisons (P <0.017) is shown 
in table 9. At both the 16 and 18hpi time points there was a statistical difference 
in the mean nanoparticle diameter of the RV and RV with the addition of either of 
the arachadins. (16hpi: aRV/RV+A3 (P= 0.000133986), bRV/RV+sA3 (P= 
0.000218321), 18hpi: cRV/RV+A3 (P= 0.000242047), dRV/RV+sA3 (P= 
0.000181715).  
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TEM and whole cell fluorescent analyses of nucleus to cytoplasm ratios of 

HT29.f8 cells  

TEM and fluorescent analysis was performed on HT29.f8 cells infected 

with RV, RV with A3, and RV with sA3.  These were compared to the three 

controls, NV, A3, and sA3. TEM analysis was performed at 16 and 18hpi and 

fluorescent analysis was performed at 18hpi (Fig 5, 6, and 7).  

TEM analysis revealed that at 16 hpi, the mean ratio of RV-infected cells 

was 0.87 ±0.51, showing an increase in comparison to the control cells (NV, 

A1and A3 alone) as shown in figure 5.  At the same time point, RV-infected cells 

treated with A3 had a smaller average nucleus/cytoplasm ratio of 0.41 ±0.19 at 

16hpi (Fig. 5). RV+sA3 cells had an average nucleus/cytoplasm ratio of 0.51 

±0.22 at 16hpi (Fig.5). 
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Figure 5. 16hpi HT29.f8 TEM nucleus/cytoplasm ratios. Data expressed at mean 
±SD, N= 10. RV only, RV+A3, and RV+sA3 representative cells along top. 
Representative cells of the controls NV, A3, and sA3 to the side. Scale bars = 
2µm. Data were statistically analyzed in Microsoft Office Excel 2016 software 
using a one-way analysis of variance (ANOVA) (significance level, P <0.05). No 
statistical difference between groups was detected. The data was graphed using 
a whisker and box plots.  The box represents all the data points within the lower 
(Q1) and upper (Q3) quartiles with vertical lines with an x that represents the 
median. The whiskers go from each quartile to the minimum and maximum data 
points. Data points falling outside the overall pattern of distribution were plotted 
as dots that represent outliers.  

 

 

 

                 RV RV+A3 RV+sA3 NV   A3     sA3 
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At 18 hpi, the ultrastructural appearance and mean nuclear to cytoplasm 

ratios of the control cells with A3 (0.50 ±0.15) and sA3 (0.47 ±0.09) were similar 

to the cells with no treatment (0.46 ±0.15) (Fig. 6). An increase in the number of 

mitochondria, autophagosomes, RV particles and viroplasms was demonstrated 

in RV-infected cells, and RV-infected cells. At 18 hpi, the RV-infected cells 

demonstrated an increased nucleus to cytoplasm ratio of 1.18 ±0.34 while RV-

infected cells treated with either arachidin had similar mean ratios, 0.42 ±0.17 

and 0.65 ±0.25, respectively, and both A3 or sA3 treatments showed relatively 

normal ultrastructure (Fig. 6). RV was statistically different from NV (P= 9.23E-

06); RV+A3 (P= 6.56E-06); RV+sA3 (P= 0.00098); A3 (P= 1.94E-05); and sA3 

(P= 6.01E-06). 
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Figure 6. 18hpi HT29.f8 TEM nucleus/cytoplasm ratios. Data expressed as mean 
±SD, N= 10. RV only, RV+A3, and RV+sA3 representative cells along top. 
Representative cells of the controls NV, A3, and sA3 to the side. Scale bars = 
2µm. Data were statistically analyzed in Microsoft Office Excel 2016 software 
using a one-way analysis of variance (ANOVA) and a two-tailed Student’s t tests 
(significance level, P <0.05) with Bonferroni’s post hoc test to correct for multiple 
comparisons (P <0.0033). The data was graphed using whisker and box plots.  
The box represents all the data points within the lower (Q1) and upper (Q3) 
quartiles with vertical lines with an x that represents the median.  The whiskers 
go from each quartile to the minimum and maximum data points. Data points 
falling outside the overall pattern of distribution were plotted as dots that 
represent outliers. RV was statistically different from NV (P= 9.23E-06); RV+A3 
(P= 6.56E-06); RV+sA3 (P= 0.00098); A3 (P= 1.94E-05); and sA3 (P= 6.01E-06).  

 

* 
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At 18 hpi whole cell staining was used to verify the TEM results (Fig. 7). 

The nucleus/cytoplasm ratios obtained from the live staining supports the TEM 

data. Although exact ratios where slightly different the general trends remained 

the same. Nucleus/cytoplasm ratios at 18hpi were as follows: RV= 1.04 ±0.63, 

RV+A3= 0.61 ±0.24, RV+sA3= 0.53 ±0.2, NV= 0.67 ±0.26, A3 only= 0.58 ±0.19, 

and sA3 only= 0.51 ±0.13. RV was statistically different from NV (P= 0.00041); 

RV+A3 (P=2.1E-05); RV+sA3 (P= 3.6E-07); A3 only (P= 2.7E-06); and sA3 (P= 

1.3E-07). NV was statistically different from sA3 (P= 0.00028).  
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Figure 7. 18hpi whole cell staining nucleus/cytoplasm (N/C) ratios. Data 
expressed as mean ±SD.N/C ratios of 50 cells per treatment were averaged and 
statistically analyzed using Microsoft Office Excel 2016 software using a one-way 
analysis of variance (ANOVA) and a two-tailed Student’s t tests (significance 
level, P <0.05) with Bonferroni’s post hoc test to correct for multiple comparisons 
(P <0.0033). The data was graphed using whisker and box plots.  The box 
represents all the data points within the lower (Q1) and upper (Q3) quartiles with 
vertical lines with an x that represents the median.  The whiskers go from each 
quartile to the minimum and maximum data points. Data points falling outside the 
overall pattern of distribution were plotted as dots that represent outliers. 
Averages were as follows: RV= 1.04 ±0.63 RV+A3= 0.61 ±0.24, RV+sA3= 0.53 
±0.2, NV= 0.67 ±0.26, A3 only= 0.58 ±0.19, and sA3 only= 0.51 ±0.13. RV was 
statistically different from NV (P= 0.00041); RV+A3 (P=2.1E-05); RV+sA3 (P= 
3.6E-07); A3 only (P= 2.7E-06); and sA3 (P= 1.3E-07). NV was statistically 
different from sA3 (P= 0.00028).  
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Quantification of transcripts for cell death pathway genes in HT29.f8 

cells 

 QuantiFluor dsDNA assay 

The QuantiFluor dsDNA assay was conducted to assure pipetting and 

plating accuracy. Table 10 and figure 8 show the representative data for the 

dsDNA Standard Curve and QuantiFluor dsDNA Dye while Table 11 shows the 

unknown dilutions and average fluorescence.  

 

Table 10. Representative Data for the dsDNA Standard Curve and QuantiFluor 
dsDNA dye 

Standard (ng/well) Average Fluorescence (RFU) 

20 12207257.44 

5 3364591.47 

1.25 813147.44 

0.31 252417.07 

0.078 120794.85 

0.02 79405.14 

0.005 33035.88 
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The data from the QuantiFluor was graphed and the standard curve was 

created using Microsoft Office Excel 2016 software (Figure 8). The generated 

equation of y= 608459x+92471 (x=(y-92471)/608459) was used to determine the 

original concentrations of the diluted unknown sample that were performed in 

triplicate.  

Figure 8. Standard curve plotted using the fluorescence (rfu) and lambda DNA 

(ng/well) values. The equation generated was used to calculate the unknown 

DNA concentrations in triplicate. 
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The R2 value was 0.9995. Table 11 shows the calculated concentrations. 

The unknown concentration was determined to be between 7.14 ng/µl-8.3ng/µl.   

 

Table 11. Sample Dilution Series and QuantiFluor dsDNA dye of lambda DNA  

lambda DNA dilution Average Fluorescence 
(RFU) 

Calculated DNA 
concentration (ng/µl) 

1/10 4434040 7.14  

1/100 548533.2 7.5 

1/1000 143109.2 8.3 

Average calculated DNA concentration (ng/µl)          7.6 
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Efficiency Assays 

 Efficiency assays were performed twice in duplicate on the GOI primers. 

The housekeeping and caspase primers showed efficiencies ranging from 92.55-

110.52%. BCL2 efficiency could not be calculated and therefore it was decided to 

drop BCL2 and the other Autophagy GOI from this study and concentrate on the 

caspase GOI.  

 

Primer Calculated % efficiency  

GAPDH 92.55 

𝛃-actin 110.52 

CASP 3 105.44 

CASP 6 105.31 

CASP 7.2 103.0 

CASP 8 103.75 

CASP 9 105.65 

BCL 2  

Table 12. PCR efficiencies calculated from two duplicate run efficiency assays. 
Efficiencies were calculated from two experiments conducted in duplicate.  
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Figure 9. Calculated efficiencies for GOI primers from two efficiency assays run 
in duplicate. Data expressed at mean ± SD.   
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qRT-PCR 

 To determine if the arachidins regulated the transcripts of genes that 

encoded for proteins that initiated either the apoptosis or autophagy pathways, 

qRT-PCR experiments were performed on arachidin treated RV-infected HT29.f8 

cells at 6, 7, 8, and 9hpi (Figure 10-18).   

At 6hpi (figure 10) there appears to be a slight upregulation of caspase 3, 

6, 7, and 8 with sA3 alone (1.19 ±0.11, 1.33 ±0.09, 1.28 ±0.07, and 1.37 ±0.05 

respectively). The other treatments appear to cause slight down or no regulation 

of caspase 3, 6, 7, and 8. All the treatments had little or no effect on the 

regulation of caspase 9.  

At 7hpi (figure 11) caspase 3 is not regulated by RV, RV+A3, or RV+sA3 

while it is slightly upregulated by A3 and sA3 (1.55 ±0.11, and 1.20 ±0.06 

respectively). Caspase 6 is slightly upregulated by all the treatments (RV 1.15 

±0.03, RV+A3 1.29 ±0.05, RV+sA3 1.02 ±0.11, 1.31 ±0.06, and 1.32 ±0.07). 

Caspase 7 is slightly upregulated by all the treatments (RV 1.18 ±0.09, RV+A3 

1.33 ±0.08, RV+sA3 1.07 ±0.08, A3 1.20 ±0.06, and sA3 1.21 ±0.07). RV, 

RV+A3, and RV+sA3 cause slight down regulation of caspase 8 (0.85 ±0.05, 

0.79 ±0.03, and 0.9 ±0.07 respectively) while A3 and sA3 alone cause slight 

upregulation of caspase 8 (1.17 ±0.1, and 1.21 ±0.05). RV, RV+A3, and RV+sA3 

cause the slight downregulation of caspase 9 (0.76 ±0.02, 0.71 ±0.07, and 0.83 
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±0.1) while A3and sA3 cause the slight to no regulation of caspase 9 (1.15 ±0.1, 

and 0.99 ±0.07).  

At 8hpi (figure 12) caspase 3 is down regulated by all the treatments (RV 

0.63 ±0.04, RV+A3 0.69 ±0.05, RV+sA3 0.52 ±0.03, A3 0.9 ±0.08, and sA3 0.39 

±0.03). RV, RV+sA3, and sA3 downregulate caspase 6 (0.79 ±0.03, 0.82 ±0.13, 

and 0.84 ±0.08 respectively) while RV+A3 and A3 upregulate caspase 6 (1.28 

±0.05 and 1.44 ±0.08 respectively). Caspase 7 is downregulated by both RV and 

sA3 (0.88 ±0.04, and 0.86 ±0.08 respectively) while RV+A3, RV+sA3, and A3 all 

slightly upregulate caspase 7 (1.27 ±0.09, 1.13 ±0.06, and 1.17 ±0.12 

respectively). Caspase 8 is slightly downregulated by RV, RV+sA3, and sA3 

(0.92 ±0.08, 0.85 ±0.09, and 0.98 ±0.1) and slightly upregulated by RV+A3 and 

A3 (1.14 ±0.05 and 1.05 ±0.09). RV, RV+A3, RV+sA3 and A3 slightly 

downregulate caspase 9 (0.8 ±0.04, 0.93 ±0.04, 0.8 ±0.06 and 0.97 ±0.06) while 

sA3 slightly upregulates caspase 9 (1.01 ±0.09).   

At 9 hpi (figure 13) all treatments downregulated caspase 3 (RV 0.67 

±0.06, RV+A3 0.72 ±0.05, RV+sA3 0.54 ±0.03, A3 0.94 ±0.08, and sA3 0.4 

±0.03). RV, RV+sA3, and sA3 downregulated caspase 6 (0.8 ±0.03, 0.84 ±0.13, 

and 0.85 ±0.09 respectively) while RV+A3 and A3 slightly upregulated caspase 6 

(1.32 ±0.04 and 1.16 ±0.09 respectively). RV and sA3 downregulated caspase 7 

(0.9 ±0.04 and 0.89 ±0.09 respectively) while RV+A3, RV+sA3, and A3 slightly 
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upregulated caspase 7 (1.29 ±0.1, 1.17 ±0.06, and 1.21 ±0.12 respectively). RV, 

A3, and sA3 slightly downregulated caspase 8 (0.89 ±0.12, 0.83 ±0.09, and 0.96 

±0.1 respectively) while RV+A3 and RV+sA3 slightly upregulated caspase 8 

(1.13 ±0.04 and 1.03 ±0.08). All treatments slightly downregulated or did not 

regulate caspase 9 (RV 0.77 ±0.04, RV+A3 0.9 ±0.03, RV+sA3 0.8 ±0.06, A3 

0.97 ±0.06, and sA3 1.01 ±0.09).  

Figure 14 shows a time course of caspase 3 regulation with the various 

treatments. At appears that RV, RV+A3, and RV+sA3 have a similar time course 

pattern (slight down regulation at 6hpi, less downregulated at 7hpi, down 

regulated at 8 and 9hpi. A3 and sA3 show a similar time course pattern; both 

being upregulated at 6 and 7hpi and downregulated at 8 and 9 hpi. This time 

course study suggests that 7-8hpi is of particular importance in terms of changes 

in this system.  

Figure 15 shows a time course of caspase 6 regulation with the various 

treatments. RV switches from upregulating caspase 6 at 6 and 7hpi to 

downregulating caspase 6 during 7 and 8hpi. Again showing 7-8hpi being an 

important time point in terms of changes. RV+A3 initially downregulates caspase 

6 and 6hpi but then upregulates it during 7, 8, and 9hpi. RV+sA3 showed a 

different pattern; downregulating caspase 6 at 6hpi, showing very little regulation 

at 7hpi, and then downregulating caspase 6 at 7 and 8hpi. A3 and sA3 also 
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showed different time course patterns. At 6hpi A3 downregulated caspase 6 but 

at 7, 8, and 9hpi A3 upregulates caspase 6. sA3 upregulated caspase 6 at 6 and 

7hpi but then downregulated caspase 6 at 7 and 8hpi.   

Figure 16 shows a time course of caspase 7 regulation with the various 

treatments. RV slightly upregulated caspase 7 at 6 and 7hpi and then 

downregulated caspase 7 at 8 and 9hpi; again showing 7-8hpi being an 

important time point in terms of changes. Both RV+A3 and RV+sA3 slightly down 

regulated caspase 7 and 6 hpi but then slightly upregulated caspase 7 at 7, 8, 

and 9hpi. A3 and sA3 showed different time course patterns. A3 down regulated 

caspase 7 at 6 hpi but then upregulated caspase 7 at 7, 8, and 9hpi while sA3 

slightly upregulated caspase 7 at 6 and 7hpi and then down regulated caspase 7 

at 8 and 9hpi.  

Figure 17 shows a time course of caspase 8 regulation with the various 

treatments. The time course patterns for the various treatments showed variable 

time course patterns for caspase 8. RV initially slightly upregulated caspase 8 at 

6hpi and then slightly down regulated caspase 8 at 7, 8, and 9hpi. RV+A3 slightly 

upregulated caspase 8 at 6hpi, then down regulated caspase 8 at 7hpi, and then 

slightly upregulated caspase 8 at both 8 and 9hpi. RV+sA3 slightly 

downregulated caspase 8 at 6, 7, and 8hpi and then ever so slightly upregulated 

caspase 8 at 9hpi. A3 slightly upregulated caspase 8 at 6, 7, and 8hpi and then 
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slightly downregulated caspase 8 at 9hpi. sA3 slightly upregulated caspase 8 at 6 

and 7hpi and then slightly down regulated caspase 8 at 8 and 9hpi.  

Figure 18 shows a time course of caspase 9 regulation with the various 

treatments. RV, RV+A3, and RV+sA3 all slightly downregulated caspase 9 over 

all the time points investigated (6, 7, 8, and 9hpi). A3 initially slightly upregulated 

caspase 9 at 6 and 7hpi ad then slightly downregulated/ did not regulate caspase 

9 at 8 and 9hpi. sA3 initially slightly upregulated caspase 9 at 6hpi and then did 

not regulate/ ever so slightly down regulated caspase 9 at 7, 8, and 9hpi.  

Many of the up and down regulations noted where very slight. However, 

very small changes in the transcript expression may lead to large changes in the 

system.  
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Figure 10. Changes in gene transcription in HT29.f8 cells 6hpi. Fold change in 
signals of expression of GOI relative to GAPDH and β-actin were determined 
using the ∆∆CT method. The results are expressed as mean ±SD. Experiments 
were performed in triplicate.  
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Figure 11. Changes in gene transcription in HT29.f8 cells 7hpi. Fold change in 
signals of expression of GOI relative to GAPDH and β-actin were determined 
using the ∆∆CT method. The results are expressed as mean ±SD. Experiments 
were performed in triplicate. 
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Figure 12. Changes in gene transcription in HT29.f8 cells 8hpi. Fold change in 
signals of expression of GOI relative to GAPDH and β-actin were determined 
using the ∆∆CT method. The results are expressed as mean ±SD. Experiments 
were performed in triplicate. 
 
 
 

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

CASP3 CASP6 CASP7 CASP8 CASP9

N
o

rm
a

li
z
e

d
 f

o
ld

 e
x

p
re

s
s

io
n

 
8hpi Caspases 

RV

RV+A3

RV+sA3

A3

sA3



71 
 

 

Figure 13. Changes in gene transcription in HT29.f8 cells 9hpi. Fold change in 
signals of expression of GOI relative to GAPDH and β-actin were determined 
using the ∆∆CT method. The results are expressed as mean ±SD. Experiments 
were performed in triplicate. 
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Figure 14. Changes in caspase 3 gene expression in HT29.f8 cells 6-9hpi. Fold 
change in signals of expression of GOI relative to GAPDH and β-actin were 
determined using the ∆∆CT method. The results are expressed as mean ±SD. 
Experiments were performed in triplicate.  
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Figure 15. Changes in caspase 6 gene expression in HT29.f8 cells 6-9hpi. Fold 
change in signals of expression of GOI relative to GAPDH and β-actin were 
determined using the ∆∆CT method. The results are expressed as mean ±SD. 
Experiments were performed in triplicate 
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Figure 16. Changes in caspase 7 gene expression in HT29.f8 cells 6-9hpi. Fold 
change in signals of expression of GOI relative to GAPDH and β-actin were 
determined using the ∆∆CT method. The results are expressed as mean ±SD. 
Experiments were performed in triplicate 

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

RV RV+A3 RV+sA3 A3 sA3

N
o

rm
a

li
z
e

d
 f

o
ld

 c
h

a
n

g
e

 
Caspase 7 time course 

6hpi

7hpi

8hpi

9hpi



75 
 

 

Figure 17. Changes in caspase 8 gene expression in HT29.f8 cells 6-9hpi. Fold 
change in signals of expression of GOI relative to GAPDH and β-actin were 
determined using the ∆∆CT method. The results are expressed as mean ±SD. 
Experiments were performed in triplicate 

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

RV RV+A3 RV+sA3 A3 sA3

N
o

rm
a

li
z
e

d
 f

o
ld

 e
x

p
re

s
s

io
n

 
Caspase 8 time course 

6hpi

7hpi

8hpi

9hpi



76 
 

 

 

Figure 18. Changes in caspase 9 gene expression in HT29.f8 cells 6-9hpi. Fold 
change in signals of expression of GOI relative to GAPDH and β-actin were 
determined using the ∆∆CT method. The results are expressed as mean ±SD. 
Experiments were performed in triplicate 
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AQueous One Solution Cell Proliferation Assay 

 In order to get accurate readings in the CellTiter 96 AQueous One Solution 

Cell Proliferation Assay cell seeding density had to be determined in order to 

obtain 490nm absorbance values below one. During the cell seeding 

experiments (Fig. 19) 104 cells/well was determined to be the ideal seeding 

density for future experiments as 105 cells/well gave readings above 1abs at 

490nm wavelength whilst seeding densities below 104 did not give consistent 

readings. 

 

Figure 19. Absorbance at 490nm was noted for cells seeded in triplicate at 105, 
104, 103, and 102 cells/well at 18hpi with NV and RV treatments. 104 cells/well 
was determined to be the ideal seeding density for future CellTiter 96 AQueous 
One Solution Cell Proliferation Assay experiments.  
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 The CellTiter 96 AQueous One Solution Cell Proliferation Assay was 

performed in triplicate three times for 12-18hpi and resulted in cell viabilities 

ranging from 65.37-80.69% at 18hpi (Fig. 24). At 12hpi (Fig. 20) RV cell viability 

was 88.46 ±1.90%, RV+A3 was 90.14 ±3.54%, RV+sA3 was 91.37 ±5.48%, A3 

was 93.98 ±3.04%, and sA3 was 89.79 ±4.47%. At 12hpi RV treatment cell 

viability is only slightly lower than the other treatments with no statistically 

significant differences being noted.  

 

Figure 20. CellTiter 96 AQueous One Solution Cell Proliferation Assay results at 
12hpi for each treatment. Experiments were conducted three times in triplicate. 
Data were statistically analyzed in Microsoft Office Excel 2016 software using a 
one-way analysis of variance (ANOVA) and a two-tailed Student’s t tests 
(significance level, P <0.05) with Bonferroni’s post hoc test to correct for multiple 
comparisons (P <0.005). 
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 At 14hpi cell viability (Fig. 21) for each treatment decreased from the 

12hpi viabilities. RV treatment cell viability was 75.89 ±3.75%, RV+A3 was 83.93 

±5.52%, RV+sA3 was 85.08 ±0.62%, A3 was 87.85 ±3.49%, and sA3 was 87.99 

±4.56%. The RV treatment cell viability was statistically different from each 

treatment with P values of 0.002, 1.79E-06, 2.8E-06, and 1.3E-05 respectively.  

 

Figure 21. CellTiter 96 AQueous One Solution Cell Proliferation Assay results at 
14hpi for each treatment. Experiments were conducted three times in triplicate. 
Data were statistically analyzed in Microsoft Office Excel 2016 software using a 
one-way analysis of variance (ANOVA) and a two-tailed Student’s t tests 
(significance level, P <0.05) with Bonferroni’s post hoc test to correct for multiple 
comparisons (P <0.005). RV was statistically different from RV+A3 (P= 0.002); 
RV+sA3 (P= 1.79E-06), A3 (P= 2.8E-06); and sA3 (P= 1.3E-05). 
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 At 16hpi the cell viabilities were further decreased (Fig. 22). RV treatment 

cell viability was 69.96 ±0.39%, RV+A3 was 77.55 ±6.79%, RV+sA3 was 78.20 

±4.34%, A3 was 86.02 ±6.30%, and sA3 was 86.61 ±6.93%. RV treatment cell 

viability was statistically different from each of the other treatments with P values 

of 0.004, 3.24E-05, 9.77E-07, and 2.07E-06 respectively.  

 

Figure 22. CellTiter 96 AQueous One Solution Cell Proliferation Assay results at 
16hpi for each treatment. Experiments were conducted three times in triplicate. 
Data were statistically analyzed in Microsoft Office Excel 2016 software using a 
one-way analysis of variance (ANOVA) and a two-tailed Student’s t tests 
(significance level, P <0.05) with Bonferroni’s post hoc test to correct for multiple 
comparisons (P <0.005). RV was statistically different from RV+ A3 (P= 0.0038); 
RV+sA3 (P= 3.24E-05); A3 (P= 9.77E-07); and sA3 (P= 2.07E-06). 
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At 18hpi the cell viabilities were further decreased (Fig. 23). RV treatment 

cell viability was 64.64 ±3.56%, RV+A3 was 76.18 ±4.53%, RV+sA3 was 76.20 

±2.21%, A3 was 83.60 ±6.50%, and sA3 was 81.99 ±2.93%. RV treatment cell 

viability was statistically different from each of the other treatments with P values 

of 1.75E-05, 3.3E-07, 9.2E-07, and 4.8E-09 respectively. RV+A3 was just 

statistically different from A3 with a P value of 0.00494. RV+sA3 was just 

statistically different from A3 with a P value of 0.00497.  
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Figure 23. CellTiter 96 AQueous One Solution Cell Proliferation Assay results at 
18hpi for each treatment. Experiments were conducted three times in triplicate. 
Data were statistically analyzed in Microsoft Office Excel 2016 software using a 
one-way analysis of variance (ANOVA) and a two-tailed Student’s t tests 
(significance level, P <0.05) with Bonferroni’s post hoc test to correct for multiple 
comparisons (P <0.005). RV was statistically RV+A3 (P= 1.75E-05); RV+sA3 (P= 
3.3E-07); A3 (P= 9.2E-07); and sA3 (P= 4.8E-09). RV+A3 was statistically 
different from A3 (P= 0.00494). RV+sA3 was statistically different from A3 (P = 
0.00497). 
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 Data showing cell viability for each treatment over the 12-18hpi 

time points (Fig. 24) demonstrates the increased rate of decreased cell 

viability in the RV treated cells compared to RV+A3/sA3 or A3/sA3 alone. 

This suggests that A3 and sA3 may be conveying a protective effect to 

the cells both when introduced to RV infections as well as by themselves.  

 

Figure 24. CellTiter 96 AQueous One Solution Cell Proliferation Assay results at 
12-18hpi for each treatment. Experiments were conducted three times in 
triplicate. Data is expressed as mean ±SD.  
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Caspase-3/7 activity 

 Caspase 3 and 7 are involved in the apoptosis process and are known to 

be executioner caspases. The Apo-ONE Homogeneous Caspase-3/7 Assay from 

Promega was used to investigate the caspase-3/7 activity in HT29.f8 cells with 

the various treatments. Caspase-3/7 activity was elevated in all treatments at 

12hpi. RV only treatments had a sharp drop in caspase-3/7 expression at 14hpi 

after which it increased again. RV+A3 and RV+sA3 treatments dropped in 

expression at 14hpi, had slight increases at 16hpi, but significant decreases by 

18hpi. A3 and sA3 alone dropped in expression at 14, and 16hpi and started 

increasing again by 18hpi.  
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Figure 25. Fold changes in the caspase-3/7 activity observed from NV treated 
HT29.f8 cells vs. treated cells at 12hpi using the APO3/7 assay. Data shown as 
mean ±SD. Experiments performed in triplicate three times. Data were 
statistically analyzed in Microsoft Office Excel 2016 software using a one-way 
analysis of variance (ANOVA) and a two-tailed Student’s t tests (significance 
level, P <0.05) with Bonferroni’s post hoc test to correct for multiple comparisons 
(P <0.005). RV was statistically different from RV+A3 (P= 1.22E-05); RV+sA3 
(P=1.39E-05); A3 (P=1.33E-13); and sA3 (P= 2.64E-13). RV+A3 was statistically 
different from A3 (P= 6.99E-17); and sA3 (P= 1.59E-16). RV+sA3 was 
statistically different form A3 (P= 1.44E-16); and sA3 (P= 3.12E-16). 
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Figure 26. Fold changes in the caspase-3/7 activity observed from NV treated 
HT29.f8 cells vs. treated cells at 14hpi using the APO3/7 assay. Data shown as 
mean ±SD. Experiments performed in triplicate three times. Data were 
statistically analyzed in Microsoft Office Excel 2016 software using a one-way 
analysis of variance (ANOVA) and a two-tailed Student’s t tests (significance 
level, P <0.05) with Bonferroni’s post hoc test to correct for multiple comparisons 
(P <0.005). RV was statistically different from RV+A3 (P= 0.000621); and sA3 
(P= 5.49E-05). A3 was statistically different from sA3 (P= 0.000299).  
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Figure 27. Fold changes in the caspase-3/7 activity observed from NV treated 
HT29.f8 cells vs. treated cells at 16hpi using the APO3/7 assay. Data shown as 
mean ±SD. Experiments performed in triplicate three times. . Data were 
statistically analyzed in Microsoft Office Excel 2016 software using a one-way 
analysis of variance (ANOVA) and a two-tailed Student’s t tests (significance 
level, P <0.05) with Bonferroni’s post hoc test to correct for multiple comparisons 
(P <0.005). RV was statistically different from A3 (P= 2.02E-07); sA3 (P= 1.78E-
09). RV+A3 was statistically different from A3 (P= 3.07E-05); and sA3 (P= 1.41E-
06). RV+sA3 was statistically different from A3 (P= 3.24E-06); and sA3 (P= 
8.47E-08). 
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Figure 28. Fold changes in the caspase-3/7 activity observed from NV treated 
HT29.f8 cells vs. treated cells at 18hpi using the APO3/7 assay. Data shown as 
mean ±SD. Experiments performed in triplicate three times. Data shown as mean 
±SD. Experiments performed in triplicate three times. Data were statistically 
analyzed in Microsoft Office Excel 2016 software using a one-way analysis of 
variance (ANOVA) and a two-tailed Student’s t tests (significance level, P <0.05) 
with Bonferroni’s post hoc test to correct for multiple comparisons (P <0.005). RV 
was statistically different from RV+A3 (P= 0.000364); RV+sA3 (P= 2.38E-10); 
and A3 (P= 1.31E-11). RV+A3 was statistically different from RV+sA3 (P= 1.94E-
05); A3 (P= 9.71E-12); and sA3 (P= 0.001146). RV+sA3 was statistically different 
from A3 (P= 4.7E-16); and sA3 (P=4.52E-09). A3 was statistically different from 
sA3 (P= 6.94E-10).  
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Figure 29. Fold changes in the caspase-3/7 activity observed from NV treated 
HT29.f8 cells vs. treated cells at 12-18hpi using the APO3/7 assay. Data shown 
as mean ±SD. Experiments performed in triplicate three times. 
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DISCUSSION 

Previous experiments using the simian RV, SA11.4f, revealed antiviral 

effects of both A1 and A3 that reduced the amount of released infectious RV and 

a reduction in NSP4 suggested a decrease in viral replication (Ball et al., 2015). 

This study investigated the effects of A3 and sA3 on the clonally derived human 

intestinal cell line, HT29.f8, infected with the human RV strain, Wa.  Time course 

experiments (16 and 18 hpi) were performed to observe the intracellular patterns 

of the host cell and production of RV particles in RV-infected cells with/without 

the arachidins.  At the same time points, extracellular nanoparticles were counted 

and measured to determine the diameter size of the populations. 

 Trypan Blue Cell Viability assay data showed no statistical difference 

between all groups tested compared to NV. This implies that the arachidins were 

not toxic to the host cells at 20µM concentrations (Fig. 2). Therefore, any effects 

observed in this study can be attributed to the mechanism of action of the 

arachidins.  

PFU assays are commonly used to determine titers (PFU/mL) for 

infectious virus particles (Arnold et al., 2012).  Previously, we reported a 

statistically significant change in the amount of infectious RV produced using the 
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simian RV, SA11.4f (Ball et al., 2015).  This is the first report to demonstrate that 

the human RV (Wa)-infected cells treated with A3 and sA3 produced significantly 

fewer infectious RV particles than untreated RV-infected cells (Fig.3). Suggesting 

that the sA3 has similar antiviral activity as A3 against a human RV strain, Wa, in 

a human intestinal cell line (HT29.f8).  

Initial TEM studies in the Parr laboratory (Lockwood, 2016; Caleb Witcher, 

2017) demonstrated intracellular RV particles of two size populations. The two 

populations observed consisted of a more mature nonenveloped (neRV) 

population that are of similar sizes of mature infectious RV particles, and the less 

mature enveloped (eRV) as previously described in the literature (Estes and 

Greenberg, 2013). At the same time point, TRPS analysis of the supernatants 

showed extracellular nanoparticles (50-150nm) using the Izon qNano system that 

had relatively equal number of extracellular particles among the treatments with 

and without arachidins. However, the size distribution of the particles varied 

significantly between treatments. This suggests that some of the nanoparticles 

that are released from RV-infected cells maybe infectious RV particles as these 

supernatants produced more infectious RV particles (~74nm) than the arachidin 

treated cells (~116-117nm) as shown with the plaque forming assays. Previous 

studies infecting Caco-2 cells with RRV (rhesus monkey rotavirus) have shown 

the presence of extracellular vesicles (EVs) composed of exosomes and 

apoptotic bodies obtained by filtration/ultracentrifugation or differential 
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centrifugation (Barreto et al., 2010; Bautista et al., 2015). A recent manuscript 

has reviewed data that show Picornaviridae and Hepeviridae produce virus 

particles in fully host-derived lipid bilayers that  resemble extracellular vesicles 

(EV), which are 50 nm–1 μm vesicles released by infected cells (van der Grein et 

al., 2018). These studies indicate that some of the nanoparticles that our study 

has measured maybe EVs, therefore they will be further characterized in future 

studies.   

The nucleus/cytoplasm ratio data obtained using TEM and 

immunofluorescent whole cell studies supported our hypothesis that there was a 

modulation of the apoptosis pathway with the addition of the arachidins to RV 

infected HT29.f8 cells. These characteristics of apoptosis have been previously 

reported in another RV study. This implies modulations cell signaling pathways 

by A3 and sA3 to achieve cellular homeostasis.  

Multiple associations exist between autophagy and apoptosis signaling 

pathways (Dang et al., 2015; Kroemer & Levine, 2009; Nikoletopoulou et al., 

2013; Wang et al., 2015). Previous reports have shown that RV infections lead to 

cell death using the apoptosis cellular death pathway (Frias et al. , 2012). 

However, recent studies have suggested that the RV nonstructural protein 4 

(NSP4) alone triggers the cells to produce autophagosomes, suggesting a 

change to an autophagy pathway that may be arrested at the autophagosomal 

stage of development (Crawford et al., 2012). Autophagy can act as both an anti-
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viral and pro-viral pathway, and the role of autophagy depends on the virus, the 

cell type, and the cellular environment (Jackson, 2015). The presence of both 

pathways as observed with TEM, led to exploration of the molecular and 

functional connections between the apoptosis and autophagy pathways in RV-

infected HT29.f8 cells with and without the arachidins. The qRT-PCR studies 

conducted at 6, 7, 8, and 9hpi did not show significant fold changes in the 

expression of select autophagy and apoptosis. However, the upregulation of 

active caspase 3 and 7 proteins at 12hpi detected using the Apo One 3/7 assay 

suggests the involvement of the apoptosis pathway that is altered by A3 and sA3. 

Future studies will explore these pathways on a more global scale using the RT2 

apoptosis and autophagy assays. For example, the RT² Profiler™ PCR Array 

Human Apoptosis from Qiagen (Qiagen Inc., Germantown, MD) in which 84 or 

370 genes of interest can be screened at the same time giving a much more 

global picture of what is happening in the pathways could be used.  

 The Apo ONE Caspase-3/7 assay time course study revealed that by 

12hpi there was a significant increase in the initiator caspase 3 and 7 activity. 

Later time points revealed a drastic reduction in caspase 3 and 7 activity. It was 

noteworthy that there was a statistical decrease in caspae-3/7 activity with the 

addition of either arachidin to RV infections; however, the arachidins alone had a 

significantly higher caspase-3/7 activity than any of the test samples. This 

indicates that both of the arachidins have effects on RV and the cells. A recent 
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drug screening study has identified the PI3K/mTOR inhibitor, BEZ235, as a 

regulator of both influenza virus production and cellular metabolic homeostasis 

(Smallwood, et al, 2017).  This study shows a potential antiviral agent that affects 

both an RNA virus’ replication and cellular homeostasis that suggests a 

mechanism of action that modulates cellular homeostasis and inhibits viral 

infections. This type of therapeutic agent could be very efficient against viral 

infections without the side effects of causing viruses to mutate and evade the 

antiviral drugs or vaccines. 

Altogether, the data suggests the addition of A3 or sA3 to RV infections 

has a protective effect on host cells, and that a crosstalk between apoptosis and 

autophagy inhibits RV morphogenesis.  These findings indicate the possibility 

that RV modulates the switch between autophagy and apoptosis to facilitate their 

own replication in untreated cells, and suggests that A3 and sA3 restore cellular 

homeostasis, producing a protective response that has potential therapeutic 

antiviral activity.  
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