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Abstract 

 

The bootstrap procedure is widely used in nonparametric statistics to generate 

an empirical sampling distribution from a given sample data set for a statistic of 

interest.  Generally, the results are good for location parameters such as 

population mean, median, and even for estimating a population correlation.  

However, the results for a population variance, which is a spread parameter, are 

not as good due to the resampling nature of the bootstrap method.  Bootstrap 

samples are constructed using sampling with replacement; consequently, groups 

of observations with zero variance manifest in these samples.  As a result, a 

bootstrap variance estimator will carry a bias to the low side.  This work will 

attempt to demonstrate the bias issue with simulations, as well as explore 

possible approaches to correct for any such bias.  In addition, these approaches 

will be evaluated for more general performance through simulations.
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Introduction 

In this data-driven age, the following scenario is rare, but not entirely 

impossible: Given a random sample collected through a study or experiment, from 

a population with unknown probability distribution, is there a way to estimate a 

population parameter and construct a confidence interval for it?  Moreover, is this 

possible if knowledge of the sampling distribution of the statistic is also unknown, 

and little to no prior knowledge is available to make any intelligent assumption 

about it (Efron, B. 1979)? 

As an example of such a situation, consider a process engineer attempting to 

understand his process variation.   The engineer might need an estimate of this to 

establish process control limits, evaluate conformance of product to specifications, 

or to determine if the current process variation is now different from some past 

historical experience.  For example, the engineer might want to know if a new 

process improvement, or a new set of process equipment, has resulted in a truly 

less variable process and consequently a more consistent product.  However, the 

available data to do this may be relatively sparse and not very well-behaved. 

Such situations are the leading motivation for many simulation techniques in 

nonparametric statistics such as the jackknife method, delta method, cross-
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validation method, subsampling method, and, the most popular method among 

them, the bootstrap method.  The term “bootstrapping” originates from the idea of

“pulling oneself up by one’s bootstrap”, this is especially true in this statistical 

situation where there is no exact solution to the problem (Chernick, M. and 

LaBudde, R. 2011). 

 

What is a Bootstrap? 

The bootstrap approach relies primarily on repeatedly re-sampling the original 

sample with replacement, with calculation of the statistic of interest for each re-

sample.  The resultant re-sample statistics then form an empirical estimate of the 

sampling distribution for this statistic. 

Consider a random sample of size n from an unknown probability distribution: 

𝑥1, … , 𝑥𝑛.  Since this is a random sample, these observations are assumed to be 

independently and identically distributed.  Now, imagine that while the probability 

distribution from which this sample was drawn is unknown, that the desire of the 

experimenter is to estimate a parameter of this distribution: 𝜃.  Further, assume 

that an estimate of this parameter that is a function of the sample observations - 𝜃 

is available. 
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The bootstrap approach to generating an estimate of 𝜃 would involve 

repeatedly sampling the original n observations with replacement.  A typical such 

sample can be identified as 𝑥1𝑏
∗ , … , 𝑥𝑛𝑏

∗ , where b = 1, …, B = the total number of 

bootstrap samples to be considered.  Efron (Efron, B. 1979) suggests that B be a 

value between 200 and 500; however, often B is 1000 or more with currently readily 

available computing and processing power. 

With each bootstrap sample, an estimate of 𝜃 =  𝜃𝑏
∗ can be obtained.  A natural 

resulting point estimator of 𝜃 would then be given by: 

𝜃𝐵 =  
1

𝐵
∑ 𝜃𝑏

∗𝐵
𝑏=1 .     (1) 

In addition, and perhaps more importantly, a 100(1-α)% confidence interval 

estimate of 𝜃 can be determined from the 𝛼1
𝑡ℎ and 𝛼2

𝑡ℎ percentiles of the 𝜃𝑏
∗ values: 

𝜃𝐵(𝛼1)

∗  to 𝜃𝐵(𝛼2)

∗ ,     (2) 

where 𝛼2 −  𝛼1 =  1 −  𝛼.  Generally, 𝛼1 =  𝛼

2
 and 𝛼2 =  1 −  𝛼

2
. 

The preceding paragraph essentially outlies the percentile method of 

obtaining a bootstrap interval estimate of an unknown parameter 𝜃 (Hollander, M. 

& Wolfe, D. A. 1999).   

A similar, but slightly different bootstrap interval can be obtained using the 

residual method (Hollander, M. & Wolfe, D. A. 1999). With the observations 
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𝑥1, … , 𝑥𝑛, first compute the estimate 𝜃 of the parameter of interest 𝜃. Proceed with 

the bootstrap method as described above with a desired number of resamples B, 

and obtain an estimator 𝜃𝑏
∗ from each bootstrap replication for b = 1, …, B.  

The residuals are calculated as follows: 

𝑒𝑏 = 𝜃𝑏
∗ −  𝜃,       (3) 

for b = 1, …, B. If 𝜃 is an unbiased estimator of the unknown parameter 𝜃, it follows 

that 

𝑒𝑏 ≈ 𝜀𝑏 = 𝜃𝑏
∗ −  𝜃     (4) 

for b = 1, …, B are indeed the residuals from each of the bootstrap replication.  

Consequently, the bootstrap approach treats the observed sample as the 

“population” to derive an empirical sampling distribution for an estimator of an 

original population parameter.  At first glance, the idea seems to be erroneous 

since a single realization of the population in the form of the sample may not 

accurately represent the underlying population, especially if extreme outliers are 

observed.  However, researchers have shown that the bootstrapped confidence 

intervals for a population’s measure-of-central-tendency parameter such as its 

mean, median, etc. do indeed cover the actual values with the stated confidence 

levels (Efron, B. 1979).  These results are primarily based on the most powerful 
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theorem in statistics, the Central Limit Theorem (Hogg, Robert V.; McKean, Joseph 

W.; and Craig, Allen T. 2013). 

 

Objective 

The challenge lies in the construction of confidence intervals for a population’s 

measure-of-dispersion parameters such as its standard deviation, variance, etc. 

The re-sampling involved in bootstrapping, will tend to produce groups of repeated 

results. Each of these groups will have zero variation; consequently, the variances 

of those bootstrap samples are expected to be biased low compared to the 

variance of the relevant population. This, in turn, can lead to the actual coverage 

rates of confidence intervals for a variance parameter to be less than their stated 

nominal coverages. 

Therefore, this work will seek to evaluate approaches to correct for the 

expected bias inherent in a bootstrap estimator of variance, as well as to move the 

actual coverage rates of corresponding confidence intervals closer to their stated 

nominal confidence coefficients. 
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Historical Notes 

It appears many researchers have noted the low bias issue with bootstrap 

estimates of variances; however, few have offered clear and efficient solutions. 

Chernick and LaBudde (Chernick, M. and LaBudde, R. 2011) demonstrated the 

under-coverage rates of the bootstrap confidence intervals for the standard 

deviation of different underlying distributions.  They specifically considered the 

Gamma(2, 3), Uniform(0, 1), Student ’ s t with 5 degrees of freedom, Normal(0, 1), 

and Lognormal(0, 1)  distributions.  For the Lognormal(0, 1) distribution, which was 

the worst case, bootstrap intervals with stated and desired coverage rates of 90% 

and 95%, often only achieved actual coverages near 60%.  For the specified 

nominal coverage probabilities considered, the Monte Carlo estimates of the actual 

coverage probabilities for the various intervals were the closest for the 

Uniform(0,1) distribution, the best case in relation to the other distributions listed, 

of 86.8% and 92% actual coverages for 90% and 95% nominal coverages, 

respectively.  A similar example will be explored in the following section.  
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Example to Demonstrate the Issue 

To prevent confusion due to the mixture of technical words and the English 

words, "replications" will always refer to the resamples obtained from the bootstrap 

process, and "trials" will refer to the repetitions of drawing a random sample of size 

n from an established and known distribution for simulation purposes. 

In this example, 1000 trials of size 20 were drawn from a standard normal 

distribution with mean 0 and standard deviation (also variance) of 1.  Then, for 

each trial, 1000 bootstrap replications (i.e., re-samples) were obtained.  The two 

parameters to estimate in this example are the mean (𝜇 = 0) and the variance 

(𝜎2 = 1).  Clearly, the exact values are known here only because this is a 

simulation situation.  They will rarely be known in a physical setting. 

The first parameter, 𝜇, is traditionally estimated with the statistic 𝑋̅ =  1

20
∑ 𝑥𝑖

20
𝑖=1 , 

the sample average when n = 20 (as in this simulation).  Consequently, letting 𝜃 =

 𝜇, 𝜃 =  𝑋̅, and B = 1000, using equations (1) and (2), both point and interval 

bootstrap estimates can be obtained for each of the 1000 trial samples.  The point 

estimate so obtained is the mean statistic for each trial, and the 2.5th and 97.5th 
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percentiles of the bootstrap sample means provide an interval estimate with 𝛼 = 

0.05 (i.e., a 95% confidence interval) for 𝜃 =  𝜇.

 

The second parameter to be estimated is the variance, 𝜎2.  This parameter 

traditionally is estimated using the sample variance: 

𝑆2 =  1

19
∑ (𝑥𝑖 − 𝑋̅)220

𝑖=1 .     (5) 

Equation (5) reflects the simulation sample size of n = 20. 

Now, letting 𝜃 =  𝜎2, 𝜃 =  𝑆2, and, again, B = 1000, equations (1) and (2) 

can be used to provide bootstrap point and interval estimators of the parameter 

𝜎2.  Again, such estimates can be obtained across all 1000 trial samples, with the 

mean across replications at each trial providing a point estimate, and the 2.5th and 

97.5th values across trials providing an approximate 95% bootstrap confidence 

interval for 𝜎2. 

Figure 1 displays the bootstrap point and approximate 95% confidence 

interval estimates for the population mean across the 1000 trial samples using the 

percentile method.  Note that the trial results have been ordered from smallest to 

largest by the respective point estimate.  Also, observe that the upper limit falls 

below the actual parameter value (i.e., 𝜇 = 0), and the lower limit lies above this 
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value for several of the trials at each end of the figure.  This is to be expected as 

the expected coverage rate for these intervals is only 95%.  Now, note that the 

curve displaying the bootstrap point estimates crosses zero (the actual parameter 

value) very near the 500th ordered trial consistent with it being an unbiased 

estimator of the population mean. 

Figure 2 is analogous to Figure 1; however, the parameter being estimated 

is the population variance (i.e., 𝜎2 = 1).  While analogous, there are some distinct 

differences.   Perhaps most notable is that the point estimate curve does not cross 

the actual parameter value until somewhere near the 600th ordered trial. 
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Figure 1: 1000 95% Percentile Bootstrap Confidence Intervals for the Mean 
                 (Samples of Size n = 20 from a Standard Normal Distribution) 
                  (Each Trial Sample Used B =1000 Bootstrap Re-Samples) 

 
Figure 2: 1000 95% Percentile Bootstrap Confidence Intervals for the Variance 
                 (Samples of Size n = 20 from a Standard Normal Distribution) 
                  (Each Trial Sample Used B =1000 Bootstrap Re-Samples) 
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This indicates that the percentile bootstrap estimator of the variance tends 

to underestimate the true population variance (i.e., this estimator is biased low).  

An additional indication of this low bias is the relatively large number of upper 

confidence limits falling below the actual parameter value while very few lower 

limits lie above it. 

The actual coverage rates of these 95% bootstrap confidence intervals – 

the number of intervals that did not capture the true value of the mean of 0 or the 

variance of 1 – are displayed in Table 1.  In this table, the “Missed High” column 

displays the number of intervals where the lower confidence limit was larger than 

the actual value of the parameter to be estimated.  The “Missed Low” column 

displays the number of intervals where the upper confidence limit was less than 

the actual parameter value.  The “Coverage” column indicates how many of the 

1000 intervals captured the true value of the respective parameter. 

Table 1:  Summary of 1000 95% Percentile Bootstrap Confidence Intervals 

               (Samples of Size n = 20 from a Standard Normal Distribution) 

                  (Each Trial Sample Used B =1000 Bootstrap Re-Samples) 
Parameter Missed High Missed Low Coverage 

Mean 44 34 922 

Variance 4 138 858 

 

As noted earlier, the confidence intervals for the population variance tend 

to be biased low, and the actual coverage rate of the stated 95% bootstrap 

confidence intervals of the population variance is only 85.8%, from  
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(1000 – 4 – 138)%, in this simulation.  This low coverage rate will be utilized as the 

reference rate in comparing various approaches to address this issue in the 

following sections. 

Meanwhile, the actual coverage rate of the stated 95% bootstrap confidence 

intervals of the population mean is 92.2%.   While it is not 95%, this rate is much 

closer to the nominal coverage rate than the actual coverage rate for the variance 

intervals.       
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Potential Approaches 

Approach 1: Adjusting by Expected Bias 

For the simple one population case, the model is 𝑦𝑖 = µ + 𝜀𝑖 , where 𝑦𝑖 denotes 

the observed data point, µ denotes the mean of the underlying population, and 𝜀𝑖 

denotes the noise, for 𝑖 = 1, … , 𝑛.  Under the non-bootstrap situation, the following 

are assumed: 

1) The expected value of the noise is 0, or 𝐸[𝜀𝑖] = 0, 

2) The expected value of the variation in the noise is the variance of the 

underlying population, or 𝐸[𝜀𝑖
2] = 𝜎2, and 

3) The specific noise values are uncorrelated from one observation to the next, 

or  

𝐸[𝜀𝑖𝜀𝑗] = 0 for 𝑖 ≠ 𝑗. 

Given the above assumptions: 

  𝐸[𝑦𝑖] = 𝐸[𝜇 +  𝜀𝑖] =  𝜇 + 𝐸[𝜀𝑖] =  𝜇,    (6) 

and 

  𝑉𝑎𝑟(𝑦𝑖) = 𝐸[(𝑦𝑖 −  𝜇)2] 

     = 𝐸[𝑦𝑖
2 − 2𝜇𝑦𝑖 +  𝜇2] 

      = 𝐸[𝑦𝑖
2] − 2𝜇𝐸[𝑦𝑖] +  𝜇2 

      = 𝐸[(𝜇 +  𝜀𝑖)2] − 2𝜇2 +  𝜇2 
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      = 𝐸[𝜇2] + 2𝜇𝐸[𝜀𝑖] + 𝐸[𝜀𝑖
2] −  𝜇2    

   = 𝜇2 +  𝜎2 − 𝜇2 

      =  𝜎2.                      (7) 

Given a random sample of 𝑦1, … , 𝑦𝑛 of n values from the model described 

above, the expected values of the traditional estimators for the parameters 𝜇 and 

𝜎2 (i.e., 𝜇̂ =  𝑌̅ and 𝜎2̂ =  𝑆2) are then given by: 

𝐸[𝑌̅] = 𝐸 [
1

𝑛
∑ 𝑦𝑖

𝑛
𝑖=1 ] =  

1

𝑛
𝐸[∑ 𝑦𝑖

𝑛
𝑖=1 ] =  

1

𝑛
∑ 𝐸[𝑦𝑖]

𝑛
𝑖=1 =  

1

𝑛
∑ 𝜇𝑛

𝑖=1 =  
1

𝑛
(𝑛𝜇) =  𝜇,  (8) 

and 

𝐸[𝑆2] = 𝐸 [
1

𝑛−1
∑ (𝑦𝑖 −  𝑌̅)2𝑛

𝑖=1 ]    

 =
1

𝑛−1
𝐸[∑ (𝑦𝑖

2𝑛
𝑖=1 −  2𝑌̅𝑦𝑖 +  𝑌̅2)]  

 =  
1

𝑛−1
𝐸[∑ 𝑦𝑖

2𝑛
𝑖=1 − 2𝑛𝑌̅2 +  𝑛𝑌̅2]  

 =  
1

𝑛−1
(∑ 𝐸[𝑦𝑖

2]𝑛
𝑖=1 − 𝑛𝐸[𝑌̅2]) 

 =  
1

𝑛−1
{𝑛(𝜇2 +  𝜎2) −  

1

𝑛
𝐸[(∑ 𝑦𝑖

𝑛
𝑖=1 )2]} 

 =  
1

𝑛−1
{𝑛(𝜇2 +  𝜎2) −  

1

𝑛
(∑ 𝐸[𝑦𝑖

2] +  ∑ ∑ 𝐸[𝑦𝑖𝑦𝑗]𝑛
𝑗≠𝑖

𝑛
𝑖=1

𝑛
𝑖=1 )}  

 =  
1

𝑛−1
{𝑛(𝜇2 +  𝜎2) −  

1

𝑛
𝑛(𝜇2 + 𝜎2) −  

1

𝑛
∑ ∑ 𝐸[(𝜇 + 𝜀𝑖)(𝜇 + 𝜀𝑗)]𝑛

𝑗≠𝑖
𝑛
𝑖=1 } 

 =  𝜇2 +  𝜎2 −  
1

𝑛(𝑛−1)
∑ ∑ (𝜇2 +  𝜇𝐸[𝜀𝑖] +  𝜇𝐸[𝜀𝑗] + 𝐸[𝜀𝑖𝜀𝑗])𝑛

𝑗≠𝑖
𝑛
𝑖=1       (9) 

 =  𝜇2 +  𝜎2 −  
1

𝑛(𝑛−1)
𝑛(𝑛 − 1)𝜇2 
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 =  𝜎2.           (10) 

Hence, both estimators are unbiased. 

Under the model assumptions, and using only the original sample, all the 

expectations in equation (9) are zero.  However, when bootstrap re-samples 

𝑦1
∗, … . , 𝑦𝑛

∗ of the original sample are considered, the last expectation in equation 

(9) is not zero if 𝑦𝑗
∗ =  𝑦𝑖

∗. 

Consequently, the expected value of the sample variance of a bootstrap re-

sample of the original sample is given as: 

 𝐸[𝑆𝑏
2] =  𝜎2 − 

1

𝑛(𝑛−1)
∑ ∑ 𝐸[𝜀𝑖

∗𝜀𝑗
∗]𝑛

𝑗≠𝑖
𝑛
𝑖=1 , 𝜀𝑖

∗ = 𝑦𝑖
∗ −  𝜇, 𝑖 = 1, … , 𝑛            (11) 

In the bootstrapping re-sampling with replacement process, it is possible 

that even with j ≠ i, 𝜀𝑖
∗ =  𝜀𝑗

∗.  This occurs whenever the ith re-sampled value is the 

same result as the jth re-sampled value.  In re-sampling with replacement, the 

probability that this occurs is 
1

𝑛
, and 𝐸[𝜀𝑖

∗𝜀𝑗
∗] =  𝜎2.  When the ith and jth re-sampled 

points are not the same observation, then 𝐸[𝜀𝑖
∗𝜀𝑗

∗] =  0.  Therefore, 

𝐸[𝜀𝑖
∗𝜀𝑗

∗] =  𝜎2 (
1

𝑛
) + 0 (

𝑛−1

𝑛
) =  

𝜎2

𝑛
   .                          (12) 

and 

   𝐸[𝑆𝑏
2] =  𝜎2 − 

1

𝑛(𝑛−1)
∑ ∑

𝜎2

𝑛

𝑛
𝑗≠𝑖

𝑛
𝑖=1   
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   =  𝜎2 −  
1

𝑛(𝑛−1)
𝑛(𝑛 − 1)

𝜎2

𝑛
  

   =  𝜎2 −  
𝜎2

𝑛
=  

𝑛−1

𝑛
𝜎2.        (13) 

Consequently, a bootstrap re-sample sample variance is expected to be 

biased low by a factor of 
𝑛−1

𝑛
; hence, a simple adjustment of multiplying 𝑆𝑏

2 by 
𝑛

𝑛−1
 

would be expected to provide an unbiased estimate of 𝜎2.  The multiplier 
𝑛

𝑛−1
 was 

found through the derivations above (Brennan, Robert L. 2007) to provide a 

suitable bias correction for a variance estimate obtained via a bootstrap procedure. 

 

Approach 2: Bias Corrected and Accelerated Method (BCa) 

The Bias Corrected and Accelerated (BCa) method (Efron and Tibshriani 

1993) uses a form of bias correction and a jackknife approach to adjust for 

skewness (i.e., an “acceleration” factor).  The bias correction factor is determined 

from the empirical bootstrap distribution as 

𝑧̂0 = 𝛷−1 (
[# 𝑤̂𝑏<𝑤̂]

𝐵
) ,                                         (14) 

where 

• 𝑤̂𝑏is the estimate of the parameter of interest from the bootstrap replication 

b, for 𝑏 = 1, … , 𝐵,   
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• 𝑤̂ is the estimate of the parameter of interest from the original sample of 

size n, and 

• 𝛷−1(𝑝) =  𝑧𝑝, with ∫ (
1

√2𝜋
) 𝑒

−𝑡2

2
𝑧𝑝

−∞
𝑑𝑡 = 𝑝 the inverse function of the standard 

normal distribution. 

The acceleration factor, which is based on the third sample moment (Chernick, M. 

R. and LaBudde, R. 2011), is given as 

𝑎̂ =
∑ (𝑤̂.−𝑤̂−𝑖)3𝑛

𝑖=1

6[∑ (𝑤̂.−𝑤̂−𝑖)2𝑛
𝑖=1 ]

3/2,                                        (15) 

where  

• 𝑤̂−𝑖 is the estimator of 𝑤, the parameter of interest, without the ith data point 

𝑌𝑖, and so it uses only 𝑌1,…, 𝑌𝑖−1, 𝑌𝑖+1,…, 𝑌𝑛, and 

• 𝑤̂. = ∑
𝑤̂−𝑖

𝑛

𝑛
𝑖=1 . 

This approach then uses 

𝐿𝑎 =
𝑧̂0+(𝑧̂0+𝑧𝛼/2)

1−𝑎̂(𝑧̂0+𝑧𝛼/2)
                                               (16a) 

and  

𝑈𝑎 =
𝑧̂0+(𝑧̂0+𝑧1−𝛼/2)

1−𝑎̂(𝑧̂0+𝑧1−𝛼/2)
                                          (16b) 

to obtain the percentiles: 
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pLa
 = Φ(La)   and   pUa

 = Φ(Ua). 

Finally, the ~100(1-α)% BCA bootstrap confidence interval is given as: 

ŵpLa
    to     ŵpUa    .

 

Since the theoretical distribution of the variance estimator, 𝑠2, has a chi-

square distribution, which is skewed to the right, the BCa method ideally would 

provide a suitable bias correction for the bootstrap variance estimator. 

 

Approach 3: Shocking Bootstrap Resampled Observations 

Another potential approach to correct for inherent bias in the bootstrap 

variance estimator would be to adjust the repeated data points in the bootstrap 

replications by a small “shock” or perturbation so that the variance between any 

two or more repeated data points is no longer zero.  To minimize disruption of the 

original data, this “shock” could be obtained from a symmetric distribution centered 

at 0 with a suitable amount of spread. 

Ostensibly, a suitable amount of spread could produce perturbations that 

increase the variance estimate and coverage rate while not seriously disturbing 

the original data.  Too little spread would likely not account for the magnitude of 

the biases involved; however, too much spread would likely produce overestimates 
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of the variance and coverage rates that diverge even further from the desired 

nominal level.   

The shock idea is basically to stretch the confidence intervals by adding 

more noise so that more of them will include the true variance while hopefully 

adjust for the low bias of the point estimate.  Thus, in addressing the coverage 

issue, it is possible that the bias problem will be indirectly resolved.  

 

Shock Types and Sizes 

In an initial attempt to determine an appropriate magnitude for the induced 

disturbances, shock sizes were chosen using uniform distributions from −0.01 to 

0.01, −0.05 to 0.05, and −0.10 to 0.10 to limit disturbance of the original data with 

the extreme values having equally likely chances of being used.  However, the 

resulting coverages for the example previously stated changed to about 87.1 to 

87.5 for all three initial shock sizes, which were not significantly different from the 

reference coverage of 85.8%.  Because the results above were obtained by 

shocking all the bootstrapped resampled points, shocking just the repeated values 

will have a lesser effect.  Hence, this approach to setting shocks was not pursued. 
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However, these initial observations effectively indicated that a larger shock 

size was necessary.  As a result, a variety of potential perturbation approaches 

were considered with varying shock sizes. 

 

Uniformly Distributed Disturbances 

The initial attempts at defining a range for uniformly distributed disturbances 

produced ranges that were clearly too small to generate the desired increase in 

variation within the bootstrap resamples.  In order to establish more suitable (i.e., 

larger) ranges, multiples of an original sample estimate of the population standard 

deviation were considered. 

The initial, and perhaps most obvious, estimator considered was the original 

sample standard deviation.  However, understanding that generally bootstrap 

estimators will only be considered in situations where the data is either not well-

behaved and/or the analyst is unwilling to adopt an assumption of a normality, a 

more robust estimator of standard deviation was also determined to be worthy of 

consideration. 

The sample Inter-Quartile Range (IQR) is known to be a simple and robust 

estimator of the spread in the population distribution from which the sample was 

obtained.  The IQR is simply the difference between the third sample quartile (Q3) 
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and the first sample quartile (Q1), and as such is not seriously impacted by extreme 

observations in the sample data, or the likelihood of their appearance when data 

is sampled from highly skewed or very heavily tailed population distribution. 

If, on the other hand, the underlying population distribution happens to be a 

normal distribution, then the IQR can provide an estimate of the population 

standard deviation by setting it equal to its theoretical value: 

𝐼𝑄𝑅 =  𝑄3 −  𝑄1 =   𝑧0.75𝜎 − 𝑧0.25𝜎 ≈ 0.6745𝜎 − (−0.6745)𝜎 = 1.35𝜎, 

(Note: 𝑧𝑝 determined from ∫ (
1

√2𝜋
) 𝑒

−𝑡2

2
𝑧𝑝

−∞
𝑑𝑡 = 𝑝 and the IQR value used in the 

calculations later in the simulations was 1.3489795 instead of 1.35, but for 

simplicity sake, 1.35 provides a useful approximate value.) producing an estimator 

of the population standard deviation given as: 

𝜎̂𝐼𝑄𝑅 =  
𝐼𝑄𝑅

1.35
.                  (16) 

Since both 𝑆 and 𝜎̂𝐼𝑄𝑅 can be obtained for the original sample, either can be 

used to assist in establishing a suitable range for uniformly distributed disturbances 

to be applied to the bootstrap sample results.  The goal would be to determine a 

proper multiple of either of these estimators to produce disturbances of a sufficient 

magnitude to both  

• reduce the bias in the bootstrap point estimator, and,  
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• more importantly (since the primary value of bootstrap estimators is 

in providing interval estimates), increase the coverage level of the 

bootstrap intervals to value much closer to the nominally stated level. 

Initial exploratory work, the result of the shocking All the bootstrap results 

using a Uniform distribution for the spread with 1/2 times the standard deviation of 

the original data (S.Orig) as the shock size (i.e. Uniform(-1/2*S.Orig., 1/2*S.Orig)) 

yielded 8 Missed High and 79 Missed Low intervals.   When changing the shock 

distribution to Uniform(-S.Orig, S.Orig), 48 intervals Missed High and 26 Missed 

Low.  This phenomenon also occurred for other shocks, suggesting that there is a 

certain multiplier of the original standard deviation estimate that will balance out 

the number of intervals that Miss High and Low.  Hence, values of a Multiplier were 

evaluated between 1/4 and 5/4 since a value near 3/4 was believed to be near an 

optimal value.  Figure 3 displays the number of intervals missing both high and 

low, as well as the sum of these, or the total number of intervals failing to cover the 

actual variance for Multipliers covering the 1/4 to 5/4 range noted above.  The 

fewest overall errors (i.e., the highest coverage rate does occur when the Multiplier 

= 3/4. 
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Figure 3: Error Rate (Sum of # Missed High and # Missed Low) out of 1000 
trials with Shocks Based on the Original Sample Standard Deviation  

 
 

The multiples, 𝑤, that were explicitly evaluated were from 𝑤 = 0.25, 0.50, 

…, 1.25 of the respective estimate of standard deviation, either S or IQR. This 

resulted in consideration of uniformly distributed disturbances centered at zero with 

ranges extending from  −𝑤𝜎̂ to +𝑤𝜎̂, where 𝜎̂ = 𝑆, or 𝜎̂ =  
𝐼𝑄𝑅

1.35
.  As discussed, 

multiples that are too small will be unlikely to sufficiently improve the bootstrap 

estimates.  However, a multiple that is too large will likely add too much variation, 

and essentially overcompensate for the low bootstrap bias and produce estimates 

biased high.   
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Normally Distributed Disturbances 

In addition to considering uniformly distributed disturbances, or shocks, 

normally distributed shocks also were explored.  These distributions were centered 

at zero, and the standard deviations were again established using multiples of the 

original sample estimates of the population standard deviation. 

Figure 5 displays generic disturbance distributions of both types.  Note that 

for the same Multiplier value, 𝑤, and same original sample estimate of standard 

deviation, 𝜎̂, the actual magnitude of any shock is relatively restricted when using 

uniformly distributed disturbances.  In fact, the actual shock magnitudes can be 

over twice as large when using normally distributed disturbances than when using 

uniformly distributed shocks. 
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Figure 4: Generic Disturbance Distributions 

 
 

The table below displays the different scenarios being evaluated in the simulation 

process.  (Note: The encrypted scenario numbers 1 to 40 are for coding purposes 

only, and are not ordinal or ranking values.) 
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^
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Table 2: Scenarios for Shock Types and Sizes Evaluated for Approach 3 

 

 

The R code used to conduct this experimental design can be found in the R Codes 

section. 

 

Approach 4: Using Inter-Quartile Range Estimate 

Because the IQR was believed to be a more robust measure of spread 

(Whaley, Dewey L. 2005) and the 95% bootstrapped IQR confidence interval 

yielded a coverage of 96.4% in the simulation study, another idea is to simply 

Scenario Numbers

Uniform Normal Uniform Normal

1/4*S.Orig. 1 11 21 31

2/4*S.Orig. 2 12 22 32

3/4*S.Orig. 3 13 23 33

4/4*S.Orig. 4 14 24 34

5/4*S.Orig. 5 15 25 35

1/4*IQR.Orig. 6 16 26 36

2/4*IQR.Orig. 7 17 27 37

3/4*IQR.Orig. 8 18 28 38

4/4*IQR.Orig. 9 19 29 39

5/4*IQR.Orig. 10 20 30 40

Multiplier

Distribution
*

All Repeated

Shock Size
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bootstrap the IQR of the original data and then scale it to a variance estimate by 

𝜎̂2 = (
𝐼𝑄𝑅

1.35
)

2

, such that the percentiles: 

pLa
 = (

𝐼𝑄𝑅(𝑎,𝐵)

1.35
)

2

   and   pUa
 = (

𝐼𝑄𝑅(1−𝑎,𝐵)

1.35
)

2

 

For data that are from an approximate normal distribution, this approach 

should yield coverages of the variance estimate much closer to the nominal 

confidence level in relation to just bootstrapping the variance itself.  Even if the 

data is assumed to not be from an approximately normal distribution: if the sample 

size is large, then the Central Limit Theorem will apply, and if the sample is small, 

then the available tests for normality would not have much power to detect a 

difference.  In the example discussed, this approach gave a coverage of 96.4%, 

as noted above. 

 

       Combining Approaches 1 & 3 

Because Approach 1 was derived theoretically to correct for the bias of the 

bootstrap variance estimate, and Approach 3 was proposed primarily to correct for 

the coverage issue, potentially the combination of these approaches would 

address both problems simultaneously.  

To evaluate the approaches for performance, simulations will be conducted. 
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Simulation Specifics 

Different Sample Sizes 

Since for larger samples, a common sample variance (i.e., S2) will converge 

in probability to σ2, the simulation here will focus on situations where only relatively 

smaller sample sizes are available.  The example utilized previously to 

demonstrate the low bias and coverage issues for the bootstrap variance estimator 

involved a sample size of 20.  To assess the impact of varying sample sizes, 

sample sizes of 10 and 30 will also be evaluated in these simulations.  

 

Different Underlying Distributions 

The approaches above were designed considering only the most well-

behaved data, data from a standard normal distribution.  However, because 

bootstrap is a nonparametric method, it is more likely to be considered and utilized 

for data that are not well-behaved (i.e., not necessarily normally distributed).   

Examples of such distributional models include skewed distributions such as the 

exponential distribution or the log normal distribution.  In addition, they might 

possibly be symmetric, but heavy-tailed distributions such as the double 

exponential (also known as Laplace) distribution.   
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Therefore, the simulations done in R consisted of the four different 

distributions described in more detail below with each evaluated for three different 

sample sizes.  For each distribution, sample size combination, 1000 random 

samples were obtained (i.e., trials).  For each trial, the minimum, 2,5th percentile, 

25th percentile, mean, median, 75th percentile, 97.5th percentile, and maximum 

values across the 1000 bootstrap replications were obtained for both the sample 

mean and the sample variance.  In addition, the number of times this primary 

sample statistic of interest (i.e., the sample mean or the sample variance) across 

the replications was less than the original sample statistic was calculated.  The R 

statistical package was utilized to obtain the samples and calculations of the 

summary statistics for each replication of each trial.  These results were then 

stored in Excel through R export commands for further analysis.   

 

Standard Normal Distribution 

 Let 𝑋1, … , 𝑋𝑛 represent a random sample from a normal distribution with 

density function given as 

   𝑓(𝑥) =  
1

√2𝜋𝜎
𝑒

(𝑥− 𝜇)2

𝜎2 , for 𝜎 > 0. 

For normally distributed simulation results, the two density parameters, μ and σ 

were set to 0 and 1, respectively. 
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Shifted Exponential Distribution 

Let 𝑋1, … , 𝑋𝑛 represent a random sample from an exponential distribution 

with unknown location parameter θ and scale parameter λ, and having the 

following probability density function 

𝑓(𝑥) =  𝜆𝑒−𝜆𝑥 , for 𝜆 > 0 and 𝑥 > 0. 

The mean and variance of this distribution can be found by integration by 

parts as 𝜆−1 and 𝜆−2, respectively.  Consequently, choosing a lambda value of 1 

produces an exponential distribution where the mean and variance are both 1.  

However, to be consistent with the standard normal population mean and variance, 

this exponential distribution (λ = 1) was shifted by 1, producing a shifted 

exponential with mean  𝜆−1 − 1 = 0 and variance as 𝜆−2 = 1.   This shift does not 

affect the spread of the distribution.  Hence, simulated exponentially distributed 

results were obtained from the probability density  

   𝑓(𝑥) =  𝑒−(𝑥+1) , for 𝑥 > −1. 

  To find the true IQR of this distribution for coverage assessment, we simply 

solve . 75 =  1 − 𝑒−𝜆𝑥.75 and . 25 =  1 − 𝑒−𝜆𝑥.25 and take the difference between 𝑥.75 

and 𝑥.25, with 𝜆 = 1. This results in 

𝐼𝑄𝑅 =  −𝜆 ln. 25 + 𝜆 ln. 75 = 1.098612289. 
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Double Exponential Distribution 

Let 𝑋1, … , 𝑋𝑛 represent a random sample from a double exponential 

distribution or Laplace distribution with unknown location parameter μ and scale 

parameter λ, and having the following probability density function 

𝑓(𝑥) =
1

2𝜆
𝑒

−|𝑥−𝜇|

𝜆 , for 𝜆 > 0 and −∞ < 𝜇 < ∞. 

The mean and variance of this distribution are μ and 2𝜆2, respectively.  Hence, for 

simulated double exponential samples, setting 𝜇 = 0 and 𝜆 =
1

√2
 will produce 

results with a mean of zero and variance of one; consistent with the other 

distributions considered. 

 The IQR is found by solving  

  . 25 =
1

2
𝑒(

𝑥.75−𝜇

𝜆
)
 and . 75 = 1 −

1

2
𝑒(

−𝑥.25−𝜇

𝜆
)
 for 𝑥.75 and 𝑥.25  

and take the difference, or simply solve for one and double the result by exploiting 

the symmetric property of the double exponential distribution.  These yield the 

same answer of 

𝐼𝑄𝑅 = 2 (
𝜆 ln(−2(.75−1)+𝜇)

−1
) = 0.980258143. 

 

 



 

 32    
   

Shifted Log Normal Distribution 

Let 𝑋1, … , 𝑋𝑛 represent a random sample from a log normal distribution with 

unknown location parameter μ and scale parameter σ, and having the following 

probability density function 

𝑓(𝑥) =  
1

𝜎𝑥√2𝜋
𝑒

−(ln(𝑥)−𝜇)2

2𝜎2 , for 𝜎 > 0, 𝑥 > 0, and −∞ < 𝜇 < ∞. 

The mean and variance of this distribution are 𝑒𝜇+
𝜎2

2  and 𝑒2𝜇+2𝜎2
− 𝑒2𝜇+𝜎2

, 

respectively.  Setting 𝜇 = 0 and solving 1 = 𝑒2𝜎2
− 𝑒𝜎2

 for σ produces a value of 

𝜎 = 0.693694331.  This, in turn produces a distribution mean of 𝑒
𝜎2

2 =

1.272019649.  Since for comparison purposes, it was desirable for the mean and 

variance of the simulated lognormal results to also have a zero mean and variance 

of one, this log normal distribution needed to be shifted by 1.272019649.  Hence, 

the simulation results were obtained from the shifted log normal distribution,  

  𝑓(𝑥) =  
1

0.6937(𝑥+1.272)√2𝜋
𝑒

−(𝑙𝑛(𝑥+1.272))2

2(0.6937)2  , for 𝑥 > −1.272. 

 Here, the true IQR is found by substituting 𝜇 = 0 and 𝜎 = 0.693694331 into 

the equation (Whaley, Dewey L. 2005) 

𝐼𝑄𝑅 = 𝑒𝜇(𝑒 .6745𝜎 − 𝑒−.6745𝜎) = 0.970298718. 
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 The simulation distributions are displayed in in Figure 5.  Note that all the 

distributions have a mean of zero and a standard deviation of one; hence, vary 

only in shape. 

Figure 5:  Simulation Distributions 

 
 

 For the IQR calculations above, a priori knowledge of the actual underlying 

distribution would be required.  Since this virtually never will be known in actual 

practice, the standardization of the IQR for Approach 4 will still use a divisor of 

1.35.  Again, the R code used to run this simulation procedure can be found in the 

R Codes section. 
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Evaluation of the Approaches 

Reference 

 For each combination of sample size (n = 10, 20, 30) and probability 

distribution model (Normal, Exponential, Double-Exponential, and Log-Normal), 

1000 trial samples were obtained.  For each respective trial sample, B = 1000 

bootstrap re-sample replications were generated. 

 For reference, or baseline comparison results against which to evaluate the 

remedial approaches discussed above, simple percentile bootstrap estimates of 

the population variance were obtained using the common sample variance.  The 

summary values for each sample size, distribution combination that were 

considered were 

• Bias = 
1

1000
∑ 𝜎̂𝑖

21000
𝑖=1 − 1, where 𝜎̂𝑖

2 =  
1

𝐵
∑ 𝑆𝑏𝑖

2𝐵
𝑏=1 , 𝑆𝑏𝑖

2 = the sample variance 

for the bth bootstrap re-sample of the ith simulation trial sample.  Hence, for 

each trial, 𝜎̂𝑖
2 is essentially the bootstrap point estimate for the population 

variance, and the Bias is the average (mean) of all these estimates across 

the 1000 simulation trials minus the actual true population distribution 

variance.  Consequently, a negative Bias indicates that the estimate was 

lower than the truth, and vice versa. 
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• Coverage = 1000 – MissLow – MissHigh, where 

 MissLow = Number of  𝑆(975)𝑖

2 < 1, and 

 MissHigh = Number of 𝑆(25)𝑖

2 > 1, for i = 1, …, 1000; 

where 𝑆(𝑏)𝑖

2  = the bth order statistic of the B bootstrap re-sample sample 

variance estimates based on the ith simulation trial sample.  Hence, 

Coverage, again, is calculated by subtracting the number of 95% percentile 

bootstrap confidence intervals that failed to capture the true variance, both 

low and high, across the 1000 simulation trial samples. 

• Confidence Interval Width = 
1

1000
∑ (𝑆(975)𝑖

2 −  𝑆(25)𝑖

2 )1000
𝑖=1  , which is equal to the 

average interval width across all the respective simulation trials. 

• Mean Squared Error (MSE) = Bias2 + Variance, where Bias is defined as 

above, and Variance = 
1

1000
∑ [𝜎̂𝑖

2 −  𝜎̂𝑖
2̅̅ ̅]

21000
𝑖=1 , where 𝜎̂𝑖

2̅̅ ̅ =  
1

1000
∑ 𝜎̂𝑖

21000
𝑖=1 , and, 

as above 𝜎̂𝑖
2 =  

1

𝐵
∑ 𝑆𝑏𝑖

2𝐵
𝑏=1 ; which is the variance of the bootstrap point 

estimators of variance across all 1000 simulation trials. 

 

The biases for the reference case are all negative as expected from the issue 

discussed with bootstrapping variance estimates, and they generally decrease in 

magnitude (get closer to 0, the desired bias value) as the sample size increases.  
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In addition, relative to the normal distribution, the observed bias was only smaller 

in magnitude for the Double-Exponential distribution at sample sizes 20 and 30.  

For this distribution and a sample size of 10, the magnitude of the bias was largest 

of any of those displayed in Table 3. 

Table 3:  Bias Results for Simple Percentile Bootstrap Variance Estimate 

Distribution 
Sample Size (n) 

10 20 30 

Normal -0.0943 -0.0498 -0.0266 

Double-Exponential -0.1446 -0.0425 -0.0157 

Exponential -0.1016 -0.0536 -0.0407 

Log-Normal -0.1103 -0.0609 -0.0451 

 

The coverage results for the percentile bootstrap variance 95% confidence 

intervals are displayed in Table 4.  There is a clear ordering for coverage with the 

normal distribution always having the greatest coverage, the other symmetric 

distribution, the double-exponential next, followed by the two skewed distributions.  

The log-normal distribution has the consistently lowest coverage. However, none 

of the observed coverages was close to the nominal 95% confidence level, ranging 

from a low of 51% for the log-normal distribution at a sample size of 10; to a high 

of 89.7% for the normal distribution at a sample size of 30. 

 Table 4 also indicates an increase in coverage rates as the sample size 

increases.    Perhaps to be expected, the rate of increase was larger for the 
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distributions having the generally lowest coverages than for those with the higher 

coverage rates. 

Table 4: Coverage Results for Simple Percentile Bootstrap Variance 
Estimate 

Distribution 
Sample Size (n) 

10 20 30 

Normal 775 858 897 

Double-Exponential 655 773 814 

Exponential 580 695 743 

Log-Normal 510 633 689 

 

Table 5 (Confidence Interval Width) and Table 6 (MSE) display results consistent 

in nature with Table 4.  The results are consistently lowest for the normal 

distribution and highest for the log-normal, with the symmetric double exponential 

providing narrower intervals and smaller MSE than the skewed exponential.  The 

results are also consistent across sample size since, as expected, the intervals 

become narrower and the MSE results lower as sample sizes increase. 

Table 5: Confidence Interval Width Results for Simple Percentile Bootstrap 
Variance Estimate 

Distribution 
Sample Size (n) 

10 20 30 

Normal 1.348 1.088 0.926 

Double-Exponential 1.521 1.411 1.273 

Exponential 1.637 1.529 1.395 

Log-Normal 1.737 1.650 1.560 
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Table 6:  MSE Results for Simple Percentile Bootstrap Variance Estimate 

Distribution 
Sample Size (n) 

10 20 30 

Normal 0.209 0.097 0.067 

Double-Exponential 0.404 0.241 0.175 

Exponential 0.616 0.363 0.255 

Log-Normal 1.613 0.731 0.550 

 

   

Results for Approach 1 – Adjusting by Expected Bias 

 The results for the change in bias when adjusting the variance estimator by 

the multiplier 
𝑛

𝑛−1
, where n = sample size appear in Figure 6.  As desired, it appears 

this adjustment does indeed reduce the magnitude of the bias in the simple 

percentile bootstrap variance estimator. 

Figure 6: Bias Results for Approach 1 – Adjusting by Expected Bias 
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 For the normal distribution, the adjustment moves the bias at all three 

sample sizes just into the positive range, but very near to zero.  For the exponential 

distribution, the same results are observed; however, the bias is still low. 

 The double-exponential distribution is the clear outlier here as the 

adjustment does address the low bias of the simple percentile bootstrap estimator, 

but actually appears to over-correct as the sample size increases.  The bias at a 

sample size of n = 30 is actually larger in magnitude (but positive) than the bias 

without this adjustment. 

 This approach does reduce the absolute magnitude of the bias in the simple 

percentile bootstrap variance estimate by a significant percentage, almost 

achieving zero bias for the normal distribution and sample size of 20.  For the 

skewed distributions, the percentage reduction in absolute bias decreases as the 

sample size increases, but so does the actual magnitude of the bias.  For the 

normal distribution, it appears the percent reduction also begins to become smaller 

as sample sizes increase beyond n = 20.  However, it appears for the heavy-tailed, 

symmetric double-exponential distribution that the bias will actually become 

increasingly larger with larger sample sizes.  This is not unexpected, as larger 

samples will be more likely to include more extreme values and naturally inflate a 

sample variance estimator such as S2. 
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 Figure 7 displays the Coverage results for this simple adjustment for the 

expected bias.  The most obvious result is that this option does not generate 

coverage equal to the nominal 95%, as the highest realized coverage is 90.8% for 

the normal distribution and n = 30.  As seen with the simple percentile bootstrap 

approach, coverages are uniformly higher for the symmetric distributions with 

normal coverages always larger than for the double-exponential.  Coverages for 

the exponential case are uniformly higher than for the log-normal.   Also, as 

expected, coverages uniformly increase with sample size. 

Figure 7:  Coverage Results for Approach 1 – Adjusting by Expected Bias 
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underlying data is symmetrically distributed.  These reductions in under-coverage 

range from over 25% for the small sample (n=10) normally distributed data case 

to a low of only a little over a 5% reduction for the large sample (n=30) log-normal 

case. 

 Since this approach merely applies the bias adjustment multiple of 
𝑛

𝑛−1
 to 

each of the bootstrap re-sample variance estimates, the associated percentile 

bootstrap confidence intervals will be 100
1

𝑛−1
% wider than the usual bootstrap 

intervals.  This can be seen in the left-side chart of Figure 8. 

Figure 8: Confidence Interval Width and MSE Results for Approach 1 – 
Adjusting by Expected Bias 
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become smaller as sample size increases; however, they are not constant across 

different distributions.  For the small sample size (n=10), the increases in MSE are 

larger for the skewed distributions, but for the other sample sizes, the percentage 

increases tend to become more similar in magnitude. 

 

Results for Approach 2 – Bias Corrected and Accelerated Method (BCa) 

 The Bias and Accelerated (BCa) method of Efron and Tibshriani (1993) 

might be expected to reduce the observed low bias for the simple percentile 

bootstrap variance estimate.  Given that the distribution of a sample variance is 

known to be a skewed distribution, and that the BCa method includes an attempt 

to correct for skewness makes this approach seem potentially even more 

promising. 

 Unfortunately, as the negative percent reduction results in Figure 9 indicate, 

this approach actually over-corrects for the low bias, and produces biases to the 

high side of even larger magnitudes than those observed for the simple percentile 

bootstrap variance estimate.  In addition, for many of the distribution, sample size 

situations, the BCa interval coverage rates are even lower than those observed 

using the simple percentile bootstrap approach.  For those situations where they 

are not, the coverage rates are only minimally improved. 
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Figure 9:  Evaluation of Approach 2 – Bias Corrected & Accelerated Method 
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to increase significantly for the normal distribution case, bootstrap is 5.3% low 

while BCa is 9.6% low).  In addition, the width of BCa intervals and the MSE of the 

BCa estimators do not decrease at the same rate as the usual bootstrap intervals 

with increasing sample size.  Width of these intervals for the lognormal case seem 

to minimal for the sample size range evaluated, and hence, in comparison to the 

usual bootstrap intervals are increasingly wider. 

 

Results for Approach 3 – Shocking Bootstrap Observations 

Since there are 40 different shock sizes-and-types combinations (Table 2) 

being applied to each of the 12 simulation settings (four underlying distributions by 

three different sample sizes), it was necessary to create a criterion to evaluate 

across all 480 different results to determine a shock size and type that would 

perform reasonably well across all 12 simulation settings. 

Criteria for Identifying a Widely Useful Set of Shock Parameters 

 Since four different evaluation criteria are being considered (Bias, 

Coverage, Interval Width, and MSE), and it is unlikely that a single shock size 

and type will universally outperform all other size and type scenarios, a weighted 

average of the evaluation metrics was used to generate a single performance 

metric for the 40 respective shock scenarios.  Since the MSE and the Confidence 
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Interval Width metrics generally carry similar information, the weight for the MSE 

evaluation metric was set to zero for this weighted average. 

 The other three evaluation metrics – Bias, Coverage, and Interval Width – 

were given weights of 0.3, 0.5, and 0.2, respectively.  Coverage received the 

highest weight since generally the most value in a bootstrap approach is the 

generation of a confidence interval for the parameter of interest.  Bias was given 

the next largest weight given the generally wide use of point estimators, and that 

the primary motivating factor for this work was the low bias of the simple 

percentile bootstrap variance estimator.  The remaining weight was allocated to 

Interval Width recognizing that very wide intervals can ensure very high coverage 

rates. 

 In order to avoid different scales for the evaluation metrics to dominate the 

weighted average, z-scores of each metric evaluated across the 40 shocking 

scenarios were obtained.  These z-scores were then what was utilized to create 

the weighted average performance metric for each specific scenario. 

 For each distribution, sample size combination, the z-score for Bias was 

the absolute value of the difference between the point estimate (mean of each 

bootstrap trial result) and 1 (the true population variance).  Consequently, any 

deviation in the estimator from its associated parameter would produce a larger 

z-score for Bias.  These values were obtained for all 40 shock scenarios, then 
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the z-scores were obtained in the usual manner (subtracting the average of the 

40 values and dividing by the standard deviation of the 40 values).  Low (i.e., 

values well below zero) z-scores are desirable.  

 The z-scores for the Coverage metric used the difference between 950 

and the relevant observed coverage of the result.   Small values here represent 

coverages near the nominal 95%; large values would be much lower coverage 

rates; and results less than zero indicate coverages larger than the nominal 95%.  

Again, the z-scores were obtained by subtracting the average of these 

differences across the 40 shock scenarios and dividing by the standard deviation 

of the 40 differences.  Again, low z-scores are desirable. 

 The z-scores for the Confidence Interval Widths directly utilized the 

widths, again, subtracting the average width across the 40 shock scenarios and 

dividing by the standard deviation of the 40 widths.  Again, low z-scores are 

desirable as they indicate narrower intervals for a specific shock scenario. 

 For example, consider shock size and type  Scenario 1 when the 

simulation is obtaining sample sizes of n = 10 from a normal distribution.  For this 

scenario, all bootstrap replications were shocked with the Uniform shock type, 

and a shock size utilizing 1/4 of the Original Sample standard deviation to set the 

bounds of this uniform shock distribution.  The observed Bias, Coverage, and 

Interval Width for this scenario appear in Table 7. 
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Table 7: Bias, Coverage, and Interval Width Results for Shock Type and 
Size Scenario 1 of the 40 Considered 

Shock 
Scenario 

Extent of 
Shocks 

Shock 
Type and 

Size 
Bias Coverage 

Interval 
Width 

1 All 
Uniform 
1/4*S.Orig 

0.9261 789 1.398 

 

 The observed Bias produces an absolute difference of 1 – 0.961 = 0.0739.  

The average of all 40 point such differences (i.e., those for all 40 shock 

scenarios) was 0.2365 and the corresponding variance was 0.1129, generating a 

z-score for Bias for this specific scenario of -0.4838.  

 The difference between the nominal and the observed Coverage for this 

scenario is 950 – 789 = 161.  The average of all 40 such results was 93.925 and 

the variance was 2535.148, producing a z-score for Coverage for this scenario of 

1.3322.  Similarly, with the average of all 40 widths being 1.9617 and the 

variance being 0.5132, the Interval Width z-score for this scenario was -0.7873. 

Using three z-scores so obtained, a weighted average overall z-score with 

weights 0.3(Bias) + 0.5(Coverage) + 0.2(Interval Width) was generated for each 

of the 40 shock scenarios.   This was done for each of the 12 distributions, 

sample size combinations considered in the simulation effort. 
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Different weights could be used here; however, more weight was put 

toward the Bias and Coverage than the Confidence Interval Width since the 

objective is to correct for both low bias and coverage.  For this specific example, 

the overall weighted average z-score was 0.3635. 

Identifying a Widely Useful Set of Shock Parameters 

Weighted average z-scores were obtained for all 12 distributions, sample 

size combinations evaluated in the simulation.  The “best” shocking scheme 

should not only work well, have small weighted overall z-score, under the 

standard normal case where the data is well-behaved, but also for distributions 

that are non-normal, where the bootstrap method is generally of most use.  It 

also should perform well especially when the sample sizes are small, as this is 

another critical situation where the bootstrap method is more commonly utilized 

for analysis. 

Table 8 displays the weighted average z-scores for all 40 shock scenarios 

across all 12 distributions, sample size combinations.  The cells in the table are 

color coded with green representing the low values that indicate generally more 

desirable performance for that shock scenario.  Analogously, red cells hold high 

values representing shock scenarios that performed less desirably. 

Perhaps the most apparent observation in Table 8 is that shocking all 

bootstrap sample results with large shocks (i.e., using shocks that are normally 
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distributed with a standard deviation 5/4 the magnitude of the original sample 

standard deviation) has the least desirable performance universally across all the 

distribution, sample size combinations.  

Table 8:  Weighted Average Z-Scores for Shock Scenarios 

 
 

However, in looking for the desirable green cells, it appears that either 



 

 50    
   

• shocking all bootstrap samples with uniformly distributed 

disturbances with a range set a larger multiple (75% - 125%) of the 

original sample IQR sample standard deviation estimator (16), or 

• shocking only the repeated samples with normally distributed 

disturbances with a standard deviation again determined from a 

larger multiple of the original sample IQR sample standard 

deviation estimator. 

 Note that the last column ranks the average z-score across all 12 

distributions, sample size combinations in ascending order from 1 (most 

desirable performance) to 40 (least desirable performance).  These ranks are 

also color coded from green (low ranks) to red (high ranks), and since the ranks 

are uniformly distributed, there is a more uniform distribution of the colors from 

green to red across the shock scenarios than was obtained simply using the 

average z-scores.  When using this column (next to last in Table 8), the three 

largest average z-scores command the red and orange cells, as their values are 

3.3142 (All-Normal 5/4*SOrig), 1.5119 (All-Normal 4/4*SOrig), and 1.4336 (All-

Normal 5/4*IQROrig).  The next largest average z-score is 0.3265 (All-Normal 

4/4*IQROrig) which is more than a full standard deviation lower. 

 Closer inspection of Table 8 indicates that 32 of the 40 scenarios average 

z-scores are less than zero, and the smallest z-score is -0.4724 (Repeated-
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Normal 4/4*IQROrig).  Hence, this distribution of averages of weighted average z-

scores is still highly skewed to the right. 

 The ten most desirable shock scenarios are displayed in Table 9.  A clear 

observation is that basing the spread of the disturbance distribution on a 

generally larger multiple of the original sample IQR estimator of the standard 

deviation (16) is preferred over using the common sample variance estimator, S. 

Table 9:  Top Ten Performing Shock Scenarios 

Rank 
Average 
Z-Score 

Shock 
Extent 

Disturbance 
Distribution 

Multiplier 
Standard 
Deviation 
Estimator 

1 -0.4724 Repeated Normal 4/4 = 100% IQROrig 

2 -0.4175 All Uniform 4/4 = 100% IQROrig 

3 -0.4121 All Normal 2/4 = 50% IQROrig 

4 -0.4027 Repeated Normal 3/4 = 75% IQROrig 

5 -0.3642 Repeated Normal 5/4 = 125% IQROrig 

6 -0.3555 All Uniform 3/4 = 75% IQROrig 

7 -0.3399 Repeated Normal 3/4 = 75% SOrig 

8 -0.3369 All Normal 3/4 = 75% IQROrig 

9 -0.3213 All Uniform 5/4 = 125% IQROrig 

10 -0.3088 Repeated Uniform 5/4 = 125% IQROrig 

 

 Three of the top five performing scenarios involve shocking only repeated 

bootstrap re-sample observations using normally distributed disturbances with a 

mean of zero and a standard deviation estimated using a larger multiple (75% - 

125%) of the original sample IQR divided by 1.35.  While the “best” performing of 

these indicates using 100% of this estimator as the standard deviation of the 

shock distribution, it appears that using only a 75% multiple generates better 
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performance for the normal distribution across all sample sizes than for either of 

the larger multipliers.  Consequently, with a desire to not sacrifice too much 

performance when the data truly are more nearly normally distributed, a shock 

scenario 

• utilizing a normally distributed disturbance distribution with 

• a standard deviation of ¾ the size of the original sample IQR divided by 

1.35 

• applied only to repeated bootstrap sample observations 

was selected as the most appropriate set of shock parameters for this approach. 

Evaluation of Performance for Approach 3 – Shocking Bootstrap Observations 

The actual performance metric results for the selected shock scenario for 

this approach relative to the simple percentile bootstrap variance estimator appear 

in Figure 10.   It is clear that this approach sacrifices bias in the point estimator to 

improve coverage of the corresponding interval estimate. 

While the first approach (merely adjusting for the expected bias) does a 

relatively good job of reducing the amount of low bias, this approach (shocking 

bootstrap observations) actually produces larger biases for sample sizes greater 

than n = 10.  These increases are relatively large for the symmetric distributions 

for a sample size n = 30.  The increase in bias for the normal distribution with a 
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sample size of n = 30 is even larger than the associated increase in bias for the 

BCa method. 

Figure 10:  Evaluation of Approach 3 – Shocking Bootstrap Observations 
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reduction in under-coverage was ~25%, yet for this shocking approach, virtually all 

of the reductions in under-coverage are larger than 25% (the only exception is for 

the log-normal distribution with a sample size of n = 10).  None of the coverage 

rates achieve the desired nominal 95%; however, for a sample size of n = 20, in 

the normal distribution case, the coverage observed was 93.1%, similar to the 

coverage rate for a 95% bootstrap percentile interval for the population mean.  Of 

course, these improvements in coverage will necessarily require wider confidence 

intervals and generate larger MSE values. 

 

Results for Approach 4 – Using Inter-Quartile Range Estimate 

This approach has the benefit of simplicity, as it merely requires a bootstrap 

of the IQR, then estimation of the population variance using 𝜎̂2 =  (
𝐼𝑄𝑅

1.35
)

2

(16) for 

each bootstrap re-sample.  As Figure 11 displays, the bootstrap point estimator is 

not very good and, unfortunately, is biased low to an even larger degree than when 

bootstrapping the sample variance S2.  However, the coverage of the associated 

bootstrap percentile confidence interval for this approach is generally higher than 

that achieved for the other approaches at smaller sample sizes. 

For the normal distribution case, the simple percentile bootstrap confidence 

interval, using the modified IQR statistic (16) to estimate the variance, actually 
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achieves the stated nominal 95%.  Moreover, as the sample size increases in this 

case, the coverage actually also increases, continues to achieve the nominal rate, 

and actually might be considered conservative. 

Figure 11:  Bias and Coverage Results for Approach 4 – Using the Inter-
Quartile Range Estimate 
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For the non-normal distributions, while still falling below the nominal 95% rate, the 

coverage is higher than all the other approaches for sample size n = 10.  As sample 

sizes increase, however, coverage also deteriorates.  At sample size n = 30, both 

the double-exponential and log-normal distributions have coverages that are even 

lower than those achieved by the simple percentile bootstrap interval based on the 

sample variance.  This is due to all of the confidence intervals missing low (upper 

limit being less than the true variance of 1). 

The difference in the behavior between the normal distribution and the non-

normal distributions is understandable.  The variance estimator being used here 

divides the respective sample IQR by the value that is appropriate if the data is 

indeed normally distributed (i.e., 1.35).    As noted previously, the proper divisors 

are all smaller than this for the other distributions considered here (1.1 – 

Exponential, 0.98 – Double-Exponential, and 0.97 – Log-Normal).  This does not 

seem to be an issue for smaller sample sizes, but begins to be an issue as sample 

sizes increase. 

Of course, if the underlying distribution is known, then the proper adjustment 

divisor for the IQR could be applied.  However, this pre-supposes knowledge that 

generally would not be available to an analyst.  Moreover, if the under-lying 

distribution giving rise to the data was known, it is likely the analyst would favor 



 

 57    
   

some estimation approach other than a bootstrap.  Although not considered here, 

a divisor different than 1.35 could be utilized (e.g., 1) with this approach. 

Interestingly, for this approach, where improved coverages are achieved 

(normal – all sample sizes and non-normal – sample size n = 10), the interval 

widths are indeed wider than all the other approaches (see Figure 12).  However, 

the increases in the MSE of the estimator are generally less than the other 

approaches.  For the skewed distributions, the MSE is less than that for the simple 

percentile bootstrap sample variance estimator at all sample sizes considered, and 

this is also true for the double-exponential distribution at sample size n = 10. 

Figure 12:  Interval Width and MSE Performance for Approach 4 – Using 
the Inter-Quartile Range Estimate 
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Results When Combining Approaches 1 & 3 

 Considering the evaluation for both Approach 1 – Adjusting by Expected 

Bias -- and Approach 3 – Shocking Bootstrap Observations, the only reason to 

combine them would be to potentially increase coverage.  Approach 1 effectively 

addresses the low bias issue alone; however, shocking the bootstrap observations 

will increase variation in the data set and force the bias towards the high side. 

 Another potential advantage of combining these approaches is that the 

bias adjustment (Approach 1) might allow for smaller shocks to be applied for 

Approach 3.  In evaluating the 40 shock scenarios after making the Approach 1 

bias adjustment in the same fashion as described previously for Approach 3 

alone, it was found that more of the better performing shock scenarios did involve 

marginally lower weights (see Table 10).  However, the results were not 

appreciably different than when applying shocks to the data not subject to the 

bias adjustment of Approach 1.  Consequently, again, the selected shock 

scenario for the combination of approaches  

• utilized a normally distributed disturbance distribution with 

• a standard deviation of 3/4 the size of the original sample IQR divided by 

1.35, and was 

• applied only to repeated bootstrap sample observations. 
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Table 10:  Weighted Average Z-Scores for Shock Scenarios After Making 
Adjustment for Expected Bias 

 
  

In evaluation of this combination of approaches, Figure 13 suggests that for 

sample size n = 10, the combined effect on the bias is perhaps tolerable, but it gets 

progressively worse as the sample size increases.  The coverages are marginally 

higher for all the distributional models at sample size n = 10, and also for all the 

non-normal distributions at the other sample sizes considered. 
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Figure 13:  Performance Results for the Combination of Approach 1 – 
Expected Bias Adjustment and Approach 3 – Shocking Bootstrap 
Observations 
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associated increase in MSE is also largest versus all other approaches except for 

a few situations when the BCa method was applied. 
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Conclusion 

In order to draw some general conclusions, it will be necessary to compare 

performance across the five approaches considered to address the low bias and 

under-coverage of the simple percentile bootstrap variance estimate.   To review 

these five approaches can generally be described as follows: 

• Approach 1: Adjusting by Expected Bias, 

• Approach 2: Bias Corrected and Accelerated Method (BCa), 

• Approach 3: Shocking Bootstrap Resampled Observations, 

• Approach 4: Using Inter-Quartile Range Estimate, and 

• Approaches 1 & 3 combined. 

The four performance metrics evaluated were as follows: 

• % Reduction in Bias, 

• % Reduction in Under-Coverage, 

• % Increase in Confidence Interval Width, and 

• % Increase in MSE. 

For all of these metrics, the reference comparison is the simple percentile 

bootstrap variance estimate.  It is desirable for the first two metrics to be as large 

as possible, and negative results indicate performance worse the simple percentile 



 

 63    
   

bootstrap variance estimate (larger absolute bias or less coverage).  It is desirable 

for the second two metrics to be as small as possible.  Negative results for these 

metrics indicate narrower intervals and smaller MSE values than observed for the 

simple percentile bootstrap variance estimate. 

 Table 11 displays a comparison of the approaches by performance metric 

across all the simulation distributional model and sample size combinations.  The 

cells are color coded from green = desirable performance to red = poor 

performance within each performance metric across approaches, but also across 

all the simulation combinations. 

Table 11:  Comparison of Approaches by Performance Metric 
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 The most obvious conclusions from Table 11 are that Approach 1 – 

Adjusting by the Expected Bias performs universally best in reducing the low bias 

in the simple percentile bootstrap variance point estimator.  In addition, it is readily 

apparent that the combination of this approach with shocking the bootstrap 

samples generates the universally widest confidence intervals (and largest MSE 

estimates). 

 Perhaps marginally less obvious is that Approach 2 – the Bias Corrected 

and Accelerated (BCa) method does the least to improve confidence interval 

coverage, primarily due to it having the narrowest intervals.  It also produces some 

of the largest MSE values, which given the narrow intervals noted here, is driven 

primarily due to it also producing point estimates biased significantly to the high 

side (i.e., its gross over-correction of the low side bias observed for the simple 

percentile bootstrap variance point estimator). 

 As noted previously, Approach 4 – Using the Inter-Quartile Range Estimate 

does produce higher coverage rates for the normal case, as well as for all 

distributions considered with sample size n = 10.  Not surprisingly, the approach 

requires the widest intervals to obtain these high coverage rates.  In addition, this 

approach appears to perform worst in bias reduction, and contrary to the over-
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correction of the BCa method, this approach actually has larger low side bias than 

the simple percentile bootstrap variance estimator.  

Perhaps an even more subtle observation in Table 11 is that Approaches 3 

– Shocking Bootstrap Observations and the combination of this approach with 

Approach 1 – Adjusting by Expected Bias generally provide the most improvement 

in coverage rates across all the simulated conditions.  However, as noted above, 

the interval widths are generally much wider for the combined approaches than 

when simply shocking the bootstrap observations. 

Table 12 simply rearranges the rows of Table 11 (color-coding has not been 

altered) to provide another perspective on comparing the approaches.  In this 

table, it is fairly obvious that Approach 1 – Adjusting by Expected Bias and 

Approach 3 – Shocking Bootstrap Observations have no red and generally fewer 

orange (i.e., fewer cells indicating poor relative performance) than the other 

approaches.  Interestingly, from this perspective, combining these approaches 

does not generally improve on implementing either one separately, and actually 

appears to be the poorest performing of the options considered. 

Figures 14 and 15 display the two primary performance metrics - % Bias 

Reduction and % Reduction in Under-Coverage for all five approaches.  From 

these figures, it is clear that the first approach (Adjusting by Expected Bias) 
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performs best in reducing the low bias in the simple percentile bootstrap variance 

estimate.  However, the approaches involving shocks are the only others that seem 

to even be reasonably competitive alternatives for this metric. 

Table 12:  Comparison of Approaches Across Performance Metrics 

 
 

Figure 15 displays the coverage results, and it is clear that the approach the 

simply adjusts for the expected bias does not do as well for this metric as some of 

the other alternative approaches.  Notably, it always provides less improvement in 

coverage than the shocking of bootstrap observations.  Admittedly, Approach 3 – 

Shocking Bootstrap Observations – alone does not improve coverage as much as 

some of the other alternative approaches.  However, those approaches that do 
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have higher coverage rates also have wider intervals, and sometimes much wider 

intervals. 

Figure 14:  Comparison of % Reduction in Bias Results 
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• shocking repeated bootstrap observations using a shock distribution 

that is normal in shape with a mean of zero and a standard deviation 

equal to 3/4 of the adjusted original sample IQR (i.e., shocks 

~ 𝑁𝑜𝑟𝑚𝑎𝑙(𝜇 = 0, 𝜎 =  
3

4

𝐼𝑄𝑅𝑂𝑟𝑖𝑔

1.35
)) 

would provide the generally best performing corrections for the low side bias 

of the bootstrap point estimate and the under-coverage of the 

corresponding interval estimate.  If the analyst is primarily interested in a 

point estimate of the population variance, the simple adjustment approach 

seems the best alternative.  However, if an interval estimate is more 

desirable, then the shocking approach appears to be the better choice. 

 If the analyst desires both a good point estimate, as well as an 

interval estimate with the desired coverage level, this work suggests 

• adjusting the simple bootstrap percentile variance point estimate for 

its expected bias (again, simply multiply by 
𝑛

𝑛−1
, where n = sample 

size) to get a less biased point estimator, and 

• bootstrapping the IQR and using the associated bootstrap 

percentiles to obtain a confidence interval for the population 

variance. 
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Figure 15:  Comparison of % Reduction in Under-Coverage 
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smaller samples (e.g., n = 10) and certainly if the analysts believes the data may 

likely come from a normal or nearly normal distribution.  However, for larger sample 

sizes combined with a belief that the data are not normally distributed, using a 

divisor of one might be more appropriate. 
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Future Works 

There are a number of potential evaluations that could potentially add to the 

understanding of how to most appropriately manage the low bias and under-

coverage inherent in simple percentile bootstrap variance estimation.  One 

immediate follow-up study could be to refine the values of the multiplier, 𝑤, to see 

which one(s) give the highest coverage, refining the exact value at which the 

turning point in the number of Missed Low and High occurs (which is probably not 

exactly 3/4).  Clearly, additional non-normal distributions could be evaluated, such 

as contaminated normal distributions.  However, for these distributions, it would 

likely be necessary to specify whether estimation of the actual distribution variance 

or of the variance of the primary (i.e., non-contaminating distribution) was the 

desired focus of the analyst. 

As noted above, exploration on the adjustment to the IQR estimator of 

variance (i.e., smaller divisors than 1.35) might prove interesting for approaches 

involving shocks to bootstrap observations.  Finally, consideration of one-sided 

intervals (correcting just the upper limits) or tests for population variances based 

on the bootstrap method might be of interest as frequently analysts might be much 

more concerned with either over-estimation or under-estimation of the variance 

due to the penalties of one of these issues being much larger than for the other. 
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R Codes

## Install the "xlsx" package to export the result into Excel 
library(xlsx) 
 
############# BIAS CORRECTED AND ACCELERATED (BCA) FUNCTION 
#################### 
## Need to code this manually/override the existing function in R since the bcanon function in 
the bootstrap does not give the desired outcome 
# ***Ripping out the bcanon function's codes to tweak for what I really want it to do*** 
 Randy_bcanon = function (x, nboot, theta, ..., alpha = c(0.025, 0.05, 0.1, 0.16,  
   .84, 0.9, 0.95, 0.975))  
 { 
 if (!all(alpha < 1) || !all(alpha > 0))  
   stop("All elements of alpha must be in (0,1)") 
    alpha_sorted <- sort(alpha) 
   if (nboot <= 1/min(alpha_sorted[1], 1 - alpha_sorted[length(alpha_sorted)]))  
    warning("nboot is not large enough to estimate your chosen alpha.") 
   call <- match.call() 
   n <- length(x) 
    thetahat <- theta(x, ...) 
    bootsam <- matrix(sample(x, size = n * nboot, replace = TRUE), nrow = nboot) 
     thetastar <- apply(bootsam, 1, theta, ...) 
     z0 <- qnorm(sum(thetastar < thetahat)/nboot) 
 
    u <- rep(0, n) 
    for (i in 1:n) { 
  u[i] <- theta(x[-i], ...) 
    } 
     uu <- mean(u) - u 
     acc <- sum(uu * uu * uu)/(6 * (sum(uu * uu))^1.5) 
 
     # Need to add the upper zalpha as well # 
     Lower_zalpha <- qnorm(alpha) 
     Upper_zalpha <- qnorm(1-alpha) 
 
     # Need to modify this code to give upper and lower limit points # 
     Lalpha <- pnorm(z0 + (z0 + Lower_zalpha)/(1 - acc * (z0 + Lower_zalpha))) 
     Ualpha <- pnorm(z0 + (z0 + Upper_zalpha)/(1 - acc * (z0 + Upper_zalpha))) 
 
     conf_int <- c() 
 
     Lower_Limit <- quantile(x = thetastar, probs = Lalpha, type = 1) 
     Upper_Limit <- quantile(x = thetastar, probs = Ualpha, type = 1) 
 
     conf_int <- cbind(Lower_Limit, Upper_Limit) 
 
     return(c(z0, acc, conf_int)) 
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 } 
##########################################################################
###### 
### Additional analysis is required in Excel ### 
original_sample <- data  ######## User input data here!!!!!!!!!!!! ######## 
original_mean <- mean(original_sample) 
original_var <- var(original_sample) 
original_sd <- sd(original_sample) 
original_IQR <- (quantile(original_sample, c(.75), na.rm=TRUE) - quantile(original_sample, 
c(.25), na.rm=TRUE)) 
 
n <- length(original_sample) 
B <- 1000 
 
## Store the bootstrapped variances as outputs from the loop 
final_result_boot_var <- c() 
## Store the bootstrapped IQRs as outputs from the loop 
final_result_boot_IQR <- c() 
 
## Store the results from Remedy 1 
final_result_boot_var_remedy1 <- c() 
 
## Store the results from Remedy 2 
final_result_boot_var_remedy2 <- c() 
 
## Store the results from Remedy 3 
final_result_scenario_38_shocked_IQR <- c() 
 
result_boot_var <- c() 
result_boot_IQR <- c() 
 
theta_var <- function(original_sample){var(original_sample)} 
 
## Calculated from Excel 
theoretical_IQR <- c(1.34897950039216) 
 
for (i in 1:B){ 
  
 ### Percentile Bootstrap ### 
 boot_sample <- sample(original_sample, n, replace = TRUE, prob = NULL) 
 boot_var <- var(boot_sample) 
 boot_IQR <- (quantile(boot_sample, c(.75), na.rm=TRUE) - quantile(boot_sample, c(.25), 
na.rm=TRUE)) 
 
 result_boot_var <- cbind(result_boot_var, boot_var) 
 result_boot_IQR <- cbind(result_boot_IQR, boot_IQR) 
 
 ############# REMEDY 3 #################### 
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 ## Bootstrapping with shocks ONLY ON REPEATED DATA POINTS but with DIFFERENT 
shock_size's 
 
 ## extract unique elements 
 uniques <- boot_sample[!duplicated(boot_sample)] 
 ## extract duplicate elements 
 repeats <- boot_sample[duplicated(boot_sample)] 
 
 #38 Repeated-Normal(0, 3/4*Orig.IQR.) 
 scenario_38_shock_size <- (3/4)*sqrt((original_IQR/theoretical_IQR)^2) 
 scenario_38_noise_repeats_shocked<-repeats+rnorm(length(repeats),0, 
scenario_38_shock_size) 
 scenario_38_shocked_sample <- c(uniques, scenario_38_noise_repeats_shocked) 
 scenario_38_shocked_IQR <- var(scenario_38_shocked_sample) 
 result_scenario_38_shocked_IQR<-cbind(result_scenario_38_shocked_IQR, 
scenario_38_shocked_IQR) 
 
 
 scenario_38_shocked_min_IQR <- min(result_scenario_38_shocked_IQR) 
 scenario_38_shocked_2.5tile_IQR <- quantile(result_scenario_38_shocked_IQR, c(.025), 
na.rm=TRUE) 
 scenario_38_shocked_25tile_IQR <- quantile(result_scenario_38_shocked_IQR, c(.25), 
na.rm=TRUE) 
 scenario_38_shocked_mean_IQR <- mean(result_scenario_38_shocked_IQR) 
 scenario_38_shocked_median_IQR <- median(result_scenario_38_shocked_IQR) 
 scenario_38_shocked_75tile_IQR <- quantile(result_scenario_38_shocked_IQR, c(.75), 
na.rm=TRUE) 
 scenario_38_shocked_97.5tile_IQR<-quantile(result_scenario_38_shocked_IQR, c(.975), 
na.rm=TRUE) 
 scenario_38_shocked_max_IQR<- max(result_scenario_38_shocked_IQR) 
 scenario_38_shocked_less_IQR<- 
sum(length(result_scenario_38_shocked_IQR[result_scenario_38_shocked_IQR< 
original_var])) 
 scenario_38_shocked_vector_IQR<-c(scenario_38_shocked_min_IQR, 
scenario_38_shocked_2.5tile_IQR,scenario_38_shocked_25tile_IQR, 
scenario_38_shocked_mean_IQR,  
  scenario_38_shocked_median_IQR,scenario_38_shocked_75tile_IQR, 
scenario_38_shocked_97.5tile_IQR,scenario_38_shocked_max_IQR, 
scenario_38_shocked_less_IQR) 
 final_result_scenario_38_shocked_IQR <- rbind(final_result_scenario_38_shocked_IQR, 
scenario_38_shocked_vector_IQR) 
} 
 
 result_scenario_38_shocked_IQR <- c() 
 
 ## Calculating relevant summary statistics for variances from original bootstrap 
 boot_sample_min_var <- min(result_boot_var) 
 boot_sample_2.5tile_var <- quantile(result_boot_var, c(.025), na.rm=TRUE) 
 boot_sample_25tile_var <- quantile(result_boot_var, c(.25), na.rm=TRUE) 
 boot_sample_mean_var <- mean(result_boot_var) 



 

76 
 

 boot_sample_median_var <- median(result_boot_var) 
 boot_sample_75tile_var <- quantile(result_boot_var, c(.75), na.rm=TRUE) 
 boot_sample_97.5tile_var <- quantile(result_boot_var, c(.975), na.rm=TRUE) 
 boot_sample_max_var <- max(result_boot_var) 
 boot_sample_less_var <- sum(length(result_boot_var[result_boot_var < original_var])) 
 boot_sample_vector_var<-c(boot_sample_min_var,boot_sample_2.5tile_var, 
boot_sample_25tile_var, boot_sample_mean_var,  
  boot_sample_median_var, boot_sample_75tile_var, boot_sample_97.5tile_var, 
boot_sample_max_var, boot_sample_less_var) 
 final_result_boot_var <- rbind(final_result_boot_var, boot_sample_vector_var) 
 
 ## Calculating relevant summary statistics for IQR from original bootstrap 
 ## to be used in REMEDY 4 #### 
 boot_sample_min_IQR <- min(result_boot_IQR) 
 boot_sample_2.5tile_IQR <- quantile(result_boot_IQR, c(.025), na.rm=TRUE) 
 boot_sample_25tile_IQR <- quantile(result_boot_IQR, c(.25), na.rm=TRUE) 
 boot_sample_mean_IQR <- mean(result_boot_IQR) 
 boot_sample_median_IQR <- median(result_boot_IQR) 
 boot_sample_75tile_IQR <- quantile(result_boot_IQR, c(.75), na.rm=TRUE) 
 boot_sample_97.5tile_IQR <- quantile(result_boot_IQR, c(.975), na.rm=TRUE) 
 boot_sample_max_IQR <- max(result_boot_IQR) 
 boot_sample_less_IQR <- sum(length(result_boot_IQR[result_boot_IQR < original_IQR])) 
 boot_sample_vector_IQR<-c(boot_sample_min_IQR,boot_sample_2.5tile_IQR, 
boot_sample_25tile_IQR, boot_sample_mean_IQR,  
  boot_sample_median_IQR, boot_sample_75tile_IQR, boot_sample_97.5tile_IQR, 
boot_sample_max_IQR, boot_sample_less_IQR) 
 final_result_boot_IQR <- rbind(final_result_boot_IQR, boot_sample_vector_IQR) 
 
 ############# n/(n-1) REMEDY 1 #################### 
 ## Adjustment by n/(n-1) factor 
 result_boot_var_remedy1 <- (n/(n-1))*result_boot_var 
 
 boot_sample_min_var_remedy1 <- min(result_boot_var_remedy1) 
 boot_sample_2.5tile_var_remedy1<-quantile(result_boot_var_remedy1,c(.025), 
na.rm=TRUE) 
 boot_sample_25tile_var_remedy1<-quantile(result_boot_var_remedy1,c(.25), 
na.rm=TRUE) 
 boot_sample_mean_var_remedy1 <- mean(result_boot_var_remedy1) 
 boot_sample_median_var_remedy1 <- median(result_boot_var_remedy1) 
 boot_sample_75tile_var_remedy1<-quantile(result_boot_var_remedy1,c(.75), 
na.rm=TRUE) 
 boot_sample_97.5tile_var_remedy1<-quantile(result_boot_var_remedy1,c(.975), 
na.rm=TRUE) 
 boot_sample_max_var_remedy1 <- max(result_boot_var_remedy1) 
 boot_sample_less_var_remedy1<- 
sum(length(result_boot_var_remedy1[result_boot_var_remedy1 < original_var])) 
 boot_sample_vector_var_remedy1<-c(boot_sample_min_var_remedy1, 
boot_sample_2.5tile_var_remedy1,boot_sample_25tile_var_remedy1, 
boot_sample_mean_var_remedy1,  
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  boot_sample_median_var_remedy1,boot_sample_75tile_var_remedy1, 
boot_sample_97.5tile_var_remedy1,boot_sample_max_var_remedy1, 
boot_sample_less_var_remedy1) 
 final_result_boot_var_remedy1<-rbind(final_result_boot_var_remedy1, 
boot_sample_vector_var_remedy1) 
 ################################################### 
 
 ############# BCa REMEDY 2 ######################## 
 # Use "rbind"/"cbind" functions to combine these vectors from Randy_bcanon function into 
a matrix 
 boot_BCa_var <- Randy_bcanon(original_sample, nboot = 1000, theta = theta_var, alpha 
= 0.05) 
 
 final_result_boot_var_remedy2 <- rbind(final_result_boot_var_remedy2, boot_BCa_var) 
 #################################################### 
 
 
 
 
rownames(final_result_boot_var) <- c() 
rownames(final_result_boot_IQR) <- c() 
 
## Export the result into an Excel file  
write.xlsx(final_result_boot_var, "D:/Master Thesis/MasterThesisBootVAR.xlsx") 
#write.xlsx(final_result_boot_var, "E:/Master Thesis/MasterThesisBootVAR.xlsx") 
 
write.xlsx(final_result_boot_IQR, "D:/Master Thesis/MasterThesisBootIQR.xlsx") 
#write.xlsx(final_result_boot_IQR, "E:/Master Thesis/MasterThesisBootIQR.xlsx") 
 
##### REMEDY 1 RESULTS FOR EVALUATIONS ####################### 
rownames(final_result_boot_var_remedy1) <- c() 
## Export the result into an Excel file  
write.xlsx(final_result_boot_var_remedy1, "D:/Master Thesis/PercentileBootRemedy1.xlsx") 
#write.xlsx(final_result_boot_var_remedy1, "E:/Master Thesis/PercentileBootRemedy1.xlsx") 
############################################################## 
 
##### REMEDY 2 RESULTS FOR EVALUATIONS ####################### 
rownames(final_result_boot_var_remedy2) <- c() 
## Export the result into an Excel file  
write.xlsx(final_result_boot_var_remedy2, "D:/Master Thesis/PercentileBootRemedy2.xlsx") 
#write.xlsx(final_result_boot_var_remedy2, "E:/Master Thesis/PercentileBootRemedy2.xlsx") 
############################################################## 
 
##### REMEDY 3 RESULTS FOR EVALUATIONS ####################### 
rownames(final_result_scenario_38_shocked_IQR) <- c() 
## Export the result into an Excel file  
write.xlsx(final_result_scenario_38_shocked_IQR,"D:/Master 
Thesis/PercentileBootRemedy3scenario38.xlsx") 
#write.xlsx(final_result_scenario_38_shocked_IQR,"E:/Master 
Thesis/PercentileBootRemedy3scenario38.xlsx") 
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Appendix 

Tables of Bias, Coverage, Interval Width, and MSE for All Approaches 

Approach 1 – Adjusting by Expected Bias 

  

  

 

Approach 2: Bias Corrected and Accelerated Method (BCa)  
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Approach 3: Shocking Bootstrap Resampled Observations 

  

  

 

Approach 4: Using Inter-Quartile Range Estimate 
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Approaches 1 and 3 Combined 
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