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The article introduces an explicit way of locating the arc midpoint in the Cartesian plane, which is 

consistent for both x- and y-coordinates and is technically accessible for students starting as young as 

fifteen. The authors give the proof of the statement using two trigonometry identities, and discuss some 

materials for innovative lessons on the arc midpoint computation that could enrich and enhance 

curriculum. 

Introduction 

Circumference is one of the most nearly perfect and most important lines in mathematics 

and science. Its segments, arcs, and their midpoints occur in thousands of theoretic and real

world problems. Along with the linear midpoint formula, the arc midpoint is beneficial for 

students' mathematics learning in general, and for their performance in coordinate geometry in 

particular. The logic conjunction "iff," used in the arc midpoint statement, means "if and only 

if." 

Arc Midpoint Computation 

Let the origin-centered arc of radius r in the Cartesian plane ( see Figure 1) have the 

endpoints A and B with x-coordinates a, b respectively, and midpoint M with x-coordinate µ. 

Then, 

2µ= ±~(r+a)(r+b )±~(r-a)(r-b) , (1) 

where the first radical has "-" iff the arc makes a negative x-intercept, and the second radical 

has"+" iff the arc makes a positive x-intercept. 
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Figure I. 

The Same Relationship Holds for y-Values - Proof of this statement is shown below. Note that 

details of the proof arc accessible only for strong mathematics students who are learning 

trigonometry at the advanced level. Consider additional propositions that are used in the main 

proof. 

Two Identities 

For any p,q E[-1,1] 

sin-1 p + sin-1 q = 2sin-1 A, 

cos-1 p + cos-' q = 2cos-1 A, 

where 2A = ~(1 + p )(1 + q)-~(1- p )(I-q). 

(2) 

(3) 

To prove identity (3), we denote p = cos a, q = cos /J, and r = a+ /J, where a, /J, r E [ 0, tr]. 
2 

Then, its left side of identity (3) is simplified to cos-1 (cos a)+ cos-1 (cos /J)= a+ fJ = 2y. 

Since a, /J E [ 0, tr], then cos a ~ 0 and cos /J ~ 0. Using this, let us simplify its right side: 
2 2 

2cos-' A= 2cos-' ½(~(1 + cos a )(1 + cos/J)- ~(1- cos a )(1-cos/J) }= 

2cos-' (cos a cos /3 -sin a sin /J) = 2cos-' (cos a+ /J) = 2y, 
2 2 2 2 2 

and identity (3) is proved. Identity (2) is a simple corollary of identity (3), indeed: 
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sin-1 p + sin-1 q =; -cos-I p +; -cos- I q = .1r-(cos-1 p + cos-1 q )= 

Jr- 2cos-1 A= 2(; - cos-1 A)= 2sin I A, 

and identity (2) is also proved. 

Arc Midpoint Computation Proof 

221 

Denote p = a Ir, q = b Ir, and m =µIr. Consider angles a= cos-1 p, /3= cos-1 q, 

and r = cos-1 m that radii OA, OB, and OM form with positive part ofx-axes, respectively. 

There are four cases. 

Case 1. The arc does not have x-intercepts. Then, r = (a+ JJ)! 2 , and therefore 

m =cosy= cos½(cos-1 p+cos-1 q). Using identity (3), we get 

m =A= ½(~(1+ p ){l+q)-~(1- p )(1-q)) Hence, 2µ= ~(r+a)(r+b )-~(r-a)(r-b), 

and Case 1 is proved. 

Case 2. The arc has a positive x-intercept, but does not have a negative one. Then, r = la - fil I 2, 

and therefore m = cos½(cos-1 p- cos-1 q). In addition, using identities (2) and (3), it is easy to 

see that lcos-1 p-cos-1 ql=2cos-1 ½(~(l+p)(l+q)+~(1-p)(l-q)) also holds for any 

p,q E[-1,1]. From here, we get m = ½(~(1 + p ){1 +q)+~(l- p )(1-q)) Hence, 

2µ= ~(r+a )(r+b )+~(r-a )(r-b), and Case 2 is also proved. 

Case 3. The arc has a negative x-intercept, but does not have a positive one. This part of the 

proof is similar to Case 2 with r = JT-.!la-fil. 
2 
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Case 4. The arc has two x-intercepts. This part of the proof is similar to Case 1 with 
1 r = Jr--(a+ P). 
2 

Proof for y-values can be achieved similarly using identity (2) or otherwise. Q.E.D. 

Thoughts and Materials for Lessons 

The first lesson on the new topic could begin from recalling the midpoint formula and 

illustrating with a quick example. Then, an analogy with the arc midpoint computation and its 

diagram can be made. The diagram is an important part of the computation. After the theory of 

computation is introduced, and before considering numerical examples, it is useful to have 

preliminary exercises to help students understand the logic of two"± decisions." Through such 

exercises, the teacher ensures that students use the conjunction iff properly. Several diagrams, 

representing different locations of the arcs, may be shown on the board, and students could be 

asked to determine signs of both radicals in the formula ( 1) based on the particular location of the 

arc. For example, for the arc shown in Figure 1, the first radical has"+" because an arc does not 

have a negative x-intercept, and the second radical has"+" because an arc does have a positive x

intercept. Or, for the arc shown in Figure 2, the first radical has " - " because an arc does have a 

negative x-intercept, and the second radical has " - " because an arc does not have a positive x

intercept. When preliminary "± practice" is finished, numerical examples could be discussed. In 

the following examples, we provide a selection of sample problems where the exact answer is to 

be found without using a calculator. 

Example A: An origin-centered arc of radius 50, located as shown in Figure 1, has the ends at 

x = 14 and x = 25 . Find the x-coordinate of its midpoint. 

Example B: An arc, with radius 40 and the center at origin, is located above the x-axis. If it 

begins and ends at x = -24 and x = 9, what is the x-value of its midpoint? 

Example C: An arc has its center at (0,0) and radius 82. It starts at y = 18 in quadrant II, 

passes through quadrant III and ends in quadrant IV at y = -1. What is the y-value of the arc's 

midpoint? 
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Solution A: We are given r = 50 , a = 14, b = 25 . As previously discussed, in this case both 

radicals in the arc midpoint formula ( 1) have "+ " hence, 

2µ = J(5o + 14 )(5o + 25)+ J(50-I4 )(5o- 25) = 40./3 + 30, 

and 20./3 + 15 is the answer. 

Solution B: We are given r = 40, a= -24, b = 9. In this case, the first radical has"+," since 

the arc does not have a negative x-intercept, and the second radical has " - ," since the arc does 

not have a positive x-intercept. Using formula ( 1 ), we get 

2µ = J(40-24){40+ 9)- J(40+ 24)(40-9) = 28-851 , 

and 14- 45! is the answer. 

Solution C: r = 82, a= 18, b = -I are given. In this case, the first radical is"-," since the arc 

does have a negative y-intercept, and the second radical has " - ," since the arc does not have a 

positive y-intercept. Hence, 

2µ = -J(82 + 18)(82-1)-J(82-18)(82 + 1) = -90- sm , 
and -45 - 4Jsj is the answer. 

Applications of the arc midpoint computation to the real-world problems could be 

planned for the next lesson. In such problems, both exact and rounded answers could be 

requested, and a calculator should be used for evaluating radicals. 

Problem 

A water tank (T), a grain bin (B), and a storage unit (S) are located on the circle (see 

Figure 2). T is 0.6 km away from the center C and equidistant from S and B. If S is located 0.4 

km south of center C and B is located 0.2 km north of C, how far north of C is T located? 
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Figure 2. 

Solution 

Introduce the coordinate system with origin at C, x-axis pointed east and y-axis pointed 

north. Note that T is a midpoint of the arc STB. Using y-coordinates and 1 unit= 100 m, we 

have a = -4, a = 2, r = 6. For the first radical in (1) we chose"+ ," since the arc does not have 

a negative y-intercept. For the second radical in ( 1 ), we chose " + " since the arc does have a 

positive y-intercept. Then, formula (1) gives they-value of 

T: ½(~(6-4)(6+2)+ ~(6+ 4)(6-2) )= 2+./10. Hence, T 1s located 

100~ + .Jio) m north ofC (or 516 m north of C). 

New problems for further practice could be prepared using various real-world situations 

that involve arcs and their midpoints. 




