
Stephen F. Austin State University Stephen F. Austin State University 

SFA ScholarWorks SFA ScholarWorks 

Electronic Theses and Dissertations 

Fall 11-28-2017 

SPATIALLY EXPLICIT MODEL OF AREAS BETWEEN SUITABLE SPATIALLY EXPLICIT MODEL OF AREAS BETWEEN SUITABLE 

BLACK BEAR HABITAT IN EAST TEXAS AND BLACK BEAR BLACK BEAR HABITAT IN EAST TEXAS AND BLACK BEAR 

POPULATIONS IN LOUISIANA, ARKANSAS, AND OKLAHOMA POPULATIONS IN LOUISIANA, ARKANSAS, AND OKLAHOMA 

Caitlin M. Glymph 
Stephen F Austin State University, caitlin.glymph@gmail.com 

Christopher Comer 
Stephen F Austin State University 

Daniel Scognamillo 
Stephen F Austin State University 

Daniel Unger 
Stephen F Austin State University 

Yanli Zhang 
Stephen F Austin State University 
Follow this and additional works at: https://scholarworks.sfasu.edu/etds 

 Part of the Natural Resources and Conservation Commons, and the Terrestrial and Aquatic Ecology 

Commons 

Tell us how this article helped you. 

Repository Citation Repository Citation 
Glymph, Caitlin M.; Comer, Christopher; Scognamillo, Daniel; Unger, Daniel; and Zhang, Yanli, "SPATIALLY 
EXPLICIT MODEL OF AREAS BETWEEN SUITABLE BLACK BEAR HABITAT IN EAST TEXAS AND BLACK 
BEAR POPULATIONS IN LOUISIANA, ARKANSAS, AND OKLAHOMA" (2017). Electronic Theses and 
Dissertations. 128. 
https://scholarworks.sfasu.edu/etds/128 

This Thesis is brought to you for free and open access by SFA ScholarWorks. It has been accepted for inclusion in 
Electronic Theses and Dissertations by an authorized administrator of SFA ScholarWorks. For more information, 
please contact cdsscholarworks@sfasu.edu. 

https://scholarworks.sfasu.edu/
https://scholarworks.sfasu.edu/etds
https://scholarworks.sfasu.edu/etds?utm_source=scholarworks.sfasu.edu%2Fetds%2F128&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/168?utm_source=scholarworks.sfasu.edu%2Fetds%2F128&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/20?utm_source=scholarworks.sfasu.edu%2Fetds%2F128&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/20?utm_source=scholarworks.sfasu.edu%2Fetds%2F128&utm_medium=PDF&utm_campaign=PDFCoverPages
http://sfasu.qualtrics.com/SE/?SID=SV_0qS6tdXftDLradv
https://scholarworks.sfasu.edu/etds/128?utm_source=scholarworks.sfasu.edu%2Fetds%2F128&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:cdsscholarworks@sfasu.edu


SPATIALLY EXPLICIT MODEL OF AREAS BETWEEN SUITABLE BLACK BEAR SPATIALLY EXPLICIT MODEL OF AREAS BETWEEN SUITABLE BLACK BEAR 
HABITAT IN EAST TEXAS AND BLACK BEAR POPULATIONS IN LOUISIANA, HABITAT IN EAST TEXAS AND BLACK BEAR POPULATIONS IN LOUISIANA, 
ARKANSAS, AND OKLAHOMA ARKANSAS, AND OKLAHOMA 

Creative Commons License Creative Commons License 

This work is licensed under a Creative Commons Attribution-Noncommercial-No Derivative Works 4.0 
License. 

This thesis is available at SFA ScholarWorks: https://scholarworks.sfasu.edu/etds/128 

https://creativecommons.org/licenses/by-nc-nd/4.0/
https://creativecommons.org/licenses/by-nc-nd/4.0/
https://creativecommons.org/licenses/by-nc-nd/4.0/
https://creativecommons.org/licenses/by-nc-nd/4.0/
https://scholarworks.sfasu.edu/etds/128


SPATIALLY EXPLICIT MODEL OF AREAS BETWEEN SUITABLE BLACK BEAR 

HABITAT IN EAST TEXAS AND BLACK BEAR POPULATIONS IN LOUISIANA, 

ARKANSAS, AND OKLAHOMA 

 

 

 

By 

 

 

 

Caitlin Glymph, Bachelor of Science 

 

 

 

 

 

 

 

 

Presented to the Faculty of the Graduate School of 

Stephen F. Austin State University 

In Partial Fulfillment 

Of the Requirements 

For the Degree of 

Master of Science in Forestry 

 

 

STEPHEN F. AUSTIN STATE UNIVERSITY 

 

DECEMBER 2017 



SPATIALLY EXPLICIT MODEL OF AREAS BETWEEN SUITABLE BLACK BEAR 

HABITAT IN EAST TEXAS AND BLACK BEAR POPULATIONS IN LOUISIANA, 

ARKANSAS, AND OKLAHOMA 

 

 

 

By 

 

CAITLIN GLYMPH, Bachelor of Science 

 

APPROVED: 

 

      __________________________________ 

      Dr. Christopher E. Comer, Thesis Director 

 

      __________________________________ 

      Dr. Daniel G. Scognamillo, Thesis Director 

 

      __________________________________ 

      Dr. Daniel R. Unger, Committee Member 

 

      __________________________________ 

      Dr. Yanli Zhang, Committee Member 

 

 

 

___________________________ 

Richard Berry, D.M.A. 

Dean of Graduate School 

  



 i 

 

ABSTRACT 

 

 Although black bears (Ursus americanus, Ursus americanus luteolus) were once 

found throughout the south-central United States, unregulated harvest and habitat loss 

resulted in severe range retractions and by the beginning of the twentieth century 

populations in Oklahoma, Louisiana, Texas and Arkansas were nearing extirpation. In 

response to these losses, translocation programs were initiated in Arkansas (1958-1968 & 

2000-2006) and Louisiana (1964-1967 & 2001-2009). These programs successfully 

restored bears to portions of Louisiana and Arkansas, and, as populations in Arkansas 

began dispersing, to Oklahoma. In contrast, east Texas remains unoccupied despite the 

existence of suitable habitat in the region.  

 To facilitate the establishment of a breeding population in east Texas, I sought to 

identify suitable habitat which bears could use for dispersal between known bear 

locations in Louisiana, Arkansas and Oklahoma and the east Texas recovery units. I 

utilized Maxent, a machine learning software, to model habitat suitability in this region. I 

collected known black bear presence locations (n=18,241) from state agencies in 

Louisiana, Oklahoma, Arkansas and east Texas and filtered them to reduce spatial 

autocorrelation (n=664). I also collected spatial data sets based on known black bear 

ecology to serve as environmental predictor variables. The model was developed at 30-m 

resolution and encompassed 417,076 km 2. The final model was selected to minimize 
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model over-fitting while maintaining a high test Area Under the Receiver Operating 

Curve (AUC TEST) score.  

For final model interpretation and analysis, I used the 10th percentile training 

threshold available in Maxent which excludes the lowest 10% of predicted presence 

suitability scores from the binary predictive map, thus resulting in a more conservative 

predictive map.  The final 10th percentile model predicted 43.7% of the pixels in the study 

area as suitable and 53.7 % percent of the pixels identified as potential recovery units by 

Kaminski et al. (2013, 2014) as suitable. To focus management efforts, I identified three 

movement zones with a high proportion of suitable habitat within which connectivity 

analyses were performed. Suitable patches greater than or equal to 12 km2 were classified 

within ArcGIS as stepping stone patches. Buffers of 3,500 m were generated around 

these patches to determine the level of functional connectivity in each zone. 

The final Maxent model confirmed that suitable bear habitat exists between 

source populations and the east Texas recovery units. The importance of percent of mast 

producing forest, percentage of cultivated crops and percentage of protected lands reflect 

what is known about basic bear biology and ecology. Furthermore, 153 stepping stone 

patches were identified within the movement zones, demonstrating that there is a 

reasonable chance of bears naturally dispersing to east Texas using the habitat identified 

in this study. Thus, protection of existing bear habitat and the stepping stone patches 

identified in this study should be a priority for managers seeking to facilitate natural bear 

recolonization of east Texas.  
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CHAPTER I 

 

Historically, the American black bear (Ursus americanus) was common 

throughout the continental United States, Canada, and northern Mexico (Pelton 1982). 

Habitat loss and overexploitation by early settlers led to considerable population declines 

across much of its range (Garshelis 1990). This was especially true in the southern United 

States, where indiscriminate logging practices, high demand for bear oil, and overhunting 

(Barker et al. 2005), caused a 90-95% range retraction in the late 1800’s (Maehr et al. 

1984, Wooding et al.1996). By the start of the twentieth century, black bears were 

nearing extirpation in Arkansas, Louisiana, Missouri, Oklahoma, and Texas (Bailey 

1905, Smith and Clark 1994). 

Translocation of individuals has been used as part of restoration efforts in 

different parts of the original species range. Various techniques exist for black bear 

restoration, including “hard-release” translocation, which involves the capture, transport 

and immediate release of individuals, without an acclimation period (Griffith et al. 1989, 

Shull et al. 1994). The Arkansas Game and Fish Commission implemented a hard-release 

translocation between 1958 and 1968 in an attempt to restore black bear populations in 

that state. Approximately 250 bears were captured and transported from Manitoba, 

Canada and Minnesota to regions of western and northern Arkansas over the ten-year 

period (Smith and Clark 1994). Within twenty years, populations had reached 
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approximately 2,500 individuals, eventually leading to the natural re-colonization of 

black bears in southeastern Oklahoma (Smith and Clark 1994). Similar translocation 

programs occurred from 1964-1967 in Louisiana. These included 163 black bears that 

were captured in Minnesota and relocated to the Atchafalaya River Basin and Tensas 

River Basin in Louisiana, where small remnant populations were believed to exist (Black 

Bear Conservation Committee 1992). Statewide population numbers were estimated to 

have increased to 200-300 bears by 1991(Black Bear Conservation Committee 1992). In 

response to range reductions and perceived population declines, the U.S. Fish and 

Wildlife service designated the Louisiana black bear (Ursus americanus luteolus) as 

threatened under the Endangered Species Act on February 6, 1992 (USFWS 1995). The 

listing also extended protection to any free-living bears within the Louisiana black bear 

historic range, due to similarity of appearance (USFWS 1995).  

Current Status 

Louisiana 

 Currently, the Louisiana black bear has four breeding populations in Louisiana: 1) 

The Tensas River Basin (TRB) 2) Upper Atchafalaya River Basin (UARB) 3) Lower 

Atchafalaya River Basin (LARB) and 4) a recently repatriated population (REPAT) 

connecting the TRB and Atchafalaya populations (Davidson et al. 2015; Fig.1.1). The 

TRB is the largest of the four subpopulations, with estimates of female population 

ranging between 133 and 165 (Laufenberg and Clark 2014) and a positive annual growth 

rate of r=1.02-1.04 from 2002 to 2012 (Laufenberg and Clark 2014). Estimates of 
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abundance may be low considering that private lands with bears were not included 

(Davidson et al. 2015). Genetic analyses of the TRB population indicated that there was 

connectivity between the individuals in the TRB and the White River National Wildlife 

Refuge, Arkansas as well as likely movement between the TRB and REPAT (Laufenberg 

and Clark 2014, Davidson et al. 2015).   

Unlike previous translocation attempts which involved hard releases of captured 

bears during summer months, the repatriated subpopulation was established through 

winter translocations of 48 females and 104 cubs from the TRB to REPAT over an eight-

year period (2001-2009) (Black Bear Conservation Coalition 2015). The goal was to 

facilitate connectivity, dispersal potential, and gene flow between the TRB and UARB as 

required in the USFWS recovery plan (Benson and Chamberlain 2007, Laufenberg and 

Clark 2014, USFWS 1995). Initial genetic research suggests that the subpopulation is 

operating as a stepping stone for bears between the TRB and UARB (Laufenberg and 

Clark 2014), with female survival of l=0.93-0.97 and population growth rate of r = 0.99 

(Laufenberg and Clark 2014).  

According to recent population parameter estimates, bear populations in 

Louisiana appear to be growing and expanding their respective ranges. Indeed, the UARB 

was estimated to have 41 individuals in 1999 (Triant et al. 2004), and a recent population 

study done in 2014 estimated the population to have increased to approximately 63 

individuals (O’Connell-Goode 2014). Laufenberg and Clark (2014) found that females in 

this subpopulation had an annual survival rate of 0.84-0.90, which is slightly lower than 
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estimates for the REPAT and TRB. Overall, likelihood of subpopulation persistence for 

the next 100 years was between 85% and 99% (Laufenberg and Clark 2014). In 

comparison to the same estimate for the TRB and REPAT, the outlook for this 

subpopulation is slightly better than that for REPAT (30%- 99%) while marginally lower 

than the TRB (≥95.8%) (Laufenberg and Clark 2014). These estimates are dependent on 

model assumptions, demographic and stochastic factors, and may change based on future 

research (Laufenberg and Clark 2014). 

In 1999, the LARB was thought to have approximately 77 individuals (Triant et 

al. 2004); however, by 2013 estimates had increased to 138 (Troxler 2013). Despite this 

increase in numbers, annual female apparent survival was estimated between 0.81 and 

0.84, making this the lowest survival rate among Louisiana subpopulations (Laufenberg 

and Clark 2014). Low survival in the LARB has been attributed to increased mortality 

from vehicular collisions and poaching (Davidson et al. 2015). U.S. Highway 90 and 

Louisiana Highway 317 reduce the LARB population by 10% annually as a result of 

vehicular mortality (Troxler 2013). Low genetic diversity and exchange (Troxler 2013, 

Laufenberg and Clark 2014) combined with low female survival in comparison to the 

other Louisiana subpopulations puts the LARB at risk in terms of future viability. 

In addition to translocations, incentive based private land restoration programs 

significantly contributed to bear restoration by increasing available habitat. The Wetland 

Reserve Program permanently protected or restored 148,000 ac of habitat since 1992 and 

an additional 65,000 ac were protected or restored through other private groups such as 
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the Black Bear Conservation Coalition (USFWS 2015). The increased habitat acreage 

and influx of translocated individuals combined to meet the objectives outlined in the 

black bear recovery plan. Thus, on May 20, 2015 the U.S. Fish and Wildlife Service 

proposed delisting of the Louisiana black bear based on its current recovery status and in 

March of 2016 it was removed from the list.   

Arkansas 

Overall, approximately 2,500 bears existed in Arkansas and parts of Oklahoma 

and Mississippi by 1994 (Smith and Clark 1994), though numbers have likely increased 

since then. In Arkansas, black bears have been documented in all but three of the 75 

counties (M. Means, Arkansas Game and Fish Commission, personal communication). 

The White River National Wildlife Refuge (WRNWR), Felsenthal National Wildlife 

Refuge (FNWR) and the Ouachita and Ozark mountains in Arkansas contain the four 

identified black bear populations in the state (Wear 2005, Black Bear Conservation 

Coalition 2015).  

The WRNWR population was the last population remaining in Arkansas in the 

1940’s (Smith and Clark 1994). Currently, this population is expanding, indicating its’ 

continued recovery and overall health (Black Bear Conservation Coalition 2015). Bear 

hunting is permitted in areas surrounding the refuge, thus harvest impacts survival rates 

within the refuge (Clark and Eastridge 2006). Clark and Eastridge (2006) determined that 

female survival decreased from 0.979, excluding harvest, to 0.923 including harvest data. 
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Continued monitoring of survival and population parameters is prudent to ensure harvest 

limits are at a healthy level for the population (Clark and Eastridge 2006).  

FNWR is the location of the newest population of black bears in Arkansas (Wear 

et al. 2005). Over a six-year period (2000-2006), 46 females and 99 cubs were 

translocated from WRNWR to FNWR (Black Bear Conservation Coalition 2015). 

Average first-year survival rate of females following translocation (2000-2002) was 

estimated at 0.624 (Wear et al. 2005). Wear et al. (2005) documented two instances of 

successful breeding within the refuge, one in 2002 and one in 2003. There were eight 

adult female mortalities in the first two years, three of which were the result of poaching 

(Wear et al. 2005).  

Bear hunting was reinstated in Arkansas in 1980 following the success of the 

translocation program (Smith and Pelton 1990). Archery, muzzleloader, modern gun and 

youth hunting seasons are currently permitted within the state (AGFC 2015). Hunting 

zones separate areas with differing quotas and regulations; however, there is a one bear 

per hunter combined limit amongst the different seasons and methods (AGFC 2015).  

Oklahoma 

Oklahoma also contains breeding bear populations within the eastern and 

southeastern regions of the state (Barker et al. 2005). Bales et al. (2005) studied an 

expanding population in the Oklahoma Ouachita Mountains. The population of 85 ± 30 

individuals was relatively young and had an age structure consistent with recolonizing 

populations (Bales et al. 2005). The survival rate of adult females was estimated at 0.9, 
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which is similar to estimates for Arkansas populations (0.98; Smith and Clark 1994; 

Bales et al. 2005). Overall population growth rate was estimated at 1.11±0.11/year, 

indicating an expanding population (Bales et al. 2005). The Oklahoma Department of 

Wildlife Conservation currently allows regulated archery and muzzleloader hunting 

seasons of bears (ODWC 2015). A 20 bear quota is enforced for muzzleloader season, 

and there is a combined season limit of 1 bear per hunter. At present, bear hunting is 

permitted in four counties (Latimer, Le Flore, McCurtain, and Pushmataha).  

Recolonization of east Texas 

Black bear dispersal from these source populations to east Texas is a distinct 

possibility due to several characteristics of black bear ecology. First, black bears are 

capable of traversing long distances in search of home range territory. Indeed, straight-

line dispersal distances range from 3-15 km for females and 13-219 km for males (Beck 

1991, Elowe and Dodge 1989, Rogers 1987). Long range dispersal events are usually 

seen in sub-adult males as they emigrate from their natal home ranges due to mate and 

resource competition (Costello 2010), although female dispersal does occasionally occur 

(Rogers 1987, Shwartz and Franzmann 1992). As neighboring populations grow and 

competition increases, more bears are likely to disperse in search of mates and resources. 

Dispersal from the expanding neighboring state populations to east Texas, especially by 

males, is possible; however, it should be acknowledged that unless females are present in 

the area males may not establish permanent home ranges in the east Texas region.  
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Although black bear populations are expanding in the southern U.S., large 

portions of the historic range remain unoccupied (Kaminski et al. 2013). East Texas 

contains some of the largest areas of unoccupied bear habitat in the region, which could 

hold opportunities for recolonization (Wooding 1994). The majority of available habitat 

in east Texas lies within the Pineywoods ecoregion (Fig 1.2; 60,864 km2), a matrix of 

pine, pine-hardwood, and bottomland hardwood forests stretching across rolling 

topography (Haggerty and Meuth 2015). The variation in forest type, cover, and food 

sources complements the generalist diet and adaptable nature of the black bear.  

Reports of black bear sightings throughout this region have increased since 1977 

(Barker et al. 2005), indicating the importance of this region for future black bear natural 

recolonization and population growth. In response to the increased activity of bears in the 

region, the Texas Parks and Wildlife Department developed the East Texas Black Bear 

Conservation and Management Plan in 2005. The report outlines the historic prominence 

of bears in Texas, and identifies the need for research focused on neighboring state 

dispersal, habitat, protection, and public and private support for bear recolonization 

(Barker et al. 2005). In response to the goals established in the plan, the East Texas Black 

Bear Task Force was created in 2005 to promote restoration of the black bear to the 

region through planning, outreach, habitat management, and research. To begin focusing 

management goals and encourage black bear recovery, the Task Force developed the 

North and South Black Bear Recovery Zones map (Barker et al. 2005). Recent studies 

utilizing habitat suitability indices (HSI’s) have identified specific recovery units within 
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those zones capable of supporting viable black bear populations (Kaminski et al. 2013, 

2014). Four recovery units were identified in the South Recovery Zone (SRZ) and two 

units in the North Recovery Zone (NRZ) (Fig. 1.3 and 1.4). Recovery units were selected 

based on size and HSI score thresholds deemed necessary to support black bear 

populations (i.e., ≥ 20,700 ha and mean HSI ≥ 0.5; Kaminski et al. 2013). The identified 

recovery units depict the areas in east Texas that are likely to be the focus of natural bear 

recolonization from dispersing neighboring state populations.  

  Corridors provide landscape connectivity (Nelson et al. 2003, Dixon et al. 2006); 

however, the species in question must use the corridors to make them effective. Through 

genetic sampling and population assignment tests, researchers have documented 

successful movement of bears between two subpopulations in Florida using the regional 

Osceola-Ocala corridor (Dixon et al. 2006). To identify such functional corridors through 

modeling, Cushman et al. (2010) suggested that modelers focus on large-scale 

connectivity and least resistance paths, rather than the definition of corridors as small, 

linear bridges between unsuitable habitat patches. Furthermore, corridors should be 

representative of the needs of the target species and goals of the study (Clark et al. 2015). 

The Louisiana black bear recovery plan explicitly states the need for identifying and 

preserving dispersal corridors to maintain and grow future populations (USFWS 1995). 

Based on current literature and knowledge of black bear ecology, Clark et al. (2015) 

determined that roads, hydrology, and land cover type were important variables to 

consider for modeling Louisiana black bear connectivity at a large scale.  
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 Although HSI studies have documented the presence of suitable habitat in east 

Texas, there is a lack of information regarding the suitability of habitat occurring between 

breeding populations in neighboring states and suitable east Texas patches. The Louisiana 

Black Bear Recovery Plan specifically lists the “protection of the habitat and 

interconnecting corridors” of black bear populations as a priority criterion for recovery 

(USFWS 1995). The Black Bear Conservation Coalition also emphasizes the importance 

of forested corridors for black bear restoration throughout its historic range (Black Bear 

Conservation Coalition 2015).  

 Thus, in 2015 this study was initiated to identify suitable habitat corridors for 

natural black bear recolonization of east Texas from the current source populations in 

Louisiana, Arkansas, and Oklahoma. We used maximum entropy modeling, a machine 

learning approach, (Maxent version 3.4.1; Phillips et al. 2006) to create a landscape level 

habitat suitability map based on physical and human impact variables. The landscape 

scale evaluation of habitat for interstate black bear movement is an important step in 

restoring black bears to east Texas and will help inform conservation planning in the 

region.  
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Figure 1.1. Breeding populations of Louisiana black bear (Ursus americanus luteolus) in 

Louisiana as defined by the Louisiana Department of Wildlife and Fisheries in 2014. 
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Figure 1.2. The Texas Parks and Wildlife Departments map of Texas ecoregions. The 

Pineywoods ecoregion (shown in light blue) contains much of the black bear habitat in 

east Texas.  
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Figure 1.3. Potential black bear recovery units identified by habitat suitability models in 

the South Recovery Zone of northeastern Texas by Kaminski et al. (2013) in east Texas. 
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Figure 1.4. Potential black bear recovery units identified by habitat suitability models in 

the North Recovery Zone of northeastern Texas by Kaminski et al. (2014) in east Texas. 

 

 

 

 

 



 19 

 

CHAPTER II: SPATIALLY EXPLICIT MODEL OF AREAS BETWEEN SUITABLE 

BLACK BEAR HABITAT IN EAST TEXAS AND BLACK BEAR POPULATIONS IN 

LOUSIANA, ARKANSAS, AND OKLAHOMA 
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INTRODUCTION 

 

 Black bears (Ursus americanus), including the Louisiana black bear (Ursus 

americanus luteolus) were once common across east Texas. However, by the early 

1900’s, unregulated harvest and habitat loss had caused significant population declines 

across the southern United States. By the 1940’s, bears were considered extirpated from 

east Texas and by the early 1990’s only three small remnant populations remained in 

Louisiana. Amongst growing concerns that bears were continuing to decline, the U.S. 

Fish and Wildlife Service listed the Louisiana black bear as Threatened under the 

Endangered Species Act of 1973 (USFWS 1995). This listing provided protection to all 

bears, including the American black bear, within the Louisiana black bear historic range 

due to similarity of appearance (USFWS 1995).  In 1987, black bears were also declared 

a state endangered species in Texas (Barker et al. 2005).    

 Despite similar historic population declines, neighboring states (e.g. Louisiana, 

Arkansas, & Oklahoma) have been successful recovering their black bear populations and 

many of these populations appear to be expanding (Barker et al. 2005). Indeed, since 

1977 black bear sightings in east Texas have been increasing, with 3 class I sightings 

confirmed as recently as August 2016 (Barker et al. 2005, Dave Holdermann, Texas 

Parks and Wildlife Department, personal communication). In response to these early 

sightings, the East Texas Black Bear Task Force was created in 2005 with the goal of 

promoting restoration of the black bear to the region. To this end, they developed the 
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North and South Black Bear Recovery Zones map (Barker et al. 2005). Within these 

zones, six recovery units were identified as being capable of supporting black bear 

populations (i.e., ≥ 20,700 ha and mean HSI ≥ 0.5; Kaminski et al. 2013). Although most 

east Texas sightings are likely solitary, transient males (Barker et al. 2005), the presence 

of bears in the region combined with the six recovery units identified by Kaminski et al. 

(2013, 2014), are indicative of the potential for a breeding population to establish in east 

Texas.  

 Natural black bear recolonization of east Texas is a long-term, regional process 

which, to be successful, requires the identification and protection of important movement 

corridors between source populations in neighboring states and areas in east Texas with 

potential to support viable populations of black bears (Kaminski et al. 2013, 2014). Due 

to technological advancements (e.g. GIS, online databases) increasing the availability and 

accessibility of species occurrence and environmental data (Graham et al. 2004, Franklin 

2014), species distribution modeling (SDM) has become a popular method for generating 

spatially explicit predictive maps of habitat suitability and species distribution (Franklin 

2014). Such maps can be applied to a variety of problems including reserve design and 

conservation planning (Thorn et al. 2009), reintroduction efforts (Hirzel et al. 2004), 

invasive species risk assessments (Peterson and Robbins 2003), and climate change 

impacts (Iverson et al. 2008). Generally, SDM’s create statistical models (Franklin 2014), 

which allow for exploration of a target species’ current and potential distribution through 

extrapolating environmental data in space and time.  
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 Several modeling frameworks (e.g. Generalized Linear Models, Resource 

Selection Functions) exist for implementing SDM’s (Phillips et al. 2006, Phillips & 

Dudik 2008). These include Maxent, a machine learning method that operates on the 

principle of maximum entropy which states that “a probability distribution with 

maximum entropy (the most spread out), subject to known constraints, is the best 

approximation of an unknown distribution” (Franklin 2014). The unknown distribution in 

an SDM context is the multivariate distribution of suitable habitat of a target species and 

the constraints are the environmental conditions associated with the species presence 

locations (Philips et al. 2006). Background points provide a sample of the available 

environmental conditions across the study area to compare with those at presence points. 

To reach a final solution, Maxent finds the model which can best differentiate presences 

from background points. 

 The main advantages of Maxent over other modeling options are that it does not 

require absence data when generating predictions and it is robust to small sample sizes 

(Franklin 2014). Often, absence data cannot be or are not collected because of the 

extensive time and money required; thus, presence-only datasets are more readily 

available (Zaniewski et al. 2002). In addition, Maxent is able to process extremely large 

datasets at a faster rate than other software packages such as R Statistical Computing 

software, making it ideal for landscape scale studies (e.g. black bear recolonization of 

east Texas). Furthermore, Maxent consistently outperforms other presence-only and 
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presence-absence techniques (e.g. GLM’s, GARP, ENFA, BIOCLIM) in terms of 

predictive accuracy (Elith et al. 2006, Phillips et al. 2006, Elith and Graham 2009). Due 

to the advantages mentioned above, the use of Maxent for SDM analyses is widespread in 

the conservation literature, with over 1,000 publications since 2006 (Merow et al. 2013).  

 Considering the expansion of black bear populations in neighboring states, the 

known existence of large expanses of suitable habitat in east Texas (Wooding et al. 1996, 

Kaminski et al. 2013, 2014), and the increased activity (sightings) of black bears in east 

Texas, it is reasonable to assume that black bears have a reasonable probability of 

naturally recolonizing parts of their historic range. Based on this evidence, we initiated a 

two-phase research project to identify and describe corridors and likely movement paths 

for dispersal of black bears from source areas in Louisiana, Arkansas and Oklahoma to 

suitable habitats in east Texas. This study represents Phase I, the main goals of which 

were to 1) model suitable black bear habitat within the study area and 2) identify habitat 

zones which could be used for dispersal from source populations in Louisiana, Oklahoma 

and Arkansas to east Texas. Phase II of the project will utilize the habitat suitability map 

created in Phase I to identify the most likely movement path bears will take to reach 

quality habitat in east Texas. Results of this study could be used to facilitate black bear 

recolonization through informing habitat management decisions and aiding in the 

selection and designation of protected habitat patches important to bear movement.  
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STUDY AREA 

 

 Our study area covers 417,076 km2 extending from east Texas into Louisiana, 

Oklahoma, and Arkansas (Fig. 2.1). The study area was bounded by the north and south 

recovery units in east Texas, and known black bear presence locations in Louisiana, 

Oklahoma, and Arkansas. Four broad forest categories fall within the study area; 1) 

Eastern Deciduous, 2) Southern Oak-Hickory-Pine, 3) Southern Floodplains and 4) 

Southeastern Coastal Plains Forests (Kershner et al. 2008). Although sub-groupings exist, 

these land-scape scale categories best match the scale of our study area. 

 The eastern deciduous forest type is the second largest in North America, 

extending from Texas and Louisiana, east to Georgia, and north to Minnesota, Maine, 

and Quebec (Kershner et al. 2008). A broadleaf canopy with few conifers and moderately 

dense understory are characteristic of this forest type (Kershner et al. 2008). Gums 

(Nyssa sp.), sweetgum (Liquidambar styraciflua), oaks (Quercus sp.), maples (Acer sp.), 

ashes (Fraxinus sp.), elms (Ulmus sp.) and hickories (Carya sp.) are common (Kershner 

et al. 2008). Southern Oak-Hickory-Pine forests are a variant of the eastern deciduous 

forest type, differing primarily in the prevalence and occasional dominance of several 

pine species including loblolly (Pinus taeda) and shortleaf (Pinus echinata; Kershner et 

al. 2008).  
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 Southern floodplain forests occur at low elevations along rivers and other 

waterways. Historically, these communities experienced regular flooding events; 

however, construction of levees and dams has significantly altered the natural flood 

regimes and has allowed for conversion to agriculture (Kershner et al. 2008). Bald-

cypress (Taxodium distichum) and water tupelo (Nyssa aquatica) are the dominant tree 

species; Sweetgum, American sycamore (Platanus occidentalis), American hornbeam 

(Carpinus caroliniana), and hickories, ashes, elms and oaks also can also be found 

(Kershner et al. 2008). Although the southeastern coastal plains forests are similar to 

southern floodplain forests in terms of geographical location, they vary considerably in 

species composition and importance of fire (Kershner et al. 2008). Unlike the hardwood 

dominated southern floodplains, pine uplands with few patches of hardwoods are 

characteristic of the southeastern coastal plains. A subgroup within the southeastern 

coastal plains is the longleaf pine (Pinus palustris) upland forest, which extends from 

eastern Texas east to Virginia (Kershner et al. 2008). Once covering 36,421,707 ha this 

forest type has been drastically reduced due to logging and human expansion. Longleaf 

pine upland communities are fire dependent, and therefore rely on prescribed burning to 

maintain their natural fire regime (Kershner et al. 2008). Common understory species are 

persimmon (Diospyros virginiana), turkey oak (Quercus laevis) and bluestem grasses 

(Andropogon sp.), among others (Kershner et al. 2008).  
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METHODS 

 I used a SDM approach in program Maxent version 3.4.1 (Philips et al. 2006) to 

model the likely distribution of black bear habitat across the described areas of Arkansas, 

Louisiana, Oklahoma, and Texas.  The Maxent approach requires only known locations 

(presences) within the area of interest and derives a probability distribution based on 

comparisons between these presences and background locations.  Thus, the process 

consisted of four primary steps: gathering presence data, collection of environmental data 

that potentially influence bear occurrence, model construction and evaluation, and model 

analysis. 

Presence Data Collection and Processing 

 Presence points are locations where black bears have been known to occur within 

the study area. These points are used by Maxent to determine the environmental 

characteristics that are found concurrently with black bear presence. I compiled black 

bear presence locations from Texas, Louisiana, Oklahoma and Arkansas (n= 18,241) 

available from state and federal agencies. Presence data took several forms depending on 

the data collected by the relevant state agency or research effort in each state.  For Texas, 

I obtained all confirmed class I black bear sightings in east Texas since the 1970’s (Texas 

Parks and Wildlife Department, unpublished data). The Texas Parks and Wildlife 

Department has collected black bear sightings in their region since the early 1970’s and 
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classified them by the reliability of the sighting.  Class I sightings are considered the most 

reliable and consist of verifiable tracks or scat, photo evidence or black bear carcasses 

(Barker et al. 2005). Presence points for Louisiana were a combination of GPS radio 

telemetry data and capture locations collected by the Louisiana Department of Wildlife 

and Fisheries (LDWF) from 1992 to 2014 (Laufenberg and Clark 2014, LDWF, 

unpublished data). The Arkansas presences were VHF and GPS radio telemetry locations 

obtained by the Arkansas Game and Fish Commission from 1993 to 2014 (AGFC, 

unpublished data). Lastly, Oklahoma presences were derived from bait station lines 

maintained annually by the Oklahoma Department of Wildlife Conservation (ODWC). A 

total of eighteen station lines with 348 stations (e.g., approximately 20 per line) were 

monitored for black bear visitation from 1999 to 2014. Because I did not have precise 

bait station locations, I randomly generated points along station lines with at least one 

detection based on ODWC’s site descriptions and methodology (i.e. 20 stations per line, 

at least 0.80 km apart and 18 meters from the line). All location data were cleaned for 

duplicates and errors. 

 Spatially auto correlated presence points can falsely inflate model evaluation 

metrics (e.g. Area Under the Curve) and result in over fitting (Boria et al. 2014). To 

reduce the influence of spatial autocorrelation and bias in the model I implemented 

spatial filtering of the presence points. This technique has been successful in reducing 

sampling bias and improving model performance by reducing the chances of having non-

independent presence points in the analysis (Boria et al. 2014, Fourcade et al. 2014). I 
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spatially filtered the data by creating a fishnet of grid cells the same size as the average 

female black bear home range in the southern U.S. (e.g. 12 km2; Benson and 

Chamberlain 2007) and randomly selecting one presence point per cell using the 

Sampling Design script tool (Fourcade et al. 2014) in ArcGIS 10.5 (ESRI 2017). This 

subset of point locations (n=664) was then exported to an Excel file for input to Maxent. 

Of the filtered locations, 391 were in Louisiana, 135 were in Arkansas, 100 were in 

Oklahoma, and 38 were in Texas.  

 Because the presence data came from a variety of sources with differing sampling 

efforts and methodologies, we needed to take steps to further alleviate sampling biases. 

Common sampling biases include clustering of the sample points within a species range 

(e.g., over or under sampling certain areas within species range), and variation of 

sampling intensity across the range (Fourcade et al. 2014). If unaddressed, sampling 

biases can result in misleading outcomes such as under sampled habitats being classified 

as unsuitable. Therefore, I created a bias file which defined where Maxent would select 

background points. In Maxent, background points are used to compare the available 

environmental conditions in the study area with those environmental conditions selected 

by the target species at presence points (Merow et al. 2013).  One method to mitigate bias 

is to “factor it out” by selecting background points with the same bias associated with the 

presence data (Dudik 2005, Elith 2010, Syfert et al. 2013). Bias files instruct Maxent to 

select background points from certain places based on estimated sampling effort, rather 

than randomly across the study area. To generate the bias file, I assumed that survey 
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effort was limited to counties and parishes with at least one presence. Within ArcMap, 

these counties and parishes were selected and exported as a separate shapefile and 

assigned a sampling effort value of 1 while the rest of the study area had sampling effort 

values of 0 (Young et al. 2011). Thus, the background samples were all selected from the 

counties or parishes assumed to have been sampled and therefore suffered from similar 

biases as our presence points. 

Variable Data Collection and Processing 

 I selected the initial set of environmental variables (Table 2.1) based on black 

bear ecology and habitat preferences in the region (Clark et al. 2015, Brown 2008). 

Quality black bear habitat typically consists of large tracts of mast producing forest with 

little human disturbance (Rudis and Tansey 1995, U.S. Fish and Wildlife Service 1995, 

Benson and Chamberlain 2007). The presence of agricultural fields (Benson and 

Chamberlain 2007) and streams (Brown 2008) have also been associated with increased 

black bear presence. In contrast, high proximity to roads and human development appears 

to negatively influence bear presence (Quigley 1982, Brody and Pelton 1989) and 

survival due to the increased chances of human-bear contact (Apps et al.2004). 

 To account for these habitat characteristics and factors in our model, I compiled 

the most recent, representative GIS datasets available. We used the National Land-Cover 

Database (NLCD) 2011 (Homer et al. 2015) as the basis for our land-cover variables, and 

reclassified the original 16 cover types in ArcGIS (Table 2.2) to create a mast-producing 
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forest variable consisting of the deciduous forest, woody wetland and mixed forest cover 

types (Clark et al. 2015). Due to the prevalence of pine forests in east Texas, I also 

created an evergreen forest variable. The human development variable consisted of the 

low, medium, and high development intensity (i.e. percent of impervious surfaces) land-

cover classes. Cultivated crops and open water land-cover types were also extracted 

through reclassification. I obtained protected habitat from the Protected Areas Database 

of the United States (USGS Gap Analysis Program, 2016) which includes mostly public 

lands at both federal and state levels (e.g. National Forests, Wildlife Management Areas, 

state parks). Federal and state lands were the predominant focus as these areas have 

substantial long-term protection and ownership and management stability (Gantchoff & 

Belant 2017). Some lands protected by long term lease agreements and easements are 

also included if they were documented in an agency management plan. I used 

TIGER/Line shapefiles to create the rivers and roads variables (U.S. Bureau of the 

Census 2011). I reclassified the hydrology shapefile to contain only the “Stream/River” 

feature class type (natural flowing waterways). Canals, aqueducts and other human-made 

hydrological features were excluded from the analysis. Primary and secondary roads were 

reclassified as one variable (roads).  

 Cushman et al. (2010) suggested that animals experience land-cover types (e.g., 

categorical data) as environmental gradients that vary based on the species’ perception of 

the habitat. Thus, converting categorical raster variables to some form of meaningful 

gradient at the scale the species experiences their surroundings may be more informative 
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(Cushman et al. 2010). I converted our categorical raster variables into gradient or 

continuous variables, specifically Euclidean distance to and percent of each individual 

variable. In ArcGIS, I estimated distance to our land cover variables by calculating for 

each raster cell the Euclidean distance from the center of the cell to the nearest target land 

cover class. Percent of each land cover class was calculated using the Percent Class tool 

in ArcGIS by specifying a moving window radius of 1,000 m within which the percent of 

a given land cover class was calculated and that value was assigned to the central pixel of 

the window. Additionally, we tested all input variables for high collinearity (R2 ≥ 0.70; 

Kalle et al. 2013) using the Band Collection Statistics tool in ArcGIS prior to use in the 

model. Lastly, the black bear presence shapefile and all variables were processed to have 

the same projection (NAD_83_Albers) and all variables were converted to raster format 

(ASCII) with the same cell size (30-m) and extent, as required by Maxent.  

Modeling Procedure 

 To build our models, I used Maxent 3.4.1, with cloglog (complimentary log log 

link) output, which provides a probability of presence (i.e., habitat suitability) map 

ranging from 0-1 (Philips et al. 2006, Philips and Dudik 2008, Fourcade et al. 2014). In 

machine learning algorithms such as Maxent, predictor variable covariates and their 

mathematical transformations are referred to as “features” (Elith et al. 2010). Maxent is 

capable of building models based on highly nonlinear features by fitting the predictor 

data to different feature classes (linear, hinge, quadratic, product, or threshold) (Elith et 
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al. 2010, Merow et al. 2013). By default, Maxent determines which feature classes to use 

based on the number of presences (Merow et al. 2013). In our case, we had more than 80 

presence points after spatial filtering (n=664), thus all feature classes were used (Philips 

and Dudik 2008, Elith et al. 2010).  

 Maxent utilizes regularization multipliers to select the individual features for each 

predictor that contribute most to model gain (Merow et al. 2013). It restricts model 

complexity and protects against overfitting by ensuring model constraints are not fit too 

closely and by penalizing for large feature coefficients (Philips et al. 2006, Anderson and 

Gonzalez 2011). Thus, it essentially smooths the model with larger numbers increasing 

the level of smoothing (Young et al. 2011, Merow et al. 2013). The default regularization 

setting of 1 was based on extensive model testing and performance evaluation across 

many taxonomic groups; however, species-specific tuning is recommended when 

modeling single species (Philips and Dudik 2008, Elith et al. 2010). Increasing the 

regularization relaxes model constraints and results in a more generalized prediction, 

thereby ensuring the predicted suitable habitat does not fit the observed presences too 

closely. We tested 10 different regularization parameters (e.g., 1 through 10), with default 

feature classes, and randomly selected 30 percent of our presences to set aside for model 

testing. 
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Model Selection and Evaluation 

 To evaluate and select our final model I used threshold-independent measures 

(Radosavljevic and Anderson 2014, Muscarella et. al 2015). Specifically, I used area 

under the receiver-operator curve (AUC) which measures overall predictive accuracy by 

determining the probability that a random presence location is ranked higher than a 

random background point (potentially un-sampled location; Philips et al. 2006). AUC 

scores can range from 0-1 with 1 indicating optimal discrimination and values less than 

0.5 meaning model discrimination is no better than random (Ward 2007). Models with 

AUC values above 0.75 are generally considered to be useful or “sufficiently 

discriminatory” for most modeling efforts (Elith 2002). However, because AUC is 

calculated based on the area of suitable habitat available, model comparisons using AUC 

are only valid for models run with the same species and study area (Lobo et al. 2008, 

Radosavljevic and Anderson 2014). I selected the final model based on maximum test 

AUC (AUC TEST). Although AUC is a widely used measure of model fit in the Maxent 

literature (Philips et al. 2006, Merow et al. 2013, Elith 2002), there is a lack of consensus 

regarding the best way to evaluate ecological niche models, including whether AUC is 

appropriate as a stand-alone measure (Lobo et al. 2008, Warren & Seifert 2011). 

Therefore, I utilized the AUC differential (AUC DIFF) which is the difference in test and 

train AUC (AUC TRAIN) scores. This provides another evaluation method that has been 

used in conjunction with AUC TEST, to aid in evaluating potential over fitting of the 
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models (Philips 2006, Ward 2007, Radosavljevic and Anderson 2014, Muscarella et al. 

2015). 

 Calculating AUC DIFF provides a threshold-independent measure of overfitting 

(Warren and Seifert 2011, Radosavljevic and Anderson 2014). Models with high AUC 

TRAIN but low AUC TEST are likely over fit to the training data; therefore, minimizing that 

difference lessens the risk of an over fit model (Warren and Seifert 2011). I followed the 

model selection protocol used in Radosavljevic and Anderson (2014) to identify the final 

model. Specifically, I considered the best models to be those which 1) minimized AUC 

DIFF; and 2) maintained a high AUC TEST score (Radosavljevic and Anderson 2014). Once 

the final model settings were selected, I performed 4 iterations of the model and used the 

average of those runs as our final map. Standard deviation of AUC TEST was calculated to 

provide an indication of how consistent the model performance was over multiple runs.  

Model Analysis 

 To aid in model interpretation and analysis I implemented thresholding rules 

which generate binary prediction maps (i.e. suitable or unsuitable). Pixels greater than or 

equal to the threshold are considered suitable. I used the 10th percentile training threshold 

available in Maxent which utilizes the suitability threshold of the training presence record 

below which 10 percent of presence records suitability’s fall. This results in a more 

conservative predictive map by excluding the lowest 10% of predicted presence 

suitability scores from the binary predictive map.  I also compared my model predictions 
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to the east Texas recovery units to determine what percentage of the recovery unit pixels 

identified by Kaminski et al. (2013, 2014) were also predicted as suitable pixels in my 

model. To better understand which variables were most important to the model I utilized 

the permutation importance percentages provided in the Maxent output files. Permutation 

importance is calculated by randomly permuting the values for each variable on training 

and background data and measuring the drop in AUCTRAIN. A larger drop in AUCTRAIN 

indicates that the variable is particularly important to the model (Young et al. 2011). The 

permutation importance values are then normalized to percentages. I also analyzed the 

variable response curves and various jackknife tests of variable importance graphs 

provided in the Maxent output files. The jackknife tests systematically exclude each 

variable and runs a model with the remaining variables. They also create a model with 

each variable in isolation, thus providing an additional measure of variable importance.  

To identify potential dispersal zones from Louisiana, Oklahoma and Arkansas to 

east Texas, I created buffers of 3,500m (approx. half the average female black bear home 

range size) around the 10th percentile threshold habitat suitability patches and selected 

zones with high suitable habitat connectivity between source populations and the Texas 

border. Within each identified movement zone, I ran class level analyses in 

FRAGSTATS (McGarigal et al. 2012) to quantify the proximity of suitable patches to 

one another and the level of connectivity in each zone. Specifically, I focused on the 

mean proximity index (PROX) and connectivity index (CONNECT) metrics. PROX 

measures the average level of isolation and fragmentation of a specific patch type by 
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summing the area of the patch type and dividing it by the nearest edge-to-edge distance 

between the focal patch and patches of the same type within a specified search radius 

(McGarigal et al. 2012). In this case, patch type was all “suitable habitat” cells from the 

10th percentile threshold map and the search radius was 3,500 m. PROX is a unitless 

index, with PROX=0 for patches with no other patches falling within the search radius 

and increasing as patches become closer and less fragmented (McGarigal et al. 2012). 

CONNECT calculates a percentage representing the degree of connectivity 

among specified patch types (McGarigal et al. 2012). It is calculated by summing the 

number of functional connections between all patches of a specific type divided by the 

total number of possible connections between all patches of the same type, multiplied by 

100 to convert to a percentage (McGarigal et al. 2012). To be considered functionally 

connected the patches must fall within a specified distance of one another, in this case 

3,500 meters. Connectivity values range from 0 to 100 with higher percentages indicating 

a higher degree of connectivity (McGarigal et al. 2012). 

To gain a deeper understanding of the dispersal and functional connectivity 

potential in the study area, I identified “stepping-stone” patches within each zone. 

Suitable patches greater than or equal to 12 km2 were selected and classified within 

ArcGIS as stepping-stone patches which may provide short-term resting and refuge areas 

for bears during dispersal events while also providing long-term habitat for several 

dispersing individuals (Almasiah et al. 2016). (Almasiah et al. 2016). Lastly, buffers of 
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3,500 m were generated around each of these patch types to determine the level of 

functional connectivity in each zone.  

 In addition, I was interested in examining how future urbanization and human 

development may impact potentially important bear habitat. Therefore, I obtained raster 

layers from the SLEUTH Urban Growth Model (Southeast Regional Assessment 

Project). This model predicts urbanization risk for up to 100 years into the future based 

on specific urban growth rules (e.g., spontaneous growth, new spreading urban centers, 

edge-growth and road-influenced growth). I overlaid these maps with our habitat 

suitability map and extracted the cells which overlapped with our suitable habitat 

predictions to identify areas which may be at risk of future human development and 

urbanization.  
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RESULTS 

 

Model Selection and Variable Analysis 

Based on the evaluation criteria, the model with a regularization parameter of 8 

was selected as our final model (Fig. 2.2). This model had the lowest AUC DIFF (0.01) 

(Fig. 2.3), indicating low overfitting, and maintained an acceptable average test (0.788) 

and training (0.802) AUC values (Fig.2.4) implying good overall model performance 

(Fig.2.5). The standard deviation of AUCTEST over four replicates of the model was 0.013 

indicating the predictions were relatively consistent. None of the variables was highly 

correlated (R2≤.70), thus all 16 predictor variables were input and retained by the model. 

The percentage of mast producing forest variable contributed the most to the model 

according to permutation importance (42.9%), followed by percentage of cultivated crops 

(32.8%), and percentage of protected lands (9.2%; Table 2.3). The jackknife test of 

variable importance on regularized training gain revealed that percentage of mast 

producing forest increased model gain the most when used alone, followed by distance to 

and percent of protected areas and percent of evergreen forest (Fig.2.6). Percent mast 

producing forest also decreased model gain the most when it was omitted, indicating it 

had the most information not present in the other variables. The same jackknife test using 

AUC on test data rather than model gain revealed that distance to protected areas, 

distance to and percent of mast producing forest areas increased AUCTEST the most when 

used in isolation (Fig. 2.7). However, percentage of protected areas and percentage of 
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mast producing forest decreased AUCTEST equally when individually excluded. The 

response curves (Fig. 2.8) generated by Maxent show how the prediction changes when 

the model is generated using only individual variables. The response curves show that 

predicted suitability for percent cultivated crops follows a bell curve and begins to 

decline at 50% cultivated crops. Suitability increases as percentage of mast producing 

forest and protected areas increases. 

 Anthropogenic variables (e.g. percent of and distance to roads and human 

development) contributed about 3 percent (2.8%) to AUCTRAIN gain of the model (sum of 

individual variables permutation importance). The most important anthropogenic variable 

alone was percent human development (2.4% contribution) followed by distance to 

human development (0.4% contribution). Analysis of these variable response curves 

show that predicted suitability is low near human development, and then increases 

sharply at 2,000 m before leveling out. Suitability decreased with increased percentage of 

human development, decreased with increased percentage of roads and was relatively 

unaffected by distance to roads. Analysis of the SLEUTH model revealed that 4.3% of 

the suitable cells predicted in my 10th percentile model will be at risk of urbanization by 

2100 (Fig.2.9). 

Habitat Suitability and Movement Zones 

 The 10th percentile suitability threshold of the model was 0.23, therefore, only 

suitability scores above 0.23 were mapped in the binary prediction. This means 90% of 
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our presences had a suitability score greater than 0.23. This binary map predicted 43.7% 

percent of the pixels in the study area as suitable (Fig. 2.10). In addition, 53.7 % percent 

of the pixels identified as potential recovery units by Kaminski et al. (2013, 2014) were 

considered suitable in the model (Fig. 2.11). Based on proportion of suitable habitat and 

location, I identified three zones with the potential to provide habitat linkages for black 

bear dispersal extending between known bear locations in neighboring states and the 

Texas border (Fig. 2.12). Zone 1 encompasses 16,142 km 2 between breeding populations 

in south-central Louisiana and the Lower Sabine recovery units lying along the southeast 

Texas border. Although the majority of Zone 1 is unprotected, my model predicted large 

areas of suitable habitat within it that bears could use to disperse, thus this region was 

delineated as a movement zone (Fig. 2.13). Zone 2 was derived based on the location of 

the Repatriated and Upper Atchafalaya River Basin black bear populations and the Upper 

Sabine River recovery units in east Texas (Fig. 2.14). This zone, covering 32,125 km 2, 

was chosen in part because of the presence of the Kisatchie National Forest and several 

state wildlife management areas which are likely to be important refuges for dispersing 

individuals. Zone 3 lies between the breeding population in southeast Oklahoma and 

Sulphur River recovery units located along the Sulphur River in Texas (Fig. 2.15). Aside 

from having a high proportion of suitable predicted habitat, this zone was also selected to 

include portions of the Ouachita National Forest which provides an important connection 

to bear populations in Arkansas.  
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 Of these zones, Zone 1 had the highest CONNECT score at 0.99 followed by 

Zone 2 (0.44) and Zone 3 (0.38) (Table 2.4). Zone 1 also had the highest PROX score 

(224,367.5) while Zone 3 had the second highest score (41,400.6) followed by Zone 2 

(24,101.5) (Table 2.4). I also calculated mean suitable patch size for each zone. Zone 1 

had the largest mean patch size (3.23 km2) while Zone 2 had the second largest (2.68 

km2) and Zone 3 had the smallest (2.35 km2) (Table 2.4). The number of stepping-stone 

patches were also aggregated by zone (Table 2.4). Zone 2 had the most stepping-stone 

patches (58), while Zone 1 had the fewest stepping stone patches (17) of the three zones.  
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DISCUSSION 

 

 Current literature on black bear habitat suitability and connectivity in the south-

central United States can be grouped into two categories; small scale, regional habitat 

suitability studies (Kaminski et al. 2013, 2014) and broad population connectivity 

analyses (Clark et al. 2015, Gantchoff and Belant 2017). Though informative, a 

combination of landscape-scale habitat suitability and connectivity analysis techniques is 

needed to adequately assess where bear habitat exists at a landscape level and how bears 

may use said habitat for dispersal and re-colonization. This study presents phase one of 

the first multistate, landscape scale habitat suitability and connectivity analysis for 

Louisiana and American black bears in the region. 

 The final Maxent model prediction of suitable habitat (HSI≥ 0.76) largely 

coincided with known black bear distributions in Louisiana, Oklahoma and Arkansas (see 

Fig. 2.11, Fig. 2.16). The variable importance outputs produced by Maxent generally 

reflected established facets of bear ecology and biology associated with habitat suitability 

such as the importance of mast producing forests, cultivated crops and protected areas 

(Black Bear Conservation Coalition 2015, Benson and Chamberlain 2006, Weaver 1999, 

USFWS 1995). The importance of cropland and forested areas may also be influenced by 

the majority of our presences coming from Louisiana populations which occurred 

predominantly within a matrix of agriculture and croplands. Despite this potential effect, 
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it was determined that the predictions generated by Maxent were still representative of 

bear habitat due to the generalist nature of bears and the documented use of such habitats 

in the literature. However, the distance to and percent of roads and rivers variables 

contributed very little to the models’ AUC Train score and had very little influence on 

suitability even though these variables are usually reported as strong predictors of black 

bear habitat suitability (Clark et al. 2015, Simek et al. 2015, Black Bear Conservation 

Coalition 2015). This is likely an effect of the spatial resolution of the variables used in 

this model. The relatively coarse resolution (30-m x 30-m cells) used in the model may 

not be ideal for representing small linear features, such as roads and streams. Such large 

grid cells cause linear features to be aggregated and values averaged across the cell, 

meaning that the spatial accuracy of these features is reduced (Vuilleumier and Metzger 

2006). Thus, the accuracy of the species’ responses to these variables is also affected. 

Future research should consider multi-scale HSI modeling of the region to determine how 

scale influences suitable habitat predictions.  

 It is also plausible that although roads may increase mortality risk for bears they 

are not actively avoiding them. Indeed, black bears in the Ocala National Forest in 

Florida exhibited frequent road crossings, most of which were successful (Cunningham et 

al. 2001). Furthermore, smaller, low traffic, residential and ATV roads exhibit positive 

relationships with black bear occurrences possibly by allowing for easier movement 

(Drasher 2017). Thus, from a black bear occurrence perspective, roads may not 

necessarily be a negative factor.   
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  Despite differences in scale, variables and methodology the model was also able 

to confirm the presence of suitable bear habitat within the black bear recovery units 

previously identified in east Texas (Kaminski et al. 2013, 2014). Although female bears 

are typically philopatric, male bears will disperse up to 218 km from natal home ranges to 

establish their own ranges (Rodgers 1987, Barker et al. 2005). Therefore, identification 

and affirmation of suitable, unoccupied bear habitat (i.e. east Texas recovery units) 

within dispersal distance of existing populations is pivotal for providing new areas for 

young males to establish home ranges. However, in terms of re-colonization, male-biased 

dispersal can become problematic by limiting mating options and reducing the odds of 

establishing a breeding population. Indeed, no confirmed sightings of females with cubs 

have been documented in east Texas suggesting that most bear sightings are likely 

transient males dispersing from expanding populations in neighboring states (Barker et al. 

2005).  

 Stepping-stone populations have been shown to facilitate both female and male 

dispersal by allowing population establishment or resting points within functionally 

connected patches of suitable habitat (Almasieh et al. 2016, Clark et al. 2015). The three 

movement zones, habitat patches, and buffers delineated in this study allow for a deeper 

understanding of dispersal and functional connectivity potential across the landscape. 

Zone 1 extends east from the southeastern Texas-Louisiana border to Lafayette and St. 

Landry parishes in Louisiana (Fig. 2.13). Although this region achieved the highest 

CONNECT and PROX scores of the three zones, it was also the smallest with the least 
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number of suitable patches. The low number of suitable patches available directly 

influences the CONNECT score calculations by reducing the divisor (potential 

connections), thus resulting in a higher number. Similarly, this zone also had the largest 

mean patch size, causing the PROX score to be larger due to the contiguity of the 

patches. Of the suitable patches in the zone, 17 were classified as stepping stone patches 

(Fig. 2.17). These stepping stone habitats create functional habitat linkages from known 

bear locations in Louisiana to the Texas border (Fig. 2.17). The main linkage connecting 

the eastern and western portions of the zone is dependent on two stepping stone patches 

(patch 7 and 8). These patches shorten the travel distance between larger patches and may 

provide temporary refuge to dispersing bears, thereby providing them a reasonable 

chance of reaching east Texas. However, pockets of high human development occurring 

within the zone, such as Lake Charles (Calcasieu Parish), may impede bear movement. In 

fact, Calcasieu Parish is one of the last parishes bears must cross through in this Zone to 

get to the Texas border, yet it contains relatively few suitable habitat patches (Fig. 2.17). 

Thus, prioritizing protection of existing suitable habitat within Calcasieu Parish, 

particularly the stepping stone patches identified in this study, as well as educating the 

public about human-bear coexistence may be necessary to facilitate bear dispersal to the 

border.  

 Zone 2, situated north of Zone 1, extends northwest from upper Avoyelles, central 

Concordia and southwestern Tensas parishes into Shelby, Panola, Harrison, Marion and 

Cass counties in east Texas. Zone 2, the largest of the three zones, had the second highest 
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CONNECT score (44%) and the lowest PROX score which can be attributed to the 

relative isolation of patches across this zone. Nonetheless, functional connectivity exists 

amongst the 60 stepping stone patches identified in the zone. As in Zone 1, several of the 

patches were essential to creating functionally connected habitat linkages from Louisiana 

to east Texas and should be considered high conservation priorities (Fig. 2.18). Within 

this zone, many of the stepping stone patches also fell within protected areas such as the 

Kisatchie National Forest and Lake Ophelia NWR (Fig 2.18). Due to the stability in 

ownership and management, these protected areas are particularly valuable to long-term 

black bear habitat suitability and connectivity. National Wildlife Refuges are required to 

develop Comprehensive Conservation Plans (CCP) every 15 years and those within 

Louisiana black bear range, such as Lake Ophelia NWR, specifically focus on black bear 

management (USFWS 2015).  Additionally, these protected areas may provide refuge 

from busy urban areas (e.g., Alexandria, Natchitoches and Shreveport) as bears move 

west from the Repatriated and Tensas River Basin populations in Louisiana towards 

Texas. However, Interstate 49, which runs diagonally across Zone 2, may be problematic 

for bears attempting to disperse west (Fig. 2.18). Determining where bears are likely to 

attempt crossings and installing tunnels or overpasses may help to mitigate the problem 

while facilitating recolonization (Black Bear Conservation Coalition 2015).   

 Zone 3 focuses on the Texas-Oklahoma and Oklahoma-Arkansas border. It 

encompasses most of Bowie, Red River and Lamar counties in northern Texas and 

extends up to Pushmataha, McCurtain and Atoka counties in Oklahoma. In the east it 
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extends into Polk, Sevier and Little River counties in Arkansas. Although Zone 3 had the 

highest number of suitable habitat patches it had the lowest CONNECT score (38%). 

This indicates that the number of functional connections amongst the patches was small 

in comparison to the total number of potential connections. However, the buffer analyses 

of the 58 stepping stone patches show strong functional connectivity (Fig. 2.19). This 

discrepancy may be due to the prevalence of small (< 12 km2) habitat patches inflating 

the number of potential connections (i.e. the divisor) in the CONNECT calculations. Of 

the three zones, this zone had the second most stepping-stone patches and was the only 

zone to achieve functional connectivity using patches greater than or equal to 50 km2. As 

bears continue to expand from populations in Arkansas and Oklahoma, the availability of 

these stepping-stone patches will be integral in facilitating female dispersal and 

population establishment in east Texas. In fact, the concentration of class I bear sightings 

recorded in Red River and Lamar counties suggests that bears are already utilizing this 

zone for movement.  

 Although black bears are adaptable, further habitat loss, fragmentation and 

development would undoubtedly impact their ability to disperse and recolonize east 

Texas. Analysis of the overlap between the SLEUTH model and the Maxent model 

revealed that 4.3% of the suitable cells predicted in the 10th percentile model will be at 

risk of urbanization by 2100 (Fig.2.9). Although the majority of at risk habitat was 

predicted as unsuitable by the model, the increased human activity predicted around 

suitable regions may negatively affect the quality of those habitats in the future. 
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Specifically, Tensas Parish, which contains the Tensas River Basin population of black 

bears, is predicted to see several pockets of new and expanding development throughout 

the Parish. Such development in this region would reduce the quantity and quality of 

existing suitable bear habitat in Louisiana. For successful re-colonization of east Texas to 

occur, the current bear populations must be vigilantly protected against future 

fragmentation, degradation and decline. Encouragingly, Oklahoma, southwest Arkansas 

and northeast Texas appear to have a relatively low risk of development according to the 

SLEUTH model.  

  The results of this study demonstrate that substantial suitable habitat does exist 

between the east Texas recovery units and source populations in Louisiana, Oklahoma 

and Arkansas. The identification of stepping-stone patches based on the HSI map offers 

managers a concrete tool for understanding which areas hold potential for regional 

connectivity and where conservation and public relations efforts need to be focused. 

Garnering public support in areas with suitable habitat through education and coexistence 

strategies may facilitate natural re-colonization by helping to ensure safe passage for 

dispersing bears. The next phase of this research will identify the most likely paths bears 

will take to reach east Texas based on the continuous habitat suitability map created in 

this study as well as provide a timeline estimating how long the re-colonization process 

may take. As humans continue to expand and develop natural lands in black bear 

territory, it is increasingly important to identify and protect essential habitats and bear 

populations from further fragmentation and isolation. The findings in this study 
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contribute to that end by identifying areas of conservation interest and providing a model 

of suitable habitat which can be utilized to improve connectivity and increase the 

probability of restoring the American and Louisiana black bear to a portion of their 

historic range.  
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FIGURES 

Figure 2.1. Extent of study area used for modeling black bear movement corridors in 

Arkansas, Louisiana, Oklahoma and Texas. The study area is bounded by the recovery 

units in east Texas and known black bear locations in Louisiana, Arkansas and 

Oklahoma. 
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Figure 2.2. Continuous black bear habitat suitability map generated by Maxent for the 

area between source populations in Louisiana, Arkansas and Oklahoma, and recovery 

units in east Texas. 
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Figure 2.3. Comparison of model-overfitting using the Area Under the Receiver 

Operating Curve differential (AUCDIFF) evaluation criteria across ten Maxent models 

built with different regularization parameters. Low AUCDIFF indicates less over-fitting.  
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Figure 2.4. Comparison of black bear habitat suitability model performance using the 

Area Under the Receiver Operating Curve (AUC) evaluation criteria across 10 Maxent 

models built with different regularization parameters. A higher AUC indicates better 

predictive accuracy and discrimination.  
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Figure 2.5. Evaluation of the final black bear habitat suitability Maxent model 

performance using Area Under the Receiver Operating Curve (AUC). AUC of the final 

model (shown in red) is above the random prediction line (shown in black) indicating the 

model performed better than random. False positive rate (specificity) is shown on the X- 

axis and True positive rate (sensitivity) is shown on the Y-axis. 
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Figure 2.6. A jackknife test of variable importance to mean regularized training gain of 

the final continuous black bear habitat suitability model generated by Maxent. Percentage 

of mast producing forest increased model gain the most when used alone, followed by 

distance to and percent of protected areas and percent of evergreen forest. Percent mast 

producing forest decreased model gain the most when it was omitted, indicating it had the 

most information not present in the other variables. 
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Figure 2.7. A jackknife test of variable importance on mean test Area Under the Receiver 

Operating Curve (AUCTEST) score of the final continuous habitat suitability model 

generated by Maxent. Distance to protected areas, distance to and percent of mast 

producing forest areas increased AUCTEST the most when used alone. Percentage of 

protected areas and percentage of mast producing forest decreased AUCTEST equally 

when individually excluded.  
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Figure 2.8. Variable response curves of the final continuous black bear habitat suitability 

model generated by Maxent. Variable response curves indicate the dependence of 

predicted suitability on each variable.  
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Figure 2.9. Proportion of suitable habitat (shown in yellow) predicted by the 10th 

percentile threshold Maxent model which is at risk of urbanization by 2100 according to 

the SLEUTH Urban Growth Model.  
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Figure 2.10. Proportion of suitable black bear habitat (shown in red) predicted by the 10th 

percentile threshold model generated by Maxent from bear presence locations in 

Louisiana, Oklahoma, Arkansas and Texas.  
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Figure 2.11. Proportion of black bear recovery zones in east Texas (shown in red) that 

were also identified as suitable habitat in the 10th percentile threshold habitat suitability 

model generated by Maxent from bear presence locations in Louisiana, Oklahoma, 

Arkansas and Texas.  
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Figure 2.12. Delineation of three black bear movement zones (shown in blue, green and 

black) identified from the 10th percentile habitat suitability map generated by Maxent. 

These zones extend from source populations in LA, AR, and OK to east Texas recovery 

units. 
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Figure 2.13. Delineation of black bear movement Zone 1, identified from the 10th 

percentile habitat suitability map generated by Maxent. Zone 1 extends from the Lower 

Sabine Recovery unit in east Texas to known black bear presences in south-central 

Louisiana.  
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Figure 2.14. Delineation of black bear movement Zone 2, identified from the 10th 

percentile habitat suitability map generated by Maxent. Zone 2 extends from the Upper 

Sabine Recovery unit in east Texas to known black bear presences in south-central 

Louisiana. 
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Figure 2.15. Delineation of black bear movement Zone 3, identified from the 10th 

percentile habitat suitability map generated by Maxent. Zone 3 extends from the Sulphur 

River recovery unit in east Texas to known black bear presences in southern Oklahoma. 

 

 



 70 

Figure 2.16. Identification of highly suitable habitat predicted by the final continuous 

habitat suitability map generated by Maxent which overlaps with known black bear 

breeding populations in Louisiana.  
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Figure 2.17. Functional connectivity buffer zones, stepping stone patches identified in 

movement zone 1 based on the 10th percentile black bear habitat suitability map 

generated by Maxent. The positional importance and possible hindrance of Calcasieu 

Parish (shown in dark blue) and Lake Charles for bears dispersing into east Texas is also 

depicted. 
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Figure 2.18. Functional connectivity buffer zones, stepping stone patches identified in 

movement zone 2 based on the 10th percentile black bear habitat suitability map 

generated by Maxent. Zone 2 contained a prevalence of stepping-stone patches within the 

Kisatchie National Forest (shown in black) and Lake Ophelia NWR (shown in red) as 

well as I-49 which may act as a barrier to dispersal through the zone.  
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Figure 2.19. Functional connectivity buffer zones, stepping stone patches identified in 

movement zone 3 based on the 10th percentile black bear habitat suitability map 

generated by Maxent.  

 

 

 



 74 

 

TABLES 

 

Table 2.1. Variables used to develop black bear habitat suitability models in Maxent. All 

variables were based on 30-m cell sizes. 

Variable (units) Source Procedure 

Distance to mast-producing 

forest (m) 

2011 National Land Cover 

Database, combined 

woody wetlands, 

deciduous forest, and 

mixed forest  

Calculated Euclidean 

distance to nearest mas-

producing forest  

Percent of mast-producing forest 

(%) 

2011 National Land Cover 

Database, combined 

woody wetlands, 

deciduous forest, and 

mixed forest 

Neighborhood analysis 

in 1,000 m radius focal 

area 

Distance to human development 

(m) 

2011 National Land Cover 

Database, combined high, 

medium and low 

development 

Calculated Euclidean 

distance to nearest 

human development 

Percent of human development 

(%) 

2011 National Land Cover 

Database, combined high, 

medium and low 

development 

Neighborhood analysis 

in 1,000 m radius focal 

area 

Distance to open water (m) 2011 National Land Cover 

Database 

Calculated Euclidean 

distance to nearest open 

water 

Percent of open water (%) 2011 National Land Cover 

Database 

Neighborhood analysis 

in 1,000 m radius focal 

area 

Distance to crops (m) 2011 National Land Cover 

Database 

Calculated Euclidean 

distance to nearest 

cropland 
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Percent of crops (%) 2011 National Land Cover 

Database 

Neighborhood analysis 

in 1,000 m radius focal 

area 

Distance to evergreen forest (m) 2011 National Land Cover 

Database 

Calculated Euclidean 

distance to nearest 

evergreen forest 

Percent of evergreen forest (%) 2011 National Land Cover 

Database 

Neighborhood analysis 

in 1,000 m radius focal 

area 

Distance to protected areas (m) 2016 Protected Areas of 

the United States Database 

Calculated Euclidean 

distance to nearest 

protected area 

Percent of protected areas (%) 2016 Protected Areas of 

the United States Database 

Neighborhood analysis 

in 1,000 m radius focal 

area 

Distance to roads (m) 2016 TIGER/Line Data Calculated Euclidean 

distance to nearest road 

Percent of roads (%) 2016 TIGER/Line Data Neighborhood analysis 

in 1,000 m radius focal 

area 

Distance to rivers (m) 2016 TIGER/Line Data Calculated Euclidean 

distance to nearest river 

Percent of rivers (%) 2016 TIGER/Line Data Neighborhood analysis 

in 1,000 m radius focal 

area 
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Table 2.2. NLCD 2011 land-cover classifications and descriptions of each land-cover 

class. 

NLCD 2011 Land-cover 

Classifications 

Description 

Open Water Areas of open water, generally with less than 25% 

cover of vegetation or soil. 

Perennial Ice/Snow Areas characterized by a perennial cover of ice 

and/or snow, generally greater than 25% of total 

cover. 

Developed, Open Space Areas with a mixture of some constructed materials, 

but mostly vegetation in the form of lawn grasses. 

Impervious surfaces account for less than 20% of 

total cover. 

Developed, Low Intensity Areas with a mixture of constructed materials and 

vegetation. Impervious surfaces account for 20% to 

49% percent of total cover. These areas most 

commonly include single-family housing units. 

Developed, Medium Intensity Areas with a mixture of constructed materials and 

vegetation. Impervious surfaces account for 50% to 

79% of the total cover. 

Developed, High Intensity Highly developed areas where people reside or work 

in high numbers. Impervious surfaces account for 

80% to 100% of the total cover. 

Barren Land Areas of bedrock, desert pavement, scarps, talus, 

slides, volcanic material, glacial debris, sand dunes, 

strip mines, gravel pits and other accumulations of 

earthen material. Generally, vegetation accounts for 

less than 15% of total cover. 

Deciduous Forest Areas dominated by trees generally greater than 5 

meters tall. More than 75% of the tree species shed 

foliage in response to seasonal change. 
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Evergreen Forest Areas dominated by trees generally greater than 5 

meters tall. More than 75% of the tree species 

maintain their leaves all year.  

Mixed Forest Areas dominated by trees generally greater than 5 

meters tall, and greater than 20% of total vegetation 

cover. Neither deciduous nor evergreen species are 

greater than 75% of total tree cover. 

Shrub/Scrub Areas dominated by shrubs; less than 5 meters tall 

with shrub canopy typically greater than 20% of 

total vegetation. 

Grassland/Herbaceous Areas dominated by gramanoid or herbaceous 

vegetation, generally greater than 80% of total 

vegetation. 

Pasture/Hay Pasture/hay vegetation accounts for greater than 

20% of total vegetation. 

Cultivated Crops Crop vegetation accounts for greater than 20% of 

total vegetation. This class also includes all land 

being actively tilled. 

Woody Wetlands Areas where forest or shrubland vegetation accounts 

for greater than 20% of vegetative cover and the soil 

or substrate is periodically saturated with or covered 

with water. 

Emergent Herbaceous 

Wetlands 

Areas where perennial herbaceous vegetation 

accounts for greater than 80% of vegetative cover 

and the soil or substrate is periodically saturated 

with or covered with water. 
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Table 2.3. Variable permutation importance to the final continuous black bear habitat 

suitability model generated by Maxent. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Variable Permutation Importance 

Percent mast producing forest 42.9 

Percent cultivated crops 32.8 

Percent protected areas 9.2 

Percent evergreen forest 6.6 

Distance to mast producing forest 1.3 

Percent human development 2.4 

Distance to open water 0 

Percent rivers 1.4 

Distance to evergreen forest 0.6 

Distance to cultivated crops 1.4 

Percent open water 0.5 

Distance to protected areas 0.3 

Distance to human development 0.4 

Distance to rivers 0.2 

Percent roads 0 

Distance to roads 0 
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