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Abstract 

Chronic pain is increasingly prevalent and costly and will continue to be with the 

increasing mean age of America’s population.  It is important to identify 

interventions addressing pain-related biopsychosocial aspects.  The purpose of 

the current study was to examine if a single session of specific neurofeedback 

(NF) protocols had an effect on subjective fear and physiological fear-avoidance 

behaviors in relation to pain-related stimuli.  Correlational analyses revealed that 

FPQ-III minor pain scores were negatively associated with total fixation duration 

while looking at pain-related pictures.  One-way ANOVAs revealed differences 

approaching significance for those trained on Left-Hemisphere NF protocols 

compared to those in Sham training for total fixation duration, moderate effect 

sizes were found.  Statistically significant group differences were found for those 

trained on Right-Hemisphere protocols compared to those trained on Left-

Hemisphere protocols for first fixation durations.  Findings support research that 

implicates NF training as a neuromodulation technique for the subjective pain 

experience. 
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Introduction 

Effects of One Neurofeedback Session on Relationship between Fear-Of-Pain 
and Visual Avoidance of Pain 

Chronic pain is an extremely prevalent condition.  It is estimated that 70 

million Americans experience some form of acute, recurrent, or chronic  pain 

each year and that 10 percent of the population report the presence of pain at 

least 100 days a year (Cassidy, Cote, Carroll, & Kristman, 2005; Covington, 

2007). Chronic pain has been revealed to affect healthy, college aged students 

as well.  Hastie, Riley, and Fillingim (2005) found a prevalence rate for painful 

experiences at 50% for their college-aged sample.  Hastie et al. (2005) also 

found that the proportion of participants reporting painful experiences was 

comparable across three ethnic groups including African American, Hispanic, 

and Caucasian.  Kennedy, Kassab, Gilkey, Linnel, and Morris (2008) found 

similar results with an annual prevalence rate of 42.8% for lower back pain in 

college students from a major university in Colorado.  

 Chronic pain complaints result in millions of physician office visits per year 

(Hing, Cherry & Woodwell, 2006), and as many as 150 million lost work days 

(Guo, Tanaka, Halperin, & Cameron, 1999). Chronic pain treatments often 

involve increasing doses of a variety of medications to gain a measure of relief.  

Unfortunately, these current pharmacological treatments are moderately effective
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at best (Turk, Wilson, & Cahana, 2011), and often carry important side effects 

(Noble et al., 2007; Van Tulder, Scholten, Koes, & Deyo, 2000; Verdu, 

Decosterd, Buclin, Stiefel, & Berney, 2008).  As a result, multiple treatment 

alternatives have been proposed.  The Purpose of the current study was to 

explore one of these alternative treatment options, specifically Neurofeedback.
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CHAPTER I 

Pain 

 Johannes, Le, Zhou, Johnston, and Dworkin (2010) found a prevalence 

rate of 30% for chronic pain in a nationally representative sample.  Half of those 

who reported having chronic pain also reported daily pain, and average pain 

intensity for the past three months as greater than or equal to 7 on a scale from 1 

to 10.  According to Gaskin and Richard (2012), the total annual cost of pain in 

2010 was $560 to $635 billion with additional health care costs due to pain 

ranging from $261 to $300 billion.  Pain also represents a significant loss in 

productivity in the workforce ranging from $299 to $335 billion annually (Gaskin & 

Richard, 2012).  Chronic pain is an increasingly prevalent and costly condition 

and this trend will continue upward with the ever-increasing average age of 

America’s population (Fredburger et al., 2009)  

 Pain has been defined as “an unpleasant sensory and emotional 

experience associated with actual or potential tissue damage, described in terms 

of such damage” (Merskey & Bogduk, 1994, p. 212).  The function of pain, as an 

aversive experience, can be conceptualized as adaptive and/or protective in 

nature (Asmundson, Parkerson, & D’Ambrosio, 2015).  In other words, the pain
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sensation often draws the attention of the individual to potentially damaging 

stimuli within their environment.  From a learning perspective, pain experiences 

facilitate discrimination and avoidance of any stimulus that may be dangerous to 

the individual or hinder their ability to heal from previous injury.  Therefore, pain 

perception involves not only physiological components but also cognitive and 

emotional components.  

Pain is often differentiated based on the duration of the experience: as 

acute or chronic.  Acute pain is the sensation that comes from activation of 

specialized pain receptors (nociceptors) for a limited time and may or may not be 

associated with significant tissue damage (Dafny, 1997).  Loeser and Melzack 

(1999) described acute pain in relation to the activation of nociceptors at the site 

of local tissue damage as well.  In specific, Authors explain that an injury 

modifies characteristics of the pain receptors, their connections to the central 

nervous system, and the autonomic nervous system within that body region to 

produce an acute pain sensation.  Typically, pain report subsides before the 

organic pathology is eventually resolved.  The direct relation to actual tissue 

damage, and the limited nature of the pain perception and healing process make 

acute pain inherently different from other types of pain, specifically chronic pain 

(Dafny, 1997; Loeser & Melzack, 1999). 

Pain is characterized as chronic when it is present on the individual for at 

least three months (Gatchel et al., 2007).  Chronic pain is also often linked to an 



5 

inability of the organism to adapt or protect from actual or potential damage 

(Asmundson et al., 2015).  Chronic spine pain, especially, has a high impact on 

the sufferer’s everyday functioning, as a range of their activities are often 

severely limited, leading to difficulties with daily chores, social life, and work 

(Aronoff, 1991; Faucett & McCarthy, 2003; Nurmikko, Nash, & Wiles, 1998). 

Persistent or long-term pain can lead to increased irritability and impatience, 

which could heighten reactivity to daily life stressors (Asmundson et al., 2015).  

Considering this increased reactivity to stressors, those suffering from chronic 

pain tend to develop depression-like symptoms: difficulties with concentration, 

lack of interpersonal interaction, increased fatigue, and isolation (Basbaum, 

Bautista, Scherrer, & Julius, 2009; Basbaum & Woolf, 1999; Burkey, 2014; 

Dafny, 1997).  Subsequently, the peripheral and central nervous systems attempt 

adapt to constant state of stress resulting in an anticipation of future pain-related 

events (Dafny, 1997).  Together, these symptoms make it difficult for those 

suffering from chronic pain to process future pain in a healthy way (Amtmann et 

al., 2015).  In fact, some researchers have found that chronic pain sufferers are 

at a higher risk for developing psychopathologies (Dersh, Gatchel, Polatin, & 

Mayer, 2002).
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Chapter II 

Biological Mechanisms of Pain 

Pain perception starts with a physical process that affect specialized nerve 

fibers, which in turn signal the central nervous system that a painful event has 

occurred (i.e. nociception; Julius & Basbaum, 2001).  Nociception is a group of 

biological processes in response to noxious stimuli and this can be measured 

objectively for every individual (Burkey, 2014).  For nociception to become 

painful, there must be awareness of the elicited stimulus (Julius & Basbaum, 

2001).  Therefore, pain by definition, is affected by not only biological but also 

psychological processes (Gatchel, 2005).  In fact, the pain experience depends 

on variables within everyone, which leads to pain being subjective in nature (i.e., 

each person experiences pain in a unique way) (Gatchel et al., 2007).  The next 

sections describe the process of nociception: 

Nociception 

Peripheral.  The process of nociception starts at the receptor site (or the 

specialized fibers that receive information) usually localized within the peripheral 

nervous system.  The peripheral pathway of pain perception relies heavily on 

information transmitted from nociceptors, which fall within three distinct groups 

(Burkey, 2014; Dafny, 1997).  The largest group of nociceptors, called C-fibers, 

conduct slowly due to unmyelinated axons, and typically respond to thermal, 
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mechanical, or chemical noxious stimuli (Burkey, 2014; Dafny, 1997).  The 

second group of nociceptors, called A-delta fibers, conduct more rapidly because 

of their myelinated axons (Burkey, 2014; Dafny, 1997).  These nociceptors are 

responsible for fast or sharp pain sensations.  The final category of nociceptors, 

referred to as sleeping or silent nociceptors, typically respond only to noxious 

stimuli that falls within extreme ranges of intensity (Burkey, 2014; Dafny, 1997).  

Activation of any of these categories of nociceptors is unpleasant and can 

produce pain (Burkey, 2014; Dafny, 1997).  Continuous or persistent activation of 

nociceptors could cause sensitization (lowering the threshold for activation), 

which could allow for normally inoffensive stimuli to provoke noxious sensations 

(Basbaum et al., 2009; Basbaum & Woolf, 1999). 

 Central.  After activation of peripheral nerve tissue, the afferent 

nociceptive information enters the spinal cord and then the brain.  Afferent spinal 

pathways include the spinothalamic, spinoparabrachio–amygdaloid and 

spinoreticulo–thalamic pathways (Dafny, 1997).  (See Figure 1.  Afferent Spinal 

Pathways).  At the brain level, nociceptive information from the thalamus is 

projected to the insula, anterior cingulate cortex (ACC), primary somatosensory 

cortex (S1) and secondary somatosensory cortex (S2), and the Prefrontal Cortex 

(PFC), whereas information from the amygdala (AMY) is projected to the basal 

ganglia (BG) (Burkey, 2014).  In addition, studies have found a correlation with 

observed lesions on the parietal lobe, and pain perception.  A study by 
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Greenspan et al. (1999) demonstrated that the posterior parietal area (i.e., 

parietal operculum) is important for nociceptive input (as measured by evoked 

potentials, MEG, PET and fMRI) associated with painful stimuli.  Each one of 

these different neural pathways plays an important part in the experience of pain 

(Burkey, 2014). 

 

  

 

 

 

 

 

 

 

 

 

 

Figure 1. Afferent spinal pathways.    

Interpretative studies of these pathways have demonstrated some links 

between these systems and its functionality.  For instance, the somatosensory 

cortices (S1 and S2) encode sensory information from noxious stimuli, including 
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the location and duration of pain (Burkey, 2014).  On the other hand, the insula 

and ACC, most often considered part of the limbic system, are crucial for 

encoding the emotional and motivational (i.e., fight, flight, and freeze) 

components of a painful experience (Lenz, Casey, Jones, & Willis, 2009).  

 Interestingly, researchers have revealed that associated pain-brain 

pathways can be activated without experiencing noxious stimuli (Lenz et al., 

2009).  For example, studies have shown that simply observing another person 

in pain may activate some of these pain-associated brain pathways and this is 

especially the case when the individual is observing a loved one in pain rather 

than a stranger (Burkey, 2014).  This activation of pain-brain pathways without 

any actual nociception could act as a priming mechanism for the brain, which 

could lead to an enhanced pain experience (Basbaum et al., 2009; Basbaum & 

Woolf, 1999) 

 Overall, pain is a subjective experience that may serve a protective 

function under specific circumstances.  In specific, acute pain sensations bring 

awareness to injury and possible tissue damage leading to the pursuit of medical 

attention.  However, pain that is persistent or recurrent for three months or more 

ceases to be protective in nature.  Chronic pain has been found to negatively 

affect activities of daily living and could limit activities such as social life, chores, 

and work.  The process of pain perception begins with the physiological process 

of nociception via specialized pain receptors.  These nociceptors transfer 
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sensory information up the spinal cord through the peripheral nervous system to 

the central nervous system and various neural pathways.  Moreover, research 

has shown that these various neural pathways can be activated by non-noxious 

stimuli, suggesting that some psychological processes may influence pain 

perception.
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Chapter III 

Biopsychosocial Model of Pain 

  Biomedical models of pain assume that recovery from pain/injury occurrs 

after tissue damage has been resolved (Gatchel et al., 2007).  However, many 

studies have demonstrated that some individuals may have no pain with organic 

findings (Melzack & Katz, 2001), while other individuals with no organic findings 

demonstrated disabling pain (Melzack, 1989).  These individual differences in the 

pain perception, recovery, and general pain experience stem from complex 

interactions of biopsychosocial processes (Gatchel et al., 2007).  These complex 

interactions include a multitude of psychosocial factors that increase or decrease 

individual recovery time.  For instance, pain perception and disability can be 

influenced by cognitive, emotional, and social factors as well as the ability to 

cope with any complications related to the injury or recovery from the injury 

(Hawker et al., 2010; Lerman, Rudich, Brill, Shalev & Shahar 2015; Tran et al., 

2015). 

Psychosocial factors  

Depression, anger, and anxiety have all been found to be interconnected with 

chronic pain (Amtmann et al., 2015; Kroenke et al., 2011; Sagheer, Khan, & 

Sharif, 2013).  Studies have shown that these psychological emotions have an 

important role in the pain experience, including, making an individual inclined to
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experience pain, be a cause of pain symptoms, modulate the severity of the pain 

experience (amplify or inhibit), be a consequence of chronic or persistent pain, or 

perpetuate the pain experience (Asmundson et al., 2015).  Numerous studies 

have found that those experiencing chronic pain are at risk of experiencing 

higher levels of anxiety and depression as well (Lerman et al., 2015; Sagheer et 

al., 2013).  In fact, chronic pain patients are at greater risk of developing severe 

psychopathologies (e.g. paranoia, major depressive disorder) (Dersh, Gatchel, 

Polatin, & Mayer, 2002).  

The positive relationship between chronic pain and psychological distress 

could be related to chronic pain being considered a chronic stressor.  The 

primary basis of stress response in any organism is correcting homeostatic 

imbalance (Weissman, 1990).  In other words, pain could be considered an 

actual or perceived threat to an organism that disrupts normal functioning, which 

results in the activation of mechanisms that serve to motivate the restoration of 

basic functioning to normal levels (i.e. homeostatic imbalance; Weissman, 1990).  

Chronic pain produces a multitude of events that can facilitate homeostatic 

imbalance (stress) even after the actual damage has been resolved or in the 

absence of any organic pathology (Weissman, 1990).  This prolonged condition 

of stress can have strong negative effects on the body and could cause a 

mutually reinforcing relationship between pain and stress response (Basbaumet 

al., 2009; Basbaum & Woolf, 1999; Burkey, 2014; Dafny, 1997).  
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In the brain, for instance, pain related stress can cause the hypothalamus 

to activate the pituitary gland that secretes adrenocorticotropic hormone, which 

causes the adrenal cortex to secrete cortisol (Weissman, 1990).  Cortisol 

elevates blood sugar and increases metabolism, which allows for motivation of 

resources to counteract the perceived or real threat and restore balance to the 

system (Weissman, 1990).  Prolonged activation of this system caused by 

chronic pain could have serious negative effects on an individual including 

muscle atrophy, suppression of immune system, alterations of brain structures, 

and impairment of tissue repair and growth (Weissman, 1990).  Concurrently, 

body system changes could serve as priming mechanisms for the development 

and/or maintenance of chronic pain, and in turn, alter an individual’s cognitions 

and behaviors creating a negative feedback loop between actual and perceived 

nociceptive threat (Basbaum et al., 2009; Basbaum & Woolf, 1999).  

The relationship between chronic pain and psychological distress is 

exemplified by studies that have looked at the chronic pain/depression 

comorbidity.  These studies have suggested that 40% - 50% of all chronic pain 

sufferers also suffer from depressive symptoms, but in most cases, the 

epidemiological nature of the relationship between chronic pain and depression 

is still misunderstood (Asmundson et al., 2015).  The direction of this relationship 

is still unclear.  Some studies have revealed that depression can cause chronic 

pain or that chronic pain causes depression, while other studies have shown that 
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they exist within a mutually reinforcing relationship (Asmundson et al., 2015).  In 

a recent meta-analysis, Burke, Mathias, and Denson (2015) found that 

depression was the most commonly assessed psychological dimension within 

chronic pain literature.  Researchers also found moderate to very large effect 

sizes for depression scores of those who had chronic pain.  These scores were 

also consistently statistically significant and negative indicating that those whose 

suffer from chronic pain also had high levels of depression in comparison to 

those who did not have chronic pain. 

In another study, Kroenke et al. (2011) examined the relationship between 

chronic pain and depression in a 12-month longitudinal study with 500 primary 

care patients who had persistent back, hip, or knee pain, and were also enrolled 

in the Stepped Care for Affective Disorders and Musculoskeletal Pain (SCAMP) 

study.  Half of the participants were diagnosed with comorbid depression and the 

other half were non-depressed with similar pain reports.  Participants with 

persistent pain and comorbid depression were randomized to a stepped care 

intervention (n =123) or a treatment as usual condition (n = 127) while non-

depressed patients were followed in parallel cohort.  Researchers assessed 

outcome measures at baseline, three, six, and twelve months and used mixed 

effects model repeated measures (MMRM) multivariable analysis to determine if 

change in pain severity predicted depression severity and vice versa.  Results 

revealed that change in depression was a strong predictor of pain severity and 
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change in pain was an equally strong predictor of depression severity.  Authors 

concluded that pain and depression have equally strong effects on each other 

when assessed longitudinally. 

A longitudinal study by Hawker et al. (2010) examined whether 

osteoarthritis (OA) pain determined depressed mood considering fatigue and 

disability and found that chronic pain predicted future fatigue and disability, which 

in turn predicted depressed mood.  However, researchers also found that 

depressed mood and fatigue were so interrelated that each exacerbated the 

other, and fatigue and disability led to worsening of chronic pain.  Depressed 

mood seemed to indirectly affect severity of chronic pain, which could be said to 

increase the likelihood of future disability and fatigue.  It would seem then, that 

the comorbidity between chronic pain and depression is a dynamic process that 

leads to the worsening of functional outcomes for the individual (Hawker et al., 

2010) 

Chronic Pain and Anxiety 

Conceptually, anxiety is a future-oriented emotional state in response to 

an elusive threat with an unclear source (Leeuw et al., 2006).  Anxiety is often 

associated with preventative and/or hyper-vigilant behavior, which may be 

adaptive in short-term contexts, but is often counterproductive in the long run 

(Asmundson et al., 2015; Leeuw et al., 2006).  In chronic pain specifically, the 

threat (pain) is constantly present, which in turn causes a never-ending cycle of 
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anxiety response and preventative behaviors to avoid pain altogether 

(Asmundson et al., 2015).  The long-term consequences of this cycle could be 

disability and disuse, which could lower the threshold at which later pain would 

be experienced.  Numerous studies have found high levels of anxiety in chronic 

pain sufferers, and evidence that it does have an effect of functional outcomes of 

the individual (Asmundson et al., 2015; Leeuw et al., 2006).  

 Sagheer et al. (2013) conducted a study to examine the prevalence of 

anxiety depression in chronic low back pain patients at a tertiary care center.  A 

total of 140 chronic low back pain patients completed demographic 

questionnaires and The Hospital Anxiety and Depression Scale (HADS).  

Researchers found abnormal levels of anxiety in 77 (55%) patients and 

borderline abnormal levels for anxiety in 54 (38.5%) of patients.  Authors also 

found significant gender differences for levels of anxiety within their sample with 

20 (14.28%) males and 57 (40.71%) females reporting abnormal levels.  Sagheer 

et al. (2013) concluded that individuals with chronic low back pain were at high 

risk for anxiety and the risk was significantly higher for females.  

Amtmann et al. (2015) examined the mediational effects of anxiety, 

fatigue, and sleep on the relationship between chronic pain and depression in 

1,245 participants with multiple sclerosis (MS).  Researchers used cross-

sectional self-report symptoms, quality of life data and structural equation 

modeling to examine the variance in depression stemming from various pain-
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related factors (anxiety, sleep, fatigue).  Authors discovered an adequately fitting 

model of the indirect effects of pain on depression, which accounted for 

approximately 80% of variance in depression.  Researchers concluded that 

higher pain was also associated with greater fatigue, anxiety, and sleep 

disturbance, which in turn was associated higher levels of depression.  

Essentially, high levels of chronic pain, indirect effects of that pain (anxiety), and 

depression were all linked within this study’s sample.  Considering these findings, 

anxiety could have acted as a possible mediator between chronic pain and 

depression.  

In another study, Lerman et al. (2015) examined the longitudinal 

relationship between pain, pain-related disability, and symptoms of anxiety in 428 

individuals with chronic pain receiving treatment at a specialty pain clinic.  

Participants completed questionnaires relating to their pain, state anxiety, and 

pain-related disability at four time points with a mean of 5 months between each 

point.  Researchers used cross-lagged, structural equation modeling to examine 

longitudinal associations between the variables.  More than half of the sample 

reported significant symptoms of anxiety (T1-69%, T2-68%, T3-75%, and T4-

73%) at each of the four measurement points and half of the sample reported 

significant symptoms of both anxiety and pain-related disability at each 

measurement (T1-45%, T2-45%, T3-47%, and T4-48%).  Researchers also 

found that a latent anxiety variable predicted pain and pain related disability, but 
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neither pain nor pain-related disability predicted anxiety.  Authors concluded that 

in adult chronic pain patients, high levels of anxiety may exacerbate pain and 

pain-related disability.  

Tran et al. (2015) examined whether anxiety and pain catastrophizing 

were distinct from each other in relation to functional outcomes in pediatric pain, 

and if they distinctly predict functional outcomes based on age.  In a sample of 

725 children and adolescents, researchers measured pain characteristics, 

anxiety, pain catastrophizing, functional disability, and health-related quality of 

life (HRQOL).  Using structural equation modeling, authors found that anxiety 

and pain catastrophizing were distinct in their sample.  Additionally, anxiety 

predicted HRQOL in children and adolescents, and functional disability in 

adolescents alone.  Based on these findings, fearful personalities could influence 

the way individuals perceive threat as exemplified by a painful stimulus. 

Fear of Pain  

Fear is the emotional reaction to an immediate, identifiable threat, such as 

a dangerous situation or an injury (Leeuw et al., 2006).  Like anxiety, fear is an 

adaptive response that serves to protect from harm by activating the fight or flight 

response (Leeuw et al., 2006).  The three crucial components of fear (perception 

of a stimulus as threatening, increased arousal, and defensive behavior) are 

connected and can fluctuate at different rates (Leeuw et al., 2006).  The fear 

response, specifically defensive escape behaviors, may alleviate fear in the short 
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term, but may also negatively reinforce fear-related behaviors in the future 

(Leeuw et al., 2006).  Abnormally high levels of fear occurring more often may 

lead to a lowered threshold for defensive escape behaviors, which in turn may 

lead to a greater chance of pain related anxiety (Leeuw et al., 2006). 

In relation to fear, the way perceived threat (i.e. pain stimulus) is 

interpreted may lead to two distinct outcomes (Vlaeyen & Linton, 2000).  When 

the pain is perceived as non-threatening (low levels of fear), individuals are more 

likely to maintain regular levels of daily activity, which promotes functional 

recovery (Vlaeyen & Linton, 2000).  This concept was supported by the findings 

of Vowles and Gross (2003), who found that decreased levels of fear-avoidance 

beliefs for work was an important factor for improving physical capability and 

enhanced return to work potential.  However, when pain is interpreted as 

threatening (high levels of fear), typically the case with chronic pain, it could give 

rise to pain-related defensive escape behaviors such as avoidance (Vlaeyen & 

Linton, 2000).  Asmundson and Norton (1995) supported this relationship by 

revealing that chronic back pain patients with high anxiety sensitivity reported 

greater levels of fear of pain and had greater avoidance of activities in 

comparison to those with lower anxiety sensitivity, despite both groups having 

equal pain.  

Keogh, Ellery, Hunt, and Hannet (2001) examined whether fear of pain 

would be related to greater selective attentional bias in favor of pain-related 
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stimuli by exposing participants to varied stimuli in terms of being pain-related, 

socially threatening, or positive.  Researchers found that those with high levels of 

fear of pain displayed a selective attentional bias towards pain-related stimuli 

compared to those who had lower levels of fear of pain.  Researchers concluded 

that these results provide evidence for high levels of fear of pain biasing 

attentional processes, which in turn may make individuals more susceptible to 

negative experiences with pain.  In other words, Keogh et al. (2001) suggested 

that higher levels of fear of pain can bias one’s attention towards pain related 

information, priming them to react negatively to any further pain-related 

stimulation.   

Peters, Vlaeyen, and Weber (2005) investigated the contribution of 

physical pathology, pain-related fear, and catastrophizing cognitions to pain 

intensity and disability in 100 participants with low back pain.  Participants 

completed self-report measures and quantified physical pathology via medical 

charts using the MEDICS procedure.  It was found that pain-related fear 

accounted for 10% of variance in regression models for pain intensity and 

disability.  This means that fear of pain was an important predictor of pain 

intensity.  Researchers concluded that fear of pain could lead to a preoccupation 

with pain and a heightened awareness of pain signals, which in turn could lead to 

increased pain perception.  
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Woby, Watson, Roach, and Urmston (2004) found similar results.  In their 

study, 83 chronic pain participants completed a series of self-report measures 

before they participated in a physical therapist led intervention.  Regression 

analysis indicated that fear-avoidance beliefs about work and physical activity 

were independently associated with levels of disability.  In further analyses, 

researchers found that fear-avoidance beliefs about physical activity were the 

only statistically significant predictor of participants’ levels of disability.  These 

results indicated that those participants who endorsed greater levels of fear-

avoidance beliefs specifically about physical activity tended to report greater 

levels of disability.  Therefore, fear of pain is positively associated greater levels 

of disability (Peters et al., 2005; Woby et al., 2004).  

De Gier, Peters, and Vlaeyen (2003) examined the role of pain related 

fear and attentional processes on tolerance for physical activity in 81 fibromyalgia 

participants.  Researchers had high and low fearful fibromyalgia participants 

perform a physical task, a cognitive (reaction) task, and a dual task that 

combined both physical and cognitive components.  Results revealed that low 

fearful participants demonstrated higher activity tolerance for both single and 

dual conditions.  It was also found that high fearful participants responded slower 

on cognitive reaction time than low fearful participants.  Researchers indicated 

that level of pain-related fear did not significantly affect toleration for physical 

performance task, but it was trending in that direction.  In another more recent 
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study, Niederstrasser et al. (2015) found that pain-related fear affected physical 

perception of pain in 82 healthy university students.  Researchers exposed 

participants to an experimental muscle injury protocol designed to induce pain in 

targeted body regions (left or right arm) and their respective muscle group and 

asked them to complete self-report fear of pain measures.  A day after being 

exposed to this procedure, participants were asked to rate their pain while they 

lifted weighted canisters with both the targeted and non-targeted body regions. 

Niederstrasser et al. (2015) indicated that the experimental pain protocol 

was effective at producing pain, which was indicated by increased pain report for 

the targeted arm during session two.  Although the non-targeted arm was 

unaffected by the pain inducing protocol, pain report for the non-targeted arm 

increased during the canister lift in session two across all lifts at a significantly 

greater rate compared to session one.  That is to say, that an inherently non-

noxious stimulus produced higher levels of verbally reported pain in the non-

targeted arm.  Researchers postulated that interactions between pain report and 

levels of pain-related fear, which were only present during session 2, predicted 

increased pain report.  Interestingly, participants with high and low levels of fear 

reported similar levels of pain during the first session, but only those with higher 

levels of fear reported increased pain in the non-targeted arm.  

Vowles and Gross (2003) also found interesting results in relation to pain-

related fear, fear-avoidance behaviors, and changes in physical capability in their 
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study.  In this study, 65 participants with chronic pain complete an 

interdisciplinary functional restoration program and collected pre- and post-

treatment measures of fear-avoidance beliefs (FABQ – Waddell, Newton, 

Henderson, Somerville, & Main, 1993), short form McGill pain questionnaire 

(MPQ-SF; Melzack, 1987), and measures of physical ability for work.  Results 

indicated significant decreases in fear-avoidance beliefs, decreases in pain 

severity, and increased ability for work at post-treatment.  A secondary aspect of 

the study was to examine the validity of measures of fear-avoidance in the 

prediction of actual physical capability for work.  Results revealed that changes in 

fear-avoidance beliefs for work had a meaningful relation to changes in capability 

for work.  These findings suggest that changing fear-avoidance beliefs for work 

was an important factor for improving physical capability and enhanced return to 

work potential.  

 Based on the above findings, fear of pain could have an important effect 

on the cognition and behavior of those who are suffering from pain.  These 

results could be due to that fear of pain can bias attentional processes in favor of 

pain-related stimuli, which could result in greater number of negative experiences 

with pain (Keogh et al., 2001).  Fear of pain could also influence avoidance 

related behaviors, which could lead to greater disability (Peters et al., 2005, 

Woby et al., 2004).  Furthermore, changes in pain-related fear and fear-

avoidance beliefs seemed necessary for increased physical capability and work 
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potential (Vowles & Gross, 2003).  Therefore, it is crucial to identify interventions 

that can contribute to decreasing this detrimental emotional state in individuals 

with pain.
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Chapter IV 

Neurofeedback 

QEEG 

EEG is the measure of electrical changes within one or more of the cortical 

regions of the brain via electrodes placed on the scalp (Cannon, 2015; 

Hammond, 2011; Kaiser, 2007).  The Electrodes are placed on specific sites 

according to an International 10-20 system, which divides the skull into 

proportional sections in relation to distinguishable landmarks: dent of the nose, 

protrusion in the back of the head, and preauricular points directly in front of each 

ear (Cannon, 2015; Hammond, 2011; Kaiser, 2007).  For a visual representation 

of the International 10-20 system, see Figure 2.
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Figure 2. The international 10-20 system. 

Each electrode bears a particular label that corresponds to underlying brain 

areas: F for frontal, FP for frontal pole, P for parietal, C for central, T for temporal, 

and O for occipital (Cannon, 2015; Hammond, 2011; Kaiser, 2007).  Sites are 

sequenced numerically from the midline (Z), with odd number on the left 

hemisphere and even numbers on the right hemisphere (Cannon, 2015; 

Hammond, 2011; Kaiser, 2007).  Electrical activity is identified as a difference in 

potential between two electrodes in a grounded system (Cannon, 2015; 

Hammond, 2011; Kaiser, 2007).  This difference in potential can be measured in 

reference to another electrode, usually along the midline (Cz) or a linked ear (A1 
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or A2), this is often referred to as referential recording (Cannon, 2015; 

Hammond, 2011; Kaiser, 2007).  Recordings can also be completed in a bipolar 

manner where electrodes are paired together with no common reference (i.e., 

site F4 is linked to C4; C4 to P4, P4 to O2) (Cannon, 2015; Hammond, 2011; 

Kaiser, 2007).  

The electrical activity or rhythm produced by the brain falls within 

conventional frequency bands measured in cycles per second or hertz (Hz) 

(Cannon, 2015; Hammond, 2011; Kaiser, 2007).  Generally, each frequency 

band has been associated with a particular mental state, such as, Delta activity 

(0.5-3.5Hz), associated with deep sleep (Hammond, 2011); Theta activity (4-8 

Hz), associated with a very relaxed state, sometimes referred to as the twilight 

zone between waking and sleep; Alpha activity (8-12 Hz), associated with a 

relaxed, disengaged state; Sensorimotor rhythm activity (13-15 Hz), associated 

with a relaxed attentive state; Beta activity (13-30 Hz), associated with 

intellectual activity and outward focus; and Gamma activity (30+ Hz), associated 

with intense focus, attention, and with processes that involve multiple brain 

networks communicating with each other (Cannon, 2015; Hammond, 2011; 

Kaiser, 2007). It is important to note, that varying degrees of each of these 

brainwave frequencies have been found to occur simultaneously in different parts 

of the brain for most individuals (Cannon, 2015; Hammond, 2011; Kaiser, 2007).  



28 

In general, dominant brainwave patterns are an indication of awareness level 

(what is NF) (Cannon, 2015; Hammond, 2011; Kaiser, 2007).  

Quantitative EEG (QEEG) is the sophisticated processing of EEG 

recordings that quantifies the electrical activity gathered from electrodes, which 

can be used to provide numerical values that represent patterns of activity 

occurring in the brain (Kaiser, 2007).  QEEG takes raw brain activity and uses 

mathematical processing to quantify and compare that activity to a large 

normative database of EEG activity (Kaiser, 2007).  QEEG produces standard 

scores for an individual’s brain activity based on the activity of others with the 

same age and gender (Kaiser, 2007).  This process allows for comparison of 

brain activity based on a normative sample (i.e., others that are similar in age 

and gender) (Kaiser, 2007).  It also allows for comparisons of brain activity within 

the same individual (Kaiser, 2007).  A clinician/therapist could complete a QEEG 

assessment at one point and then again at a later point in order to compare the 

scores and ascertain the magnitude and direction of any changes in brain activity 

(Kaiser, 2007).   

Neurofeedback Therapy 

 Neurofeedback Therapy (NFT) is just audio and/or visual feedback based 

on QEEG or brainwave activity (Cannon, 2015; Hammond, 2011).  The process 

for NFT closely resembles the process for gathering EEG or QEEG data, but with 

the addition of providing feedback to the individual whose brainwave activity is 
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being measured (Cannon, 2015; Hammond, 2011).  In a typical training session, 

one or more electrodes are placed on the scalp and the earlobes (Cannon, 2015; 

Hammond, 2011).  The electrodes measure electrical activity occurring at the 

scalp and send this information to a computer program that records that data and 

provides instantaneous audio or visual feedback about EEG activity to the 

individual being trained (Cannon, 2015; Hammond, 2011).  

Typically, participants would not be able to willfully influence their 

brainwave activity because they are not consciously aware of their activity level 

(Cannon, 2015; Hammond, 2011).  However, when participants see or hear a 

representation of their brainwave activity occurring in real-time, it allows them to 

gradually change that activity (Cannon, 2015; Hammond, 2011).  Conceptually, 

this closely relates to operant conditioning, where participants recondition and 

retrain their brainwave activity to match a predetermined criterion (Cannon, 2015; 

Hammond, 2011).  Once this criterion has been met, the participant receives 

rewards in the form of audio and visual feedback (Cannon, 2015; Hammond, 

2011).  For instance,  in one session, a typical participant may receive anywhere 

from 300 to 1500 rewards depending on time-frame, participant variables 

(attention, fatigue level etc.), and criterion difficulty level (Cannon, 2015; 

Hammond, 2011).   

Psychopathologies.  Neurofeedback has been utilized in therapy for 

various disorders with increasing empirical support of its effectiveness compared 
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to other therapies and placebo.  Researchers interested in comparing NFT to 

medication in the treatment of ADD/ADHD have consistently found NFT to 

produce comparable, sometimes superior, improvements in attention and 

concentration compared to taking typical ADD/ADHD medication (Leins et al., 

2007; Rossiter & LaVaque, 1995).  In one study, Rossiter and LaVaque (1995) 

sought to examine the efficacy of 20 sessions of EEG biofeedback in reducing 

ADHD symptoms and to compare the results with psychostimulant medication.  

Researchers compared an EEG group with a matched (age, IQ, gender, and 

diagnosis) stimulant group on the Test of Variables of Attention (TOVA) measure, 

which was administered pre- and post-treatment.  Results indicated that both 

groups improved on TOVA measures of attention, impulsivity, information 

processing, and variability but did not differ from each other on change scores.  

Authors indicated that these findings support EEG biofeedback as an effective 

alternative to stimulant medication for ADHD symptoms. 

In another randomized controlled study, Leins et al. (2007) investigated 

whether neurofeedback treatment lead to an improvement in cognition and 

behavior in 38 participants with ADHD aged 8-13 years-old.  The treatment 

procedure involved three phases of 10 sessions each of Neurofeedback training 

using one of two different protocols: positive and negative slow cortical potential 

shifts (SCPs); suppress Theta (4-8 Hz) while increasing Beta (12-20 Hz).  

Results revealed that both neurofeedback protocols produced improvements in 
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cognition and behavior with effect sizes ranging from small (ES =.34) to large 

(ES= 1.02) and six-month follow-up results that did not differ significantly from 

end-of-treatment results.  Both parents and teachers reported seeing significant 

improvements as well.  These findings support the idea that neurofeedback can 

be used to make meaningful changes in cognition and behavior in a 

developmental disability (ADHD) context.  In fact, after a meta-analysis 

conducted in 2009, researchers concluded that NFT had met criteria for being 

classified as an efficacious and specific treatment for ADD/ADHD (Arns, 

Heinrich, & Strehl, 2014). 

Neurofeedback has been shown to be an effective treatment for 

psychological distress.  For instance, Choobforoushzadeh, Neshat-Doost, 

Molavi, and Abedi (2015) evaluated the effectiveness of NFT in treating 

depression and fatigue in 24 participants with multiple sclerosis (MS) in a 

randomized control study.  Participants were randomized into two groups, 

neurofeedback (16 sessions of NFT) training or treatment as usual and evaluated 

three times (baseline, end of treatment, and two-month follow-up) throughout the 

study using the Fatigue Severity Scale and Depression subscale of the Hospital 

Anxiety and Depression Scale.  Using a repeated measures analysis of variance, 

researchers found that NFT significantly decreased symptoms of depression and 

fatigue compared to the treatment as usual condition, and effects were 

maintained at two-month follow-up. 
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In another study, Rice, Blanchard, and Purcell (1993) investigated the 

effectiveness of NFT in 45 participants who had generalized anxiety disorder in 

comparison to a waiting list control group.  Participants were randomly assigned 

to one of four different NFT protocols or a pseudo meditation control condition 

and evaluated on STAI-Trait Anxiety and psychophysiological symptoms using 

the Psychosomatic Symptom Checklist.  Results revealed that all participants 

who received NFT treatment showed significant reduction in anxiety and 

psychophysiological symptoms in comparison to the wait-list, pseudo meditation 

control group and that decreased self-report of anxiety was maintained at six 

weeks follow-up.   

Pain.  Neurofeedback has also been used to treat pain conditions.  In a 

pilot study, Caro and Winter (2011) used NFT in their investigation of how it 

would affect attention and somatic symptoms within a sample of fibromyalgia 

syndrome (FMS) patients with attention problems, as indicated via continuous 

performance test (CPT).  Researchers measured pain, fatigue, psychological 

distress, morning stiffness, and tenderness while having some participants 

complete 40 or more NFT sessions and having another control group who 

received standard medical only.  Those trained with NFT improved their visual, 

but not auditory, attention on CPT measures and also showed improvement in 

tenderness, pain, and fatigue.  Although it was not significant, results also 

revealed a trend toward improved psychological distress and morning stiffness, 
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but only after forty or more session of NFT.  Based on these findings, it seems 

that NFT could be an effective therapy option for those suffering from chronic 

pain as seen in patients with FMS. 

In another study, Kayıran, Dursun, Dursun, Ermutlu, and Karamürsel 

(2010) used a randomized, rater blind study to assess the efficacy of NFT in 36 

participants with FMS.  Researchers randomly divided participants into two 

groups: one group received twenty sessions of NFT (four weeks) and another 

received 10 mg per day of escitalopram (control) for eight weeks.  All participants 

received visual analogue scales for pain and fatigue, Hamilton and Beck 

Depression and Anxiety Inventory Scales, Fibromyalgia Impact Questionnaire 

and Short Form 36 as outcome measures.  Results showed improvements on all 

measures for both groups, but the NFT group showed greater benefits than 

controls (p < .05).  These findings indicate that NFT training had comparable and 

even superior benefits compared to Selective Serotonin Reuptake Inhibitor 

(SSRI) treatment, which is typically used in FMS patients to help with mood and 

fatigue. 

Jensen, Grierson, Tracy-Smith, Bacigalupi, and Othmer (2007) conducted 

a study evaluating the effects of NFT on pain in participants with chronic pain.  

Researchers sought to determine the average decrease in pain, identify the 

percentage of pain decreases that were clinically meaningful, and document 

other benefits of NFT training in a sample of 18 individuals with Complex 
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Regional Pain Syndrome Type 1 (CRPS-I).  Participants were given 0-10 

numerical rating scale measures for pain intensity and other symptoms before 

and after a 30 minute NFT training session.  Researchers also performed a 

series of t-tests to determine the significance of any changes, as well as, 

computed effect sizes and percent change in order to quantify observed 

improvements in symptoms.  Results revealed substantial and significant 

decrease in pain intensity with half of the participants reporting changes that 

were clinically meaningful.  Researchers concluded that many patients who 

receive NFT training report short-term reductions in pain-related symptoms, but 

long-term effects of NFT training for chronic pain requires further research to 

evaluate its effectiveness as a treatment option.
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Chapter V 

Rationale 

Chronic pain is an increasingly prevalent and costly condition and this 

trend will continue upward with the ever-increasing average age of America’s 

population.  Individual differences in pain perception, recovery, and general pain 

experience stem from complex interactions of biopsychosocial processes.  The 

biological aspect of pain perception concludes with the brain analyzing and 

interpreting pain related information that comes from nociceptors in the 

peripheral nervous system.  This pain related information is interpreted in the 

brain in the context of the individual’s current cognitive and affective state and his 

or her environmental surroundings.  

Pain perception becomes a subjective experience, which is dictated 

entirely by individual differences within the biopsychosocial processes.  Research 

has shown that chronic pain is strongly associated with psychological 

components such as: depression, anxiety, stress, and pain-related fear.  These 

psychological aspects of chronic pain interact within the individual to produce 

greater negative functional outcomes and greater chances of disability.  

Therefore, it is important to identify interventions that can help reduce the 

psychological distress that is associated with pain.
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Scientific advances in QEEG technology have made it possible for 

individuals to be aware of their brain activity occurring in real-time.  Using 

Neurofeedback therapy, researchers have found that individuals can change 

their brainwave activity in a therapeutic way.  Neurofeedback has been shown to 

work in various psychological disorders, as well as with chronic pain and pain 

related symptoms.  Unfortunately, there are no studies that have looked at the 

effects of Neurofeedback therapy on fear of pain. 

Purpose  

The purpose of this study was to examine how Neurofeedback may affect 

an element of pain, specifically fear of pain.  In specific, this study sought to 

examine if a single training session on specific neurofeedback protocols had an 

effect on avoidant behavior and interfered with the relationship between 

subjective fear (as measured by scores on the Fear of Pain Questionnaire – III; 

FPQ – III) and physiological fear-avoidance behaviors in relation to pain-related 

stimuli (measured via the Tobii X-260 eye-tracker). 

Hypotheses 

I. Participants in the control group that have high scores on the FPQ-III will 

exhibit more fear-avoidant behaviors as indicated by less and/or shorter 

fixations within pain-related area of interest. 
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II. Individuals trained on neurofeedback targeting Right Hemisphere pain 

pathways will have decreased fear-avoidant visual behaviors when 

compared to Left-Hemisphere protocols and Controls.
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CHAPTER VI 

Methods 

Participants 

The data for the current study was collected from 121 male and female 

undergraduate students studying at a Southwestern University in the United 

States with a final sample of 99 participants.  Participants were screened on 

arrival using a multi-item personal and family history wellness questionnaire that 

covered injury, traumatic brain injury (TBI), multiple conditions known to cause 

persisting pain (carpel tunnel syndrome, recurrent migraines, recurrent back pain 

etc.) prescription drug use, and existing psychiatric and developmental disorders.  

Recruitment for the study was accomplished through an online recruitment 

program used by the university, Sona-Systems. The study was approved by the 

Institutional Review Board (IRB).  Participants were excluded if they had a history 

of seizure or epilepsy (N=3), lack of NF training (N=6), or were missing eye-

tracking data (N=13).  Final sample was 99 participants.     

Materials & Equipment 

FPQ-III. Fear of pain was determined using a 30-item self-report measure 

developed by McNeil and Rainwater, (1998).  The FPQ-III contains short 

sentences describing painful experiences that participants rate on a five-point (1-

5) Likert-type scale.  Participants were asked to rate the degree of fear they
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anticipate experiencing related to the painful event.  Higher scores indicate 

greater fear and lower scoreindicate less fear of pain.  The measure consists of 

ten-item subscales including fears of severe pain, minor pain, and medical pain.  

PCS.  The Pain Catastrophization Scale (PCS) measures the level of 

catastrophic thinking in relation to pain experience with catastrophizing defined 

as “an exaggerated negative mental set brought to bear during actual or 

anticipated painful experience” (Sullivan et al., 1995; Sullivan et al., 2001).  Pain 

Catastrophization as measured by the PCS consists of three main factors.  

These factors are threat magnification, rumination, and learned helplessness.  

The Cronbach alpha index for the total PCS was .93 when measured using a 

sample of 288 college students at a Midwestern university (Osman et al., 1997).  

Researchers measuring reliability across of the magnification subscale on the 

PCS across three studies showed an average of Cronbach’s alpha .74 for 

females, and .71 for males (Osman et al., 1997).  

ASRS v1.1.  The Adult ADHD Self-Report Scale Symptom Checklist 

Version 1.1 (ASRS v1.1) was used to assess for ADHD symptomology.  The 

ASRS v1.1. consists of eighteen items assessing the ADHD DSM-IV-TR criteria.  

Critical items are the core of the ASRS v1.1 Screener.  The  ASRS v1.1 Screener 

also  twelve supplemental questions that align with ADHD symptomatology.  The 

ASRS v1.1 is a 5 point Likert Scale ranging from Never to Very Often.  The 

ASRS has been shown to be valid and reliable within the adolescent and adult 
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populations.  Specifically, Adler et al. (2006) found a high internal consistency 

between the items with a Cronbach a of 0.93 at time 1 and 0.94 at time 2 of the 

study.  Within the adult population, the ASRS was also found to have high 

internal consistency for patient and rater-administered versions of the scale 

(Cronbach’s a 0.88 for patient self-report and 0.89 for rater-administered).   

Neurofeedback.  EEG NFT training was carried out using the using the 

BrainAvatar software and a 19-channel signal amplifier, Discovery 24E from 

Brain Master Technologies, Inc.  Brain Avatar is a single platform that allows for 

patient assessment and training to be blended with EEG (Proler & Bass, 2012).  

EEG data was recorded from four electrodes placed (F3, F4, C3, P4) on the skull 

(10/20 system), with ground and reference electrodes placed on the earlobe. 

Neurofeedback training is achieved by  displaying participant’s real-time brain 

activity to teach self-regulation of brain function.  Brain activity is presented to the 

participants in the form of a visual and auditory stimulus.  For this study, this 

feedback was quantified to determine capacity to train (i.e., Beeps Total).   

Tobii X-260 eye-tracker.  Eye tracking was performed using the Tobii X-

260 eye-tracker (see http://www.tobii.se/).  The Tobii X-260 eye-tacker allowed 

for the mapping of eye movements to various features on the screen during task 

performance.  It is a state of the art eye-tracking device that tracks the eye-

movement of participants in real time and gives data on maintenance of gaze on 

a single location. Areas of interest (AOIs) were generated by a JavaScript 
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application.  This application provided the screen coordinates for each element 

that was of interest for a given image (i.e., pain-related stimuli vs. non-pain-

related stimuli; please see appendix A for examples of these stimuli with outlined 

area of interest). For the purpose of this study, fear-avoidant visual behavior was 

defined as the difference between pain-related and non-pain-related stimuli on 

eye-tracking measures.  Relevant Eye tracking variables examined were Time to 

First Fixation (TFF), First Fixation Duration (FFD), Total Fixation Duration (TFD), 

Fixation Count (FC), and Visit Count (VC).  

Eye-Tracking variables Operational Definitions.  

• TFF is length of time in milliseconds until the participants eye 

fixates on a particular point within an AOI;  

• FFD is defined as the length of time in milliseconds that a fixation 

lasts; 

• TFD is defined as the sum of the duration for all fixations within an 

AOI; 

• FC is the quantified as the number of fixations (i.e. maintaining of 

the visual gaze on a single location for 50-600 ms) within an AOI;  

• VC is defined as the number of visits (i.e. time interval between first 

fixation on active AOI and end of last fixation within same AOI) 

within an AOI.  

 



42 

Procedure 

Consent, screening and subject preparation.  Upon arrival, participants 

were informed about the nature of the study and given the informed consent.  If 

they accepted participation, they completed prescreening questionnaires.  

Subjects that reported an injury, drug abuse, any psychiatric disorder, current 

pain, history of chronic pain, or seizures/epilepsy were asked to stop the 

experiment without any penalties.  Those participants that passed the 

prescreening then completed FPQ-III, PCS, and the ASRS v1.1.  After 

completion of questionnaires, participants’ skull was prepared for Neurofeedback 

training.  

Training.  Participants were randomly assigned to one of three 

Neurofeedback groups, 1) the Right Hemisphere training protocol group, 2) the 

Left Hemisphere training protocol, and 3) the Sham condition.  The Right 

Hemisphere protocol consisted of neurofeedback training on locations F4 (GO 

12-15Hz; STOP 20Hz and up) and P4 (GO 4-12Hz; STOP 15Hz and up).  The 

Left Hemisphere protocol consisted of neurofeedback training on locations F3 

(GO 15-20Hz; STOP 4-7Hz and 20Hz and up) and C3 (GO 4-12Hz; STOP 15Hz 

and up).  The Sham protocol consisted of no direct training; instead participants 

watched a pre-recorded “sham” training session.  Feedback was achieved by 

showing the participant their own brain activity.  Such information was presented 

to the participants in the form of auditory and visual feedback (beeps).  
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Regardless of the condition, each participant trained for 30 minutes and received 

continuous auditory and visual reinforcement.  

Pain-relevant visualization task.  After training occurred, participants 

completed the non-pain/pain visualization tasks on the Tobii eye-tracker for a 

total of 5 minutes.  The task was combination of looking at images, either non-

pain-relevant or pain-relevant, and answering questions about those images 

shortly afterwards.  Participants were shown an initial set of 32 non-pain-relevant 

images, each image shown for second. Participants were then shown another 

group of 32 pain-relevant images followed by a series of ten questions about 

details either seen or unseen in the images.  This task was designed to measure 

fear-avoidant behavior (eye movement) in relation to pain-related stimuli.
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CHAPTER VII 

Results  

 Descriptive statistics for the full sample are presented.  The total number 

of participants in the final sample was n = 99.  The final sample Mage = 19.34 

years (SD = 2.04); with a minimum age of 18 and a maximum age of 33.  The 

sample was primarily Caucasian (58.6%, n = 58) followed by Hispanic (24.2%, n 

= 24), African-American (14.1%, n = 14), and Asian/Other (3%, n = 3).  In terms 

of school classification, the sample was mostly Freshmen (58.6%, n = 58) and 

Sophomores (19.2%, n = 19) followed by Juniors (12.1%, n = 12), and 

Senior/Other (10.1%, n = 10).  For gender, the sample had a majority of female 

participants (68.7%, n = 68) followed by male participants (31.3%, n = 31).  

Randomly assigned participants were distributed between the three experimental 

conditions in relatively equal fashion with a slight majority being in the sham 

condition (39.4%, n = 39) followed by left hemisphere condition (29.3%, n = 29), 

and right hemisphere condition (31.3%, n = 31).  Table 1 presents a summary of 

demographic variables divided by participant condition.
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Table 1 
 
Descriptive statistics for final sample divided by participant condition (N = 99) 
 Sham 

n (%) 
Left Hemisphere 

n (%)  
Right Hemisphere  

n (%) 
Total 
n (%) 

Gender     
Female  27 (27.3) 20 (20.2) 21 (21.2) 68 (68.7) 

Male  12 (12.0) 9 (9.0) 10 (10.0) 31 (31.3) 
Classification      

Freshmen 
Sophomore  

Junior 
Senior 
Other 

23 (23.2) 
11 (11.1) 
1 (1.0) 
3 (3.0) 
1 (1.0) 

16 (16.2) 
4 (4.0) 
6 (6.1) 
3 (3.0) 

-- -- 

19 (19.2) 
4 (4.0) 
5 (5.1) 
3 (3.0) 

-- -- 

58 (58.6) 
19 (19.2) 
12 (12.1) 
9 (9.1) 
1 (1.0) 

Ethnicity      
Caucasian  

Hispanic 
African-American 

Asian 
Other  

22 (22.2) 
13 (13.1) 
3 (3.0) 
1 (1.0) 

-- -- 

18 (18.2) 
3 (3.0) 
7 (7.1) 

-- -- 
1 (1.0) 

18 (18.2) 
8 (8.1) 
4 (4.0) 

-- -- 
1 (1.0) 

58 (58.6) 
24 (24.2) 
14 (14.1) 
1 (1.0) 
2 (2.0) 

Note: % = percentage of final sample; n = frequency within sample; Sham = sham NF training 
condition; Left Hemisphere = left hemisphere NF training condition; Right Hemisphere = right 
hemisphere NF training Condition.  
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Table 2 presents the frequency distribution for other possible confounds that 

occurred in the sample.  Frequencies are separated by variable as well as by 

condition.  Across all conditions, 19 participants indicated experiencing a 

concussion at some point in their life with a slight minority (n = 3) occurring in the 

right hemisphere condition.  In terms of chronic pain (pain lasting longer and 

three months), 7 participants indicated that they had experienced chronic pain in 

their lifetime with a majority (n = 5) occurring in the left hemisphere condition.  

Sixteen participants indicated that they had experienced recurrent back pain with 

relatively equal distribution across conditions.  For psychiatric diagnoses, 12 

participants reported having a diagnosis with a slight majority (n = 6) occurring in 

the sham condition.  Eight participants reported having a developmental 

diagnosis equally distributed across conditions.  In terms of taking psychiatric 

drugs during their lifetime, 13 participants reported doing so with a slight majority 

(n = 6) occurring in the sham condition. 
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Table 2 

Frequency of Other Possible Confounds (N = 99)  

 

Sham Training 
n (%) 

Left 
Hemisphere 

Training 

n (%) 

Right 
Hemisphere 

Training 

n (%) 
All Groups 

n (%) 

Concussion      

No 31 (31.3) 21 (21.2) 28 (28.3) 80 (80.8) 

Yes 8 (8.1) 8 (8.1) 3 (3.0) 19 (19.2) 

Chronic Pain     

No 38 (38.4) 24 (24.2) 30 (30.3) 92 (92.9) 

Yes 1 (1.0) 5 (5.1) 1 (1.0) 7 (7.1) 

Recurrent Back Pain     

No 33 (33.3) 23 (23.2) 27 (27.3) 83 (83.8) 

Yes 6 (6.1) 6 (6.1) 4 (4.0) 16 (16.2) 

Psychiatric Diagnosis     

No 33 (33.3) 27 (27.3) 27 (27.3) 87 (87.9) 

Yes 6 (6.1) 2 (2.0) 4 (4.0) 12 (12.1) 

Developmental 
Diagnosis 

    

No 36 (36.4) 26 (26.3) 29 (29.3) 91 (91.9) 

Yes 3 (3.0) 3 (3.0) 2 (2.0) 8 (8.1) 

Taking Psychiatric 
Drugs 

    

No 33 (33.3) 26 (26.3) 27 (27.3) 86 (86.9) 

Yes 6 (6.1) 3 (3.0) 4 (4.0) 13 (13.1) 

Note: % = percentage of final sample; n = frequency within sample; Sham = sham NF 
training condition; Left Hemisphere = left hemisphere NF training condition; Right 
Hemisphere = right hemisphere NF training Condition. 
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A Chi-square analysis was conducted to determine if ethnicity, 

classification, or gender differed across conditions.  Results indicated that 

conditions were very similar in all above demographics (X2(2) < 9.836, p > .28).  

An ANOVA was conducted to determine if age, training, ADHD reported 

symptoms, Pain Catastrophization scores, fear of pain scores (total, minor, 

severe, and medical), or pain sensitivity were significantly different between the 

groups.  Table 3 shows no significant differences between groups in any 

demographic, training, ADHD or fear of pain variables. 
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Table 3 
 
Summary of ANOVA for Differences in Demographic Variables per Condition    
 

Variable Sham Training Left Hemisphere 
Training  

Right Hemisphere 
Training  

  

 M (SD) M (SD) M (SD) F p 
Age 
 

19.28 
 

(2.97) 
 

19.17 
 

(1.34) 
 

19.29 
 

(2.12) 
 

.082 
 

.922 
 

Beeps Total 
 

- 
 

- 
 

1346.97 
 

(154.15) 
 

1332.00 
 

(137.56) 
 

.260* 
 

.612 
 

ADHD Critical  
 

8.46 
 

(3.97) 
 

8.90 
 

(3.03) 
 

8.87 
 

(3.82) 
 

.156 
 

.855 
 

ADHD Total 
 

28.26 
 

(12.13) 
 

28.72 
 

(9.54) 
 

28.61 
 

(11.18) 
 

.017 
 

.983 
 

PCS Total 
 

12.26 
 

(8.48) 
 

14.62 
 

(10.68) 
 

11.71 
 

(9.35) 
 

.812 
 

.447 
 

Fear-of-Pain: 
Total 
 

84.51 
 

(21.34) 
 

82.90 
 

(22.39) 
 

82.68 
 

(24.10) 
 

.070 
 

.932 
 

Fear-of-Pain: 
Minor 
 

21.87 
 

(8.80) 
 

21.66 
 

(8.38) 
 

20.90 
 

(8.24) 
 

.118 
 

.889 
 

Fear-of-Pain: 
Severe 
 

34.49 
 

(8.44) 
 

34.59 
 

(9.12) 
 

35.16 
 

(8.88) 
 

.056 
 

.945 
 

Fear-of-Pain: 
Medical 
 

28.13 
 

(8.59) 
 

26.69 
 

(8.78) 
 

26.71 
 

(10.02) 
 

.290 
 

.749 
 

Note: * T-test was conducted to determine differences in training rewards (Beeps Total) between 
the left hemisphere training condition and the right hemisphere training condition.  Age = mean 
age of participants in each condition; Beeps Total = mean cumulative rewards (beeps) received 
for participants in each condition; ADHD = Attention Deficit Hyperactivity Disorder; PCS = Pain 
Catastrophization Scale; Fear-of-Pain = total and subscale scores on Fear-of-Pain Questionnaire 
3; Sham = sham NF training condition; Left Hemisphere = left hemisphere NF training condition; 
Right Hemisphere = right hemisphere NF training Condition. 
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Table 4 displays correlations between potential covariates including ADHD 

variables, PCS, FPQ-III scores (i.e., total scores, minor pain scores, severe pain 

scores, and medical pain scores) and fear-avoidant eye behavior (e.g. TFF = 

Time to first fixation; FFD = First fixation duration; TFD = Total fixation duration; 

FC = Fixation count; VC = Visit count) during the pain and no-pain visual stimulus 

for participants in the sham (control) condition only.  This analysis was conducted 

with the sham condition only because it was assumed that participants in this 

group had zero-level of neurofeedback training.  Results of the Pearson 

correlation revealed the following: There were no significant correlations between 

FFD and any other eye-tracking variables or other covariates.  Time to first 

fixation was significantly correlated with both FC and VC.  Fixation count was 

significantly correlated with VC and TFD.  Total fixation duration was the only 

eye-tracking variable that significantly correlated with other covariates, 

specifically the FPQ-III subscale minor pain.  No other eye-tracking variables 

were significantly correlated with any other covariates (i.e., fear-of-pain, PCS, or 

ADHD).  

FPQ-III total scores were significantly correlated with all minor subscales 

including minor pain, severe pain, and medical pain.  Scores on the medical pain 

subscale were also significantly correlated with minor pain subscale and severe 

pain subscale score.  In other covariates, PCS scores significantly correlated with 

FPQ-III total score, minor pain subscale, severe pain subscale, and medical pain 
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subscale as well as ADHD-related scores including critical scores, and total 

scores.  ADHD total scores significantly correlated with minor pain subscale 

scores, and ADHD critical scores. 
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Table 4 
 
Correlation Matrix for Eye-tracking Variables, Fear of Pain Variables, and Other Covariates in the 
Sham (Control) Minus Those Excluded from Group Analysis (N = 38) 

   2 3 4 5 6 7 8 9 10 11 12 

Eye-tracking           

1 TFF .23 .24 -.28* -.44** .09 .09 .06 .08 .09 .05 .05 

2 FFD - -.03 -.13 -.12 -.04 .01 -.05 -.05 .07 -.06 -.06 

3 TFD 
 

- .45** .06 -.05 -.24* .03 .07 .06 .03 .11 

4 FC 
  

- .55** -.15 -.16 -.12 -.11 -.02 -.03 -.03 

5 VC 
   

- -.06 -.17 .04 -.04 -.09 .00 .01 

FPQ-III 
        

 

6 Total  
    

- .80** .88** .88** .37** .07 .17 

7 Minor  
     

- .53** .54** .32** .17 .23* 

8 Severe  
      

- .70** .27** .04 .09 

9 Medical  
       

- .35** .01 .14 

PCS 
        

 

10 Total 
        

- .24* .33** 

ADHD            

11 Critical  
         

- .86** 

12 Total           - 

Note: TFF = Time to first fixation; FFD = First fixation duration; TFD = Total fixation duration; FC = 
Fixation count; VC = Visit count.  All eye-tracking variable scores are the estimated differences 
between pain and no-pain images (e.g., TFF pain - TFF no-pain = TFF).  Fear of pain = scores on 
FPQ-III: Total = total score; Minor = score on minor pain subscale; Severe = score on severe pain 
subscale; Medical = score on medical pain subscale.  PCS = Pain Catastrophization Scale: Total 
= total score.  ADHD = scores on ASRS v1.1: Critical = sum of critical item scores; Total = total.  
** = p < 0.01 (2-tailed); * = p< 0.05 (2-tailed). 
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A number of one-way ANOVAs were conducted to determine the effect of 

training conditions (sham, left hemisphere training, and right hemisphere training) 

on fear-avoidant eye behavior. Fear-avoidant eye behavior, again, was defined 

as the difference between pain-related and non-pain-related stimuli (e.g., fixation 

count on pain-related stimuli – fixation count on non-pain-related stimuli = fixation 

count difference).   Results of the ANOVA indicated significant differences for 

training conditions on FFD difference and marginally significant differences on 

total fixation duration difference.  Post hoc comparisons using the Tukey HSD 

test indicated that the mean first fixation duration difference for the right 

hemisphere training condition was significantly greater than the left hemisphere 

training condition.  However, the sham condition did not significantly differ from 

right hemisphere or left hemisphere training conditions (see Table 5). 
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Table 5  

Group Analysis of Variance for Effect Training Conditions on Fear-avoidant Eye Behavior 
Differences  

 
Sham  

Left  
Hemisphere  

Training 

Right  
Hemisphere 

Training   
Cohen’s d 

 N = 39 N = 29 N = 31    

Fear-Avoidant 
Eye Behavior M (SD) M (SD) M (SD) F P Left Right 

TFF 0.13 (1.04) 0.16 (3.71) -0.12 (3.92) 0.05 .944 .01 -.09 

FFD 0.04 (0.28) -0.05 (0.18) 0.13 (0.30) 3.37 .039 -.37 .31 

TFD  6.57 (9.55) 11.80 (4.36) 9.28 (7.96) 3.07 .052 .67 .30 

FC 12.28 (27.07) 18.82 (26.85) 11.64 (29.06) 0.60 .549 .24 -.05 

VC -3.00 (8.39) -2.78 (9.15) -5.79 (7.36) 1.17 .312 .03 -.35 

Note: Cohen's d = Left and right hemisphere conditions compared to sham condition; All eye-
tracking variables represent differences in those measures on pain vs non-pain related stimuli 
(e.g., TFFpain – TFFnon-pain = TFF); Sham = sham NF training condition; Left Hemisphere = left 
hemisphere NF training condition; Right Hemisphere = right hemisphere NF training Condition. 
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CHAPTER IV 

Discussion 

The purpose of this study was to determine if one session of neurofeedback 

(NF) could affect a subjective pain experience and visual behavior.  In specific, 

this study looked to determine if 30 minutes of hemisphere-specific NF training 

significantly decreased fear-of-pain related avoidant behavior measured via eye-

tracking.   

Relationship between Fear of Pain and Eye-Tracking Variables 

This study found a significant negative correlation between an FPQ-III 

subscale (i.e., minor pain), and the eye-tracking variable total fixation duration 

when participants were looking at pain-related pictures.  This fear-of-pain and 

eye-tracking correlation finding, suggests that selective attentional biases 

towards pain-related stimuli (Keogh et al. 2001) can be measured via eye-

tracking (Bannerman, Milders, & Sahraie, 2010a, 2010b).  This finding is 

supported by Asmundson and Norton (1995) who found that chronic pain 

patients reporting greater levels of fear-of-pain also displayed greater avoidance 

than those with lower levels of fear, even after controlling for perceived level of 

pain.  This finding is also supported by De Gier et al. (2003) who found that 

participants with high pain-related fear differed significantly from their low fear 

counterparts by demonstrating slower reaction times on a cognitive task.
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However, eye-tracking in this sample, did not correlate with report of fear of 

medical injuries.  Considering that our sample is composed of healthy young 

adults, it is possible that participants in the current sample have not been 

exposed to medical conditions that lead to severe pain, and thus, they are less 

avoidant of such images.  This conclusion is supported by early fear acquisition 

models which suggest that previous experiences are crucial for establishing and 

maintaining future fear-related behavior (Mineka & Cook, 1986; Muris, 

Steerneman, Merckelbach, & Meesters, 1996; Rachman, 1977; Rachman, 1991). 

NF training effects on Fixation Duration and Time to First Fixation 

Contrary to what we expected, group analyses revealed that those individuals 

who received Left-Hemisphere NF training had longer Total Fixation Duration 

within pain-related areas of interest than those who received Sham training, 

although results are at the level of approaching statistical significance (p<=.052).  

Effect size for the comparison Left Hemisphere NF training and Sham were 

considerate moderate (d = .67) suggesting possible effects of NF on fear-

avoidance eye-behavior. 

The current study found significant group differences on first fixation duration 

when looking at pain-related pictures.  Specifically, those trained on Right 

Hemisphere NF training protocols held their first visual gaze on a single location 

longer than those trained on Left Hemisphere NF training protocols.  

Interpretation of this finding is difficult given that this eye-tracking measure did 
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not significantly correlate with any measure on the FPQ-III or the ADHD-related 

measure.  It is possible that this finding may reflect an unaccounted-for variable 

within the study such as novelty (i.e., new pain-related features in the second set 

of images), curiosity (i.e., differences in the second set of images lead to 

increased fixations), or other visual perception factors.  However, this is still not 

clear, and future studies are needed to test these possibilities. 

Interpretation of Results 

Our findings seem to support studies that have suggested NF training as a 

neuromodulation technique for reducing the fear of pain in clinical settings.  In 

specific, Jensen et al. (2007) found clinically meaningful decreases in pain 

intensity at primary pain sites for 18 spinal cord injury participants.  Researchers 

found statistically significant improvement on measures of psychological well-

being.  Despite the lack of connection between some fear-of-pain, ADHD-related 

symptoms, and eye-tracking behavior, it is possible that NF training protocols, 

specifically right hemisphere specific protocols influenced attention-related brain 

networks in such a way that resulted in longer first fixation durations within pain-

related stimuli (Gevensleben et. al, 2009a; Gevensleben et. al, 2009b). 

Studies using similar to our NF training protocols, have found evidence of 

significant improvements in attention-related behavior measures in individuals 

diagnosed with ADHD have (Gevensleben et. al, 2009a; Gevensleben et. al, 

2009b).  Specifically, Gevensleben et. al (2009a) found that the improvement for 
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combined NF training group were superior to the placebo group with moderate 

effect sizes (ES = .60).  Effects sizes for NF training on attention-related 

processes, such as the approach explained above, have been reportedly 

comparable to effect sizes reported for pharmacological treatments 

(methylphenidate; ES NF = 0.81 vs. ES methylphenidate = 0.84). These findings 

seem to indicate that NF training protocols targeting specific attention-related 

neural networks result in significant improvements in attentional processes.   

Limitations and Future Studies  

Eye-tracking behavior as measured in the current study failed to 

significantly correlate with overall fear-of-pain scores, ADHD-related scores, and 

scores on the PCS. As such, there is potentially no true relationship between 

eye-tracking measures and behavioral outcome measures in the current study.  

With this initial assumption of relationship not being met, it is difficult to make 

definitive conclusions about the meaning of performance on eye-tracking 

measures in relation to the manipulated variable (i.e., NF training).  Future 

studies should aim to establish connections between measures of eye-tracking 

(e.g., first fixation duration, total fixation duration, and fixation count) and other 

behavioral outcome measures before testing assumed effects on eye-tracking 

measures.  These established relationships could serve as the foundations of 

future predictions about eye-tracking and behavior in response to manipulation of 

independent variables.  
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The current study made use of a convenient sample of healthy college 

students which could result in generalizability issues (i.e., any conclusions made 

are in reference to sample itself and not greater population), under 

representation of sociodemographic differences (misrepresentation of ethnic 

minorities), and introduce modest amounts of variability within groups resulting in 

unpredictable results and inconsistent findings (Bornstein, Jager, & Putnick, 

2013).  This modest variability could have translated to increased variability 

within conditions in the current study resulting in inconsistencies in statistical 

significance and effect sizes (Bornstein et al., 2013).  Future studies could aim to 

decrease within group variability by focusing on a specific target population such 

as those individuals suffering from persistent chronic pain or any other unique 

population.   

In collecting data for the current study, many participants (n = 22) were 

excluded for various reasons including issues with technology, poor effort, and/or 

history of mental or physical health concerns.  Future studies should aim to refine 

data collection procedures using technology such as eye-tracking software to 

decrease the likelihood of lost participant data due to technological difficulties.   

Finally, it is typical for participants to be exposed to multiple NF sessions.  

In the current study, participants were exposed to just one training session which 

may have translated into smaller effect sizes overall.  Future studies should 

examine the cost and benefits of exposing participants to multiple sessions of NF 
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training as a way of ensuring that the appropriate level of effect is achieved in 

order to compare to other similar NF training studies.  

Conclusion  

In the current study, it was found that FPQ-III subscale (minor pain) scores 

were negatively correlated with total fixation duration when participants were 

looking at pain-related pictures suggesting that higher levels of fear of minor pain 

may be associated with attentional biases towards pain-related stimuli.  However, 

other eye-tracking variables measured in the current study showed no significant 

correlations with FPQ-III total scores and medical or severe pain subscale 

scores.  Previous research indicates that these suggested attentional biases may 

be influenced by prior experience which could explain findings in the current 

study. 

Analyses revealed group differences approaching significance for the 

individuals who received Left-Hemisphere NF training compared to those who 

received Sham training for total fixation duration.  Although not significant, effect 

sizes for this for comparison were considered moderate.  There were significant 

group differences found between those trained on Right-Hemisphere NF 

protocols compared to those who received Left-Hemisphere NF training on first 

fixation duration.  However, this finding is difficult to interpret given that first 

fixation duration did not significantly correlate with any FPQ-III measures, ADHD-

related measure, or the PCS measure.  Overall, findings from the current study 
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provide some support for previous research implicating NF training as a 

neuromodulation technique for affecting the subjective pain experience. 

Neurofeedback could potentially be useful to decrease the psychological 

outcome often related to chronic pain.  Validation of this beneficial therapeutic 

approach for chronic pain and related symptoms requires further scrutiny.  

Specific variables related to its effectiveness including behavioral correlates with 

pain-related fear should be examined more closely to determine their relationship 

to the experience of pain and how specific NF training protocols may affect them.
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Appendix A 

Pain-Related Stimuli with Area-Of-Interest 

 

Non-Pain-Related Stimuli with Area-of-Interest 
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