Stephen F. Austin State University SFA ScholarWorks

Electronic Theses and Dissertations

8-2017

EFFECT OF PROTEASE SUPPLEMENTATION IN BROILER FEED ON GROWTH PERFORMANCE, CARCASS YIELD AND TOTAL NITROGEN RETENTION IN FECAL MATTER AND LITTER

Jawad Al-juboori Stephen F Austin State University, j.s1997@yahoo.com

Follow this and additional works at: https://scholarworks.sfasu.edu/etds

Part of the Poultry or Avian Science Commons Tell us how this article helped you.

Repository Citation

Al-juboori, Jawad, "EFFECT OF PROTEASE SUPPLEMENTATION IN BROILER FEED ON GROWTH PERFORMANCE, CARCASS YIELD AND TOTAL NITROGEN RETENTION IN FECAL MATTER AND LITTER" (2017). *Electronic Theses and Dissertations*. 142. https://scholarworks.sfasu.edu/etds/142

This Thesis is brought to you for free and open access by SFA ScholarWorks. It has been accepted for inclusion in Electronic Theses and Dissertations by an authorized administrator of SFA ScholarWorks. For more information, please contact cdsscholarworks@sfasu.edu.

EFFECT OF PROTEASE SUPPLEMENTATION IN BROILER FEED ON GROWTH PERFORMANCE, CARCASS YIELD AND TOTAL NITROGEN RETENTION IN FECAL MATTER AND LITTER

Creative Commons License

This work is licensed under a Creative Commons Attribution-Noncommercial-No Derivative Works 4.0 License.

EFFECT OF PROTEASE SUPPLEMENTATION IN BROILER FEED ON GROWTH PERFORMANCE, CARCASS YIELD AND TOTAL NITROGEN RETENTION IN FECAL MATTER AND LITTER

By

JAWAD K. AL-JUBOORI, Bachelor of Animal Science

Presented to the Faculty of the Graduate School of

Stephen F. Austin State University

In Partial Fulfillment

Of the Requirements

For the Degree of

Master of Science

STEPHEN F. AUSTIN STATE UNIVERSITY August 2017

EFFECT OF PROTEASE SUPPLEMENTATION IN BROILER FEED ON GROWTH PERFORMANCE, CARCASS YIELD AND TOTAL NITROGEN RETENTION FECAL MATTER AND LITTER

By

JAWAD K. AL-JUBOORI, Bachelor of Animal Science

APPROVED:

Joey Bray, Ph.D., Thesis Director

John Mehaffey, Ph.D., Committee Member

Christopher Comer, Ph.D., Committee Member

Wayne Weatherford, Ms., Committee Member

Richard Berry, D.M.A

Dean of the Graduate School

ABSTRACT

The objectives of this study were to determine the effects of protease supplementation on commercial broiler performance, carcass yield, and nitrogen retention in fecal matter and litter. Total of 4,800 female (Ross 708) birds split into 96 floor pens, and randomly assigned to one of four treatment groups. Birds were placed within 96, 5'x10' floor pens in a randomized-block design at the SFASU Poultry Research Center. Birds were randomly divided among the pens at a stocking density of $1.00 \text{ ft}^2/\text{bird}$ (50 birds/pen*24 pens/treatment=1200 birds/treatment), and reared for 49 days on used pine shavings. The target average weight for the birds was 6.25lbs. Dietary treatments consisted of: treatment #1 positive control (PC) Pilgrim's Standard Diet (Basal diet), treatment #2 negative control (NC) Pilgrim's Diet with Protease Matrix removed (only the amino acids' credit – no energy credit), treatment # 3 (PC+ Protease) Pilgrim's Diet (Basal diet) + Protease "on top", and treatment # 4 (NC+ Protease) Pilgrim's Diet with Protease Matrix removed + Protease "on place". groups were analyzed for bird performance, carcass yield, and Nitrogen retention in fecal matter and litter. A yield study was completed at the end of the study to determine meat yield for all retail cuts. Results indicated that the protease addition on top of protein matrix in treatment 3 had significant effect on live body weight at day 49, and had no significant effect on feed conversion ratio (FCR) & adjusted feed conversion ratio (AFCR). Also, the protease had no significant effect on carcass yield. However, the inclusion of protease on low protein diet (NC+ Protease, Tx4) lowered the nitrogen retention in fecal matter.

ACKNOWLEDGEMENTS

The author would like to take this opportunity to express his sincere appreciation and thanks to God and all those who helped him in making this research project a success especially my uncle Ali for the guidance and support. A very special thank you and gratification goes to his loving wife, Salwa. Without her divine efforts to encourage him to pursue his dreams, none of this would be possible. He would like to thank Dr. Joey Bray for the guidance, support, patience, and encouragement he has given throughout this process and during the author's Master's degree. He also, want to show his utmost appreciation to his committee members for dedicating time and effort during the process. He would also like to thank his friends and family for supporting and encouraging him throughout his Master's degree.

TABLE OF CONTENTS

ABSTRACT	1
ACKNOWLEDGEMENTS	ii
TABLE OF CONTENTS	iii
LIST OF TABLES	vi
LIST OF FIGURES	viii
CHAPTER I (Introduction)	1
Statement of Problem	3
Objectives	4
CHAPTER II (Literature Review)	5
Proteins	6
Amino Acids	7
Proteins Digestion	9
Protease Inhibitors	13
Anti-nutritional Factors	13
Protease	14
POULTRYGROW 250 TM (Protease)	17

Nitrogen Environmental Impact	17
CHAPTER III (Materials and Methods)	21
Materials and Methods	21
Experimental Animals	21
Experimental Treatments and Groups	22
Performance Parameters	24
Yield Study	26
Nitrogen study	30
Statistical Analyses	31
CHAPTER IV	33
Results and Discussion	33
Performance Parameters	34
Average Body Weight and Feed Conversion parameters	34
Yield parameter	39
Nitrogen Retention in Fecal Matter & Litter	47
Conclusion	54
Bibliography	58

APPENDIXES	
Vita	

LIST OF TABLES

1.	Table 1. Dietary amino acid (% of diet) requirements for high-yielding broilers	9
2.	Table 2. Dietary treatment groups	23
3.	Table 3: ANOVA Table for Average Body Weight Day 1	.35
4.	Table 4: ANOVA Table for Average Body Weight Day 13	.35
5.	Table 5: ANOVA Table for Average Body Weight Day 33	.35
6.	Table 6: ANOVA Table for Average Body Weight Day 49	.36
7.	Table 7: Duncan's Multiple Range Test for Average Body Weight Day 49	36
8.	Table 8: Average body weight in days1, 13, 33, and 49 & FCR and AFCR	36
9.	Table 9: ANOVA Table for Feed Conversion Ratio Day 49	38
10.	Table 10: ANOVA Table for Adjusted Feed Conversion Ratio Day 49	39
11.	Table 11: Yield Data Result by Treatments on Day 50	42
12.	Table 12: ANOVA Table for live body weight day 50	.43
13.	Table 13: ANOVA Table for WOG.	43
14.	Table 14: ANOVA Table for Thighs	43
15.	Table 15: ANOVA Table for Back	43
16.	Table 16: ANOVA Table for Fat-Pad	44
17.	Table 17: ANOVA Table for Front-H	44
18.	Table 18: ANOVA Table for Hind-H	.44
19.	Table 19: ANOVA Table for Drums	44
20.	Table 20: ANOVA Table for Frame.	45

Table 21: ANOVA Table for Wings	45
Table 22: ANOVA Table for Tenders	15
Table 23: ANOVA Table for Skin	45
Table 24: ANOVA Table for Breast4	46
Table 25: Duncan's Multiple Range Test for Breast	46
Table 26: ANOVA Table for Chicken Litter Nitrogen Retention Day 14	17
Table 27: ANOVA Table for Chicken Litter Nitrogen Retention Day 12	47
Table 28: ANOVA Table for Chicken Litter Nitrogen Retention Day 32	48
Table 29: ANOVA Table for Chicken Litter Nitrogen Retention Day 48	48
Table 30: ANOVA Table for Fecal Matter Nitrogen Retention Day1 4	50
Table 31: ANOVA Table for Fecal Matter Nitrogen Retention Day12	50
Table 32: t Tests (LSD) for Fecal Matter Nitrogen Retention Day 12	51
Table 33: ANOVA Table for Fecal Matter Nitrogen Retention Day32	51
Table 34: ANOVA Table for Fecal Matter Nitrogen Retention Day48	51
Table 35: t Tests (LSD) for Fecal Matter Nitrogen Retention Day 48	52
Table 36: Average Feed Matter % Nitrogen	52
	Table 21: ANOVA Table for Wings

LIST OF FIGURES

1.	Figure 1: Action of aminopeptidases	.16
2.	Figure 2: Blok and Treatments Design	.22
3.	Figure 3: five shelfs (Doran [®] XL8000) scale	25
4.	Figure 4: five shelfs (Doran [®] XL8000) scale attached to floor pen	25
5.	Figure 5: The Pulsed DC Poultry Stunner from Executrol Systems	28
6.	Figure 6: The Steps of the processing procedure	.29
7.	Figure 7a: The LECO CN628 Carbon/ Nitrogen Analyzer	.31
8.	Figure 7b: Carbon and Nitrogen Detected graphs.	.31
9.	Figure 8: Average Body Weight for Days (1, 13, 33, and 49)	37
10.	Figure 9: Feed Conversion Ratio and Adjusted Feed Conversion Ration	.39
11.	Figure 10: Yield Study for Live Weight & (WOG) on Day 50	.40
12.	Figure 11: Yield Study for (Front Half, Frame, Wings, Breast, Tenders, Skin) on Day 50	.41
13.	Figure 12: Yield Study for (Hind Half, Fat Pad, Drums, Thighs, Back) on Day 50	.41
14.	Figure 13: Average Chicken Litter Nitrogen Retention Percentage	.49
15.	Figure 14: Average Fecal Matter Nitrogen Retention Percentage	.53

CHAPTER I

Introduction

For any broiler producer, the main goal is higher production with a lower cost and environmental impact. Working on a complicated production equation to increase the variables in one side like the bird's weight and decrease the variables in the other side like feed cost is not an easy concept.

Protein is the second major nutrient and the most expensive in the broiler diet, and all other poultry industries. The protein sources in modern broiler diets are mostly derived from corn and soybean meal along with other sources like animal by-products (Buttin et.al, 2016). Soybean products are the most common source of protein in broiler diets and have rapidly increased in price since 2000 (Buttin et.al, 2016). Despite this, a valuable amount (18-20 %) of protein passes through the gastrointestinal tract without being completely digested and absorbed (Angel et.al, 2011, Applegate et.al, 2008). The environmental impact from nitrogen and phosphorus that comes from undigested proteins and other excreted substances in the poultry manure (Gerber et.al, 2015) has led to the idea of using supplemental exogenous enzymes like proteases in poultry diets to improve protein digestibility and reduce the amount of protein wasted, production cost, and environmental impact (Buttin et.al, 2016)

Protease enzymes have several benefits including decreasing undigested proteins in the diet, increasing amino acid availability, reducing protein needs in the diet, maintaining weight gain and feed efficiency, reducing proteolytic fermentation, and decreasing biogenic amines and bacterial toxins (Buttin et.al, 2016). Therefore, protease enzymes are of interest for many poultry companies and nutrition supplementation companies for use as an important supplement digestive enzyme in broiler diets and other poultry diets.

In our study, we were focusing on the evaluation of the effects of protease supplementation on broiler performance by measuring growth performance parameters and carcass yield over 49 days. We also measured the growth rate at different growth stages to quantify the birds' performance under inclusion of protease in their diet. The protease supplementation was added on top or in place of the protease matrix in commercial broiler diets.

Statement of Problem

On the averages about (34-46 lbs./ton) nitrogen, and (60 lbs./ton) phosphorus are extracted in solid poultry litter (Spiehs, 2005). This valuable amount of protein and non-protein nitrogen that are extracted in broiler manure have a value of (18-20%) of the protein cost in the diet indicate the amount of dollars wasted that need to be decreased to reduce the production cost and environment impact (Applegate et.al, 2008). This study was to determine if it is beneficial to include protease in broiler diets to improve growth performance, carcass yield, and nitrogen retention in fecal matter and litter.

Objectives

The objectives of this study were:

- To evaluate the effects of protease inclusion on growth performance parameters such as average body weight, feed conversion ratio, and adjusted feed conversion ratio.
- To evaluate the carcass yield, and the weights of front-half carcass, weight Without Giblets (WOG), hind-half carcass, breast, tenders, wings, drums, thighs, frame, back, abdominal fat pad, and skin with protease inclusion in broiler diets.
- To evaluate the potential of using protease in the broiler diet to reduce the nitrogen footprint in fecal matter and litter from broiler production.

CHAPTER II

Literature Review

Enzyme supplementation in poultry diets is nutritionally, economically, and environmentally justified (Kamel et. al, 2015). Enzymes are used to increase the energy value of feed ingredients and enhance the utilization of protein, fats, carbohydrates, and phosphorus from plant materials, leading to a lower excretion rate of undigested nutrients into the environment and, hence, reduced environmental pollution. This is the most important function for most feed supplement enzymes, especially proteases, as digestion of nitrogenous compounds in feed materials is essential for reducing nitrogen (N) excretion – a major pollutant worldwide (Kamel et. al, 2015).

The use of exogenous enzymes in diets of domestic animals is not a new concept and has been extensively studied and reported. However, studies have shown that response to exogenous enzymes ranges from adverse to beneficial (Campbell and Bedford, 1992, Smits and Annison, 1996, Madrid et. al, 2010, and Oxenboll et. al, 2011,). Some research has pointed out that protein is less digestible (80-85%) compared to starch (90%) in cornsoy diets (Kamel et.al, 2015). Also, certain amounts of protein pass through the gastrointestinal tract without being completely digested. Thus, the nitrogen content in the undigested protein is going into the environment, and this protein is wasted rather than used for production. As a result, using enzyme products such as proteases is very important to maximizing protein utilization and minimizing protein waste (Kamel et. al, 2015).

Proteins

Proteins are complex compounds made up of amino acids subunits which are comprised of carbon, hydrogen, oxygen, nitrogen, and sometimes sulfur. A protein molecule consists of one or more chains of amino acids. Proteins are essential components of all body cells (such as enzymes, hormones, and antibodies) that are necessary for certain body functions. They are essential in the animal's diet for growth, tissue repair, and reproduction and can be derived from many feedstuffs such as meat and fish meals, cereal grains, and legume byproducts such as soybean meal (Bailey et.al, 2016).

After a bird consumes protein, the digestive tract breaks down the protein into amino acids by extracting protein degradation oxygenated enzymes such as protease, pepsin, and trypsin. The amino acids are then absorbed by the blood and transported to cells that convert the individual amino acids into the specific proteins required by the animal. Proteins are used in the construction of body tissues such as muscles, nerves, cartilage, skin, feathers, and beak, and so on. Egg white is also high in protein. Proteins have major roles in poultry production because They are essential for growth, body maintenance, production, and reproduction (Dale, 2009). Furthermore, some research has shown that the rate and efficiency of growth is reduced, and carcass composition is inferior when the crude protein (CP) level is reduced by more than 3%, even when all nutrient requirements are met (Bregendahl et al., 2002).

Amino Acids

Amino acids are typically divided into two categories, essential and nonessential. Essential amino acids such as arginine, glycine, histidine, leucine, isoleucine, lysine, methionine, cystine, phenylalanine, threonine, tryptophan, and valine are those that cannot be made in the body to meet the needs of the animal. The nonessential amino acids are those that the body can generate if certain materials are available. There are 22 amino acids commonly found in feed ingredients. About ten of them are essential and must be supplied in the feed. Poultry diets typically contain a variety of feedstuffs because no single ingredient can supply all the necessary amino acids at the correct levels (Dale, 2009).

Essential amino acids must be supplied by the diet, and some non-essential amino acids that are in sufficient amount should be supplied to avoid the conversion of essential amino acids into non-essential amino acid. Furthermore, amino acid requirements depend on the needs of the animal, and the excess amino acids from the bird's needs will be used as a source of energy instead for body protein synthesis. This breakdown of amino acids will also result in higher nitrogenous excretions in the fecal matter (Applegate et.al, 2008).

The best way to reduce nitrogen in poultry manure is to lower the amount of CP that is fed to the broiler by supplementing diets with amino acids. Reducing the non-

essential amino acid amount, combined with adding more essential amino acids in the diet, can increase the efficacy of total N retention by the bird (Applegate et.al, 2008). Formulation based on bird amino acid requirements not on CP requirement can minimize N excretion because it simply reduces total N intake (Ferguson et al., 1998). Furthermore, broiler litter N was reduced more than 16% when dietary CP was reduced by 2%, while maintaining similar levels of dietary amino acids (Applegate et al. 2008). However, Reducing CP content of broiler diets by less than two percentage units resulted in decreased litter N content but no significant differences in NH₃ concentration in the house (Ferguson et al., 1998). Additionally, total N losses in the houses averaged 18% to 20% of total N input (Applegate et al., 2008).

Angel et al. (2006) examined the possibility of reducing dietary N intake in broilers to 42 days of age. Feed conversion was similar between groups after 5 flocks, but live body weight was 77 g lower in the lowest protein group. However, breast yield (%) was not affected by diet in the third or fourth flocks. Consumption of N was 8.3% lower resulting in a 20% reduction in N excretion. Pope et al. (2004) also studied the advantages of increasing the number of phases during the broiler growth cycle. By changing diets every two days to better meet the bird's amino acids needs from 21 to 63 days of age, performance and carcass yield didn't change, but N excretion was reduced by 7 - 13%.

Amino acids which are essential cannot be synthesized by the bird. These essential amino acids must be fed to supply the building blocks needed in the synthesis of body proteins to support growth. Dozier et al, (2008) recently summarized the amino acid requirements of broilers in weekly durations based that is shown in table below (Table 1).

Amino Acid Age, day							
	7	14	21	28	35	42	56
Total sulfur amino acids	0.94	0.90	0.85	0.81	0.77	0.74	0.70
Methionine	0.62	0.55	0.50	0.48	0.46	0.47	0.50
Lysine	1.36	1.26	1.19	1.12	1.06	1.01	0.97
Threonine	0.84	0.81	0.77	0.74	0.71	0.69	0.67
Isoleucine	0.91	0.86	0.82	0.78	0.75	0.72	0.70
Valine	1.03	0.98	0.94	0.90	0.87	0.84	0.82
Arginine	1.47	1.37	1.28	1.21	1.14	1.09	1.04

Table 1. Dietary amino acid (% of diet) requirements for high-yielding broilers (Dozier et al., 2008).

According to Applegate et al., (2008) the long-term reductions in CP formulation with adoption of the digestible amino acid should reduce feed cost and N retention in the broiler manure. However, inconsistent methodologies make it difficult to switch to using digestible amino acid values, especially for non-traditional feed ingredients.

Proteins Digestion

The digestion of protein is driven mainly by endogenous protease in the case of monogastric animals there are two stages of the digestion process (Bedford et al., 2014). The gastric stage is the first stage, which is a low pH environment. During the gastric stage pepsin breaks certain chemical bonds in proteins, producing smaller molecules called peptides and beginning protein digestion. The second stage is the small intestinal stage, a neutral phase where trypsin, chymotrypsin, elastase, and several other exo-proteases are

present to complete the process of protein digestion (Bedford et al., 2014). The pancreas synthesizes trypsin and chymotrypsin, and these enzymes are released into the small intestine through the pancreatic duct. When partially digested food moves from the stomach into the intestine, trypsin, and chymotrypsin complete protein digestion, producing simple amino acids that are absorbed into the blood (Rogers, 2015).

The secreted proteases are very effective in degrading dietary proteins and, as a result, are potentially dangerous as they could digest the animal's gastrointestinal (GI) tract and the cells in which they are produced (Bedford et al., 2014). However, this problem is avoided since the enzymes are secreted in an inactive form and only activated by pH or enzymes within the lumen. In addition, the gastrointestinal (GI) tract is protected by a layer of mucus which is relatively inert to proteolytic destruction. Generally, this system works well but protein digestion may be compromised, and certain amounts of protein pass through the gastrointestinal tract without being completely digested. Thus, the nitrogen content in the undigested protein is going into the environment. Several factors influence protein digestion rate including (Kamel et al., 2015): protease inhibitors within feed ingredients, damage to intestinal structure and absorptive surface area, rapid transit time through the gastrointestinal tract, and insufficient secretion of endogenous proteases.

The latter includes impediments like viscous non-starch polysaccharides (NSPs) which reduce the transformation rate of all digestive enzymes, including proteases, thus resulting in insufficient proteases being secreted to complete digestion (Bedford et al.,

2014). Young and sick animals may also be limited in their ability to produce or secrete digestive enzymes. In many cases the animal is faced with one or more of the above situations. Under such circumstances, supplementation of the diet with enzymes which treat one or more of the factors limiting digestion enhances more complete protein digestion and more efficient growth (Kamel et al., 2015).

Recent work has shown significant improvements in protein digestibility when proteases are used, but the improvement in performance is not always clear (Angel et al., 2011). However, in the work of Liu et al. (2013) the effectiveness of protease was correlated to protein level in the diet. Also, the efficacy of a protease may be dependent upon the ingredients used in the ration (Kocher et al., 2003). The benefit of a protease may also depend on the presence of other enzymes, for example the benefit is lost or limited when the protease is tested with a xylanase and/or phytase (Kalmendal, 2012). However, in the work of Yan et al. (2012) it was clear that the benefit of the protease was higher in the starter diet compared with the finisher diet, which suggested that the young animal may be more responsive to protease. An interaction between protein and protease was observed in which digestibility of CP and energy were greater when protease was added to highprotein diets as compared with the low-protein diets. Another interaction between energy and protease was associated with a greater increase in energy digestibility when protease was added to high-energy diets, as compared with the low-energy diets (Freitas et al., 2011).

Kamel et al. (2015) showed that protease addition has a significant effect on increasing the level of CP digestibility. The results were compatible with Freitas et al., (2011) who pointed out an improvement of 1.8% in crude protein digestibility when the protease was added to the high-protein diets, while an improvement of only 1% was in the low protein diets. In addition, Angel et al. (2011) reported an improvement of crude protein and amino acid digestibility in diets supplemented with graded levels of protease fed to 22day old broiler chickens. Moreover, Fru-Nji et al., (2011) concluded that exogenous protease enzymes enhanced protein and energy digestibility. Gitoee et al., (2015) pointed out the effects of multi-enzyme (ME) including protease dietary treatments on feed intake (FI), body weight (BW) and feed conversion ratio (FCR) at 10, 24 and 49 days of age. Results showed that the ME main effects and their interaction had no significant effect on FI of broilers at 10 days and 24 days. Although, no effect of the enzyme or its interaction could be detected in 49 days, the ME significantly affected the FI of birds in the finisher diet (49 days). On the other hand, other research showed that there was no effect for protease alone or in combination with other enzymes on BW and FCR (Kocher et al., 2003). Marsman et al. (1997) found no beneficial effects of protease inclusion in a maize-soybean diet on broiler performance. Some other research showed that the source of the protease is important in the effectiveness of the enzyme in the improvement in broiler performance by including a specific protease P2 (isolated from Aspergillus strains) in a SBM diet.

However, broiler performance did not improve when another specific protease P1 (isolated from *Bacillus* strains) was added (Ghazi et al., 1997a).

Protease Inhibitors

Protease inhibitors are small protein molecules that can interfere with the action of the proteolytic enzymes involved in breaking down protein into amino acid components. Inhibitors have been isolated from many legumes, including soybeans, and they can be destroyed by heat, which is why whole soybeans must be roasted before they can be included in poultry diets (Jacob, 2015). For maximum conversion of the proteins of soybeans and other legumes into products with good nutritional quality, the conditions of heat treatment must inactivate the antinutritional substances as well as transform the raw protein into a more bird-available digested form (Rackis et al., 2014). Protease inhibitors are limiting factors for protein digestibility and growth performance (Jacob, 2015).

Anti-nutritional Factors

The addition of enzymes in broiler diets can help to improve the utilization of dietary energy and amino acids and eliminate the effects of anti-nutritional factors resulting in improved performance of chickens (Gitoee et al., 2015). Anti-nutritional factors are substances that when present in animal feed or water reduce the availability of one or more nutrients. Anti-nutritional factors include substances such as protease inhibitors, phytate, beta-glucans, gossypol, and lectins (Jacob, 2015). Phytate is the principal storage form of phosphorus in many plant tissues. Also, phytate's main function is to block the absorption

of not only phosphorus but also other minerals, particularly calcium, magnesium, iron, and zinc, and negatively affect the absorption of lipids and proteins (Jacob, 2015). Beta-glucans bind with water in the intestines, resulting in the formation of gels that increase the viscosity of the intestinal contents. However, there is a negative correlation between intestinal viscosity and nutrient availability because the increase in viscosity associated with increased gel formation affects digestion and absorption of nutrients (Jacob, 2015). Gossypol is a toxic compound found in the cotton plant. Although it can exist throughout the plant (in the hulls, leaves, and stems), it is concentrated in the cottonseed. Two forms of gossypol exist: free and bound. The free form is the toxic form. Bound gossypol binds to proteins, making it nontoxic but decreasing protein digestion (Jacob, 2015). Lectins are proteins that have the unique property of binding carbohydrate-containing molecules which cause the agglutination of red blood cells. In the digestive tract, agglutination causes the atrophy of the microvilli, decreases the viability of the epithelial cells, and increases the weight of the small intestine caused by hyperplasia of crypt cells. Moist heat treatment will destroy much of the lectin in grain legumes (Jacob, 2015).

Protease

Proteases are a class of enzymes that are responsible for the breakdown of protein into its basic building blocks. The digestive tract produces several types of enzymes, but the three main proteases are pepsin, trypsin, and chymotrypsin. Special cells called gastric chief cell, peptic cell, or gastric zymogenic cell in the stomach produce an inactive enzyme, pepsinogen, which changes into pepsin when it contacts the acidic environment in the stomach (Mótyán et al., 2013).

Proteolytic enzymes hydrolyze peptide bonds and are also referred to as peptidases, proteases, or proteinases (Mótyán et al., 2013). The physiological function of proteases is necessary for all living organisms, and proteolytic enzymes can be classified based on their origin: microbial (bacterial, fungal, and viral), plant, animal and human (Mótyán et al., 2013). Proteolytic enzymes belong to the hydrolase class of enzymes, and are grouped into the subclass of the peptide hydrolases or peptidases. Depending on the site of enzyme action the proteases can also be subdivided into exopeptidases or endopeptidases. Endopeptidases cleave peptide bonds within and distant from the ends of a polypeptide chain. Exopeptidases catalyze the hydrolysis of the peptide bonds near the *N*- or *C*-terminal ends of the substrate. Aminopeptidases can liberate single amino acids, dipeptides (dipeptidyl peptidases) or tripeptides (tripeptidyl peptidases) from the N-terminal end of their substrates. Single amino acids can be released from dipeptide substrates by dipeptidases or from polypeptides by carboxypeptidases, while peptidyl dipeptidases

liberate dipeptides from the C-terminal end of a polypeptide chain (Figure 1) (Mótyánet al., 2013).

Figure 1: Action of aminopeptidases and carboxypeptidases removing the terminal amino acid residues as well as endopeptidases on a polypeptide substrate (having n residues). Red arrows show the peptide bonds to be cleaved (Mótyánet al., 2013).

There has been a great deal of research about using protease in broiler diets. Some of research indicates that most the broilers that have been tested by adding protease in their diet have shown improvement in feed efficiency especially in birds fed low protein diets (Buttin et al., 2016). However, many researchers have reported improvement of crude protein digestibility by the addition of protease enzyme (Kamel et al., 2015). Furthermore, other researchers have concluded that exogenous serine protease enzyme supplementation enhanced protein and energy digestibility (Gitoee et al., 2015).

POULTRYGROW 250TM (Protease)

The protease product that we used in this trail is called POULTRYGROW 250TM. It is a mixture of fermentation extracts primarily providing proteolytic enzyme activity from yeasts. POULTRYGROW 250TM main functions are to improve gain and feed conversion, and it allows a reduction of crude protein and amino acid content in the feed.

Nitrogen Environmental Impact

The poultry industry has made adjustments to meet the increasing demand for meat and egg supplies. Over the past three decades, the poultry sector has been growing at more than 5 percent annually, and its part in world meat production increased from 15 percent three decades ago to 30 percent in 2006 (FAO, 2006). This growth has been accompanied by intensifying and concentrative of poultry operations. The pressure to lower production costs and increase supply led to more efficient operations, by growing to larger, more specialized, and more integrated facilities, and through improvements in the use of animal genetics, optimized nutrition, and new production technologies. Animals reared in intensive production systems consume a considerable amount of protein and other nitrogen-containing substances in their diets. The conversion of dietary nitrogen to animal products is relatively inefficient, with 50 to 80 percent of the nitrogen is excreted (Gerber et al., 2015). Nitrogen is excreted in both organic and inorganic compounds. Nitrogen emissions from manure take four main forms: ammonia (NH_3^+), dinitrogen (N_2), nitrous oxide (N_2O) and nitrate (NO_3^- ; Gerber et al., 2015). The excretion of nitrogen originating from intensive livestock and poultry operation is a serious environment concern. In addition to polluting the air and water, nitrogen in poultry fecal matter or litter is converted to volatile ammonia through microbial fermentation and can affect the health of birds and farm workers (Hassan et al., 2011).

Nitrogen pollution has been identified as a risk to the quality of soil and water. These risks relate to high levels of nitrates, which can be leached to the groundwater table or to surface water causing eutrophication. In its nitrate form, nitrogen can easily be leached below the rooting zone and into groundwater. Poultry manure contributes to the structural nutrient overload in these areas. Moreover, the manure may be applied to crops or fish ponds in excess or in addition to chemical fertilizers or fish feed, resulting in an oversupply of nutrients. Such saturated systems will release a huge amount of nutrients into the environment. Excessive levels of nitrogen in the environment lead to negative effects (De Vries et al., 2003). Enhanced levels of nitrogen in the environment may have several adverse effects, including decreased plant species diversity in the ecosystems, eutrophication of surface waters, pollution of groundwater due to nitrate leaching, and global warming due to nitrous, nitrogen oxide, and ammonia (N₂O, NO_x, and NH₃) emissions (Gerber et al., 2015).

Atmospheric ammonia (NH₃) is increasingly being recognized as a major air pollutant because of its role in regional and global-scale negative effects when deposited into ecosystems. Ammonia is a soluble and reactive gas (Sutton and Fowler, 1995). This means that it dissolves, for example in water, and that it will react with other compounds to form ammonia-containing compounds. The concentrations of ammonia in the air are greatest in areas where there is intensive livestock farming. Agricultural land receiving large inputs of nitrogen from manures normally acts as a source of ammonia. There is little deposition of ammonia gas to intensively managed farmland, which is largely a net source of ammonia (Sutton and Fowler, 1995). Ammonia in the atmosphere can be absorbed by land, water, and vegetation (known as dry deposition). It also can be removed from the atmosphere by rain or snow (wet deposition). Impacts of ammonia deposition include; soil and water acidification, eutrophication caused by nitrogen enrichment with consequent species loss, vegetation damage, and increases in emissions of the greenhouse gases such as nitrous oxide (Gerber et al., 2015).

Nitrogen excretion from farm animals is part of an unfriendly environmental footprint. So, the new idea for using protease enzymes may not only be to improve feed efficiency and utilization by the animal to decrease production cost, but also to reduce the total content of nitrogen being excreted in the manure (Kamel et. al, 2015). This indicates that when aiming to improve the environmental performance of broilers, the use of a protease in feed is one of the more promising nutritional strategies, either used alone or combined with other dietary alterations or changes in poultry production (Smith, 2015). Hassan et al., (2011) found that the addition of protease in broiler diet decreased the N excretion by 8.33, 7.60, and 7.97% in starting, growing, and finishing periods, respectively. Moreover, the combination of xylanase, amylase, protease and phytase is effective in improving the digestibility of DM, N, lipid, amino acids, energy, Ca, and P of maize/soybean meal-based diets for broiler chickens (Cowieson et al., 2006). Also, Ghazi et al., (2010b) have found that the protease increased apparent nitrogen (N) digestibility and apparent N retention across the whole digestive tract in broilers. On the other hand, nitrogen was lower for chicks fed low-protein diets; however, no significant effect of protease enzyme supplementation was observed (Yamazaki et al., 2002).

One of the aims of our study was to examine the effect of the protease in the broiler diet on nitrogen excretion in the manure of the broiler at age 1, 12, 32, and 48 days across four treatments.

CHAPTER III

Materials and Methods

Experimental Animals

This study began on February 24, 2017, when 4,800 one day-old, female Ross 708 commercial broiler chicks supplied by Pilgrim's Corporation (Nacogdoches, Tx) were placed at the Stephen F. Austin State University Poultry Research Center. The birds were randomly assigned to one of four treatment groups with a total of 1,200 birds /treatment group. Birds were randomly placed into 96, 50 ft² pens at a stocking density of 1.00 ft²/bird (50 birds/pen). Each pen was then assigned to one of four treatment groups in a randomized complete block design within 24 blocks, and four pens for each block (Figure 2). A randomized block design was used to minimize any effect due to environmental variation dependent on position within the test facility. The birds were reared on used bedding for a total of 49 days. Two hanging tube feeders and a nipple drinker were placed in each pen.

T T		
T T	T T	Lab T
	T T	Shop T

Figure 2: Blocks and Treatments Design (T= Treatment, B= Block, P= Pen)

Experimental Treatments and Groups

This study had a total of four different treatment groups (Table 2). Each treatment group consisted of 1,200 birds and had 24 replicates per treatment where pen is the experimental unit. For each of the below groups, feed changes mimicked Pilgrim's standard feeding regimen as follows: Starter diet – 1 lb. complete feed/bird (~d1-13), Grower diet – 4 lbs. complete feed/bird (~d14-32), Finisher (Withdrawal) diet - ~7 lbs. complete feed/bird (~d33-49). Pilgrim's supplied all basal diets. Diets were back formulated prior to arrival at the SFASU Research Feed Mill. Diets were then formulated per the treatment specifications, mixed, crumbled and/or pelletized, weighed and recorded.

Treatment #		Diet			
		Starter	Grower	Finisher	
1	Positive Control (PC)	Pilgrim's Diet (Basal diet)			
2	Negative Control (NC)	Pilgrim's Diet with Protease Matrix removed (only the amino acids' credit – no energy credit)			
3	PC + Protease	Pilgrim's Diet (Basal diet) + Protease "on top"			
4	NC + Protease	Pilgrim's Diet with Protease Matrix removed + Protease "on top"			

Table 2. Dietary treatment groups PC, NC, PC +Protease, and NC +Protease

* Protein or protease matrix= all protein and amino acids credit in the diet

Performance Parameters

All birds in each pen were counted and weighed collectively on days 13, 32 & 49. These days represent approximate times for feed change (day 13 – End of starter phase, day 32 – End of grower phase, and day 49 – End of finisher phase.). A five shelf (Doran[®] XL8000) scale used to weigh all the pen's content of birds as shown in (Figure 2). The scale was attached to the pen's door (Figure 3) where the scale shelves' doors were facing the inside of the pen. Two of our weighing team were inside the pen to load 15 birds into each layer. No more than 50 birds per pen were weighed. The birds' total weight and number were recorded for each pen individually. However, before weighing the birds, the tube feeders, and any feed in the feed bags from the last feed phase were placed on top of the scale and weighed. The feed measurements were used to calculate the intake. Pens total live weight were used to determine average body weight per treatment group. All feeds were weighed and recorded prior to delivery in each pen with the feed remaining in each pen on assigned weigh days were used to calculate total feed intake, feed conversion ratio, and adjusted feed conversion ratio. Mortality was checked daily, and all mortality was collected, weighed, and recorded. Probable cause of death was noted.

Figure 3: Five shelf (Doran® XL8000) scale

Figure 4: five shelves (Doran® XL8000) scale attached to floor pen

Yield Study

At the completion of the study, 4 randomly- selected birds per pen, for a total of 384 birds, were individually weighed, recorded, and wing tagged. A numbered wing tag was placed in the wing web of each bird for further individual identification throughout the yield process. Birds from each treatment group remained together and were placed in individual isolation pens until time for processing. The birds were provided feed and water until 10 hours prior to processing, when the feed was removed for gut passage. The process steps are shown in (Figures 5 & 6). Birds were first placed in the Killing cones, where the birds were stunned in the Pulsed DC Poultry Stunner from (Executrol Systems) stunning unit (Figure 5). Next birds were bled by using a knife to sever the carotid artery and jugular vein, and allowing approximately 2 minutes bleed time. The third step was placing the birds in the scalder in 140° F water to prepare them to be defeathered. Birds were transferred from the scalder into the plucker and defeathered until most of the feathers were removed. Finally, the feet were manually removed, and then the carcasses were hooked to the shackle line to manually remove the head and neck. The intestines and internal organs were eviscerated manually. The whole carcass was cut into the standard poultry cuts and placed in one basket. Standard cuts were weighed using two computer capturing scales. The basket was placed on the first scale to record the whole carcass weight, and then as each part was removed from the basket weights were captured. The software subtracted each part weight from the whole carcass weight and saved that part weighed until all the

carcass parts were recorded separately. The front half part went to the deboning table to be cut for breast, tenders, wings, frame, skin, and all those parts went to the second scale to be weighed as we done with hind half. The following weights were recorded: weight without giblets (WOG), front-half carcass, hind-half carcass, breast, tenders, wings, drums, thighs, frame, back, abdominal fat pad and skin. The remaining broilers in the houses were taken to the Pilgrims' processing plant and slaughtered for commercial distribution. The yield study was to determine if protease addition in broiler diet had any effect on whole carcass, and retail cuts weight.

Figure 5: Step (1) in the processing procedure. The Pulsed DC Poultry Stunner from Executrol Systems

Figure 6: The Steps of the processing procedure from Step (2) to Step (6)

Nitrogen study

A. Preparation of sample

Fecal matter samples and litter samples including used bedding materials consisting of wood shaving and fecal matter from previous trials were taken with 12 replicates for each treatment at four intervals during the study on days 1, 12, 32, and 49. Days 12 and 32 represented a day before the transition of the starter feed phase to grower feed phase, and switching from grower feed phase to finisher feed phase respectively. Samples were taken at the end of each feeding phase plus the first day of the trial. We picked those sample dates to investigate the effect of each diet during the feeding phases. The samples were air dried at room temperature (approximately 20 C°) until dry. All samples were ground to a particle size less than 2mm.

B. Nitrogen Analysis

Samples were analyzed using a Leco CN628 instrument for total Carbon/Nitrogen content by combustion (Figures 7a &7b). Instrument was set for operating parameters (oven temperature, oxygen flow, helium flow, calibration values, etc.) according to the method of application (LECO CN628 Manual). The furnace of the instrument was allowed to reach the operating temperature (950° C), and then allowed to stabilize. The fecal matter, chicken litter, and feed were then weighed to 150-175 mg into a tared combustion foil cup

and transferred into a loading carousel on top of the instrument. The samples were analyzed to compare the proportion of nitrogen on the first day with the remaining samples, as well as the nitrogen proportion in the (PC)control diet with diet number 3, and (NC) control diet with diet number 4. Also, the proportion of nitrogen in feed compared to the chicken litter and fecal matter to calculate the amount of nitrogen utilized in the body and the amount of nitrogen excreted outside the body.

Figure 7a: The LECO CN628 Carbon/ Nitrogen Analyzer

Figure 7b: Carbon and Nitrogen Detected graphs by spectral and thermal detector

F1 Into	F3 Login	- F4 Balance	F5 Analyze	P6 Abor	F7 Pause	F8					
Samples											4
Row	Name	Nitroge Carbon A	Description	Mass	Local	toisture Carbon %	Nitrogen %	%CN RATIO	%ORGANIC MA	Protein Fac	t Protein
8005	R42624	379.42 311121	T1P1	0.1475	11	32.650	3.4782	9.38716	65.30069	6.2500	21.739
8006	R42625	561.15 378087	T1P1	0.1588	12	36.626	4.7176	7.76376	73.25249	6.2500	29,485
8007	R42626	453.03 371364	T1P1	0.1597	13	35,791	3.8113	9.39066	71.58194	6.2500	23.821
8008	R42627	476.67 376357	T1P1	0.1578	14	36,695	4.0519	9.0562	73.38919	6.2500	25.324
8009	R42628	440.86 361976	T1P1	0.1520	15	36.681	3.9004	9.40458	73.36298	6.2500	24.377
8010	R42629	381.87 323494	T1P1	0.1591	16	31.432	3.2446	9.68734	62.86302	6.2500	20.279
8011*	R42630	▼ 455.55 352123	T1P1	0.1552	17	34.977	3.9430	8.87069	69,95376	6.2500	24.644
8012	R42631	476.00 366269	T1P1	0.1595	18	35.359	4.0033	8.83248	70.71734	6.2500	25.020
8013	R42632	580.63 363462	T1P1	0.1561	19	35,860	4.9614	7.22787	71,72046	6.2500	31.009
8014	R42633	453.37 363759	T1P1	0.1582	20	35.412	3.8503	9.19729	70.82452	6.2500	24.064
8015	R42634	7.3399 147.63	T1P1	0.1542	1	1.1072	0.19188	5.77031	2,21443	6.2500	1.1993
8016	R42635	10.213 71.421	T1P1	0.1520	12	1.1157	0.21922	5.08972	12,2315	6.2500	1.3701
8017	R42636	9,7630 47,822	T1P1	0.1532	23	1.1047	0.21368	5.16984	2.20942	6.2500	1.3355
8018	R42637	4.7048 103.24	T1P1	0.1560	24	1.0902	0.16772	6.50008	2 18038	6.2500	1.0482
NI:+	rogo	0/		20	120	Cork	oon 0	/		21 0	770
INIT	rogei	1 %		3.9	430	Cart	Jon 7	0		34.8	9/1
4 - 3.5 - 3 - 4000 2 - 1.5 - 1 - 0.5 - 0 -						12000 - 10000 - 9 9200 - 4000 - 2000 - 0 -					

Statistical Analyses

Data collected from the study were analyzed using the Statistical Analysis System (SAS 9.2). The data were interpreted using one-way analysis of variance (ANOVA). Differences were accepted as significant at p<0.05. Dependent variables of performance and yield data were analyzed according to the independent variables of treatment and block in separate ANOVA tables. The significant differences were identified using Duncan's Multiple Range Test, and paired *t* Test (LSD) when overall ANOVA was significant.

CHAPTER IV

Results and Discussion

At the completion of the study, all data collected during the study was evaluated. The following is a compilation of the results determined from this research trial. As stated previously, treatment 1 was used as a positive control (Pilgrim's Standard Basal diet) in starter, grower, and finisher feed phases as shown in appendixes (A, E, and I) respectively. Treatment 2 was used as a negative control (Pilgrim's Diet with Protease Matrix removed only the amino acids' credit – no energy credit) in starter, grower, and finisher feed phases as shown in appendixes (B, F, and J) respectively. Treatment 3 was positive control + protease as shown in appendixes (D, G, and K) respectively. Treatment 4 was negative control + protease as shown in appendixes (C, H, and L) respectively.

PERFORMANCE PARAMETERS

Average Body Weight and Feed Conversion parameters

Average body weight was measured on multiple occasions throughout the study. Days 1, 13, 33, and 49 were chosen as they were the intervals that the broilers switched diets. Birds were weighed on Day 1 to compare the trial pens in order to minimize differences between treatment groups. At day 13, the chickens had finished their consumption of starter diets and were switched to a grower diet. At day 33, they switched from grower diets to finisher diets. At day 49, all feed was removed as the birds were prepared for processing.

There was no difference at day 1 among treatments as shown in (Table3). At day 13 and 33, no significant differences were seen in average body weight between the four treatments (Tables 4 and 5). By day 49, there was significant difference seen in body weight (Table 5). Specifically, treatment # 3 showed higher mean body weight (6.48 lb.) when compared to the other treatments (Table 7).

Table 3: ANOVA Table for Average Body Weight Day 1

Source	DF	Type III SS N	Aean Square 🛛 F	Value	Pr > F
Block	23	0.00502674	0.00021855	5.47	<.0001*
Treatment	3	0.00005828	0.00001943	0.49	0.6931
Model	26	0.00508502	0.00019558	4.89	<.0001*
Error	69	0.00275797	0.00003997		
Total	95	0.00784299			

*Significant at the (0.05) level of probability.

Table 4: ANOVA Table for Average Body Weight Day 13

Source	DF	Type III SS	Mean Square	F Value	Pr > F
Block	23	0.08277100	0.00359874	2.17	0.0073*
Treatment	3	0.00532892	0.00177631	1.07	0.3677
Model	26	0.08809992	0.00338846	2.04	0.0099*
Error	69	0.11456858	0.00166041		
Total	95	0.20266850			
		ملد			

*Significant at the (0.05) level of probability.

Table 5: ANOVA Table for Average Body Weight Day 33

Source	DF	Type III SS	Mean Square	F Value	Pr > F
Block	23	0.27938862	0.01214733	0.86	0.6526
Treatment	3	0.10152313	0.03384104	2.38	0.0767
Model	26	0.38091175	0.01465045	1.03	0.442
Error	69	0.97963687	0.01419764		
Total	95	1.36054862			

Table 6: ANOVA Table for Average Body Weight Day 49

Source	DF	Type III SS	Mean Square	F Value	Pr > F
block	23	0.57308691	0.02491682	1.04	0.4370
Treatment	3	0.34078645	0.11359548	4.72	0.0047*
Model	26	0.91387335	0.03514898	1.46	0.1080
Error	69	1.66061630	0.02406690		
Total	95	2.57448966			

*Significant at the (0.05) level of probability.

Table 7: Duncan's Multiple Range Test for Average Body Weight Day 49

Duncan Grouping	Mean	N ⁻	Treatment
А	6.48	24	3
В	6.36	24	1
В			
В	6.34	24	4
В			
В	6.34	24	2
*Means with the sar *Alpha *Error Degrees of F *Error Mean Square	ne letter are n (reedom 6 e C	ot significa 0.05 69 0.02406	antly different.

Table 8: Average body weight for day s1, 13, 33, and 49 & Feed Conversion Ratio and Adjusted

Feed Conversion Ratio for day 49

		Average E				
Treatment	Day 1	Day 13	Day 33	Day 49	FCR	AFCR
TX 1 (PC)	0.08	0.79	3.22	6.36	1.84	1.65
TX 2 (NC)	0.08	0.77	3.30	6.34	1.85	1.67
TX 3 (PC + Protease)	0.08	0.78	3.23	6.48 [*]	1.85	1.64
TX 4 (NC + Protease)	0.08	0.78	3.28	6.34	1.85	1.67

Figure 8: Average Body Weight by Treatment for Days 1, 13, 33, and 49

Feed Conversion Ratio (FCR) & Adjusted Feed Conversion Ratio (AFCR)

Feed Conversion Ratio= Total Feed Consumed/Pen Total Body weight

Adjusted Feed Conversion Ratio:

(Actual Average Body Weight - 6)/7 = X1

Actual Feed Conversion ratio -X1 = X2

(X2 * 1450 average kcal of all diets) / 1,500 standard kcal = Adjusted Feed

Conversion for Body Weight.

There were no significant differences (p > 0.05) among the treatments for feed conversion ratio (FCR) and adjusted feed conversion ratio (AFCR) (Tables 8, 9). However, AFCR values are slightly different from each other between treatments (Figure 9). Table 8 shows that treatment 3 has the lowest AFCR. AFCR adjusts the feed efficiency of the birds for an equal body weight of 6 lbs. Since treatment 3 had the highest average body weight that shows the lowest feed conversion when all treatments are adjusted to the same body weight.

Table 9: ANOVA Table for Feed Conversion Ratio Day 49

Source	DF	Type III SS	Mean Square	F Value	Pr > F
block	23	0.05040583	0.00219156	0.92	0.5688
Treatment	3	0.00309967	0.00103322	0.44	0.7283
Model	26	0.05350550	0.00205790	0.87	0.6483
Error	69	0.16371583	0.00237269		
Total	95	0.21722133			

Table	10:	ANO	VA	Table	for	Ad	iusted	Feed	Conv	ersion	Ratio	Dav	/ 49
10010		/	• • •	10010		,	10000	1 000	00111	0101011	i tatio		

Source	DF	Type III SS	Mean Square	F Value	Pr > F
block	23	0.05816896	0.00252909	0.84	0.6701
Treatment	3	0.00908088	0.00302696	1.01	0.3951
Model	26	0.06724983	0.00258653	0.86	0.6572
Error	69	0.20744113	0.00300639		
Total	95	0.27469096			

Figure 9: Feed Conversion Ratio (FCR) and Adjusted Feed Conversion Ratio (AFCR) by Treatment

Yield Study

No significant difference was observed for average live weights of the sample birds processed among all treatments (Table 11). Treatment 3 had the highest body weight among the treatments similar to the average body weight per pen at the day 49. This shows there was no selection bias within selecting sample birds. Furthermore, no significant differences were seen in the retail cuts (WOG, fat Pad, front half, hind half, frame, wings, tenders, drums, thighs, back, skin, and brest) among treatments (p > 0.05) as shown in (Tables 12-25). Treatment 3 had the highest breast weight, while treatment 4 had the lowest breast weight (Table 11). Treatment 3, PC + Protease, was consistently higher in average live weight, fat pad, front half, hind half, frame, breast, and skin compared to other treatments (Table 11).

Figure 10: Yield Study for Live Weight & Weight without Giblet (WOG) on Day 50

Figure 11: Yield Study for (Front Half, Frame, Wings, Breast, Tenders, Skin) on Day 50

Figure 12: Yield Study for (Hind Half, Fat Pad, Drums, Thighs, Back) on Day 50

	Treatments							
Retail Cuts	Tx1	Tx2	Tx3	Tx4				
	(PC)	(NC)	(PC+Protease)	(NC+Protease)				
LIVE WEIGHT	6.54	6.62	6.74	6.59				
WOG	4.73	4.84	4.82	4.79				
FAT PAD	0.13	0.15	0.15	0.12				
FRONT HALF	2.83	2.86	2.92	2.85				
HIND HALF	1.77	1.80	1.83	1.78				
FRAME	0.62	0.62	0.70	0.62				
WINGS	0.49	0.49	0.49	0.49				
BREAST	1.29	1.31	1.34	1.25				
TENDERS	0.29	0.29	0.29	0.29				
SKIN	0.13	0.13	0.15	0.13				
DRUMS	0.60	0.60	0.61	0.59				
THIGHS	0.75	0.76	0.76	0.77				
BACK	0.42	0.43	0.43	0.44				

Table 11: Yield Data Result by Treatments on Day 50

Table 12: ANOVA Table for live body weight

Source	DF	Type III SS	Mean Square	F Value $Pr > F$
Block	23	9.25053448	0.40219715	1.13 0.3049
Treatment	3	1.95673510	0.65224503	1.84 0.1396
Model	26	11.2058998	0.4309961	1.22 0.2178
Error	342	121.2130221	0.3544240	
Total	368	132.4189220		

*Significant at the (0.05) level of probability.

Table 13: ANOVA Table for WOG

Source	DF	Type III SS	Mean Square	F Value	Pr > F
Block	23	4.79644851	0.20854124	0.92	0.5691
Treatment	3	0.45983230	0.15327743	0.68	0.5663
Model	26	5.25815555	0.20223675	0.89	0.6177
Error	340	76.91269744	0.22621382		
Total	366	82.17085300			

*Significant at the (0.05) level of probability.

Table 14: ANOVA Table for Thighs

Source	DF	Type III SS	Mean Square	F Value	Pr > F
block	23	0.23867402	0.01037713	1.10	0.3429
Treatment	3	0.00433762	0.00144587	0.15	0.9276
Model	26	0.24305078	0.00934811	0.99	0.4799
Error	340	3.20805494	0.00943546		
Total	366	3.45110572			

*Significant at the (0.05) level of probability.

Table 15: ANOVA Table for Back

Source	DF	Type III SS	Mean Square	F Value	Pr > F
Block	23	0.06943377	0.00301886	0.75	0.7973
Treatment	3	0.01659733	0.00553244	1.37	0.2529
Model	26	0.08590851	0.00330417	0.82	0.7264
Error	340	1.37667732	0.00404905		
Total	366	1.46258583			

Table 16: ANOVA Table for Fat-Pad

Source	DF	Type III SS	Mean Square	F Value	Pr > F
Block	23	0.26259905	0.01141735	0.98	0.4936
Treatment	3	0.04666839	0.01555613	1.33	0.2637
Model	26	0.31158408	0.01198400	1.03	0.4313
Error	338	3.94638030	0.01167568		
Total	364	4.25796438			

*Significant at the (0.05) level of probability.

Table 17: ANOVA Table for Front Half

Source	DF	Type III SS	Mean Square	F Value	Pr > F
Block	23	2.99347971	0.13015129	1.73	0.0215
Treatment	3	0.34022479	0.11340826	1.50	0.2133
Model	26	3.32312634	0.12781255	1.70	0.0199
Error	340	25.63748735	0.07540437		
Total	366	28.96061369			

*Significant at the (0.05) level of probability.

Table 18: ANOVA Table for Hind Half

Source	DF	Type III SS	Mean Square	F Value	Pr > F
Block	23	0.69634970	0.03027607	0.68	0.8630
Treatment	3	0.13086036	0.04362012	0.98	0.4007
Model	26	0.83107875	0.03196457	0.72	0.8417
Error	340	15.08088637	0.04435555		
Total	366	15.91196512			

*Significant at the (0.05) level of probability.

Table 19: ANOVA Table for Drums

Source	DF	Type III SS	Mean Square	F Value	Pr > F
Block	23	0.12984388	0.00564539	0.97	0.5057
Treatment	3	0.00397550	0.00132517	0.23	0.8773
Model	26	0.13358002	0.00513769	0.88	0.6354
Error	340	1.98127938	0.00582729		
Total	366	2.11485940			

Table 20: ANOVA Table for Frame

Source	DF	Type III SS	Mean Square	F Value	Pr > F
block	23	2.37483295	0.10325361	1.01	0.4552
Treatment	3	0.37010928	0.12336976	1.20	0.3084
Model	26	2.72130249	0.10466548	1.02	0.4385
Error	333	34.13353617	0.10250311		
Total	359	36.85483866			

*Significant at the (0.05) level of probability.

Table 21: ANOVA Table for Wings

Source	DF	Type III SS	Mean Square	F Value	Pr > F
Block	23	0.95064809	0.04133253	0.87	0.6456
Treatment	3	0.19656177	0.06552059	1.37	0.2511
Model	26	1.14475537	0.04402905	0.92	0.5774
Error	339	16.18716157	0.04774974		
Total	365	17.33191694			

*Significant at the (0.05) level of probability.

Table 22: ANOVA Table for Tenders

Source	DF	Type III SS	Mean Square	F Value	Pr > F
Block	23	0.04621170	0.00200920	1.22	0.2201
Treatment	3	0.00151478	0.00050493	0.31	0.8198
Model	26	0.04805518	0.00184828	1.13	0.3076
Error	336	0.55118665	0.00164044		
Total	362	0.59924182			

*Significant at the (0.05) level of probability.

Table 23: ANOVA Table for Skin

Source	DF	Type III SS	Mean Square	F Value	Pr > F
Block	23	0.20240186	0.00880008	1.69	0.0262
Treatment	3	0.02349270	0.00783090	1.50	0.2136
Model	26	0.22617996	0.00869923	1.67	0.0231
Error	331	1.72446396	0.00520986		
Total	357	1.95064392			

Table 24: ANOVA Table for Breast

Source	DF	Type III SS	Mean Square	F Value	Pr > F
Block	23	0.63867998	0.02776869	1.05	0.3969
Treatment	3	0.20155448	0.06718483	2.55	0.0557
Model	26	0.84373712	0.03245143	1.23	0.2046
Error	338	8.90741098	0.02635329		
Total	364	9.75114810			

*Significant at the (0.05) level of probability.

Duncan Grouping	Mean	Ν	Treatment			
А	1.33733	91	3			
А						
B A	1.32100	90	2			
B A						
B A	1.30086	93	1			
В						
В	1.27374	91	4			
*Means with the sam	ne letter are not	signif	icantly different			
*Alpha	0.0)5				
*Error Degrees of Freedom 338						
*Error Mean Square	0.0	02635	3			

Table 25: Duncan's Multiple Range Test for Breast

Nitrogen Retention in Fecal Matter & Litter.

Fecal matter samples and litter samples were taken with 12 replicates for each treatment at four intervals during the study on days 1, 12, 32, and 49. Days 12 and 32 represented a day before the transition of the starter feed phase to grower feed phase, and switching from grower feed phase to finisher feed phase respectively. Samples were taken at the end of each feeding phase plus the first day of the trial. No significant difference in nitrogen retention was observed in chicken litter samples at days 1, 12, 32, and 48 among all treatments (p > 0.05), (Tables 26 to 29, Figure 13). Day 1 litter samples were used as starting baseline since the litter had birds previously grown on it. Nitrogen dropped constantly through days 12, 32, and 48.

Table 26: ANOVA Table for Chicken Litter Nitrogen Retention on Day 1

Source	DF	Type III SS	Mean Square	F Value	Pr > F
block	17	3.90941021	0.22996531	0.89	0.5942
Treatment	3	0.53622687	0.17874229	0.69	0.5668
Model	20	4.44988521	0.22249426	0.86	0.6341
Error	27	7.00730646	0.25952987		
Total	47	11.45719167			

*Significant at the (0.05) level of probability.

Table 27: ANOVA	Table for Chicker	Litter Nitrogen	Retention on	Day 12

Source	DF	Type III SS	Mean Square	F Value	$\Pr > F$
Block	17	0.29980744	0.01763573	0.94	0.5381
Treatment	3	0.15204911	0.05068304	2.71	0.0645
Model	20	0.48576369	0.02428818	1.30	0.2588
Error	27	0.50423422	0.01867534		
Total	47	0.98999792			

Table 28: ANOVA Table for Chicken Litter Nitrogen Retention on Day 3	32
--	----

Source	DF	Type III SS	Mean Square	F Value	Pr > F
Block	17	0.56350887	0.03314758	0.90	0.5784
Treatment	3	0.16327554	0.05442518	1.48	0.2418
Model	20	0.73669845	0.03683492	1.00	0.4892
Error	27	0.99193280	0.03673825		
Total	47	1.72863125			

*Significant at the (0.05) level of probability.

Table 29: ANOVA Table for Chicken Litter Nitrogen Retention on Day 48

Source	DF	Type III SS	Mean Square	F Value	Pr > F
Block	17	1.06287815	0.06252224	1.73	0.0989
Treatment	3	0.04590315	0.01530105	0.42	0.7380
Model	20	1.09462815	0.05473141	1.51	0.1562
Error	27	0.97643852	0.03616439		
Total	47	2.07106667			

Figure 13: Average Chicken Litter Nitrogen Retention Percentage

Fecal matter samples were analyzed for N content, and there was no significant difference observed in days 1 and 32 among all treatments (Tables 30 & 33). However, there was a significant difference observed among treatments in N content for fecal matter on day 12 (Table 31). Treatments 1 with a 3.51 % N had the lowest nitrogen retention, and treatment 3 with 3.82 % N had the highest nitrogen retention. On day 48 there was also a significant difference observed among treatments as shown in Table 33. Treatment 4 NC + Protease had the lowest nitrogen retention which coincides with Yamazaki et al (2002) finding (Figure 14). Average feed matter nitrogen retention can be seen across treatments in Table 36.

Table 30: ANOVA Table for Fecal Matter Nitrogen Retention Day1

Source	DF	Type III SS	Mean Square	F Value	Pr > F
Block	17	7.75834189	0.45637305	1.39	0.2141
Treatment	3	2.18900855	0.72966952	2.23	0.1076
Model	20	9.94339189	0.49716959	1.52	0.1539
Error	27	8.83417478	0.32719166		
Total	47	18.77756667			

Table 31: ANOVA Table for Fecal Matter Nitrogen Retention Day12

Source	DF	Type III SS	Mean Square	F Value	Pr > F
Block	17	1.14132227	0.06713660	1.62	0.1272
Treatment	3	0.63550560	0.21183520	5.12	0.0062*
Model	20	1.59109519	0.07955476	1.92	0.0569
Error	27	1.11775273	0.04139825		
Total	47	2.70884792			

*Significant at the (0.05) level of probability.

t Grouping	Mean	Ν	Treatment
А	3.82333	12	3
А			
А	3.75750	12	2
Α			
B A	3.72917	12	4
В			
В	3.56083	12	1

Table 32: t Tests (LSD) for Fecal Matter Nitrogen Retention Day 12

*Means with the same letter are not significantly different. *Alpha 0.05

, aprila	0.00	
*Error Degrees of Freedom	27	
*Error Mean Square	0.041398	

Table 33 ANOVA Table for Fecal Matter Nitrogen Retention Day32

Source	DF	Type III SS	Mean Square	F Value	Pr > F
Block	17	1.38812946	0.08165467	0.76	0.7157
Treatment	3	0.38846280	0.12948760	1.21	0.3250
Model	20	1.67082946	0.08354147	0.78	0.7130
Error	27	2.88947054	0.10701743		
Total	47	4.56030000			

*Significant at the (0.05) level of probability.

Table 34: ANOVA Table for Fecal Matter Nitrogen Retention Day48

Source	DF	Type III SS	Mean Square	F Value	Pr > F
Block	17	2.72709295	0.16041723	3.05	0.0047
Treatment	3	0.47046795	0.15682265	2.98	0.0489*
Model	20	2.97749920	0.14887496	2.83	0.0063
Error	27	1.42019872	0.05259995		
Total	47	4.39769792			

t Grou	ping	Mean	Ν	Treatment
A	L	3.82083	12	1
A	1			
B A	L	3.77833	12	3
B A	L			
B A		3.74833	12	2
В				
В		3.62667	12	4

Table 35: t Tests (LSD) for Fecal Matter Nitrogen Retention Day 48

*Means with the same letter are not significantly different. *Alpha 0.05

*Error Degrees of Freedom	27	
*Error Mean Square	0.0526	

Table 36: Average Feed Matter % N

Feed % N	Tx1	Tx2	Tx3	Tx4
Starter	3.77	2.96	3.80	3.84
Grower	2.90	3.24	3.37	3.15
Finisher	2.98	2.72	2.81	2.96

Figure 14: Average Fecal Matter Nitrogen Retention Percentage

CONCLUSION

The results from this research demonstrates that the addition of protease on top of a diet with a complete protein matrix (treatment 3) significantly increased average body weight over a 49 days rearing period. The addition of protease on the negative control (NC) was not beneficial, treatment #2 (NC) had the lowest body weight. As result, the only difference in the average body weight among treatments was in treatment 3 on day 49, suggesting a positive influence of protease on the top of the protein matrix had the highest effect on growth performance.

. If we subtract treatment 1 mean body weight from treatment 3:

$$6.48 \text{ lb.} - 6.36 \text{ lb.} = 0.12 \text{ lb.}$$

the difference is (0.12 lb.). This represents the improvement seen from protease inclusion in broiler diets within a complete protein matrix. This amount of performance improvement can be considering significant to the commercial poultry industry. If we multiply the difference of the average body weight by the number of birds in a whole flock as seen below:

0.12 lb. of body weight increase * 20,000 birds/flock = 2,400 lb. of additional live body

weight

However, if we multiply the difference by the Pilgrim's total production in east Texas which is (4,000,000 birds/week)

0.12 lb. * 4,000,000 birds = 480,000 lbs./week

Furthermore, with 72% average carcass dressing percentage the additional 0.12 lbs. of body weight can be a tremendous increase in meat yield across the industry. This result coincides with numerous researchers' findings (Buttin et al., (2016), Liu et al., (2013), Kamel et.al, (2015)). The inclusion of protease in this study had no significant effect on FCR & AFCR among treatments and feed phases. However, with FCR & AFCR relatively similar among treatments, the increase in body weight comes with no adverse effects to feed efficiency. For all yield data, the protease inclusion had no significant effect on any of the retail parts weights.

No significant difference was observed in chicken litter nitrogen retention at days 1, 12, 32, and 48 among all treatments. Also, for fecal matter, there was no significant difference observed in days 1 and 32 among all treatments. Fecal matter N retention at day 12 showed a significant difference among treatments. Treatment 1 is significantly lower than treatments 2&3, but not significantly lower than treatment 4. Treatment 1 that had lowest nitrogen retention maybe because the digestive system of the birds was not effectively responsive to the effect of the enzyme. On the other hand, on day 48 treatment 4 is significantly lower than treatment 1, but not significantly different from treatments 2&3, which is indicates that the addition of protease in place of protein matrix (low protein diet) had a significant effect to reduce the nitrogen retention in fecal matter which coincides with Yamazaki et al (2002). As a result, we can say that the addition of protease on top of broiler standard diet has no effect on reducing nitrogen excretion in the fecal matter.

In conclusion, the result from the study showed that addition of protease in top of a diet with a complete protein matrix significantly increased the body weight. However, the protease inclusion had no significant effect on FCR, AFCR, retail cuts, litter N retention, and fecal matter N retention.

BIBLIOGRAPHY

- Angel, R., W. Powers, S. Zamzow, and T. Applegate. (2006). "Dietary modifications to reduce nitrogen consumption and excretion in broilers". Poult. Sci. 85(Suppl. 1):25.
- Angel, C.R., Saylor, w., Vieira, S.L., and Ward, N. (2011). "Effects of a monocomponent. protease on performance and protein utilization in 7- to 22-day-old broiler chickens". Metabolism and Nutrition. Department of Animal and Avian Sciences, University of Maryland.
- Applegate, T., Angel, R. (2008). "Protein and Amino Acid Requirements for Poultry". NRCS, USDA.
- Buttin, P., Yan, F., Dinbner, J., Knight, C.D., Vazquez-Anon, M., Odetallah, N., Carter, S. (2016). "Effect of dietary protein and protease supplementation on performance and gut health of broiler chicks" NOVUS.
- Barekatain, M. R., Antipatis, C., Walkden-Brown S.W., Iji, P. A., and Choct, M. (2013). "Evaluation of high dietary inclusion of distillers dried grains with solubles and supplementation of protease and xylanase in the diets of broiler chickens under necrotic enteritis challenge." School of Environmental and Rural Science, University of New England, Armidale, NSW, Australia. Poultry Science 92 :1579–1594.
- Bailey, C., Cantor, A. (2016). "POULTRY NUTRITION". Poultry Science Manual, 6th Edition. 13 pages. Texas A&M Poultry Science Department.
- Bedford, M., and Walk C., (2014). "Enzymes and their effect on amino acid nutrition". AB Vista Feed Ingredients, Marlborough, Wilts UK.
- Bregendahl, K., Sell L., and Zimmerman R., (2002). "Effect of low protein diets on performance and body composition of broiler chicks". Poult. Sci. 81:1156–1167.

- Cowieson, A. J., Singhi, D. N., and Adeola, O. (2006). "Prediction of ingredient quality and the effect of a combination of xylanase, amylase, protease and phytase in the diets of broiler chicks. 2. Energy and nutrient utilization". British Poultry Science Volume 47, Number 4, pp. 490—500. Campbell G.L., Bedford M.R. (1991). "Enzyme applications for monogastic feeds". Department of Animal and Poultry Science, University of Saskatchewan, Saskatoon, Saskatchewan, Canada.
- Dale, Nick (2009). "A Few Basic Points about Protein". The Poultry Site. De Vries, W., Kros, J., Oenema, O. & de Klein, J. (2003). "Uncertainties in the fate of nitrogen II: a quantitative assessment of the uncertainties in major nitrogen fluxes in the Netherlands". Nutrient Cycling in Agroecosystems, 66(1): 71–102.
- Dozier, W.A., III, M.T. Kidd, and A. Corzo. (2008). "Amino acid responses of broilers". J. Appl. Poult. Res. 17:157-167.
- Ferguson, N.S., R.S. Gates, J.L. Taraba, A.H. Cantor, A.J. Pescatore, M.L. Straw, M.J.Ford, and D.J. Burnham, (1998). "The effect of dietary protein and phosphorus on ammonia concentration and litter composition in broilers". Poultry Sci. 77:1085-1093.
- FAO. (2006). "World agriculture: towards 2030/2050 interim report". Rome.
- Freitas, D. M., Vieira, S.L., Angel, C.R., Favero, A., Maiorka, A., (2011). "Performance and nutrient utilization of broilers fed diets Supplemented with a novel mono component protease". J. Appl. Poult. Res. 20, 347–352.
- Fru-Nji, F., Kluenter, A.M., Fischer, M., Pontoppidan, K., (2011). "A feed serine protease improves broiler Performance and energy digestibility". The Journal of Poultry Science, vol. 48, No. 10, 239–246.
- Group, E. (2013). "The Health Benefits of Protease". Global Health Center.
- Gitoee, A., Janmohammadi, H., Taghizadeg, A., Rafat, S.A. (2015). "Effects of multi-enzyme on performance and carcass characteristics of broiler chickens fed corn-soybean meal basal diets with different metabolizable energy levels". Journal of Applied Animal Research, 2015 Vol. 43, No. 3, 295–302.

- Gerber, P., Opio, C., Steinfeld, H. (2015). "*Poultry production and the environment – a Review*". Poultry in the 21st Century. Animal Production and Health Division, Food and Agriculture Organization of the United Nations.
- Ghazi, S., Rooke, T.A., Galbraith, H. & Morgan, A. (1997a). "The potential for improving soya-bean meal in diets for chickens: treatment with different proteolytic enzymes". British Poultry Science, 37: 554–555.
- Ghazi, S., Rooke, J.A., Galbraith H. & Bedford, M.R. (2010b). "The potential for the improvement of the nutritive value of soya-bean meal by different proteases in broiler chicks and broiler cockerels". British Poultry Science Journal. Pp. 70-77.
- Hassan, A., Abd-Elsamee, O., El-Sherbiny, E., Samy, A., and Mohamed, A. (2011). "Effect of Protein Level and Avizyme Supplementation on Performance, Carcass Characteristic, and Nitrogen Excretion of Broiler Chicks" American-Eurasian J. Agric.& Environ. Sci., 10(4):551-560,2011
- Jacob, J. (2015). "Antinutritional Factors in Feed Ingredients". University of Kentucky. eXtension. extension.org.
- Kamel, N.F., Naela, Ragaa M., El-Banna, R.A., Mohamed, F.F. (2015). "Effects of a Monocomponent Protease on Protease on Performance Parameters and Protein Digestibility in Broiler Chickens." Department of Nutrition and Clinical Nutrition, Faculty of Veterinary Medicine, Cairo University, Egypt. Agriculture and Agricultural Science Procedia 6 (2015) 216 – 225. www.sciencedirect.com. Elsevier B.V.
- Kocher, A., Choct, M., Ross, G., Broz, J., Chung, T., (2003). "Effects of enzyme combinations on apparent metabolizable energy of corn-soybean mealbased diets in broilers". *School of Rural Science and Agriculture, University of New England, Armidale, NSW 2351, Australia In: pp. 275-283.

- Kalmendal, R., (2012). "Effects of a xylanase and protease, individually or in combination, and an ionophore coccidiostat on performance, nutrient utilization, and intestinal morphology in broiler chickens fed a wheat-soybean meal-based diet". Department of Animal Nutrition and Management, Swedish University of Agricultural Sciences, S-75323 Uppsala, Sweden.
- Liu, S., Selle, P., Court, S., Cowieson, A., (2013). "Protease supplementation of sorghum based diets enhances amino acid digestibility coefficients in four small intestinal sites and accelerates their rates of digestion". Animal Feed Science and Technology. In.
- LECO CN628 Manual. Version 1.3x, Part Number 200-747 (2014). LECO Corporation. www.leco.com.
- Mótyán J., Tóth F., and Tőzsér J., (2013). "Research Applications of Proteolytic Enzymes in Molecular Biology". US National Library of Medicine National Institutes of Health. Biomolecules Journal 2013 Dec; 3(4): 923-942.
- Madrid, J., Catalá-Gregori, P., García, V., Hernández, F. (2010). "Effect of a Multienzyme complex in wheat-soybean meal diet on digestibility of broiler chickens under different rearing conditions." Italian Journal of Animal Science 2010; volume 9: e.
- Marsman, G.J.P., Gruppen, H., Vander P., Kwakkel B., Verstegen P., Voragon J. (1997). "The effect of thermal processing and enzyme treatments of soybean meal on growth performance, ileal nutrient digestibility, and chyme characteristics in broiler chicks". Poultry Science, 76: 864–872.
- Pope, T., L.N. Loupe, P.B. Pillai, and J.L. Emmert. (2004). "Growth performance and nitrogen excretion of broilers using a phase feeding approach from twenty-one to sixty-three days of age". Poult. Sci. 83:676-682.
- Smith, A., (2015). "Protease reduces environmental impact of broiler production". Feed Enzymes EMEA Animal Nutrition & Health DSM. Poultry world.
- Spiehs, M. (2005). "Nutritional and Feeding Strategies to Minimize Nutrient Losses in Livestock Manure". The College of Agriculture, Food and Environmental Science, University of Minnesota.
- Oxenboll, K.M., Pontoppidan, K., and Fru-Nji, F. (2011). "Use of a Protease in Poultry Feed Offers Promising Environmental Benefits". International Journal of Poultry Science 10 (11): 842-848.
- Rogers, k. (2015). "Proteolytic enzyme". Encyclopædia Britannica.
- Rackis, J., Gumbmann, R. (2014). "Protease Inhibitors: Physiological Properties and Nutritional Significance" Northern Regional Research Center Agricultural Research Science and Education Administration. USDA.
- Smits. C., Annison G. (1996). "Non-starch plant polysaccharides in broiler nutrition – towards a physiologically valid approach to their determination". World's Poultry Science Journal.
- Sutton, M. & Fowler, D. (1995). "Atmospheric deposition of nitrogen compounds to heathlands". Aarhus Geoscience, 4, 61–71.
- SAS User's Guide. 2007. Version 9.2 ed. SAS Inst. Inc., Cary, NC.
- Yan, F., Garribay, L., Arce, J., Lopez-Coello, C., Camacho, D., Disbennet, P., Vazquez-Anon, M., Manangi, M., Odetallah, N.H., Carter, S., (2012). *"Effects of protease supplementation on broiler performance and in vitro protein digestibility"*. Australian Poultry Science Symposium, 134-137.
- Yamazaki, M. Murakami, H., and Nakashima, K. (2002). "Effect of Enzyme Supplementation on Performance and Nitrogen Excretion of Broiler Chick Fed Low-Protein Diet Based on Corn and Soybean Meal". Bulletin Nat. Ins. Lives Grassland Sci. 2:9-13.

APPENDIXES

APPENDIX A

Diet # 1: Pilgrim's Broiler Starter Positive Control (PC).

	Nacog Broile	doches er Start	er Post	ive Con	trol	F	ormulated	By: 1	Singl	e Product Formu	lation	Optin Trial Prod'n	version: Version: Version: Page:
		(Used Ing	gredien	ts					Nutri	ient Soluti	ion	
Ingr		Unro	unded	R	ange	R	estrictio	n	Nutr			(Class S	5)
Code	Ingredient Name	Lbs	Pct	Low	High	Min Pct	Max Pct	Rcost	No 	Nutrient	Minimum	Actual	Maximum
10	1 CORN, Fine	1018.61	50.931		0.1402				1	WEIGHT	0.99	0.9995	1.01
11	1 SOYBEAN MEAL	796.03	39.802	0.0879					2	PROTEIN		23.28	
14	3 Soy Oil	71.58	3.579	0.1157		0.5000			3	FAT		5.52	
15	3 DISTILLER'S GR	40.00	2.000			2.0000	2.0000		4	FIBER		2.54	
2	8 LIMESTONE FINE	23.43	1.171		1.0742				5	MOISTURE		12.54	
29	9 NEXPHOS MONO-D	18.86	0.943		10.9765	0.2500			6	ASH		4.96	
4	1 ALIMET	8.21	0.411		7.9681				7	CALCIUM	0.90	0.9060	0.93
3	6 SALT PLAIN	5.23	0.262		1.4862				8	TOTAL PHOS.		0.5969	
1	3 LIQ LYSINE50%	5.03	0.251		1.9294				9	AVAIL. PHOS.	0.45	0.4499	
91	9 Adisodium	3.00	0.150			0.1500			10	SALT		0.3086	
4	5 L-THREONINE	2.45	0.122		5.9177				11	CHLORIDE	0.21	0.2100	0.28
7	8 BIOAVAIL TRACE	1.50	0.075			0.0750			12	SODIUM	0.19	0.2204	0.22
6	3 CHOLINE LIQ.	1.32	0.066		51.1009				13	POTASSIUM	0.65	0.9262	
16	6 Opti Bac S/L	1.00	0.050			0.0500	0.0500		14	MAGNESIUM		0.1767	
3	5 COPPER SULFATE	1.00	0.050			0.0500			15	MANGANESE		94.80	
17	7 NICARB 25%	0.900	0.045			0.0450	0.0450		18	COPPER		156.70	
6	O BROILER VITAMI	0.500	0.025			0.0250			21	SULFUR		0.2898	
64	2 Optiphos 6000P	0.500	0.025			0.0250	0.0250		22	LINOLEIC ACID		1.78	
77	5 Hemicell Dry	0.400	0.020			0.0200	0.0200		23	XANT. ACTIVITY	r i i i i i i i i i i i i i i i i i i i	5.11	
7	2 LIQ ETHOXYQUIN	0.250	0.012			0.0125			36	CHOLINE	825.00	838.31	
28	2 Hostazyme X dr	0.200	0.010			0.0100	0.0100		37	ME; POULTRY	1375.00	1381.47	
									53	AVAIL. ARGININ	4	1.44	
	Total Batch:	2000.00	Lbs						54	AVAIL. LYSINE	1.25	1.26	
									55	AVAIL. METHION	4	0.6402	
		- Bindin	g Nutrie	ents					56	AVAIL. METH+C)	(0.9496	
lutr		Unit of	Incre	ement					57	AVAIL. TRYPTOP		0.2502	
No	Nutrient Name	Measure	Cha	ange					58	AVAIL. ISOLEUC	-	0.9044	
									59	AVAIL.VALINE		0.9678	
7	CALCIUM	PCT	0.02	PCT					61	AVAIL. CYSTINE		0.6688	
9	AVAIL. PHOS.	PCT	0.02	PCT					62	AVAIL. THREONI	C I	0.8873	
11	CHLORIDE	PCT	0.02	PCT					69	ANALYZED CALCI	[0.7496	
12	SODIUM	PCT	0.02	PCT					73	Feather Meal		0.0000	
37	ME; POULTRY	KCAL/LB	10.00	KCAL/L	в				80	Sodium mEq/Kg		95.87	
54	AVAIL. LYSINE	PCT	0.01	PCT					81	Potassium mEq/	/	236.88	
									82	Chloride mEq/M	(59.23	
		Un	used Ind	redien	ts				83	DEB mEq/Kg	160.00	273.51	
Ingr			W	ould M	inimum M	aximum			84	DEB+S		108.60	
Code	Ingredient Name			Use	Pct	Pct R	cost		100	Nacogdoches		90.73	
			_							-			
62	1 Optiphos IC .	Suppre	ssed		0.0150	0.0150 1	46.1						
29	3 Hostazym X WSP	Suppre	ssed		0.0100	0.0100 8	2.20						
28	8 Poultry Grow 2	Suppre	ssed		0.0125	0.0125 1	02.9						

APPENDIX B

Diet # 2: Pilgrim's Broiler Starter Negative Control (NC)

	Nacog Broile	doches ar Start	er Negat	tive Cont	rol	For	mulated	By: S	ingle	Product Formula	tion	Date P Date Opt Optimi Trial V Prod'n V	Printed: 05/17/1 Dimized: 02/16/2 Zed By: DM Version: 1 Version: 9 Page: 1
		(Used Ing	gredients						Nutrie	ent Soluti	on	
Ingr		Unro	unded	Ra	nge	Re	strictio	on	Nutr			(Class 5	5)
Code	Ingredient Name	Lbs	Pct	Low	High	Min Pct	Max Pct	Rcost	No	Nutrient	Minimum	Actual	Maximum
101	CODN 5	1054 11	52 705		0.1403					WETCHT		0.0004	1.01
101	CORN, FINE	1054.11	52.705	0 0879	0.1402				1 1	REIGHT	0.99	0.9994	1.01
142	SOTBEAN MEAL	66.06	2 202	0.0075		0 5000			2	EAT		5 20	
153	DISTUISE'S CR	40.00	3.505	0.1157		2,0000	2 0000			ETDED		3.23	
100	I THESTONE ETNE	40.00	1 179		1 0742	2.0000	2.0000			MOTSTURE		12 61	
20	NEXPHOS MONO-D	19.07	0.953		10 9765	0 2500			6	ACH		4 91	
41	AL THET	7 94	0.397		7 9681	0.2500			7		0 90	0 9060	0.93
36	SALT PLATN	5 22	0.261		1 4862				, , , ,		0.50	0.5000	0.55
12		5 21	0.261		1 9294				1 9		0.45	0 4499	
919	Adisodium	3.00	0.150		1.5254	0.1500			1 10	SALT	0.45	0.3073	
45		2 45	0 123		5 9177	0.2500			1 11	CHLORIDE	0.21	0 2100	0.28
78	BTOAVATI TRACE	1 50	0.075		5.5177	0 0750			1 12	SODTIM	0.19	0 2204	0.22
63	CHOLTNE LTO.	1.36	0.068		51,1009	0.0750			1 13	POTASSTUM	0.65	0.9024	0.22
166	Opti Bac S/L	1.00	0.050			0.0500	0.0500		14	MAGNESIUM	0.05	0.1747	
35	COPPER SULEATE	1.00	0.050			0.0500			1 15	MANGANESE		94.49	
177	NICARB 25%	0.900	0.045			0.0450	0.0450		18	COPPER		155.86	
60	BROILER VITAMI	0.500	0.025			0.0250			21	SULFUR		0.2853	
642	Optiphos 6000P	0.500	0.025			0.0250	0.0250		22	LINOLEIC ACID		1.74	
775	Hemicell Dry	0.400	0.020			0.0200	0.0200		23	XANT. ACTIVITY		5.28	
72	LIQ ETHOXYQUIN	0.250	0.013			0.0125			36	CHOLINE	825.00	829.70	
282	Hostazyme X dr	0.200	0.010			0.0100	0.0100		37	ME; POULTRY	1375.00	1381.36	
	Total Pat	ch. 200	0.00.16	-					53	AVAIL. ARGININ		1.43	
	lotal bat	cn: 200	0.00 LB	S					54	AVAIL. LYSINE	1.25	1.26	
			ndina N						55	AVAIL. METHION		0.6372	
Nut		Lini	nuing N	Increased	+				56	AVAIL. METH+CY		0.9502	
No	Nutrient Name	Mon	SUPA	Change					57	AVAIL. TRYPTOP		0.2477	
	- Autorient Name			change					58	AVAIL. ISOLEUC		0.9011	
	7 CALCTUM	PCT		0.02 PCT					59	AVAIL.VALINE		0.9687	
	9 AVATL, PHOS.	PCT	r T	0.02 PCT					61	AVAIL. CYSTINE		0.6505	
1		PCT		0.02 PCT					62	AVAIL. THREONI		0.8879	
1		PCT	-	0.02 PCT					69	ANALYZED CALCI		0.7494	
3	7 ME: POULTRY	KCA	L/LB 1	0.00 KCA	L/LB				73	Feather Meal		0.0000	
5	4 AVAIL, LYSINE	PCT		0.01 PCT					80	Sodium mEq/Kg		95.87	
									81	Potassium mEq/		230.78	
			- Unuse	d Inared	ients				82	Chloride mEq/K		59.23	
In	ıgr			Would	Minimum	Maximum			83	DEB mEq/Kg	160.00	267.42	
Co	de Ingredient	Name		Use	Pct	Pct	Rcost		84	DEB+S		105.50	
									100	Nacogdoches		90.98	
	621 Optiphos IC	. Su	ppresse	d	0.0150	0.0150	146.1						
	293 Hostazym X	WSP Su	ppresse	d	0.0100	0.0100	82.20						
	46 BTOLYS	Si	Innracca	d			1.98						

APPENDIX C

Diet # 4: Pilgrim's Broiler Starter Positive Control (PC) + Protease.

Plant Product	: 27 Nacog : 101.4 Broil	doches er Starte	er + Pro	tease w/	'Matrix	Fo	rmulated	By: Sin	gle Pro	duct	Formulation	Date Op Date Op Optin Trial Prod'n	Printed: nized By: Version: Version: Page:	05/17/17 02/16/2017 DM 1 4 1
Ingr		Unroi	Used Ing unded	Market	Ra	nge	R	estricti	on	Nutr	Nutrie	ent Soluti	(Class 5)
Code	Ingredient Name	Lbs	Pct	\$/Lb	Low	High	Min Pct	Max Pct	Kcost	No	Nutrient	Minimum	Actual	Maximum
101	CORN, Fine	1054.11	52.705	0.0779		0.1402			i	1	WEIGHT	0.99	0.9994	1.01
111	SOYBEAN MEAL	765.52	38.276	0.1640	0.0879				1	2	PROTEIN		22.71	
143	Soy Oil	66.06	3.303	0.2892	0.1157		0.5000		1	3	FAT		5.29	
153	DISTILLER'S GR	40.00	2.000	0.0745			2.0000	2.0000	1	4	FIBER		2.52	
28	LIMESTONE FINE	23.56	1.178	0.0245		1.0742			1	5	MOISTURE		12.61	
299	NEXPHOS MONO-D	19.07	0.953	0.2291		10.9765	0.2500		1	6	ASH		4.91	
41	ALIMET	7.94	0.397	1.1158		7.9681			1	7	CALCIUM	0.90	0.9060	0.93
36	SALT PLAIN	5.22	0.261	0.0352		1.4862			1	8	TOTAL PHOS.		0.5924	
13	LIQ LYSINE50%	5.21	0.261	0.3608		1.9294			1	9	AVAIL. PHOS.	0.45	0.4499	
919	Adisodium	3.00	0.150	0.1300			0.1500		1	10	SALT		0.3073	
45	L-THREONINE	2.45	0.123	0.8617		5.9177			1	11	CHLORIDE	0.21	0.2100	0.28
78	BIOAVAIL TRACE	1.50	0.075	1.0330			0.0750		1	12	SODIUM	0.19	0.2204	0.22
63	CHOLINE LIQ.	1.36	0.068	0.4095		51.1009			1	13	POTASSIUM	0.65	0.9024	
166	Opti Bac S/L	1.00	0.050	1.8500			0.0500	0.0500	- I	14	MAGNESIUM		0.1747	
35	COPPER SULFATE	1.00	0.050	0.9030			0.0500		1	15	MANGANESE		94.49	
177	NICARB 25%	0.900	0.045	4.4666			0.0450	0.0450	- I	18	COPPER		155.86	
60	BROILER VITAMI	0.500	0.025	3.3976			0.0250		1	21	SULFUR		0.2853	
642	Optiphos 6000P	0.500	0.025	0.0000			0.0250	0.0250	1	22	LINOLEIC ACID		1.74	
775	Hemicell Dry	0.400	0.020	3.4948			0.0200	0.0200	- I	23	XANT. ACTIVITY		5.28	
289	Poultry Grow 2	0.250	0.013	5.1445			0.0125	0.0125	- I	36	CHOLINE	825.00	829.70	
72	LIQ ETHOXYQUIN	0.250	0.013	3.1993			0.0125		1	37	ME; POULTRY	1375.00	1381.36	
282	Hostazyme X dr	0.200	0.010	0.0000			0.0100	0.0100	- I	53	AVAIL. ARGININ		1.43	
	-								1	54	AVAIL. LYSINE	1.25	1.26	
	Total Batch:	2000.00	Lbs						1	55	AVAIL. METHION		0.6372	
									1	56	AVAIL. METH+CY		0.9502	
		- Binding	g Nutrie	nts					1	57	AVAIL. TRYPTOP		0.2477	
Nutr		Unit of			Incremen	t			1	58	AVAIL. ISOLEUC		0.9011	
No Ni	utrient Name	Measure			Change				1	59	AVAIL.VALINE		0.9687	
									1	61	AVAIL. CYSTINE		0.6505	
7 C	ALCIUM	PCT			0.02 PCT				1	62	AVAIL. THREONI		0.8879	
9 A	VAIL. PHOS.	PCT			0.02 PCT				1	69	ANALYZED CALCI		0.7494	
11 C	HLORIDE	PCT			0.02 PCT				1	73	Feather Meal		0.0000	
12 S	DIUM	PCT			0.02 PCT				1	80	Sodium mEq/Kg		95.87	
37 M	E; POULTRY	KCAL/LB		1	.0.00 KCA	L/LB			1	81	Potassium mEq/		230.78	
54 A	VAIL. LYSINE	PCT			0.01 PCT				1	82	Chloride mEq/K		59.23	
									1	83	DEB mEq/Kg	160.00	267.42	
		Uni	used Ing	redients						84	DEB+S		105.50	
Ingr						Would	Minimum	Maximum	- I	100	Nacogdoches		90.98	
Code	Ingredient Name					Use	Pct	Pct	Rcost					
621	Optiphos IC .	Suppres	ssed				0.0150	0.0150	146.1					
293	Hostazym X WSP	Suppres	ssed				0.0100	0.0100	82.20					
46	BIOLYS	Suppres	ssed						1.98					

APPENDIX D

Diet # 3: Pilgrim's Broiler Starter Negative Control (NC) + Protease.

Plant: Product:	27 101.3	Nacogd Broile	oches r Starte	er + Prote	ase No Matrix	Fo	rmulated	By: Sin	gle Pro	duct	Formulation	Date Op Optim Trial Prod'n	timized: ized By: Version: Version: Page:	02/16/2017 DM 1 3 1
Ingr Code	Ingredient	Name	Unrou Lbs	Ised Ingre Inded Pct	dients Ra Low	ange High	R Min Pct	estricti Max Pct	on Rcost	Nutr No	Nutrient	ent Soluti Minimum	on (Class S Actual	5) Maximum
101	CORN. Fine		1018.12	50.906		0,1402				1	WEIGHT	0.99	0.9995	1.01
111	SOYBEAN ME	AL	796.10	39.805	0.0879				1	2	PROTEIN		23.27	
143	Soy Oil		71.75	3.588	0.1157		0.5000		1	3	FAT		5.52	
153	DISTILLER'	S GR	40.00	2.000			2.0000	2.0000	1	4	FIBER		2.54	
28	LIMESTONE	FINE	23.43	1.171		1.0742			1	5	MOISTURE		12.53	
299	NEXPHOS MO	NO-D	18.86	0.943		10.9765	0.2500		1	6	ASH		4.96	
41	ALIMET		8.21	0.411		7,9681			1	7	CALCIUM	0.90	0.9060	0.93
36	SALT PLAIN		5.23	0.262		1.4862			1	8	TOTAL PHOS.		0.5968	
13	LIQ LYSINE	50%	5.03	0.251		1.9294			1	9	AVAIL. PHOS.	0.45	0.4499	
919	Adisodium		3.00	0.150			0.1500		1	10	SALT		0.3086	
45	L-THREONIN	E	2.45	0.122		5.9177			1	11	CHLORIDE	0.21	0.2100	0.28
78	BIOAVAIL T	RACE	1.50	0.075			0.0750		1	12	SODIUM	0.19	0.2204	0.22
63	CHOLINE LI	Q.	1.32	0.066		51.1009			1	13	POTASSIUM	0.65	0.9262	
166	Opti Bac S	/L	1.00	0.050			0.0500	0.0500	1	14	MAGNESIUM		0.1767	
35	COPPER SUL	FATE	1.00	0.050			0.0500		1	15	MANGANESE		94.80	
177	NICARB 25%		0.900	0.045			0.0450	0.0450	1	18	COPPER		156.70	
60	BROILER VI	TAMI	0.500	0.025			0.0250		1	21	SULFUR		0.2897	
642	Optiphos 6	000P	0.500	0.025			0.0250	0.0250	1	22	LINOLEIC ACID		1.78	
775	Hemicell D	ry	0.400	0.020			0.0200	0.0200	1	23	XANT. ACTIVITY		5.10	
288	Poultry Gr	ow 2	0.250	0.013			0.0125	0.0125	1	36	CHOLINE	825.00	838.45	
72	LIQ ETHOXY	QUIN	0.250	0.013			0.0125		1	37	ME; POULTRY	1375.00	1381.47	
282	Hostazyme	X dr	0.200	0.010			0.0100	0.0100		53 54	AVAIL, ARGININ	1.25	1.44	
	Total Ba	tch:	2000.00	Lbs					į	55	AVAIL. METHION		0.6402	
			Dinding	Nutrient						50	AVAIL. MEIN+CT		0.3436	
Nute			Unit of	aucrient	Increme	nt				5/			0.2502	
No No	trient Nam		Measure		Change					50	AVATE VALITIE		0.9678	
	content Main		e							61			0.6689	
7 64			PCT		0.02 PC	т				62	AVATL . THREONT		0.8872	
9 41	AIL, PHOS		PCT		0.02 PC	т				69	ANALYZED CALCT		0,7496	
11 04	UORTDE		PCT		0.02 PC	т				72	Feather Meal		0.0000	
12 50	DTUM		PCT		0.02 PC	т				80	Sodium mEa/Ka		95.87	
37 MF	E POULTRY		KCAL /L P		10.00 KC	AL/LR				81	Potassium mEq/Kg		236.87	
54 AV	AIL, LYSTN	E	PCT		0.01 PC	т			i	82	Chloride mEa/K		59.23	
		-			5102 10	-				82	DEB mEg/Kg	160.00	273.51	
			Uni	used Inore	dients					84	DEB+S	200.00	108.61	
Ingr			-	and angle		Would	Minimum	Maximum	i i	100	Nacogdoches		90.71	
Code	Ingredient	Name				Use	Pct	Pct	Rcost	200				
621	Optiphos T	c .	Suppres	sed			0.0150	0.0150	146.1					
292	Hostazym Y	WSP	Suppres	sed			0.0100	0.0100	82.20					
2.75	noscazym A	101	Subbues				0.0100	0.0100	52.20					

FC/Conc Plant: roduct:	27 Nacogo 102.1 Broil	loches ar Grower	• Positi	ve Contro	51	For	rmulated	By: Sing	le Pro	oduct	Formulation	Date Date Op Optim Trial Prod'n	Printed: wtimized: wized By: Version: Version:	05/17/17 02/16/20 DM 1 3
													Page:	1
		· (Jsed Ing	redients							Nutrie	nt Soluti	on	
Ingr Code	Ingredient Name	Unrou Lbs	nded Pct		Ra Low	Ange High	Re Min Pct	Max Pct	n Rcost 	Nutr No	Nutrient	Minimum	(Class S Actual	5) Maximum
101	CORN, Fine	1107.21	55.360		0.0158	0.1390			i	1	WEIGHT	0.99	0.9996	1.01
111	SOYBEAN MEAL	650.82	32.541		0.0906				1	2	PROTEIN		21.11	
153	DISTILLER'S GR	100.00	5.000			0.1099		5.0000	-0.71	3	FAT		5.82	
143	Soy Oil	71.42	3.571		0.1190	1.0601	0.5000		I	4	FIBER		2.57	
28	LIMESTONE FINE	23.58	1.179			0.6414				5	MOISTURE		12.67	
299	NEXPHOS MONO-D	16.36	0.818			10.8581	0.2500			6	ASH		4.64	
41	ALIMET	7.20	0.360			7.8958				7	CALCIUM	0.86	0.8672	0.89
13	LIQ LYSINE50%	6.52	0.326			1.9136				8	TOTAL PHOS.		0.5581	
36	SALT PLAIN	4.50	0.225			1.4862				9	AVAIL. PHOS.	0.43	0.4297	0.46
919	Adısodıum	3.00	0.150				0.1500			10	SALT		0.2734	
45	L-THREONINE	2.33	0.117			5.8658				11	CHLORIDE	0.19	0.1900	0.28
78	BIOAVAIL TRACE	1.50	0.075				0.0750			12	SODIUM	0.18	0.2049	0.22
63	CHOLINE LIQ.	1.19	0.060			24.0149	0.0500	0.0500		13	POTASSIUM	0.60	0.8335	
166	OPTI BAC 5/L	1.00	0.050				0.0500	0.0500		14	MAGNESIUM		0.1684	
177	NTCARR SULFATE	1.00	0.050				0.0500	0.0450		15	CORRER		94.10	
1//	NICAKE 25%	0.900	0.045				0.0450	0.0450		18	LTNOLETC ACTO		152.64	
642	Ontinhes COOP	0.500	0.025				0.0250	0.0250		22	VANT ACTIVITY		1.00	
72		0.300	0.013				0.0230	0.0230		36	CHOLTNE	770 00	770.00	
282	Hostazyme X dr	0.230	0.010				0.0123	0 0100		30	ME: POULTRY	1400.00	1395 51	
202	noscazyme x ar	01200	0.010				0.0100	0.0100		53	AVAIL, ARGININ	1.00100	1.25	
	Total Batch:	2000.00	Ibs at	249.68	/Ton	12,484	\$/100Lb	0.1248	\$/IЬ	54	AVATL . LYSTNE	1.12	1.13	
	iotai battaii						.,		•, ==	55	AVAIL, METHION		0.5783	
		- Binding	Nutrie	nts					i	56	AVAIL, METH+CY		0.8637	
utr		Unit of	Inc	rement					1	57	AVAIL. TRYPTOP		0.2171	
No Nu	trient Name	Measure	c	hange					i i	58	AVAIL. ISOLEUC		0.7980	
									i i	59	AVAIL.VALINE		0.8699	
7 CA	LCIUM	PCT	0.0	2 PCT					1	61	AVAIL. CYSTINE		0.6005	
9 AV	AIL. PHOS.	РСТ	0.0	2 PCT					1	62	AVAIL. THREONI		0.7971	
11 CH	ILORIDE	PCT	0.0	2 PCT					1	69	ANALYZED CALCI		0.7104	
36 CH	OLINE	MG/LB	0.1	0 MG/LB					1	73	Feather Meal		0.0000	
37 ME	; POULTRY	KCAL/LB	10.0	0 KCAL/LB					1	80	Sodium mEq/Kg		89.12	
54 AV	AIL. LYSINE	PCT	0.0	1 PCT						81	Potassium mEq/		213.17	
										82	Chloride mEq/K		53.59	
		Uni	used Ing	redients						83	DEB mEq/Kg	160.00	248.70	
Ingr						Would	Minimum	Maximum		84	DEB+S		89.92	
Code	Ingredient Name					Use	Pct	Pct	Rcost	100	Nacogdoches		87.90	
	Ostishes TC							0.0150						
621	uptiphos IC .	Suppres	sed				0.0150	0.0150	146.1					
293	Roultmy Correct	Suppres	ssea				0.0100	0.0100	102.20					
288	Provitry Grow 2	Suppres	sea				0.0125	0.0125	102.9					
40														

APPENDIX E Diet # 1: Pilgrim's Broiler Grower Positive Control (PC).

66

APPENDIX F	
------------	--

Diet # 2: Pilgrim's Broiler Grower Negative Control (NC).

	Nacogo	doches	Nacat	un Contra		Fo	rmulated By: Si	ngle Pro	oduct Formulatio	Da n T	Date Prin te Optimi Optimized rial Vers	nted: 05/17/1 ized: 02/16/20 d By: DM sion: 1
	Brotte	er Grower	negati	ve conti	roi					Fr	oan ver:	Page: 1
												2
		(Jsed Ing	redients	5				Nutrie	nt Soluti	on	
Ingr	Transdiant Name	Unrou	nded	Ka	uich	K	Max Pet Peert	Nutr	Nutrient	Ninimum	(Class	s) Mavimum
Code	Ingredient Name	LDS	PCT	LOW	High	MIN PCt	Max PCt KCOSt	NO	Nutrient	MINIMUM	Actual	Maximum
101	CORN, Fine	1142.62	57.131	0.0158	0.1390			1	WEIGHT	0.99	0.9997	1.01
111	SOYBEAN MEAL	620.32	31.016	0.0906				2	PROTEIN		20.55	
153	DISTILLER'S GR	100.00	5.000		0.1099		5.0000 -0.71	3	FAT		5.59	
143	Soy Oil	65.94	3.297	0.1190	1.0601	0.5000		4	FIBER		2.55	
28	LIMESTONE FINE	23.72	1.186		0.6414			5	MOISTURE		12.75	
299	NEXPHOS MONO-D	16.57	0.828		10.8581	0.2500		6	ASH		4.59	
41	ALIMET	6.93	0.346		7.8958			7	CALCIUM	0.86	0.8672	0.89
13	LIQ LYSINE50%	6.71	0.335		1.9136			8	TOTAL PHOS.		0.5536	
36	SALT PLAIN	4.47	0.224		1.4862			9	AVAIL. PHOS.	0.43	0.4297	0.46
919	Adisodium	3.00	0.150			0.1500		10	SALT		0.2712	
45	L-THREONINE	2.34	0.117		5.8658			11	CHLORIDE	0.19	0.1900	0.28
78	BIOAVAIL TRACE	1.50	0.075			0.0750		12	SODIUM	0.18	0.2045	0.22
63	CHOLINE LIQ.	1.29	0.064		24.0149			13	POTASSIUM	0.60	0.8097	
166	Opti Bac S/L	1.00	0.050			0.0500	0.0500	14	MAGNESIUM		0.1665	
35	COPPER SULFATE	1.00	0.050			0.0500		15	MANGANESE		93.79	
177	NICARB 25%	0.900	0.045			0.0450	0.0450	18	COPPER		151.80	
60	BROILER VITAMI	0.500	0.025			0.0250		22	LINOLEIC ACID		1.84	
642	Optiphos 6000P	0.500	0.025			0.0250	0.0250	23	XANT. ACTIVITY		5.75	
72	LIQ ETHOXYQUIN	0.250	0.012			0.0125		36	CHOLINE	770.00	770.00	
289	Poultry Grow 2	0.250	0.012			0.0125	0.0125	37	ME; POULTRY	1400.00	1395.40	
282	Hostazyme X dr	0.200	0.010			0.0100	0.0100	53	AVAIL. ARGININ		1.24	
								54	AVAIL. LYSINE	1.12	1.13	
	Total Batch:	2000.00	Lbs					55	AVAIL. METHION		0.5753	
								56	AVAIL, METH+CY		0.8643	
		- Binding	g Nutrie	nts				1 57	AVAIL. TRYPTOP		0.2145	
utr No No	taint Name	Unit of	Inc	rement				1 58	AVAIL. ISULEUC		0.7948	
10 NI	utrient Name	measure		nange				1 61	AVAIL VALINE		0.6/0/	
7 0		РСТ	0.0	PCT				1 62			0.3022	
9 41	VATL, PHOS.	PCT	0.0	2 PCT				60	ANALYZED CALCT		0.7102	
11 0	HLORIDE	PCT	0.0	2 PCT				73	Feather Meal		0,0000	
36 0	HOLINE	MG/LB	0.1	MG/LR				80	Sodium mEa/Ka		88.96	
37 M	E; POULTRY	KCAL/LB	10.0	0 KCAL/L	в			81	Potassium mEq/		207.07	
54 A	VAIL. LYSINE	PCT	0.0	1 PCT				82	Chloride mEq/K		53.59	
								83	DEB mEq/Kg	160.00	242.44	
		Unu	used Ing	redients	5			84	DEB+S		86.81	
Ingr				Would N	(inimum)	Maximum	1	100	Nacogdoches		88.15	
Code	Ingredient Name			Use	Pct	Pct I	Rcost		-			
621	Optiphos IC .	Suppres	sed		0.0150	0.0150	146.1					
293	Hostazym X WSP	Suppres	sed		0.0100	0.0100	32.20					
46	BIOLYS	Suppres	sed				2.00					
	S-CARR	Suppres	sed		0 1500		2 12					

APPENDIX G

Diet # 3: Pilgrim's Broiler Grower Positive Control (NC) + Protease.

	Nacoge Broile	loches er Grower	+ Prot	cease w/	Matrix	For	mulated By: Sir	ngle Pr	oduct Formulatio	Da n T Pr	Date Prin te Optim Optimize rial Ver rod'n Ver	ited: 05/17/17 ized: 02/16/20 d By: DM sion: 1 sion: 2 Page: 1
Inar		Unrou	Jsed Ing unded	predients R	ange		Restriction	Nutr	Nutrie	nt Soluti	ON	5)
Code	Ingredient Name	Lbs	Pct	Low	High	Min Pc	t Max Pct Rcost	No	Nutrient	Minimum	Actual	Maximum
101	CORN. Fine	1142.62	57.131	0.0158	0.1390			1	WEIGHT	0.99	0.9997	1.01
111	SOYBEAN MEAL	620.32	31.016	0.0906				1 2	PROTEIN		20.55	
153	DISTILLER'S GR	100.00	5.000		0.1099		5.0000 -0.71	3	FAT		5.59	
143	Soy Oil	65.94	3.297	0.1190	1.0601	0.500)	4	FIBER		2.55	
28	LIMESTONE FINE	23.72	1.186		0.6414	ŧ.		5	MOISTURE		12.75	
299	NEXPHOS MONO-D	16.57	0.828		10.8581	0.250)	6	ASH		4.59	
41	ALIMET	6.93	0.346		7.8958	1		7	CALCIUM	0.86	0.8672	0.89
13	LIQ LYSINE50%	6.71	0.335		1.9136			8	TOTAL PHOS.		0.5536	
36	SALT PLAIN	4.47	0.224		1.4862			9	AVAIL. PHOS.	0.43	0.4297	0.46
919	Adisodium	3.00	0.150			0.150)	10	SALT		0.2712	
45	L-THREONINE	2.34	0.117		5.8658			11	CHLORIDE	0.19	0.1900	0.28
78	BIOAVAIL TRACE	1.50	0.075			0.075)	12	SODIUM	0.18	0.2045	0.22
63	CHOLINE LIQ.	1.29	0.064		24.0149			13	POTASSIUM	0.60	0.8097	
166	Opti Bac S/L	1.00	0.050			0.050	0.0500	14	MAGNESIUM		0.1665	
35	COPPER SULFATE	1.00	0.050			0.050)	15	MANGANESE		93.79	
177	NICARB 25%	0.900	0.045			0.045	0.0450	18	COPPER		151.80	
60	BROILER VITAMI	0.500	0.025			0.025)	22	LINOLEIC ACID		1.84	
642	Optiphos 6000P	0.500	0.025			0.025	0.0250	23	XANT. ACTIVITY		5.75	
72	LIQ ETHOXYQUIN	0.250	0.012			0.012		36	CHOLINE	770.00	770.00	
203	Hostory Grow 2	0.250	0.012			0.012	0.0125	1 57	AVATI APCININ	1400.00	1 24	
202	nostazyme x ur	0.200	0.010			0.010	0.0100	1 53	AVAIL, ANGININ	1 12	1 12	
	Total Ratchy	2000 00	Lbr					1 54	AVAIL, LISINE	1.12	0 5752	
	focal bacch.	2000.00	205					1 56	AVAIL. METHICK		0.8643	
		Binding	Nutrie	nte				1 57			0 2145	
lutr		Unit of	Incre	ement				1 58	AVAIL, ISOLEUC		0.7948	
No N	utrient Name	Measure	Cha	ange				1 59	AVAIL.VALINE		0.8707	
								61	AVAIL. CYSTINE		0.5822	
7 C	ALCIUM	PCT	0.02	PCT				62	AVAIL. THREONI		0.7977	
9 A	VAIL. PHOS.	PCT	0.02	PCT				69	ANALYZED CALCI		0.7102	
11 C	HLORIDE	PCT	0.02	PCT				73	Feather Meal		0.0000	
36 C	HOLINE	MG/LB	0.10	MG/LB				80	Sodium mEq/Kg		88.96	
37 M	E; POULTRY	KCAL/LB	10.00	KCAL/LE				81	Potassium mEq/		207.07	
54 A	VAIL. LYSINE	PCT	0.01	PCT				82	Chloride mEq/K		53.59	
								83	DEB mEq/Kg	160.00	242.44	
		Unu	ised Ing	gredients				84	DEB+S		86.81	
Ingr	·		V	Vould Mi	nimum Ma	ximum		100	Nacogdoches		88.15	
Code	Ingredient Name			Use	Pct	Pct R	ost					
	Ontrinhas TC	S	- 									
621	Hostarus V MCP	Suppres	sea	0	.0150 0	.0150 14	+6.1					
295	RTOLVS	Suppres	seu	0	.0100 0	.0100 8						
-10	010010	Suppres	Jeu									

APPENDIX H

Diet # 4: Pilgrim's Broiler Grower Positive Control (NC) + Protease.

	Nacogo Broile	doches er Growei	r + Prot	tease No	Matrix	Fo	ormulated	By: S	Single	Product Formul	ation	Date D Date Op Optim Trial Prod'n	Printed: timized: ized By: Version: Version: Page:	05/17/17 02/16/20 DM 1 3 1
		(Used Ing	gredient	s					Nutrie	ent Soluti	on		
Ingr		Unro	unded	Ra	nge	R	estricti	on	Nutr			(Class 5)	
Code	Ingredient Name	Lbs	Pct	Low	High	Min Pct	Max Pct	Rcost	No	Nutrient	Minimum	Actual	Maximum	
101	CORN, Fine	1106.71	55.336	0.0158	0.1390				1	WEIGHT	0.99	0.9997	1.01	
111	SOYBEAN MEAL	650.89	32.544	0.0906					2	PROTEIN		21.11		
153	DISTILLER'S GR	100.00	5.000		0.1099		5.0000	-0.71	3	FAT		5.83		
143	Soy Oil	71.60	3.580	0.1190	1.0601	0.5000			4	FIBER		2.57		
28	LIMESTONE FINE	23.58	1.179		0.6414				5	MOISTURE		12.67		
299	NEXPHOS MONO-D	16.36	0.818		10.8581	0.2500			6	ASH		4.64		
41	ALIMET	7.20	0.360		7.8958				7	CALCIUM	0.86	0.8672	0.89	
13	LIQ LYSINE50%	6.52	0.326		1.9136				8	TOTAL PHOS.		0.5581		
36	SALT PLAIN	4.50	0.225		1.4862				9	AVAIL. PHOS.	0.43	0.4297	0.46	
919	Adisodium	3.00	0.150			0.1500			10	SALT		0.2734		
45	L-THREONINE	2.33	0.117		5.8658				11	CHLORIDE	0.19	0.1900	0.28	
78	BIOAVAIL TRACE	1.50	0.075			0.0750			12	SODIUM	0.18	0.2049	0.22	
63	CHOLINE LIQ.	1.20	0.060		24.0149				13	POTASSIUM	0.60	0.8335		
166	Opti Bac S/L	1.00	0.050			0.0500	0.0500		14	MAGNESIUM		0.1684		
35	COPPER SULFATE	1.00	0.050			0.0500			1 15	MANGANESE		94.10		
177	NICARB 25%	0.900	0.045			0.0450	0.0450		18	COPPER		152.64		
60	BROILER VITAMI	0.500	0.025			0.0250			22	LINOLEIC ACID		1.88		
642	Optiphos 6000P	0.500	0.025			0.0250	0.0250		23	XANT. ACTIVITY		5.57		
288	Poultry Grow 2	0.250	0.013			0.0125	0.0125		36	CHOLINE	770.00	770.00		
72	LIQ ETHOXYQUIN	0.250	0.013			0.0125			37	ME; POULTRY	1400.00	1395.51		
282	Hostazyme X dr	0.200	0.010			0.0100	0.0100		53	AVAIL. ARGININ		1.25		
									54	AVAIL. LYSINE	1.12	1.13		
	Total Batch:	2000.00	Lbs						55	AVAIL. METHION		0.5783		
									56	AVAIL. METH+CY		0.8637		
		- Binding	g Nutrie	ents					57	AVAIL. TRYPTOP		0.2171		
lutr		Unit of	Incr	ement					58	AVAIL. ISOLEUC		0.7980		
No N	utrient Name	Measure	Ch	ange					59	AVAIL.VALINE		0.8699		
									61	AVAIL. CYSTINE		0.6005		
7 C	ALCIUM	PCT	0.02	PCT					62	AVAIL. THREONI		0.7971		
9 A	VAIL. PHOS.	PCT	0.02	PCT					69	ANALYZED CALCI		0.7104		
11 C	HLORIDE	PCT	0.02	PCT					73	Feather Meal		0.0000		
36 C	HOLINE	MG/LB	0.10	MG/LB					80	Sodium mEq/Kg		89.13		
37 M	E; POULTRY	KCAL/LB	10.00	KCAL/L	3				81	Potassium mEq/		213.17		
54 A	VAIL. LYSINE	PCT	0.01	PCT					82	Chloride mEq/K		53.59		
									83	DEB mEq/Kg	160.00	248.70		
		Uni	used Ing	gredient	s				84	DEB+S		89.92		
Ingr			W	ould Mi	nimum M	aximum			100	Nacogdoches		87.88		
Code	Ingredient Name			Use	Pct	Pct R	cost							
621	Ontinhos IC	Sunnre	- 564		.0150	0.0150 14	46.1							
292	Hostazym Y WCP	Suppres	ssed		.0100	0.0100 8	2.20							
46	BTOLYS	Suppres	ssed				2.00							
-10		Subbile:												

APPENDIX I

Diet # 1: Pilgrim's Broiler Finisher (Withdrawal) Positive Control (PC).

	Nacogé Broile	Joches er Withdi	rawal 1	Positive	a Contro	For 1	mulated	By: S	ingle	/ Product Formula	ition	Optimi Trial V Prod'n N	zed By: DM /ersion: 1 /ersion: 5 Page: 1
		1	Used Ing	redient	;					Optimum Weigł	nt Nutrier	nt Solutio	on
Ingr		Unrou	unded	ка	inge	ке	strictio	on	Nutr			(Class 5	<i>i</i>)
Code	Ingredient Name	Lbs	Pct	Low	High	Min Pct	Max Pct	Rcost	No	Nutrient	Minimum	Actual	Maximum
101	1 CORN, Fine	1355.40	67.770	0.0646					1	1 WEIGHT		0.9996	
111	L SOYBEAN MEAL	482.44	24.122	0.1008					2	2 PROTEIN		17.91	
153	3 DISTILLER'S GR	77.75	3.887		0.0791		9.0000	i	1 3	FAT		3.96	
143	3 Soy Oil	29.12	1.456		0.3811	0.5000	1.5000	-1.98	4	4 FIBER		2.45	
28	3 LIMESTONE FINE	16.12	0.806		0.2971				5	MOISTURE		13.12	
31	1 PHOS DEFL	11.56	0.578			0.2500			6	ASH		3.79	
46	i BIOLYS	7.20	0.360		2.1969				7	/ CALCIUM	0.75	0.7325	0.78
41	1 ALIMET	5.44	0.272		22.8747				8	TOTAL PHOS.		0.4688	
36	SALT PLAIN	4.46	0.223		1.6752				9	AVAIL. PHOS.	0.36	0.3536	0.39
919	Adisodium	2.91	0.146			0.1500			10) SALT		0.2663	
45	L-THREONINE	1.76	0.088		8.8050				11	CHLORIDE	0.19	0.1845	0.28
78	BIOAVAIL TRACE	1.21	0.061			0.0625			12	SODIUM	0.19	0.1877	0.22
165	0ptibac L	1.00	0.050			0.0500	0.0500		13	POTASSIUM	0.56	0.6976	
35	COPPER SULFATE	1.00	0.050			0.0500	0.0500		14	+ MAGNESIUM		0.1571	
63	CHOLINE LIQ.	0.794	0.040		76.4123				15	MANGANESE		77.58	
85	Magni Phi	0.500	0.025			0.0250	0.0250		18	COPPER		147.23	
642	Optiphos 6000P	0.500	0.025			0.0250	0.0250	1	22	LINOLEIC ACID		1.54	
60) BROILER VITAMI	0.388	0.019			0.0200		1	23	XANT. ACTIVITY		6.80	
72	LIQ ETHOXYQUIN	0.243	0.012			0.0125			36	CHOLINE	650.00	631.04	
282	. Hostazyme X dr	0.200	0.010			0.0100	0.0100		37	ME; POULTRY	1440.00	1398.58	
	= - 1 n-t-h-		- 1 - 1					1	53	AVAIL. ARGININ		1.02	
	Total Batcn:	2000.00	Lbs						54	AVAIL. LYSINE	0.98	0.9514	
		Sindia	Materia					1	55	AVAIL, METHION		0.4/2/	
		Binding	J Nutrie	nts				1	50	AVAIL. METH+CY		0.7231	
Nutr 1	triant Nama	Unit or	Luce-	ement				1	57	AVAIL, TRYPTOP		0.1/46	
NO N	Autrient Name	Measure		ange					50	AVAIL, ISULEUC		0.6557	
7 (PCT	0.07	PCT					1 61	AVAIL.VALINE		0.7325	
91		PCT	0.02	PCT					1 67	AVAIL, CTOTINE		0.4002	
11 (WAIL, FRUS.	PCT	0.02	PCT					1 60	AVALL, INNEUNA		0.6565	
36 (CHOLITNE	MG/LB	0.10	MG/LB					1 77	P Easther Meal		0.0000	
37	ME: POULTRY	KCAL/LB	10.00	KCAL/LT	a				1 80) Sodium mEa/Ka		81 63	
54 /	AVATL. LYSINE	PCT	0.01	PCT	·			1	1 81	1 Potassium mEq/kg		178.42	
				1.2.					1 87	Chloride mEa/K		52.03	
		Un/	used Inc	uredient	s				1 87	3 DEB mEg/Kg	175.00	208.02	
Ingr			Voi	ld Min	imum Max	ci mum			84	4 DEB+S		66.79	
Code	Ingredient Name		U	/se Pr	ct P	ct Rcos	st 		100) Nacogdoches		91.89	
621	1 Ontinhos IC .	Suppre	ssed	0./	0300 0.	0300 54	46						
297	3 Hostazym X WSP	Suppres	ssed	0./	0100 0.	0100 79./	70 87						
147	1 Intellibond C2	Suppre	-sed	0./	A268 0.	0268 70.							
288	Poultry Grow 2	Suppre	sed	0./	A125 0.	0125 101	4						
-	/ I war any income	Sec.	10-0-0	***	1260	J165 202.	·*						

AFFLINDIAJ	APP	PEN	DIX	J
------------	-----	-----	-----	---

Diet # 2: Pilgrim's Broiler Finisher (Withdrawal) Negative Control (NC).

	Nacogo Broile	doches er Withdi	rawal 1	Negative	control	For	mulated	By: Si	ngle	Product Formulat	tion	Date Pr Date Opt Optimiz Trial Vo Prod'n Vo	rinted: 05/17/3 imized: 03/24/3 zed By: DM ersion: 1 ersion: 7 Page: 1
Tnon		(Unnor	Jsed Ing unded	redients		Pc				Optimum Weigh	it Nutrien	t Solutio	n
Code	Ingredient Name	Lbs	Pct	Low	High	Min Pct	Max Pct	Rcost	No	Nutrient	Minimum	Actual	Maximum
101	L CORN. Fine	1342.72	67.136	0.0646					1	WEIGHT		0 9997	
111	L SOYBEAN MEAL	452.03	22,601	0.1008					2	PROTETN		17.74	
153	DISTILLER'S GR	121.47	6.073		0.0791		9,0000		1 2	FAT		4.10	
143	3 Sov Oil	29,12	1,456		0.3811	0.5000	1,5000	-1.98	1 4	ETRER		2 52	
28	B LIMESTONE FINE	17.06	0.853	-0.1911	0,2971				5	MOTSTURE		13.09	
31	L PHOS DEFL	10.61	0.530	-0.0087		0.2500			6	ASH		3.80	
46	5 BIOLYS	7.18	0.359		2.1969				7	CALCIUM	0.75	0.7325	0.78
41	L ALIMET	4.87	0.244	-0.1158	22.8747				8	TOTAL PHOS.		0.4664	-
36	5 SALT PLAIN	4.38	0.219	-0.1557	1.6752				9	AVAIL. PHOS.	0.36	0.3536	0.39
919	0 Adisodium	2.91	0.146	-0.1597		0.1500		5.78	10	SALT		0.2649	
49	5 L-THREONINE	1.54	0.077	-0.1395	8.8050				11	CHLORIDE	0.19	0.1845	0.28
78	BIOAVAIL TRACE	1.21	0.061	-0.1545		0.0625		24.04	12	SODIUM	0.19	0.1881	0.22
169	5 Optibac L	1.00	0.050			0.0500	0.0500		13	POTASSIUM	0.56	0.6905	
35	5 COPPER SULFATE	1.00	0.050			0.0500	0.0500		14	MAGNESIUM		0.1568	
63	3 CHOLINE LIQ.	0.797	0.040	-0.0939	76.4123				15	MANGANESE		77.90	
85	5 Magni Phi	0.500	0.025			0.0250	0.0250		18	COPPER		146.38	
642	2 Optiphos 6000P	0.500	0.025			0.0250	0.0250		22	LINOLEIC ACID		1.57	
60	D BROILER VITAMI	0.388	0.019	-0.1361		0.0200		66.31	23	XANT. ACTIVITY		6.76	
289	9 Poultry Grow 2	0.250	0.013			0.0125	0.0125		36	CHOLINE	650.00	631.04	
72	2 LIQ ETHOXYQUIN	0.243	0.012	-0.1597		0.0125		67.19	37	ME; POULTRY	1440.00	1398.57	
282	2 Hostazyme X dr	0.200	0.010			0.0100	0.0100		53	AVAIL. ARGININ		1.02	
									54	AVAIL. LYSINE	0.98	0.9523	
	Total Batch:	2000.00	Lbs						55	AVAIL. METHION		0.4648	
									56	AVAIL. METH+CY		0.7238	
		- Binding	g Nutrie	ents					57	AVAIL. TRYPTOP		0.1747	
Nutr		Unit of	Incre	ment					58	AVAIL. ISOLEUC		0.6647	
No N	Nutrient Name	Measure	Cha	nge					59	AVAIL.VALINE		0.7495	
									61	AVAIL. CYSTINE		0.4623	
7 0	CALCIUM	PCT	0.02	PCT					62	AVAIL. THREONI		0.6571	
9 /	WAIL, PHUS,	PCT	0.02	PCI					69	ANALYZED CALCI		0.5842	
11 (PCI NC/LD	0.02	rci No/La					73	Feather Meal		0.0000	
36 (MG/LB	10.10	MG/LB					80	Sodium mEq/Kg		81.82	
5/ 1	VATI IVETNE	PCT	10.00	PCT					81	Potassium mEq/		176.60	
34 /	NOTE: CIDINE	i ci	0.01						82	Chioride mEq/K	175 00	52.03	
		[!eu	used Ter	radiante					03	DEB mEq/Kg	1/5.00	206.39	
Inor		on	iseu ing M	muld Min	imum Mas	ci mum	-		84 100	Nacadashas		62.36	
Code	Ingredient Name			Use F	ot F	Pct Rco	st		1 100	nacoguocnes		05.74	
621	Ontinhos TC	Suppres			0200 0	0200 54	46						
202	B Hostazym Y WCP	Suppres	sed	0.	0100 0	0100 70	40 87						
141	I Intellibond C?	Suppres	sed	0.	0368 0	0268 70	57						
289	R Poultry Grow 2	Suppres	sed	0.	0125 0	0125 101	4						
200	a country drow z	Subbuer		U.	0123 0.	0152 101							

APPENDIX K

Diet # 3: Pilgrim's Broiler Finisher (Withdrawal) Positive Control (PC) + Protease.

	Nacog Broile	+ Prote	ase with	Formulated By: Single Product Formulation th mat							zed By: ersion: ersion: Page:			
		(Used Ing	gredient	;					Optimum Weigh	nt Nutrien	it Solution		
ode	Ingredient Name	Lbs	unded Pct	Ra Low	High	Re Min Pct	Max Pct	Rcost	Nutr	Nutrient	Minimum	Actual	Maximum	
101	COPN Fine	1242 72	67 126	0.0646						WETCHT		0 9997		
111	SOVREAN MEAL	452.03	22 601	0.10040					2	PROTETN		17 74		
152	DISTILLER'S GR	121 47	6 073	0.1008	0 0791		9 0000		2	EAT		4 10		
142	Say Oil	20 12	1 456		0.0751	0 5000	1 5000	-1 00		ETDED		2 52		
143	I THESTONE ETHE	17.00	1.420	-0 1911	0.3011	0.5000	1.3000	1.30	- 4 	MOTSTURE		12 09		
20	PHOS DEEL	10.61	0.055	-0.1911	0.25/1	0.2500				ACH		12.03		
31	RTOLVS	7 10	0.330	0.0007	2 1000	0.2500			7	CALCTUM	0.75	0 7225	0.79	
40	ALTMET	/.10	0.359	-0 1159	22 0747						0.75	0.7525	0.78	
41	CALT DIATH	4.6/	0.244	-0.1158	1 6752				8	AVATI BUOS	0.20	0.4664	0.20	
010	Adjendium	7.50	0.219	-0.1557	1.0/52	0 1500		5 70	9	SALT	0.36	0.3536	0.39	
213		2.91	0.146	-0.1397		0.1500		5.78	10		0.10	0.1045	0.20	
+5 70	RTOAVATI TRACE	1.04	0.061	-0.1545	0.0050	0.0625		24 04	12	SODTIM	0.19	0.1891	0.20	
165	Ontibac I	1.00	0.050	0.1040		0.0500	0.0500	24104	12	POTASSTUM	0.19	0.6905	0.22	
203	COPPER SUI FATE	1.00	0.050			0.0500	0.0500		14	MAGNESTUM	0.50	0.1568		
62		0 797	0.040	-0 0929	76 4122	0.0500	0.0500		10	MANGANESE		77 90		
85	Magni Phi	0.500	0.025	-0.0555	70.4125	0.0250	0.0250		18	COPPER		146 38		
642	Ontinhos 6000P	0.500	0.025			0.0250	0.0250		22	LINOLETC ACTD		1 57		
60	PROTI ER VITAMT	0.300	0.019	-0 1261		0.0200	0.0250	66 21	22	YANT ACTIVITY		6 76		
289	Boultry Grow 2	0.250	0.013	0.1501		0.0125	0 0125	00.31	36	CHOLTNE	650 00	631 04		
72		0.243	0.012	-0 1597		0.0125	0.0125	67 19	37		1440 00	1398 57		
282	Hostazyme X dr	0.200	0.010	0.1007		0.0100	0.0100	07.125	53	AVATI ARGININ	1440.00	1.02		
202	noocaejiine in ar	01200	01010			010200	010200		54		0.98	0 9523		
	Total Batch:	2000.00	Lbs						55	AVAIL: METHTON	0.00	0.4648		
	focal bacchi	2000.00	200						56	AVAIL METHICK		0.7238		
		- Binding	n Nutria	ante					57			0 1747		
tr		Unit of	Incr	ement					58	AVAIL: TSOLEUC		0.6647		
lo N	utrient Name	Measure	Ch	ange					59	AVATE VALITIE		0.7495		
									61	AVATL CYSTINE		0.4623		
7 0	ALCIUM	PCT	0.02	PCT					62	AVAIL, THREONT		0.6571		
9 A	VAIL, PHOS.	PCT	0.02	PCT					69	ANALYZED CALCT		0.5842		
11 0	HLORIDE	PCT	0.02	PCT					73	Feather Meal		0.0000		
36 0	HOLTNE	MG/LB	0.10	MG/LB					80	Sodium mEa/Ka		81.82		
37 M	E: POULTRY	KCAL /LB	10.00	KCAL /LB					81	Potassium mEq/Rg		176.60		
54 A	VAIL, LYSINE	PCT	0.01	PCT					82	Chloride mEa/K		52.03		
0			5.01						83	DEB mEg/Kg	175.00	206.39		
		[lm	used Try	redient					84	DEB+S	2	62.36		
nar		- Chi	Lili 1	Vould Mi	inimum M	aximum			100	Nacogdoches		89.74		
ode	Ingredient Name			Use	Pct	Pct Ro	ost							
621	Optiphos IC	Suppres	- ssed		0.300	0 0300 54	46							
293	Hostazym X WSP	Suppres	ssed		0.0100	0.0100 79	87							
141	Intellibond C2	Suppres	ssed		0.0368	0.0368 70	. 58							
288	Poultry Grow 2	Suppres	ssed		0.0125	0 0125 10	1 4							
		- appres				CIOTES TO	- 1 T							

APPENDIX L

Diet # 4: Pilgrim's Broiler Finisher (Withdrawal) Negative Control (PC) + Protease.

	Nacogdoches Formulated By: S Broiler Withdrawal 1 + protease no matri								Optim Single Product Formulation Trial Prod'n				Version: 1 Version: 7 Page: 1	
			Used In	gredients	;					Optimum Weigh	ıt Nutrier	nt Solutio	on	
Ingr		Unro	unded	Ra	inge	R	estrictio	on	Nutr	No. 1 - 1 1		(Class 5	5)	
Code	Ingredient Name	Lbs	Pct	Low	High	Min Pct	Max Pct	Rcost	NO	Nutrient	MINIMUM	Actual	Maximum	
10	1 CORN Fine	1356.50	67.825	0.0271					1	WEIGHT		0,9997		
11	1 SOYBEAN MEAL	482.95	24.148	0.0950					2	PROTEIN		17.90		
15	3 DISTILLER'S GR	75.88	3.794		0.0996		9,0000		3	FAT		3.96		
14	3 Sov 0il	29.12	1.456		0.7570	0.5000	1,5000	-9.50	4	FIBER		2.44		
2	8 LIMESTONE FINE	16.08	0.804	-0.5827	0.3666				1 5	MOISTURE		13.12		
3	1 PHOS DEFL	11.61	0.581	-0.0645		0.2500			6	ASH		3.79		
4	6 BIOLYS	7.18	0.359		2.1969				7	CALCIUM	0.75	0.7325	0.78	
4	1 ALIMET	5.45	0.272	-0.4019	22.8747				8	TOTAL PHOS.		0.4688		
3	6 SALT PLAIN	4.47	0.223	-0.4246	2.3243				9	AVAIL. PHOS.	0.36	0.3536	0.39	
91	9 Adisodium	2.91	0.146	-0.4381		0.1500		11.35	10	SALT		0.2663		
4	5 L-THREONINE	1.76	0.088	-0.4580	8,8050				11	CHLORIDE	0.19	0.1845	0.28	
7	8 BIOAVAIL TRACE	1.21	0.061	-0.4252		0.0625		29.46	12	SODIUM	0.19	0.1876	0.22	
16	5 Optibac L	1.00	0.050			0.0500	0.0500		13	POTASSIUM	0.56	0.6973		
3	5 COPPER SULFATE	1.00	0.050			0.0500	0.0500		14	MAGNESIUM		0.1571		
6	3 CHOLINE LIQ.	0.796	0.040	-0.2844	76.4123				15	MANGANESE		77.56		
8	5 Magni Phi	0.500	0.025			0.0250	0.0250		18	COPPER		147.25		
64	2 Optiphos 6000P	0.500	0.025			0.0250	0.0250		22	LINOLEIC ACID		1.54		
6	O BROILER VITAMI	0.388	0.019	-0.3790		0.0200		71.17	23	XANT. ACTIVITY		6.81		
28	8 Poultry Grow 2	0.250	0.013			0.0125	0.0125		36	CHOLINE	650.00	631.04		
7	2 LIQ ETHOXYQUIN	0.243	0.012	-0.4381		0.0125		72.76	37	ME; POULTRY	1440.00	1398.57		
28	2 Hostazyme X dr	0.200	0.010			0.0100	0.0100		53	AVAIL. ARGININ		1.02		
									54	AVAIL. LYSINE	0.98	0.9514		
	Total Batch:	2000.00	Lbs						55	AVAIL. METHION		0.4728		
									56	AVAIL. METH+CY		0.7231		
		- Bindin	g Nutri	ents					57	AVAIL. TRYPTOP		0.1746		
Nutr		Unit of	Incr	ement					58	AVAIL. ISOLEUC		0.6555		
No	Nutrient Name	Measure	Ch	ange					59	AVAIL.VALINE		0.7326		
									61	AVAIL. CYSTINE		0.4885		
7	CALCIUM	PCT	0.02	PCT					62	AVAIL. THREONI		0.6565		
9	AVAIL. PHOS.	PCT	0.02	PCT					69	ANALYZED CALCI		0.5850		
11	CHLORIDE	PCT	0.02	PCT					73	Feather Meal		0.0000		
36	CHOLINE	MG/LB	0.10	MG/LB					80	Sodium mEq/Kg		81.62		
37	ME; POULTRY	KCAL/LB	10.00	KCAL/LB					81	Potassium mEq/		178.32		
54	AVAIL. LYSINE	PCT	0.01	PCT					82	Chloride mEq/K		52.03		
									83	DEB mEq/Kg	1/5.00	207.92		
		Uni	used In	gredients					84	DEB+S		66.91		
Ingr			We	ould Min	imum Ma	xımum			1 100	Nacogdoches		91.97		
Code	ingredient Name			Use P	'ct	Pct Rc	ost							
	0.0	6												
28	9 Foultry Grow 2	Suppre	ssed	0.	0125 0	.0125 10	1.4							
62	1 Uptiphos IC .	Suppre	ssed	0.	0300 0	.0300 54	.46							
29	5 HOSTAZYM X WSP	Suppre	ssed	0.	0100 0	.0100 79	. 87							
14	1 Intellibond C2	Suppre	ssed	0.	0368 0	.0368 70	. 58							

VITA

The Author, Jawad Al-juboori, graduated from University of Baghdad, College of Agriculture, Animal Science Department in July 1996. After 16 years of working experience, the author moved to USA, and was accepted into Stephen F. Austin State University, in January 2016 in a Master of Science in Agriculture program with thesis in poultry nutrition. He intends to complete his Master of Science in Agriculture by August 2017, after which, pursue a Ph.D. in the Poultry Science.

Permanent Address: 327 West College St. Apt. 120

Nacogdoches, Texas, 75965.

The APA style Manual of the American Psychological Association 6th edition was used for the reference style in this thesis.

This thesis was typed by Jawad Al-juboori